
Quantum Information Processing (2024) 23:61
https://doi.org/10.1007/s11128-023-04245-1

Quantum algorithms to compute the neighbour list of
N-body simulations

E. F. Combarro1 · I. F. Rúa2 · F. Orts3 · G. Ortega3 · A. M. Puertas4 ·
E. M. Garzón3

Received: 1 March 2022 / Accepted: 28 December 2023
© The Author(s) 2024

Abstract
One of the strategies to reduce the complexity of N -body simulations is the compu-
tation of the neighbour list. However, this list needs to be updated from time to time,
with a high computational cost. This paper focuses on the use of quantum computing
to accelerate such a computation. Our proposal is based on a well-known oracular
quantum algorithm (Grover). We introduce an efficient quantum circuit to build the
oracle that marks pairs of closed bodies, and we provide three novel algorithms to
calculate the neighbour list under several hypotheses which take into account a-priori
information of the system. We also describe a decision methodology for the actual
use of the proposed quantum algorithms. The performance of the algorithms is tested
with a statistical simulation of the oracle, where a fixed number of pairs of bodies are
set as neighbours. A statistical analysis of the number of oracle queries is carried out.
The results obtained with our simulations indicate that when the density of bodies is
low, our algorithms clearly outperform the best classical algorithm in terms of oracle
queries.

Keywords Quantum computing · Quantum algorithm · Neighbour list · N -body
simulations

B E. F. Combarro
efernandezca@uniovi.es

1 Computer Science Department, University of Oviedo, Oviedo, Spain

2 Mathematics Department, University of Oviedo, Oviedo, Spain

3 Informatics Department, University of Almería, Almería, Spain

4 Department of Applied Physics, University of Almería, Almería, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-04245-1&domain=pdf
http://orcid.org/0000-0003-3808-4273

 61 Page 2 of 26 E. F. Combarro et al.

1 Introduction

The N -body problem is widely used in simulations in a large variety of fields, from
material science, statistical physics, to astrophysics [1–3]. However, the high com-
putational load of N -body simulations is well-known. When the number of particles,
N , is not too large, the interactions can be computed by a brute-force approach, with
complexity order O(N 2) [1, 2, 4]. Nevertheless, when N increases, it is necessary to
reduce the complexity.

Barnes & Hut defined a hierarchical tree cells scheme to locate the particles and an
algorithm to compute the interactions with a complexity of O(Nlog(N)). It is widely
applied to a large number of long-range interactions ranging from stellar dynamical
applications [5] to material science or molecular dynamics [1]. Moreover, an adaption
of Barnes & Hut’ scheme has also been simplified for the approximate computation
of long-range forces between mutually interacting bodies with a complexity of O(N)

[6].
In the context of short-range interactions, the main approach to get a complexity of

O(N) is to define a neighbour list, where the interactions are only computed among
neighbour particles. However, the neighbour list has to be updated after several time
steps, and its complexity is O(N 2). The frequency of such computation can be reduced
if the neighbourhood radius is optimized, or when a cell structure can be used to box
the particles [2, 7].

Our interest is the acceleration of simulations related to N -body systemswith short-
range interactions by the fast computation of neighbour lists. This problem becomes
relevant when a suitable cell structure of the data cannot be found [8], for instance, in
systems where the range of the interaction is comparable to the system size, such as
phase equilibria or out-of-equilibrium soft-matter systems [9]. Particularly in suspen-
sions of macromolecules or colloids, the interaction among the particles is of a much
shorter range than the radius or typical length, but larger than the solvent molecules. In
these cases, neighbour lists are a standard solution to the computation of the forces or
the energy, although some alternative techniques can specifically devised with better
performance for particular cases. However, the complexity is still O(N 2) in the worst
case, e.g. extremely dense systems, or fast microscopic dynamics or driven systems,
where frequent updates of the neighbour list are necessary.

Quantum computing [10] can be considered as a strategy to predictably accelerate
these computationally expensive simulations. Quantum computing relies on the basic
quantum principles of superposition and entanglement, which make it suitable for
accelerating parallel and distributed applications and also for improving networks and
communications.

Previous works exploit the quantum parallelism in many-body system simulations
based on adiabatic quantum computation [11–13]. In contrast, this paper addresses the
N -body simulations considering quantum circuit algorithms to accelerate the compu-
tation of neighbour lists. It is designed using Grover’s algorithm, the main oracular
quantum search algorithm [10].

The aim of this paper is twofold. Firstly, to propose several comprehensive solutions
to the computation of the neighbour list with quantum computing under different alter-
native hypothesis. The algorithms proposed here are tested with a simplified oracle,

123

Quantum algorithms to compute the neighbour list of N-body… Page 3 of 26 61

where a fixed number of pairs of particles are set as neighbours. The circuits obtained
from this study are freely available at https://github.com/2forts/qsec. Secondly, to set
a decision methodology for the actual use of the proposed quantum algorithms. And,
additionally, to set a design methodology for the development of quantum algorithms,
taking into account a comprehensive design that supplies both algorithms and related
circuits.

The manuscript is organized as follows. Section2 is devoted to describing the three
proposed quantum algorithms for finding pairs of close particles and the selection
criteria. Furthermore, details about the oracle design as a reversible quantum circuit
are discussed. In Sect. 3, statistical simulations to test the proposed algorithms with a
simplification of the oracle are carried out. Finally, the conclusions are presented.

2 Quantum algorithms for finding pairs of close particles

In this section, we propose three quantum algorithms that can be used to find all the
pairs of particles that are closer than a given threshold distance. They are all based on
Grover’s algorithm, a quantummethod that performs a search through an unstructured
space, achieving a quadratic speed-upwith respect to classic search algorithms.Among
other quantumproperties, Grover’s algorithm is based on the concepts of superposition
and quantum parallelism to compute several evaluations of a function as one [14].
The algorithm obtains a solution with a certain probability, requiring a minimum
of iterations of the algorithm to get the solution with the desired probability. The
estimation of the necessary number of iterations is one of the most important parts of
the algorithm.

Grover’s algorithm needs a black box oracle O as an input. This oracle has to check
if a value x is (or not) a solution to the search problem. Therefore, to apply Grover’s
algorithms to a real problem, it is necessary to have an oracle with the capacity to
recognize if a given value is a valid solution to that problem.

Thus, we will assume, as it is customary in this kind of problem [10, 14], that we
are given a quantum circuit implementing an oracle O such that

O(|x〉|0〉) =
{

|x〉|1〉 if x satisfies certain conditions

|x〉|0〉 otherwise

Notice that this is a completely general situation and can be applied not only for the
case of finding all the pairs of particles that are close (in which case |x〉 = |x1〉|x2〉,
with x1 and x2 indices of two particles), but to any setting in which we have to find
all the elements in a set that satisfy a certain condition. This is closely related to the
Coupon Collector Problem [15], which has been recently studied in a quantum context
[16] but with a significant difference: In general, we do not know how many pairs of
particles are closer than the threshold, so we are not able to use the methods presented
in that work. Another important feature is the fact that, for a given particle, the number
of close particles is upper bounded by a constant independent of the total number of
particles.

123

https://github.com/2forts/qsec

 61 Page 4 of 26 E. F. Combarro et al.

The availability of the oracle O allows us to use Grover’s search algorithm [14]
that will be central to our methods. It is important to note that the success probability
of Grover’s algorithm and the number of times it consults the oracle are completely
determined by the number of elements ν in the set and by the number μ of marked
elements (i.e. elements that satisfy the condition). For that reason, in our algorithms,
we will consider oracles O = Oμ

ν that mark exactly μ elements from a set of size
ν. This general setting allows us to consider two different situations: We can search
among all the pairs of particles at once (i.e. ν = N 2, and μ is the number of pairs of
close particles), or we can fix one of the particles and search for the close ones (i.e.
ν = N , and μ is the number of close neighbours). This will prove useful in certain
situations, as we explain below, but from the point of view of the analysis of our
quantum algorithms, we can consider both cases in just one abstract setting, with the
only difference being the values of the parameters ν and μ.

2.1 Oracle construction

In this subsection, we discuss the construction of a quantum circuit implementing the
oracle O for the particular case of marking pairs of particles that are below a given
distance. In this paper, we will consider that all our algorithms use that circuit as
an instantiation of the oracle. Therefore, we want to demonstrate the feasibility of
building such an oracle.

A circuit implementing the oraclemust return 1 if the distance between two particles
i and j is less than or equal to a threshold value δ, and 0 otherwise. That procedure
can be divided into two operations: the computation of the distance between i and j
and the comparison between that distance and δ. Additionally, as required in two of
the proposed algorithms, we will need to modify the oracle O so that once found a
marked element x0, it is excluded from being marked by a new oracle O ′:

O ′(|x〉|0〉) =
{

|x〉|1〉 if x is marked and x �= x0
|x〉|0〉 otherwise

Notice that this only implies an extra comparison with x0, something that can be
achieved with a number of gates that is linear on the number of qubits used to represent
x0 and with an additional ancillary qubit.

Focusing on the arithmetic part, the process supports some simplifications. On the
one hand, it is possible toworkwith the squared distances. Therefore, the square root of
the distances between particles is not necessary. Then, the distances can be computed
using subtractors, adders, and squaring circuits. On the other hand, the comparison
can be computed using a comparator circuit. A comparator circuit, also called a full
comparator in some sources, receives as input two numbers A and B and determines
whether A is less than, equal to, or greater than B [17, 18]. There is a reduced version
of this circuit, called half comparator, which only identifies whether A is less than
or equal to B, or whether A is greater than B [19]. Half comparators involve fewer
resources than full ones [20]. Since in this work it is only necessary to determine

123

Quantum algorithms to compute the neighbour list of N-body… Page 5 of 26 61

whether the distance is less than or equal to the threshold or not, the comparison can
be computed using a half comparator instead of a full comparator.

It is important to note that this oracle will not provide any quantum advantage.
However, even quantum circuits that does not provide quantum advantages can be
useful as part of larger circuits if they involve a small number of resources [21]. In our
case, the oracle must use the least possible number of resources to be efficiently used
by our algorithms. In terms of quantum circuits, resource optimization is commonly
measured using the number of involved qubits. It is also important to avoid the so-
called garbage outputs: qubits that are not part of the result and whose value is not
restored to the initial one, so they cannot be used in other parts of the circuit. Reducing
the number of operations (represented by the so-called quantum cost) is also desirable
[22, 23].

Table 1 shows some of the most prominent adders, subtractors, squaring circuits,
and half-comparators available in the literature. The table shows their quantum cost,
their number of ancilla inputs, and the number of garbage outputs, according to the
definitions given byMohammadi et al. [22]. Since a complete analysis of the available
circuits in the state-of-the-art is out of the scope of this article, we have studied a
few selection of them in order to implement a functional oracle. We have followed
the methodology described in [24] to measure and to test these circuits. We have
chosen the best circuits of each category to build the oracle, prioritizing the absence
of garbage outputs and the number of ancilla inputs since their optimization involves
fewer qubits.

More specifically, the computation of (squared) Euclidean distances involves sub-
tracting the components of each coordinate, calculating the square of the previous
result, and adding these squares. Finally, the obtained value has to be compared with
the threshold value. We assume that the squared threshold is entered as an input to the
circuit. If this is not the case, an extra circuit will be required to calculate this square.
As an example, Fig. 1 shows how the oracle has to be assembled using the above
circuits, for the three-dimensional case. For a general D-dimensional case, D sub-
tractors will be needed to calculate the difference between each pair of components,
D squaring circuits, D − 1 adders, and a half comparator. To optimize the quantum
cost and the number of qubits needed, the circuits to choose are as follows:

• Differences between coordinates: Thapliyal et al. [27](no input carry) (a + b).
• Squares: Nagamani et al. [34].
• Addition of the squares: Thapliyal et al. [27](no input carry).
• Comparison: Li et al. [19].

Using these circuits, we obtained an oracle with a quantum cost of D(16N − 8) +
D(32N)+(D−1)(13N−8)+12N−8, andwith a total of D+D(6N−3)+(D−1)+1
ancilla inputs. Finally, it is necessary to uncompute all the qubits (except the one
that has the result). The comparator and the squaring circuits include the cost of the
uncomputation in their quantum cost and delay, but not the adders. Therefore, an extra
quantum cost of D(16N − 8) + (D − 1)(13N − 8) must be considered to avoid any
garbage output according to Bennett’s garbage removal scheme [38]. No extra qubit
is required since one of the ancilla inputs of the comparator is used to keep the result.

123

 61 Page 6 of 26 E. F. Combarro et al.

Table 1 Evaluation of most optimized circuits, which can be used as part of the oracle O for the general
n-digit case, in terms of quantum cost, ancilla inputs and number of garbage outputs

Circuit Quantum cost Ancilla
inputs

Garbage
outputs

Adders and
subtractors

[25] (full subtractors) 6n n 0

[25] (full and half sub-
tractors)

6n − 2 n 0

[26] + [25] 6n n + 1 0

[27](input carry)
(a + b)

18n − 6 2 0

[27](input carry) (a +
b + 1)

16n − 4 2 0

[27](no input carry)
(a + b)

16n − 8 1 0

[27](no input carry) 13n − 8 1 0

[28] (a + b) 31n − 15W (n) −
15log(n) − 6

5n/4 0

[29] (a + b + 1) 30n − 15W (n) −
15log(n) − 4

5n/4 0

Squaring cir-
cuits

[30] 36n 7n 7n

[31] 35n 10n 10n

[32] 36n 7n 13n

[33] 38n 13n 13n

[34] 32n 6n − 3 0

Half compara-
tors

[35] O(n2) 2n 0

[36] 39n + 9 6n + 1 0

[23] 18n + 9 4n − 3 0

[37] 14n 4n − 2 0

[17] 28n 2 0

[27] (a + b) 32n − 18 3 0

[27] (a + b + 1) 30n − 10 3 0

[25] (full and half sub-
tractors)

12n 2n − 3 0

[18] 16n − 8 2 0

[20] 13N − 12 N 0

[19] 12N − 8 1 0

123

Quantum algorithms to compute the neighbour list of N-body… Page 7 of 26 61

Fig. 1 Scheme of the final circuit for the computation of the oracle, for the 3D-case

We have built and tested a prototype of the oracle in ProjectQ simulator for a
reduced two-dimensional example, D = 2. The source code is freely available in
https://github.com/2forts/qsec.

2.2 The algorithmic methodology

All our algorithms are basedon theuseofGrover’s search [14]. This quantumalgorithm
allows, given an oracle Oμ

ν that marks μ elements from a set of size ν, to find, with

high probability, a marked element with O
(√

ν
μ

)
consults to the oracle, compared to

the �
(

ν
μ

)
that would be needed with a classical algorithm. This means that there is a

quadratic gap between the upper bound of the quantum algorithm, and the lower bound
of the classical ones. We will exploit this quadratic speed-up to obtain algorithms that
are asymptotically faster than any possible classical algorithm that also uses a black
box oracle. Namely, this allows to beat the �(N 2) bound for the search of pairs of
close particles in a non-quantum setting. Because of the intrinsic probabilistic nature
of quantum computing, our algorithms will provide a correct answer with probability
at least 1 − w, w is a chosen input parameter.

We first consider the situation in which the number of marked elementsμ is known.
This case will be rarely encountered in practice (when our algorithms are used to find
the pairs of particles that are below a given threshold), butwe present it here anyway for
two reasons. First, it is closely related to the Quantum Coupon Collector Problem that
has recently attracted some attention [16]. Second, it will provide a useful benchmark
for the more realistic algorithms we present later, as an ideal minimal bound on the
number of oracle consults.

Since we are assuming that we know μ, we can simply run Grover’s algorithm,
checking every time if we have obtained a new marked element, until all of them
have been found. However, since Grover’s algorithm only returns a marked element
with certain probability, there is no upper bound to the number of required oracle
consults. For that reason, we propose first to compute a number R of Grover iterations
that guarantees to find all marked elements with probability of failure at most w (see
the details in “Appendix A”). The complete procedure is, then, the one presented in
Algorithm 1.

123

https://github.com/2forts/qsec

 61 Page 8 of 26 E. F. Combarro et al.

Algorithm 1: .
Data: An oracle Oμ

ν marking a known number of μ elements in a database of ν elements
(0 < μ ≤ ν

2). A desired error bound probability 0 < w < 1.
Result: A set of r marked database elements L = {x1, . . . , xr }. With probability at least 1 − w, we

will have r = μ.
1 L ← ∅;

2 R ←
⌈

log
(

w
μ

)
log

(
1− 1

2μ

)
⌉
;

3 done ← f alse;
4 l ← 1;
5 while done = f alse and l ≤ R do
6 Choose j uniformly at random from the set {0, . . . , �√ν
 − 1};
7 Run Grover’s algorithm with

⌈
π
4

√
ν
μ

⌉
applications of the oracle plus diffusion operator;

8 Measure to obtain x ;
9 if x is a marked element then

10 L ← L ∪ {x};
11 if |L| = μ then
12 done ← true ; /* All marked elements found */
13 end
14 end
15 l ← l + 1;
16 end
17 return L

In practice, however, μ will be unknown to us. This affects our application of
Grover’s search in two different ways. On the one hand, we can never be sure that we
have already found all themarked elements and this affects the stopping conditions (cf.
lines 11–13 in Algorithm 1). On the other hand, we do not know what is the optimal
number of iterations in Grover’s algorithm (cf. line 7 in Algorithm 1). Of course, not
knowing μ, also prevents us from computing R.

To overcome these difficulties, we adopt a strategy similar to the one proposed in
[39]. For the number of iterations in Grover’s search, we select a random number
in {0, . . . , �√ν
 − 1}. For the stopping condition, we compute a value R that will
guarantee that if after R executions of Grover’s search no marked element has been
found, then the probability that indeed there are marked elements is below w, an error
bound selected by the user. The mathematical derivation of R is given in “Appendix
A”. Note that this bound is very conservative and that, in practice, errors much smaller
than w will be usually obtained, as shown in the numerical simulations that we have
conducted (see Sect. 3). Also note that this extends the method proposed in [39], so
that it can be used in our case, we need to find all the elements marked by the oracle
(while in [39], only one needs to be found).

The complete procedure is described in Algorithm 2. Notice that in line 20, after a
newelement has been found,wemodify the oracle so that this element is not considered
again. For that, we use the construction of the O ′ oracle mentioned above (Sect. 2.1).

Although Algorithm 2 gives an acceptable worst case asymptotic behaviour (cf.
Table 2), the average number of oracle consults can be improved. To this extent,
we define a third procedure, Algorithm 3. It uses the techniques proposed in [39] to

123

Quantum algorithms to compute the neighbour list of N-body… Page 9 of 26 61

Algorithm 2: .
Data: An oracle Oμ

ν marking an unknown number of μ elements (upper bounded by a known or
estimated B) in a database of ν elements (0 ≤ μ ≤ B ≤ 3ν

4). A desired error bound
probability 0 < w < 1.

Result: A set of r marked database elements L = {x1, . . . , xr }. With probability at least 1 − w, we
will have r = μ.

1 L ← ∅;

2 R ←
⎡
⎢⎢⎢⎢

log

(
1−(1−w)

1
B

)
log

(
3
4

)
⎤
⎥⎥⎥⎥;

3 f ound ← f alse;
4 done ← f alse;
5 while done = f alse do
6 l ← 1;
7 while f ound = f alse and l ≤ R do
8 Choose j uniformly at random from the set {0, . . . , �√ν
 − 1};
9 Run Grover’s algorithm with j applications of the oracle plus diffusion operator;

10 Measure to obtain x ;
11 if x is a marked element then
12 f ound ← true;
13 else
14 l ← l + 1;
15 end
16 end
17 if f ound = true then
18 L ← L ∪ {x} ; /* Add found element and search for another */
19 f ound ← f alse;
20 Modify the oracle so that it does not mark x
21 else
22 done ← true ; /* Tried R times without finding anything */
23 end
24 end
25 return L

iteratively increase the number of Grover iterations, together with the modification of
the oracle and the stopping criterion of checking R additional times that we used in
Algorithm2. Instead of always choosing the number of iterations ofGrover’s algorithm
in a uniformway (see line 8 onAlgorithm 2), we now increase the number of iterations,
starting from 1, by a factor of 6

5 (see Algorithm 3, line 27). This allows us to improve
the behaviour in the average case, as shown in Table 2. We still need, however, a
stopping condition that guarantees that the probability of missing some elements is
less than w. This is implemented in the situation when R > 1 in the loop of lines
9–18, which is then equivalent to the loop of lines 7–16 in Algorithm 2. Consequently,
this leads to a worst case behaviour exactly like that of Algorithm 2. The details of the
analysis can be found in “Appendix A”.

Table 2 summarizes the oracle query complexities of the three algorithms that we
have proposed, where we suppose that, in general, μ is a function of ν.

123

 61 Page 10 of 26 E. F. Combarro et al.

Algorithm 3: .
Data: An oracle Oμ

ν marking an unknown number of μ elements (upper bounded by a known or
estimated B) in a database of ν elements (0 ≤ μ ≤ B ≤ 3ν

4). A desired error bound
probability 0 < w < 1.

Result: A set of r marked database elements L = {x1, . . . , xr }. With probability at least 1 − w, we
will have r = μ.

1 L ← ∅;
2 m ← 1;

3 λ ← 6
5 ;

4 R ← 1;
5 f ound ← f alse;
6 done ← f alse;
7 while done = f alse do
8 l ← 1;
9 while f ound = f alse and l ≤ R do

10 Choose j uniformly at random from the set {0, . . . , �m
 − 1};
11 Run Grover’s algorithm with j applications of the oracle plus diffusion operator;
12 Measure to obtain x ;
13 if x is a marked element then
14 f ound ← true;
15 else
16 l ← l + 1;
17 end
18 end
19 if f ound = true then
20 L ← L ∪ {x} ; /* Add found element and search for another */
21 m ← 1;
22 R ← 1;
23 f ound ← f alse;
24 Modify the oracle so that it does not mark x
25 else
26 if m <

√
ν then

27 m ← min(λm,
√

ν) ; /* Increase Grover iterations limit */
28 if m ≥ √

ν then

29 R ←
⎡
⎢⎢⎢⎢

log

(
1−(1−w)

1
B

)
log

(
3
4

)
⎤
⎥⎥⎥⎥ ; /* Max Grover iterations reached; try

R times */
30 end
31 else
32 done ← true ; /* Tried R times without finding anything */
33 end
34 end
35 end
36 return L

2.3 The case of particle pairs

The general search methods presented in the previous subsection can be applied to
the problem of determining all the particle pairs that are closer to a given threshold
distance. In this paper, the number of close particles to a fixed one is upper bounded by

123

Quantum algorithms to compute the neighbour list of N-body… Page 11 of 26 61

Table 2 Summary of query complexities (ν is the size of the database,μ is the number of marked elements,
B ≤ 3ν

4 is an upper bound on μ)

Algorithm Worst case Average case

1 O
(√

νμ log(μ)
)

O
(√

νμ log(μ)
)

2 O
(√

νμ log(B)
)

O
(√

ν(log(B) + μ)
)

3 O
(√

νμ log(ν)
)

O
(√

ν(log(ν) + √
μ)

)

Table 3 Query complexities in our particular problem, first instantiation: pairs of close particles (N ≥ 54
is the number of particles, μ is the number of pairs of close particles, B ≤ 27N is an upper bound on μ)

Algorithm Worst case Average case

1 O
(
N

√
μ logμ

)
O

(
N

√
μ logμ

)
2 O (Nμ log B) O (N (log B + μ)

3 O (Nμ log N) O
(
N (log N + √

μ)
)

Table 4 Query complexities in our particular problem, second instantiation: particles close to a fixed one
(N ≥ 54 is the number of particles, α is the number of particles to search for close neighbours)

Algorithm Worst case Average case

1 O
(√

Nα logα
)

O
(√

Nα logα
)

2 O
(√

Nα logα
)

O
(√

Nα logα
)

3 O
(√

N log(N)α logα
)

O
(√

N log(N)α logα
)

a constant independent of the total number of particles, because of the characteristics
of the physical problem (see Sect. 3). We will explore two possible instantiations.

The first one is to consider all possible pairs of particles and apply any of the three
algorithms directly. In this case, we will have ν = N 2, where N is the total number
of particles, and μ represents the number of pairs of close particles. Provided some
mild conditions are met (see “Appendix B”), we obtain the asymptotic complexities
shown in Table 3.

In the second instantiation, we fix one particle and search, with any of the three
proposed algorithms, for all the particles that are close to it. This can be helpful, as
explained in detailed in the next subsection, when only a few of the particles have
changed their positions and, thus, we only need to update their neighbour lists. If we
consider α to be the number of particles with new positions, then the complexities of
the algorithms are those given in Table 4. For the detailed analysis, which is based
on the key fact that the number of particles close to a fixed one is upper bounded by a
constant independent of the total number of particles, see “Appendix B”.

Notice that several of the algorithms offer asymptotic complexities which can be,
in the average or even in the worst case, better than those of any classical algorithm
(which, necessarily, would have to make N (N−1)

2 or αN distance computations and

123

 61 Page 12 of 26 E. F. Combarro et al.

comparisons). In fact, we will show in Sect. 3 that for a range of parameter values
found in real-life problems, our algorithms can greatly reduce the number of oracle
queries that need to be performed.

In the next subsection, we explain how the different choices of algorithm can be
integrated into a decision procedure depending on the problem parameters and the
evolution of the system.

2.4 The decision procedure

As we can see, the second and third algorithms are memory procedures in which the
input oracle must be updated in order to keep track of found elements. The three
algorithms can be combined with different input parameters in order to obtain the set
of close pairs of N particles in the space. Since the particles are continuously moving
in space, we propose a two-step dynamic programming strategy: first, looking for
close particles among the set of all pairs; later on, looking for close particles to fixed
ones, when the positions of particles change (i.e. an update methodology). One aspect
to be considered is that Algorithm 3 performs uniformly better than Algorithm 2 in
the average case. So, if desired, Algorithm 3 could be a substitute for Algorithm 2 in
the alternatives given below.

First step: initialize the pairs of close particles
At this initial stage, the parameter ν is to be instantiated as N 2, andμ is the number

of close pairs to be found. The choice of the algorithms is as follows:

• If μ is not known, then:

– If μ is believed to be negligible in relation to the total number of pairs, use
Algorithm 2 (O(N) oracle calls in the worst case) with an estimated upper
bound B ≤ 27N of μ.

– Else, use Algorithm 3 with an estimated upper bound B ≤ 27N of μ

(O(N
√
N) oracle calls in the average case).

• Else (μ is known), then:

– If μ is negligible in relation to the total number of pairs, use Algorithm 1 (in
the worst scenario, O(N) oracle calls) or Algorithm 2 (O(N log N) oracle
calls in the worst case) with B = μ.

– Else, use Algorithm 1 (O(N
√
N log N) oracle calls in the worst case) or

Algorithm 3 with B = μ (O(N
√
N) oracle calls in the average case).

Second step: update the set of particles close to fixed ones
At this stage, the parameter ν is to be instantiated as N , the number of updated

particles is α, and for a fixed particle, μ represents the number of close particles to be
found.

The alternatives are the following:

1. If α logα is close to N , then backtrack to the first step.

2. Else, set S =
⌈
log(w

α
)

log(w)

⌉
. Then:

123

Quantum algorithms to compute the neighbour list of N-body… Page 13 of 26 61

(a) If μ is known, then use Algorithm 1 S times for each of the α particles
(O(

√
N

√
α logα) oracle calls in the worst case).

(b) Else, use Algorithm 2 S times for each of the α particles (O(
√
N

√
α logα)

oracle calls in the worst case).

3 Statistical simulation of the algorithms

In this section, the performance of the first-step algorithms introduced in Sect. 2 is
tested in practical situations. A key aspect of the simulation is the oracle O , where
the particle configuration should be fed into, and the use of Grover’s search. For the
purpose of testing the actual behaviour of algorithms 1 − 3, the oracle is simplified
notably, just taking into account the number μ of pairs of close particles, among the
total number of N particles. The simulation will simply identify such a number of
pairs. Since Grover executions in the algorithms are independent, we can directly
simulate (because of the results in [39]) the running of the Grover steps by sampling
from a Bernoulli distribution with success probability given by

sin2((2 j + 1)θ)

where j is the number of Grover iterations, sin2 θ = t
ν
and t is the number of marked

elements (notice that t = μ for Algorithm 1, but in Algorithms 2 and 3 t starts at μ

and is decreased by one unit with each element that is found). This means that we
do not actually run the Grover steps: we simply simulate the success probability of
such runs, instead. In the case of Algorithms 2 and 3 that is enough, because each
successful run of Grover will find a different element (we eliminate the obtained ones
from the oracle). For Algorithm 1, when the simulation shows that Grover has found
a marked element, we sample uniformly from the set {1, 2, . . . , μ} to determine the
actual element that has been found.

In all cases, three values ofμ are considered,μ = 40, 80, and 150,while the number
of particles N has been chosen to be 125, 216, 512 and 1000. This implies an average
number of neighbours per particle ranging from 2.3 to 0.08, which corresponds to
some situations found in practice. For instance, in the canonical hard-sphere system,
taking a threshold value for the centre-to-centre distance of 3a, with a the particle
radius, these average numbers of neighbours are obtained for volume fractions below
40%.

For Algorithm 1, following the analysis of “Appendix A”, the bounds on the total
number of iterations for different success probabilities are given in Tables 5, 6 and 7.
These bounds, however, are shown to be very conservative once we take into account
the actual results found in the simulations. InTables 8, 9 and 10,we show theminimum,
maximum, average and standard deviation of the number of oracle calls needed until
all the pairs are found, across 106 repetitions of the algorithm. Notice that these values
are much lower than those expected from the asymptotic analysis, even when we take
into account the standard deviation.

In Table 11, we show the value of R for Algorithms 2 and 3 for B = 27N (recall
that R is the number of Grover iterations that we need to execute without finding

123

 61 Page 14 of 26 E. F. Combarro et al.

Table 5 Bounds on # of oracle calls for Algorithm 1 when μ = 40

Error bound w # Calls 125 part # Calls 216 part # Calls 512 part # Calls 1000 part

0.1 7632 15,264 30,528 61,056

0.05 8512 17,024 34,048 68,096

0.01 10,560 21,120 42,240 84,480

0.005 11,440 22,880 45,760 91,520

0.001 13,488 26,976 53,952 107,094

Table 6 Bounds on # of oracle calls for Algorithm 1 when μ = 80

Error bound w # Calls 125 part # Calls 216 part # Calls 512 part # Calls 1000 part

0.1 12,804 24,541 48,015 96,030

0.05 14,124 27,071 52,965 105,930

0.01 17,208 32,982 64,530 129,060

0.005 18,540 35,535 69,525 139,050

0.001 21,612 41,423 81,045 162,090

Table 7 Bounds on # of oracle calls for Algorithm 1 when μ = 150

Error bound w # Calls 125 part # Calls 216 part # Calls 512 part # Calls 1000 part

0.1 19,719 37,247 72,303 144,606

0.05 21,582 40,766 79,134 158,268

0.01 25,920 48,960 95,040 190,080

0.005 27,792 52,496 101,904 203,808

0.001 32,130 60,690 117,810 235,620

Table 8 Minimum,maximum, average and standard deviation of the number of iterations for 106 repetitions
of Algorithm 1 when μ = 40

Particles Minimum Maximum Average Standard deviation

125 928 12,600 2749.08 790.33

216 1888 24,224 5481.58 1575.03

512 3904 44,928 10957.61 3150.78

1000 7552 86,144 21909.18 6313.69

any new particle in order to stop, and that B is the bound on the number of particles
that are close to each other). Again, these bounds prove to be extremely conservative.
We have executed Algorithms 2 and 3 for 106 times with values of R taken from
{5, 10, . . . , 70}. The full results can be found in the supplementary material. In this
section, we present only the data for the first value of R that successfully finds all the
particle pairs in all 106 experiments for a fixed value of μ. Since all these results can
be quickly obtained from simulations alone, for other values of N , ν and μ, one can

123

Quantum algorithms to compute the neighbour list of N-body… Page 15 of 26 61

Table 9 Minimum,maximum, average and standard deviation of the number of iterations for 106 repetitions
of Algorithm 1 when μ = 80

Particles Minimum Maximum Average Standard deviation

125 1908 20,064 4920.50 1243.43

216 3795 33,833 9181.87 2318.84

512 7254 61,650 17,887.36 4516.25

1000 14,940 131,490 35,743.77 9016.89

Table 10 Minimum, maximum, average and standard deviation of the number of iterations for 106 repeti-
tions of Algorithm 1 when μ = 150

Particles Mininum Maximum Average Standard deviation

125 3636 28,665 8038.76 1819.60

216 6613 49,691 14415.13 3266.95

512 12,606 92,532 27695.03 6265.49

1000 24,354 180774 55391.35 12542.27

Table 11 Number of repetitions for different error bounds in Algorithms 2 and 3 when μ = 40

Error bound w R 125 part R 216 part R 512 part R 1000 part

0.1 37 39 41 44

0.05 39 42 44 46

0.01 45 47 50 52

0.005 47 50 52 54

0.001 53 55 58 60

repeat experiments similar to the ones presented here in order to determine, before
using an actual quantum computer, which algorithm is most suitable for the situation
and what is the desirable value of R. In Figs. 2, 3 and 4 , we show those results,
including the value of R and the minimum, maximum, average and standard deviation
of the number of oracle calls used by the algorithms.

We can see that as it was the case with Algorithm 1, Algorithms 2 and 3, we achieve
an error rate below one in amillion for values of Rmuch less thanwhat Table 11would
lead to expect.

In Figs. 5, 6 and 7, we compare the number of queries needed by the classical algo-
rithm with the average number of queries made by Algorithms 1, 2 and 3. Notice that
while the growth in the case of the classical algorithm is quadratic, for our algorithms,
it is linear for fixed values ofμ. In fact, for the lowest values of μ, the average number
of queries of all our algorithms is lower than the number of queries performed by the
classical algorithm. For bigger values of μ (80 and 150), the classical algorithm beats
some of the quantum algorithms for low number of particles (125 and 216) but for
the simulations with 512 and 1000 particles, our algorithms are always better (and

123

 61 Page 16 of 26 E. F. Combarro et al.

Fig. 2 Number of oracle queries of Algorithms 2 (black) and 3 (red) for different numbers N of particles
when μ = 40. The solid line is the average, the dashed lines are the minimum and maximum, and the bars
represent the standard deviation (Color figure online)

Fig. 3 Number of oracle queries of Algorithms 2 (black) and 3 (red) for different numbers N of particles
when μ = 80. The solid line is the average, the dashed lines are the minimum and maximum, and the bars
represent the standard deviation (Color figure online)

the speed-up increases with the number of particles). In fact, Algorithm 3 was always
better than the classical algorithm for all the cases under study.

These results clearly show that our algorithms can outperform the best classical
algorithm in terms of oracle queries when the density of particles is low (μ is low or ν

is high). Thus, once robust quantum hardware is available, these methods, especially
Algorithm 3, may be of use in practical situations, where the density is usually low, a
situation in which our algorithms show their better performance.

123

Quantum algorithms to compute the neighbour list of N-body… Page 17 of 26 61

Fig. 4 Number of oracle queries of Algorithms 2 (black) and 3 (red) for different numbers N of particles
when μ = 150. The solid line is the average, the dashed lines are the minimum and maximum, and the bars
represent the standard deviation (Color figure online)

Fig. 5 Comparison of the number of oracle queries of the different algorithms when μ = 40

4 Conclusions

The focus of this work has been on the use of quantum computing to efficiently cal-
culate the neighbour list in the context of N -body simulations. A quantum algorithm
based on oracle procedures (Grover) has been considered to carry out the whole pro-
posal. The oracle has been designed with efficient reversible circuits that identify if
pairs of bodies are neighbours or not. A prototype of the oracle has been developed in
ProjectQ simulator based on the circuits proposed in [18, 27, 34] and it is available at
https://github.com/2forts/qsec. Three quantum algorithms have been designed to get

123

https://github.com/2forts/qsec

 61 Page 18 of 26 E. F. Combarro et al.

Fig. 6 Comparison of the number of oracle queries of the different algorithms when μ = 80

Fig. 7 Comparison of the number of oracle queries of the different algorithms when μ = 150

the pairs of neighbour particles from the information provided by the oracle. They can
be combined in a two-step procedure for achieving such an objective: first, looking for
pairs of close particles; second, updating the neighbour list of a small number of par-
ticles that move beyond a certain threshold. The actual combination of the algorithms
has been described in a decision procedure that aims to provide the best algorithm for
each possible situation.

The asymptotic analysis of every algorithm has been justified from a theoreti-
cal point of view. A statistical simulation of the oracle O in combination with the
algorithms has been considered to test their statistical behaviour for μ pairs of close
particles, among N particles.

123

Quantum algorithms to compute the neighbour list of N-body… Page 19 of 26 61

After 106 repetitions of the algorithms,we have computed theminimum,maximum,
average and standard deviation of the number of oracle calls needed until all the pairs
were found. The obtained values have been much lower than those expected from the
asymptotic analysis.

Thus, once robust quantum hardware is available, these methods, especially Algo-
rithm 3, may be of use in practical situations, where the density is usually low, a
situation in which our algorithms have shown their best performance.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11128-023-04245-1.

Acknowledgements Thiswork has been partially supported by the SpanishMinistry of Science and Innova-
tion throughout Project PID2021-123278OB-I00 (funded byMCIN/AEI/10.13039/501100011033/ FEDER
“A way to make Europe”), PID2020-119082RB-C22 (funded by MCIN/AEI/10.13039/501100011033),
Projects PID2021-123461NB-C22, and PID2021-127836NB-I00; by the Regional Ministry of Junta de
Andalucía under the Grants PY20_00748, IC-DRUGS-P18-RT-1193, UAL2020-TIC-A2101, and UAL18-
TIC-A020-B; by the Regional Ministry of the Principado de Asturias under Grant AYUD/2021/50994, by
the European Regional Development Fund (ERDF), and by the QUANTUM SPAIN project funded by the
Ministry of Economic Affairs and Digital Transformation of the Spanish Government and the European
Union through the Recovery, Transformation and Resilience Plan.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability Data sharing is not applicable to this article as no datasets were generated or analysed
during the current study.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Mathematical proof of the asymptotic behaviour of the
proposed quantum algorithms

Algorithm 1
Given a database of ν unsorted elements and an oracle that detects μ = μ(ν) marked
elements,Algorithm1provides amethod that finds allmarked elementswith a bounded
probability error, based on the repeated use of Grover’s algorithm. We shall require
that for all ν, 0 < μ(ν). We will also assume that the sequence μ(ν) has a limit when
ν → ∞.

Grover’s algorithm provides, with O
(√

ν
μ(ν)

)
oracle calls, a success probability

greater or equal than δ(ν) := 1 − μ(ν)
ν

, i.e. δ(ν) := P(finding a marked element out

123

https://doi.org/10.1007/s11128-023-04245-1
https://doi.org/10.1007/s11128-023-04245-1
http://creativecommons.org/licenses/by/4.0/

 61 Page 20 of 26 E. F. Combarro et al.

Table 12 Summary of Algorithm 1

Marked elements #Iterations #Orac. calls per it Total # oracle calls

μ(ν) O (μ(ν) log(μ(ν))) O
(√

ν
μ(ν)

)
O

(√
νμ(ν) log(μ(ν))

)

of the μ(ν)) [39, Section 3]. Assuming that μ(ν) ≤ ν
2 , for all ν, we have a uniformly

bounded success probability δ(ν) ≥ 1
2 . Because such an algorithmdoes not distinguish

between marked elements, we have that

Pi (ν) := P(finding the i − th marked element out of the μ(ν)) = δ(ν)

μ(ν)
≥ 1

2μ(ν)

for all i = 1, . . . , μ(ν), and for all ν. We want to independently repeat the search
R = R(ν) times and estimate the probability P ′(ν) of not finding all marked elements.
Namely,

P ′(ν) := P(not finding all marked elements in R(ν) experiments)

= P(not find. the first elem. in R(ν) exp. ∨ . . . ∨ not find. the

μ(ν) − th elem. in R(ν) exp.) ≤ μ(ν)

(
1 − 1

2μ(ν)

)R(ν)

In order to obtain a bounded algorithm, we require that such a probability is less than

some w < 1, for all ν. This yields μ(ν)
(
1 − 1

2μ(ν)

)R(ν) ≤ w or, equivalently,

R(ν) ≥
log

(
w

μ(ν)

)
log

(
1 − 1

2μ(ν)

)

Taking R(ν) as
⌈ log

(
w

μ(ν)

)
log

(
1− 1

2μ(ν)

)⌉
, we have that R(ν) = O (μ(ν) log(μ(ν))), and the pro-

cedure requires an overall number of O
(√

νμ(ν) log(μ(ν))
)
oracle calls (Table 12).

The main obstacles to a practical application of this methodology are the require-
ments on μ(ν), namely it has to be known and satisfy 0 < μ(ν) ≤ ν

2 , for all ν.
Moreover, the correctness of the asymptotic analysis is conditioned to the sequence
μ(ν) having a limit. Since μ(ν) is not always known, Algorithms 2 and 3 give two
practical approaches based on Grover’s algorithmwith a random number of iterations.
In both cases, an algorithm with memory and an appropriate time-out is adopted.

Algorithm 2
This algorithm consists in a direct randomization of the number of Grover’s iterations
of Algorithm 1. The list L keeps track of marked elements already found (a memory
list), and the number R = R(ν) of times that Grover’s search is repeated has to be
defined so that the algorithm has a bounded success probability. This time we shall

123

Quantum algorithms to compute the neighbour list of N-body… Page 21 of 26 61

Table 13 Summary of Algorithm 2: worst case

#Iterations loop lines 5–24 #Iterations loop lines 7–16 #Orac. calls per it Total # oracle class

μ(ν) + 1 (output iter.) O (log(B(ν))) O
(√

ν
)

O
(√

νμ(ν) log(B(ν))
)

require that, for all ν, 0 < μ(ν) ≤ 3ν
4 , and that the sequence μ(ν) has a limit when

ν → ∞.
Let us consider the correctness of the algorithm. At any given moment, the number

of elements marked by the oracle is 0 ≤ t ≤ 3ν
4 . When t = 0, the loop on lines 7–15

will not find any marked element. Thus, the conditional on line 17 will take the “else”
branch and the algorithm will output L on line 25. Since t = 0, L will contain all
the originally marked elements. On the other hand, when t > 0, because of Lemma
2 and the proof of Theorem 3 in [39], the probability of finding a marked element is
δ(ν) ≥ 1

4 , with O
(√

ν
)
oracle calls, so the overall probability of finding a marked

element is 1 − (1 − δ(ν))R(ν) ≥ 1 − (3
4

)R(ν)
.

Since the loop on lines 5–24 must be independently repeatedμ(ν)+1 times for the
algorithm to succeed (the last iteration is the one forcing the output), the probability

P ′(ν) of not finding all marked elements is P ′(ν) := 1− (
1 − (1 − δ(ν))R(ν)

)μ(ν) ≤
1 −

(
1 − (3

4

)R(ν)
)μ(ν)

which, in order to obtain a bounded algorithm, is required to

be less than some w < 1, for all ν. This yields

R(ν) ≥
log

(
1 − (1 − w)

1
μ(ν)

)
log

(3
4

)

Taking R(ν) to be
⌈ log

(
1−(1−w)

1
μ(ν)

)
log

(
3
4

) ⌉
, we have that R(ν) = O (log(μ(ν))), and

the procedure requires an overall number of O
(√

νμ(ν) log(μ(ν))
)
oracle calls. Of

course, sinceμ(ν) is assumed to be unknown, in practicewe should use an upper bound
B(ν) of μ(ν). (In the worst case, we can always choose B(ν) = 3ν

4 .) This allows us

to take R(ν) =
⌈ log

(
1−(1−w)

1
B(ν)

)
log

(
3
4

) ⌉
= O(log(B(ν)), and the overall asymptotic

complexity is O
(√

νμ(ν) log(B(ν))
)
(Table 13).

In this algorithm, it is also interesting to analyse the average number of oracle
queries. Since the probability of finding an element in any of the Grover executions
of lines 9–10 is at least 1

4 , the average number of queries on each execution of the

loop of lines 7–16 is less than 4
√

ν

2 = 2
√

ν when there are still marked elements to
be found. We need to add to that the number of queries of the output iteration (when
all elements have already been found) to obtain an average number of queries which
is 2

√
νμ(ν) + O

(√
ν log(B(ν))

) = O
(√

ν(log(B(ν)) + μ(ν))
)
(Table 14).

123

 61 Page 22 of 26 E. F. Combarro et al.

Table 14 Summary of Algorithm 2: average case

#Iterations loop lines 5–24 #Iterations loop lines 7–16 #Orac. calls per it Total # oracle class

μ(ν) + 1 (output iter.) 4 or O (log(B(ν)))

√
ν
2 or

√
ν O(

√
ν(log(B(ν)) + μ(ν)))

Table 15 Summary of Algorithm 3: worst case (noncritical and critical stages)

#Iterations loop
lines 7–35

#Iter. loop 9–18 to
reach the critical
stage

#Orac. calls per it Total # oracle calls

μ(ν) + 1 (output
iter.)

O (log(ν)) O
(√

ν
)

O
(√

νμ(ν) log(ν)
)

#Iterations loop
lines 7–35

#Iterations loop
lines 9–18

#Orac. calls per it Total # oracle calls

μ(ν) + 1 (output
iter.)

O (log(B(ν))) O
(√

ν
)

O
(√

νμ(ν) log(B(ν))
)

The main obstacles to a practical application of this methodology are the require-
ments on μ(ν), as it has to satisfy 0 < μ(ν) ≤ 3ν

4 , for all ν; the asymptotic behaviour
of the algorithm, which is worst than in the straightforward approach; the need of a
continuous oracle update. The main advantages are that μ(ν) is now not required to
be known, and that the sequence μ(ν) is not required to have a limit, when ν → ∞.

Algorithm 3
This alternate algorithm is a variation of the previous one, based on [39], and it consists
in two stages. In the first one, the parameter m increases from 1 to

√
ν by a factor of

λ. In each iteration, Grover’s algorithm is only run once. When the critical stage is
reached (i.e. whenm = √

ν), the algorithm behaves exactly as the previous one. Since
the algorithm never outputs before reaching the critical stage, the error probability is
bounded as above. The difference here consists on the number of oracle calls. In the
worst case, the algorithm performs the number of calls of the previous algorithm plus
the oracle calls of the noncritical stage, but this latter number is O

(√
ν log(ν)

)
, since

O(log(ν)) iterations are needed to reach the critical stage. So the overall complexity
of the worst case is O

(√
νμ(ν) log(ν)

)
(Table 15).

Again, the average number of queries can be substantially lower than that.
Indeed, from Theorem 3 in [39], when there are t > 0 marked elements to
be found, the average number of oracle queries that our algorithm needs to per-

form in order to find one of them is O
(√

ν
t

)
. Hence, the average number of

queries is O
(∑μ(ν)

t=1

√
ν
t

)
+ O

(√
ν log(ν)

) + O
(√

ν log(B(ν))
) = O

(√
νμ(ν)

) +
O

(√
ν log(ν)

) = O
(√

ν(log(ν) + √
μ(ν))

)
, because B(ν) = O(ν) (see Table 16).

The obstacles to a practical application of this algorithm are mostly the ones of the
previous one. However, although its asymptotic number of calls is never smaller than
the algorithm above, its average number of queries can be better in practice (this has
been observed in simulations). In fact, even though the worst case query complexity

123

Quantum algorithms to compute the neighbour list of N-body… Page 23 of 26 61

Table 16 Summary of Algorithm 3: average case

#Iterations loop 9–18 #Orac. calls per it Total # oracle class

t = 1, . . . , μ(ν)
√

ν
t O

(√
νμ(ν)

)
1 (output iter.)

√
ν log(ν) (noncritical) +

√
ν log(B(ν)) O(

√
ν log(ν))

Table 17 Summary of query complexities (B(ν) ≤ 3ν
4 is an upper bound of μ(ν))

Algorithm Worst case Average case

1 O
(√

νμ(ν) log(μ(ν))
)

O
(√

νμ(ν) log(μ(ν))
)

2 O
(√

νμ(ν) log(B(ν))
)

O
(√

ν(log(B(ν)) + μ(ν))
)

3 O
(√

νμ(ν) log(ν)
)

O
(√

ν(log(ν) + √
μ(ν))

)

is worse than that of the first algorithm proposed, the average number of queries is
better when log(ν) + √

μ(ν) is o(
√

μ(ν) log(μ(ν))).

Summary of complexities
InTable 17,weprovide a table that summarizes the complexities of the three algorithms
that we have proposed.

Appendix B. Rationale behind the decision procedure

Asmentioned in the text, the decision procedure for the determination of pairs of close
particles consists in two steps. First, look for close particles among the set of all pairs.
Second, look for close particles to a fixed one, when the positions of particles change
(i.e. an update methodology). In each case, any of the three methods above can be
potentially used. Next we explain the rationale behind our proposal.

First step: look directly for pairs of close particles
In this case, ν = N 2, and the required bounds on μ(N 2) are always satisfied when
the number of particles is N ≥ 54 (for the first algorithm) or N ≥ 36 (for the second
and third ones), because of the characteristics of the physical problem (see Sect. 3).
However, for smaller sizes of the problem and particularly small values of μ(N 2), the
algorithms could still work. The assumption that μ(N 2) has a limit, as N 2 → ∞, is
realistic since the density is fixed, namely the ratio of number of particles to available
space is constant. Therefore, the more particles we have, the more chances of having
pairs of close particles, i.e. it seems realistic assuming that μ(N 2) is non-decreasing,
and so it has a limit. The main obstacle for using the first algorithm is the need of a
knowledge of the actual value of μ(N 2). The asymptotic number of oracle calls of
each algorithm is given in Table 18

Depending on the actual μ(N 2), we will have different complexities. For instance,
it has been noticed in practice that sometimes the number of close pairs of distinct
particles is small in relation to the total number of pairs. This can be translated as the
condition μ(N 2) = O(1) (since we do not count the N pairs of a repeated particle),

123

 61 Page 24 of 26 E. F. Combarro et al.

Table 18 Query complexities in our particular problem

Algorithm Worst case Average case

1 O
(
N

√
μ(N2) log(μ(N2))

)
O

(
N

√
μ(N2) log(μ(N2))

)
2 O

(
Nμ(N2) log(B(N2))

)
O

(
N (log(B(N2)) + μ(N2)

)
3 O

(
Nμ(N2) log(N)

)
O

(
N (log(N) +

√
μ(N2))

)

Table 19 Query complexities when μ(N2), B(N2) = O(1), or μ(N2), B(N2) = O(N)

Algorithm Worst case Average case μ(N2), B(N2)

1 O (N) O (N) O(1)

2 O (N) O (N)

3 O (N log(N)) O (N log(N))

1 O
(
N

√
N log(N))

)
O

(
N

√
N log(N))

)
O(N)

2 O
(
N2 log(N)

)
O

(
N2

)
3 O

(
N2 log(N)

)
O

(
N

√
N)

)

and so the number of oracle calls, in both the worst and average cases, is simply O(N)

for the first two algorithms (observe that μ(N 2) = O(1) allows B(N 2) to be taken
as O(1)) and O(N log(N)) for the third one. In this situation, it seems reasonable to
expect that the three algorithms might give accurate outputs even for small values of
N .

On the other hand, we might simply assume that μ(N 2) = O(N) (because of the
uniform bound on the number of particles close to a fixed one), and so the algorithms
require queries of the orders given in Table 19. Notice that, in this case, algorithm 2
(taking the natural choice B(N 2) = O(N)) should be avoided, and one can choose
between algorithm 1 (in a conservative setting, and if the exact value of μ(N 2) is
known) and algorithm 3 (if only the average running time is of interest).

Second step: fix one particle and look for the close ones
Here, we have ν = N and μ(N) ≤ 27. If we want to apply the general setting, the

requirement on the minimum number of particles is the same as above (N ≥ 54 for the
first algorithm and N ≥ 36 for the second and third ones). Also, for the firstmethod,we
need to assume that μ(N) has a limit, as N → ∞. Again, this assumption is realistic
since the more particles we have, the more chances of having close particles to a given
one, i.e. it seems realistic assuming that μ(N) is non-decreasing, and so it has a limit.
Moreover, in this situation, μ(N) = O(1) always. The need of a knowledge of μ(N)

is, as above, the main obstacle for using the first algorithm.
Application of the general setting yields an asymptotic number of oracle calls that

is O
(√

N
)
for the first two methods, and O(

√
N log(N)) for the third one. This

number of oracle queries has to be multiplied by the number of “updated” particles

123

Quantum algorithms to compute the neighbour list of N-body… Page 25 of 26 61

that we will call α(N). There is still another missing factor that must be taken into
account. We know that any of the algorithms provides a uniform success probability
0 < 1 − w < 1. When we repeat the algorithm α(N) times, the lower bound on the
success probability becomes (1− w)α(N), which tends to 0, as α(N) tends to infinity.
To avoid this, we can repeat the search method S times for each updated particle, so
that the probability that we do not find all the close pairs is bounded from above by∑α(N)

i=1 P(fail to find the neighbour list of the i-th particle in all the S repetitions) =
α(N)wS . Then, if we take S =

⌈ log(ε
α(N)

)

log(w)

⌉
, which is O(log(α(N))), we can make the

failure probability less than any given ε, in particular w. Therefore, the total amount

of oracle calls that we need to consider is O
(√

Nα(N) log(α(N))
)
for the first two

algorithms and O
(√

N log(N)α(N) log(α(N))
)
for the third one.

Backtracking
A final question to be addressed is when it would be desirable to retake the first
approach instead of updating with the second approach. This would happen, for
instance, when the number of updated particles, α(N), verifies α(N) log(α(N)) ≥ N ,
but the constants hidden by the O notation can make it interesting even for smaller
α(N).

References

1. March, N., Tosi, M.: Atomic Dynamics in Liquids. Dover Publications, New York (1991)
2. Allen, M., Tildesley, D.: Computer Simulation of Liquids. Clarendon Press, Oxford (1989)
3. Hayes, B.: The 100-billion-body problem. Am. Sci. 103(90)
4. Caballero, J.B., Puertas, A.M., Fernández-Barbero, A., Javier de las Nieves, F.: Formation of clusters

in a mixture of spherical colloidal particles oppositely charged. Colloids Surfaces A Physicochem.
Eng. Asp. 270–271, 285–290 (2005)

5. Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature 324, 446–449 (1986)
6. Dehnen, W.: A hierarchical o(n) force calculation algorithm. J. Comput. Phys. 179(1), 27–42 (2002)
7. Chialvo, A.A., Debenedetti, P.G.: On the use of theVerlet neighbor list inmolecular dynamics. Comput.

Phys. Commun. 60(2), 215–224 (1990). https://doi.org/10.1016/0010-4655(90)90007-N
8. Howard, M.P., Anderson, J.A., Nikoubashman, A., Glotzer, S.C., Panagiotopoulos, A.Z.: Efficient

neighbor list calculation for molecular simulation of colloidal systems using graphics processing units.
Comput. Phys. Commun. 203, 45–52 (2016)

9. Potestio, R., Peter, C., Kremer, K.: Computer simulations of soft matter: linking the scales. Entropy
16, 4199–4245 (2014). https://doi.org/10.3390/e16084199

10. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
11. Paredes, B., Verstraete, F., Cirac, J.I.: Exploiting quantum parallelism to simulate quantum random

many-body systems. Phys. Rev. Lett. 95(14), 140501 (2005)
12. Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for

many-body systems and quantum computation. J. Math. Phys. 50(10), 102106 (2009)
13. Sørensen, A.S., Altman, E., Gullans, M., Porto, J., Lukin, M.D., Demler, E.: Adiabatic preparation of

many-body states in optical lattices. Phys. Rev. A 81(6), 061603 (2010)
14. Grover, L.K.: A fast quantummechanical algorithm for database search. In: Proceedings of the Twenty-

Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
15. Isaac, R.: The pleasures of probability, Undergraduate Texts in Mathematics. Springer, New York

(1995), readings in Mathematics. https://doi.org/10.1007/978-1-4612-0819-8
16. Arunachalam, S., Belovs, A., Childs, A.M., Kothari, R., Rosmanis, A., de Wolf, R.: Quantum coupon

collector. In: Flammia, S.T. (ed.) 15th Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2020), Vol. 158 of Leibniz International Proceedings in Informatics

123

https://doi.org/10.1016/0010-4655(90)90007-N
https://doi.org/10.3390/e16084199
https://doi.org/10.1007/978-1-4612-0819-8

 61 Page 26 of 26 E. F. Combarro et al.

(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 10:1–10:17
(2020). https://doi.org/10.4230/LIPIcs.TQC.2020.10. https://drops.dagstuhl.de/opus/volltexte/2020/
12069

17. Xia, H., Li, H., Zhang, H., Liang, Y., Xin, J.: An efficient design of reversible multi-bit quantum
comparator via only a single ancillary bit. Int. J. Theor. Phys. 57(12), 3727–3744 (2018)

18. Xia, H., Li, H., Zhang, H., Liang, Y., Xin, J.: Novelmulti-bit quantum comparators and their application
in image binarization. Quantum Inf. Process. 18(7), 229 (2019)

19. Li, H.-S., Fan, P., Xia, H., Peng, H., Long, G.-L.: Efficient quantum arithmetic operation circuits for
quantum image processing. SCIENCE CHINA Phys. Mech. Astron. 63, 1–13 (2020)

20. Orts, F., Ortega, G., Cucura, A., Filatovas, E., Garzón, E.: Optimal fault-tolerant quantum comparators
for image binarization. J. Supercomput. 1–12 (2021)

21. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal
quantum classifier. Quantum 4, 226 (2020)

22. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum
Inf. Process. 8(4), 297–318 (2009)

23. Thapliyal, H., Ranganathan, N., Ferreira, R.: Design of a comparator tree based on reversible logic.
In: 10th IEEE International Conference on Nanotechnology, pp. 1113–1116. IEEE (2010)

24. Orts, F., Ortega, G., Combarro, E.F., Garzón, E.M.: A review on reversible quantum adders. J. Netw.
Comput. Appl. 170, 102810 (2020). https://doi.org/10.1016/j.jnca.2020.102810

25. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. In:
Transactions on Computational Science XXVII, pp. 10–34. Springer, New York (2016)

26. Orts, F., Ortega, G., Garzón, E.M.: A faster half subtractor circuit using reversible quantum gates.
Baltic J. Mod. Comput. 7(1), 99–111 (2019)

27. Thapliyal, H., Ranganathan, N.: Design of efficient reversible logic-based binary and BCD adder
circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(3), 17 (2013)

28. Thapliyal, H., Jayashree, H., Nagamani, A., Arabnia, H.R.: Progress in reversible processor design: a
novel methodology for reversible carry look-ahead adder. In: Transactions on Computational Science
XVII, pp. 73–97. Springer, New York (2013)

29. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead
adder. arXiv preprint arXiv:quant-ph/0406142

30. Bhagyalakshmi, H., Venkatesha, M.: Optimized multiplier using reversible multi-control input Toffoli
gates. Int. J. VLSI Des. Commun. Syst. 3(6), 27 (2012)

31. Rangaraju, H., Suresh, A.B., Muralidhara, K.: Design and optimization of reversible multiplier circuit.
Int. J. Comput. Appl. 52(10), 44–50 (2012)

32. Islam,M.S.,Rahman,M.,Begum,Z.,Hafiz,M.Z.: Lowcost quantum realization of reversiblemultiplier
circuit. Inf. Technol. J. 8(2), 208–213 (2009)

33. Bhagyalakshmi, H., Venkatesha, M.: An improved design of a multiplier using reversible logic gates.
Int. J. Eng. Sci. Technol. 2(8), 3838–3845 (2010)

34. Nagamani,A., Ramesh,C.,Agrawal,V.K.:Design of optimized reversible squaring and sum-of-squares
units. Circuits Syst. Signal Process. 37(4), 1753–1776 (2018)

35. Wang, D., Liu, Z.-H., Zhu, W.-N., Li, S.-Z.: Design of quantum comparator based on extended general
Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

36. Al-Rabadi, A.N.: Closed-system quantum logic network implementation of the Viterbi algorithm.
Facta Universitatis-Series Electron. Energet. 22(1), 1–33 (2009)

37. Vudadha, C., Phaneendra, P.S., Sreehari, V., Ahmed, S.E., Muthukrishnan, N.M., Srinivas, M.B.:
Design of prefix-based optimal reversible comparator. In: IEEE Computer Society Annual Symposium
on VLSI, pp. 201–206. IEEE (2012)

38. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)
39. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys.

46(4–5), 493–505 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.TQC.2020.10
https://drops.dagstuhl.de/opus/volltexte/2020/12069
https://drops.dagstuhl.de/opus/volltexte/2020/12069
https://doi.org/10.1016/j.jnca.2020.102810
http://arxiv.org/abs/quant-ph/0406142

	Quantum algorithms to compute the neighbour list of N-body simulations
	Abstract
	1 Introduction
	2 Quantum algorithms for finding pairs of close particles
	2.1 Oracle construction
	2.2 The algorithmic methodology
	2.3 The case of particle pairs
	2.4 The decision procedure

	3 Statistical simulation of the algorithms
	4 Conclusions
	Acknowledgements
	Appendix A. Mathematical proof of the asymptotic behaviour of the proposed quantum algorithms
	Appendix B. Rationale behind the decision procedure
	References

