
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012103

IOP Publishing

doi:10.1088/1742-6596/1525/1/012103

1

Meta-Learning for Artificial Neural Network

Hyper-Parameter Optimization for CERN CMS

Offline Data Certification

Mantas Stankevicius, Virginijus Marcinkevicius, Valdas Rapsevicius
Vilnius University, Institute of Data Science and Digital Technologies. Akademijos str. 4,
LT-08412 Vilnius, Lithuania

E-mail: mantas.stankevicius@mif.vu.lt

Abstract. The Compact Muon Solenoid (CMS) is one of the general-purpose detectors at
the CERN Large Hadron Collider (LHC) which collects enormous amounts of physics data.
Before the final physics analysis can proceed, data has to be checked for quality (certified)
by passing a number of automatic (like physics objects reconstruction, histogram preparation)
and manual (checking, comparison and decision making) steps. Last manual step of decision
making is very important, error-prone and demands a lot of manpower. Decision making
(certification) is currently under active research in computer science for automation by applying
recent advancements from computer science, specifically, machine learning (ML).

Ultimately, CMS data certification is a binary classification task where various ML
techniques are being investigated for applicability. Just like in any other ML task the hyper-
parameter tuning is a difficult problem, there is no golden rule and each use case is different.
This study explored meta-learning applicability, it is a hyper-parameters finding technique where
algorithm learns hyper-parameters from previous training experiments. An Evolutionary genetic
algorithm has been used to tune hyper-parameters of a neural network, like number of hidden
layers, number of neurons per layer, activation functions, dropouts, training batch size and
optimizer. Initially, the genetic algorithm takes manually specified set of hyper-parameters and
then evolves towards the near-optimal solution. Genetic stochastic operators, crossover and
mutation, were applied to avoid local optimal solutions.

This study shows that by carefully seeding the initial solution the optimal is likely to be
found. The proposed solution has improved AUC score of neural network used for CERN CMS
data certification. Similar algorithm can be applied for other machine learning models for
hyper-parameter optimization.

1. Introduction
Usually, hyper parameters for a given problem are chosen conventionally and then tested
experimentally. However, this requires a significant amount of experience, intuition, and trial
and error. Two most common and simplest methods are exhaustive (grid) and random search.
In the grid search, a pool of values for each hyper parameter is hand-picked by an expert then
a full set of all value combinations is constructed for later evaluation. Grid search is easy to
implement and make it multi-threaded, however the number of combinations grows exponentially
with the number of hyper parameters. Quality of this method highly depends on intuition and
knowledge of an expert defining pool of values. Hyper parameter areas of high importance might
be under-examined, while low importance areas might become over-examined. Random search,

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012103

IOP Publishing

doi:10.1088/1742-6596/1525/1/012103

2

on the other hand, tries random combinations of value combinations, usually defined as ranges.
This method is also easy to implement and make multi-threaded. Empirical studies show that
in high dimensional space random search is much faster than grid search and performs equally
well [1]. Study below explores meta-learning applicability for hyper parameter optimization.

2. Previous Work
This study is a continuation of previous research [2]. Lack of knowledge about the dataset itself
led to poor initialization of parameter pool, so both grid and random search techniques did not
provide a decent solution. Manually tuned hyper parameter values proved to be the best choice.
The aim of this work is to find a better set of hyper parameters to improve the classification
power.

3. Dataset
The dataset which was used in this work was collected by the CERN CMS experiment during
2016 data-taking. This is a reconstructed physics data which contains values of various
physics objects: photons, muons, others. Dataset contains around 160.000 observations, each
representing a single lumisection (a period of approximately 23 seconds). Each observation is
based on the particles of the recorded collision events and consists of 401 features like energy,
eta, phi and others. Each feature is a vector of 7 numeric values - mean, RMS and five quantiles -
representing specific statistical characteristics of the feature distribution during the lumisection.
The class (GOOD:BAD) distribution ratio is 98:2.

4. Methodology
Genetic evolutionary algorithms [3] are inspired by nature and natural selection. Evolution
begins from the randomly generated initial population. All individuals are scored by the fitness
function and only best ones are used for reproduction. Genetic stochastic operators are applied
to generate new population by avoiding local optimal solutions. Artificial neural network hyper
parameter optimization using genetic evolutionary algorithm is called neuro-evolution [4].

Figure 1. Steps of the genetic algorithm

4.1. Initial population
An artificial neural network with all its parameters (optimizer, number of layers, neurons,
activation function and dropout) represents an individual which is a solution to the problem.
The initial population can be generated randomly using parameter pool (Table 1) as well as
seeded with potential combinations where optimal solutions are likely to be found.

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012103

IOP Publishing

doi:10.1088/1742-6596/1525/1/012103

3

4.2. Selection
The fitness function determines the quality of an individual and it provides the fitness score.
For this algorithm, the average ROC AUC score was chosen from 3-fold cross validation. Cross
validation is a technique for evaluating ML model performance. The model was trained on
random data set splits and the average ROC AUC value was used for comparison. This technique
makes the score independent from the dataset split. All possible pairs of individuals are created
and sorted by the sum of fitness score. Pairs having the best fitness score are used to produce
the new population.

4.3. Crossover
Crossover is the most important part in a genetic algorithm. This process defines how new
offspring is created and how it inherits genes from parent individuals. There is no golden rule,
therefore crossover implementation varies between different algorithms and represents a space for
innovations. The algorithm treats pairs of parents differently depending on their similarity. A
pair of two neural networks is considered similar if the activation functions match layer-wise. For
example: two neural networks with three hidden layers (sigmoid, sigmoid, tanh) and (sigmoid,
sigmoid, tanh) are considered similar. Such pair produces only one offspring. Categorical
(activation, optimizer) hyper parameter values were randomly chosen from one of its parents.
Numeric hyper parameter values were treated differently - a random value was selected in the
range between parent values, a picked value must exist in the initial parameter pool (see Figure
2). In order to prevent for population individuals to have the same activation function, a pair of
neural networks having different activation functions would produce two offsprings, each parent
was cloned and mutated with 100% of chance.

Figure 2. Crossover of two parents creates an offspring

4.4. Mutation
The last step in offspring generation process is mutation. Occasionally, one or more parameters
can be randomly altered (Figure 3). The new value was randomly chosen from initial parameter
pool (Table 1). The mutation rate is a configurable parameter. The purpose of this step is to help
prevent local optimal solutions. The mutation rate and amount are very sensitive parameters,
high values can move the solution away from high importance areas and greatly reduce quality
of the solution.

Figure 3. Mutation. Randomly alter one or more parameters

5. Experimental Results
Experimental Setup. Software: Python (3.6), Keras (2.1.6) [5], Tensorflow-gpu (1.8.0) [6], scikit-
learn (0.19.1) [7]. Hardware: PC (4 cores 2.2 GHz, 16 GB RAM) with NVIDIA GeForce GTX

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012103

IOP Publishing

doi:10.1088/1742-6596/1525/1/012103

4

1080 Ti GPU.

Table 1. Hyper parameter pool used to create initial population and configuration of genetic
algorithm

Hyper Parameters Pool

Units (# of neurons) [10, 50, 100, 200, 500, 750, 1000, 1500, 2000]
Activation [relu, elu, sigmoid, tanh]
Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
Optimizer [adam, rmsprop, sgd, adagrad, adadelta, adamax]

Genetic Algorithm Parameters

Population size 50
of generations ∞ (while improves)
Mutation rate 0.1 (10%)

The discussed genetic algorithm implementation does not try to optimize the topology of a
neural network. Topology is defined at the beginning of algorithm and does not change during
evolution. We did experiments with 1-3 network layers, however we didn’t observe significant
improvement with deeper networks, so it was decided to continue experiments with a single layer
neural network. The baseline score of ROC AUC from previous study was 0.954. Two hyper
parameter search methods were tested - grid search and genetic algorithm.

The grid search method evaluated 1080 combinations of hyper parameter values. Evaluation
is a 3-fold cross validation and it alone took around 6 minutes. The evaluation mechanism was
same for both search methods. Grid search managed to find a very good solution and improved
the ROC AUC score from 0.954 to 0.969, however computations took about 108 hours (4.5 days).

The first population of genetic algorithm was generated randomly. A significantly improved
parameter pool allowed a genetic algorithm to reach baseline score after the first evolution
(Figure 4). The score kept improving and after 4-5 evolutions (200-250 trainings) the ROC
AUC score stabilized around 0.968 and did not show significant improvements. Computations
took 20 to 25 hours

Both methods improved the baseline score and found similarly good solutions, however
computation time was highly reduced by the genetic algorithm implementation. See Table
2.

Table 2. Neural network classification results and parameters

Method AUC ± Trainings Optimizer Network Layers

Hand picked [2] 0.954 0.005 unknown Adam 3 x [Relu (200) DO (0.5)]
Grid search 0.969 0.002 1080 Adagrad Sigmoid (2000) DO (0.2)
Meta learning 0.968 0.002 200 Adagrad Sigmoid (1000) DO (0.2)

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012103

IOP Publishing

doi:10.1088/1742-6596/1525/1/012103

5

Figure 4. Comparison of different hyper parameter optimization methods. Each point is a
fitness function score of each training using meta learning method, shaded region visualizes
distribution of those points

6. Conclusions
This studies the use of genetic algorithms for hyper parameter tuning, and observes that with
careful seeding the initial population the optimal solution is likely to be found faster than trying
all possible combinations of hyper parameter values. The proposed solution has improved AUC
score of neural network used for CERN CMS data certification. A similar algorithm can be
applied for other machine learning models for hyper-parameter optimization.

References
[1] Bergstra J and Bengio Y 2012 The Journal of Machine Learning Research 13 281–305
[2] Stankevicius M, Marcinkevicius V and Rapsevicius V 2018 CEUR Vol-2158 170–176
[3] Xin Yao 1999 Proceedings of the IEEE 87 1423–1447 ISSN 0018-9219
[4] Lehman J and Miikkulainen R 2013 Scholarpedia 8 30977 revision #137053
[5] Chollet F et al. 2015 Keras https://keras.io
[6] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G S, Davis A, Dean J, Devin M,

Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg
J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar
K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y
and Zheng X 2015 TensorFlow: Large-scale machine learning on heterogeneous systems software available
from tensorflow.org URL https://www.tensorflow.org/

[7] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 Journal
of Machine Learning Research 12 2825–2830

[8] Such F P, Madhavan V, Conti E, Lehman J, Stanley K O and Clune J 2017 CoRR abs/1712.06567 (Preprint
1712.06567) URL http://arxiv.org/abs/1712.06567

[9] Hinz T, Navarro-Guerrero N, Magg S and Wermter S 2018 International Journal of Computational
Intelligence and Applications 17 1850008 (Preprint https://doi.org/10.1142/S1469026818500086) URL
https://doi.org/10.1142/S1469026818500086

