
 

Asymptotically safe SU(5) GUT

M. Fabbrichesi,1 C. M. Nieto,2 A. Tonero ,3 and A. Ugolotti4
1INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy

2Universidad Industrial de Santander, Carrera 27 Calle 9, Bucaramanga, Santander, Colombia
3Ottawa-Carleton Institute for Physics, Carleton University, 1125 Colonel By Drive, Ottawa,

Ontario K1S 5B6, Canada
4Theoretisch-Physikalische Institut (TPI), Friedrich-Schiller-Universität, Abbeanum,

Fröbelstieg 1, 07743 Jena, Germany

(Received 13 January 2021; accepted 1 April 2021; published 24 May 2021)

We minimally extend the Standard Model field content by adding new vectorlike fermions at the TeV
scale to allow gauge coupling unification at a realistic scale. We embed the model into an SU(5) grand
unified theory that is asymptotically safe and features an interacting fixed point for the gauge coupling.
There are no Landau poles of the U(1) gauge and Higgs couplings in this new setting. Gauge, Yukawa, and
Higgs couplings are retraced from the fixed point and matched at the grand unification scale to those of the
Standard Model rescaled up to the same energy. All couplings, their fixed point values, and critical
exponents always remain in the perturbative regime.
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I. INTRODUCTION

A quantum field theory is asymptotically safe if all its
couplings reach a fixed point in the UV limit, as they run
along the flow dictated by their renormalization group
equations [1,2]. The fixed point can be interacting or free
(Gaussian). In the latter case, asymptotic safety (AS)
reduces to asymptotic freedom [3,4]. In both cases, we
can say that the theory is UV complete because it is well
behaved and predictive at all energies.
The Standard Model (SM) is not asymptotically safe

because of the uncertain fate of the Higgs boson quartic
coupling and the presence of the Landau pole in the Uð1ÞY
gauge coupling. In particular, the latter divergence feeds
back into the renormalization group (RG) flow of the
quartic Higgs self-interaction inducing a Landau pole also
in the scalar sector. Furthermore, the Higgs quartic cou-
pling—given the current experimental value of the top mass
—becomes negative before the Planck scale, making the
electroweak vacuum metastable [5]. Quite in general, for a
given cutoff scale and fixed value for the top mass, the
Higgs mass has to exceed a lower bound in order to avoid
the metastability issue of the scalar potential [6–11].
Although different mechanisms can be devised to solve
the problem of the instability of the quartic coupling, the

Landau pole of the Uð1ÞY gauge coupling has proved to be
a stumbling block.
Should the SM be asymptotically safe? For all practical

purposes, the breakdown of the perturbative regime repre-
sented by the presence of the Landau pole in the Uð1ÞY
gauge coupling can be ignored for it takes place at energies
well beyond the Planck scale. Be that as it may, the taming
of the Uð1ÞY Landau pole becomes essential if we take the
UV behavior as our guidance in searching for a completion
of the SM.
A research program based on the safe UV completion of

the SM has been actively pursued in recent years thanks to
the progress that has been made in gauge theories with a
large number of vectorlike fermions (VLF) and gauge
bosons—for which it is possible to state rigorous results
[12,13] in the Veneziano limit. These findings have
encouraged the investigation of the extension with vector-
like fermions of models containing at least some of the
features of the SM [14–17] and, more recently, the SM
itself [18,19]. All the same, as impressive as these results
are, it is fair to say that the Landau pole of the Uð1ÞY gauge
coupling has proven to be a stumbling block. It appears that
all perturbative stable fixed points of the possible extension
of the SM with vectorlike fermions only admit a low-
energy matching if the Uð1ÞY gauge coupling vanishes and
the theory is trivial in that sector.
This problem requires us to look into viable options that

allow us to circumvent the Uð1ÞY triviality problem.
One possible way out has been recently suggested by

studying an asymptotically safe version of QED. It has been
shown in Ref. [20] that an enlarged theory space—where
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higher-dimensional operators such as a Pauli spin-field
coupling are included—opens the possibility for UV-
complete realizations of QED due to the presence of
interacting fixed points. Other possible solutions to the
triviality problem are obtained by including ad hoc gravi-
tational contributions [21,22]—a procedure with its own
conceptual difficulties—or venturing into the nonperturba-
tive regime [19].
In this work, we follow the more conservative choice of

looking into a grand unified theory (GUT) extension of the
SM [23–27], where the Abelian gauge group is merged into
a larger non-Abelian group for which there is no Landau
pole to begin with. The possibility of having an asymp-
totically safe GUT has been discussed in Refs. [28–31].
Other embeddings that solve the Uð1ÞY problem have been
proposed in Refs. [32,33].
We study minimal GUT extensions based on the SU(5)

gauge group. The specific model we consider below the
GUT scale consists in the SM enlarged by the addition of
vectorlike fermions—that is, fermions whose right- and
left-handed components belong to the same representation
of the gauge group and for which a Dirac mass term can be
explicitly written. They enter at the scale of 1 TeV and
transform under some specific representations of the SM
gauge group. We are interested in the extensions of the SM
leading to good gauge coupling unification, which can be
achieved with both minimal [34,35] or nonminimalVLF
multiplicities [35,36].
The role played by the vectorlike fermions is twofold:

below the GUT scale, their presence leads to a “good”
(that is, around 1% of relative difference) gauge coupling
unification and ensures such unification at a scale which
is not constrained by low-energy experiments like proton
decay; above the GUT scale, thanks to their new Yukawa
interactions, they are crucial for generating nontrivial
perturbative UV fixed points for the SU(5) gauge
coupling [37].
At this stage, we do not want to classify all the possible

models; rather, we intend to show a specific working
example as a proof of concept. In particular, we consider
one of the possible minimal extensions that were classified
in Ref. [34] which presents the same features of a split-
supersymmetry (SUSY) scenario: the LVG model. The
corresponding TeV-scale vectorlike fermions are embedded
in proper SU(5) representations at the GUT scale with
multiplicities adjusted such that the UV fixed point of the
SU(5) gauge coupling has a numerical value rather close to
that of the unification of the three SM gauge couplings at
the GUT scale. The gauge couplings run from the electro-
weak to the GUT scale where they come close to each other
and merge into the SU(5) gauge coupling. From the GUT
scale on, the unified gauge coupling remains at its
fixed point.
The other relevant couplings that are present below the

GUT scale, namely, the top-quark Yukawa, the vectorlike

fermion Yukawa couplings, and the quartic Higgs coupling,
run through the GUT scale where they merge into their SU
(5) GUT counterpart and reach their own UV fixed points
together with the other couplings of the GUT model
(additional vectorlike fermions Yukawa couplings and
GUT scalar potential couplings).
All couplings, the fixed point values, and critical

exponents always remain in the perturbative regime—a
fact that suggests that the fixed point and the renormaliza-
tion group flow are stable.

II. TOWARD THE GUT SCALE

The gauge couplings of the SM run toward each other in
a manner that is suggestive of a possible unification.
Though they come rather close, they do so at a scale of
order 1013–1014 GeV, that is too low for the GUT theory
to be consistent with data on the proton lifetime [38].
On the other hand, it is known that the addition of new
charged states can modify the running and move the
GUT scale to a higher value. Among the possible models,
minimal nonsupersymmetric extensions were discussed in
Refs. [34,39–47] and [48–53]. On the other hand, super-
symmetric extensions can be found in Refs. [54–59]. Yet,
the minimal supersymmetric GUT model with squark
masses mf̃ ≲ 2 TeV is excluded if one combines the limits
on proton decay mediated by the colored Higgs [60]
with the constraints obtained by the requirement that
the Yukawa couplings do not blow up before Planck scale
[61,62].
In this work, we focus on nonsupersymmetric theories

and consider one specific minimal extension of the SM that
has been classified in Ref. [34], namely, the LVG model,
which has the same low-energy field content of the “split-
SUSY” scenario, as summarized in Table I. The label “L”
stands for vectorlike fermions ψL that transform under the
ð1; 2; 1=2Þ representation of the SM gauge group and have
the same quantum numbers of the minimal supersymmetric
SM Higgsino. The labels “V” and “G” stand for Majorana
fermions ψV and ψG that transform, respectively, under the
ð1; 3; 0Þ and ð8; 1; 0Þ representations of the SM. The fields
ψV and ψG are like the wino and gluino fields of the
minimal supersymmetric SM. The multiplicities of these
beyond the SM representations are all the same and equal to
Nf ¼ 1. These extra matter fields are added at the scale
of 1 TeV.

TABLE I. Quantum numbers and multiplicities of the vector-
like fermions in the LVG model.

Fields SUð3Þc SUð2ÞL Uð1ÞY Nf

ψL 1 2 1=2 1
ψV 1 3 0 1
ψG 8 1 0 1
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The Lagrangian of the LVG model is given by

LLVG ¼ LSM þ ψ̄Li=DψL −MLψ̄LψL þ Trψ̄V i=DψV

−MVTrψ̄VψV þ Trψ̄Gi=DψG −MGTrψ̄GψG

− yV ψ̄LψVH þ H:c:; ð1Þ

where ψV ¼ ψ i
VTi, with Ti the generators of SUð2ÞL such

that TrðTiTjÞ ¼ 1=2δij, and ψG ¼ ψa
Gλa, with λa the

generators of SUð3Þc normalized again such that TrðλaλbÞ ¼
1=2δab. The indices ði; j ¼ 1; 2; 3Þ and ða; b ¼ 1; 2;…; 8Þ
belong to the adjoint representations of SUð2ÞL and SUð3Þc,
respectively. Let us notice that the SM Higgs doublet H
can couple to the vectorlike fermions via a new Yukawa
interaction whose coupling is yV .
The SM Lagrangian LSM in Eq. (1) is written following

the convention used in Ref. [18]; in particular, the Higgs
quartic interactions is parametrized as −λH†H=2. We did
not include Yukawa interactions that mix SM fermions and
vectorlike fermions (this can be achieved by imposing aZ2/
parity-type symmetry, under which SM fermions are even
while vectorlike fermions are odd).

A. Renormalization group flow

In this section, we study the renormalization group flow
for the couplings of the LVG model, in what is known as
the 211-SCHEME approximation, where the gauge coupling β
functions are computed at two-loop order while the
Yukawa and scalar couplings are computed at one-loop
order [63–67]. This scheme is a compromise between the
more formally consistent 321-SCHEME—a scheme with β
functions at the three-loop order in the gauge coupling,
two-loop order in the Yukawa couplings, and one-loop
order scalar couplings—and the computational manage-
ability of the β functions. The simpler and consistent 210-

SCHEME would not allow us to study the renormalization of
the scalar potential. We trust that higher-loop corrections do
not significantly change our results since we always work
well within the perturbative regime.
We compute the β functions in the MS renormalization

scheme and consider only the gauge, top-Yukawa, Higgs
scalar quartic, and vectorlike fermion Yukawa couplings.
In the rest of this paper, we will neglect all other
Yukawa couplings in the SM as they are small com-
pared to that of the top quark. Let us define the rescaled
couplings α,

αi ¼
g2i

ð4πÞ2 ; αt ¼
y2t

ð4πÞ2 ; αλ ¼
λ

ð4πÞ2 ; αV ¼ y2V
ð4πÞ2 ;

ð2Þ

where g1, g2, g3, yt, and λ are the SM couplings and yV is
the vectorlike fermion Yukawa coupling. This definitions
are convenient in expressing the β functions as polynomials

with rational coefficients. Note that the definition of αi for
the gauge couplings is different from the usual one by an
additional factor of ð4πÞ in the denominator. The β
functions of the LVG model read

∂tα1 ¼ βSM;NLO
1 þ

�
4

3
þ α1 þ 3α2 − 6αV

�
α21; ð3Þ

∂tα2 ¼ βSM;NLO
2 þ ð4þ α1 þ 59α2 − 22αVÞα22; ð4Þ

∂tα3 ¼ βSM;NLO
3 þ ð4þ 96α3Þα23; ð5Þ

∂tαt ¼ βSM;LO
t þ 12αVαt; ð6Þ

∂tαV ¼
�
15αV þ 6αt −

3

2
α1 −

33

2
α2

�
αV; ð7Þ

∂tαλ ¼ βSM;LO
λ þ 24αVαλ − 48α2V; ð8Þ

where βSM;NLO
i , βSM;LO

t , and βSM;LO
λ are the SM β functions

given in the Appendix A. The new terms pertaining to
physics beyond the SM are explicitly shown: the vectorlike
fermion contributions to the gauge couplings are computed
using the formulas in Appendix B. The contributions of the
vectorlike fermion Yukawa coupling to the gauge, top-
Yukawa, and Higgs quartic couplings as well as the β
function of αV itself are computed using the results of
Ref. [68]. An explanation of the latter contributions is
provided in Appendix B.
In computing the renormalization group flow, we

assume that the vectorlike fermions have all the same
massML ¼ MV ¼ MG ¼ 1 TeV. In principle, there are no
particular restrictions in choosing, for example, a different
mass for each of the three vectorlike fermions. Our
particular choice has been made for simplicity. The initial
conditions for the SM couplings αi, αt, and αλ are given at
the Z-boson mass MZ ¼ 91.19 GeV. These values are
shown in Table II and are obtained by using the tree-level
relations between the couplings and the SM input exper-
imental values [69]. The renormalization group flow for the
couplings of the LVG model, where αV is set to zero, is
shown in Fig. 1. The gray vertical line on the left
corresponds to the scale at which the vectorlike fermions
become dynamical and their presence makes it possible to
achieve gauge coupling unification (with a maximum of
relative difference of 1.2%) at the scale of

TABLE II. Initial conditions at MZ ¼ 91.19 GeV for the SM
gauge, top-Yukawa, and Higgs quartic couplings.

α1 α2 α3 αt αλ

0.0008091 0.002689 0.009390 0.006298 0.001634
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MGUT ≃ 2.399 × 1016 GeV; ð9Þ

which is below the Planck scale, which is highlighted in
Fig. 1 by the gray vertical line on the right. The values of
the SM couplings at the GUT scale are

αiðMGUTÞ ≃ 0.002247; αtðMGUTÞ ≃ 0.0009388;

αλðMGUTÞ ≃ −0.0005420: ð10Þ

These values will represent the IR target which has to be
connected with the UV behavior of the model defined at the
GUT scale, behavior controlled by the existence of inter-
acting fixed points. The procedure that we use to connect,
whenever possible, a UV fixed point with the IR target
of Eq. (10) will be exhaustively explained in Sec. V. As
already mentioned, at the GUT scale, the LVG model
becomes embedded into an SU(5) gauge theory, such that
the SM gauge couplings merge into the SU(5) gauge
coupling and the top-Yukawa coupling as well as the
Higgs quartic coupling merge into their SU(5) GUT
counterparts. The latter couplings have to match the values
in Eq. (10) while flowing down from (at least) one fixed
point of the SU(5) GUT theory itself.
To understand the sensitivity of the gauge coupling

unification on the mass of the vectorlike fermions, we
have reported in Table III the variation of the maximum
relative difference among the gauge couplings,

max jΔijj½%�≡max jðαi − αjÞ=αij · 102; ð11Þ

for different values of ML ¼ MV ¼ MG ≡MLVG and with
the boundary condition αV ¼ 0. In addition, we have also
written in Table III the corresponding values for αGUT and
MGUT. Reducing the mass of the vectorlike fermions allows

us to have a better gauge coupling unification at the
expense of a higher value of αGUT and of the unification
scale. On the other hand, we fix MLVG around 1 TeV so as
not to worry about current and future exclusion bounds
from LHC data.

B. Higgs potential stability

The problem of the Higgs potential instability is already
present in the SM, and we do not provide a solution to this
issue in our model with vectorlike fermions. Indeed, the
renormalization group flow, as plotted in Fig. 1, shows that
the quartic Higgs coupling αλ becomes negative at around
105 TeV (in the present 211-SCHEME), signaling a vacuum
instability or metastability.
The presence of vectorlike fermions mitigates this

problem as they make αλ turn negative at higher energies
compared to the SM case. This is because αt runs faster
toward zero with respect to the SM case, which is, in turn,
due to the fact that α2 and α3 run slower than in the SM. Yet,
considering the field content of our model, we have that the
variation of the instability scale with respect to the SM case

FIG. 1. Renormalization group flow of the SM couplings 5=3α1, α2, α3, αt, and αλ for the LVG model. The initial conditions are given
at the scaleMZ, and the vectorlike fermions are included at the scale of 1 TeV (gray vertical line on the left). The flow is considered up to
the Planck scale (gray vertical line on the right). The gray vertical line in the middle corresponds to the GUT scale at which the gauge
couplings unify.

TABLE III. List of different values for the mass of the vector-
like fermions MLVG and corresponding variation of αGUT, MGUT,
and the maximum relative difference between the gauge cou-
plings, i.e., max jΔijj. The beyond-the-SM Yukawa coupling αV
is set to zero.

MLVG (TeV) αGUT max jΔijjð%Þ MGUT (1016 GeV)

0.1 0.002284 0.8460 3.804
1 0.002247 1.188 2.399
10 0.002211 1.554 1.553
100 0.002178 1.928 1.023
1000 0.002146 2.302 0.6805
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is minimal (about 26%). In principle, one can think of
preventing the quartic Higgs coupling from becoming
negative and keeping good gauge coupling unification
below the Planck scale, by adding a large number of
vectorlike fermions in different SM representations, as
shown in Ref. [36]. This choice is, however, not minimal,
and its study is beyond the scope of this paper.
In addition, it is also known that the metastability scale in

the SM moves to higher values when one considers two-
loop and three-loop β function for αλ (107 and 109 GeV,
respectively), as shown in Refs. [7,8]. In the end, the
problem still persists, and one either accepts a metastable
potential, as in the SM, or one adds additional fields (for
example, vectorlike fermions or also a scalar singlet) so as
to prevent the Higgs quartic coupling to become negative
before the Planck scale.
The present discussion about the scalar potential stability

is largely accepted within the standard lore of perturbation
theory, which intimately associates the instability scale to
the existence of a lower bound for the Higgs mass.
However, the presence of such an instability scale becomes
questionable as soon as one adopts different approaches.
For example, lattice simulations have shown that the lower
bound for the Higgs mass merely arises from consistency
conditions imposed on the bare action and no reference to a
low-energy stability issue has to be made [70–77]. The
same point of view got also substantiated by functional
methods, showing that the conventional lower Higgs-mass
bound can even be relaxed given an appropriate consistent
definition of the bare action [21,78–85].

III. ABOVE THE GUT SCALE

Aiming at an asymptotically safe scenario, we now focus
our analysis beyond the GUT scale, where we assume that
an underlying SU(5) symmetry is restored. Consequently,
the vectorlike fermions of the LVG model discussed in the
previous section are embedded into proper multiples of
SU(5), just like is the case for the SM fields. This
unification group choice seems to be the most natural
since SU(5) not only can play the role of a self-contained
unified gauge symmetry [23] but also show up in breaking
chains of larger GUT groups. The Lagrangian of the SU(5)
SM GUT theory is given by [86]

LGUT
SM ¼ −

1

4
Fa
μνF

μν
a þ χ̄5̄i=Dχ 5̄ þ

1

2
Trðχ̄10i=Dχ10Þ

þ Tr½ðDμΣÞ†ðDμΣÞ� þ ðDμΦÞ†ðDμΦÞ − VðΦ;ΣÞ
− ybχ̄c5̄χ10Φ

� þ yt10
8

ε5χ̄
c
10χ10Φþ H:c:; ð12Þ

where Fa
μν is the field strength of the SU(5) gauge

fields Aa
μ (a ¼ 1;…; 24), which include the SM gluons,

the electroweak gauge bosons, and the heavy GUT gauge
bosons.

The right-handed down quarks and the left-handed
lepton doublets are embedded into the left-handed field
χ5̄ transforming as an antifundamental 5̄ representation of
SU(5), while the left-handed quark doublets, right-handed
up quarks, and leptons are embedded into the left-handed
field χ10 transforming as an antisymmetric 10 representa-
tion of SU(5). The charge conjugation of a fermionic field
is expressed by a superscript c, for example, χc

5̄
¼ Cðχ̄5̄ÞT,

where C is the charge conjugation operator.
The Higgs field is embedded into Φ, transforming as a

fundamental 5 representation of SU(5). Even though the
fermionic matter content of the SM can be fitted entirely
into the 5̄ and 10 representations of SU(5), the scalar sector
is extended by an adjoint scalar field Σ, in the 24
representation, which is needed in order to break the
SU(5) into the SM gauge group.
The Lagrangian in Eq. (12) includes only the top- and

bottom-Yukawa couplings, which are the most relevant
ones. We set to zero the Yukawa couplings of the first and
second generations. The fermionic field χ10 is a 5 × 5
antisymmetric matrix such that the corresponding Yukawa
interaction is constructed by mean of the Levi-Civita tensor
in five dimensions, i.e., ε5. In terms of components, the
Yukawa interaction term is ε5χ̄c10χ10Φ ¼ εijklmχ̄

cij
10 χ

kl
10Φm.

The quartic terms of the scalar potential VðΦ;ΣÞ in
Eq. (12) read [86]

VquarticðΦ;ΣÞ ¼ λΣ
2
TrðΣ4Þ þ λ0Σ

2
½TrðΣ2Þ�2 þ λH

2
ðΦ†ΦÞ2

þ 2λHΣΦ†ΦTrðΣ2Þ þ 2λ0HΣΦ†Σ2Φ; ð13Þ

where λX ¼ ðλΣ; λ0Σ; λH; λHΣÞ are the quartic scalar cou-
plings of the GUT model.
At the unification scale, the vectorlike fermions of the

LVG model in Table I are embedded into proper multiples
of SU(5), see Table IV. We assume that the field ψL gets
embedded into vectorlike fermions Ψ5, with multiplicity
N5 ≥ 1, transforming under the fundamental representation
of SU(5), while ψV and ψG get embedded into Majorana
fermions Ψ24, with multiplicity N24 ≥ 1, transforming
under the adjoint representation of SU(5).1

Therefore, the Lagrangian of the LVG GUT model is

LGUT
LVG ¼ LGUT

SM þ Ψ̄I
5i=DΨI

5 −M5Ψ̄I
5ΨI

5 þ TrðΨ̄J
24i=DΨJ

24Þ
−M24TrðΨ̄J

24ΨJ
24Þ − y5ΣΨ̄I

5ΣΨI
5

− y24ΣTrðΣΨ̄J
24ΨJ

24Þ − yν
X
I;J

ðΨ̄I
5ΨJ

24Φþ H:c:Þ;

ð14Þ

1The fundamental and adjoint representations of SU(5) can be
decomposed under the SM gauge group as follows (see, for
example, Ref. [87]): 5 ¼ ð1; 2; 1=2Þ ⊕ ð3; 1;−1=3Þ and 24 ¼
ð1; 1; 0Þ ⊕ ð1; 3; 0Þ ⊕ ð8; 1; 0Þ ⊕ ð3; 2;−5=6Þ ⊕ ð3̄; 2; 5=6Þ.
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where I and J run over the flavor numbers, i.e., I ¼
1;…; N5 and J ¼ 1;…; N24. In the LVG GUT Lagrangian
of the latter equation, we have introduced three Yukawa
couplings involving the vectorlike fermions: y5Σ, y24Σ, and
yν. The first two terms in the second line respect an
UðN5Þ × OðN24Þ flavor symmetry which is explicitly
broken by yν interactions. In principle, additional gauge-
invariant Yukawa terms are possible; however, we restrict
the number of such interactions to just 3 by imposing a Z2/
parity-type symmetry, under which the SM fermions are
even while the vectorlike fermions are odd.

A. β functions

In this section, we compute the β functions of the LVG
GUT model given in Eq. (14). We adopt again the MS
renormalization scheme and the 211-SCHEME regarding the
loop orders. Let us first define the rescaled couplings α’s,

α5 ¼
g5
4π

; αX ¼ λX
ð4πÞ2 ; αz ¼

yz
4π

; ð15Þ

where g5 is the SU(5) gauge coupling, λX denotes the
couplings in the scalar potential VquarticðΦ;ΣÞ, and yz ¼
ðyt10; y5Σ; y24Σ; yνÞ represents all Yukawa couplings. Note
that, differently from the previous Sec. II A, here we define
all couplings α’s as linear with respect to the couplings in
Eqs. (12)–(14). These definitions allow us to write the β
functions as polynomials in all the α’s, as is made clear by
the equations below. In the 211-SCHEME, the gauge-Yukawa
subsystem is closed, and its β functions are

∂tα5 ¼ −
40 − 2N5 − 10N24

3
α35 −

1184 − 322N5 − 2000N24

15
α55

−
�
9

2
α2t10 þ

12

5
N5α

2
5Σ þ

21

4
N24α

2
24Σ þ

37

5
N5N24α

2
ν

�
α35; ð16Þ

∂tαt10 ¼
�
6α2t10 þ

24

5
N5N24α

2
ν −

108

5
α25

�
αt10; ð17Þ

∂tα5Σ ¼
�
11þ 5N5

5
α25Σ þ

21

20
N24α

2
24Σ þ

12

5
N24α

2
ν −

72

5
α25

�
α5Σ þ

21

10
N24α

2
να24Σ; ð18Þ

∂tα24Σ ¼
�
34þ 21N24

20
α224Σ þ N5α

2
5Σ þ N5α

2
ν − 30α25

�
α24Σ þ 2N5α

2
να5Σ; ð19Þ

∂tαν ¼
�
63

10
N5N24α

2
ν þ 3α2t10 þ

21

40
α224Σ þ

6

5
α25Σ þ

21

10
α24Σα5Σ −

111

5
α25

�
αν: ð20Þ

The choice of defining all the α’s as linear with respect to the original couplings becomes clear from the last term in Eq. (18)
and Eq. (19). These two contributions arise from the mixed Yukawa interaction amongΨ5 andΨ24 [last term in Eq. (14)]. In
case we were defining α5Σ and α24Σ as quadratic in y5Σ and y24Σ, the last term in Eq. (18) and Eq. (19) would have involved
the square root of α5Σ and α24Σ, rendering some of the fixed points in Table V inaccessible. For homogeneity, we kept linear
also the other Yukawa couplings as well as the gauge coupling. The β functions of the scalar couplings are

∂tαΣ ¼ β̄Σ þ
�
4N5α

2
5Σ þ

21

5
N24α

2
24Σ

�
αΣ − 4N5α

4
5Σ þ

7

20
N24α

4
24Σ; ð21Þ

∂tα
0
Σ ¼ β̄Σ

0 þ
�
4N5α

2
5Σ þ

21

5
N24α

2
24Σ

�
α0Σ −

91

100
N24α

4
24Σ; ð22Þ

∂tαH ¼ β̄H þ
�
12α2t10 þ

96

5
N5N24α

2
ν

�
αH − 12α4t10 −

264

25
N2

5N
2
24α

4
ν; ð23Þ

TABLE IV. Quantum numbers and multiplicities of the vector-
like fermions in the LVG GUT model.

Fields SU(5) Nf

Ψ5 5 N5

Ψ24 24 N24
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∂tαHΣ ¼ β̄HΣ þ
�
6α2t10 þ 2N5α

2
5Σ þ

21

10
N24α

2
24Σ þ

48

5
N5N24α

2
ν

�
αHΣ

− N5N24

�
2α25Σ þ

29

50
α224Σ þ α5Σα24Σ

�
α2ν; ð24Þ

∂tα
0
HΣ ¼ β̄0HΣ þ

�
6α2t10 þ 2N5α

2
5Σ þ

21

10
N24α

2
24Σ þ

48

5
N5N24α

2
ν

�
α0HΣ ð25Þ

− N5N24

�
−
2

5
α25Σ þ

13

10
α224Σ −

4

5
α5Σα24Σ

�
α2ν; ð26Þ

TABLE V. List of all fixed points for the LVG GUT model which satisfy the conditions in Eq. (35), for various multiplicities of the
vectorlike fermions Ψ24 and Ψ5. Those fixed points which possess physical trajectories that can be matched with the LVG model at the
GUT scale are in bold. These fixed points provide therefore an asymptotically safe SU(5) GUT completion of the SM. Each fixed point
FPn has a certain degeneracy (in the sense that physical properties such as the number of relevant/irrelevant directions as well as the
critical exponents are identical) due to the fact that the couplings αt10, α24Σ, α5Σ, and αν can have both positive or negative sign. While
αt10 and αν can each be positive or negative independently on the sign of the other coupling, α24Σ and α5Σ have always opposite signs. As
an example, FP1 incorporates four degenerate fixed points, while FP3 encodes eight degenerate fixed points.

ðN24; N5Þ α5 jαt10j αH αΣ α0Σ αHΣ α0HΣ α24Σ α5Σ jανj
FP1 (3, 4) 0.04818 0 0.003807 − 0.01001 0.004971 −4.727 × 10 − 5 0.001967 ∓ 0.1161 �0.02663 0.02574
FP2 (3, 4) 0.04818 0 0.003830 −0.007946 0.004625 −1.903 × 10−5 0.001783 ∓ 0.1161 �0.02663 0.02574
FP3 (3, 4) 0.04831 0.05823 0.003209 −0.01088 0.005211 −1.340 × 10−5 0.001499 ∓ 0.1172 �0.02306 0.02285
FP4 (3, 4) 0.04831 0.05823 0.003234 −0.007527 0.004646 1.596 × 10−5 0.001267 ∓ 0.1172 �0.02306 0.02285
FP5 (3, 3) 0.07092 0 0.008350 − 0.02300 0.01093 − 1.194 × 10− 4 0.004450 ∓ 0.1709 �0.04667 0.04414
FP6 (3, 3) 0.07092 0 0.008428 −0.01600 0.009764 −2.651 × 10−5 0.003832 ∓ 0.1709 �0.04667 0.04414
FP7 (3, 3) 0.07111 0.08320 0.007029 −0.02420 0.01131 −4.575 × 10−5 0.003450 ∓ 0.1724 �0.04149 0.03959
FP8 (3, 3) 0.07111 0.08320 0.007096 −0.01565 0.009888 3.024 × 10−5 0.002849 ∓ 0.1724 �0.04149 0.03959
FP9 (3, 3) 0.06178 0.1172 −0.01243 −0.009077 0.005366 9.564 × 10−5 0.002040 0 �0.1028 0
FP10 (3, 3) 0.06178 0.1172 −0.01247 −0.007685 0.003151 −4.045 × 10−5 0.001966 0 �0.1028 0
FP11 (3, 2) 0.09081 0 0.01391 − 0.04006 0.01820 − 1.843 × 10− 4 0.007670 ∓ 0.2193 �0.07429 0.07003
FP12 (3, 2) 0.09081 0 0.01409 −0.02420 0.01561 1.125 × 10−5 0.006293 ∓ 0.2193 �0.07429 0.07003
FP13 (3, 2) 0.09103 0.1018 0.01173 −0.04121 0.01864 −8.246 × 10−5 0.006132 ∓ 0.2207 �0.06811 0.06368
FP14 (3, 2) 0.09103 0.1018 0.01187 −0.02418 0.01585 6.656 × 10−5 0.004912 ∓ 0.2207 �0.06811 0.06368
FP15 (3, 2) 0.07586 0 0.005074 − 0.01019 0.003843 7.419 × 10− 4 0.001431 0 �0.1405 0
FP16 (3, 2) 0.07586 0 0.003008 − 0.01014 0.003722 5.230 × 10− 4 0.001366 0 �0.1405 0
FP17 (3, 2) 0.07769 0.1474 0.01375 −0.01073 0.008801 −0.003407 0.008809 0 �0.1439 0
FP18 (3, 2) 0.07769 0.1474 −0.01965 −0.01399 0.01032 3.656 × 10−4 0.002812 0 �0.1439 0
FP19 (3, 2) 0.07769 0.1474 −0.01976 −0.01043 0.003726 −6.145 × 10−5 2.582 × 10−5 0 �0.1439 0
FP20 (3, 2) 0.07769 0.1474 0.01439 −0.01016 0.004212 −0.002552 0.004854 0 �0.1439 0
FP21 (3, 2) 0.07769 0.1474 −0.01805 −0.007693 0.004046 1.309 × 10−5 0.01010 0 �0.1439 0
FP22 (3, 2) 0.07769 0.1474 −0.01812 −0.01007 0.007458 6.199 × 10−4 0.008703 0 �0.1439 0
FP23 (3, 1) 0.08966 0 0.008210 − 0.009327 0.003901 8.997 × 10− 4 0.001821 0 �0.1902 0
FP24 (3, 1) 0.08966 0 0.003731 − 0.009304 0.003791 5.763 × 10− 4 0.001724 0 �0.1902 0
FP25 (3, 1) 0.09193 0.1744 0.02049 −0.01231 0.01458 −0.002568 0.007556 0 �0.1950 0
FP26 (3, 1) 0.09193 0.1744 −0.02423 −0.005183 0.005420 5.019 × 10−4 0.01569 0 �0.1950 0
FP27 (3, 1) 0.09193 0.1744 −0.02771 −0.009640 0.003870 −4.388 × 10−5 0.003042 0 �0.1950 0
FP28 (3, 1) 0.09193 0.1744 0.02038 −0.009538 0.004422 −0.003083 0.004755 0 �0.1950 0
FP29 (3, 1) 0.09193 0.1744 −0.02436 −0.007439 0.009273 0.001347 0.01358 0 �0.1950 0
FP30 (3, 1) 0.09193 0.1744 −0.02748 −0.01349 0.0149 7.647 × 10−4 3.547 × 10−3 0 �0.1950 0
FP31 (3, 1) 0.1105 0.1143 0.01787 −0.06448 0.02797 4.877 × 10−5 0.01015 ∓ 0.2691 �0.1161 0.1135
FP32 (3, 1) 0.1105 0.1143 0.01818 −0.03263 0.02284 2.830 × 10−4 0.007828 ∓ 0.2691 �0.1161 0.1135
FP33 (3, 1) 0.1103 0 0.02095 − 0.06365 0.02758 − 2.092 × 10− 5 0.01210 ∓ 0.2682 �0.1223 0.1224
FP34 (3, 1) 0.1103 0 0.02133 −0.03237 0.02257 2.833 × 10−4 0.009462 ∓ 0.2682 �0.1223 0.1224
FP35 ðN24; N5Þ 0 0 0 0 0 0 0 0 0 0
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where the pure gauge e scalar contributions β̄Σ, β̄0Σ, β̄H,
β̄HΣ, and β̄0HΣ are given in Appendix C. In particular, in
Appendix C 1, we also give a thorough explanation on how
we have derived the extra contributions to ∂tαX arising
from the presence of the vectorlike fermion Yukawa
couplings. In Appendix C 2, we also give a derivation of
the β functions for the gauge-Yukawa subsystem.

B. Multiplet mass splitting

At the GUT scale, the vectorlike fermion fields ψL, ψV ,
and ψG are embedded into Ψ5 and Ψ24 multiplets, as
described in the previous section. These SU(5) multiplets
contain extra fields, and therefore one has to devise a
mechanism that, after SU(5) breaking, keeps these extra
components at the GUT scale and allows the ψL, ψV , and
ψG fields to acquire a mass of order 1 TeV. A viable
mechanism to achieve this result consists in fine tuning the
mass of one particular copy ofΨ5, for instance, the one with
I ¼ ω. Moreover, the Lagrangian in Eq. (14) should be
slightly modified by breaking the UðN5Þ symmetry of the
mass term and replacing it with a more general term such as
M5

IΨ̄5
IΨ5

I . Since each of the Ψ5 is a direct sum of an
SU(2) doublet and an SU(3) triplet, we can think of the ψL
field as if it were embedded into the ω copy, namely,
Ψω

5 ¼ ψL ⊕ ψω
3 , where ψ

ω
3 is the triplet partner. After SU(5)

breaking due to a nonzero vacuum expectation value for the
adjoint scalar field, i.e., hΣi ¼ f · diagð2; 2; 2;−3;−3Þ, the
contributions to the mass term for the ω field are

−ðMω
5 þ 2fy5ΣÞψ̄ω

3ψ
ω
3 − ðMω

5 − 3fy5ΣÞψ̄LψL: ð27Þ

Therefore, the doublet-triplet splitting can be achieved by
assuming a cancellation between the two terms contributing
to the mass of ψL with a fine-tuning of one part in 1013.
This fine-tuning procedure is not imposed on the other
N5 − 1 copies as they should stay at the GUT scale instead.
A similar mechanism has to be realized also in the case

of the ψV and ψG embedding into Ψ24. Furthermore, the
case of the ψL embedding is analogous to the doublet-
triplet splitting of the Higgs multiplet in minimal SU(5)
GUT models. The simplest solution to the Higgs doublet-
triplet splitting problem is similar to the one in Eq. (27) and
requires a 10−14 tuning, but it is also possible to devise
alternative mechanisms that alleviate this tuning, like the
sliding singlet mechanism [88–91].

IV. FIXED POINTS

Consider a theory characterized by a set of dimensionless
couplings αi. The renormalization group flow is completely
determined by their β functions

βiðαjÞ≡ ∂αi
∂t ; ð28Þ

where t ¼ logðμ=μ0Þ is the logarithm of the sliding scale of
the quantum theory. A fixed point of the theory α�j is
defined by the vanishing of the β functions of all couplings

βiðα�j Þ ¼ 0: ð29Þ

When the couplings αj assume the values α�j , the renorm-
alization of the quantum theory stops. In general, a given
fixed point can be reached either in the UV or in the IR
limit, depending on the direction of the approaching
trajectory. Notice that, in the common lore, the distinction
between UV and IR fixed points is only meaningful when
there is a single coupling in the theory. In the case of more
couplings, this distinction becomes unambiguous only if,
given two fixed points, it exists an RG trajectory connect-
ing the two of them.
The β function of a single coupling is independent of the

gauge choice in dimensional regularization. It is regulari-
zation scheme independent up to next-to-leading order
(NLO). If there are several couplings running together, their
β functions depend on the scheme already at the NLO [92].
There is therefore a degree of ambiguity in the position of
the fixed points because their position could be moved by
changing the scheme. We assume that these changes are
small if the fixed point is found within the perturbative
regime. One should, however, bear in mind this problem of
scheme dependence in all the discussions to follow.
Once we have a candidate fixed point, we can study the

flow in its immediate neighborhood. We move away from
the fixed point and study what happens when we shift the
couplings by a small amount δαi ≡ αi − α�i . To this end, we
linearize the β functions in the vicinity of the fixed point as

∂
∂t δαi ¼ Mijδαj ð30Þ

and ignore Oðδα2Þ terms. The quantity

Mij ≡ ∂βi
∂αj

����
α�i

ð31Þ

is referred to as the stability matrix. Next, we can
diagonalize the linear system by means of a similarity
transformation

ðS−1ÞijMjlSln ¼ δinθn; ð32Þ

where the eigenvalues θn are also known as critical
exponents (see the equation below). Defining zi ¼
ðS−1Þijδαj, we have that the β functions and their solutions
can be written in the following simplified form:

∂zi
∂t ¼ θizi ⇒ ziðtÞ ¼ cieθit ¼ ci

�
μ

μ0

�
θi
: ð33Þ
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From the expression of zi as functions of μ, we see that
there are different situations depending on the sign of θi:

(i) For θi > 0, as we increase μwe move away from the
fixed point and zi increases without control; the
direction zi is said to be irrelevant.

(ii) If θi < 0, as we increase μ, we approach the fixed
point; the direction zi is called a relevant direction.

(iii) If θi ¼ 0, we do not know the fate of zi and we have
to go beyond the linear order as explained below; the
direction zi is called marginal in this case.

The notion of relevance or irrelevance is independent of the
direction of the flow and of the choice of basis. AS theories
correspond to trajectories lying on a critical surface whose
tangent space at the fixed point is spanned by the relevant
eigenvectors. The number of relevant directions defines
the dimension of the critical surface and corresponds to the
number of free parameters which have to be fixed by the
experiment.
Gauge-Yukawa models in the 211-SCHEME, which are

characterized by the set of β functions

∂tα ¼
�
−Bþ Cα −

X
i

Diαyi

�
α2;

∂tαyi ¼
�X

j

Eijαyj − Fiα

�
αyi ; ð34Þ

have been recently studied in Refs. [13,15,37]. In the
latter equation, the couplings are α ¼ g2=ð4πÞ2 and
αyi ¼ y2i =ð4πÞ2, where g is the gauge coupling and yi
are the Yukawa couplings. The quantities B, Eij, and Fi

are the one-loop coefficients, while C and Di are the
two-loop ones. It has been show that, depending on the
relative sign and magnitude of the coefficients B, C, and
C0 ¼ C −

P
ij DiðE−1ÞijFj, this system can have three

different types of fixed points [37]:
(i) The Gaussian or noninteracting fixed point, where

all couplings are zero.
(ii) The Banks-Zaks fixed point [93], where all the

Yukawa couplings vanish.
(iii) The Gauge-Yukawa fixed point, where the gauge

and at least one Yukawa coupling are different
from zero.

As an example, the phase diagram for the case of a gauge
coupling α and a single Yukawa coupling αy with B > 0

and C > C0 > 0 is shown in Fig. 2. In this case, all three
kinds of fixed points are present: the Gauge-Yukawa fixed
point has both nonvanishing couplings and attracts in the IR
trajectories emanating in the UV from both the Gaussian
and the Banks-Zaks fixed points.
In the minimal SU(5) GUT model, the system of gauge

and top-Yukawa β functions takes the form of Eq. (34) with
B > 0 and C < 0; in this case, no gauge-Yukawa fixed
point is present, and the only viable fixed point is the
Gaussian one. However, the LVG GUT model considered

in the previous section has additional vectorlike fermions
and Yukawa couplings which influence the sign of the
coefficients B, C, and C0. This will allow Gauge-Yukawa
fixed points to appear, as we will see in the following.
Actually, the gauge-Yukawa system of our GUT model,
described in Eqs. (16)–(20), is slightly different from the
one in Eq. (34) due to nonfactorizable contributions of αν to
the β functions of α5Σ and α24Σ. This is indeed the reason
why we have considered linear rescaling in the definition of
α’s in Eq. (15). Nonetheless, the structure of the gauge β
function remains the same.
In this work, we compute the fixed points of the full

system, including the gauge, Yukawa, and scalar quartic
couplings. In general, there are no conditions on the values
of the fixed points, and they could take any value. Yet,
when we work in perturbation theory, we have to remain
within its range of validity. Therefore, we demand that all
the couplings have to be sufficiently small at the fixed
point. In practice, this means that going to the next order of
the perturbative expansion should not appreciably change
the position of the fixed point as well as its other properties.
This implies that the numerical values of the fixed points
must satisfy the conditions

0 ≤ α�5 < 1; jα�t10j < 1; jα�z j < 1; jα�Xj < 1:

The complete list of nontrivial fixed points that satisfy these
requirements, as a function of N5 and N24, is shown in
Table V. By inspection of Table V, we can see that
interacting fixed points can be obtained when N5 ¼ 1, 2,
3, 4 and N24 ¼ 3. In this case, the two-loop term of the
gauge β function turns out to be comparable with the one-
loop term as C ≫ B≳ 0, and the gauge coupling fixed

FIG. 2. Example of renormalization group flow in a model with
gauge g and Yukawa y couplings. The arrows are pointing toward
the IR. There are three fixed points: the Gaussian (G) for
vanishing gauge and Yukawa couplings, the Banks-Zaks (BZ)
for vanishing Yukawa coupling, and the full interacting Gauge-
Yukawa (GY) fixed point.

ASYMPTOTICALLY SAFE SU(5) GUT PHYS. REV. D 103, 095026 (2021)

095026-9



point turns out to be much smaller than 1. The associated
critical exponents, which are shown in Table VI, are also
much smaller than 1, and, therefore, we expect the fixed
points to be perturbative stable.

V. RENORMALIZATION GROUP FLOW AND
MATCHING WITH THE SM

In this section, we investigate the existence of asymp-
totically safe trajectories that emanate from the UV fixed
points presented in Table V and are connected to the SM at
the IR scale μ ¼ MZ. As already mentioned, we assume
that the vectorlike fermions ψL, ψV , and ψG—introduced
in Sec. II—have a common mass MLVG ¼ 1 TeV,
while the vectorlike fermions Ψ5 and Ψ24—introduced in

Sec. III—have a common mass at the GUT scale.
Therefore, we need to consider two matching scales,

μ1 ¼ MLVG ¼ 1 TeV and μ2 ¼ MΨ ¼ MGUT; ð36Þ

such that MZ < MLVG ≪ MΨ.
We approximate the decoupling of all vectorlike fer-

mions by considering them as massless above their corre-
sponding matching scale and as infinitely massive below.
The running of the various couplings must be matched

at the GUT scale, on the interface between the two
models described in Secs. II and III. At this interface, a
subtlety regarding the gauge couplings should be taken into
account; since their β functions have been considered at
two-loop order, one-loop matching corrections should

TABLE VI. List of the eigenvalues for the fixed points shown in Table V. Negative (positive) eigenvalues correspond to relevant
(irrelevant) directions, according to the definitions given in Sec. IV. As for Table V, the bold rows highlight those fixed points which can
be matched with the low-energy LVG model at the GUT scale. For the Gaussian fixed point FP35, all couplings are marginal; in
particular are marginal and there are no marginally relevant directions.

ðN24; N5Þ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 rel irrel

FP1 (3, 4) 0.2280 0.1662 0.1393 0.1361 0.1020 0.06611 0.02240 − 0.01197 − 0.01180 0.003063 2 8
FP2 (3, 4) 0.2291 0.1796 0.1504 0.1361 0.1020 0.07278 0.02240 −0.01197 0.01125 0.003063 1 9
FP3 (3, 4) 0.2130 0.1607 0.1376 0.1365 0.1008 0.06133 0.02565 −0.01944 0.01428 0.003079 1 9
FP4 (3, 4) 0.2143 0.1836 0.1541 0.1376 0.1008 0.07167 0.02565 0.01802 0.01428 0.003079 0 10
FP5 (3, 3) 0.5034 0.3537 0.2984 0.2958 0.2263 0.1432 0.05686 − 0.04096 − 0.02449 0.01311 2 8
FP6 (3, 3) 0.5070 0.3989 0.3348 0.2984 0.2263 0.1662 0.05686 0.03796 −0.02449 0.01311 1 9
FP7 (3,3) 0.4695 0.3439 0.3012 0.2927 0.2230 0.1355 0.05968 −0.05031 0.03277 0.01317 1 9
FP8 (3, 3) 0.4729 0.4021 0.3388 0.3012 0.2230 0.1622 0.05968 0.04598 0.03277 0.01317 0 10
FP9 (3, 3) −0.3948 0.1654 −0.1357 −0.1173 0.1106 −0.08280 0.05227 −0.03377 −0.03083 0.01009 6 4
FP10 (3, 3) −0.3953 −0.1661 0.1654 −0.1547 0.1106 −0.08280 −0.04950 −0.03924 −0.03083 0.01009 7 3
FP11 (3, 2) 0.8473 0.5738 0.4971 0.4735 0.3834 0.2371 0.1186 − 0.09480 − 0.03685 0.03171 2 8
FP12 (3, 2) 0.8554 0.6748 0.5651 0.4971 0.3834 0.2897 0.1186 0.08533 −0.03685 0.03171 1 9
FP13 (3, 2) 0.7901 0.5578 0.5007 0.4720 0.3766 0.2281 0.1152 −0.1020 0.05561 0.03185 1 9
FP14 (3, 2) 0.7972 0.6722 0.5673 0.5007 0.3766 0.2821 0.1152 0.09137 0.05561 0.03185 0 10
FP15 (3, 2) − 0.2732 − 0.1753 0.1670 − 0.1537 − 0.1332 − 0.1243 − 0.1041 − 0.08467 0.03781 0.02284 7 3
FP16 (3, 2) − 0.2746 − 0.1834 0.1670 − 0.1606 − 0.1332 − 0.1243 − 0.1148 − 0.1041 − 0.03738 0.02284 8 2
FP17 (3, 2) 0.5997 0.2690 0.2621 −0.2179 0.1752 −0.1397 0.1103 −0.04398 0.02383 −0.01593 4 6
FP18 (3, 2) −0.6248 0.2621 −0.2147 0.1752 0.1658 −0.1531 −0.1397 −0.06625 −0.04398 0.02383 6 4
FP19 (3, 2) −0.6262 −0.2985 −0.2795 0.2621 0.1752 −0.1521 −0.1397 −0.08618 −0.04398 0.02383 7 3
FP20 (3, 2) 0.6170 −0.2776 0.2621 0.1752 −0.1425 −0.1397 0.1305 −0.04398 −0.04087 0.02383 5 5
FP21 (3, 2) −0.5901 −0.2688 0.2621 −0.2507 0.1752 −0.1397 0.1014 −0.06413 −0.04398 0.02383 6 4
FP22 (3, 2) −0.5953 0.2621 −0.2235 −0.1920 0.1752 −0.1397 0.1382 −0.04398 0.04142 0.02383 5 5
FP23 (3, 1) − 0.4059 − 0.2931 − 0.2557 0.2332 − 0.2050 − 0.1736 − 0.1445 − 0.1350 0.08109 0.04256 7 3
FP24 (3, 1) − 0.4073 − 0.2989 − 0.2704 0.2332 − 0.2075 − 0.2050 − 0.1736 − 0.1350 − 0.08038 0.04256 8 2
FP25 (3, 1) 0.8658 0.4059 0.3678 −0.3052 0.2839 0.2452 −0.2155 −0.05071 0.04441 −0.03803 4 6
FP26 (3, 1) −0.8110 −0.3860 0.3678 −0.3488 0.2452 −0.2155 0.1926 −0.06851 −0.05071 0.04441 6 4
FP27 (3, 1) −0.8778 −0.4429 −0.4202 0.3678 −0.2917 0.2452 −0.2155 −0.1541 −0.05071 0.04441 7 3
FP28 (3, 1) 0.8697 −0.4187 0.3678 −0.2838 0.2452 −0.2155 0.1384 −0.09440 −0.05071 0.04441 5 5
FP29 (3, 1) −0.8189 0.3678 −0.3411 −0.2661 0.2452 0.2409 −0.2155 −0.05071 0.04806 0.04441 5 5
FP30 (3, 1) −0.8750 0.3678 0.3073 −0.3053 0.2452 −0.2155 −0.1890 −0.1044 −0.05071 0.04441 6 4
FP31 (3, 1) 1.220 0.8271 0.7553 0.6762 0.5844 0.3513 0.2537 −0.1951 0.07899 0.06135 1 9
FP32 (3, 1) 1.235 1.035 0.8625 0.7553 0.5844 0.4547 0.2537 0.1696 0.07899 0.06135 0 10
FP33 (3, 1) 1.303 0.8529 0.7524 0.6764 0.5963 0.3596 0.2721 − 0.1917 0.06115 − 0.04698 2 8
FP34 (3, 1) 1.320 1.049 0.8629 0.7524 0.5963 0.4657 0.2721 0.1666 0.06115 −0.04698 1 9
FP35 ð3;≤ 4Þ 0 0 0þ 0þ 0þ 0þ 0þ 0 0 0 0 05
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consequently be accounted for. The latter corrections are
given by the expression (cf., for example, Refs. [94,95])

1

αiðμ2Þ
¼ 1

αðμ2Þ
−
1

3

�
Trðt2i;VÞ − 21Tr

�
t2i;V log

MV

μ2

�

þ Tr

�
t2i;S log

MS

μ2

�
þ 8Tr

�
t2i;F log

MF

μ2

��
; ð37Þ

where MX with X ¼ ðV; S; FÞ being the mass matrices for
the heavy vector bosons [heavy gauge bosons, ghosts, and
Goldstone bosons along the broken directions in the adjoint
space of SU(5)], heavy physical scalars, and heavy fer-
mions, respectively. The matrices ti;X are, instead, the
unbroken generators in the representation of the field X,
while the trace is performed over the broken subspace of
SU(5). In physical terms, the latter Eq. (37) entails that the
renormalized gauge couplings αi [after the gauge group
SU(5) is broken down to the SM gauge group] differ from
the gauge coupling α of SU(5) due to the one-loop
diagrams where the quantum fluctuations of the heavy
particle are integrated out. Numerically, the most important
contribution comes from the vector states, if they have a
mass different from the matching scale μ. Therefore, we are
free to bridge any—reasonably small—mismatch in the
running of the gauge couplings by removing the degen-
eracy in the values of the heavy masses and slightly moving
them away from the GUT scale.
The values of the LVGmodel couplings αi, αt, αλ, and αV

at MGUT define the IR target for the LVG GUT model
couplings α25, α

2
t10, αH, and α

2
ν, respectively. In other words,

one has to search for those trajectories emanating from the
UV fixed points that hit the values of the IR target at the
scale MGUT, while flowing down from the fixed points.
The other couplings of the LVG GUT model will be
consequently determined by this matching condition
requirement. Because of the freedom of choosing the mass
of the heavy particles MX slightly different from the
matching scale μ2, for any practical purposes, one has to
match only the three couplings

αtðμ2Þ ¼ α2t10ðμ2Þ; αλðμ2Þ ¼ αHðμ2Þ; αVðμ2Þ ¼ α2νðμ2Þ:
ð38Þ

Let us now describe how to obtain such target values.
Starting from the scale MZ, we first solve the renormaliza-
tion group flow of the SM up to the first matching scale
μ1 ¼ MLVG ¼ 1 TeV. In other words, we integrate the SM
β functions given in Appendix Awith boundary conditions
for the SM couplings provided by their experimental
values, cf. Table II or Ref. [69]. At the scale μ1, the
vectorlike fermions of the LVG model become dynamical
such that, from this scale on up to μ2 ¼ MGUT, we integrate
the β functions in Eqs. (3)–(8), with boundary conditions
at μ1 given by the values obtained from the previous

integration. Clearly, at the scale μ1, there is one free
parameter, namely, the value αVðμ1Þ for the beyond-the-
SM vectorlike Yukawa coupling. For any values of the
latter coupling at μ1, there will be a set of values for αt, αλ,
and αV at μ2 which defines the IR target for the LVG GUT
model. The value αVðμ1Þ has thus to be fine tuned in order
for the matching conditions in Eq. (38) to hold, as we are
going to explain in the following.

A. Matching procedure

Given the IR target fαtðμ2Þ; αλðμ2Þ; αVðμ2Þg, we have
then searched for the existence of those trajectories ema-
nating from the fixed points in Table V which can be
connected to the target itself. To do so, we have integrated
the β functions for the LVG GUT model given by
Eqs. (16)–(25), starting from a point infinitesimally close
to the selected fixed point and letting the system to flow
down to the IR scale μ2 ¼ MΨ ¼ MGUT. The initial point of
the renormalization group flow is then varied until the
trajectory hits, whenever possible, the IR target.
Some comments are in order. The initial point of the

RG flow should belong to the UV critical surface in order
to guarantee that the flow toward the UV ends at the
considered fixed point; say, for example, FP1. This critical
surface can be approximated, in the neighborhood of FP1,
by its tangent space at FP1, which is defined as the
space spanned by the relevant directions at that point.
Of course, this approximation is more accurate if the
starting point is closer to the fixed point; an infinite
numerical precision would be required in order to lie
exactly on the critical surface, and a fine-tuning problem
is always present while flowing toward the UV. In other
words, starting from the IR target, there will usually be a
positive RG time t ¼ logðμ=μ2Þ > 0 where the numeric
integration breaks down entailing the fact that the RG
trajectory is repelled away from the critical surface due
to nonzero fluctuations along the irrelevant directions.
This is precisely the reason why it is preferable to start
the flow in a neighborhood of a fixed point and then flow
down to the GUT scale. This guarantees the fact that the
physical trajectories are attracted to the critical surface in
the IR.
Let us discuss, as a representative case, the fixed point

FP1 of Table V together with the corresponding eigenvalues
in Table VI. The tangent space of the critical surface at FP1
is two dimensional and spanned by the eigenvectors vð8Þi

and vð9Þi associated, respectively, to the negative eigenval-
ues θ8 and θ9 of the stability matrix Mij. Any point on this
tangent space can thus be parametrized as

αi ¼ α�i þMijSikðϵð8Þzð8Þk þ ϵð9Þzð9Þk Þ
¼ α�i þMijSikðϵð8Þδk;8 þ ϵð9Þδk;9Þ
¼ α�i þ θ8ϵ

ð8Þvð8Þi þ θ9ϵ
ð9Þvð9Þi ≡ α�i þ δαi; ð39Þ
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where ϵð8Þ and ϵð9Þ are infinitesimal parameters. In particular,

the eigenvector vð8Þi is pointing in the αt10 direction, whereas

vð9Þi induce a displacement along all scalar directions. The
freedom of choosing ϵð8;9Þ allow us to match two couplings
with the IR target, namely, αt10 and αH.
Let us consider first the behavior of the top-Yukawa

coupling. Given a positive, however small, displacement
δαt10ðμ0Þ > 0 at a certain initialization scale μ0 ≫ μ2,
the top-Yukawa coupling increases while decreasing the
energy scale μ, and, eventually, it crosses its IR target value
at a scale μ02 ¼ μ0e−t

0
. On the other hand, given an infini-

tesimal small, but negative, displacement δαHðμ0Þ < 0, the
quartic Higgs self-interaction coupling decreases while
decreasing the scale μ, and, eventually, it crosses its IR
target value at a scale μ002 ¼ μ0e−t

00
. Usually, the two scales

μ02 and μ002 are different. Nevertheless, fixing ϵð9Þ while
varying ϵð8Þ (or vice versa), it is possible to fine-tune the
initial conditions δαtðμ0Þ and δαHðμ0Þ such that μ02 ¼ μ002 to
any arbitrarily chosen numerical precision. Since the initial
scale μ0 is not a priori fixed, it is legit to impose μ02 ¼
μ002 ¼ μ2 such that the fine-tuned initial conditions δαt10ðμ0Þ
and δαHðμ0Þ correspond to the correct values at the scale
μ0 ¼ μ2et

0 ¼ μ2et
00
required in order to match αt10 and αH to

their IR values in Eq. (38).
There is a technical difficulty regarding the latter fine-

tuning procedure. The RG flow for the quartic Higgs self-
interaction αHðμÞ is such that close to the energy scale μ002 it
varies very fast due to the presence of an IR singularity
below, yet very close to, the scale μ002 . At this singular point,
the quartic Higgs self-interaction diverges to infinitely

negative values. In other words, αHðμÞ remains very much
close to its fixed point value until the energy scale
approaches μ002 and αHðμÞ starts to decreases very fast
toward the singularity. It is in this running toward the
singularity that the RG trajectory of αHðμÞ is intercepted
and stopped at exactly the scale μ002 where αH equals the
(negative) value of the IR target. Because of the condition
μ002 ¼ μ2ð¼ μ02Þ, we can claim that this singularity does not
encode a physical inconsistency in our LVG model because
it occurs below the GUT scale where, indeed, a different
system of differential equations holds. The only drawback
of the presence of this (alleged) singularity below the GUT
scale is that, in order to satisfy the equality μ002 ¼ μ2 ¼ μ02, a
high degree of fine-tuning for the initial conditions αt10ðμ0Þ
and αHðμ0Þ is required. In other words, by an appropriate
choice for the initial conditions on the (tangent space of the)
critical surface at the μ0 scale, it is possible to move the
singularity of αH below the GUT scale. This singularity
thus becomes physically not worrisome, as below the GUT
scale another system is considered.
Subsequently, one has to read off the value α2νðμ2Þ, which

usually does not coincide with αVðμ2Þ. To match this last
condition, we have exploited the freedom of choosing a
different boundary condition for αVðμ1Þ. Varying this latter
value, one falls into one of these cases α2νðμ2Þ≷αVðμ2Þ such
that a simple bisection algorithm allows one to fine tune the
condition α2νðμ2Þ ¼ αVðμ2Þ to any arbitrary chosen numeri-
cal precision. Notice that for any different value of αVðμ1Þ,
the above procedure of fine-tuning the couplings αt10 and
αH has to be repeated, increasing the numerical effort
required to satisfy all conditions in Eq. (38).

FIG. 3. The renormalization group flow for the LVG model approaching the fixed point FP1 in the UV limit μ → ∞. Below the GUT
scale (at about 1016 GeV and highlighted by the vertical line in the middle), the gauge couplings αi, the top-Yukawa couplings αt, and
the Higgs quartic self-interaction are represented with boundary conditions given at theMZ scale. The vectorlike fermion fields ψL, ψV ,
and ψG, with multiplicity Nf ¼ 1, enter in the dynamics at the energy scale of 1 TeV (highlighted by the gray vertical line on the left).
The value for the beyond-the-SM Yukawa coupling αV at 1 TeV is a free parameter to be fine tuned in order to satisfy the matching
conditions in Eq. (38). Above the GUT scale, the SU(5) gauge group is restored, and further vectorlike fermion fields are included; in
particular, there are three flavors of Ψ24 and four flavors of Ψ5. The gauge coupling α25, the top-Yukawa coupling α2t10, the Higgs
coupling αH , and the vectorlike Yukawa coupling α2ν are represented.

FABBRICHESI, NIETO, TONERO, and UGOLOTTI PHYS. REV. D 103, 095026 (2021)

095026-12



Once all three conditions in Eq. (38) have been
satisfied, we can finally plot the full RG flow from the
MZ scale up to the considered fixed point. As an example,
we present how the fixed point FP1 can be connected with
the physics at the scale MZ in Fig. 3. At the interface
between the two models, that is at the GUT scale, two RG
flows described by two sets of first-order differential
equations have to be matched. Because of this first-order
structure, the RG trajectories are only required to be
continuous; however, no constraint on the first derivatives,
namely, the values of the β functions at the GUT scale,
should be imposed. This is particularly evident in the RG
trajectory of the Higgs self-interaction coupling. The
small discontinuity in the gauge couplings is due to the
finite correction induced by the one-loop matching con-
dition given by Eq. (37). Let us emphasize the fact that the
low-energy value for the beyond-the-SM Yukawa cou-
pling αV at the scale MLVG ¼ 1 TeV represents a physical
prediction. This prediction is the result of the matching
conditions at the interface between the two systems below
and above the GUT scale.
In Sec. II A, see in particular Table III, we have seen that

there is a certain freedom in choosing the energy scale from
which the vectorlike fermions of the LVG model become
dynamical. It is therefore interesting to check whether this
freedom is preserved also by the matching procedure or the
latter imposes some sort of bounds on the possible values of
MLVG. As a testing case, we have again chosen the fixed
point FP1, and in Table VII, we report the corresponding
predictions for the coupling αV at different MLVG scales.
We conclude that there are no further restrictions on the μ1
scale and that the matching procedure can be successfully
carried for a broad range of such scale. We expect the same
behavior also for the other fixed points which allow for a
matching between the two models at the interface scale μ2.
The above method can be applied to any fixed point

in Table V. Quite in general, the latter Eq. (39) can be
written as

αi ¼ α�i þ
X
θa<0

ϵðaÞvðaÞi ; ð40Þ

where the sum is over all the relevant eigendirections
associated to negative eigenvalues and ϵðaÞ are all free
parameters. It seems that the degree of difficulty increases
with the number of relevant directions, i.e., the number of
free parameters to be fixed. Nevertheless, we have found
that, in order to verify whether a fixed point can be
connected with a physical trajectory to the physics at the
GUT scale, it is always possible to reduce the number of
ϵðaÞ to be fixed to the minimal value of 2. These two
parameters are always associated to those directions—

eventually different from vð8;9Þi depending on the fixed point
—which result in the same RG behavior for the couplings
αt10 and αH as described above.
In Tables V and VI, we have highlighted in bold all

possible fixed points which possess, at least, one physical
trajectory which hits the IR target fαtðμ2Þ; αλðμ2Þ;αVðμ2Þg
at the GUT scale satisfying the matching conditions in
Eq. (38). To understand why the only highlighted fixed
points can be matched with the IR target at the GUT scale,
it can be useful to visualize in which directions the linear
eigenperturbations drive the RG flow. To this aim, in
Table VIII, we have listed with the symbol ▪ all those
couplings which get perturbed by a nonzero infinitesimal
displacement ϵðaÞ along all relevant directions. It is clear
that all fixed points which allow for a match with the IR
target at μ2 share the same feature: both top-Yukawa

TABLE VII. For the fixed point FP1, we report the variation of
the predicted value for the beyond-the-SM Yukawa coupling αV
with respect to the initialization scale MLVG ¼ μ1 of the vector-
like fermions. We illustrate also the variation of the gauge, top-
Yukawa, and Higgs quartic self-interaction couplings at the GUT
scale μ2.

MLVG (TeV) αVðμ1Þ αGUTðμ2Þ αtðμ2Þ αλðμ2Þ
0.1 0.0009767 0.002322 0.001238 −0.001970
1 0.0009317 0.002322 0.001396 −0.002055
10 0.0008927 0.002322 0.001497 −0.002044
100 0.0008572 0.002323 0.001562 −0.001987
1000 0.0008239 0.002323 0.001603 −0.001904

TABLE VIII. Schematic representation of those couplings
which are perturbed away from the fixed point values by a
nonzero infinitesimal displacement ϵðaÞ along all relevant
(θa < 0) directions vðaÞ spanning the tangent space of the critical
surface at the corresponding fixed point.

ðN24; N5Þ δα5 δαt10 δα24Σ δα5Σ δαν δαX

FP1 (3, 4) – ▪ – – – ▪
FP2 (3, 4) – ▪ – – – –
FP3 (3, 4) – – – – – ▪
FP4 (3, 4) – – – – – –
FP5 (3, 3) – ▪ – – – ▪
FP6 (3, 3) – ▪ – – – –
FP7 (3, 3) – – – – – ▪
FP8 (3, 3) – – – – – –
FP9;10 (3, 3) – – ▪ – ▪ ▪
FP11 (3, 2) – ▪ – – – ▪
FP12 (3, 2) – ▪ – – – –
FP13 (3, 2) – – – – – ▪
FP14 (3, 2) – – – – – –
FP15;16 (3, 2) – ▪ ▪ – ▪ ▪
FP17–22 (3, 2) – – ▪ – ▪ ▪
FP23;24 (3, 1) – ▪ ▪ – ▪ ▪
FP25–30 (3, 1) – – ▪ – ▪ ▪
FP31 (3, 1) – – – – – ▪
FP32 (3, 1) – – – – – –
FP33 (3, 1) – ▪ – – – ▪
FP34 (3, 1) – ▪ – – – –
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and quartic scalar self-interaction couplings have to be
perturbed away from their fixed point values. All other
fixed points cannot be matched with the LVG model at the
GUT scale because either only the top-Yukawa or the scalar
couplings (or neither of them) are perturbed by moving
away from the fixed point along the critical surface.
Predictivity in the low-energy regime is an important

feature in any AS theories. All relevant directions at a
certain fixed point (i.e., with negative eigenvalues) are
associated to free parameters of the theory. On the contrary,
couplings associated to irrelevant directions are predicted in
the IR. Table VIII shows that not all the fixed points that
allow for a matching at the GUT scale have the same degree
of predictivity. For example, for the fixed point FP1—as
well as for FP5;11;33—the coupling αν in the low-energy
regime represents a prediction. This is not the case for the
fixed points FP15;16;23;24 where αν represents, instead, an
additional free parameter in the theory.

B. Gaussian fixed point

We have also investigated the Gaussian fixed point
which is present for all values of N5 and N24. If we further
demand the non-Abelian gauge coupling α5 to be asymp-
totically free (AF), then the multiplicities of the vectorlike
fermions are restricted to be

N24 ¼ 3; N5 ≤ 4; N24 ¼ 2; N5 ≤ 9 or

N24 ¼ 1; N5 ≤ 14: ð41Þ
Given amodelwith anAFnon-Abelian gauge sector, one can
try to investigatewhether theAFgauge coupling can drive all
other couplings toward the Gaussian fixed point. To address
this question, one can study the quasi-fixed-points [96–99]
(also called in the literature fixed flows [32] or eigenvalue
conditions [100,101]) for the rescaled couplings

α̂X ¼ αX
α25

and α̂z ¼
αz
α5

; ð42Þ

such that any finite quasi-fixed-point ðα̂�X; α̂�zÞ represents a
specific trajectory along which the UV behavior of the scalar
couplings αX and the Yukawa couplings αz is locked to
follow the AF gauge coupling α5.
Among all possible AF scenarios for α5 given in

Eq. (41), we have found the existence of quasi-fixed-points
ðα̂�X; α̂�zÞ only for the combinations

N24 ¼ 3; N5 ¼ ð1; 2; 4Þ: ð43Þ

Notice that, for example, the minimal configuration where
only one Ψ5 and Ψ24 are present above the GUT scale does
not have quasi-fixed-points in the Yukawa-scalar sector. It
appears that higher multiplicities are required in order for
the gauge coupling α5 to drive all other couplings toward
the Gaussian fixed point. Yet, among these possibilities, we
have found that none of the corresponding quasi-fixed-

points provides viable trajectories which can be matched
with the IR target fαtðμ2Þ; αλðμ2Þ; αVðμ2Þg at the GUT
scale. In other words, within our LVGGUTmodel, we have
found that no total AF trajectories can be found, thus
rendering the interacting fixed points which allow for a
matching at the GUT scale even more special.
The vectorlike fermion content corresponding to

N24 ¼ 3, N5 ¼ 3 has been discussed in Ref. [32], in which
the authors presented the existence of quasi-fixed-points
and argued that realistic total AF GUT models can be
constructed. The reason for this disagreement might come
from the fact that our Yukawa sector is simpler than the one
considered in Ref. [32]. For example, we do not consider
the Yukawa interaction term among the vectorlike fermion
Ψ5 and the SM GUT field χ5̄ (exchanging an adjoint scalar
Σ), which is precisely the Yukawa coupling (together with
the top Yukawa) acquiring a nontrivial quasi-fixed-point. In
the light of these observations regarding the Gaussian fixed
point, it would be interesting to study how the interacting
fixed points presented in Table V change after including
these terms, in particular those for which a matching with
the SM at the GUT scale is possible.

VI. ANOTHER MINIMAL EXTENSION:
THE 2U2Q MODEL

The work of Ref. [34] classifies all minimal SM
extension with vectorlike fermions at the TeV scale in
which good coupling unification is obtained. Among
those, another relevant2 choice is the 2U2Q model that
represents a “fourth-generation” scenario. In the case of the
2U2Q model, the Q and U labels stand for fields that are
vectorlike fermion multiplets transforming, respectively,
under the ð3; 2; 1=6Þ and ð3; 1; 2=3Þ representations of
the SM, in analogy to the SM quark doublets and up
singlets. The 2U2Q model corresponds to adding to the SM
two ψQ and two ψU multiplets at the TeV scale, with
quantum numbers shown in Table IX. The Lagrangian of
the 2U2Q model then reads

L2U2Q ¼ LSM þ ψ̄ I
Qi=Dψ I

Q þ ψ̄J
Ui=DψJ

U −MQψ̄
I
Qψ

I
Q

−MUψ̄
J
Uψ

J
U − yQ

X
I;J

ψ̄ I
Qψ

J
UH

c þ H:c: ð44Þ

where I; J ¼ ð1; 2Þ and Hc ¼ iσ2H� is the charge conju-
gated Higgs field. yQ is the coupling of the new Yukawa
interaction involving the Higgs and the vectorlike fermions.
This term breaks the flavor symmetry to a diagonal subgroup
SUð2ÞQ × SUð2ÞU → SUð2ÞD, where the Q and U vector-
like fermions rotate with the same transformation. At the
unification scale, the vectorlike fermions of the 2U2Qmodel
in Table IX are embedded into proper multiples of SU(5); we
assume that the fields ψQ and ψU get embedded into

2Also, the (Uþ D) model of Ref. [34] has promising proper-
ties below the GUT scale, and it has been studied in Ref. [35].
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vectorlike fermions fields Ψ10, with multiplicity N10 ≥ 2,
transforming under the antisymmetric representation3 of
SU(5), see Table X. The Lagrangian of the 2U2Q GUT
model is

LGUT
2U2Q ¼ LGUT

SM þ 1

2
TrðΨ̄10i=DΨ10Þ −

1

2
M10TrðΨ̄10Ψ10Þ

þ y10
8

X
I;J

ε5Ψ̄cI
10ΨJ

10Φþ H:c:

þ y010
X
I;J

TrðΨ̄I
10ΣΨJ

10Þ; ð45Þ

where I; J ¼ ð1; 2;…; N10Þ are the flavor indices for theΨ10

field. Let us notice that not all possible SU(5) invariant
Yukawa terms have been considered with the given matter
field content. For the sake of simplicity, we have not con-
sidered, for example, Yukawa interactions between Ψ10 and
χ10 or χ 5̄. Therefore, no Yukawa interactions between the SM
fermions and the extra vectorlike fermions are retained.
Can this choice of vectorlike fermions give rise to an

asymptotically safe SU(5) GUT model? The answer is no.
We computed the β functions of this model and studied its
fixed points. We found that, for any value of N10 ≥ 2, the
only viable fixed point is the Gaussian one; yet, no good
matching with the SM at low energy is possible. For
completeness, we give the β functions of the 2U2Q model
in Appendix D.

VII. CONCLUSIONS

The goal of having an asymptotically safe extension of
the Standard Model is a powerful motivation in searching
for physics beyond the SM. It provides a guiding principle
that still remains viable after others, like supersymmetry or
compositeness, are waning.
The simplest way to turn the Landau pole of the SM into

a fixed point is through a GUT scenario. The addition of

few vectorlike fermions at the 1 TeV scale makes an SU(5)
GUT unification of the SM gauge couplings possible and
consistent with all experimental constraints. We consider
what we dubbed the LVG model, which contains the same
features of a split SUSY scenario, and the 2U2Q model,
which has the features of a fourth-generation scenario.
For the LVGmodel, we found a GUTembedding that has

a fixed point for the gauge coupling that is interacting—as
opposed to the more familiar case of the asymptotically free
limit common to all unbroken non-Aabelian gauge models.
We find this an interesting feature. It could perhaps be
tested in cosmology, for instance, in physics around and
above the GUT phase transition. We also check the 2U2Q
model, but no matching to the SM can be found in this case.
We are aware that the LVG model as it stands cannot yet

be considered completely satisfactory.
For one thing, the known problem of the stability of the

Higgs potential remains, as it does in the SM. The scale at
which the potential crosses to negative values for the
coefficient of the quartic term is about the same as in the
SM, as computed at the one-loop order. It is known [5,7,8]
that this value increases as higher-loop orders are computed
and included, andwe expect the same to happen in the case of
the LVF model. The model is metastable, but the time scale
for its decay is longer than the age of the Universe.
Moreover, fine-tuning is required in order to split the

masses of scalars and fermions belonging to the same
SU(5) representations as we go to low energy. This is an
outstanding problem of all GUT models—indeed, the
very motivation for the original naturalness requirement
[102–104]—for which we have not attempted a solution.
These shortcomings notwithstanding, the asymptotically

safe extension of the SM model represented by the LVG
model is noteworthy. The theory is UV complete. All the
couplings of the model are perturbative and remain so
along the entire renormalization group flow up and beyond
the Planck scale. The existence of such a model is highly
nontrivial as shown by the lack of fixed points matchable to
the SM for models without unification [18] or other choices
of the vectorlike fermion content—to wit, the 2U2Q model.
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TABLE X. Quantum numbers and multiplicities of the vector-
like fermions in the 2U2Q GUT model.

Fields SU(5) Nf

Ψ10 10 N10

TABLE IX. Quantum numbers and multiplicities of the vector-
like fermions in the 2U2Q model.

Fields SUð3Þc SUð2ÞL Uð1ÞY Nf

ψQ 3 2 1=6 2
ψU 3 1 2=3 2

3The antisymmetric representation of SU(5) can be decom-
posed under the SM gauge group as follows [87]:
10 ¼ ð3; 2; 1=6Þ ⊕ ð3̄; 1;−2=3Þ ⊕ ð1; 1; 1Þ.
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APPENDIX A: THE SM β FUNCTIONS
IN THE 211-SCHEME

In the 211-SCHEME, the β functions of the SM gauge
couplings are computed at two loops, while the β functions
of the top-Yukawa and Higgs quartic coupling are com-
puted at one loop. They are given by (see, for example,
Ref. [105])

βSM;NLO
1 ¼

�
41

3
þ 199

9
α1 þ 9α2 þ

88

3
α3 −

17

3
αt

�
α21;

ðA1Þ

βSM;NLO
1 ¼

�
−
19

3
þ 3α1 þ

35

3
α2 þ 24α3 − 3αt

�
α22; ðA2Þ

βSM;NLO
1 ¼

�
−14þ 11

3
α1 þ 9α2 − 52α3 − 4αt

�
α23; ðA3Þ

βSM;LO
t ¼

�
−
17

6
α1 −

9

2
α2 − 16α3 þ 9αt

�
αt; ðA4Þ

βSM;LO
λ ¼ 12α2λ − 3ðα1 þ 3α2 − 4αtÞαλ

þ 3

4
ðα21 þ 2α1α2 þ 3α22Þ − 12α2t : ðA5Þ

APPENDIX B: VECTORLIKE FERMIONS
CONTRIBUTIONS TO THE

SM β FUNCTIONS

Consider Dirac vectorlike fermions ψ , with multiplicity
Nf , that belong to the representationR3 of SUð3Þc andR2 of
SUð2ÞL and have hypercharge Y. The one- and two-loop
contributions to the running of the SM gauge couplings are
given by [106–109]

βNLO1 ¼ 1

2
ðB1 þM1α1 þH1α2 þG1α3Þα1; ðB1Þ

βNLO2 ¼ 1

2
ðB2 þM2α1 þH2α2 þG2α3Þα2; ðB2Þ

βNLO3 ¼ 1

2
ðB3 þM3α1 þH3α2 þG3α3Þα3; ðB3Þ

where

B1 ¼
8

3
NfY2dR2

dR3
; B2 ¼

8

3
NfSR2

dR3
; B3 ¼

8

3
NfSR3

dR2
; ðB4Þ

M1 ¼ 8Y4NfdR2
dR3

; M2 ¼ 4NfSR2
dR3

�
2CR2

þ 20

3

�
; M3 ¼ 4NfSR3

dR2
ð2CR3

þ 10Þ; ðB5Þ

H1 ¼ 8Y2NfCR2
dR2

dR3
; H2 ¼ 8NfY2SR2

dR3
; H3 ¼ 8NfY2SR3

dR2
; ðB6Þ

G1 ¼ 8NfY2CR3
dR2

dR3
; G2 ¼ 8NfSR2

CR3
dR3

; G3 ¼ 8NfSR3
CR2

dR2
: ðB7Þ

The Casimir invariants CRi
and Dynkin indices SRi

are defined in general as

dR2
¼ 2lþ 1; dR3

¼ 1

2
ðpþ 1Þðqþ 1Þðpþ qþ 2Þ; ðB8Þ

CR2
¼ lðlþ 1Þ; CR3

¼ pþ qþ 1

3
ðp2 þ q2 þ pqÞ; ðB9Þ

SR2
¼ 1

3
dR2

CR2
; SR3

¼ 1

8
dR3

CR3
; ðB10Þ

where l ¼ 0; 1
2
; 1; 3

2
;… denotes the highest weight of R2 and ðp; qÞ (with p; q ¼ 0; 1; 2…) denotes the weights of R3. For

our specific LVG model, we have

ψL∶ l ¼ 1

2
; p ¼ q ¼ 0; ψV∶ l ¼ 1; p ¼ q ¼ 0; ψG∶ l ¼ 0; p ¼ q ¼ 1: ðB11Þ
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The contributions to the gauge, top-Yukawa, and Higgs
quartic couplings coming from the vectorlike fermion
Yukawa coupling αV , as well as the contribution to the β
function ∂tαV itself, have been computed using the results in
Ref. [68]. Let us consider two Dirac vectorlike fermions ψ1

and ψ2 in two, generically different, representations of the
SM gauge group, such that a gauge-invariant Yukawa
interaction term can be constructed. In case ψ1 and ψ2 have
multiplicity N1 and N2, respectively, then this interaction
term takes the form of

−yIJψ̄ I
1ψ

J
2H þ H:c:; ðB12Þ

where yIJ is a complex N1 × N2 matrix. For generic
representations of ψ1 and ψ2, we were not able to provide
general formulas for the contributions of yIJ to the β func-
tions for the gauge couplings αi, the top-Yukawa coupling αt,
or theHiggsquartic self-interaction. For this reason, an explicit
computation of these contributions seems unavoidable.
Let us therefore consider our specific case where

ψ1 ¼ ψL and ψ2 ¼ ψV . We can slightly generalize the
vectorlike fermion Yukawa interaction in Eq. (1) by keep-
ing arbitrary the multiplicitiesN1 andN2 and assuming that
all vectorlike fermions interact among each other with the
same Yukawa coupling yV . The contribution to the gauge
couplings enters as a two-loop diagram where inside a
fermionic loop the Higgs field is exchanged. This con-
tribution is given by (cf. Eq. (31) in Ref. [68])

∂tαi ¼ … −
2αi
dðGiÞ

½CðLÞ
Ri

ð2dðLÞR2
ÞdðLÞR3

YðLÞ
2F

þ CðVÞ
Ri

dðVÞR2
dðVÞR3

YðVÞ
2F �N1N2; ðB13Þ

where dðGiÞ is the dimension of the gauge group Gi and the
superscripts (L) and (V) refer to the vectorlike fermions ψL
and ψV , respectively. For i ¼ 1, the Casimir invariants sim-
ply reduce to the square of the hypercharges. The extra factor
2 for theL representation is due to the fact that ψL is a Dirac-
like field while ψV is a Majorana-like field. The coefficients
Y2F are the (real) eigenvalues of the matrix product YaYa†,
where Ya is the symmetrized matrix of the Yukawa inter-
action couplings between all Weyl components of the
vectorlike fermionic fields and the real scalar component
ϕa ofH (the construction of the matrices Ya will be clarified
later in Appendix C). For our specific case, we have that

YðLÞ
2F ¼ 3α2V; YðVÞ

2F ¼ 4α2V: ðB14Þ

Clearly, the contribution to the β function of the strong gauge
coupling is zero since both ψL and ψV are singlet under the
SUð3Þc gauge group.
The contribution to the top-Yukawa β function comes

from the scalar anomalous dimension which has an extra
contribution due to the exchange of the vector like
fermions. This extra term reads (cf. Eq. (33) in Ref. [68])

∂tαt ¼ βSM;LO
t þ 2αtY2SN1N2; ðB15Þ

where Y2S is the eigenvalue of the scalar loop matrix
1
2
TrðYa†YbþYb†YaÞ¼Y2Sδ

ab. For our specific case,Y2S ¼
6αV . This justifies also the linear contribution in αV to the β
function for the Higgs quartic coupling, which is 4αλY2S.
Similarly, the top-Yukawa contribution to ∂tαV comes

from the Higgs anomalous dimension where the top quark
is exchanged. In the latter case, the top contribution to the
scalar anomalous dimension is Ytop

2S ¼ 3αt, where the factor
3 comes from the color structure. The gauge contributions
to the β function for the vectorlike Yukawa coupling can
be written in terms of the Casimir invariants for the
two vectorlike representations, such that we can write
(cf. Eq. (33) in Ref. [68])

∂tαV ¼ 15N1N2α
2
V þ 2αVY

top
2S − 6αi½CðLÞ

Ri
þ CðVÞ

Ri
�αV;

ðB16Þ

where the quadratic contribution in αV depends on the
particular form of the matrices Ya and is the sum of
contributions coming from the fermion anomalous dimen-
sion and the renormalization of the operator in Eq. (B13).
Regarding the β function for the quartic Higgs coupling,

the linear term in αV is due to the scalar anomalous
dimension, and the quadratic contribution in αV depends
again on the particular form of the Yukawa matrices Ya. We
thus obtain (cf. Eq. (38) in Ref. [68])

∂tαλ ¼ βSM;LO
λ þ 4N1N2Y2Sαλ − 48N2

1N
2
2α

2
V: ðB17Þ

APPENDIX C: The β FUNCTIONS FOR
THE SU(5) LVG MODEL

The gauge and scalar quartic contributions to the β
functions of the scalar potential in Eq. (13) have been
computed at one loop in Ref. [110]. Given the definitions in
Eq. (15) and defining β̄X ¼ ∂tαX, we have

β̄Σ ¼ 32

5
α2Σ þ αΣð12α0Σ − 60α25Þ þ 8α02HΣ þ 30α45; ðC1Þ

β̄0Σ ¼ 32α02Σ þ α0Σ

�
94

5
αΣ − 60α25

�
þ 16αHΣα

0
HΣ þ 40α2HΣ þ

84

25
α2Σ þ 18α45; ðC2Þ
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β̄H ¼ 18α2H −
144

5
αHα

2
5 þ 96α2HΣ þ

192

5
αHΣα

0
HΣ þ

264

25
α02HΣ þ

198

25
α45; ðC3Þ

β̄HΣ ¼ 8α2HΣ þ αHΣ

�
12αH þ 47

5
αΣ þ 26α0Σ −

222

5
α25

�
þ α0HΣ

�
2αH þ 2α0HΣ þ

28

25
αΣ þ

24

5
α0Σ

�
þ 3

2
α45; ðC4Þ

β̄0HΣ ¼ 42

5
α02HΣ þ α0HΣ

�
16αHΣ þ

19

5
αΣ þ 2α0Σ þ 2αH −

222

5
α25

�
þ 15

2
α45: ðC5Þ

1. SU(5) scalar potential

To compute the extra contributions to the latter β functions due to the presence of the vectorlike fermion Yukawa
couplings α5Σ, α24Σ, and αν, we have made use of the general results of Ref. [68] [cf. Eqs. (38)–(43) therein]. Following the
notation of Ref. [68], we have first expanded the scalar fields of our model, namely, ΦðxÞ and ΣðxÞ, in terms of their real
scalar components ϕa. In other words,

ΦðxÞ ¼ 1ffiffiffi
2

p ðϕ1ðxÞ þ iϕ6ðxÞ;…;ϕ5ðxÞ þ iϕ10ðxÞ ÞT; ΣðxÞ ¼
X24
A¼1

ϕ10þAðxÞTA; ðC6Þ

where TA are the generators of the SU(5) gauge group, normalized in such a way that TrðTATBÞ ¼ 1
2
δAB. The quartic scalar

potential in Eq. (13) can thus be brought into the form

VquarticðΦ;ΣÞ ¼ 1

4!
λabcdϕaϕbϕcϕd; λabcd ¼

4!

P½a; b; c; d�Vj½a;b;c;d�; ðC7Þ

where λabcd is a total symmetric rank-4 tensor4 whose entries contain the scalar interactions λX. Vj½a;b;c;d� is the coefficient in
front of the quartic operator ϕaϕbϕcϕd, and P½a; b; c; d� is the number of nonequivalent permutations of the set of indices
fa; b; c; dg. Similarly, all the fermionic fields, namely, χ 5̄, χ10,Ψ5, andΨ24, have to be expanded in terms of their Weyl left-
handed two-component spinors ψ i. For an explicit example, let us consider the vectorlike fermion representations

Ψ5 ¼ ð ξ1;…; ξ5 ÞT; ξi ¼ ξi;L þ ξi;R ≡ ψ i − iσ2ψ�
iþ5; ðC8Þ

Ψ24 ¼
X24
A¼1

ξ5þATA; ξ5þA ≡ ψ10þA − iσ2ψ�
10þA; ðC9Þ

where all the right-handed Weyl components are expressed
as the charged conjugation of some Weyl left-handed
spinors (notice that the vectorlike fermion Ψ24 is a
Majorana-like fermion).
Given the above decomposition, the Yukawa interaction

terms in Eqs. (12) and (14) can thus be written as

LYukawa ¼ −
1

2
Ya

ijψ iζψ jϕa þ H:c:; ðC10Þ

where ζ ¼ �iσ2 and Ya are symmetric Yukawa matrices.
The extra contributions in Eqs. (21)–(25) can be

obtained from Eqs. (40) and (41) in Ref. [68]. In par-
ticular, the contributions quadratic in αz come from
the scalars anomalous dimensions and are proportional

to the eigenvalues of the scalar loop matrix
1
2
TrðYa†Yb þ Yb†YaÞ. These eigenvalues are, for the

present model,

YH
2S ¼ 3α2t10 þ

24

5
N5N24α

2
ν; YΣ

2S ¼
21

20
N24α

2
24Σ þ N5α

2
5Σ:

ðC11Þ
The quartic contributions in αz are instead due to a
fermionic loop where four fermions are exchanged among
the four scalar fields. This contribution is obtained from

∂tλabcd
ð4πÞ2 ¼ … −

X
Tr½YaYb†YcYd†�; ðC12Þ

where the sum is over all 4! permutations of the indi-
ces fa; b; c; dg.

2. Gauge-Yukawa subsystem of the SU(5) LVG model

The β functions for the SU(5) gauge coupling as well as
for the Yukawa couplings have also been computed by

4Generally speaking, for a total symmetric tensor, i.e., sym-
metric in all its indices, of rank r where all indices can assume n
different values, the number of independent components is given
exactly by the number of combinations with repetition
Cn
r ¼ ðnþ r − 1Þ!=ðr!ðn − 1Þ!Þ. In our specific case, λabcd has

C36
4 ¼ 66045 independent components.
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mean of the general formulas for a generic gauged quantum
field theory given in Ref. [68].
In particular, the β functions for the Yukawa couplings

have been computed from Eq. (33) of Ref. [68]. The
extra contributions to ∂tαt10 due to the vectorlike Yukawa
interaction αν, as well as the top contribution to ∂tαν, come
from the Higgs anomalous dimension, cf. Eq. (C11). The
terms proportional to N5 and N24 in Eqs. (18) and (19)
come, instead, from the anomalous dimension of the Σ
scalar field, cf. again Eq. (C11). The other Yukawa

contributions are a nontrivial sum of the fermionic anoma-
lous dimensions and the renormalization of the operator
Ya

ijψ iζψ j. Therefore, an explicit computation of the first
two terms in Eq. (33) of Ref. [68] is required.
The gauge contributions to the β functions of the

Yukawa couplings are obtained by computing the
Casimir invariants for the different fermionic representa-
tions. For a generic SUðNÞ gauge group, the Casimir for
the fundamental, antisymmetric, and adjoint representa-
tions are, respectively,

CN ¼ N2 − 1

2N
; Cantisymm ¼ ðN þ 1ÞðN − 2Þ

N
; Cadj ¼ N; ðC13Þ

such that the gauge contributions to the Yukawa β functions for our LVG SU(5) GUT model are

∂tαt10 ¼ … − 3α25ðC10 þ C10Þαt10; ∂tα5Σ ¼ … − 3α25ðC5 þ C5Þα5Σ; ðC14Þ

∂tα24Σ ¼ … − 3α25ðC24 þ C24Þα24Σ; ∂tαν ¼ … − 3α25ðC5 þ C24Þαν; ðC15Þ

where the sum in parentheses refers to the sum over the fermions which are exchanged in the one-loop diagrams where a
gauge boson is exchanged.
The two-loop β function for the SU(5) gauge coupling has been computed from Eq. (30) of Ref. [68], where the terms

proportional to the square of the Yukawa couplings can be written as

∂tα5 ¼ … −
α35
dðGÞ ½C10d10Y2Fðχ10Þ þ C5d5Y2FðΨ5Þð2N5Þ þ C24d24Y2FðΨ24ÞN24�; ðC16Þ

where dðGÞ ¼ 24 is the dimension of the SU(5) gauge group and dFi , with Fi ¼ ð5; 10; 24Þ, is the dimension of the different
fermionic representations. Let us notice the presence of an extra factor of 2 in the multiplicity ofΨ5 due to the fact that it is a
Dirac-like fermion. The eigenvalues of the matrix product YaYa† are

Y2Fðχ10Þ ¼ 3α2t10; Y2FðΨ5Þ ¼
12

5
α25Σ þ

12

5
N24α

2
ν; Y2FðΨ24Þ ¼

21

20
α224Σ þ N5α

2
ν: ðC17Þ

The one-loop contributions to the RG flow of α5 are
obtained by first computing the Dynkin indices for the
different (fermionic and scalar) representations. Generally
speaking, given a representation R of a gauge group G, we
have

SR ¼ dRCR

dðGÞ ; ðC18Þ

such that for SUðNÞ we obtain

SN ¼ 1

2
; Santisymm ¼ N − 2

2
; Sadj ¼ N: ðC19Þ

For our specific SU(5) GUT model, we thus have

∂tα5 ¼ −α35

�
11

3
CðGÞ −

X
i

�
2

3
SFi þ

1

6
SSi

��
þ βNLOα5 ;

ðC20Þ

where the Casimir for the SU(5) gauge group is CðGÞ ¼ 5
and the sum is over all the fermionic and scalar represen-
tations. Each generation of the SM fermionic sector can be
fitted in the representations 5̄ and 10. On the other hand, the
scalar sector of the SM GUT theory is composed of a
complex fundamental representation and a real adjoint
representation. Taking into account also the vectorlike
fermion representations, we finally have

∂tα5 ¼ −α35

�
11

3
CðGÞ − 2

3
½SFðχ5̄Þ þ SFðχ10Þ�Ng

−
2

3
½2N5SFðΨ5Þ þ N24SFðΨ24Þ�

−
1

6
½2SSðΦÞ þ SSðΣÞ�

	
þ βNLOα5 ; ðC21Þ

where Ng ¼ 3 is the generation number and the extra factor
of 2 for the contributions of Φ and Ψ5 come from the fact
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that Ψ5 is a Dirac-like fermion and Φ is composed of two
real 5-plets, respectively, the real and imaginary parts.
Substituting the values in Eq. (C19) into the latter equation,
we obtain the one-loop contribution of Eq. (16). Given the
Casimir and Dynkin indices for the different representa-
tions, it is straightforward to obtain the two-loop contri-
bution in Eq. (16) from Eq. (30) of Ref. [68].

APPENDIX D: THE β FUNCTIONS FOR THE
2U2Q MODEL

Using the definitions in Eq. (2) and the following
rescaling for the coupling αQ,

αQ ¼ y2Q
ð4πÞ2 ; ðD1Þ

the β functions of the 2U2Q model read

∂tα1 ¼ βSM;NLO
1 þ

�
8þ 86

9
α1 þ 2α2 þ 32α3 −

136

3
αQ

�
α21;

ðD2Þ

∂tα2 ¼ βSM;NLO
2 þ

�
8þ 2

3
α1 þ 98α2 þ 32α3 − 24αQ

�
α22;

ðD3Þ

∂tα3 ¼ βSM;NLO
3 þ ð8þ 4α1 þ 12α2 þ 152α3 − 32αQÞα23;

ðD4Þ

∂tαt ¼ βSM;LO
t þ 48αQαt; ðD5Þ

∂tαQ ¼
�
−
17

6
α1 −

9

2
α2 − 16α3 þ 60αQ þ 6αt

�
αQ; ðD6Þ

∂tαλ ¼ βSM;LO
λ þ 96αQαλ − 384α2Q; ðD7Þ

where βSM;NLO
i , βSM;LO

t , and βSM;LO
λ are the SM β functions

previously given in Appendix A. The new terms arising
from the presence of the extra vectorlike fermions ψU and
ψQ are explicitly shown. Their contributions to the running
of the gauge couplings have been computed using the
formulas in Appendix B. The extra contributions due to the
vectorlike Yukawa coupling αQ as well as the β function of
αQ itself have been computed using the results of Ref. [68]
[cf. Eqs. (30), (33), and (38) therein].
In the following, we present the β functions of the 2U2Q

GUT model where the vectorlike fermions ψU and ψQ are
embedded into the antisymmetric representation of SU(5).
Let us denote y10 and y010 the two Yukawa couplings of the

vectorlike fermions with the scalar fields Φ and Σ,
respectively. We define

α10 ¼
y10
4π

; α010 ¼
y010
4π

; ðD8Þ

together with the definitions given in Eq. (15) for the gauge,
top-Yukawa, and scalar couplings. For the sake of sim-
plicity, we assume that the latter Yukawa interactions are
diagonal in the flavor indices I; J ¼ ð1; 2;…; N10Þ, such
that different flavors of the matter field Ψ10 do not interact
among each others. The sum in Eq. (45) reduces to

P
Ið…Þ.

The RG flow equations for the gauge-Yukawa subsystem
are

∂tα5 ¼ −
40 − 6N10

3
α35 −

1184 − 1074N10

15
α55

−
�
9

2
α2t10 þ 9N10α

2
10 þ

54

5
N10α

02
10

�
α35; ðD9Þ

∂tαt10 ¼
�
6α2t10 þ 6N10α

2
10 −

108

5
α25

�
αt10; ðD10Þ

∂tα10 ¼
�
3ð1þ 2N10Þα210 þ 3α2t10 −

6

5
α0210 −

108

5
α25

�
α10;

ðD11Þ

∂tα
0
10 ¼

�
29þ 15N10

5
α0210 − α210 −

108

5
α25

�
α010: ðD12Þ

We conclude the set of β functions by listing the running of
the scalar couplings.

∂tαΣ ¼ β̄Σ þ 12N10ðαΣ þ α0210Þα0210; ðD13Þ

∂tα
0
Σ ¼ β̄Σ

0 þ 12N10ðα0Σ − α0210Þα0210; ðD14Þ

∂tαH ¼ β̄H þ ð12α2t10 þ 12N10α
2
10ÞαH − 12α4t − 24N10α

4
10;

ðD15Þ

∂tαHΣ ¼ β̄HΣ þ ð6α2t10 þ 12N10α
2
10 þ 6N10α

02
10ÞαHΣ

− 4N10α
2
10α

02
10; ðD16Þ

∂tα
0
HΣ ¼ β̄0HΣ þ ð6α2t10 þ 12N10α

2
10 þ 6N10α

02
10Þα0HΣ

− 4N10α
2
10α

02
10; ðD17Þ

where the pure gauge and scalar contributions β̄Σ, β̄0Σ, β̄H,
β̄HΣ, and β̄0HΣ are given in Appendix C.
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