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Abstract—In superconducting magnets, the irreversible tran-
sition of a portion of the conductor to resistive state is called a
“quench.” Having large stored energy, magnets can be damaged
by quenches due to localized heating, high voltage, or large force
transients. Unfortunately, current quench protection systems can
only detect a quench after it happens, and mitigating risks in
Low Temperature Superconducting (LTS) accelerator magnets
often requires fast response (down to ms). Additionally, protection
of High Temperature Superconducting (HTS) magnets is still
suffering from prohibitively slow quench detection. In this study,
we lay the groundwork for a quench prediction system using
an auto-encoder fully-connected deep neural network. After
dynamically trained with data features extracted from acoustic
sensors around the magnet, the system detects anomalous events
seconds before the quench in most of our data. While the exact
nature of the events is under investigation, we show that the
system can “forecast” a quench before it happens under magnet
training conditions through a randomized experiment. This opens
up the way of integrated data processing, potentially leading to
faster and better diagnostics and detection of magnet quenches.

Index Terms—quench, quench detection, machine learning,
real-time system, superconducting magnets, online learning.

I. INTRODUCTION

Superconducting magnets are used widely in particle accel-
erators. Because of their ability to carry large current densities
with no electrical resistance, they can generate very intense
magnetic fields. These generated fields are then responsible
for keeping particle beams stable and precisely aligned, or
squeezing the beams closer together when they enter a particle
detector. Thus, superconducting magnets play an extremely
important role to ensure normal operation of particle acceler-
ators.

Spontaneous quenches are an integral part of the ”training”
[1] of superconducting accelerator magnets and can also occur
during nominal operations. Quench origins can be attributed to
various phenomena [2]. Superconducting accelerator magnets
are designed and operated considering their vulnerability to
quench effects. Quench protection systems (QPSs) are used to
discharge the magnet after a quench happens by dissipating
magnetic energy either onto the magnet’s thermal mass or
externally, on a dump resistor [3]. Currently, QPSs can only
detect the quench after it happens, which requires the systems
to have very short response time O(ms). This motivates
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the development of quench prediction systems in order to
minimize the quench’s damage in superconducting magnets.

Deep Learning (DL) is a sub-field of machine learning that
focuses on learning features from data through multiple layers
of abstraction [4]. Several DL techniques have been explored
for anomaly prediction & detection of superconducting magnet
quenches [5]–[7]. However, the techniques are still in their
early development phase, and there is yet to be a practical
setup and a well-defined procedure to be used for real-time
prediction of magnet quenches. Furthermore, magnet quench’s
behavior is still not fully-understood, which is why there has
been significant uncertainty as to whether “quench precursors”
exist, and in what kind of data they would appear. Therefore,
in this study, we want to tackle the mentioned problems by
investigating a dynamic learning setup using Auto-Encoder
(AE) Deep Neural Network (DNN) for anomaly detection in
magnets’ acoustic data. In particular, our contributions are the
following:

1) We propose a dynamic learning auto-encoder DNN
methodology, which allows us to have a real-time adap-
tive system for anomaly detection in current ramps to
quench data under magnet training conditions.

2) Our algorithm detected anomalous events in 77% of the
quenches in a randomized experiment, with the events’
time all fall within 15 seconds of the quench. This hints
at the existence of quench precursors in magnet’s acoustic
signals seconds before the quench.

The codes were developed using the Numpy [8], Matplotlib
[9], and Scikit-learn [10] software packages. The DNN models
are implemented using Keras [11].

II. BACKGROUND

A. Magnet data

Magnet training is an integral process to produce supercon-
ducting accelerator magnets. This happens because stresses in
the winding exceed the epoxy’s fracture stress, which causes
the magnet to initially quench at a lower level than their
design current. After consecutive quenches, friction partially
locks the coils in a new and more secure state, allowing
the conductors to withstand higher levels of Lorentz forces.
Thus, during the training process, a magnet is repeatedly ran
at a low current, and then at a slightly increasing current
until a natural quench happens. Typically, a magnet is trained
until reaching a plateau. In this study, we use acoustic data
from two superconducting magnets being tested at Fermilab—
MQXFS1d [12]–[15] and MDPCT1b [16], [17]. MQXFS1d is
a quadruple magnet that is 1.5m long, and MDPCT1b is a 1m
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long dipole magnet. For both magnets training ramps were at
20 A/s close to quench current.

B. Acoustic sensors for magnet diagnostics
Acoustic emission (AE) detection is a non-invasive tech-

nique which allows for localization and characterization of
mechanical events in superconducting magnets. Thus, it has
been widely adapted for non-destructive evaluation of mechan-
ical stability in various engineering and manufacturing settings
[18]–[22].

In this study, the available data consisted of acoustic data
from sensors placed at the ends of the magnet, as well as data
showing the current as a function of time. For the MQXFS1d
magnet, two sensors are on one end of the magnet, known as
the lead end. The other three sensors are on the other end of the
magnet, known as the return end. Sensors setup in MDPCT1b
magnet is similar to MQXFS1d’s setup, with only two sensors
on two sides of the magnet. MQXFS1d’s data is sampled at a
rate of 100 kHz, i.e. one data point every 10 µs. MDPCT1b’s
data was initially sampled at 1MHz, but was then filtered and
down-sampled to 100kHz due to high frequency noise. Data
were recorded during the whole current ramps to quench for
most of the ramps.

C. Deep neural networks as auto-encoders
Deep learning approaches have been applied successfully

in several anomaly detection tasks of time series data [23].
In this study, a fully-connected DNN architecture, depicted in
Fig. 1, is used as an auto-encoder/decoder [24]. The first half
of the DNN takes in input features and transform them into
a low-dimensional representation, so-called latent space. The
second half of the DNN reconstructs the original inputs by
up-sampling the data from a lower-dimensional space.
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Fig. 1. DNN architecture used on MQXFS1d and MDPCT1b acoustic data
in this study. The network architectures usually involve a small number
of neurons at the middle of the network, which serve as the latent-space
bottle neck. In the latent space the original inputs are compressed into low-
dimensional representations. The difference between the number of outputs is
due to different number of sensors attached to each magnet.

Eventually, the reconstructed outputs are evaluated by cal-
culating its Root Mean Square Error (RMSE), which is defined
as following:

RMSE =

√√√√ 1

N

N∑
i=1

(y(i) − ŷ(i))2 (1)

where y(i) and ŷ(i) are the input features and their predicted
counterpart, respectively. The formula is calculated for N data
points, which depend on the size of the data set that is used
to train and test the model. During the training process, the
model is optimized such that the error is minimized. The
trained model can then be used for ”inference,” during which
the model evaluate the error on unseen data points. For the
inference process, however, we employ a modified scheme to
calculate the error for convenience in triggering as well as in
incorporating previous knowledge:

L = log10(Linference)− log10(median(Ltraining)) (2)

Where Linference is the inference error of the data point, and
median(Ltraining) is the median of the training error array for
all training data points. As can be seen in Fig.2, when an
anomaly happens, the anomalous data points deviate from the
”main distribution” of normal data points in the latent space,
causing the error to rise significantly. Thus, we can detect these
events by setting a threshold of the inference error.

Regarding input features to the model, the process of
calculating each sensor’s statistical features are depicted in
Fig. 3. Raw acoustic data are first taken from the magnets.
The standard deviation and mean of the amplitude are then
calculated from each sensor’s raw signal data by using a
rolling window with size 20 ms and a step size of 100
µs. The window’s time label is assigned to the time label
of the last data point. This gives 10 streaming features for
the MQXFS1D magnet and 4 streaming features for the
MDPCT1b magnet. Additionally, in order to accentuate on
coherent signal across all the sensors, we also add the product
of the standard deviations and the product of the mean of
amplitude as input features. Thus, MQXFS1D and MDPCT1b
magnet respectively have 12 and 6 streaming input features
in total. After all the data are generated, during the training
process, all the inputs are scaled to range (0, 1) using Scikit-
learn’s MinMaxScaler routine [10]. The same scaling factor is
then also applied to testing (unseen) data during the inference
process.

1.0 0.5 0.0 0.5 1.0

0

1

2

3

4

5

6

7

Latent space of an anomalous event in MDPCT1b data

Anomalous event

1.5

1.0

0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
lo

ss
)

Fig. 2. Latent space data points near an anomalous event in MDPCT1b data.
The anomalous data points tend to significantly deviate from the normal data
point cluster, causing the inference error (loss) to increase significantly.
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Fig. 3. Sliding window process used in this study. A window with size
equivalent to 20 ms in time axis is sequentially moved through the data with
steps of 100 µs. The time label associated with the statistics calculated for
each window is assigned using the last data point in the window.
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Fig. 4. Dynamic learning workflow used in this study. For every 10-second
section of new data, there are two processes happen simultaneously: training
and triggering. Training makes the model adaptable with changing noise level,
and triggering helps the model to make decisions in real-time.

D. Dynamic learning

Typically, DL model deployment is ”static”, meaning it is
first trained on a specific set of data, and then remains un-
changed during the inference process. However, as mentioned
in [5], this deployment method makes it hard to set a consistent
threshold for all the magnet current ramps, since each ramp
has a different scale of the loss. Additionally, acoustic noise
level in a magnet tends to increase over time as the magnet
reaches higher currents. Thus, a “dynamic” algorithm is thus
needed to dynamically adapt to the changing noise level, which
in turn also helps highlight anomalous events.

Figure 4 demonstrates our workflow for dynamic learning.
Essentially, we want to update the model every 10 seconds,
which is the amount of time we estimate to sufficiently train
the model in real-time. For each 10-second section of data,
there are two simultaneous processes: training and evaluating.
During the training process, the data is pre-processed using the
procedure described by previous section. Then, the model is
trained using the data and a new set of weights is subsequently
used to update the base model after the training session.
This gives the model the ability to adapt to gradual changes
of the noise level during current ramps. Additionally, when
the training process is being executed, the evaluation process
runs in parallel to make predictions and comparisons of
reconstruction loss with the threshold as new data comes in.

In addition to using a dynamic learning algorithm, we also
employ a simple threshold setting, where the trigger threshold
decreases over time until it reaches the previous quench’s

maximum current. There are two main motivations for this.
First, the data is taken under magnet training conditions,
which means that the current is continuously ramped up. Thus,
as oppose to a magnet under normal operating conditions,
the superconducting magnet’s state is continuously brought
closer to its critical surface and the Minimum Quench Energy
decreases [25]. As a result, the lower the current, the more
“anomalous” the event has to be to quench the magnet. Second,
at lower current up until it reaches the previous ramp current
(due to ”mechanical memory”), the magnet can be very quiet.
This implies that a non-significant signal can blow up the
reconstruction loss. Therefore, setting a higher threshold at
lower current can prevent the system from triggering false-
positively. The initial threshold keeps decreasing for some
amount every 10 seconds until it stays constant after the
maximum current of the previous quench is reached.

III. EXPERIMENTS

After designing the algorithm, we carried out offline exper-
iments using a simulated Python framework. The framework
evaluates how the system would theoretically work under real-
time conditions during magnet training.

A. Initial observations in MQXFS1d data

In the MQXFS1d magnet, there are acoustic data available
for 14 current ramps to quench. It should be noted that the
algorithm is only activated after the current reaches 9/10 the
maximum current of the previous quench. This is because,
in a magnet training context, the quench would not appear
at significantly lower current compared with the maximum
current of the previous quench.

By setting the initial log10 threshold to 5.0 and the final
threshold to be 2.6, the algorithm was able to detect sev-
eral anomalies seconds before the majority of MQXFS1D
quenches. The anomaly points in each quench are presented
in Fig.5. It should be pointed out that it is uncertain whether
these anomalous events are actually related to the quench.
That being said, Table 5, which shows a detailed summary of
the events, indicates that the algorithm found the anomalous
events within 25 seconds of the quench in 79% of MQXFS1d’s
quenches. This provides hints to the existence of quench
precursors, which have yet to be defined in the literature.

TABLE I
SUMMARY OF DETECTED ANOMALOUS EVENTS IN MQXFS1D’S

CURRENT RAMPS.

Characterization of events Count Percentage
Within 25 seconds of quench 11 79 %
Entirely outside 25 seconds of quench. 1 7 %
Both inside and outside 25
seconds of quench 1 7 %

No events 1 7 %
Total 14 100 %
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Fig. 5. Anomaly events detected in each of MQXFS1d quenches in the last
25 seconds of the quenches. Majority of anomalous events in MQXFS1d fall
within this range. The quench index renumbers current ramps but keeps their
order (ramps with no acoustic data are excluded).

B. Verification randomized experiment on MDPCT1b data

To further verify the validity of our algorithm, we also
use the algorithm on MDPCT1b data in a more randomized
manner with data available for over 50 current ramps. Since
threshold setting is the only manually-set parameter in our al-
gorithm, we first randomly picked out 6 quenches (with index
7, 15, 35, 37, 38, and 50) to pick appropriate initial and final
thresholds. After appropriate thresholds (log10 threshold of 3.0
and a final threshold 1.6) are chosen, we run the algorithm
for the rest of MDPCT1b’s quenches and observe the results
to verify that we can detect anomalies in this manner. With
this threshold setting, anomalous events are detected within 15
seconds of all the randomly selected quenches.

The results on all ramps are depicted in figure 6, which
shows that anomalies are detected in 40/52 (77%) of the
quenches. Figure 7 further shows the time-to-quench distri-
bution of all the anomalies detected, nearly 100% of which
fall within 15 seconds before the quench happens.
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Fig. 6. Anomaly events detected in all of MDPCT1b current ramps [16] using
threshold 3.0 and final threshold 1.6 fitted on 6 randomly selected quenches.
Anomalous events are detected in the majority (77%) of quenches.
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Fig. 7. Time distribution of anomalous events detected in MDPCT1b current
ramps. The distribution lies within 15 seconds to the quenches, with many
events clustering just within a few seconds of the quench.

IV. CONCLUSION

In this work, we introduced a dynamic learning & threshold
procedure using AE-DNN to “predict” quenches under magnet
training conditions. Our randomized experiment shows that we
can detect anomalies near the quench in a large number of
current ramps using the system. This hints at the existence of
quench precursors in acoustic data, which then can be utilized
in an anomaly detection system such as ours.

As for limitation and future work, the analysis is performed
using exclusively magnet training data, due to the rarity of
quenches happening under normal operating conditions. That
said, studying magnet training quenches is still necessary, as it
should bear resemblance to quenches under normal operation.
Additionally, while anomalous events are detected near the
quench, its exact nature and relationship with the quench are
not yet determined. Another limitation is that all the results in
this study are produced using a simulated Python framework,
which might not perfectly reproduce a real-time scenario. It
should also be noted that there are other types of data that
can be useful. However, acoustics was the only type taken at
high rate (100 kHz or more), and for the whole magnet ramp.
Other types of data are available for this study, but at much
lower ramp rate (at most 8 kHz) and for limited time (±1 s
around quench detection time). Therefore, they were excluded
from this study.

In future work, we plan to better characterize the anomalous
events we detected to determine its relationship with the
quench. Future more diverse data types such as voltages at
high DAQ rate will help to better characterize events, which
would also help us to propose useful expert features for the
AE-DNN model. It would also be interesting to implement
the system on hardware to test its performance under real-life
scenarios. Finally, more sophisticated signal-processing deep
learning models [26], [27], albeit being more computationally
expensive for real-time applications, are also worth being
explored as well.
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[5] M. Wielgosz, A. Skoczeń, and M. Mertik, “Using lstm recurrent neural
networks for monitoring the lhc superconducting magnets,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 867, pp. 40
– 50, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S016890021730668X
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