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Abstract We propose high-frequency gravitational wave
(GW) detectors with Rydberg atoms. Rydberg atoms are
ultra-sensitive detectors of electric fields. By setting up a
constant magnetic field, a weak electric field is generated
upon the arrival of GWs. The weak electric field signal
is then detected by an electromagnetically induced trans-
parency (EIT) in the system of the Rydberg atoms. Recently,
the minimum detectable electric field with the Rydberg atoms
is further improved by employing superheterodyne detection
method. Hence, even the weak signal generated by GWs turns
out to be detectable. We calculate the amplitude of Rabi fre-
quency of the Rydberg atoms induced by the GWs and show
that the sensitivity of the Rydberg atoms becomes maximum
when the size of the Rydberg atoms is close to the wavelength
of GWs. We evaluate the minimum detectable amplitude of
GWs with Rubidium Rydberg atoms and find that the detec-
tor can probe GWs with a frequency f = 4.2 GHz and an
amplitude around 1072,

Contents

1 Introduction

2 A strategy for detecting GW's

3 Measurement of electric field with EIT
3.1 Interaction of a two-level atom with an electric field
3.2 Susceptibility and density matrix . . . . ... ..
3.3 Electromagnetically induced transparency (EIT) .

4 Gravitational wave detector using Rydberg atoms . . .
4.1 Superheterodyne detection strategy . . . . . . . .
4.2 Fermi-normal coordinates . . . . . ... .....

5 The minimum detectable amplitude of GWs . . . . . .
5.1 Master equation for Rydberg system

#e-mail: taniguchi.akira.405@s.kyushu-u.ac.jp (corresponding author)

Published online: 20 January 2025

5.2 Estimation of the minimum detectable GW amplitude

5.3 Comparison with other detectors
6 Conclusion
Appendix A: Rabi frequency stemming from GWs
References . . . . . . ... ... . ... ... ...

1 Introduction

The discovery of gravitational waves (GWs) from a merg-
ing black hole binary by LIGO-Virgo Collaboration [1] trig-
gered a new field of science, so-called GW astronomy. As
the history of astronomy tells us, it would be crucial to
expand the range of observable GW frequency for mak-
ing further discoveries. Currently, LIGO/Virgo/KAGRA are
sensitive to GWs with frequencies only in the range of
10 ~ 10% Hz [2]. The future space-based GW observato-
ries such as LISA [3] and DECIGO [4,5] will cover the low-
frequency band 10~* ~ 10~ Hz. Moreover, Pulsar timing
arrays are expected to operate in the lower-frequency band
10~2 ~ 1077 Hz. Recently, it has been reported that the pul-
sar timing arrays have successfully observed GWs [6—14].
Thus, GWs in the frequency range from 10~ to 10> Hz have
been well explored.

On the other hand, observations of GWs at frequencies
higher than 10 kHz have not been well developed. This is
partially due to a tacit assumption that GWs with a frequency
higher than 10 kHz have no relevance to physics. How-
ever, the high-frequency GWs associated with astrophysical
phenomena could exist [15,16]. Moreover, primordial black
holes (PBHs) lighter than solar mass can produce GWs with
frequencies higher than 10 kHz. We can also expect high-
frequency GWs from inflation [17, 18]. The frequency of pri-
mordial GWs generated by reheating is typically in the range
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from MHz to GHz [18]. High-frequency GWs could be gen-
erated by cosmological events even after inflation such as the
cosmological phase transitions in the early universe [19]. In
addition, we consider GW's from extra dimensions as the pos-
sible candidates for GW sources that could lead to verifying
theories beyond the Standard Model. According to [20], GWs
generated by pointlike bodies orbiting a braneworld black
hole can produce observable high-frequency GWs. Hence,
observations of high-frequency GW will provide informa-
tion beyond the Standard Model of particle physics (see a
review article [21]).

Another reason why GWs with frequencies higher than
10 kHz have not been explored is the presence of obsta-
cles in their detection. Indeed, it is known that the sensi-
tivity of current GW detectors becomes worse in the high-
frequency range [22]. Hence, it is necessary to come up with
new schemes for the detection of GWs at frequencies above
10 kHz. A hint can be obtained by focusing on the simi-
larities between axions and GWs. That is, if axions can be
detected, it opens the possibility of detecting GWs as well.
Based on this idea, the use of axion detection with magnons
provided constraints on high-frequency GWs [23,24]. This
approach can be applied to the interaction between axions
and various other excitations, such as axion-photon conver-
sion [25,26]. Recently, an idea for the detection of axion
by using Rydberg atoms was proposed in [27]. Following
the strategy mentioned above, we focus on the similarities
between axions and GWs, and then see if we can exploit the
Rydberg atoms for detecting high-frequency GWs.

Since Rydberg atoms can exhibit very large electric dipole
moments [28], they are widely used to measure electric fields
as quantum sensors [29]. Indeed, it is possible to measure
microwave electric fields over a wide range of frequencies
from kHz [30] to THz [31,32]. The Rydberg atoms can be
used as GW detectors because GWs induce a weak elec-
tric field when propagating in a homogeneous constant mag-
netic field. Recently, highly sensitive detection utilizing elec-
tromagnetically induced transparency (EIT) with an atomic
superheterodyne receiver has been developed [33]. There-
fore, it would be worth investigating the possibility of detect-
ing high-frequency GWs with the Rydberg atoms.! In par-
ticular, the detector with Rydberg atoms has a potential for
utilizing quantum entanglement to realize Heisenberg scal-
ing.

The paper is organized as follows. In Sect. 2, we explain
our strategy for detecting GWs based on the fact that the
electric field can be induced by GWs in the presence of a
magnetic field. In Sect. 3, we start with basics of Rabi oscil-
lations. We derive the relation between the susceptibility and
density matrix of Rydberg atoms. Then, by solving the mas-

1 See the literature [34] that considers Rydberg atoms to detect 100 Hz
GWs as an earlier work.
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ter equation, we explain a mechanism of EIT. In Sect. 4,
we review the basic idea of Rydberg atom superheterodyne
receiver and describe how to use it as a GW detector. More-
over, we review the full-order Fermi normal coordinates for
plane GWs. In Sect. 5, we deduce the density matrix by solv-
ing the Lindblad master equation for the system of Rydberg
atom. Then, we evaluate the sensitivity of GW detectors with
Rydberg atom. We also discuss the possibility of Heisenberg
scaling to enhance the sensitivity. The final section is devoted
to conclusion. In appendix, the details of calculations for the
averaged amplitude of GW are presented. We work in natural
unit: i =c=¢e9 = uo = 1.

2 A strategy for detecting GWs

In this section, we propose a method for detecting high-
frequency GWs. In the presence of a uniform magnetic field,
GWs induce electric fields. The idea is to detect the elec-
tric fields by a heterodyne detection method with Rydberg
atoms [33].

We first derive the electric field induced by GWs. Below
we work in the laboratory frame. We consider a situation
where GWs propagate in a constant magnetic field. The
action we consider is the electromagnetic fields expressed
by

1
S = /d4x4/—g [—ZFWF,W]. .1
We consider the tensor mode perturbation 4, in the four-
dimensional metric:
ds® = (v + hyy)dxtdx” (2.2)
where 1, = diag(—1, 1,1, 1) represents the Minkowski
metric. The indices (u, v) run from O to 3, and (0, 1, 2, 3) =

(t, x,y, z). Substituting Eq. (2.2) into the action (2.1), the
action up to the first order in £, is given by

1 1 /1
S = /d4x [_ZFMVF;,LU — Z (EhFMVFMU

+h" o FO*Fyy — W o FVFy) } (2.3)

where FHV = 9" AY — 0¥ A" is the field strength of a gauge
field A*. The variation of the action (2.3) with respect to the
gauge field A* gives the Maxwell equation,

1
BVF“" + av (EhFMU +hv(xFaﬂ _hu(xFDw> = O (24)
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If we consider the situation that the electric field E' is
induced by the interaction between the constant magnetic
field B’ and GWs, then B! ~ O(1) and E! ~ O(h). Equa-
tion (2.4) at the first order in 4 becomes
3 (E" A ,-e-/'"kBk) —0 (2.5)
where we used the relations FO = E' and F'/ = ¢k Bk,
This can be integrated as
E' —n0 el Bk = liky, Ck, (2.6)
where C* is an arbitrary constant function. If we impose the

initial condition that no electric field is induced without the
magnetic field, then C' = 0. Thus, we obtain

E' =¢&kp0 ; B*. 2.7)

We can naively guess that the magnitude of the induced elec-
tric fields is of the order of

. h B
El — 1 —17 V2
0 <1020> <1OT) ¢

10 (] By
- 102 ) \jor ) V/em

Our goal is to study the details of the detection method and
clarify if we can detect this tiny electric fields with Rydberg
atoms.

(2.8)

3 Measurement of electric field with EIT

In the previous section, we showed the strategy for detect-
ing gravitational waves by measuring the electric field. In
this section, we review the concept of Electromagnetically
induced transparency (EIT) in quantum optics that can be
used to measure electric field signals [35].

3.1 Interaction of a two-level atom with an electric field

We first review the interaction system between two-level
atoms and the probe laser. Let us consider a situation where
the two-level atom with energies €1 and &5 interacts with an
electric field (probe laser) E , cos(wpt) as shown in Fig. 1a.
The total Hamiltonian for this system can be written as
H=Hy+ H'(t) 3.1
where I:IO represents an unperturbed Hamiltonian and H (1)
represents an interaction Hamiltonian. They are written as

Hy = e111) (1] + &2 12) (2|
) =—d - E , cos(wpt)

3.2)
(3.3)

where d = ef is the electric dipole moment operator and is
expressed as

d=dp 1) (2 +dy |2)(1]. (34

Hered > = (1| e |2) anddy; = (2| eF |1). Note thatd,; rep-
resent the electric dipole moment associated with the transi-
tion from |i) to | j). Thus, we can write the interaction Hamil-
tonian as follows:

() = —d - E |, cos(wpt)
1
= —5 (w2~ Ep|1) (2 +dai - E, 2) (1))
X (eiwpt + e*iwpt>

= = Zeemiop gy 1) = Zegien 1y (3.5)
2 2

where we used the rotation wave approximation, namely,
the terms e~ir" |1) (2] and e“r! |2) (1| are ignored. This
is because e~/“r |1) (2| represents a transition in which a
photon is absorbed and the energy level drops from |2) to |1),
and €/“r' |2) (1] represents a transition in which a photon is
emitted and the energy level goes up from |1) to |2), which
are physically suppressed.

‘We note that the transition from |1) to |2) can be realized by
absorbing the probe laser with the frequency corresponding
to the energy gap of the two levels ¢, — 1. The probe laser
E, cos (wpt) can induce the Rabi oscillation with the Rabi
frequency 2, = |d12 - E|. In this two-level system, the
atoms absorb the probe laser in the resonance condition A, =
0 as shown in Fig. 1b.

3.2 Susceptibility and density matrix

In this subsection, we show that the absorption rate of the
probe laser and the density operator of the system are related
through the complex susceptibility. Specifically, it is known
that the absorption rate is proportional to the imaginary part
of electric susceptibility which can be related to the density
operator of an atom.

First, we show that the absorption rate is proportional to
the imaginary part of electric susceptibility. Let us consider
the electric field of a plane electromagnetic wave traveling
in the z-direction

E(z,t) = Egexp(ikz — iwt), (3.6)

where Ej is the amplitude of the electric field. The complex
relative permittivity e(w, k) is expressed as

e(w, k) =1+ x(w, k) (3.7)

where x (o, k) (| x| < 1)is the linear susceptibility. We can
introduce the refractive index n(w) and the extinction coeffi-
cient k (w) by separating /¢ (k, w) into its real and imaginary
parts such as

@ Springer
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(a) Sketch of the spectroscopic setup.

(b) The absorption rate of the probe laser.

Fig. 1 (a) The spectroscopic setup where probe laser is directed at the collection of two-level Rydberg atoms. (b) The absorption rate of the probe
laser as a function of the detuning A ,. The probe laser is shown to be absorbed by the atoms as A, goes to zero

Vek,w) = k = n(w) + ik (w). 3.8)
w

Then Eq. (3.6) is written as

E(z,t) = Egexp[i (wn(w)z — wt)] exp [—wk(w)z]. (3.9)

Note that k (w) represents an exponential decay of the electric
field, so it is referred to as absorption rate. Next, defining real
and imaginary parts of the susceptibility as x’and x”, we can
write

x=x+ix" (3.10)

Substituting Eq. (3.10) into Egs. (3.7) and (3.8), we find

14

k(w) = X—.

> (3.11)

This shows that the absorption rate is proportional to the
imaginary part of susceptibility.

Next, we derive the relation between the susceptibility and
density matrix of an atom. Let us focus on a two-level system
[1) and |2) of an atom. In the semiclassical theory, the polar-
ization P at the position of an atom induced by the probe laser
E, cos (a),,t) is expressed as P(1) = NTr[cAl,o(t)], where N
is the atom number density and p(¢) is the density operator
of the atom. Combining this with Eq. (3.4), we have
P(t) = Ndi2p21(t) + c.c.. (3.12)

If we decompose the polarization P(¢) into Fourier modes,
we have
P(t) = P(wp)e " +c.c. (3.13)

where P (w p) is the Fourier transform of P (). By comparing
Eq. (3.12) with Eq. (3.13), we find

P(wp) = Ndiapa1 (1)e'“r". (3.14)

@ Springer

Similarly, the electric field E(1) = E, cos (wpt) is decom-
posed into Fourier mode

~ . 1 .
E(t) = E(wp)e '’ +cc. = EE,,e_””l” +cc.  (3.15)

with E (wp) being the Fourier transform of E (¢). Note that we
used cos (wpt) = (e“r' 4 e~'r") /2 in the second equality.
The susceptibility is defined by
P(wp) = x(wp) E(@p).

So if we use Egs. (3.14), (3.15) and (3.16), the susceptibility
is found to be related to the density operator of the atom

(3.16)

2N|d2)?

o, (3.17)

x(@p) = p21 (D)€',
From the above equations Eqgs. (3.11) and (3.17), we can see
that the absorption rate can be evaluated from the density
operator. Therefore, in the next step, we present a specific

system and find its density operator.

3.3 Electromagnetically induced transparency (EIT)

In this subsection, we consider the interaction of a three-level
system with two electric fields as shown in Fig. 2a and show
the EIT is induced. The probe laser with a frequency w,
couples |1) and |2) with the Rabi frequency €2,,. The control
laser with a frequency w, couples |2) and |3) with the Rabi
frequency €2.. The goal of this subsection is to calculate the
density operator for this system and clarify the characteristics
of the absorption rate of the probe laser.
The Hamiltonian for this total system is written as

H(t) = Ho + H' (1) (3.18)
with the unperturbed Hamiltonian
Hy=¢|1) (1| + &2 12) (2| + &3 3) 3| (3.19)
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absorption rate

1)

(a) The energy level of EIT system.

Fig. 2 (a) The energy level of EIT system. The probe laser with a
frequency @, couples |1) and |2) with a Rabi frequency €2, and the
control laser with a frequency w, couples |2) and |3) with a Rabi fre-
quency 2. (b) Plots of the absorption rate of the probe laser. For sim-

where ¢; with i = 1, 2, 3 denotes the energy of each level.
The dipole interaction Hamiltonian reads

C

Q .
1 — 7e—““c’ 13) (2| + h.c.

(3.20)

N Q :
H'(1) = ——=Fe™ " 12)(

where 2, and 2. are Rabi frequencies. It is convenient to
transform the Hamiltonian to a rotating frame by using

U A
H=UHU" —iUEU‘ (3.21)
with the unitary operator
U =explier|1) (11 +i (e1 + wp) 2) 2] 1

+i(e1 +wp — ) 3) (3] 1]. (3.22)

Then, the Hamiltonian in the rotating frame is written by
H=8,12) 21+ (A, +Ac) 13) 3]

Q, Q,
+[—7 12 (1] = =5 12) 3| +h.c.] (3.23)

where we defined detunings A, and A, expressed by

(3.24)
(3.25)

A[, = (82 —81) — Wp
A = (62 — £3) — we.

The master equation for the density matrix of the total system

in the rotating frame p is given by
d ~ Lfava .
Bl D —{o,jok,p}].
(3.26)

2

—p = —ilH [ékﬁé;j‘ —~
di k=23

where ék = |1) (k| represents the relaxation process of the
atom. We assume that the atom is in the ground state ini-
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(b) The absorption rate of the probe laser.

plicity, the parameters are set to y»/(2mw) = y3/(2nw) = 0.1 MHz,
Q,/(2m) = 1 MHz and the resonance condition A, = 0 is assumed.
The absorption rate is defined as I x /(I X ) max

tially, that is, the initial condition becomes p11(0) = 1,
£12(0) = p13(0) = 022(0) = 023(0) = p33(0) = 0. In order
to solve the master equation (3.26), we use linear approxi-
mation under the assumption that the frequency of the Rabi
oscillation £2,, is small enough. Under this assumption, we
can assume P11 = Q2 = O(1), p12 = P13 = P22 = P23 =
O(£2),). Thus, the master equations become

d . )2 . ~ .Qp.. Qe
Zhm=—(Z+ia ) =r — 3.27
7P <2+l p ,021+12,011+12;031 (3.27)
2 ——(—V3+i(A —A)>~ +iZe; (3.28)
dt’o3l = > P c) ) P31 ) P21- .

Now, we obtain the stationary state solution ,53& normalized
by p11 as

~st
P _

o1

i[yas+2i (A, —A)] 92,
2(Q2+[y3+2i (8p — A)][12 +2i4,])
(3.29)

The result 55| in the rotating frame has to be transformed
back to py1(¢) in the original frame by using p2;(t) =
p21(wp)e™ ! Then substituting the py; (¢) into Eq. (3.17),
we finally obtain the absorption rate in terms of the imagi-
nary part of susceptibility and we plotted it as a function of
the detuning A, in Fig. 2b. We see that the absorption rate of
the probe laser decreases once the Rabi oscillation between
the level |2) and |3) is induced (A, — 0) by the control
laser. This means that the Rabi oscillation with frequency
Q. = |d23-E .| between |2) and |3) driven by the control laser
E . cos (w.t) can interfere with the Rabi oscillation between
[1) and |2) and then the Rydberg atoms become effectively
transparent (no absorption) for the probe laser. This situation
where the probe laser can pass through the Rydberg atoms

@ Springer
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Fig. 3 Energy levels of the superheterodyne system. The probe laser
induces a Rabi oscillation with a frequency €2, between |1) and |2), the
control laser induces Rabi oscillation with frequency €2, between |2)
and |3), and the local laser induces Rabi oscillation with frequency 2,
between |3) and |4). The electric field induced by GWs with frequency
wg in the presence of the magnetic field affects the Rabi oscillation
between |3) and |4)

without being absorbed is called electromagnetically induced
transparency (EIT).

The point of the EIT is that the electric field, which couples
|2) and |3), significantly alters the absorption rate of the probe
laser. Thus, by measuring the changes in the absorption rate of
the probe laser, the presence of the electric field that couples
|2) and |3) can be detected. This method is further developed
into superheterodyne detection method by using a four-level
system, which will be explained in the next section.

4 Gravitational wave detector using Rydberg atoms
4.1 Superheterodyne detection strategy

Recently, the authors in [33] proposed a new method to
improve the sensitivity further by combining an electromag-
netically induced transparency (EIT) method with super-
heterodyne detection. This superheterodyne detection uti-
lizes four-level Rydberg atoms, each of which consists of
two low energy states |1), |2) and two Rydberg states |3), |4)
as depicted in Fig. 3. In the superheterodyne method, another
transition between |3) and |4) is driven by the strong local
laser E, cos (wrt). In this case, the Rabi frequency is given
by Q1 = |d34 - E|. The point here is that this local strong
laser induces splitting of the EIT peak called Autler—Townes
splitting [36,37], that is, splitting of the peak of absorption
rate for the probe laser as we will see in Fig. 5.

Now, let us suppose that GWs arrive to the Rydberg atoms.
If we set up a constant magnetic field away from the four-level
Rydberg atoms, then a weak electric field signal with fre-
quency w, is generated from the interaction between the GWs
and the magnetic field. This electric field induces the Rabi
oscillation with the frequency Q2 = |d34- E 4| between states
|3) and |4). As aresult, the split absorption rate changes. And
this change becomes larger by controlling the local laser as

@ Springer

we will see in Eq. (5.14). By splitting the peak of absorption
rate of the probe laser in the superhetrodyne method, the sen-
sitivity of the signal of the GW turns out to be improved. By
using Eq. (2.7), the Rabi frequency induced by the GWs is
given by

Q = |d34 - E| = |d34'e"*n° ; BY| 4.1)
Note that 2, < €. This induces a change in the absorption
rate of the probe laser when the GWs arrive. More precisely,
the frequency shift between the two split peaks can be mea-
sured upon the arrival of GWs. In this way, a signal of the
GWs can be measured through the change of the absorption
rate of the probe laser. We also note that this superheterodyne
method is proposed by the authors in [27] for the detection
of axion fields.

4.2 Fermi-normal coordinates

In Sect. 2, we considered a constant magnetic field in the
laboratory frame. In order to measure GWSs that appeared in
Eq. (4.1) while maintaining the constant magnetic field, it is
necessary to introduce a local inertial system for the GWs. We
use Fermi-normal (FN) coordinates that describe the effect of
gravity from the point of view of an observer in the laboratory.
In the FN coordinate, the metric is perturbatively expanded
under the condition that the wavelength of the GWs, Ag, is
much longer than the size of detector L, thatis, Ag > L.
However, since the detector becomes the most sensitive for
Ag ~ L, we need to improve the FN coordinates so that
they can incorporate shorter wavelengths of the GWs. The
authors in [38—40] made this possible in the case that the GW
is a plane wave. Recently, the authors in [41] made use of
the improved FN coordinate to detect high-frequency GWs
with microwave cavities. It is also shown that the sensitivity
of magnon GW detectors can be improved by using the FN
coordinates [42]. If we assume that the GW is described by
the plane wave h o e~ @g=kX) the metric components in
the FN coordinates are found to be

o . 1— —ik-x
800 = —1 — Roj0j (0)x'x’ x 20 |:— — ¢ } ,

k-x (k- x)?
“4.2)
2 - ; o—ikx
80i = —gRojik(O)x]x x 3N |:_2(k~x) T
| — o—ikx
_i(k-—x)3i| , 4.3)
1 k1 1 + ¢ ikx
gij = 8ij — 5 Riji(0)x*x! x 601 [—m
] = ik
i } : (4.4)
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where x' are spatial coordinates, k' x; = k-x and R);,p0 (0) is
the Riemann tensor evaluated at the origin x’ = 0. In order to
evaluate Eq. (2.7), we focus on Eq. (4.3). Since the Riemann
tensor in Eq. (4.3) is gauge invariant at the linear order, we
can express it by the metric in the transverse-traceless (TT)
gauge. Then, Eq. (4.3) in the TT gauge, hy;, is calculated as

x k)
x=0

o TT jok .. TT
hoi = g (keh; k]

|:cos(k -x) sin(k - x)i|
X - .

4.5
(k- x)? (k-x)3 (45)
Letus assume that the uniform magnetic field B is pointing
only in the positive z direction. Without loss of generality,
we can consider the GWs propagating in the z-x plane and
its wave vector is given by k = k(sin6, 0, cos #). Then, the

polarization tensors eg.H, e;; ) are expressed as

| cos? 6 0 —cos6@sinb
e}f’ = 0 —1 0 ,
Va_ cosfsin® 0 sinZ 0
1 0 cosd 0
(x) ;
¢; =—=|cos6 0 —sind (4.6)
V2\'0 _sno o0

The GWs are then expanded in the form of circularly polar-
ized monochromatic plane-wave,

h,-TjT(t, x) = h(+)ei;r) cos(wt — k - x)

—I—h(x)efjx) cos(wt — k - x), 4.7)

where 2" and h>*) are the amplitude of the GWs. Substi-
tuting Eq. (4.7) into Eq. (4.5), we find

_ 52 ) o\ [cos(k-x)  sin(k-x)

hox _‘“gkfsme(“‘ e )[ k0> (kx)? ] (4.8)
_ OO 2 o\ [costk-x) sin(k-x)

hoy = a)gkf cos @ sm@(x —z )[ T — TR :| “4.9)

where we ignored the terms involving xixk = x ¥, yZ,zx in

Eq. (4.5) because they vanish when averaging h¢; over the
size of detector. Suppose that the size of the detector consist-
ing of the Rydberg atoms is L. We average Eqgs. (4.8) and
(4.9) over the size of detector radius ¢ = L/2 in spherical
coordinates (r, ¢, ¢). The details of the calculations are pre-
sented in the Appendix A where we introduced a dimension-
less parameter € = /A, = k{/(27) and a variable r’ = r/{.
The spherically-averaged ho; over the size of detector is given
in the form

h
hox) = —=sinOF (e 4.10
(hox) \/_ S1 (e) ( )
h = e F 4.1
v 0 sin 0 11
< 0,) \/_ COS & SIn (6) ( )

of :

0.0 0.5 1.0 1.5 20 25 30
€

Fig. 4 Plot of F(¢)/e> as a function of € = b/hg = k/2m) =
wgt/(2m), which takes the maximum at € ~ 0.7. Therefore, when the
ratio of cell size to gravitational wave wavelength is around 0.7, the Rabi
frequency is maximized, leading to the highest sensitivity. Adjusting
the size of the cell to match the target gravitational wave wavelength
optimizes sensitivity

where we used w, = k and defined F(¢) as

b4 (7‘[262 — 3) SiQQre) w (271262 — 15) cos(2me)
2me + 822
T (27‘[262 + 15) sin(2e)

1673¢3

F(e) =

+

4.12)

Here, Si(€) is the sine integral defined as Si(x) = f(f dtsint/t.
We plotted F(€)/€> as a function of ¢ in Fig. 4. Finally, the
averaged Rabi frequency €2, is calculated such as

Q) = <|d(34) E|> — ‘d(34)igijk(h0j)3k|

—F B
= F(e) NG
For long-wavelength GWs (e < 1), the sensitivity of the
detector to the GWs is significantly reduced due to the rapid
decay of F(¢) as shown in Fig. 4. This reflects the equiva-
lence principle for the detector. On the other hand, for short-
wavelength GWs (¢ > 1), F(€) increases as F(€) o e.
However, as the wavelength of the GWs becomes shorter, the
number of Rydberg atoms within the wavelength decreases
at arate proportional to its volume € ~3. Hence, the sensitivity
is reduced by €3, As aresult, the sensitivity of the detector
is maximized at € ~ 0.7.

sin [d§34)h<x> cosf — d§,34)h<+>]) C(4.13)

5 The minimum detectable amplitude of GWs

In this section, we evaluate the sensitivity of the GW detector
with heterodyne receivers. A signal of the GWs is measured
by a change in the absorption rate of the probe laser. As
mentioned in Sect. 3.2, the absorption rate is proportional
to the imaginary part of electric susceptibility which can be
related to the density operator of an atom. Thus, we calculate
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the density operator for the Rydberg four-level system, and
then, we evaluate the minimum detectable amplitude of GWs.

5.1 Master equation for Rydberg system

As we explained in the Sect. 4.1, we consider a four-level
Rydberg atom that consists of two low energy states |1), |2)
and two Rydberg states |3), |4) as depicted in Fig.3. The
total Hamiltonian A (t) for the four-level atom interacting
with probe laser, control laser, strong local laser and GWs is
written as

H(t) = Hy+ H'(1) (5.1)
with the unperturbed Hamiltonian
Hy=¢1[1) (1| +e212) (2| +e313) Bl +e4l4) (4], (5.2)

where ¢; withi = 1, 2, 3, 4 denotes the energy of each level.
The dipole interaction Hamiltonian reads

Eur. Phys. J. C (2025) 85:31
Ap=(e2—61)—wp (5.6)
A = (63 — &) — o (5.7
Ap =wp — (63 — &4) (5.3)

8y = wg — . (5.9)

Note that the time dependence except for §, in the Hamilto-
nian was eliminated in this rotating frame. The master equa-
tion for total system in the rotating frame p is given by

d . . VRS IV
h=—ilFL A+ Y yk[okpoz—z{ozok,p}}
k=2,3.4
+ (12022 + vapas) 1) (1] + y3033 12) (2]

where ék = |1) (k| represents the relaxation process of the
atom, and the third and the fourth term in the right hand side
represent repopulation processes.

Let us consider the resonance case A; = 0. We can
assume that y3 = y4 = 0 because the relations 3, y4 < 2
hold in general. Then, the stationary state solution of the
master equation p3| is

(5.10)

py o [4ap A @2 [-8a, (A, + A0 +2(a, + A) Q2 424,22 2,

21 _

i A'A* + B'A}+C'A2+ D'A.+ E

2 2
r[4(a,+a) -2 @,
+i
AN+ B'A}+C'A2+D'Ac+ E'

(5.11)

A Q ; Q. .
A1) = == e 12) (1] = ZFe T 13) 2

Q , Q .
— (TLe—W + Tge—’%f) 13) (4] + h.c. (5.3)

where Q,, Q¢, 1, and €, are Rabi frequencies associated
with the transitions |1) — [2), [2) — |3) and |3) — |4),
respectively. Using the unitary operator

0 = explien [1) (11 +1 (61 +wp) 12) 211

tiler +op +00) 3) Bl +ier +wp +oc —op) [4) @]

(5.4)
we obtain the Hamiltonian in the rotating frame
Ho=A,2) 21+ (Ap+Ac)13) GBI+ (Ap+Ac+AL) [4) (4]
Qp Qe QL + Qge !
+ {—2 2 (1= =B 2l - ———F—— B @ +he
(5.5)

where we defined detunings A, A, Ay, and §, by

@ Springer

where we defined A’, B’, C’, D/, and E’ as
A =16 (482 + 92 +13)
B =1256A% + 324, (293, -2 +23)
C' = 38447 +3243 (323 - 302 — 2% + 377)
+4 (2202 — 20207 + Qf - 20%7)
D' = 25675 + 3243 (203 — 302 - 20 + 27
+8, (2302 - 20207 + @ + 20? - 20%3)
E'= 6405 + 16A% (22 — 202 — 207 + 1}
+482 (@202 - 20207 + 0! + 20207
+0 - 20%7) + Q20207 + 2" + 2,
(5.12)

Here we introduced Q = Q; + Q ge_i‘sgt which is almost
constant because of the relation Q2 <« Q.
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absorption rate

A. (MHz)

Fig. 5 Plots of the absorption rate of the probe laser as a function of A..
Here we used y»/(27) = 5.2 MHz, y3/(2w) = 3.9 kHz, y4/(27) =
1.7kHz, 2,/(2m) = 5.7 MHz, Q./(27) = 0.97 MHz, Q,/Q2r) =
1.0 MHz [33]. The absorption rate is defined as I /(Ix)max. The
splitting of the peak of absorption rate for the probe laser occurs due to
the local laser

The result 55| in the rotating frame has to be transformed
back to py1(¢) in the original frame by using p2;(t) =
P21 (wp)e™ @’ Substituting pa; (1) into Eq. (3.17), we finally
obtain the absorption rate in terms of the imaginary part of
susceptibility in the form.

o~

Sx

2
2N|d12|2 Y2 [4(Ap+Ac) —92]
 Qp, AA*+BA}+CA2+ DA +E’

(5.13)

The absorption rate, defined as I /(Jx)max, 1S shown in
Fig.5. It can be seen that the local laser causes the AT split-
ting. This is a phenomenon that does not occur in the three-
level EIT system, and is a feature of the superheterodyne
system.

5.2 Estimation of the minimum detectable GW amplitude

To evaluate the minimum detectable amplitude of GWs, we
restore the time-dependence of 2 in Eq. (5.13). We can
expand |2|% up to the first order in ¢ such as

192 = (@1 + Q™) (R + Q") ~ 23
+28 Qg cOs 8t
Plugging the result into Eq. (5.13), we find
Sx = 2N|d2*ko + 2N |d 12124 cos(841) (5.14)
where k¢ and k1 depend on the Rabi frequencies 2, ¢, 2,

the detunings A, A, and relaxation rate y, and can be cal-
culated as

0.08 ——

k1| (MHz?)
o (@]
2 2

e
<)
(\S)

0 2 4 6 8 10 12 14

g
o
3

Q. /(2n) (MHz)

Fig. 6 Plot of || as a function of the Rabi frequency €2; normalized
by 27 in which the resonance condition A, = A, = Ay = 0is
imposed. Other parameters are set to y»/(2w) =52 MHz, y3 = y4 =
0,Q2,/@2n) =5.7MHz,Q./(2r) = 0.97MHz, 2 /(27) = 1.0 MHz.
This plot shows that |« | becomes the maximum value 0.072 MHz 2
at the Rabi frequency € /(27) = 2.6 MHz. The minimum detectable
amplitude of the GWs, associated with these values, can be measured

1 Q. d3
Ko = —3p12 (Q%) i Kl = 2_LM )
Q, Q, dx =2

(5.15)

Note that «; represents a change of absorption rate of the
probe laser due to the GWs. Notice that «; would not exist
without the local laser. We plotted the €27 dependence of x|
in Fig. 6. We see |« | takes the maximum value 0.072 MHz 2
for Q;/(2n) = 2.6 MHz.

By using Eqgs. (3.9) and (3.11), the output power of the
probe laser P(r) is calculated as P(1) = |E (z,1)]* =
|Eg|?e20rk = P;e=®rL3X  where P;(= |Eo|?) is input
power of the probe laser, L is the size of Rydberg atoms and
we set n = 1, z = L. Substituting Eq. (5.14) into P(t), we
find

P(t) = Pl_e—w,)L2N|d12|2xoe—w],L2N\dlz\zlqQg cos(wgt)
~ Pie—a)pLZN|d12|2K0

— P~ L2NIRI0 9N d 152w, Lic 2, cos(wgt)
= Py + 2PyN|d12|>wp Lic1 2, cos(8,1), (5.16)

where Py = Pje~@rL2Nld 12‘2"0. Now, we estimate the mini-
mum detectable electric field. Note that a signal can be mea-
sured when the ratio of the stationary term to the oscillation
term of the Eq. (3.31) is greater than 1. Thus, the minimum
detectable Rabi-frequency €2g (min) satisfies the following
equation.

2PyN|d 12w, Llki |2 cos(8)

1. 5.17
7o (5.17)
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Combining it with the relation Qg (min) = |d34 - Eminl, we
find the minimum magnitude of the detectable electric field
as

$2g (min) _ 1
|d34] 2|d34lld 12> Nwp Llki]

(5.18)

Enin =

Let us estimate the minimum detectable value. We con-
sider Rubidium atoms with the four levels [1) : 5S;,,
[2) : 5P3/2, |3) : 59P32, and |4) : 57Ds);. In this case,
the dipole moment and the energy gap are calculated as
|d 12| = 5.158¢eaq, ey — &1 = 384 THz, |d34| = 2416eay,
and €3 — &4 = 26.4 GHz. Here, ¢ is a electric charge and ag
is the Bohr radius, and we used Alkari Rydberg Calculator
(ARC) package [43] to calculate the dipole moment. Accord-
ing to [44], N can be increased upto N ~ 1.6 x 10'* cm™3.
The size of the Rydberg atoms is L = 2¢ = 10 cm. Thus,
we obtain

Emi 2416
min _ g8 % 10~7 eV2/vHz (ﬂ>
+Hz |d34]

(5.158 eao>2 (1.6 x 1014 cm—3)
X
|d 12| N

(384 THZ) < 10 cm) <0.072 MHZ—2)
X .
wp L lxc1]

(5.19)

Thus, the minimum detectable electric fields turn out to be
Emin = 8.8 x 1077 eV2/\/Hz = 1.4 pV/(cm - ~/Hz).

Next we estimate the minimum detectable amplitude of
GWs. In Eq. (4.13), to consider the most favourable situation,
we choose 6 = /2 that represents the situation where GWs
propagate in the direction perpendicular to the magnetic field.
In this case, from Eq. (4.13), & is expressed as

hmin 1 V2(R)
VHz  /Hz |d3s|B.F(e)
1 V2 1

X2 . (520)
VHz 2 B.F(€)ld3alld2|*Nwp L k1|

Here, we take B, = 10 T. The energy gap of the two Rydberg
states determines the detectable frequency of the GWs, w, ~
&4 — €3 = 26.4 GHz, which corresponds to the wavelength
Ag = 1.14 cm. When the size of the Rydberg atoms is L =
2¢ = 10 cm, then the value of F'(¢) at e = wgf/2m = 0.701
becomes F(0.701) >~ 1.91. Thus, the minimum detectable
amplitude of the GWs by using the Rydberg atoms turns out
to be

@ Springer

hmin —20
— =28x10
+vHz

1 1.91 10T
\/E (F('f))( B; )
8 (2416 eao) (5.158 eao)2
|d34] |d12]
1.6 x 10" cm™3\ /384 THz\ /10 cm
() L) )

(0.072 MHz_2>
X —_— .

st

(5.21)

Finally, let us estimate the minimum detectable amplitude
of GWs in the quantum projection noise limit based on [45].
The basic idea of the EIT is to measure the frequency shift
between the two split peaks Av which is related to the ampli-
tude of electric field E and electric dipole moment d as

Av
E>~—. 5.22

7 (5.22)

Since Av ~ 1/(y/n Ty), where T; is the coherence time of
the EIT and n is the number of independent measurement
taking place per second, we obtain

1
E>~———ro.
d/nT,

Let T be the integration time of the coherent EIT process.
Then, we can deduce

(5.23)

T
n=N,—

5.24
"7 (5.24)

where N, is the number of atoms participating in the mea-
surement per second. Hence, the minimum detectable electric
field in the quantum projection noise limit (QPNL) is given
by

1
Enin = ———. 5.25
min d /—NaTTz ( )
Setting T = 1s gives the sensitivity limit
Emi 1
— = (5.26)

E = = .
QPRL VHz  d/N,T»

The dipole moment is d = |d34] = 2416eay ~ 3.87 x
10~ cm. The number of atoms participating in the measure-
ment is N, = 2.14 x 1013 s~1 [33], and the coherence time
of Rydberg atom EIT system is 7> = 100 ns [44]. Thus, we
obtain

Egpnt = 1.7 x 107! pV/(cm - v/Hz)

. 3.87 x 10 0cm /2.14 x 10135~ 1\ /2
d N,

(5.27)
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This can be translated to the amplitude of GWs as

hopt, = 34 x 102 1 < 1.91 ) <10 T)
\/E F(e) B,
3.87 x 10 0cm ) /2.14 x 10135~ 1\ /2
() )

<1OO ns) 172
X )
T

For instance, we can expect ultimate value 1.7 fV/cm for T =
10* s. This number can be translated into the GW amplitude
h~ 1072,

‘We note that one of the noise sources is thermal black-body
radiation. However, background electromagnetic waves can
be shielded by enclosing the detector in metal, so they do
not become a source of noise that would affect the sensitiv-
ity. Although other significant sources of noise include laser
amplitude fluctuations and measurement noise, according
to [46], shot noises and measurement noises can be neglected.
Therefore, the fundamental noise limit is determined by the
quantum projection noise limit Eq. (5.28). Note that we are
evaluating the minimum detectable GW amplitude in an ideal
scenario where mutual interactions between Rydberg atoms
are neglected. A future challenge will be to estimate, both
experimentally and theoretically, how interactions between
atoms affect sensitivity.

(5.28)

5.3 Comparison with other detectors

The detector with Rydberg atoms has some advantages. For
instance, it is possible to adjust the detectable frequencies
of GWs by tuning the energy level of |3) and |4) and the
size of the cell of Rydberg atoms. We would be able to pre-
pare multiple cells of Rydberg detectors and set each one
to target gravitational waves at different frequencies. Thus,
GW detector by Rydberg atoms make us possible to detect a
wide range of frequencies. It is possible to search for GWs in
the angular frequency range between 2 and 100 GHz, which
corresponds to the frequency range between 0.3 GHz and
16 GHz. The lower limit is determined by the minimum
energy level gap between |3) and |4), which arises from the
fact that the principal quantum number of maximum exci-
tation in a Rydberg atom is O(90). The upper limit, on the
other hand, is determined by the sensitivity. At frequencies
higher than around 16 GHz, the minimum amplitude of the
detectable GWs becomes above 1079, Hence it would be
difficult to detect GWs. Their minimum detectable ampli-
tude can be estimated from Eq. (5.28). The sensitivity and
the range of observable frequencies of various detectors are
shown in Fig. 7 where we can see the Rydberg detector can
cover a wide range of GWs.

Let us compare the sensitivity of the detector proposed
in this study with that of a similar detection method for

axion dark matter using Rydberg atoms [27]. In [27], they
claim that the minimum detectable electric field is |E| =
300 pV/em, |E| = 5.0 pV/cm and |E| = 0.18 pV/cm for
measurement times of 1 s, 1 h and 1 month, respectively.
Since the minimum measurable amplitude of our detector is
Emin ~ 1.4 pV/cm as shown in (5.19), our result is consis-
tent with that in [27]. Furthermore, the microwave cavities
proposed in [41], specifically ADMX, achieve a detection
sensitivity of # ~ 1072!. When converted to electric field
detection sensitivity, we obtain

_ B h
Emin,cav ~ 10 18 ev? (75_T> (W)

which corresponds to approximately 0.01 pV/cm. Therefore,
cavity-based detectors offer superior sensitivity compared to
detectors utilizing Rydberg atoms. Note that although the
electric field sensitivity given by (5.19) (represented by the
light green region in Fig. 7) does not show a significant advan-
tage, the frequency range of Rydberg detectors is broader
than that of cavity detectors.

On the other hand, in an idealized scenario where the
detector sensitivity is determined by the quantum projection
noise limit as given by Eq. (5.27), the minimum detectable
electric field is evaluated as Eni, ~ 1.7 fV/cm for a measure-
ment time 1000 s. In this case, the sensitivity is represented
by the dark green region in Fig. 7. We can see that the detec-
tor using Rydberg atoms demonstrates superior sensitivity
across a broad frequency range compared to other detectors.

6 Conclusion

We studied high-frequency GW detectors with Rydberg
atoms. First, we showed that a weak electric field signal is
generated from GWs in the presence of the magnetic field.
We calculated the effective electric field induced by GWs
using improved Fermi-normal coordinates with which we can
treat GWs with wavelength shorter than the detector size. We
then explained the electromagnetically induced transparency
(EIT) employed for detecting electric fields. The method is
further improved by combining the superheterodyne detec-
tion method in the system of Rydberg atoms. The weak signal
of the GWs can be probed by measuring the absorption rate
of the probe laser. We showed that the absorption rate is pro-
portional to the imaginary part of electric susceptibility, and
that the susceptibility can be related to the density operator
of the Rydberg atom. Considering two low energy states |1),
|2) and two Rydberg states |3), |4), we obtain the absorp-
tion rate of the probe laser in terms of the imaginary part of
the susceptibility. We evaluated the ratio of the output power
with a signal of GWs to that with no signal GWs. Finally,
we evaluated the the minimum measurable GW amplitude
with Rubidium Rydberg atoms and found that GWs with the
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Fig. 7 An overview of the characteristic strain for gravitational wave
detector in the frequency range between 0.1 and 100 GHz. Light green
region is for the superheterodyne method with Rydberg atoms. Dark
green region is for the quantum projection noise limit(QPNL) in a 1000s
measurement with Rydberg atoms. The sensitivity of bulk acoustic wave
devices (BAW) [47,48] are shown in light red line. The sensitivity of
microwave cavities from ADMX [49] and SQMS [41] is shown in pur-
ple. Global network of cavities(GravNet) [50] is shown in red. The sensi-
tivity of the ARCADE 2 [51] is shown in orange, IAXO HEP and IAXO
SPD [52] are shown in light blue, and EM Gaussian beams(GB) [53] is
shown in brown. The grey region shows the gravitational waves emitted
from the primordial blake hole (PBH) binary [54]

amplitude 10720 and the angular frequency 26.4 GHz can be
detected.

The advantage of using the GW detector with Rydberg
atoms is its broad detectable frequency band due to the flexi-
bility of adjusting the detector size. Tuning the energy levels
of |3) and |4) and the size of the cell of Rydberg atoms, we
can detect GWs with a frequency in the range between 0.3
GHz and 16 GHz.
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Appendix A: Rabi frequency stemming from GWs

When we derive Eqs. (4.10) and (4.11), we perform integra-
tion in spherical coordinates (r, ¢, ¢) as follows.
For i = x, we can calculate as

kkh]T-l-ijxk = ksinf (hxxxx + hyyx + hzxzx)

+k cos @ (hxxxz + hyxyz + hzxZZ)

L) K
= ksinf | — cos? Oxx +

V2 V2

h()
———cosfsinfzx

V2

cosfyx

L) 5 L)
——cos“Oxz +

V2 V2

+k cos @ cosfyz

h()
———cosfsinfzz |,

Al
7 (A.D)

and

ki [ x)x* = kehyxx + kehyyyy + kehz;2z + 2k xy
+2kyhy,yz 4 2kchyczx

L) L)
——cos” 0xx — —yy

V2 V2

L ) L)
+——sin“0zz+2
V2 V2
18] 18]
—2——sinfyz — 2——=cosf sinfzx

NG NG

=ksin®

cos Oxy

(A.2)

When integrating with respect to ¢ in spherical coordinates,
terms involving xy, xz, yz will be zero. Thus we obtain

jAS2) 5 , A s B 3. 2
hox = wgk | ———= cos“0sinfz” + — sinfy” — —sin” 6
0x = s ( 2 HEV, T GV T
|:cos(k-x) B sin(k-x)]
k-x)2 (k- x)}
hH) ) o\ [cos(k-x)  sin(k-x)
= wok——sinf -z - .
g™ 75 sind (v Z>[(k~x>2 <k-x)3]

(A3)

We align the z-axis with the direction of k and introduce
a spherical coordinate system. We then convert the Carte-
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sian coordinate to the spherical coordinate by using x =
rsing cos¢, y=rsin¢sing, z =rcos¢. Using wy =k,
€ = k&, r' = r/t, we can take average

S 1 pm p27
(hoy) = i sin 6 /0 /0 /O dr'dcde r'*sin¢

X <tan2 £sin” ¢ — 1) [COS(Er’ cos¢) — w}
€r’ cos¢
hH) ;
= 1 F(e
ﬁ sin (€)
(A4)

where we defined

7 (€2 — 12) Si(é) LT (€2 — 30) cos(é)

Fé) =
© 4é 4¢2
_2 . _
7 (€ + 30) sin(€
( — ) © (A.5)
4¢3
Fori = y, we can deduce
kil jg x5k = kyh Tk =0 (A.6)

kkh}ﬂ;rxjxk = ksinf (hxyxx + hyyyx + hzyzx)

+kcos O (hxyxz +hyyyz + hzyzz)

K () h() 3]
= ksin6 cosfxx — ——yx — —— sinfzx
NG Y

V2 V2

K () K JAES)
+k cos O cosfxz — —=yz— —=sinfzz ).
72 VR

(A7)

Again, the cross terms vanish after averaging. Hence, we
obtain

OO . 2 2\ [cos(k-x) sin(k-x)

hoy =wgkfc059s1n9(x -z ) [ k- x)? - k1) ]

(x)

= hﬂ cos 6 sin @ (tan2 ¢ cos2¢ - 1)
X |:cos(kr cosg) — %] . (A.8)
r S

After the averaging, we have

KOO _
(hoy) = —=cos@sinOF(€). (A.9)

V2

Finally, we obtain
() = (d%9 - B) = a0 ) B*
= d® (hoy) B. — dSV (hoy) B
— B—Zz sin6 [d3Vh0) coso — dPOR | F@).
(A.10)

Note that F(€) = F(¢) and € = 2re.
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