
ISSN 0021-3640, JETP Letters, 2024, Vol. 120, No. 9, pp. 631–635. © The Author(s), 2024. This article is an open access publication.
ISSN 0021-3640, JETP Letters, 2024. © The Author(s), 2024. This article is an open access publication.

ASTROPHYSICS
AND COSMOLOGY
Devoted to memory of Alexei Alexandrovich Starobinsky

Schwinger versus Unruh (Brief Review)
G. E. Volovika,b,*

a Low Temperature Laboratory, Aalto University, P.O. Box 15100, Aalto, FI-00076 Finland
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

*e-mail: volovikgrigory@gmail.com
Received September 3, 2024; revised September 5, 2024; accepted September 23, 2024

It is shown that the temperatures which characterise the Unruh effect, the Gibbons–Hawking radiation from
the de Sitter cosmological horizon and the Hawking radiation from the black hole horizon acquire the extra
factor 2 compared with their traditional values. The reason for that is the coherence of different processes.
The combination of the coherent processes also allows us to make the connection between the Schwinger pair
production and the Unruh effect.

DOI: 10.1134/S0021364024603324

1. INTRODUCTION

There were many discussions concerning the prob-
lem with a factor 2 in the temperature of Hawking
radiation [1–6]. The doubling of the Gibbons–Hawk-
ing temperature was discussed for the de Sitter expan-
sion [7, 8]. Since the Schwinger pair creation bears
some features of the thermal radiation, one may also
expect the factor 2 problem.

The Schwinger pair creation [9, 10] of particles
with mass  and charges  in electric field  per
unit volume per unit time is given by:

(1)

Since  corresponds to the acceleration of a
charged particle, there were attempts to connect the
Schwinger mechanism with the Unruh effect [11], see
[12–15] and references therein.

In December 2020 I got from Alexei Starobinsky
the following message:

“By the way, I discovered a new wrong result not
mentioned in literature, probably because it is wrong.
The result is the following: pair creation in the con-
stant electric field can be explained by the Unruh
effect, namely, thermal activation by the Unruh tem-
perature. Indeed, let us write the exponent for the
probability  as  where T is some
“temperature,” supposedly the Unruh one. However,
it follows immediately that ,
where a is the acceleration, that is 4 times larger than

the Unruh temperature . This 4 times difference
shows that the proposed explanation is wrong.”

My response was the following:
“Dear Alexei, I also looked at that. But I got the

factor 2 instead of 4. Since you consider acceleration
of one particle, the exponent is , and thus

. Anyway, this is also wrong.”
Of course, the similarity between the equations for

probabilities suggests that there is some analogy
between the Schwinger and Unruh effects, although
the factors 4 or 2 come as the serious problems. Here
we consider these problems using the experience [8]
with the doubling of the Gibbons–Hawking tempera-
ture in case of the cosmological horizon.

If one tries to make the direct analogy between
these processes, this is already problematic. The orig-
inal state is the vacuum in the constant electric field.
Being the vacuum it does not provide any physical
acceleration. Acceleration in electric field appears
only in the presence of a charged particle. That is why
one can try to find the situation, when the two effects
are physically connected. The connection may arise if
we split the pair creation in several steps. In the first
step the pair of particles is created by Schwinger mech-
anism and then in the further steps the Unruh process
enters, which is caused by the acceleration of the cre-
ated charged particles by electric field. These quantum
processes should take place in unison, i.e., coherently.
This means that in the quantum tunneling picture [16,
17] the corresponding exponents are multiplied.

We consider here such scenario, which allows us to
connect the acceleration caused by the electric field
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with the Unruh process. Instead of the factor 4 dis-
cussed in the Starobinsky message we obtain the
factor 2, i.e., we come to the same factor 2 problem as
in the Hawking radiation from the black hole and in
the de Sitter spacetime. However, we show here that in
such Schwinger–Unruh connection the factor 2 is not
wrong. This factor 2 is natural for the Unruh effect in
the same way as the temperature of the de Sitter state
is naturally twice the Gibbons–Hawking temperature.
The common reason, which provides the factor 2 in
the de Sitter expansion and in Schwinger–Unruh pro-
cess, is that in these two situations there is the coher-
ence between several processes.

The similar arguments for the doubling of tempera-
ture can be applied to the pure Unruh effect, and also
to the Hawking radiation from the black hole, where
according to ’t Hooft, the type of the quantum coher-
ence leads to the doubling of the Hawking temperature
[18, 19].

2. SCHWINGER + UNRUH
To connect the Schwinger pair production with the

Unruh effect, let us consider the charged particle as
the two level system with mass  in the ground state
and mass  in the excited state. According to
Eq. (1), the probability of creation of particles in the
excited level with mass  and charge  can be
expressed in terms of the probability of creation of par-
ticles in the ground state with mass  and charge 
with the extra term:

(2)

In the limit , the extra term can be
described in terms of the temperature of the Unruh
radiation in the accelerated frame:

(3)

(4)

Here, a is the acceleration experienced by charged
particles with mass  after their creation in electric
field. The accelerated particles with mass  play the
role of the Unruh–deWitt detectors in the Unruh vac-
uum. These detectors experience the transition from
the state with mass  to the excited state with mass

 with probability determined by the Unruh
temperature .

At first glance the problem was solved since the
Unruh temperature here has the conventional form
without factor 2. I informed Alexey about this result
and published the paper [20]. However, the further
considerations demonstrated that this is not so simple.
In particular, the question arises on what happens if 
is not small, i.e., what is the role of the m2 term in
Eq. (2)? Let us first consider this question.
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3. BACK REACTION OF DETECTOR
IN UNRUH EFFECT

Equation (2) suggests that the Unruh contribution
should be written in the form

(5)

and the correction  describes the recoil (or back
reaction) of the detector due to its finite mass  [12,
13, 21, 22]. This could be similar to the back reaction
of the black hole in Hawking radiation discussed by
Parikh and Wilczek [17].

To get this correction let us consider the step by
step transitions to the higher mass of the detector, i.e.,
to the higher level n of excitation of the detector [21,
22]. We consider N steps, each with . At
each step the mass of the detector increases, Mn =

 and thus the acceleration and the
Unruh temperature decrease correspondingly:

(6)

(7)

Then one obtains Eq. (5):

(8)

(9)

4. BACK REACTION IN HAWKING 
RADIATION

The same step-wise procedure can be applied to the
Hawking radiation, where the black hole mass M
decreases after each  step of Hawking radia-
tion which step by step raises the Hawking temperature

(10)

(11)

This gives the Parikh–Wilczek result [17]:

(12)

(13)

The result is similar to that in Eq. (9) except for the
opposite sign, since the mass of the black hole
decreases with radiation, while the mass of the detec-
tor increases due to excitation by acceleration.
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5. DOUBLE UNRUH TEMPERATURE
FROM SCHWINGER + UNRUH

So, using the corrected equation for the Unruh
effect in Eq. (9) we obtained the following relation
between the Schwinger pair creation and the Unruh
effect:

(14)
However, we did not take into account that we dis-

cussed the coherent process of co-tunneling. This
means that the Unruh effect here is the coherent pro-
cess which combines the Unruh effect experienced by
the accelerated particle with negative charge (elec-
tron) and the Unruh effect experienced by its partner
with positive charge (positron). Since we want to get
the probability of the Schwinger creation of the pairs
with the same masses , the Unruh processes
must occur simultaneously. This means that their
probabilities must be multiplied. That is why Eq. (14)
must be rewritten in the following form:

(15)

where  and  are the excitations rates
of the corresponding detectors.

Comparing Eq. (15) with Eq. (2), one finds that
each of the two processes is governed by the tempera-
ture , which is twice the Unruh temperature:

(16)

(17)

So, we returned back to the factor 2 problem. But
now we got the new argument in favor of the factor 2
in the Unruh effect. The combined Schwinger–
Unruh process suggests that the factor 2 in Eq. (17) is
natural, and thus we must reconsider the temperature
of the pure Unruh effect. The condensed matter ana-
logs, where we know both the infrared and ultraviolet
limits [23], can be useful for that.

6. DOUBLE UNRUH TEMPERATURE
IN ACCELERATING SUPERFLUID

That the factor 2 does make sense in the Unruh
effect can be supported by its superfluid analog, see
Section 6.15 “Pair Creation by Accelerated Object and
Unruh Effect” in [24]. Equation (6.67) therein gives
the following creation rate of the fermionic quasipar-
ticles with energy  at  in the superfluid mov-
ing with acceleration a:

(18)

Here, the limiting velocity u plays here the role of the
speed of light.
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At first glance, Eq. (18) describes the analog of the
Unruh effect with the conventional Unruh tempera-
ture . However, we must take into account,
that in this process the fermions are created in pairs
(quasiparticle + quasihole) with the total energy

. Moreover, the process of the creation of
quasiparticles and the process of creation of the quasi-
holes are coherent. That is why Eq. (18) must be writ-
ten in the following form:

(19)

Again, coherence of processes plays an important role in
temperature doubling. Let us recall how a similar tem-
perature doubling occurs in the de Sitter Universe [8].

7. DOUBLE GIBBONS–HAWKING 
TEMPERATURE IN DE SITTER UNIVERSE

According to [8] the comoving observer perceives
the de Sitter environment as the thermal bath with
temperature . It is twice larger than the Gib-
bons–Hawking temperature [25] of the cosmological
horizon, . The temperature 
determines in particular the process of ionization of an
atom in the de Sitter environment: the rate of ioniza-

tion is , where  is the ionization

potential. Here the atom plays the role of the local
Unruh–deWitt detector, which is excited in the de Sit-
ter environment.

The ionization process is local, i.e., it takes place
well inside the cosmological horizon, and thus this
local temperature  has no relation to the cos-
mological horizon. Nevertheless, there is the close
relation between these two temperatures: the local
temperature is twice larger than the Gibbons–Hawk-
ing temperature. The factor 2 acquires the definite
physical meaning, when we consider in more detail
the Gibbons–Hawking radiation from the cosmologi-
cal horizon.

Again the main role here is played by the analog of
co-tunneling, since in the Gibbons–Hawking pro-
cess, two particles are coherently created: one particle
is created inside the horizon, while its partner is simul-
taneously created outside the horizon [26]. If the de
Sitter Universe behaves as the thermal bath with tem-
perature , then the rate of the coherent cre-
ation of two particles, each with energy , is

. However, the observer who uses the

Unruh–DeWitt detector can detect only the particle
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created inside the horizon. For this observer the cre-

ation rate  is perceived as

(20)

That is why the observer perceives the Hawking radia-
tion from the cosmological horizon as the thermal
process with the Gibbons–Hawking temperature

, while the real temperature of the
de Sitter environment is twice larger.

On the other hand, in the local process of the ion-
ization of an atom, only single particle (electron) is
radiated from the atom. This process is fully deter-
mined by the local temperature of the de Sitter envi-

ronment , with the rate . That

is why both the local process and the process related to
the cosmological horizon are governed by the same
temperature .

It is important that this temperature has the real
physical meaning. It determines the thermodynamics
of the de Sitter state [8]. It gives in particular the local
entropy density of this state:

(21)

The entropy density is linear in temperature, which
demonstrates that de Sitter thermal state experiences
the analog of the Sommerfeld law in Fermi liquids.

Although this temperature  of the de Sitter envi-
ronment is twice the Gibbons–Hawking temperature,
the holographic principle does work. The total
entropy  of the region inside the cosmological hori-
zon coincides with the entropy of the cosmological
horizon suggested by Gibbons and Hawking, which is
determined by the area A of the horizon:

(22)

Here,  is the Hubble volume. The holographic rela-
tion between the total entropy  and the area  of the
cosmological horizon also supports the doubling of
the temperature.

8. DOUBLE HAWKING TEMPERATURE 
IN BLACK HOLE

The doubling of the Unruh and de Sitter tempera-
tures takes place due to coherence of the several pro-
cesses—the analog of the co-tunneling [27, 28]. This
may also have some connection with the ’t Hooft pro-
posal of the doubling of the temperature of the Hawk-
ing radiation from the black hole [18, 19]. In the
’t Hooft scenario, the temperature of the black hole

horizon is . In this scenario the
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coherence is supported by the partner (the clone) of
the black hole—the mirror image of the black hole
space-time.

Although the existence of such clone is problem-
atic, the idea looks reasonable. Instead of the clone,
the coherence can be provided by the simultaneous
creation of two particles: the particle outside the black
hole horizon and its partner – the hole created inside
the horizon. Due to coherence of these two processes
the physical temperature is twice the Hawking tem-
perature. However, the external observer has no infor-
mation about the physics inside the horizon and
according to Eq. (20) perceives the radiation as ther-
mal with the Hawking temperature.

The double Hawking temperature may arise also
from the Brown–York approach [29]. According to
[30] the only way to reconcile the Brown–York black
hole energy  with the relation  is by
introducing the Brown–York temperature .

9. CONCLUSIONS
The main conclusion is that the factor 2 in the

Unruh process is not wrong. It follows from coherence
of different processes. Due to such processes the tem-
peratures of all three effects (Unruh effect, Gibbons–
Hawking radiation from the de Sitter cosmological
horizon and Hawking radiation from the black hole
horizon) acquire the extra factor 2 compared with
their traditional values.

In the case of de Sitter, the double Gibbons–
Hawking temperature  coincides
with the thermodynamic temperature of the de Sitter
state, which in particular responsible for the ionization
rate of an atom in the de Sitter environment. This tem-
perature also determines the local entropy  of the de
Sitter, which being integrated over the Hubble volume

 reproduces the entropy of the cosmological hori-
zon, , where  is the horizon area.

In the case of the Unruh effect, the double Unruh
temperature is supported by the analog of the Unruh
effect in the accelerated superfluid liquid such as 3He-
B. In the Unruh process, two Bogoliubov fermions
(quasiparticle and quasihole, each with energy ), are
created simultaneously. Since the two fermions are
created in unison, such coherent process looks as ther-
mal but with the factor 2 in the exponent, . This
is the reason why the temperature  corresponding to
this coherent process is twice the Unruh temperature,

, where  and a is the acceleration
of the liquid.

In case of the black hole Hawking radiation, the
double Hawking temperature emerges also due to the
combination of the coherent processes. Such coher-
ence is similar to that in the scenario suggested by
’t Hooft, where the black hole interior is considered as
a quantum clone of the exterior region, which leads to
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the doubling of the Hawking temperature. The dou-
bling of Hawking temperature also takes place for the
Schwarzschild–de Sitter black hole [31], where the
temperature is twice larger than the Bousso–Hawking
temperature [32] in the Narai limit, when the cosmo-
logical and black hole horizons are close to each other.

The coherence of the processes is also used for the
consideration of the back reaction of the black hole to
the Hawking radiation and the detector recoil to the
Unruh effect. In both cases the back reaction is calcu-
lated using the coherent set of small steps. In each step
the mass of the black hole experiences the stepwise
decreases due to Hawking radiation, while in the
Unruh effect the detector is stepwise excited. The
obtained back reaction has the same value in both pro-
cesses, but opposite sign.

Finally, the connection between the Schwinger pair
production in electric field and the Unruh effect is
established. We considered the combined process in
which in the first step the pair of particles with masses M
are created by Schwinger mechanism. Then the cre-
ated particles with positive and negative charges are
accelerated by the electric field and they play the role
of two Unruh–deWitt detectors. If due to the acceler-
ation the mass of each detector is increased by m, the
total process is equivalent to the pure Schwinger effect
of creation of particles with masses  in Eq. (15):

(23)

The back reaction of the detectors is included into the
rates of the Unruh processes  in Eq. (16).
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