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Abstract: We analyze the behavior of relativistic spherical objects within the context of modified

f (R, T) gravity considering Tolman VI spacetime, where the gravitational Lagrangian is a function

of the Ricci scalar (R) and trace of energy momentum tensor (T), i.e, f (R, T) = R + 2βT, for some

arbitrary constant β. For developing our model, we have chosen £m = −p, where £m represents

the matter Lagrangian. For this investigation, we have chosen three compact stars, namely PSR

J1614-2230 (Mass = (1.97 ± 0.4)M⊙; Radius= 9.69+0.02
−0.02 km) ,Vela X-1 (Mass = (1.77 ± 0.08)M⊙;

Radius = 9.560+0.08
−0.08 km) and 4U 1538-52 (Mass = (9.69)M⊙; Radius = 1.97 km). In this theory, the

equation of pressure isotropy is identical to the standard Einstein’s theory. So, all known metric

potential solving Einstein’s equations are also valid here. In this paper, we have investigated the effort

of a coupling parameter (β) on the local matter distribution. The sound of speed and adiabatic index

are higher with grater values of β, while on the contrary, the mass function and gravitational redshift

are lower with higher values of β. For supporting the theoretical results, graphical representations

are also employed to analyze the physical viability of the compact stars.

Keywords: Tolman VI spacetime; compact stars; f (R, T) gravity

1. Introduction

The analysis of the interior of the stars is fascinating to astrophysicists, mainly due
to the general theory of relativity (GR), because of the fact that, around the late phase of
stellar evolution, general relativistic effects are much more important. In this direction,
one incredible work was that of the Tolman [1] solution (1939). Tolman extensively de-
liberated on the stellar interior and gave us an explicit solution for the static, spherically
symmetric equilibrium fluid distribution [2]. It has been tested in different dimensions,
which include cosmology, gravitational waves, astrophysics and thermodynamics [3] of the
stellar system, and it has presented important contributions to the different astrophysics
and cosmological issues. Many of them present the collapsing of wormhole solution with
static spherically symmetric geometry [4] and a non-static spherically symmetric object
with anisotropic fluid profile. Moraes and his co-authors [5] studied a modified Tolman–
Oppenheimer–Volkoff (TOV) equation in which they illustrate the equilibrium conditions
of the compact structures.

The modifying form of gravitational action asks for many fundamental challenges.
These models can show ghost-like behavior and instabilities, while on the other side, it has
to match with experiments and observations in the low energy limit. Additionally, in the
framework of f (R, T) gravity, some interesting results have been found at solar system [6],
galactic and cosmological scales.

Several models exist that attempt to explain the early acceleration of the universe.
The most accepted models contain a slowly varying potential and a scalar field. There is
another class of models where the gravity is modified under the general relativity. One
of the procedures of the modifications depending upon phenomenological considerations
is provided by the f (R, T) theory of gravity. Indeed, f (R, T) theories are conformally
identical to Einstein’s theory plus a scalar degree of freedom classified the scalar in which
the potential is uniquely established from a Ricci scalar. There are various models, in the
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literature, where the authors [7] considered Einstein equations with corrections. The con-
sistent theory of gravity, modified or classified, should be equally suitable to the strong
gravity regime.

Here, f (R, T) is an analytic (general) function of R (Ricci scalar). As an example,
cosmological solutions give the accelerated expansion of the universe at late times. Addi-
tionally, it has been found that many stability conditions may lead to avoiding tachyon
and ghost solutions. In addition, there exist viable f (R, T) models satisfying both stability
conditions [8] and background cosmological constraints, and results have been obtained to
place constants on the f (R, T) cosmological model by the cosmic microwave background
radiation (CMBR) galaxy and anisotropic power spectrum [9,10]. To consider f (R, T) grav-
ity in a low energy limit, it is viable to obtain accurate gravitational potentials capable of
describing the flat rotational curves of the dynamics of galaxy or spiral galaxies clusters
without considering large amounts of dark matter [11].

Numerous investigations [12–16] have used different methods to examine the stability
as well as consistency of f (R) gravity theory. There are definite forms of the f (R) alge-
braic function which eliminated the existence of the stable astrophysical form and were
reported as unrealistic. In recent years, more research has been performed on the steadiness,
dynamical unsteadiness, and existence of a celestial stellar system of this theory [17–19].
Harko et. al [20] proposed the concept of matter and curvature couplings to represent
a new version of an altered theory of gravity, namely f (R, T) gravity. They also repre-
sented the relating field equation with the help of the gravitational potential mechanism
and showed the importance of alternative gravity theory. Additionally, the same authors
have initiated various models for f (R, T) algebraic functional for detachable compose viz.
f (R, T) = f1(R) + f2(T). Houndjo [21] investigated the matter instructed age of acceler-
ating cosmic by f (R, T) gravity. Additionally, Baffou and his teammates [22] examined
spatially uniform cosmic in the field of f (R, T) gravity.

Modified and extended models are always popular due to the potential of repre-
sentation of the gravitational field nature near curvature singularities accurately and as
well to overcome the cosmological constant problems. Convincing confirmation for the
extension of the universe has been provided by the many independent observations; some
of these are supernovas Ia data [23–28], cosmic microwave background radiation [29] and
baryon acoustic oscillation [30] according to the study by the WMAP. For addressing this
phenomenon, several assumptions have been suggested, from the dark energy model to
modified theories of gravity. Currently, the dark energy model has no sufficient observa-
tional support. In particular, the dark energy idea requires an equation of state (EoS) ω = p

ρ ,

where p, q represents spatially homogeneous pressure and energy density, respectively,
and the value of the parameter ω is −1. Several results have been found for interior exact
solutions of the Einstein field equation, and Schwarzschild found the first interior solution.
Tolman proposed inventive methods for the treatment of the Einstein field equation, which
are known as Tolman I, II, III, IV, V, VI, VII and VIII [31].

In this paper, we consider the Tolman VI model [32] in the class of modified gravity in
which the gravitational action carries a general function f (R, T). For this model, the study
of the background cosmological evolution can be simplified by performing a transformation
on the metric. This type of transformation maps from a frame where the resulting field
equations and gravitational action are modified from general relativity (GR), called the
Jordan frame, to a frame where the gravitational action for the newly obtained metric is
the Einstein–Hilbert one, called the Einstein frame. The f (R, T) gravity theory has been
related to stellar astrophysics [33] and cosmology [34], among other areas, giving testable
and interesting results.

The present article deals with isotropic Tolman VI in modified f (R, T) gravity.
The physical characteristics of our obtained model are studied for three compact stars,
namely PSR J1614-2230, Vela X-1 and 4U 1538-52. The paper is organized in the following
order of sections. Section 2, we explain about the general formalism of f (R, T) gravity
and in Section 3, the proposed model is obtained for different values of coupling param-
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eter β. At the boundary, we matched our interior space-time to the exterior space-time in
Section 4. Section 5 explains the physical properties between Einstein theory and f (R, T)
gravity. Finally, in Section 6, we discuss and conclude the whole work by pointing out
major findings.

2. Mathematics behind f (R, T) Gravity

In this section, we show how the f(R,T) was introduced. The Ricci scalar is integrated
over a four dimensional volume element d4x when Einstein’s field equation is derived from
Einstein–Hilbert action as

SEH =
1

16π

∫

R
√

−gd4x (1)

If we replace the Ricci scalar R with f (R,T), we can obtain the f(R,T) field equations.
Therefore, the complete action in f (R,T) formalism is

S =
∫

£m

√

−gd4x +
1

16π

∫

f (R, T)
√

−gd4x (2)

where, T is the trace of the energy momentum tensor Tµν. Additionally, £m represents the
Lagrangian matter density and g = det(gµν).

The energy momentum tensor is defined as

Tµν = − 2√−g

∂(
√−g£m)

∂gµν (3)

along with the trace T = gµνTµν. Additionally, the Lagrangian density £m depends on only
the metric tensor component gµν, not its derivatives. Here, we have

Tµν = gµν£m − 2
∂£m

∂gµν (4)

By the variation principle with respect to gµν, Equation (2) gives the field equation

(Rµν −∇µ∇ν) fR(R, T) + gµν(∑
µ

DµDµ) fR(R, T)− 1

2
f (R, T)gµν

= 8πTµν − Tµν fT(R, T)− Θµν fT(R, T) (5)

where, fR(R, T) = ∂ f (R,T)
∂R and fT(R, T) = ∂ f (R,T)

∂T . Here, covariant derivative ∇µ is as-
sociated with the Levi–Civita connection of the metric tensor gµν and the box operation

∑µ DµDµ is defined as ∑µ DµDµ ≡ 1√−g
∂

∂xµ (
√−ggµν ∂

∂xν ) with Θµν = gαβ δTαβ

δgµν

The covariant derivative of Equation (5) gives

∇µTµν =
fT(R, T)

8π − fT(R, T)

[

(Tµν + Θµν)∇µ ln fT(R, T) +∇µTµν −
1

2
gµν∇µT

]

(6)

In f (R, T) gravity, the stress–energy tensor of the matter field does not obey the con-
servation low due to interaction between the curvature and matter as in general relativity.
With the help of Equation (3), we obtain the tensor Θµν as follows:

Θµν = gµν∇µ − 2Tµν − 2gαβ ∂2£m

∂gµν∂gαβ
(7)

for the field equation, we assume the energy–momentum tensor as

Tµν = (ρ + p)uµuν − pgµν, (8)
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provided, the µµ four velocity, such that µµµµ = 1 and µµ∇µµµ = 0 with ρ, pr and pt are
matter density, radial pressure and transverse pressure, respectively. If we specify pressure
as −P = £m, the Equation (7) reduces to

Θµν = −Pgµν − 2Tµν (9)

3. Interior Space-Time and the Realistic Viable f (R, T) Gravity Models

We will represent the model with the help of a realistic f (R, T) gravity model. Here,
we consider a separable functional form of f (R, T) given by,

f (R, T) = f1(R) + f2(T) (10)

in the relativistic structures to study the coupling effects of matter and curvature compo-
nents in f (R, T) gravity, where f1(R) and f2(T) represent arbitrary functions of R and T,
respectively. Several viable models in f (R, T) gravity can be generated in linear combining
of different forms of f1(R) and f2(T). In the present model, we assume f1(R) = R and
f2(T) = 2βT. Then, the expression for f (R, T) becomes

f (R, T) = R + 2βT (11)

where, β is an arbitrary constant to be evaluated depending on many physical requirements.
In curvature coordinates, we consider the static and spherically symmetric line element
describing a wormhole region by the following metric:

ds2 = −eνdt2 + eλdr2 + r2dΩ2, (12)

where, both ν, λ depends on r, i.e., both are purely radial and dΩ2 = sin2 θdφ2 + dθ2. In
modified gravity, the field equation along the line element (12) can be written as

8πρ + β(3ρ − p) =
1 − e−λ

r2
+

e−λλ′

r
, (13)

8πp − β(ρ − 3p) =
e−λ − 1

r2
+

e−λν′

r
, (14)

8πp − β(ρ − 3p) = e−λ

[

ν′′

2
+

ν′2

4
− ν′λ′

4
+

ν′ − λ′

2r

]

. (15)

where a prime (′) denotes differentiation with respect to the radial coordinates “r”.
We denote ρE and pE by,

ρE = ρ +
β

8π
(3ρ − p), (16)

pE = p − β

8π
(ρ − 3p). (17)

where, ρE represents the density and pE represents the pressure in Einstein gravity. To solve
Equations (13)–(15), we use the metric potential by Tolman [1] in which the expression

eλ = 2 − n2, (18)

eν = (Ar1−n − Br1+n)2. (19)

where, A and B are arbitrary constant. The restriction of λ is 0 < λ <

√
2, but this is not

the most general choice. Using the expression of Equations (18) and (13), we obtain the
Einstein density as
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ρE =
1 − n2

8πr2(2 − n2)
(20)

Similarly, using the expression of Equations (18) and (19), and Equation (14), we obtain
the Einstein pressure as follows:

pE =
A(n − 1)2 − B(n + 1)2r2n

8πr2(2 − n2)(A − Br2n)
. (21)

If we eliminate radius r from Equations (20) and (21), we obtain the relation between
Einstein density and pressure. Additionally, the positivity of the density profile demands
the ranges for n are n < −

√
2, n >

√
2 or −1 < n < 1. So, the interval of validity is

0 < n < 1. Now, using the expression ρE and pE from Equations (16) and (21), we
obtain the expression for matter density (ρ) and pressure (p) in modified f (R, T) gravity
as follows:

ρ =
A(n − 1)χ1 − B(n + 1)χ2r2n

4r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (22)

p =
−A(n − 1)χ2 + B(n + 1)χ1r2n

4r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (23)

where,

χ1 = 4(n + 1)π + (n + 2)β,

χ2 = 4(n − 1)π + (n − 2)β. (24)

The square of the sound velocity for Einstein and our present model are obtained
as follows:

V2
E =

(

dp

dρ

)

E

= − (A(n − 1) + B(n + 1)r2n)2

(n2 − 1)(A − Br2n)2
, (25)

V2 =
dp

dρ
= − A2(n − 1)χ2 + 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ1r4n

A2(n − 1)χ1 − 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ2r4n
(26)

A negative sign in the sound speed index can be removed in the interval 0 < n < 1.
The profiles of density and pressure are shown in Figures 1 and 2, respectively (using the
values given in Tables 1 and 2). One can see that the density and pressure are both positive
definite, but at the stellar center both are infinite. Additionally, from Figure 2, we can see
that Einstein pressure are gradually decreasing with increasing value of “n”, i.e., Einstein
pressure at the point n = 0.56 >, Einstein pressure at the point n = 0.64 >, and Einstein
pressure at the point n = 0.85.

Figure 1. Behavior of the “energy density” with respect to the radial coordinate “r” for the compact

stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding

to the numerical value of constants A and B from Table 2 and for different values of β.
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Figure 2. Behavior of the “pressure” with respect to the radial coordinate “r“ for the compact stars

PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding to

the numerical value of constants A and B from Table 2 and for different values of β.

Table 1. Numerical values of constants for three well-known celestial compact stars.

Compact Star Mobs/M⊙ Robs (km) M (M⊙) R (km) n =
√

R−4M
R−2M

PSR J1614-2230 1.97± 0.4 9.69± 0.02 1.97 9.69 0.56

Vela X-1 1.77± 0.08 9.56± 0.08 1.77 9.56 0.64

4U 1538-52 9.69 1.97 1.97 9.69 0.85

Table 2. Numerical values of constants for three well-known celestial compact stars.

n = 0.56

Compact Star β A B ρs (g/cm3) zs Γ(r = 0) Us

PSR J1614-2230 2 0.31368 0.00236 1.88338 × 1014 0.22404 1.80526 0.33257

4 0.31746 0.00266 1.57940 × 1014 0.18006 3.42727 0.28188

6 0.32019 0.00288 1.35301 × 1014 0.15082 5.59965 0.24493

8 0.32225 0.00304 1.19365 × 1014 0.12990 8.32942 0.21671

10 0.32386 0.00316 1.06375 × 1014 0.11415 11.6206 0.19441

n = 0.64

Compact Star β A B ρs (g/cm3) zs Γ(r = 0) Us

Vela X-1 2 0.37509 0.00128 1.76517 × 1014 0.19764 1.22451 0.30282

4 0.37862 0.00148 1.47994 × 1014 0.15965 2.43408 0.25640

6 0.38117 0.00162 1.27408 × 1014 0.13419 4.08345 0.22263

8 0.38309 0.00173 1.11849 × 1014 0.11585 6.17906 0.19687

10 0.38460 0.00181 0.99677 × 1014 0.10200 8.72458 0.17655

n = 0.85

Compact Star β A B ρs (g/cm3) zs Γ(r = 0) Us

4U 1538-52 2 0.65534 0.00230 1.52410× 1014 0.10190 0.19370 0.17640

4 0.65764 0.00299 1.27783 × 1014 0.83973 0.48583 0.14893

6 0.65930 0.00349 1.10008 × 1014 0.07154 0.91913 0.12907

8 0.66055 0.00387 0.96574 × 1014 0.06237 1.49672 0.11398

10 0.66153 0.00416 0.860641 × 1014 0.05532 2.22038 0.10211

In the literature, it is well-known that the mass distributions must obey all the energy
conditions in its interiors. These energy conditions are named as null, strong, week and
dominant energy conditions and symbolized by NEC, SEC, WEC and DEC. All the energy
conditions are satisfied for our present model if the following inequalities hold.

NEC: ρ + p ≥ 0, SEC: ρ + p ≥ 0, ρ + 3p ≥ 0, WEC: ρ + p ≥ 0, p ≥ 0, and DEC:
ρ − p ≥ 0, p ≥ 0.
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(ρ + p)E =
A(n − 1) + B(n + 1)r2n

4πr2(n2 − 2)(A − Br2n)
, (27)

ρ + p =
A(n − 1) + B(n + 1)r2n

r2(n2 − 2)(4π + β)(A − Br2n)
, (28)

(ρ + 3p)E =
−A(n − 1)(n − 2) + B(n + 1)(n + 2)r2n

4r2β(n2 − 2))(A − Br2n)
, (29)

ρ + 3p =
A(n − 1)(t − 2(2π + β))B(n + 1)r2n(S + 2(2π + β))

2r2(n2 − 2)(2π + β)(4π + β)(A − Br2n)
, (30)

(ρ − p)E =
n(A(n − 1) + B(n + 1)r2n)

4πr2(n2 − 2)(A − Br2n)
, (31)

ρ − p =
n(A(n − 1)− B(n + 1)r2n)

4r2β(n2 − 2))(A − Br2n)
, (32)

It is clear from Figure 3 that ρ + p ≥ 0, in Figure 4, ρ + 3p ≥ 0 and ρ − p ≥ 0 is
non-negative shown in Figure 5. So, all the necessary energy conditions have been fulfilled
for our f (R, T) gravity model (see also in Figure 6 and Figure 7).

Figure 3. Behavior of the “Speed sound” with respect to the radial coordinate “r” for the compact star

PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding to

the numerical value of constants A and B from Table 2 and for different values of β.

Figure 4. Variation of “ adiabatic index” with respect to the radial coordinate “r” for the compact stars

PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding to

the numerical value of constants A and B from Table 2 and for different values of β.

Figure 5. Behavior of the “Week energy condition” with respect to the radial coordinate “r” for the

compact stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel)

corresponding to the numerical value of constants A and B from Table 2 and for different values of β.
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Figure 6. Behavior of the “Strong energy condition” with respect to the radial coordinate “r” for

the compact stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel)

corresponding to the numerical value of constants A and B from Table 2 and for different values of β.

Figure 7. Behavior of the “Dominant energy condition” with respect to the radial coordinate “r” for

the compact stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel)

corresponding to the numerical value of constants A and B from Table 2 and for different values of β.

4. Exterior Space-Time and Boundary Condition

Now, we have matched our interior space-time to the exterior Schwarzschild line
element at the r = R. The exterior line element is

ds2
+ = −

(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2). (33)

and the interior line element is

ds2
− = −(Ar1−n − Br1+n)2dt2 + (2 − n2)dr2 + r2(sin2 θdφ2 + dθ2). (34)

The continuity of the metric

(

1 − 2M

R

)−1

= (2 − n2), (35)

(

1 − 2M

R

)

= (AR1−n − BR1+n)2. (36)

The pressure vanishes at the boundary r = R, i.e., p(r = R) = 0, which gives the
following equation in modified gravity as follows

−A(n − 1)χ2 − B(n + 1)χ2R2n

4R2(n2 − 2)(2π + β)(4π + β)(A − BR2n)
= 0 (37)

• Determination of n and the constants A and B: Solving the Equations (35)–(37), we
obtain the expression for n and the constants A and B as follows:
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n = ±
√

R − 4M

R − 2M
,

A = − (n + 1)χ2Rn−2
√

R(R − 2M)

2nβ
,

B =
(1 − n)χ1Rn−2

√

R(R − 2M)

2nβ
.

For numeric values of the constants A and B, we chose Mass M, and radius R accord-
ingly for different compact stars. Additionally, for a well-behaved solution, we use different
values of the parameter β.

5. Physical Properties of the Present Model

• Nature of equation of state: It is very important to describe a relationship between
the energy density and the pressure, which is called the equation of state (EoS). The re-
lation between the pressure and matter density can be found out by the dimensionless
quantity, which is known as the equation of state parameter.

p = ω × ρ. (38)

Hence, the equation of state parameter (w) for Einstein and our model is obtained
as follows:

ωE =
pE

ρE
=

A(n − 1)2 − B(n + 1)2r2n

(1 − n2)(A − Br2n)
, (39)

ω =
p

ρ
=

−A(n − 1)χ2 + B(n + 1)χ1r2n

A(n − 1)χ1 − B(n + 1)χ2r2n
(40)

The behavior of equation of state parameter is shown in Figure 8. We can see that the
equation of state parameter is a monotonic decreasing function of radius r.

Figure 8. Behavior of the “EoS parameter” with respect to the radial coordinate “r” for the compact

stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding

to the numerical value of constants A and B from Table 2 and for different values of β.

• Relativistic adiabatic index: For a compact star, stability is one of the most crucial
requirements. For this reason, we have discussed stability along with the variation of
adiabatic index (Γ) inside the compact star. The adiabatic index can be displays the
stability for both non-relativistic and relativistic compact stars. The stability condition
for a Newtonian sphere is Γ >

4
3 and Γ = 4

3 is the condition for a neutral equilibrium
according to [35]. The expression relativistic adiabatic index for Einstein and our
present model is

ΓE =

(

ρ + p

p

dp

dρ

)

E

=
2(A(n − 1) + B(n + 1)r2n)

B(n + 1)2r2n − A(n − 1)2
V2 (41)

Γ =
4(A(n − 1) + B(n + 1)r2n)(2π + β)

A(n − 1)χ2 − B(n + 1)2χ2r2n
V2 (42)
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• TOV Equation: The hydrostatic equilibrium (Fh) equation is an important feature of
the physical realistic compact objects. The fluid sphere remains at equilibrium under
three forces, namely, gravitational force (Fg), hydrostatic force (Fh) and the additional
force due to modified gravity (Fm), and this situation is represented by an equation,
which is known as the Tolman–Oppenheimer–Volkov (TOV) equation. With the help
of a generalized TOV equation, we can analyze the equilibrium equation for our three
compact stars. The generalized TOV equation for the isotropic fluid [36] distribution
in f (R, T) modified gravity can be written as

−ν′

2
(ρ + p)− dp

dρ
− β

2(4π + β)
(p′ − ρ′) = 0 (43)

Equation (43) can be written as follows:

Fg + Fh + Fm = 0, (44)

where,

Fg =
(A(n − 1) + B(n + 1)r2n)2

r3(n2 − 2)(4π + β)(A − Br2n)2
, (45)

Fh =
A2(n − 1)χ2 + 4AB(n2 − 1)(2π + β)r2n + B2(n + 1)χ1r4n

2r3(2 − n2)(2π + β)(4π + β)(A − Br2n)2
, (46)

Fm =
nβ(A2(n − 1) + B2(n + 1)r4n)

2r3(2 − n2)(2π + β)(4π + β)(A − Br2n)2
. (47)

Since β = 0 corresponds to GR. Hence, Fm = 0, the TOV equation for Einstein
reduces to

−ν′

2
(ρ + p)E −

(

dp

dρ

)

E

= 0 (48)

Equation (48) can be written as follows:

(Fg)E + (Fh)E = 0, (49)

where,

(Fg)E =
(A(n − 1) + B(n + 1)r2n)2

4πr3(n2 − 2)(A − Br2n)2
, (50)

(Fh)E =
(A(n − 1) + B(n + 1)r2n)2

4πr3(2 − n2)(A − Br2n)2
. (51)

• Mass radius relationship and compactness parameter: let U be the compactification
factor and M be the mass function (see Figure 9 for mass profile). Then, we can obtain
the following relation between them:

UE =
ME

R
=

(1 − n2)

2(2 − n2)
, (52)

U =
M
R

=
π((n + 1)χ2) + 2nβ2F1(1, 1

2n , 1 + 1
2n , BR2n

A )

(2π + β)(4π + β)(A − BR2n)
(53)

where, M = m(r)r=R. and 2F1 represents the hypergeometric function. The expression
for mass function for Einstein and our present model are



Universe 2023, 9, 122 11 of 14

mE = 4π
∫ r

0 ρEr2dr =
(1 − n2)r

2(2 − n2)
, (54)

m = 4π
∫ r

0 ρr2dr =
πr((n + 1)χ2) + 2nβ2F1(1, 1

2n , 1 + 1
2n , Br2n

A )

(2π + β)(4π + β)(A − Br2n)
(55)

• Gravitational red-shift (z(r)) function and surface red-shift (zs): The gravitational
redshift can be determined by the formula

z(r) = e−ν/2 − 1 =
1

(Ar1−n − Br1+n)
− 1 (56)

Furthermore, the following formula can be used to calculate the surface redshift (zs)
for Einstein and our present model:

(zs)E =
1√

1 − 2UE
− 1 =

√

2 − n2 − 1 (57)

zs =
1√

1 − 2U
− 1 (58)

=
1

√

1 − 2π((n+1)χ2)+2nβ2F1(1, 1
2n ,1+ 1

2n , BR2n
A )

(2π+β)(4π+β)(A−BR2n)

− 1 (59)

Figure 10 shows the nature of the redshift function with respect to the radial coordinate
function r. For our model, z(r) is a monotonically decreasing function. The values
of the surface redshift (zs) for three compact stars are shown in Table 2. One can see
from the table that the value of redshift (zs) lies within the range zs < 1.

Figure 9. Behavior of the “mass profile” with respect to the radial coordinate “r” for the compact stars

PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) corresponding to

the numerical value of constants A and B from Table 2 and for different values of β.

Figure 10. Behavior of the “Gravitational red-shift” with respect to the radial coordinate “r” for the

compact stars PSR J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel)

corresponding to the numerical value of constants A and B from Table 2 and for different values of β.
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6. Discussion and Concluding Remarks

In this present work, we have investigated the behavior of Tolman VI spacetime in
modified gravity. We endeavored to solve the modified field equations and investigated
the physical viability according to the standard theory. We contrasted the behavior of
the matter energy density, isotropic pressure, the sound speed energy, the all energy
conditions (namely, weak, strong and dominated energy condition), EoS parameter, mass
profile as well as gravitational redshift between the modified f (R, T) theory and standard
Einstein theory.

For the arbitrary constant β = 2, 4, 6, 8 and 10, the graphical pictures have been pre-
sented in Figures 1–10 for the compact stars PSRJ1614 − 2230, VelaX − 1 and 4U1538 − 52,
while β = 0 gives the general relativity case.

• A clear picture of energy progression has been obtained in Figure 1. The figure shows
declining the nature of the surface and promises the real origination of the stellar body
with positive behavior at the stellar interior.

• We have plotted pressure p versus radius r in Figure 2 for the three compact stars PSR
J1614-2230 (left panel), Vela X-1 (middle panel) and 4U 1538-52 (right panel) for vari-
ous values of β. One can see that p > 0, i.e., positive, continuous and monotonically
decreasing. Additionally, at some radial value, the pressure does vanish for both of
the cases.

• Square of the sound speed and relativistic adiabatic index have been plotted in
Figures 3 and 4, respectively. From Figure 3, one can see that the square of the
sound speed lies in the predicted range, i.e., 0 < V2

< 1 throughout the fluid
sphere. The Figure 4 confirms the stability of under the adiabatic index Γ >

4
3 for our

present model.
• In our f (R, T) gravity model, the weak energy condition (WEC) in Figure 5, the strong

energy condition (SEC) in Figure 6 and dominant energy condition (DEC) in Figure 7
are also met. For the complication in the expressions of density and pressur,e we
have shown a graphical presentation the certifies the well-behaved nature of the
energy conditions.

• We have plotted an equation of state parameter profile ω in Figure 8 for different
values of β. It is clear from the figure that, at the center of the star, these parameter take
maximum values, while it decreases towards the boundary. Moreover, ω lies between
0 and 1, i.e., 0 < ω < 1, which indicates the non-exotic behavior of matter distribution.
Additionally, we can see that there are linear relations between the isotropic pressure
(p) and matter density (ρ).

• The mass function is plotted against the radius in Figure 9. This figure shows that the
mass function is a monotonically increasing function of the radius and has no central
singularity. The mass functional values are in agreement with the required physical
conditions as one can investigate from the figure. In our model, one can see that the
maximum mass is less than 2.0M⊙. Thus, it is less than the critical maximum mass of
neutron stars, so we cannot say our studied stars’ cores contain nucleons only, such as
neutron star cores, where realistic nuclear forces are used.

• We have plotted the gravitational redshift in Figure 10 for different values of β. One
can see that the gravitational redshift is a monotonically decreasing function of the
radius. Additionally, the gravitational redshift is lower with higher values of coupling
parameter β.

From all the graphical illustrations and obtained results, we can conclude that
our present model is regular and potentially stable. Additionally, detailed numerical
features can be found from Tables 1 and 2. The numerical values of A and B increase
with increasing values of β. When the coupling parameter β is increased, the surface
density ρs and the surface red-shift zs both decrease. Moreover, the central values of
adiabatic index ( Γ at r = 0) increase with increasing values of β, which concludes that,
for higher values of β, our model becomes more stable. Through analytical, numerical
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and graphical analysis, all the features of our present model are well-described. Finally,
we summarize our discussion that we are convinced by the calculated outcomes, which
shows that the system is physically reasonable and viably stable. Additionally, our
outcomes could be usable in modeling relativistic compact objects as real astrophysical
phenomena. In the future, we will study a perceptible magnetic pressure influence [32]
to the equilibrium of forces for the core of the highly compact stars as the magnetic
effects calculation can give some idea of the dynamical distortion in nuclear impacts.
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