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We minimally extend the Standard Model field content by adding new vectorlike fermions at the TeV
scale to allow gauge coupling unification at a realistic scale. We embed the model into an SU(5) grand
unified theory that is asymptotically safe and features an interacting fixed point for the gauge coupling.
There are no Landau poles of the U(1) gauge and Higgs couplings in this new setting. Gauge, Yukawa, and
Higgs couplings are retraced from the fixed point and matched at the grand unification scale to those of the
Standard Model rescaled up to the same energy. All couplings, their fixed point values, and critical

exponents always remain in the perturbative regime.
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I. INTRODUCTION

A quantum field theory is asymptotically safe if all its
couplings reach a fixed point in the UV limit, as they run
along the flow dictated by their renormalization group
equations [1,2]. The fixed point can be interacting or free
(Gaussian). In the latter case, asymptotic safety (AS)
reduces to asymptotic freedom [3.4]. In both cases, we
can say that the theory is UV complete because it is well
behaved and predictive at all energies.

The Standard Model (SM) is not asymptotically safe
because of the uncertain fate of the Higgs boson quartic
coupling and the presence of the Landau pole in the U(1)y
gauge coupling. In particular, the latter divergence feeds
back into the renormalization group (RG) flow of the
quartic Higgs self-interaction inducing a Landau pole also
in the scalar sector. Furthermore, the Higgs quartic cou-
pling—given the current experimental value of the top mass
—becomes negative before the Planck scale, making the
electroweak vacuum metastable [5]. Quite in general, for a
given cutoff scale and fixed value for the top mass, the
Higgs mass has to exceed a lower bound in order to avoid
the metastability issue of the scalar potential [6-11].
Although different mechanisms can be devised to solve
the problem of the instability of the quartic coupling, the
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Landau pole of the U(1)y gauge coupling has proved to be
a stumbling block.

Should the SM be asymptotically safe? For all practical
purposes, the breakdown of the perturbative regime repre-
sented by the presence of the Landau pole in the U(1)y
gauge coupling can be ignored for it takes place at energies
well beyond the Planck scale. Be that as it may, the taming
of the U(1)y Landau pole becomes essential if we take the
UV behavior as our guidance in searching for a completion
of the SM.

A research program based on the safe UV completion of
the SM has been actively pursued in recent years thanks to
the progress that has been made in gauge theories with a
large number of vectorlike fermions (VLF) and gauge
bosons—for which it is possible to state rigorous results
[12,13] in the Veneziano limit. These findings have
encouraged the investigation of the extension with vector-
like fermions of models containing at least some of the
features of the SM [14-17] and, more recently, the SM
itself [18,19]. All the same, as impressive as these results
are, it is fair to say that the Landau pole of the U(1)y gauge
coupling has proven to be a stumbling block. It appears that
all perturbative stable fixed points of the possible extension
of the SM with vectorlike fermions only admit a low-
energy matching if the U(1)y gauge coupling vanishes and
the theory is trivial in that sector.

This problem requires us to look into viable options that
allow us to circumvent the U(1)y triviality problem.

One possible way out has been recently suggested by
studying an asymptotically safe version of QED. It has been
shown in Ref. [20] that an enlarged theory space—where
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higher-dimensional operators such as a Pauli spin-field
coupling are included—opens the possibility for UV-
complete realizations of QED due to the presence of
interacting fixed points. Other possible solutions to the
triviality problem are obtained by including ad hoc gravi-
tational contributions [21,22]—a procedure with its own
conceptual difficulties—or venturing into the nonperturba-
tive regime [19].

In this work, we follow the more conservative choice of
looking into a grand unified theory (GUT) extension of the
SM [23-27], where the Abelian gauge group is merged into
a larger non-Abelian group for which there is no Landau
pole to begin with. The possibility of having an asymp-
totically safe GUT has been discussed in Refs. [28-31].
Other embeddings that solve the U(1)y problem have been
proposed in Refs. [32,33].

We study minimal GUT extensions based on the SU(5)
gauge group. The specific model we consider below the
GUT scale consists in the SM enlarged by the addition of
vectorlike fermions—that is, fermions whose right- and
left-handed components belong to the same representation
of the gauge group and for which a Dirac mass term can be
explicitly written. They enter at the scale of 1 TeV and
transform under some specific representations of the SM
gauge group. We are interested in the extensions of the SM
leading to good gauge coupling unification, which can be
achieved with both minimal [34,35] or nonminimal VLF
multiplicities [35,36].

The role played by the vectorlike fermions is twofold:
below the GUT scale, their presence leads to a “good”
(that is, around 1% of relative difference) gauge coupling
unification and ensures such unification at a scale which
is not constrained by low-energy experiments like proton
decay; above the GUT scale, thanks to their new Yukawa
interactions, they are crucial for generating nontrivial
perturbative UV fixed points for the SU(S) gauge
coupling [37].

At this stage, we do not want to classify all the possible
models; rather, we intend to show a specific working
example as a proof of concept. In particular, we consider
one of the possible minimal extensions that were classified
in Ref. [34] which presents the same features of a split-
supersymmetry (SUSY) scenario: the LVG model. The
corresponding TeV-scale vectorlike fermions are embedded
in proper SU(5) representations at the GUT scale with
multiplicities adjusted such that the UV fixed point of the
SU(5) gauge coupling has a numerical value rather close to
that of the unification of the three SM gauge couplings at
the GUT scale. The gauge couplings run from the electro-
weak to the GUT scale where they come close to each other
and merge into the SU(5) gauge coupling. From the GUT
scale on, the unified gauge coupling remains at its
fixed point.

The other relevant couplings that are present below the
GUT scale, namely, the top-quark Yukawa, the vectorlike

fermion Yukawa couplings, and the quartic Higgs coupling,
run through the GUT scale where they merge into their SU
(5) GUT counterpart and reach their own UV fixed points
together with the other couplings of the GUT model
(additional vectorlike fermions Yukawa couplings and
GUT scalar potential couplings).

All couplings, the fixed point values, and critical
exponents always remain in the perturbative regime—a
fact that suggests that the fixed point and the renormaliza-
tion group flow are stable.

II. TOWARD THE GUT SCALE

The gauge couplings of the SM run toward each other in
a manner that is suggestive of a possible unification.
Though they come rather close, they do so at a scale of
order 10'3-10'* GeV, that is too low for the GUT theory
to be consistent with data on the proton lifetime [38].
On the other hand, it is known that the addition of new
charged states can modify the running and move the
GUT scale to a higher value. Among the possible models,
minimal nonsupersymmetric extensions were discussed in
Refs. [34,39-47] and [48-53]. On the other hand, super-
symmetric extensions can be found in Refs. [54-59]. Yet,
the minimal supersymmetric GUT model with squark
masses mjy < 2 TeV is excluded if one combines the limits

on proton decay mediated by the colored Higgs [60]
with the constraints obtained by the requirement that
the Yukawa couplings do not blow up before Planck scale
[61,62].

In this work, we focus on nonsupersymmetric theories
and consider one specific minimal extension of the SM that
has been classified in Ref. [34], namely, the LVG model,
which has the same low-energy field content of the “split-
SUSY” scenario, as summarized in Table I. The label “L”
stands for vectorlike fermions y; that transform under the
(1,2,1/2) representation of the SM gauge group and have
the same quantum numbers of the minimal supersymmetric
SM Higgsino. The labels “V”’ and “G” stand for Majorana
fermions yy and y that transform, respectively, under the
(1,3,0) and (8, 1, 0) representations of the SM. The fields
ywy and yw; are like the wino and gluino fields of the
minimal supersymmetric SM. The multiplicities of these
beyond the SM representations are all the same and equal to
N¢ = 1. These extra matter fields are added at the scale
of 1 TeV.

TABLE I. Quantum numbers and multiplicities of the vector-
like fermions in the LVG model.

Fields SU(3), SU(2),. U(l)y N¢
v 1 2 1/2 1
vy 1 3 0 1
VG 8 1 0 1
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The Lagrangian of the LVG model is given by

Live = Lsm + W iPy — My + TrgyiPyy
- MyTrygyyy + TrpgiPye — M Trpey e
—ywwryvH + He, (1)

where yy = i, T;, with T; the generators of SU(2), such
that Tr(7,T;) = 1/26;;, and wg = wEA,, with 4, the
generators of SU(3), normalized again such that Tr(1,4;,) =
1/268,,. The indices (i, j = 1,2,3) and (a,b = 1,2, ...,8)
belong to the adjoint representations of SU(2), and SU(3).,
respectively. Let us notice that the SM Higgs doublet H
can couple to the vectorlike fermions via a new Yukawa
interaction whose coupling is yy.

The SM Lagrangian Lgy in Eq. (1) is written following
the convention used in Ref. [18]; in particular, the Higgs
quartic interactions is parametrized as —1H"H /2. We did
not include Yukawa interactions that mix SM fermions and
vectorlike fermions (this can be achieved by imposing a Z,/
parity-type symmetry, under which SM fermions are even
while vectorlike fermions are odd).

A. Renormalization group flow

In this section, we study the renormalization group flow
for the couplings of the LVG model, in what is known as
the 211-SCHEME approximation, where the gauge coupling /3
functions are computed at two-loop order while the
Yukawa and scalar couplings are computed at one-loop
order [63—67]. This scheme is a compromise between the
more formally consistent 321-SCHEME—a scheme with S
functions at the three-loop order in the gauge coupling,
two-loop order in the Yukawa couplings, and one-loop
order scalar couplings—and the computational manage-
ability of the § functions. The simpler and consistent 210-
SCHEME would not allow us to study the renormalization of
the scalar potential. We trust that higher-loop corrections do
not significantly change our results since we always work
well within the perturbative regime.

We compute the f# functions in the MS renormalization
scheme and consider only the gauge, top-Yukawa, Higgs
scalar quartic, and vectorlike fermion Yukawa couplings.
In the rest of this paper, we will neglect all other
Yukawa couplings in the SM as they are small com-
pared to that of the top quark. Let us define the rescaled
couplings a,

D N SR
@m2 T e T @ T (dn)?
(2)
where g1, 9>, 93, ¥, and A are the SM couplings and yy is

the vectorlike fermion Yukawa coupling. This definitions
are convenient in expressing the £ functions as polynomials

a; =

with rational coefficients. Note that the definition of «; for
the gauge couplings is different from the usual one by an
additional factor of (4z) in the denominator. The g
functions of the LVG model read

4
0,a; = ?M’NLO + (§ + oy +3a, — 6av) al,  (3)

0,0, = ;M'NLO + (44 a; + 59, — 22ay)a3,  (4)
Doz = SN0 1 (4 4 96a3)a, (5)
Oy, = M0 + 2ayay, (6)

3 33
0,ay = <15av + 60, —~a; — a2> ay, (7)

2 2
Dy = MO 4 2daya; — 4803, (8)
where ﬂiSM’NLO, tSM’LO, and ﬁiM’LO are the SM f functions

given in the Appendix A. The new terms pertaining to
physics beyond the SM are explicitly shown: the vectorlike
fermion contributions to the gauge couplings are computed
using the formulas in Appendix B. The contributions of the
vectorlike fermion Yukawa coupling to the gauge, top-
Yukawa, and Higgs quartic couplings as well as the S
function of ay itself are computed using the results of
Ref. [68]. An explanation of the latter contributions is
provided in Appendix B.

In computing the renormalization group flow, we
assume that the vectorlike fermions have all the same
mass M; = My = M; = 1 TeV. In principle, there are no
particular restrictions in choosing, for example, a different
mass for each of the three vectorlike fermions. Our
particular choice has been made for simplicity. The initial
conditions for the SM couplings «;, a;, and a, are given at
the Z-boson mass M, = 91.19 GeV. These values are
shown in Table II and are obtained by using the tree-level
relations between the couplings and the SM input exper-
imental values [69]. The renormalization group flow for the
couplings of the LVG model, where ay is set to zero, is
shown in Fig. 1. The gray vertical line on the left
corresponds to the scale at which the vectorlike fermions
become dynamical and their presence makes it possible to
achieve gauge coupling unification (with a maximum of
relative difference of 1.2%) at the scale of

TABLE II. Initial conditions at M; = 91.19 GeV for the SM
gauge, top-Yukawa, and Higgs quartic couplings.

a a as L1 a;

0.0008091  0.002689  0.009390  0.006298  0.001634
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Renormalization group flow of the SM couplings 5/3a,, ay, a3, , and a, for the LVG model. The initial conditions are given

at the scale M ,, and the vectorlike fermions are included at the scale of 1 TeV (gray vertical line on the left). The flow is considered up to
the Planck scale (gray vertical line on the right). The gray vertical line in the middle corresponds to the GUT scale at which the gauge

couplings unify.

Mgyt ~2.399 x 10'° GeV, 9)

which is below the Planck scale, which is highlighted in
Fig. 1 by the gray vertical line on the right. The values of
the SM couplings at the GUT scale are

; (MGUT> ~ 0002247, at(MGUT> ~ 00009388,
ay(Maur) = —0.0005420, (10)

These values will represent the IR target which has to be
connected with the UV behavior of the model defined at the
GUT scale, behavior controlled by the existence of inter-
acting fixed points. The procedure that we use to connect,
whenever possible, a UV fixed point with the IR target
of Eq. (10) will be exhaustively explained in Sec. V. As
already mentioned, at the GUT scale, the LVG model
becomes embedded into an SU(5) gauge theory, such that
the SM gauge couplings merge into the SU(5) gauge
coupling and the top-Yukawa coupling as well as the
Higgs quartic coupling merge into their SU(5S) GUT
counterparts. The latter couplings have to match the values
in Eq. (10) while flowing down from (at least) one fixed
point of the SU(5) GUT theory itself.

To understand the sensitivity of the gauge coupling
unification on the mass of the vectorlike fermions, we
have reported in Table III the variation of the maximum
relative difference among the gauge couplings,

max |A;;|[%] = max |(a; — a;) /e - 107, (11)

for different values of M; = M, = M5 = M|y and with
the boundary condition ay = 0. In addition, we have also
written in Table III the corresponding values for agyr and
M yr- Reducing the mass of the vectorlike fermions allows

us to have a better gauge coupling unification at the
expense of a higher value of agyt and of the unification
scale. On the other hand, we fix M} yg around 1 TeV so as
not to worry about current and future exclusion bounds
from LHC data.

B. Higgs potential stability

The problem of the Higgs potential instability is already
present in the SM, and we do not provide a solution to this
issue in our model with vectorlike fermions. Indeed, the
renormalization group flow, as plotted in Fig. 1, shows that
the quartic Higgs coupling a, becomes negative at around
10° TeV (in the present 211-SCHEME), signaling a vacuum
instability or metastability.

The presence of vectorlike fermions mitigates this
problem as they make a; turn negative at higher energies
compared to the SM case. This is because «; runs faster
toward zero with respect to the SM case, which is, in turn,
due to the fact that @, and a5 run slower than in the SM. Yet,
considering the field content of our model, we have that the
variation of the instability scale with respect to the SM case

TABLE III.  List of different values for the mass of the vector-
like fermions M| yg and corresponding variation of agyr, Mgur,
and the maximum relative difference between the gauge cou-
plings, i.e., max |A;;|. The beyond-the-SM Yukawa coupling ay
is set to zero.

Myye (TeV)  agur  max|Ag((%) Mgyr (10'° GeV)
0.1 0.002284 0.8460 3.804

1 0.002247 1.188 2.399

10 0.002211 1.554 1.553

100 0.002178 1.928 1.023

1000 0.002146 2.302 0.6805
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is minimal (about 26%). In principle, one can think of
preventing the quartic Higgs coupling from becoming
negative and keeping good gauge coupling unification
below the Planck scale, by adding a large number of
vectorlike fermions in different SM representations, as
shown in Ref. [36]. This choice is, however, not minimal,
and its study is beyond the scope of this paper.

In addition, it is also known that the metastability scale in
the SM moves to higher values when one considers two-
loop and three-loop 8 function for @; (107 and 10° GeV,
respectively), as shown in Refs. [7,8]. In the end, the
problem still persists, and one either accepts a metastable
potential, as in the SM, or one adds additional fields (for
example, vectorlike fermions or also a scalar singlet) so as
to prevent the Higgs quartic coupling to become negative
before the Planck scale.

The present discussion about the scalar potential stability
is largely accepted within the standard lore of perturbation
theory, which intimately associates the instability scale to
the existence of a lower bound for the Higgs mass.
However, the presence of such an instability scale becomes
questionable as soon as one adopts different approaches.
For example, lattice simulations have shown that the lower
bound for the Higgs mass merely arises from consistency
conditions imposed on the bare action and no reference to a
low-energy stability issue has to be made [70-77]. The
same point of view got also substantiated by functional
methods, showing that the conventional lower Higgs-mass
bound can even be relaxed given an appropriate consistent
definition of the bare action [21,78-85].

III. ABOVE THE GUT SCALE

Aiming at an asymptotically safe scenario, we now focus
our analysis beyond the GUT scale, where we assume that
an underlying SU(5) symmetry is restored. Consequently,
the vectorlike fermions of the LVG model discussed in the
previous section are embedded into proper multiples of
SU(5), just like is the case for the SM fields. This
unification group choice seems to be the most natural
since SU(5) not only can play the role of a self-contained
unified gauge symmetry [23] but also show up in breaking
chains of larger GUT groups. The Lagrangian of the SU(5)
SM GUT theory is given by [86]

1 . 1 .
LT = —=Fu,Fi’ + 751Pxs +§Tr()(101p)(10)

4
+ Tt[(D,X)"(D*E)] + (D,®@)" (D' @) — V(®, )
=C * y 7C
— Vo2 10®" + %85;(10)(10*51) +Hec., (12)

where Fj, is the field strength of the SU(5) gauge
fields A,‘j (a=1,...,24), which include the SM gluons,
the electroweak gauge bosons, and the heavy GUT gauge
bosons.

The right-handed down quarks and the left-handed
lepton doublets are embedded into the left-handed field
x5 transforming as an antifundamental 5 representation of
SU(5), while the left-handed quark doublets, right-handed
up quarks, and leptons are embedded into the left-handed
field y;, transforming as an antisymmetric 10 representa-
tion of SU(S). The charge conjugation of a fermionic field
is expressed by a superscript ¢, for example, y§ = Clxs)T,
where C is the charge conjugation operator.

The Higgs field is embedded into @, transforming as a
fundamental 5 representation of SU(5). Even though the
fermionic matter content of the SM can be fitted entirely
into the 5 and 10 representations of SU(5), the scalar sector
is extended by an adjoint scalar field X, in the 24
representation, which is needed in order to break the
SU(5) into the SM gauge group.

The Lagrangian in Eq. (12) includes only the top- and
bottom-Yukawa couplings, which are the most relevant
ones. We set to zero the Yukawa couplings of the first and
second generations. The fermionic field y;y is a 5 x5
antisymmetric matrix such that the corresponding Yukawa
interaction is constructed by mean of the Levi-Civita tensor
in five dimensions, i.e., €. In terms of components, the
Yukawa interaction term is es7or10® = € o H®".

The quartic terms of the scalar potential V(®,X) in
Eq. (12) read [86]

/

. p p P
Vauartic (@ 37) — %Tr(Z“) + ()P + 7” (D D)>

+ 22 ®TOTr(X?) + 22)x 22D,  (13)
where Ay = (45,45, Ay, Ayx) are the quartic scalar cou-
plings of the GUT model.

At the unification scale, the vectorlike fermions of the
LVG model in Table I are embedded into proper multiples
of SU(5), see Table IV. We assume that the field y; gets
embedded into vectorlike fermions W5, with multiplicity
N5 > 1, transforming under the fundamental representation
of SU(5), while yy and y; get embedded into Majorana
fermions W¥,,, with multiplicity N,4 > 1, transforming
under the adjoint representation of Sue).!

Therefore, the Lagrangian of the LVG GUT model is

LG = LT + W5iPYS — MsWRWS + Tr(P5,iP'¥s,)
= Moy Te(W,95,) — ysx LTS
— youx Tr (295, 95,) - y,,Z(‘i’g‘Péﬂ) +H.c.),
1J
(14)

'The fundamental and adjoint representations of SU(5) can be
decomposed under the SM gauge group as follows (see, for
example, Ref. [87]): 5=(1,2,1/2) & (3,1,—1/3) and 24 =
(1,1,0) & (1,3,0) & (8,1,0) & (3,2,-5/6) & (3.2,5/6).
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TABLE IV. Quantum numbers and multiplicities of the vector-
like fermions in the LVG GUT model.

Fields SU®) N¢
W, 5 2
Yoy 24 Noy

where 7 and J run over the flavor numbers, ie., [ =
I,....Nsand J =1, ..., Ny. In the LVG GUT Lagrangian
of the latter equation, we have introduced three Yukawa
couplings involving the vectorlike fermions: ysy, yo4s, and
v,. The first two terms in the second line respect an
U(Ns) x O(Nyy) flavor symmetry which is explicitly
broken by y, interactions. In principle, additional gauge-
invariant Yukawa terms are possible; however, we restrict
the number of such interactions to just 3 by imposing a Z,/
parity-type symmetry, under which the SM fermions are
even while the vectorlike fermions are odd.

40— 2Ns — 10N3 ;5

A. p functions

In this section, we compute the f# functions of the LVG
GUT model given in Eq. (14). We adopt again the MS
renormalization scheme and the 211-SCHEME regarding the
loop orders. Let us first define the rescaled couplings a’s,

Ax

_%
T (4n)?

Ax’

Yz

a

Z 4”’ (15)

Qas

where g5 is the SU(5) gauge coupling, Ay denotes the
couplings in the scalar potential V¥i¢(d, ¥), and y,
(Y1105 Y55 Yoas, ¥, ) Tepresents all Yukawa couplings. Note
that, differently from the previous Sec. II A, here we define
all couplings a’s as linear with respect to the couplings in
Eqgs. (12)—(14). These definitions allow us to write the f
functions as polynomials in all the a’s, as is made clear by
the equations below. In the 211-SCHEME, the gauge-Yukawa
subsystem is closed, and its f functions are

1184 — 322N5 — 2000V _

das = = 3 5 15 ;
9 12 21 37
- (50&210 "‘?Nsagz +ZN24Q%42 +?N5N24013>0’§7 (16)
24 108
0419 = (60{%10 +?1\75]\[240512/ _50‘%) at105 (17)
11 +5N. 21 12 72 21
0,053 = (Ts a3y + %N%‘Z%Q + gNsz - ?o%) asy + EN240'301242, (18)
34 4+ 21N

ata242 = (TM a%42 -+ N5a§Z + Nsalz, - 300:%) (257 + 2N5a,%a52, (19)

63 21 21 111
8tay = (EN5N24GE + 3(1%10 + EG%L‘Z + gagz + 1—0052426152 - ?(1%) (1,/. (20)

The choice of defining all the a’s as linear with respect to the original couplings becomes clear from the last term in Eq. (18)
and Eq. (19). These two contributions arise from the mixed Yukawa interaction among W5 and W, [last term in Eq. (14)]. In
case we were defining asy and @,y as quadratic in ysy and youy, the last term in Eq. (18) and Eq. (19) would have involved
the square root of a5y and a,4y, rendering some of the fixed points in Table V inaccessible. For homogeneity, we kept linear
also the other Yukawa couplings as well as the gauge coupling. The f functions of the scalar couplings are

Dy, = Py + (4N50’§2 + 3

. 21
Oy = ps’ + <4Nsa§z +

Oy = Py + (12%210 + 3

21 7
= N240‘%42) as — 4N50‘§2 + %Nz4a§427

5

(21)
N 24(1%42) as - 100 Noydiys, (22)

96 264
—N5N24a,%)aH - 12(1?10 —ngNit(Xﬁ, (23)
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TABLE V. List of all fixed points for the LVG GUT model which satisfy the conditions in Eq. (35), for various multiplicities of the
vectorlike fermions W5, and Ws. Those fixed points which possess physical trajectories that can be matched with the LVG model at the
GUT scale are in bold. These fixed points provide therefore an asymptotically safe SU(5) GUT completion of the SM. Each fixed point
FP, has a certain degeneracy (in the sense that physical properties such as the number of relevant/irrelevant directions as well as the
critical exponents are identical) due to the fact that the couplings a1, @45, @55, and @, can have both positive or negative sign. While
a0 and a, can each be positive or negative independently on the sign of the other coupling, a,,5 and asy have always opposite signs. As
an example, FP; incorporates four degenerate fixed points, while FP; encodes eight degenerate fixed points.

(N2, Ns)  as ol ay as ay ays Ay Qogy. asy |, |
FP, 3,4) 0.04818 0 0.003807 -0.01001 0.004971 —4.727x10-5 0.001967 =F 0.1161 +0.02663 0.02574
FP, (3,4) 0.04818 0 0.003830 —0.007946 0.004625 —1.903 x 10> 0.001783 F 0.1161 +0.02663 0.02574
FP; (3,4) 0.04831 0.05823 0.003209 —0.01088 0.005211 —1.340x 10> 0.001499 F 0.1172 £0.02306 0.02285
Fp, (3,4) 0.04831 0.05823 0.003234 —0.007527 0.004646 1.596 x 10~ 0.001267 =F 0.1172 £0.02306 0.02285
FPs 3,3 0.07092 0 0.008350 -0.02300 0.01093 -1.194x10~4 0.004450 =F 0.1709 +0.04667 0.04414
FP¢ (3,3) 0.07092 0 0.008428 —0.01600 0.009764 —2.651 x 10>  0.003832 F 0.1709 +0.04667 0.04414
FP, (3,3) 0.07111 0.08320 0.007029 —0.02420 0.01131 —-4.575x 10~ 0.003450 =F 0.1724 +0.04149 0.03959
FPg (3,3) 0.07111 0.08320 0.007096 —0.01565 0.009888 3.024 x 10~ 0.002849  F 0.1724 +0.04149 0.03959
FPy (3,3) 0.06178 0.1172 —0.01243 —-0.009077 0.005366 9.564 x 10~ 0.002040 0 +0.1028 0
FP,, (3,3) 0.06178 0.1172 -0.01247 —-0.007685 0.003151 —4.045 x 10>  0.001966 0 +0.1028 0
FP;, (3,2 0.09081 0 0.01391 -0.04006 0.01820 -1.843x10~* 0.007670 =F 0.2193 +0.07429 0.07003
FP,, (3,2) 0.09081 0 0.01409 —0.02420 0.01561 1.125 x 1073 0.006293  F 0.2193 4+0.07429 0.07003
FP;;  (3,2) 0.09103 0.1018 0.01173 -0.04121 0.01864 —8.246 x 10~> 0.006132  F 0.2207 +0.06811 0.06368
FP,, (3,2) 0.09103 0.1018 0.01187 —0.02418 0.01585 6.656 x 107 0.004912  F 0.2207 4+0.06811 0.06368
FPis  (3,2) 0.07586 0 0.005074 -0.01019 0.003843 7.419x 104 0.001431 0 +0.1405 0

FPs (3,2) 0.07586 0 0.003008 -0.01014 0.003722 5230 x10~* 0.001366 0 £0.1405 0
FPy;  (3,2) 0.07769 0.1474 0.01375 —0.01073 0.008801  —0.003407 0.008809 0 £0.1439 0
FP;  (3,2) 0.07769 0.1474 -0.01965 -0.01399 0.01032 3.656 x 10~* 0.002812 0 £0.1439 0
FPy (3,2) 0.07769 0.1474 —0.01976 —0.01043 0.003726 —6.145 x 10> 2.582 x 107> 0 £0.1439 0
FP,, (3,2) 0.07769 0.1474 0.01439 -0.01016 0.004212  —0.002552 0.004854 0 £0.1439 0
FP,; (3,2) 0.07769 0.1474 -0.01805 —0.007693 0.004046 1.309 x 1073 0.01010 0 £0.1439 0
FP,, (3,2) 0.07769 0.1474 -0.01812 -0.01007 0.007458 6.199 x 10~* 0.008703 0 £0.1439 0
FPy;  (3,1) 0.08966 0 0.008210 -0.009327 0.003901 8.997 x 10~ 0.001821 0 £0.1902 0
FPy, (3,1) 0.08966 0 0.003731 -0.009304 0.003791 5763 x 104 0.001724 0 £0.1902 0
FP,s (3, 1) 0.09193 0.1744 0.02049 —0.01231 0.01458  —0.002568 0.007556 0 +0.1950 0
FPy (3, 1) 0.09193 0.1744 -0.02423 -0.005183 0.005420 5.019 x 10~* 0.01569 0 £0.1950 0
FPy; (3, 1) 0.09193 0.1744 -0.02771 —0.009640 0.003870 —4.388 x 10=>  0.003042 0 £0.1950 0
FPys (3, 1) 0.09193 0.1744 0.02038 —0.009538 0.004422  —0.003083 0.004755 0 £0.1950 0
FPyy, (3, 1) 0.09193 0.1744 -0.02436 —0.007439 0.009273 0.001347 0.01358 0 +0.1950 0
FP;y (3, 1) 0.09193 0.1744 -0.02748 —0.01349 0.0149  7.647 x 10™* 3.547 x 1073 0 £0.1950 0

FP;, (3, 1) 0.1105 0.1143 001787 —0.06448 0.02797 4.877x 10~ 001015 F 02691 +0.1161 0.1135
FP;, (3, 1) 0.1105 0.1143 001818 —0.03263 0.02284 2.830x 10  0.007828 = 0.2691 +0.1161 0.1135
FP;; (3,1) 01103 0  0.02095 -0.06365 0.02758 —2092x10-5 0.01210 F 02682 +0.1223 0.1224
FPy, (3,1) 0103 0 002133 —0.03237 002257 2.833x10  0.009462 = 0.2682 +0.1223 0.1224
FPis (Nos.N5) 0 0 0 0 0 0 0 0 0 0

_ 21 48
Oays = Pus + (60&210 + 2NsaZy + ~~Npyad,s + —N5N240!5> ays

10 5
2 29 2 2
— NsNoy | 2055 + 50 %24z + dszy | oy, (24)
0,05 = 60, + 2Nsa? gN 2 ﬁNN 2 ) o 25
Ays = Pz + | 6059 + 2Nsa55 + 10 2400y + 5 Vs 240y | AQyy (25)
2 13 4
— N5N24 <— gd%z + Ea;‘z - §a52a242> a,%, (26)

095026-7



FABBRICHESI, NIETO, TONERO, and UGOLOTTI

PHYS. REV. D 103, 095026 (2021)

where the pure gauge e scalar contributions Sy, B’Z, Bus
Pus, and B are given in Appendix C. In particular, in
Appendix C 1, we also give a thorough explanation on how
we have derived the extra contributions to 0,ay arising
from the presence of the vectorlike fermion Yukawa
couplings. In Appendix C 2, we also give a derivation of
the f# functions for the gauge-Yukawa subsystem.

B. Multiplet mass splitting

At the GUT scale, the vectorlike fermion fields y;, wy,
and y; are embedded into W5 and W,, multiplets, as
described in the previous section. These SU(5) multiplets
contain extra fields, and therefore one has to devise a
mechanism that, after SU(5) breaking, keeps these extra
components at the GUT scale and allows the v, yy, and
e fields to acquire a mass of order 1 TeV. A viable
mechanism to achieve this result consists in fine tuning the
mass of one particular copy of Ws, for instance, the one with
I = . Moreover, the Lagrangian in Eq. (14) should be
slightly modified by breaking the U(N5) symmetry of the
mass term and replacing it with a more general term such as
Ms"P5'W! Since each of the W5 is a direct sum of an
SU(2) doublet and an SU(3) triplet, we can think of the v
field as if it were embedded into the @ copy, namely,
V¢ =y, @ wg, where y§ is the triplet partner. After SU(5)
breaking due to a nonzero vacuum expectation value for the
adjoint scalar field, i.e., (¥) = f - diag(2,2,2, -3, —3), the
contributions to the mass term for the w field are

—(MQ +2fyss)Wiws — (M = 3fyss)pry,.  (27)

Therefore, the doublet-triplet splitting can be achieved by
assuming a cancellation between the two terms contributing
to the mass of y; with a fine-tuning of one part in 10'3.
This fine-tuning procedure is not imposed on the other
N5 — 1 copies as they should stay at the GUT scale instead.

A similar mechanism has to be realized also in the case
of the yy and y; embedding into ¥,,. Furthermore, the
case of the y; embedding is analogous to the doublet-
triplet splitting of the Higgs multiplet in minimal SU(S)
GUT models. The simplest solution to the Higgs doublet-
triplet splitting problem is similar to the one in Eq. (27) and
requires a 107'* tuning, but it is also possible to devise
alternative mechanisms that alleviate this tuning, like the
sliding singlet mechanism [88-91].

IV. FIXED POINTS

Consider a theory characterized by a set of dimensionless
couplings «;. The renormalization group flow is completely
determined by their # functions

pile) =5 (28)

where ¢ = log(p/ o) is the logarithm of the sliding scale of
the quantum theory. A fixed point of the theory aj* is

defined by the vanishing of the f functions of all couplings
Pi(a;) = 0. (29)

When the couplings a; assume the values «', the renorm-

alization of the quantum theory stops. In general, a given
fixed point can be reached either in the UV or in the IR
limit, depending on the direction of the approaching
trajectory. Notice that, in the common lore, the distinction
between UV and IR fixed points is only meaningful when
there is a single coupling in the theory. In the case of more
couplings, this distinction becomes unambiguous only if,
given two fixed points, it exists an RG trajectory connect-
ing the two of them.

The g function of a single coupling is independent of the
gauge choice in dimensional regularization. It is regulari-
zation scheme independent up to next-to-leading order
(NLO). If there are several couplings running together, their
p functions depend on the scheme already at the NLO [92].
There is therefore a degree of ambiguity in the position of
the fixed points because their position could be moved by
changing the scheme. We assume that these changes are
small if the fixed point is found within the perturbative
regime. One should, however, bear in mind this problem of
scheme dependence in all the discussions to follow.

Once we have a candidate fixed point, we can study the
flow in its immediate neighborhood. We move away from
the fixed point and study what happens when we shift the
couplings by a small amount éa; = «; — @ . To this end, we
linearize the $ functions in the vicinity of the fixed point as

%5@1 = Mljéaj (30)

and ignore O(5a?) terms. The quantity

_ 9
Mij=a—aj{ﬁ (31)

is referred to as the stability matrix. Next, we can
diagonalize the linear system by means of a similarity
transformation

($7);iM;iS1n = Ginbn, (32)

where the eigenvalues 6, are also known as critical
exponents (see the equation below). Defining z; =
(S‘l)ijéaj, we have that the § functions and their solutions
can be written in the following simplified form:

. 0;
9% =0izi = 7(t) = ;e = ¢ <ﬁ> . (33)
ot Ho
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From the expression of z; as functions of yx, we see that
there are different situations depending on the sign of 6;:
(1) For 6; > 0, as we increase £ we move away from the
fixed point and z; increases without control; the
direction z; is said to be irrelevant.
(ii) If 6; < 0, as we increase u, we approach the fixed
point; the direction z; is called a relevant direction.
(iii) If 6; = 0, we do not know the fate of z; and we have
to go beyond the linear order as explained below; the
direction z; is called marginal in this case.
The notion of relevance or irrelevance is independent of the
direction of the flow and of the choice of basis. AS theories
correspond to trajectories lying on a critical surface whose
tangent space at the fixed point is spanned by the relevant
eigenvectors. The number of relevant directions defines
the dimension of the critical surface and corresponds to the
number of free parameters which have to be fixed by the
experiment.
Gauge-Yukawa models in the 211-SCHEME, which are
characterized by the set of f functions

D, = (—B + Ca - ZDiayi>a2,
Oy, = <ZEijayj -F ia) ay,. (34)
J

have been recently studied in Refs. [13,15,37]. In the
latter equation, the couplings are a = g*>/(4x)*> and
a, = y}/(4r)?, where g is the gauge coupling and y
are the Yukawa couplings. The quantities B, E;;, and F;
are the one-loop coefficients, while C and D; are the
two-loop ones. It has been show that, depending on the
relative sign and magnitude of the coefficients B, C, and
C'=C =3 Di(E™");F;, this system can have three
different types of fixed points [37]:

(i) The Gaussian or noninteracting fixed point, where

all couplings are zero.

(ii) The Banks-Zaks fixed point [93], where all the
Yukawa couplings vanish.

(iii) The Gauge-Yukawa fixed point, where the gauge
and at least one Yukawa coupling are different
from zero.

As an example, the phase diagram for the case of a gauge
coupling a and a single Yukawa coupling a, with B > 0
and C > C’' > 0 is shown in Fig. 2. In this case, all three
kinds of fixed points are present: the Gauge-Yukawa fixed
point has both nonvanishing couplings and attracts in the IR
trajectories emanating in the UV from both the Gaussian
and the Banks-Zaks fixed points.

In the minimal SU(5) GUT model, the system of gauge
and top-Yukawa S functions takes the form of Eq. (34) with
B >0 and C < 0; in this case, no gauge-Yukawa fixed
point is present, and the only viable fixed point is the
Gaussian one. However, the LVG GUT model considered

0.21f BRERAMAA R R P
0.18} T RN
B HHERIRALAIN
0.15} HHHmQ AR
[ SARSAALLENEVIANY

0.12} AR AR
+%iww‘* 4;“*‘“‘\ X

Qyy SRR BRI
0.09} “ ig\kx/‘ ;I‘Hmy AN
RUT/7IITE RS RN

0.06 Ty f’fWHM“ LW
IL NP ’4/4‘4“‘4“4‘4“ ﬁA“‘\\‘\“\\\‘E

003 11} LA
. C},/’ 7//4 A1 Z\ :\ AN

0. 0.02 0.04 0.06 0.08 0.1 0.12
«

FIG. 2. Example of renormalization group flow in a model with
gauge g and Yukawa y couplings. The arrows are pointing toward
the IR. There are three fixed points: the Gaussian (G) for
vanishing gauge and Yukawa couplings, the Banks-Zaks (BZ)
for vanishing Yukawa coupling, and the full interacting Gauge-
Yukawa (GY) fixed point.

in the previous section has additional vectorlike fermions
and Yukawa couplings which influence the sign of the
coefficients B, C, and C'. This will allow Gauge-Yukawa
fixed points to appear, as we will see in the following.
Actually, the gauge-Yukawa system of our GUT model,
described in Egs. (16)—(20), is slightly different from the
one in Eq. (34) due to nonfactorizable contributions of @, to
the f functions of asy and a,,y. This is indeed the reason
why we have considered linear rescaling in the definition of
a’s in Eq. (15). Nonetheless, the structure of the gauge S
function remains the same.

In this work, we compute the fixed points of the full
system, including the gauge, Yukawa, and scalar quartic
couplings. In general, there are no conditions on the values
of the fixed points, and they could take any value. Yet,
when we work in perturbation theory, we have to remain
within its range of validity. Therefore, we demand that all
the couplings have to be sufficiently small at the fixed
point. In practice, this means that going to the next order of
the perturbative expansion should not appreciably change
the position of the fixed point as well as its other properties.
This implies that the numerical values of the fixed points
must satisfy the conditions
0<al<l, o] < 1, lat| < 1, log| < 1.
The complete list of nontrivial fixed points that satisfy these
requirements, as a function of N5 and N,4, is shown in
Table V. By inspection of Table V, we can see that
interacting fixed points can be obtained when N5 = 1, 2,
3, 4 and N,y = 3. In this case, the two-loop term of the
gauge f function turns out to be comparable with the one-
loop term as C > B 2 0, and the gauge coupling fixed
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TABLE VI. List of the eigenvalues for the fixed points shown in Table V. Negative (positive) eigenvalues correspond to relevant
(irrelevant) directions, according to the definitions given in Sec. IV. As for Table V, the bold rows highlight those fixed points which can
be matched with the low-energy LVG model at the GUT scale. For the Gaussian fixed point FPss, all couplings are marginal; in
particular are marginal and there are no marginally relevant directions.

(N24, NS) 91 02 63 94 05 06 97 08 99 910 rel irrel
FP, @3, 4) 0.2280 0.1662 0.1393 0.1361 0.1020 0.06611 0.02240 -0.01197 -0.01180 0.003063 2 8
Fp, (3,4 0.2291  0.1796  0.1504 0.1361 0.1020 0.07278 0.02240 —0.01197 0.01125 0.003063 1 9
FP; 3,4 0.2130  0.1607 0.1376  0.1365 0.1008 0.06133 0.02565 —0.01944 0.01428 0.003079 1 9
Fp, (3,4 0.2143  0.1836 0.1541 0.1376  0.1008 0.07167 0.02565 0.01802 0.01428 0.003079 0 10
FpPs @3,3) 0.5034 0.3537 0.2984 0.2958 0.2263 0.1432 0.05686 —0.04096 -0.02449 0.01311 2 8
FPy (3, 3) 0.5070  0.3989 0.3348 0.2984 0.2263  0.1662 0.05686 0.03796 —-0.02449 0.01311 1 9
FP, (3,3) 0.4695 03439 0.3012 0.2927 0.2230 0.1355 0.05968 —-0.05031 0.03277 0.01317 1 9
FPg 3,3 0.4729 04021 0.3388 0.3012 0.2230 0.1622 0.05968 0.04598 0.03277 0.01317 0 10
FP, (3,3) —0.3948 0.1654 —-0.1357 —0.1173 0.1106 —0.08280 0.05227 -0.03377 —-0.03083 0.01009 6 4
FP,, (3,3) —-0.3953 -0.1661 0.1654 —0.1547 0.1106 —0.08280 —0.04950 —-0.03924 —-0.03083 0.01009 7 3
FP;; @3, 2) 0.8473 0.5738 0.4971 0.4735 0.3834 0.2371 0.1186 -0.09480 -0.03685 0.03171 2 8
FP, (3,2) 0.8554 0.6748 0.5651 0.4971 03834 0.2897 0.1186 0.08533 —-0.03685 0.03171 1 9
FPi;  (3,2) 0.7901  0.5578 0.5007 0.4720 03766  0.2281 0.1152 -0.1020 0.05561 0.03185 1 9
FP, (3,2 0.7972  0.6722 0.5673 0.5007 0.3766  0.2821 0.1152  0.09137 0.05561 0.03185 O 10
FPs (3,2) -02732 -0.1753 0.1670 -0.1537 -0.1332 -0.1243 -0.1041 -0.08467 0.03781 0.02284 7 3
FPs @3,2) -02746 -0.1834 0.1670 -0.1606 —0.1332 -0.1243 -0.1148 -0.1041 -0.03738 0.02284 8 2
FP;  (3,2) 0.5997 0.2690 0.2621 -0.2179 0.1752 -0.1397 0.1103 -0.04398 0.02383 -0.01593 4 6
FPigy (3,2) —-0.6248 0.2621 —-0.2147 0.1752 0.1658 —-0.1531 -0.1397 -0.06625 —-0.04398 0.02383 6 4
FPyy (3,2) —-0.6262 -0.2985 —0.2795 0.2621 0.1752 -0.1521 -0.1397 -0.08618 —0.04398 0.02383 7 3
FP,y, (3,2) 0.6170 -0.2776  0.2621 0.1752 —-0.1425 -0.1397  0.1305 -0.04398 —-0.04087 0.02383 5 5
FP,; (3,2) -0.5901 -0.2688 0.2621 -0.2507 0.1752 -0.1397  0.1014 —-0.06413 -0.04398 0.02383 6 4
FP,, (3,2) —0.5953 0.2621 -0.2235 -0.1920 0.1752 -0.1397  0.1382 —-0.04398 0.04142 0.02383 5 5
FPy; (3,1) -04059 -0.2931 -0.2557 0.2332 -0.2050 -0.1736 -0.1445 -0.1350 0.08109 0.04256 7 3
FPy, @3,1) -04073 -0.2989 -0.2704 0.2332 -0.2075 -0.2050 -0.1736 -0.1350 -0.08038 0.04256 8 2
FP»s (3, 1) 0.8658  0.4059 0.3678 —0.3052 0.2839 0.2452 -0.2155 -0.05071 0.04441 -0.03803 4 6
FPy (3,1) —0.8110 -0.3860 0.3678 —0.3488 0.2452 -0.2155 0.1926 -0.06851 —-0.05071 0.04441 6 4
FP,;, (3,1) —-0.8778 -0.4429 —-0.4202 0.3678 —-0.2917 0.2452 —-0.2155 -0.1541 -0.05071 0.04441 7 3
FP,y (3, 1) 0.8697 —-0.4187 0.3678 —0.2838 0.2452 —-0.2155 0.1384 —0.09440 -0.05071 0.04441 5 5
FPy (3,1) —-0.8189 03678 —0.3411 —-0.2661 0.2452 0.2409 -0.2155 -0.05071 0.04806 0.04441 5 5
FPy, (3,1) —-0.8750 03678 0.3073 —-0.3053 0.2452 -0.2155 -0.1890 -0.1044 -0.05071 0.04441 6 4
FP;; (3, 1) 1.220 0.8271 0.7553 0.6762 0.5844 0.3513  0.2537 —0.1951 0.07899 0.06135 1 9
FpP;, @3, 1) 1.235 1.035 0.8625 0.7553 0.5844  0.4547  0.2537 0.1696  0.07899 0.06135 0 10
FP;; @3, 1) 1.303 0.8529 0.7524 0.6764 0.5963 0.3596 0.2721 -0.1917 0.06115 -0.04698 2 8
FpPy, @G, 1) 1.320 1.049 0.8629 0.7524 0.5963 0.4657  0.2721 0.1666  0.06115 —-0.04698 1 9
FP3s (3,<4) 0 0 0t ot 0t 0t 0" 0 0 0 0 0

Sec. III—have a common mass at the GUT scale.
Therefore, we need to consider two matching scales,

point turns out to be much smaller than 1. The associated
critical exponents, which are shown in Table VI, are also
much smaller than 1, and, therefore, we expect the fixed

points to be perturbative stable. p1 =Mpyg =1TeV and pp =My = Mcyr. (36)

such that MZ < MLVG < M‘I’

We approximate the decoupling of all vectorlike fer-
mions by considering them as massless above their corre-
sponding matching scale and as infinitely massive below.

V. RENORMALIZATION GROUP FLOW AND
MATCHING WITH THE SM

In this section, we investigate the existence of asymp-

totically safe trajectories that emanate from the UV fixed
points presented in Table V and are connected to the SM at
the IR scale y = M. As already mentioned, we assume
that the vectorlike fermions v, wy, and w;—introduced
in Sec. II—have a common mass M;yg =1 TeV,
while the vectorlike fermions W5 and W,,—introduced in

The running of the various couplings must be matched
at the GUT scale, on the interface between the two
models described in Secs. II and III. At this interface, a
subtlety regarding the gauge couplings should be taken into
account; since their f functions have been considered at
two-loop order, one-loop matching corrections should
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consequently be accounted for. The latter corrections are
given by the expression (cf., for example, Refs. [94,95])

1 1 1 M
=————|Tr(# —21T1r<ti2 log—v>
] R Gl

M M
+Tr (t?s log —S> + 8Tr (tfp log —F) ] . (37)
’ H ' Ha

where My with X = (V, S, F) being the mass matrices for
the heavy vector bosons [heavy gauge bosons, ghosts, and
Goldstone bosons along the broken directions in the adjoint
space of SU(5)], heavy physical scalars, and heavy fer-
mions, respectively. The matrices t;x are, instead, the
unbroken generators in the representation of the field X,
while the trace is performed over the broken subspace of
SU(S). In physical terms, the latter Eq. (37) entails that the
renormalized gauge couplings «; [after the gauge group
SU(5) is broken down to the SM gauge group] differ from
the gauge coupling @ of SU(5) due to the one-loop
diagrams where the quantum fluctuations of the heavy
particle are integrated out. Numerically, the most important
contribution comes from the vector states, if they have a
mass different from the matching scale u. Therefore, we are
free to bridge any—reasonably small—mismatch in the
running of the gauge couplings by removing the degen-
eracy in the values of the heavy masses and slightly moving
them away from the GUT scale.

The values of the LVG model couplings «;, &, a;, and ay,
at Mgyt define the IR target for the LVG GUT model
couplings a2, a3, ay, and a?, respectively. In other words,
one has to search for those trajectories emanating from the
UV fixed points that hit the values of the IR target at the
scale Mgyt, while flowing down from the fixed points.
The other couplings of the LVG GUT model will be
consequently determined by this matching condition
requirement. Because of the freedom of choosing the mass
of the heavy particles My slightly different from the
matching scale p,, for any practical purposes, one has to
match only the three couplings

a(up) = “310(/42)’ a;(u2) = ay(u2),

Let us now describe how to obtain such target values.
Starting from the scale M, we first solve the renormaliza-
tion group flow of the SM up to the first matching scale
U1 = Myyg = 1 TeV. In other words, we integrate the SM
p functions given in Appendix A with boundary conditions
for the SM couplings provided by their experimental
values, cf. Table II or Ref. [69]. At the scale u;, the
vectorlike fermions of the LVG model become dynamical
such that, from this scale on up to y, = Mgyr, We integrate
the S functions in Egs. (3)—(8), with boundary conditions
at u; given by the values obtained from the previous

integration. Clearly, at the scale u;, there is one free
parameter, namely, the value ay(u,) for the beyond-the-
SM vectorlike Yukawa coupling. For any values of the
latter coupling at u;, there will be a set of values for «;, ;,
and ay at y, which defines the IR target for the LVG GUT
model. The value ay () has thus to be fine tuned in order
for the matching conditions in Eq. (38) to hold, as we are
going to explain in the following.

A. Matching procedure

Given the IR target {a (1), a;(u2), ay(up)}, we have
then searched for the existence of those trajectories ema-
nating from the fixed points in Table V which can be
connected to the target itself. To do so, we have integrated
the p functions for the LVG GUT model given by
Egs. (16)—(25), starting from a point infinitesimally close
to the selected fixed point and letting the system to flow
down to the IR scale y, = My = Mgyt. The initial point of
the renormalization group flow is then varied until the
trajectory hits, whenever possible, the IR target.

Some comments are in order. The initial point of the
RG flow should belong to the UV critical surface in order
to guarantee that the flow toward the UV ends at the
considered fixed point; say, for example, FP;. This critical
surface can be approximated, in the neighborhood of FP;,
by its tangent space at FP;, which is defined as the
space spanned by the relevant directions at that point.
Of course, this approximation is more accurate if the
starting point is closer to the fixed point; an infinite
numerical precision would be required in order to lie
exactly on the critical surface, and a fine-tuning problem
is always present while flowing toward the UV. In other
words, starting from the IR target, there will usually be a
positive RG time 7 = log(u/p,) > 0 where the numeric
integration breaks down entailing the fact that the RG
trajectory is repelled away from the critical surface due
to nonzero fluctuations along the irrelevant directions.
This is precisely the reason why it is preferable to start
the flow in a neighborhood of a fixed point and then flow
down to the GUT scale. This guarantees the fact that the
physical trajectories are attracted to the critical surface in
the IR.

Let us discuss, as a representative case, the fixed point
FP, of Table V together with the corresponding eigenvalues
in Table VI. The tangent space of the critical surface at FP,

is two dimensional and spanned by the eigenvectors o®

i
and vi(9> associated, respectively, to the negative eigenval-

ues 0g and 0y of the stability matrix Mj;. Any point on this
tangent space can thus be parametrized as
o; = aik + MijSik(e(S)Z](:;) + 6(9)Z]<(9))
=a + M;;Sy(e® 5,5 + €96 o)

= o} + Oge® vi(g) + ye®) ”1(9> =a + 6o, (39)
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%) are infinitesimal parameters. In particular,
®)

i

where ¢®) and ¢!

the eigenvector v
(

i

is pointing in the ¢, direction, whereas

? induce a displacement along all scalar directions. The
(8.9)

v
freedom of choosing ¢ allow us to match two couplings
with the IR target, namely, o and ay.

Let us consider first the behavior of the top-Yukawa
coupling. Given a positive, however small, displacement
Sao(pg) > 0 at a certain initialization scale ug > u,,
the top-Yukawa coupling increases while decreasing the
energy scale y, and, eventually, it crosses its IR target value
at a scale y) = pioe™". On the other hand, given an infini-
tesimal small, but negative, displacement oy (1g) < 0, the
quartic Higgs self-interaction coupling decreases while
decreasing the scale yu, and, eventually, it crosses its IR
target value at a scale y = Hoe™"". Usually, the two scales
by and yj are different. Nevertheless, fixing ¢(®) while
varying €® (or vice versa), it is possible to fine-tune the
initial conditions da (i) and Say (ug) such that u) = uf to
any arbitrarily chosen numerical precision. Since the initial
scale g is not a priori fixed, it is legit to impose u) =
U5 = py such that the fine-tuned initial conditions S (1)
and Say (1) correspond to the correct values at the scale
lo = phe” = e’ required in order to match a0 and ay to
their IR values in Eq. (38).

There is a technical difficulty regarding the latter fine-
tuning procedure. The RG flow for the quartic Higgs self-
interaction ay (u) is such that close to the energy scale 4 it
varies very fast due to the presence of an IR singularity
below, yet very close to, the scale x5. At this singular point,
the quartic Higgs self-interaction diverges to infinitely

negative values. In other words, ay (u) remains very much
close to its fixed point value until the energy scale
approaches 5 and ay(u) starts to decreases very fast
toward the singularity. It is in this running toward the
singularity that the RG trajectory of ay(u) is intercepted
and stopped at exactly the scale x4 where ay equals the
(negative) value of the IR target. Because of the condition
Uy = pp (= py), we can claim that this singularity does not
encode a physical inconsistency in our LVG model because
it occurs below the GUT scale where, indeed, a different
system of differential equations holds. The only drawback
of the presence of this (alleged) singularity below the GUT
scale is that, in order to satisfy the equality ) = p, = i, a
high degree of fine-tuning for the initial conditions &0 (xq)
and ay(pg) is required. In other words, by an appropriate
choice for the initial conditions on the (tangent space of the)
critical surface at the p scale, it is possible to move the
singularity of ay below the GUT scale. This singularity
thus becomes physically not worrisome, as below the GUT
scale another system is considered.

Subsequently, one has to read off the value a2 (i, ), which
usually does not coincide with ay (u,). To match this last
condition, we have exploited the freedom of choosing a
different boundary condition for ay (). Varying this latter
value, one falls into one of these cases a2 (u,)Zay (u,) such
that a simple bisection algorithm allows one to fine tune the
condition a? (u,) = ay(u») to any arbitrary chosen numeri-
cal precision. Notice that for any different value of ay (¢ ),
the above procedure of fine-tuning the couplings ;o and
ay has to be repeated, increasing the numerical effort
required to satisfy all conditions in Eq. (38).

0.01

0.008

0.006

o’s  0.004

0.002}

2 2
— 05 —— Q4o

10? 10° 10% 10t 10"

FIG. 3.

1617 1620 1623 1626 1629 1632

1 [GeV]

The renormalization group flow for the LVG model approaching the fixed point FP in the UV limit 4 — oco. Below the GUT

scale (at about 10'® GeV and highlighted by the vertical line in the middle), the gauge couplings «;, the top-Yukawa couplings a,, and
the Higgs quartic self-interaction are represented with boundary conditions given at the M, scale. The vectorlike fermion fields v, wy,
and v, with multiplicity Ny = 1, enter in the dynamics at the energy scale of 1 TeV (highlighted by the gray vertical line on the left).
The value for the beyond-the-SM Yukawa coupling ay at 1 TeV is a free parameter to be fine tuned in order to satisfy the matching
conditions in Eq. (38). Above the GUT scale, the SU(5) gauge group is restored, and further vectorlike fermion fields are included; in
particular, there are three flavors of W, and four flavors of Ws. The gauge coupling a2, the top-Yukawa coupling o2, the Higgs
coupling ay, and the vectorlike Yukawa coupling a are represented.
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TABLE VII. For the fixed point FP;, we report the variation of
the predicted value for the beyond-the-SM Yukawa coupling ay
with respect to the initialization scale Myvyg = u; of the vector-
like fermions. We illustrate also the variation of the gauge, top-
Yukawa, and Higgs quartic self-interaction couplings at the GUT
scale 5.

My (TeV)  ay(u) agur(a)  a(u2) a;(12)

0.1 0.0009767 0.002322 0.001238 —0.001970
1 0.0009317 0.002322 0.001396 —0.002055
10 0.0008927 0.002322 0.001497 —-0.002044
100 0.0008572 0.002323 0.001562 —0.001987
1000 0.0008239 0.002323 0.001603 —0.001904

Once all three conditions in Eq. (38) have been
satisfied, we can finally plot the full RG flow from the
M 4 scale up to the considered fixed point. As an example,
we present how the fixed point FP; can be connected with
the physics at the scale M, in Fig. 3. At the interface
between the two models, that is at the GUT scale, two RG
flows described by two sets of first-order differential
equations have to be matched. Because of this first-order
structure, the RG trajectories are only required to be
continuous; however, no constraint on the first derivatives,
namely, the values of the f functions at the GUT scale,
should be imposed. This is particularly evident in the RG
trajectory of the Higgs self-interaction coupling. The
small discontinuity in the gauge couplings is due to the
finite correction induced by the one-loop matching con-
dition given by Eq. (37). Let us emphasize the fact that the
low-energy value for the beyond-the-SM Yukawa cou-
pling ay at the scale Myyg = 1 TeV represents a physical
prediction. This prediction is the result of the matching
conditions at the interface between the two systems below
and above the GUT scale.

In Sec. IT A, see in particular Table III, we have seen that
there is a certain freedom in choosing the energy scale from
which the vectorlike fermions of the LVG model become
dynamical. It is therefore interesting to check whether this
freedom is preserved also by the matching procedure or the
latter imposes some sort of bounds on the possible values of
M yg- As a testing case, we have again chosen the fixed
point FP;, and in Table VII, we report the corresponding
predictions for the coupling ay at different M;yg scales.
We conclude that there are no further restrictions on the p;
scale and that the matching procedure can be successfully
carried for a broad range of such scale. We expect the same
behavior also for the other fixed points which allow for a
matching between the two models at the interface scale u,.

The above method can be applied to any fixed point
in Table V. Quite in general, the latter Eq. (39) can be
written as

o =a + 26(“) vi(a), (40)
0,<0

where the sum is over all the relevant eigendirections
associated to negative eigenvalues and €@ are all free
parameters. It seems that the degree of difficulty increases
with the number of relevant directions, i.e., the number of
free parameters to be fixed. Nevertheless, we have found
that, in order to verify whether a fixed point can be
connected with a physical trajectory to the physics at the
GUT scale, it is always possible to reduce the number of
€@ to be fixed to the minimal value of 2. These two

parameters are always associated to those directions—

eventually different from vi(s’g> depending on the fixed point

—which result in the same RG behavior for the couplings
a0 and ay as described above.

In Tables V and VI, we have highlighted in bold all
possible fixed points which possess, at least, one physical
trajectory which hits the IR target {a; (1), a;(u2), ay (12)}
at the GUT scale satisfying the matching conditions in
Eq. (38). To understand why the only highlighted fixed
points can be matched with the IR target at the GUT scale,
it can be useful to visualize in which directions the linear
eigenperturbations drive the RG flow. To this aim, in
Table VIII, we have listed with the symbol m all those
couplings which get perturbed by a nonzero infinitesimal
displacement €@ along all relevant directions. It is clear
that all fixed points which allow for a match with the IR
target at u, share the same feature: both top-Yukawa

TABLE VIII. Schematic representation of those couplings
which are perturbed away from the fixed point values by a
nonzero infinitesimal displacement €@ along all relevant
(0, < 0) directions v(@) spanning the tangent space of the critical
surface at the corresponding fixed point.

(N2, Ns)  das  dayg  Jans  dasy  da, Say
FP, 3,4 - u - - - [
FP, G4 - om - - -
FP, G4 - - - -~ m
FP, G4 - - - - - -
FP; G,3) - = _ - - m
FP, G,3) - om - - -
FP, (3,3 - - - -~ m
FPy 33 - - - - - -
FP‘),IO (3, 3) — - u — | | |
FP“ (3, 2) — ] - — — |
FP,, G.2) - = - - - -
FP,, 3,2 - - - - - =
FP,, 3,2 - - - - -
FPis 16 3,2 - L] L] - L] L]
FP17_22 (3, 2) — — ] — | n
FP23,24 (3, 1) - ] ] — | n
FPys 30 3, D - - . - . "
FP31 (3, 1) — - — — — n
FP3, 3, D - - - - - -
FP33 (3, 1) — | ] — — - | |
FP, 3,1 - ] - — — —
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and quartic scalar self-interaction couplings have to be
perturbed away from their fixed point values. All other
fixed points cannot be matched with the LVG model at the
GUT scale because either only the top-Yukawa or the scalar
couplings (or neither of them) are perturbed by moving
away from the fixed point along the critical surface.

Predictivity in the low-energy regime is an important
feature in any AS theories. All relevant directions at a
certain fixed point (i.e., with negative eigenvalues) are
associated to free parameters of the theory. On the contrary,
couplings associated to irrelevant directions are predicted in
the IR. Table VIII shows that not all the fixed points that
allow for a matching at the GUT scale have the same degree
of predictivity. For example, for the fixed point FP;—as
well as for FPs ;; ;3—the coupling «, in the low-energy
regime represents a prediction. This is not the case for the
fixed points FPy5 62304 Where a, represents, instead, an
additional free parameter in the theory.

B. Gaussian fixed point

We have also investigated the Gaussian fixed point
which is present for all values of N5 and N,4. If we further
demand the non-Abelian gauge coupling a5 to be asymp-
totically free (AF), then the multiplicities of the vectorlike
fermions are restricted to be

N24:3,N5 <4, N24:2,N5S9 or
N24:],N5S14. (4])

Given a model with an AF non-Abelian gauge sector, one can
try to investigate whether the AF gauge coupling can drive all
other couplings toward the Gaussian fixed point. To address
this question, one can study the quasi-fixed-points [96-99]
(also called in the literature fixed flows [32] or eigenvalue
conditions [100,101]) for the rescaled couplings

ax o,

ay =— and &Z:a—‘, (42)
5

as
such that any finite quasi-fixed-point (&, &) represents a
specific trajectory along which the UV behavior of the scalar
couplings ay and the Yukawa couplings «, is locked to
follow the AF gauge coupling as.

Among all possible AF scenarios for as given in
Eq. (41), we have found the existence of quasi-fixed-points
(@x, az) only for the combinations

N24:3, N5:(1,2,4) (43)
Notice that, for example, the minimal configuration where
only one W5 and ¥, are present above the GUT scale does
not have quasi-fixed-points in the Yukawa-scalar sector. It
appears that higher multiplicities are required in order for
the gauge coupling as to drive all other couplings toward
the Gaussian fixed point. Yet, among these possibilities, we
have found that none of the corresponding quasi-fixed-

points provides viable trajectories which can be matched
with the IR target {o(u>), @) (12), ay(uo)} at the GUT
scale. In other words, within our LVG GUT model, we have
found that no total AF trajectories can be found, thus
rendering the interacting fixed points which allow for a
matching at the GUT scale even more special.

The vectorlike fermion content corresponding to
Ny, = 3, N5 = 3 has been discussed in Ref. [32], in which
the authors presented the existence of quasi-fixed-points
and argued that realistic total AF GUT models can be
constructed. The reason for this disagreement might come
from the fact that our Yukawa sector is simpler than the one
considered in Ref. [32]. For example, we do not consider
the Yukawa interaction term among the vectorlike fermion
Y5 and the SM GUT field y5 (exchanging an adjoint scalar
%), which is precisely the Yukawa coupling (together with
the top Yukawa) acquiring a nontrivial quasi-fixed-point. In
the light of these observations regarding the Gaussian fixed
point, it would be interesting to study how the interacting
fixed points presented in Table V change after including
these terms, in particular those for which a matching with
the SM at the GUT scale is possible.

VI. ANOTHER MINIMAL EXTENSION:
THE 2U2Q MODEL

The work of Ref. [34] classifies all minimal SM
extension with vectorlike fermions at the TeV scale in
which good coupling unification is obtained. Among
those, another relevant® choice is the 2U2Q model that
represents a “fourth-generation” scenario. In the case of the
2U2Q model, the Q and U labels stand for fields that are
vectorlike fermion multiplets transforming, respectively,
under the (3,2,1/6) and (3,1,2/3) representations of
the SM, in analogy to the SM quark doublets and up
singlets. The 2U2Q model corresponds to adding to the SM
two y and two yy multiplets at the TeV scale, with
quantum numbers shown in Table IX. The Lagrangian of
the 2U2Q model then reads

Lo = Lsw +WpiPyy + WPy = Moigwy
- Mywpyy - yQZl/_IIQl//{]HC +H.c. (44)
1.J

where I,J = (1,2) and H® = io,H* is the charge conju-
gated Higgs field. y, is the coupling of the new Yukawa
interaction involving the Higgs and the vectorlike fermions.
This term breaks the flavor symmetry to a diagonal subgroup
SU(2), x SU(2) — SU(2)p, where the Q and U vector-
like fermions rotate with the same transformation. At the
unification scale, the vectorlike fermions of the 2U2Q model
in Table IX are embedded into proper multiples of SU(5); we
assume that the fields w, and y get embedded into

*Also, the (U + D) model of Ref. [34] has promising proper-
ties below the GUT scale, and it has been studied in Ref. [35].
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TABLE IX. Quantum numbers and multiplicities of the vector-
like fermions in the 2U2Q model.

Fields SU(3), SU(2), U(l)y Ny
wo 3 2 1/6 2
vy 3 1 2/3 2

TABLE X. Quantum numbers and multiplicities of the vector-
like fermions in the 2U2Q GUT model.

Fields SUG) N;¢

vectorlike fermions fields W¥;,, with multiplicity N;g > 2,
transforming under the antisymmetric representation® of
SU(5), see Table X. The Lagrangian of the 2U2Q GUT
model is

1 - 1 _
LS50 = L& + ETI(‘Ploll)‘Pw) - §M10TT(T10‘P10)

Yio

3

D s W@ + He.
1.J

+ yIIOZTr(li’{OZlP{O)’ (45)

1.J

where I,J = (1,2, ..., Nyo) are the flavor indices for the ¥
field. Let us notice that not all possible SU(5) invariant
Yukawa terms have been considered with the given matter
field content. For the sake of simplicity, we have not con-
sidered, for example, Yukawa interactions between ¥;, and
X10 or 5. Therefore, no Yukawa interactions between the SM
fermions and the extra vectorlike fermions are retained.

Can this choice of vectorlike fermions give rise to an
asymptotically safe SU(5) GUT model? The answer is no.
We computed the f functions of this model and studied its
fixed points. We found that, for any value of Ny > 2, the
only viable fixed point is the Gaussian one; yet, no good
matching with the SM at low energy is possible. For
completeness, we give the f functions of the 2U2Q model
in Appendix D.

VII. CONCLUSIONS

The goal of having an asymptotically safe extension of
the Standard Model is a powerful motivation in searching
for physics beyond the SM. It provides a guiding principle
that still remains viable after others, like supersymmetry or
compositeness, are waning.

The simplest way to turn the Landau pole of the SM into
a fixed point is through a GUT scenario. The addition of

3The antisymmetric representation of SU(5) can be decom-
posed under the SM gauge group as follows [87]:
10=(3,2,1/6) & (3,1,-2/3) & (1, 1, 1).

few vectorlike fermions at the 1 TeV scale makes an SU(5)
GUT unification of the SM gauge couplings possible and
consistent with all experimental constraints. We consider
what we dubbed the LVG model, which contains the same
features of a split SUSY scenario, and the 2U2Q model,
which has the features of a fourth-generation scenario.

For the LVG model, we found a GUT embedding that has
a fixed point for the gauge coupling that is interacting—as
opposed to the more familiar case of the asymptotically free
limit common to all unbroken non-Aabelian gauge models.
We find this an interesting feature. It could perhaps be
tested in cosmology, for instance, in physics around and
above the GUT phase transition. We also check the 2U2Q
model, but no matching to the SM can be found in this case.

We are aware that the LVG model as it stands cannot yet
be considered completely satisfactory.

For one thing, the known problem of the stability of the
Higgs potential remains, as it does in the SM. The scale at
which the potential crosses to negative values for the
coefficient of the quartic term is about the same as in the
SM, as computed at the one-loop order. It is known [5,7,8]
that this value increases as higher-loop orders are computed
and included, and we expect the same to happen in the case of
the LVF model. The model is metastable, but the time scale
for its decay is longer than the age of the Universe.

Moreover, fine-tuning is required in order to split the
masses of scalars and fermions belonging to the same
SU(5) representations as we go to low energy. This is an
outstanding problem of all GUT models—indeed, the
very motivation for the original naturalness requirement
[102—104]—for which we have not attempted a solution.

These shortcomings notwithstanding, the asymptotically
safe extension of the SM model represented by the LVG
model is noteworthy. The theory is UV complete. All the
couplings of the model are perturbative and remain so
along the entire renormalization group flow up and beyond
the Planck scale. The existence of such a model is highly
nontrivial as shown by the lack of fixed points matchable to
the SM for models without unification [18] or other choices
of the vectorlike fermion content—to wit, the 2U2Q model.
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APPENDIX A: THE SM g FUNCTIONS
IN THE 211-SCHEME

In the 211-SCHEME, the f functions of the SM gauge
couplings are computed at two loops, while the # functions
of the top-Yukawa and Higgs quartic coupling are com-
puted at one loop. They are given by (see, for example,
Ref. [105])

MO = 1202 — 3(a; + 3a; — 4y

3
+3 (@} + 201, + 303) — 12a7.  (A5)

APPENDIX B: VECTORLIKE FERMIONS
CONTRIBUTIONS TO THE
SM g FUNCTIONS

Consider Dirac vectorlike fermions y, with multiplicity
Ni, that belong to the representation R of SU(3), and R, of

SMNLO 41 199 88 17 ) SU(2), and have hypercharge Y. The one- and two-loop
= 3 + 9« +9a; + 3BT AN contributions to the running of the SM gauge couplings are
given by [106-109]
(A1)
1
NLO
19 35 p° =5 (B + Myay + Hiay + Giaz)ay,  (Bl)
?M’NLO — <— ? —|— 30(1 —|— ?02 —|— 24&3 - 3at> a%, (AZ) ! 2
1
1 PO = 3 (By + Maay + Hyay + Graz)ay,  (B2)
pMNLO _ <—14 + 3@ +9a; — 5203 — 4at) a3, (A3)
1
7 9 PO = 3 (B3 + Msay + Hyay + Gya3)az,  (B3)
SM,LO
= ——al——a2—16a3+9a>a, (A4)
t ( 6 2 Y where
|
8 ) 8
Bl :ngY ddeR:;? B2:§NfSR2dR3’ B3 :ngSRngz» (B4)
. 20
Ml - 8Y NdezdRS’ M2 - 4NfSR2dR3 2CR2 +? 5 M3 - 4NfSR3dRZ(2CR3 + 10), (BS)
Hl — 8Y2NfCR2dR2dR3, H2 - SNfYZSdeR3, H3 - 8NfY25R3dR2, (B6)
Gl - SNfYZCRSddeR3, G2 - 8NfSR2CR3dR3, G3 - SNfSRgchdRz' (B7)
The Casimir invariants Cg. and Dynkin indices Sk, are defined in general as
dp,=2¢+1, dg,==(p+1)(g+1)(p+q+2). (B8)
1
Cr, =¢(£+1),  Cr,=p+a+3(p+4¢+pa), (B9)
1 1
SRZ - ngZCRZ’ SR3 - ngSCRN (BIO)

where £ = 0,%, 1,%, ..
our specific LVG model, we have

1
:f:—’ = :0,
Vi 217 q

wy: £=1p=q=0,

. denotes the highest weight of R, and (p, ¢) (with p,g =0, 1,2...) denotes the weights of R3. For

yg: £=0,p=¢q=1 (B11)
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The contributions to the gauge, top-Yukawa, and Higgs
quartic couplings coming from the vectorlike fermion
Yukawa coupling ay, as well as the contribution to the j
function 0,ay itself, have been computed using the results in
Ref. [68]. Let us consider two Dirac vectorlike fermions y
and y, in two, generically different, representations of the
SM gauge group, such that a gauge-invariant Yukawa
interaction term can be constructed. In case y; and y, have
multiplicity N, and N,, respectively, then this interaction
term takes the form of

~y¥iwiH +He., (B12)
where y;; is a complex N; x N, matrix. For generic
representations of y; and y,, we were not able to provide
general formulas for the contributions of y;; to the § func-
tions for the gauge couplings «;, the top- Yukawa coupling o,
or the Higgs quartic self-interaction. For this reason, an explicit
computation of these contributions seems unavoidable.

Let us therefore consider our specific case where
v =y, and w, = ywy. We can slightly generalize the
vectorlike fermion Yukawa interaction in Eq. (1) by keep-
ing arbitrary the multiplicities N and N, and assuming that
all vectorlike fermions interact among each other with the
same Yukawa coupling yy. The contribution to the gauge
couplings enters as a two-loop diagram where inside a
fermionic loop the Higgs field is exchanged. This con-
tribution is given by (cf. Eq. (31) in Ref. [68])

Zai
d(gi>
+ Y dy

L L)\ 4(L)~»(L
Oy = ... — [CEQI)(ZdEQZ))dJ(’Q)ygF)

YVININ. (B13)
where d(G;) is the dimension of the gauge group G; and the
superscripts (L) and (V) refer to the vectorlike fermions v
and yy, respectively. For i = 1, the Casimir invariants sim-
ply reduce to the square of the hypercharges. The extra factor
2 for the L representation is due to the fact thaty; is a Dirac-
like field while yy is a Majorana-like field. The coefficients
Y, are the (real) eigenvalues of the matrix product J¢)*T,
where ) is the symmetrized matrix of the Yukawa inter-
action couplings between all Weyl components of the
vectorlike fermionic fields and the real scalar component
¢“ of H (the construction of the matrices )* will be clarified
later in Appendix C). For our specific case, we have that

Vi = dai.

W =302, (B14)

5

4
Py = 32a% + o <95

32
Pz = —az + axg (1205 — 60a2) + 8

84
- 6005%) + 16aysays + 40a%y + —

Clearly, the contribution to the  function of the strong gauge
coupling is zero since both y; and vy are singlet under the
SU(3), gauge group.

The contribution to the top-Yukawa £ function comes
from the scalar anomalous dimension which has an extra
contribution due to the exchange of the vector like
fermions. This extra term reads (cf. Eq. (33) in Ref. [68])

81‘“{ = SM Lo + ZatyzleNz, (BIS)
where )Y,q is the eigenvalue of the scalar loop matrix
ITr(Y*T PP + YT Ya) = Y569 For our specific case, Vys =
6ay,. This justifies also the linear contribution in ay to the 8
function for the Higgs quartic coupling, which is 4a;)sg.

Similarly, the top-Yukawa contribution to d,ay, comes
from the Higgs anomalous dimension where the top quark
is exchanged. In the latter case, the top contribution to the
scalar anomalous dimension is JJ;OSP = 3a,, where the factor
3 comes from the color structure. The gauge contributions
to the g function for the vectorlike Yukawa coupling can
be written in terms of the Casimir invariants for the

two vectorlike representations, such that we can write
(cf. Eq. (33) in Ref. [68])

diay = 15N\ Noa + 2ay V¥ — 6a,[Cy” + CJay,
(B16)

where the quadratic contribution in @y depends on the
particular form of the matrices ) and is the sum of
contributions coming from the fermion anomalous dimen-
sion and the renormalization of the operator in Eq. (B13).

Regarding the f function for the quartic Higgs coupling,
the linear term in ay is due to the scalar anomalous
dimension, and the quadratic contribution in @y depends
again on the particular form of the Yukawa matrices ). We
thus obtain (cf. Eq. (38) in Ref. [68])

D, = MO L AN\ N,Vosa;, — 48NIN3a?.  (B17)

APPENDIX C: The g FUNCTIONS FOR
THE SU(5) LVG MODEL

The gauge and scalar quartic contributions to the f
functions of the scalar potential in Eq. (13) have been
computed at one loop in Ref. [110]. Given the definitions in
Eq. (15) and defining By = 0,ay, we have

+ 3004, (C1)

a% + 18al, (C2)

25
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- 144 192 264 198
ﬁH = 18@%_1 —?aHag + 96@%_12 +— 5 aHZaHZ +— 25 HZ + Eag’ (Cg)
_ 47 222 28 24 3
ﬂHZ = 8a%12+aH2<12aH+?a2 2602—?a5> +aH2 <2QH+20H2+2502+?02> +§a‘5‘, (C4)
42 19 222 15
Bis = O‘Hz + dlys <16aHz +gas 2d5 + 20y — s a%) + 7a§. (C5)

1. SU(5) scalar potential

To compute the extra contributions to the latter § functions due to the presence of the vectorlike fermion Yukawa
couplings ass, ays, and a,,, we have made use of the general results of Ref. [68] [cf. Eqs. (38)—(43) therein]. Following the
notation of Ref. [68], we have first expanded the scalar fields of our model, namely, ®(x) and Z(x), in terms of their real
scalar components ¢,. In other words,

L1 @) i), oo bs() + idpro(0) )T,

V2

where T* are the generators of the SU(5) gauge group, normalized in such a way that Tr(TAT?)
potential in Eq. (13) can thus be brought into the form

24
(x) = x) = Z¢10+A(X)TA’ (Co)

= 15"8. The quartic scalar

41

unartic (q)’ Z) — m Vl lab,c,d]s

)“abcd = (C7)

1
E ﬂabcd¢a¢b¢c¢d’

where 4.4 is a total symmetric rank-4 tensor’ whose entries contain the scalar interactions Ay. V| la.b,c.d) 18 the coefficient in

front of the quartic operator ¢,¢, ¢ ¢4, and Pla, b, ¢, d] is the number of nonequivalent permutations of the set of indices
{a, b, c,d}. Similarly, all the fermionic fields, namely, yz, v, ¥s, and W,4, have to be expanded in terms of their Weyl left-

handed two-component spinors ;. For an explicit example, let us consider the vectorlike fermion representations

\PS = (51,...

24
Vo = Z EsiaTh,
A

where all the right-handed Weyl components are expressed
as the charged conjugation of some Weyl left-handed
spinors (notice that the vectorlike fermion W¥,, is a
Majorana-like fermion).

Given the above decomposition, the Yukawa interaction
terms in Eqs. (12) and (14) can thus be written as

ﬁYukawa = ljl//lz:ll/qua + H C (CIO)

where { = +io, and V* are symmetric Yukawa matrices.
The extra contributions in Egs. (21)—(25) can be
obtained from Egs. (40) and (41) in Ref. [68]. In par-

ticular, the contributions quadratic in a, come from
the scalars anomalous dimensions and are proportional

4Generally speaking, for a total symmetric tensor, i.e., Sym-
metric in all its indices, of rank r where all indices can assume n
different values, the number of independent components is given
exactly by the number of combinations with repetition
Cl=(n+r—=1)!/(r!(n=1)"). In our specific case, A, has
C3% = 66045 independent components.

JE5)T, &i=&iLtér=y,;

J— . *
EsiA =Wi04a — 102¥ 10445

- i02w;‘k+5v (C8)

(C9)

I

to the eigenvalues of the scalar loop matrix
%Tr(ya*yuyb"'ya). These eigenvalues are, for the
present model,
1

N240‘242 + Nsazy.

24
Vi = 3ay + = NsNyag, Vi =

5
(C11)

The quartic contributions in «, are instead due to a
fermionic loop where four fermions are exchanged among
the four scalar fields. This contribution is obtained from

allabcd

= L= TV Yy (C12)

where the sum is over all 4! permutations of the indi-
ces {a,b,c,d}.

2. Gauge-Yukawa subsystem of the SU(5) LVG model

The p functions for the SU(5) gauge coupling as well as
for the Yukawa couplings have also been computed by

095026-18
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mean of the general formulas for a generic gauged quantum
field theory given in Ref. [68].

In particular, the § functions for the Yukawa couplings
have been computed from Eq. (33) of Ref. [68]. The
extra contributions to 0,a,o due to the vectorlike Yukawa
interaction «,, as well as the top contribution to 0,a,, come
from the Higgs anomalous dimension, cf. Eq. (C11). The
terms proportional to N5 and N,4 in Eqgs. (18) and (19)
come, instead, from the anomalous dimension of the X
scalar field, cf. again Eq. (Cl11). The other Yukawa
|

N2 -1

Cy = N antisymm —

contributions are a nontrivial sum of the fermionic anoma-
lous dimensions and the renormalization of the operator
YVijwiCy,. Therefore, an explicit computation of the first
two terms in Eq. (33) of Ref. [68] is required.

The gauge contributions to the S functions of the
Yukawa couplings are obtained by computing the
Casimir invariants for the different fermionic representa-
tions. For a generic SU(N) gauge group, the Casimir for
the fundamental, antisymmetric, and adjoint representa-
tions are, respectively,

such that the gauge contributions to the Yukawa f functions for our LVG SU(5) GUT model are

Do = ... — 3%(Cyg + Cio)atyio.

D04y = ... = 303(Cay + Cay) s,

N+1)(N-=-2
M’ Cde e N7 (C13)
N
8,&52 = ... 30!§(C5 + Cs)a52, (C14)
8,(1,/ = ... 3a§(C5 + C24)aw (CIS)

where the sum in parentheses refers to the sum over the fermions which are exchanged in the one-loop diagrams where a

gauge boson is exchanged.

The two-loop f function for the SU(5) gauge coupling has been computed from Eq. (30) of Ref. [68], where the terms
proportional to the square of the Yukawa couplings can be written as

3
s

s = ... — === [Crod19Yar(x10) + CsdsVor(¥s)(2N5) + Ca4dr4Yor(Pas)Noal.,

d(G)

(C16)

where d(G) = 24 is the dimension of the SU(5) gauge group and dg,, with F; = (5,10,24), is the dimension of the different
fermionic representations. Let us notice the presence of an extra factor of 2 in the multiplicity of W5 due to the fact that it is a
Dirac-like fermion. The eigenvalues of the matrix product Y¢)*" are

12

Var(x10) = 3053 5

The one-loop contributions to the RG flow of as are
obtained by first computing the Dynkin indices for the
different (fermionic and scalar) representations. Generally
speaking, given a representation R of a gauge group G, we
have

dgCp
Sk = , C18
such that for SU(N) we obtain
1 N-2
Sy = E? Santisymm = 5 Sadj =N. (Clg)

For our specific SU(5) GUT model, we thus have

11 2 1
8,015 = —ag |:? C(g) - Z(g SF,' + ESS,>:| + EISLO’

(C20)

12

Vor(¥s) = —ady +——Nua;,

21
Vop(Wos) = S= 45 + Nsa;.

== (C17)

I

where the Casimir for the SU(5) gauge group is C(G) =5
and the sum is over all the fermionic and scalar represen-
tations. Each generation of the SM fermionic sector can be
fitted in the representations 5 and 10. On the other hand, the
scalar sector of the SM GUT theory is composed of a
complex fundamental representation and a real adjoint
representation. Taking into account also the vectorlike
fermion representations, we finally have

O,as = —(@{%C(Q) - % [Se(xs) + Se(x10)IN
- % [2N5SE(Ws) + NoySp(Was)]

L s@) + ss<z>]} L po,

: (c21)

where N, = 3 is the generation number and the extra factor
of 2 for the contributions of @ and W5 come from the fact
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that W5 is a Dirac-like fermion and ® is composed of two
real 5-plets, respectively, the real and imaginary parts.
Substituting the values in Eq. (C19) into the latter equation,
we obtain the one-loop contribution of Eq. (16). Given the
Casimir and Dynkin indices for the different representa-
tions, it is straightforward to obtain the two-loop contri-
bution in Eq. (16) from Eq. (30) of Ref. [68].

APPENDIX D: THE g FUNCTIONS FOR THE
2U2Q MODEL

Using the definitions in Eq. (2) and the following
rescaling for the coupling a,
2o =2
0= (4”)2 >

(D1)
the f# functions of the 2U2Q model read

86 136
D, = ﬁ?M,NLO + (8 + ?al + 20, + 3205 — TaQ) a3,

(D2)

2
8,0, = ﬂgM.NLO + (8 + 50(1 + 98a, + 32a; — 2405Q) a%,

(D3)

O,y = SN (8 + day + 12a, + 152a3 — 32ap)a3,
(D4)
d,a, = pIMEO 48apa, (D5)

17 9
G,aQ = <—€a1 - EaZ - 16613 + 60aQ + 6at>aQ’ (D6)

O,y = B0 + 96apa; — 384a, (D7)

where ﬁ?M’NLo, /}tSM’LO, and ﬂEM’LO are the SM f functions
previously given in Appendix A. The new terms arising
from the presence of the extra vectorlike fermions y; and
w o are explicitly shown. Their contributions to the running
of the gauge couplings have been computed using the
formulas in Appendix B. The extra contributions due to the
vectorlike Yukawa coupling o, as well as the $ function of
ay itself have been computed using the results of Ref. [68]
[cf. Egs. (30), (33), and (38) therein].

In the following, we present the f functions of the 2U2Q
GUT model where the vectorlike fermions y; and v are
embedded into the antisymmetric representation of SU(5).
Let us denote y;, and y}, the two Yukawa couplings of the

vectorlike fermions with the scalar fields @ and X,
respectively. We define

/
mo=32. =30 (D8)
together with the definitions given in Eq. (15) for the gauge,
top-Yukawa, and scalar couplings. For the sake of sim-
plicity, we assume that the latter Yukawa interactions are
diagonal in the flavor indices I,/ = (1,2, ..., Nyo), such
that different flavors of the matter field ¥, do not interact
among each others. The sum in Eq. (45) reduces to > _,(...).
The RG flow equations for the gauge-Yukawa subsystem
are

40—6Nyy 5 1184 —1074Ny,
az — a

Ty 15 ;
9 54
_ (E a%o + 9N gty + ?Nwa/lzo) ag, (D9)
2 , 108
atatl() = 60!“0 + 6N|0(110 - ?as atlo, (DIO)
6 108
0,9 = {3(1 +2No)a3, + 3a2, — ga/IZO _ ?ag] a0,
(D11)
29 + 15N 108
8;0!/10 = {%aﬁ) — a%o - ?ag} a’,o. (D]Z)

We conclude the set of # functions by listing the running of
the scalar couplings.

dyas = P + 12N g(as + afy) o, (D13)
D = Py’ + 12N (o — o))y, (D14)

Oy = Py + (1282, + 12N g3, )ay — 12a¢ — 24N yaf,,

(D15)

ata[.]z = BHZ + (6(1310 + 12N106¥%0 + 6N10a’120)a1_,2
- 4N10(Z%0(Z/120, (D16)

Di0lyy = Pys + (603, + 12N gaty + 6N 0ol dys
— 4N 19070 (D17)

where the pure gauge and scalar contributions By, S5, By,
Py, and B’HZ are given in Appendix C.
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