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Abstract. Large cryogenic systems, like those installed at CERN, are complex systems relying on many
diverse physical processes and phenomena that are difficult to simulate and monitor in detail. With only
a limited number of properties measured and made available for monitoring and control purposes, several
processes contributing to the dynamics of the systems are ignored. This lack of information can reduce the
accuracy and the capability of a model to track, predict, and anticipate the behavior of the system. Accurate
analytical or numerical computer modeling can be developed to simulate the non-linear dynamics of the
processes but they are complex, computationally intensive, and cumbersome to test, validate, and implement
with different configurations and limited measurements of the hidden properties. In this work, we present
our investigation of using Graph Neural Networks (GNN) to build a model of the helium II bayonet heat
exchanger operating in the LHC at CERN. We are proposing to use a hybrid machine learning approach,
where the parameters of the GNN model are estimated by a combination of supervised learning algorithms
trained on experimental data and bounding physics equations and parameters. The GNNmodel was initially
trained on data from the experiments performed on the LHC prototype magnet strings and validated on data
extracted during the operation of the LHC machine. We demonstrate the model’s accuracy, repeatability,
and robustness in various configurations. The model is also well inspectable and explainable, providing the
time evolution of all variables. We report on the results and expected applications, which include predictive
control, diagnostic, and operator training.

1. Introduction
Simulation of complex dynamic systems is always a very challenging task. Large cryogenic systems, like
those installed at the European Organization for Nuclear Research (CERN), involve complex processes
relying on non-linear physics and diverse components and phenomena. Due to many technical and
physical limitations inside such components, monitoring all aspects and properties of the physical
processes happening inside is not feasible. This leads to a situation when only a limited number of
“boundary” properties are measured and made available for monitoring and control purposes, while there
are a lot of other “internal” variables that remain hidden. To mention some of them, these include liquid
flow-related properties (e.g., wetted length, the distribution of wetted perimeter, liquid level, and available
pipe cross-section for gaseous flow along the bayonet heat exchanger), gas flow-related properties (e.g.,
gas velocity, pressure distribution (pressure drop) along the pipe, or indication of conditions for droplet
formation, etc.), or even heat-related properties (e.g., dynamic heat produced by a strong magnetic field
variations, the heat produced by beam-induced radiation, or heat exchange between magnets through
their interconnections of helium bath). These unobserved properties are sometimes fundamental for
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understanding precisely the current state of the system, and, currently, they are only inferred indirectly
thanks to the expertise and intuition of skilled cryogenic operators.

One possibility, how to reveal such internal variables of the system, is to use computer modeling.
If the model can capture the internal processes correctly, and if the outputs of the model match actual
observations for the “boundary” properties, then the internal variables derived from the model are a close
approximation of internal processes inside the real system. This requires a model that is explainable,
inspectable, and validated to work well in a wide range of situations.

A deep understanding of complex systems is crucial for their optimal and effective control and for the
validation of existing, modified, and completely new designs. Models and simulators are beneficial for
predicting the systems’ response to given hypothetical conditions and may also be utilized for predictive
control, anomaly detection, and early recognition of malfunctions.

Mathematical (analytical) simulators are one of the state-of-the-art approaches used for the simulation
of complex systems [1, 2]. Thanks to several efficient solvers and software tools, they can be very precise
and relatively fast. On the other hand, they do have some disadvantages: they require almost complete
knowledge of all equations ruling the processes and are often difficult to extend to be used for other
designs or other use cases.

Machine Learning (ML) is another possible approach to process simulation [3, 4]. ML models can
derive insightful information from large volumes of data, working even without an in-depth knowledge
of the system or phenomena of interest. Machine Learning models proved to be able to reach the same
performance as mathematical models [5], and perform even better in some cases, keeping some benefits
like scalability and computational efficiency.

The two approaches mentioned above, i.e., analytical simulators and ML models, form two extremes
on a virtual scale describing how much expert knowledge is hard-coded inside such models. On one side,
analytical simulators rely entirely on the knowledge encoded in the form of mathematical equations,
while the other extreme is represented by “fully blind” ML models (e.g., deep generic models, MLPs,
etc.), which have no a priori knowledge about the problem and try to learn everything from a large amount
of data.

In this work, we propose to use a hybrid machine learning approach [6], where the model is neither
a “fully blind” nor a fully analytical implementation. Our model employs simplified equations and
constraints, which helps the model to focus on desired physical relationships and trainable parameters
that allow for precise and accurate reproduction of the real system’s behavior. This hybrid approach
enables the model to reach very high reliability while requiring only a limited number of samples of just
the “boundary” variables. This strongly contrasts the fully-blind MLmodels, which would require a very
high number of samples of all the “internal” variables with sufficiently high variability. Our approach
resembles the Discrepancy Learning [7, 8] where the authors are using the analytic simulator and are
training only the corrective ML part on top of it. In contrast to them, embedding everything inside a
single ML model eliminates the need for an analytical simulator with complex physics.

The goal is to build a complex superfluid helium cooling loop model for LHC magnets at CERN.
The whole complex system was divided into individual smaller and simpler subsystems, which can be
modeled separately, and the sub-models can be pre-trained on separate individual datasets. The final
model is obtained by “stacking” sub-models together and then fine-tuning them to match the complex
system’s observed behavior.

Our solution is based on Graph Neural Networks (GNNs) [9, 5], which are a special kind of neural
networks that operate on graphs. GNNs have recently become quite popular in the High-Energy Physics
field [10]. They use the concept of message passing [9] to exchange and transform information between
graph nodes, which is the main principle of how GNN derives computational results. The possibility of
encoding a lot of various problems into graph structures provides several benefits in using GNN as the
central architecture.

The substantial challenge lies in overcoming the sparsity of the problem, i.e., only a limited amount
of observations of hidden internal variables are available (limited in time, accuracy, and space). Thus,
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having reasonable constraints in themodel helps to regularize the domain of all possible solutions, helps to
reduce the parametric space for the model functions, and allows the derivation of a reasonable and robust
model. These constraints come from the graph structure, the semantics of messages for message-passing,
and physics-inspired equation constraints.

In this paper, we present our investigation and perspective on using GNNs to build a model of complex
superfluid helium cooling loop for LHC magnets at CERN. We demonstrate that the developed model’s
accuracy falls within the measurement errors despite some current simplifications. The model is also well
inspectable and explainable – it provides time evolution of all internal variables, which offers valuable
insights to uncover what is happening inside the real system. The model is easily extendable and can
be used to simulate various systems – it can be directly used to test and validate new designs and their
properties just by creating a graph representation of the desired system. The developed model for the
LHC has excellent potential to be used in multiple places, e.g., it can be used as part of the predictive
control to validate the performance of the whole LHC ring, and for diagnostics.

In the next section, we explain our use-case problem of simulation the helium II bayonet heat
exchanger. Our proposed solution is described in section 3, while section 4 presents conducted
experiments and achieved results.

2. Problem definition
The LHC cryogenic system at CERN is a remarkable engineering feat, designed to distribute a substantial
amount of cooling power along a 3.3 km-long sector of the LHCmachine [11]. The system relies on large
cryogenic refrigerators that transfer helium at extremely low temperatures to the superconducting magnet
strings, which are the heart of the LHC. These magnet strings operate within a bath of pressurized helium
II, where a novel cooling scheme called the bayonet heat exchanger (BHX) is employed [12]. The BHX
scheme employs a quasi-isothermal heat sink along the length of the magnet string and is represented
schematically in Figure 2.

The superconducting magnets are immersed in pressurized helium II, enabling the conduction of the
generated heat load to a linear heat sink made up of a heat exchanger tube. The BHX extracts heat by
vaporizing a two-phase flow of saturated helium II, maintaining a constant temperature through pumping
and controlling the flow rate via Joule-Thomson expansion valves. This dynamic control of the BHX
is essential to ensure the magnets’ safe and optimal operation, considering heat load variations while
ramping up the magnet current, magnetic field changes, and beam operation.

The cooling scheme underwent extensive studies and testing on dedicated test loops and partial/full-
scale prototypes of the magnet string, called String-1 and String-2. The knowledge gained from these
experiments facilitated the definition of the control parameters necessary for the safe and efficient
operation of the 27-km-long LHC machine at temperatures below 1.9 K over several years. This
valuable data has also been utilized for training various models, aiding in this intricate cooling scheme’s
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Figure 1. Left: The principle of the LHC superfluid helium cooling scheme (Source: [12]). Right: An
example of the graph used to represent the system state, designed for GNN processing.
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comprehension and diagnostic capabilities, leading to improved control parameters.
Given the success of Graph Neural Networks (GNNs) in data-driven modeling of complex physics

problems, it becomes evident that they offer a suitable approach for modeling complex non-linear systems
like the LHC cryogenic system. GNNs are models operating on graph data structures, either simple
homogeneous graphs or complex heterogeneous graphs that model various relationships. Heterogeneous
graphs come with several disjoint node sets and edge sets, where all the nodes, edges, and the graph itself
can have associated multiple features encoding their state. The computational procedure is based on the
message passing protocol, which exchangesmessages between neighboring nodes along their connecting
edges. These messages are used to update the state of edges, nodes, and the graph context.

The LHC cooling system can be decomposed into several sub-systems, which can be modeled
separately and are loosely coupled together. Several sub-systems can be easily identified: fluid and
gas flow inside the BHX, heat transfer scheme (i.e., the flow of the energy), various heat sources,
characteristics of the JT valve, the non-linear properties of the superfluid helium, and possibly others.
These sub-systems can be modeled and pre-trained individually and independently (possibly using data
from independent experiments), and only later, they may be stacked together to form the complex model
of the whole system. This is made possible thanks to the flexibility of heterogeneous graphs and GNNs.

3. Proposed solution
We initially modeled the heat transfer subsystem, including heat sources and cooling by helium
evaporation. The liquid flow and fluid dynamics in BHX are emulated, non-linear helium properties
are simplified, and the gas flow is ignored in BHX for simplification.

In general, the GNN model M takes a graph as its input and outputs the same graph with modified
attributes (features). To simulate the evolution of the system in time, the input of our model is a suitable
graph representation of the state of the system S(ti) at time ti, and the model computes the new state
S(ti+1) = M(S(ti)) at the next time point. This computational step can be repeated as long as desired
to produce long-term simulation.

The graph representation of the system’s state consists of nodes and edges, where nodes represent
individual parts, and edges represent interaction links. The graph encodes both the physical properties
of individual parts and links (via associated node and edge features), and the structure defining possible
interactions between parts. Also, the graph itself can have an associated set of features called context,
which can be used to encode some global properties of the system.

Modeling the heat transfer subsystem requires two node types: one to represent part of the pressurized
helium bath, and another one representing part of BHX that extracts heat by evaporation. Edges between
these nodes encode the spatial layout (i.e., how they are adjacent to each other), thus representing the
fact they can exchange heat. Each node contains several attributes describing its properties, e.g., the
temperature, mass of the helium, dimensions, etc. Based on these properties, the model internally
computes some messages, containing, e.g., how much energy is transferred via individual edges. Based
on these messages, the model updates the properties of nodes (e.g., modifies temperatures or decreases
the amount of liquid helium in BHX).

Heat sources are represented by three node types: one for the electrical heaters, one for the static heat
load, and another for the dynamic heat loads generated during accelerator operation.

Liquid flow in BHX can be modeled using nodes representing parts of the BHX. Edges between these
nodes would encode a spacial layout, i.e., where the remaining liquid helium can flow. These BHX no-
des are merged with the BHX nodes in the heat transfer subsystem. Figure 1 depicts graph structure
containing nodes for BHX, helium bath, and all three types of heat sources, as well as edges connecting
them.

Messages, which drive the updates of node properties, are computed with the help of two suitable
constraints: i) constraints of simplified physics and ii) constraints for increased numerical stability.
Embedding the former is possible thanks to the fact that well-studied physical relationships rule
interactions between different parts of the real system. These constraints lower the dimensionality of the
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Figure 2. An example of output from our GNNmodel. The temperature evolution of magnets is extracted
over time during 4 phases of an experiment with different applied heat load settings.

modeling problem, making the model more robust and able to learn from less data. The latter constraints
are included to fight the problem of discretization and numerical instabilities.

In the computational framework, the following physical constraints are considered: i) Energy Transfer
Mechanism: the energy transfer between the helium bath nodes and the heat exchanger nodes is
determined by the Kapitza effect, temperature difference, and the wetted surface area inside the BHX.
ii) Direction of Heat Flow: heat moves from nodes with higher temperatures to nodes with lower
temperatures. iii) Axial Heat Transfer Constraint: temperatures can equalize, but they cannot swap.
iv) Maximum Transferable Energy: analytically derived, the maximum transferable energy between two
nodes is determined by the temperature difference and the thermal capacities of the two nodes. This
constraint prevents temperature oscillations as the simulation time step increases.

The inputs for the model are: the amount of static heat load, the amount of dynamic heat load for each
individual heater, the temperature of saturated helium inside BHX (currently a single value for the whole
heat exchanger; it will be enhanced once a proper gaseous flow subsystem is implemented), incoming
helium mass flow (determining the total cooling power and affecting the emulated liquid state in BHX),
and wetted length (which is currently just a static setting; this will be enhanced once we incorporate a
proper liquid flow simulation subsystem).

During onemodel execution, themodel iteratively calculates several time steps sequentially, providing
the updated system states S(ti) for each simulated time point. The primary feature within the system
state S(ti) is the temperature of the helium bath nodes. These temperatures in each time point can be
retrievable and can be subsequently examined. The model enables the read-out of a graph state at any
time step, allowing to track the evolution of any feature of interest.

Figure 2 depicts an example of one simulation run for different heat loads (supplied power). The
depicted experiment consists of multiple phases, where each stage has a different applied heat load setting.
Simulation of each phase is run until the equilibrium state is reached (i.e., until the time difference of every
temperature is smaller than an arbitrary ϵ).

4. Experiments and results
To validate our model, we have simulated the experiments carried out to measure the heat conductivity of
BHX over the experimental LHCmagnet strings performed before the LHC construction. The experiment
consists of several phases: in each stage, the desired value of the applied heat load is set, and then the
system is left to find its new equilibrium temperature state. The temperature (or its difference) is noted,
and the next step can be executed.

The same experiment protocol was used to derive simulated values, enabling a direct comparison
with the results obtained from the real experiments. At the beginning of each phase, the system is set up
with initial temperatures, wetted length, helium mass flow, and applied heat loads. Following this, the
evolution of the system over time is simulated. Once all the temperatures stabilize, these temperatures
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Figure 3. The thermal conductivity experiment of String-1 depicts the differences between the measured
and saturation temperatures. The chart shows the experimental data [13] (⊓⊔) compared with the model
simulated average∆T temperatures (△), together with the∆T of the first and the last magnet.

are noted, and the simulation moves on to the next phase, i.e., the next applied heat level.
The results of 3 distinct validation steps are presented: i) the thermal conductivity experiment

performed on the magnet String-1 [13] composed of 4 prototype magnets; ii) heat exchanger conductivity
experiment performed on the magnet String-2 Phase-1 [14] with 5 pre-series magnets; and iii) matching
the simulated outputs with the real data from the LHC Standard Cell currently operating in the LHC at
CERN, which consists of 8 series magnets. Only the first step (String-1) was used to fit the model’s
parameters, while the other two demonstrated the robustness of the model – the same model was used to
predict the behavior of different configurations and components. From the computational point of view,
the only difference between the steps is the input graph, which needs to match the simulated system (e.g.,
to match the number of magnets and their dimensions, etc.).

String-1 was the first prototype of a string of superconducting magnets cooled by a single BHX. It
consisted of three 10m long dipole magnets and a single 5m long quadrupole, totaling 35m in length.
The string was inclined with a 1.4% slope and used a corrugated BHX tube. The measurements for
thermal conductivity were performed on 14 different settings of applied heat load, varying from 0 to 2
W/m, while ensuring that the entire length of the BHX was wet.

In Fig. 3, the comparison of original results [13] and the simulated ones is presented. As can be seen,
the simulated temperatures match very precisely the experimental values up to approx. 1W/m of applied
heat load. For higher heat loads, the predicted values are slightly lower than experimentally measured,
which may be caused by some simplifications of the model (these simplifications will be described later).
Since this experiment was used to fit the model’s parameters, the emphasis was on optimizing the model’s
accuracy within the range of up to 1 W/m, which is a more realistic range for future designs (String-2 and
LHC Standard Cell).

String-2 was the full-sized LHC prototype, which was built in several phases. In Phase 1, when the
conductivity experiment was performed, it consisted of 5 magnets: 3 dipoles and 2 quadrupoles. As
compared to String-1, both dipole and quadrupole magnets were longer (15m and 6m respectively), the
string was not inclined, and it used a non-corrugated tube for BHX. Thermal conductivity was estimated

Figure 4. The thermal conductivity exper-
iment of String-2 phase 1 depicts the dif-
ferences between the measured and satura-
tion temperatures. The chart shows the ex-
perimental data [14] (⊓⊔), compared with the
model simulated average ∆T temperatures
(△), together with the∆T of the first and the
last magnet.
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Figure 5. Interpolated steady temperatures of magnets in LHC Standard Cell as predicted by the model,
for applied heat loads 25W (left) and 28.7W (right) and wetted length of 15.3m, 20.1m, and 24.9m.
The predicted wetted length is derived as the position where the real temperatures (⊓⊔) fit the best the
interpolation lines (i.e., 16.1m and 20.3m respectively). Please note the chart depicts only 5 out of 8
magnets’ temperatures for clarity reasons.

based on five measurements in the range up to 1W/m of applied heat load, and the BHXwas also ensured
to be fully wet.

Fig. 4 depicts the comparison of the experimentally measured [14] and our simulated values. Our
values match nicely with the experimental ones, except for the part with minimal applied heat load. This
discrepancy suggests a potential application of an incorrect assumption regarding the static heat load
value. The difference between the first and the last magnet is smaller than measured, which may indicate
that our model for very low heat loads over-estimate the cooling capacity of fully-wetted BHX.

The third experiment aimed to replicate the actual data logged from the LHC machine. A specific
standard cell (Q15-Q16 of Sector 2) was selected, and two points in time were identified when the cell
was supplied with 25W and 28.7W of applied power and the cooling system was in a stable condition
(these were the periods of the 1.9K cooling system tests).

The main difference from previous experiments is the lack of information regarding the wetted length.
Consequently, the wetted length is inferred using the model through hypothesis testing, posing the
question “What would be the temperature distribution if the wetted length is as specified?”

Fig. 5 shows the obtained results for applied heat load 25W and 28.7W. Due to the discretization
procedure, stable temperatures were simulated for hypothetical wetted lengths 15.3m and 20.1m,
assuming a linear dependency between these two border cases. As can be seen from the chart, the
real temperatures observations for 25W of applied heat load correspond to a wetted length of 16.1m.
Similarly, the estimated wetted length for 28.7W is 20.25m (see Fig. 5). The distribution of temperatures
along the string is predicted within the sensor’s overall absolute accuracy of 5 mK. These derived
wetted lengths closely match the expectations of the experts and operators considering the temperature
distribution along the magnet string.

4.1. Discussion of Results
For this first investigation, some simplifications and assumptions for the initial model have been adopted.
These include static constants for the helium’s physical properties, liquid flow emulation with the
assumption of constant flow speed, and neglecting the gas flow and pressure drop in the BHX.

In spite of these simplifications, themodel successfully captured the dynamics of the system, achieving
accurate steady-state values (within the precision limits of the measuring instruments) up to 1W/m. It
demonstrated robustness and applicability across various layouts and configurations of magnet strings.

The model seems to over-estimate magnet temperatures for low heat loads and under-estimate for high
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heat loads. This may be explained by the simplification and assumption of the constant liquid flow speed
and neglecting the gas pressure drop influencing the temperature profile in the BHX. For higher mass
flows, less surface inside BHX will be wetted, higher pressure drop will be experienced, and higher∆T
will be observed. The expectation is that these imperfections will be resolved with the integration of the
proper liquid flow simulation component.

5. Conclusions
The developed model is able to show how the system evolves in time for given conditions. Despite some
current simplifications, it provides very accurate results inside the tolerance of the actual sensors. The
model is well inspectable and explainable, providing time evolution of all internal variables. The model’s
scalability was demonstrated by simulating various system configurations.

The model can be used directly to test and validate various designs and their properties, for diagnostic
purposes to monitor the performance of the whole LHC ring, and also, it can be used as part of advanced
predictive control.

We plan to add liquid flow simulation and eliminate current simplifications, e.g., by modeling the
proper non-linear characteristics of superfluid helium II. Additionally, a gaseous flow simulation will be
added to predict the loop’s inverse response phenomenon.
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