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Abstract

Search for Invisible Decays of theΥ (1S) Meson atBABAR

by

Lucas O. Winstrom

This details the search for invisible decays of theΥ (3S) meson at theBABAR experiment.

This decay is potentially sensitive to new physics beyond the Standard Model. We use the

BABAR Υ (3S) data set, analyzing 22.1 fb−1 of data, which corresponds to 91.4 millionΥ (3S)

mesons delivered by PEP-II. The dipion transitionΥ (3S) → π+π−Υ (1S)) is studied to iden-

tify a collection ofΥ (1S) mesons upon which to perform this search. The measurement is

B(Υ (1S) → invisible) = (−1.2 ± 1.4(stat.) ± 1.7(syst.)) × 10−4 which is consistent with

the Standard Model prediction of∼ 1 × 10−5. This measurement sets an upper limit on the

branching fraction of2.9 × 10−4 at the 90% confidence level.



To the invisible particles. . .

where are you?
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Chapter 1

Motivation

Invisible decays of heavy particles can be used both as testsfor Standard Model (SM)

predictions and as probes for “new physics” phenomena not explained by the SM. Measure-

ments of invisibleZ0 decays at LEP were able to precisely test the hypothesis of three genera-

tions of light neutrinos [1, 2, 3, 4]. A search for invisible decays of theB0 meson [5], a channel

with a SM branching fraction far below the sensitivity of theBABAR experiment, probed poten-

tial new physics that could enhance the decay rate.

In a similar vein, searches for the invisible decays of theΥ (1S) meson can be used to

explore the possibility of physics beyond the standard model that might couple to thebb̄ system.

1.1 Υ → invisible Decays - Theory

Invisible upsilon decays can in principle be used both to test the Standard Model

(SM), and as a search for new physics. The Standard Model process for invisible decays of the

Υ (1S) meson proceeds by the transition of theb and b̄ quarks to a pair of neutrinos mediated

1



by aZ0 boson as show in Figure 1.1.

b

b̄

ν̄

ν

Z0

Figure 1.1: The processΥ → invisible in the Standard Model.

A leading order calculation of this transition yields

Γ(Υ → νν)

Γ(Υ → e+e−)
=

27G2M4
Υ

64π2α2

(

−1 +
4

3
sin2(θW )

)2

.

where neglected QCD corrections, electroweak radiative corrections, and corrections due to

Higgs loops amount to∼ 2 − 3% [6]. This leads to a prediction for the Standard Model

branching fraction of∼ 1 × 10−5. Since theBABAR data set can set an upper limit on this

branching fraction at the 90% Confidence Level (CL) of∼ 3 × 10−4 (Chapter 6.5), this allows

a search for potential new physics enhancing the invisible decay rate of theΥ (1S). A precision

measurement of this decay will have to wait for the next generation of ofbb̄ factories.

There are a variety of hypothesized effects that can alter the Υ invisible branching

fraction. Extensions to the Standard Model due to Super-Symmetric enhancements, which are

explored in [6], can change this branching fraction, but notdrastically enough for this search

to differentiate them from a branching fraction of 0. These types of measurements will have to

2



wait for a data set capable of probing down to the1 × 10−5 level or below.

However, light dark matter candidates which are not supersymmetric in origin could

couple weakly to standard model particles to enhance this decay [7, 8]. This type of phenomeno-

logical coupling simply hypothesizes a new coupling betweenΥ states and Dark Matter particles

below one half the mass of theΥ meson (in the case of this analysis,1
2MΥ (1S) = 4.7GeV/c2).

Using relic density and the upper limit on dark matter candidate mass as constraints, this type

of enhancement can lead to branching fractions ofΥ → invisible of up to1.8 × 10−3 [8]. This

lies within reach of theBABAR data set and offers a compelling motivation for this search.

Unparticles [9], a hypothesized scale invariant sector of an effective field theory, can

enhance this decay [10]. Scale invariant theories can ariseas a low energy effective theory of

high energy extensions to the Standard Model [9]. The unparticles of this theory do not have

a definite mass, but rather a mass spectrum. The enhancement from this theory is sensitive to

the dimensionality of the scale invariant sector and the coupling between the SM sector and

this scale invariant sector. The current limits on these effects come from measurements of

B(Υ (1S) → invisible) done elsewhere, and there are no other measurements that might be

used to constrain effects from this framework to an unmeasurably small contribution. Although

not as compelling as dark matter, unparticles provide additional motivation for this study.

1.2 Υ → invisible Decays - Experiments

While all of these theories are potential explanations for the invisible decays of the

Υ (1S) meson, they all have an identical signature: an enhanced rate of invisible decays. Should

3



this decay be measured in the future, other channels, such asΥ (1S) → γ invisible, will have

to be explored to differentiate between them.

Previous experimental searches for this decay have been done by the CLEO and Belle

collaborations. Using 1.2 fb−1 of data collected at theΥ (3S) resonance, CLEO measured an

upper limits at a 90% confidence level ofB(Υ (1S) → invisible) < 3.9 × 10−3 [11]. Using

2.9 fb−1 of data collected at theΥ (3S) resonance, Belle measured an upper limits at a 90%

confidence level ofB(Υ (1S) → invisible) < 2.5×10−3 [12]. In this analysis, we use 22.1 fb−1

of data collected at theΥ (3S) resonance. While we cannot measure down to the Standard Model

prediction for this decay, we do manage to set a limit ofB(Υ (1S) → invisible) < 2.9 × 10−4.

We use a sophisticated multivariate event selection algorithm to create a sample of events with a

minimum of background. We employ a statistical technique known assPlots [13] to calculate

the expected number of events faking signal. Finally, we perform a Maximum Likelihood fit to

extract the upper limit on the branching fraction.
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Chapter 2

The BABAR Experiment

This thesis discusses a measurement which was performed using data collected by

the BABAR [14] collaboration using theBABAR detector. TheBABAR detector is a solenoidal,

general purpose particle detector designed to observe position-electron collisions produced by

the PEP-II (Positron Eelctron Project II) [15] acceleratorat the SLAC National Accelerator

Laboratory. A thorough description of this detector is published elsewhere [14]. This chapter

will summarize the detector, the tracking and particle identification, and the event triggering

detailed in that work and elsewhere. All figures showing the detector in this chapter come

from [14].

Although BABAR was originally designed as aB meson factory observing theBB̄

decays ofΥ (4S) mesons, this analysis uses a special collection ofΥ (3S) mesons produced

between December 23, 2007 and March 1, 2008. This data set allows us to search for new

physics not accessible in theΥ (4S) data, such as light Higgs and Dark Matter candidates,

as well as pieces of the Standard Model particle spectrum which have not previously been

5



observed, such as theηb[16]. The search for invisible decays of theΥ (1S) meson is a search

for new physics, as motivated in Chapter 1.

2.1 Positron Electron Project II (PEP-II)

PEP-II is a positron electron collider originally designedto operate with a center-of-

mass (CM) energy of 10.58GeV, the mass of theΥ (4S) meson. The PEP-II team and the

BABAR collaboration worked together to operate the collider at the mass of theΥ (3S) meson,

10.36 GeV, to collect the data that this analysis uses.

Positrons and electrons are accelerated into the two storage rings that make up PEP-

II. These electrons have an energy of 9.0GeV and the positrons have an energy of 3.0GeV.

The beams in these two counterrotating rings are tuned to thecorrect energies and brought into

collision inside theBABAR detector. The different energies of the beams make this collision

asymmetric, boosting the center of mass frame byβγ = 0.58 relative to the laboratory frame.

These two beams are bunched to create dense, well spaced packets of particles before being

brought into collision. The RMS spatial extent of these packets in the laboratory frame is

σLx = 120µm, σLy = 5.6µm, andσLz = 9mm, where the coordinate frame of the experiment

is defined as follows. Thêz direction is along the direction of electron beam flight, theŷ

direction is upwards, and thêx direction is defined such that̂y × ẑ = x̂.

PEP-II has delivered a total luminosity at theΥ (3S) resonance of 30.2 fb−1, corre-

sponding to 122 millionΥ (3S) mesons [17]. Through its lifetime, it delivered a total of 557

fb−1 of data, with a peak luminosity of12.069 × 1033cm−1s−1, more than four times the

6



original design specifications.

2.2 TheBABAR Detector

BABAR is an azimuthally symmetric general-purpose particle detector, designed to

work with PEP-II and detect thee+e− collisions generated by the collider. Diagrams of the

detector and its subsystems are seen in Figures 2.1 and 2.2. Because, as discussed earlier,

BABAR is designed to measure asymmetric collisions, there is a forward-backward asymmetry

in the detector systems, giving a better center-of-mass (CM) frame fiducial coverage.

The detector consists of a number of subsystems, which proceed radially outwards

from the beam pipe. Nearest the interaction point (IP) is thesilicon vertex tracker (SVT) fol-

lowed by the drift chamber (DCH). These two subsystems participate in particle identification

(PID) and are the inputs for the tracking algorithms used at theBABAR collaboration. Outside of

these lies the detector of internally reflected Cherekov radiation (DIRC), a key piece of the PID

system and the electromagnetic calorimeter (EMC). These are surrounded by a superconducting

solenoid which creates a 1.5T field. Finally, the instrumented flux return (IFR) surrounds the

magnet and functions as a muon and neutral hadron detector.

This analysis particularly depends on the SVT, DCH, and EMC for measurement of

the physics signal. The DIRC plays an important role in selection of control samples for the

analysis, and the IFR is largely unused.
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Figure 2.1: TheBABAR detector longitudinal view.

2.2.1 Silicon Vertex Tracker (SVT)

The SVT is designed to measure angles and position of chargedparticles just outside

the beam pipe. The SVT is composed of five layers of double-sided silicon strip detectors that

are assembled from modules with readout at each end, thus reducing the inactive material in

the acceptance volume. The inner three layers primarily provide position and angle information

for the measurement of the vertex position, but also add momentum information to tracks that

extend into them. They are mounted as close to the water-cooled beryllium beam pipe as prac-

tical, thus minimizing the impact of multiple scattering inthe beam pipe on the extrapolation

to the vertex. The outer two layers are at much larger radii, providing the coordinate and angle

measurements needed for linking SVT and DCH tracks.

The principal use of the SVT in this analysis is the identification of tracks, and guar-

anteeing that tracks originate at the interaction point of thee+e− collision. Information on the
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Figure 2.2: TheBABAR detector transverse view.

origins of tracks is found by fitting track hits in both the SVTand the Drift Chamber (DCH)

using a Kalman Filter. The resolution on distance from the interaction point is momentum de-

pendent, and in the energy range of the tracks of interest to this analysis (∼ 0.1 − 0.8GeV),

the resolution is∼ 0.1 − 0.3mm for both the resolution in thez axis and the distance travelled

in thex − y plane. These are both far less than the2.5cm cut in z and1.5cm cut in thex − y

plane imposed on tracks used in this analysis. For higher energy tracks, the resolution becomes

much better, with a resolution of40µm in thez axis and25µm in thex − y plane. Information

on the vertex probability of the two tracks is also used in this analysis, but the requirements on

the vertexing are also very loose, much less than the100µm in z and80µm in thex − y plane

resolution that the SVT is capable of providing. Diagrams ofthe SVT can be seen in Figures 2.3

and 2.4.
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2.2.2 Drift Chamber (DCH)

The principal purpose of the DCH is the momentum measurementand tracking of

charged particles. It also provides information for the charged particle trigger and a measure-

ment ofdE/dx (with a resolution of 6.9%) for particle identification. TheDCH has 40 layers

of approximated hexagonal cells that extend the length of the detector. These are divided into

10 superlayers. Low-mass wires and the gas mixture of helium-isobutane minimizes multiple

scattering inside the DCH. The readout electronics are mounted on the backward endplate of

10



the chamber, minimizing the amount of material in front of the calorimeter endcap.

This analysis relies heavily on the momentum measurements of this subsystem, and

its input to the particle identification (PID) algorithms. This system is the primary PID input

for particles up to 0.7GeV, which includes almost all of the particles subject particle identifi-

cation in signal sample of this study. When the DCH and SVT information is combined, the

momentum resolution on a particle track isσpT
/pT = (0.13 ± 0.01)% · pT + (0.45 ± 0.03)%.

Figure 2.5 shows a tranverse view of the DCH, and Figure 2.6 shows a schematic of the first 4

superlayers of the DCH. Figure 2.7 shows the separation betweenK andπ particles indE/dx

as a function of momentum. The separation power below 1GeV/c can be seen very clearly.

IP
236

469

1015

1358 Be  

1749

809
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464 

Elec–

tronics

17.2 

e–
 e+

1-2001
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Figure 2.5: The DCH detector longitudinal view.

2.2.3 Detector of Internally Reflected Cherenkov Radiation(DIRC)

The DIRC is a novel device which provides separation information for pions and

kaons from about 0.5GeV. Cherenkov light is produced in4.9m long bars of synthetic fused

silica or rectangular cross section,1.7cm × 3.5cm, and transported by total internal reflection,

preserving the angle of emission, to an array of photomultiplier tubes. This array forms the
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Figure 2.6: The first 4 superlayers of the DCH.

backward wall of a toroidal water tank that is located beyondthe backward end of the magnet.

DIRC information plays some role in the PID information thatthis analysis uses, as

the algorithms to discriminate pions and kaons use all information available to them. Our con-

trol samples benefit greatly from the ability to distinguishleptons from kaons at high energies.

However, since the tracks in signal events that we study are very soft (maximally 0.8GeV),

most of the identification information is delivered by the DCH. A schematic of the DIRC is

seen in Figure 2.8.
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Figure 2.7: Measurement ofdE/dx in the DCH as a function of track momenta.

2.2.4 Electromagnetic Calorimeter (EMC)

The EMC is designed to detect electromagnetic shower with excellent energy and an-

gular resolution of the energy range of 20MeV to 4 GeV. The EMC is a finely segmented array

of projective geometry made of thallium doped cesium iodide(CsI(Tl)) crystals. The crystals

are arranged in modules that are supported individually from an external support structure. This

structure is built in two section, a barrel and a forward endcap. To obtain the best possible reso-

lution, the amount of material in front of and in-between thecrystals is held to a minimum. The

energy resolution of this component isσE/E = (2.32±0.30)/ 4
√

E(GeV)%⊕(1.85±0.12)%.

This analysis uses the EMC to guarantee that potential signal events are free of high

energy particles not associated with the physics being studied. The requirements that an event

be categorized as a signal event in this analysis requires that no single particle in the EMC be

too energetic, and that the total energy deposited in the calorimeter be low. These statements

are made precise later in the thesis, where these quantitiesare defined as inputs to a multivariate
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Figure 2.8: The DIRC detector.

selection algorithm. A longitudinal cross section of the EMC can be seen in Figure 2.9.

2.2.5 Instrumented Flux Return (IFR)

The IFR is designed to identify muons and to detect neutral hadrons. For this pur-

pose, the magnet flux return steel in the barrel and the two enddoors is segmented into layers.

Between the steel absorbers, resistive plate capacitors and limited streamer tubes are inserted,

which detect ionizing particles.

The IFR is not used in this analysis, as none of the high energytracks, which could

be either muons or electrons, used in control samples require particle identification. A drawing

of the IFR can be seen in Figure 2.10.
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2.3 TheBABAR Triggering System

The trigger system operates as a sequence of two independentstages, the second

conditional upon the first. The Level 1 (L1) trigger is responsible for interpreting incoming

detector signal, recognizing, and removing beam-induced background to a level acceptable for

the Level 3 (L3) software trigger which runs on a farm of commercial processors.

L1 consists of pipelined hardware processors designed to provide an output rate of

. 2kHz. The L1 trigger selection is based on data from the DCH and EMC. Raw data from

these components are delivered to the L1 processors and converted into trigger objects, some

of which are defined as follows: Hits in the DCH that reach either superlayer 5 (classified as

a short track) or superlayer 10 (classified as a long track). These tracks must havepT at least

120 or 180MeV/c to reach this far in the detector. HipT (> 120MeV/c) tracks in the DCH.

Energy deposits in small segments of the EMC which exceed 100MeV. Other trigger objects

can be defined to match different physics conditions (see e.g. Chapter 8.2.1). The maximum

latency for a given collision is12µs. L1 has 24 trigger lines which can be changed based on
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different physics conditions[18]. These lines can be set totrigger on the presence of different

combinations of trigger objects (see e.g. Chapter 8.2.1). Once L1 passes an event to L3, it

is analyzed and, if found to be interesting physics, passed on for permanent storage. A small

subsample of events are passed without requiring L3 processing as a control sample check on

this triggering system. A diagram of the data flow can be seen in Figure 2.11.
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Figure 2.11: Schematic diagram of the data acquisition.
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Chapter 3

Analysis Overview

This analysis seeks to measure or put an upper limit on the branching fraction of

Υ (1S) mesons to invisible final states. The analysis takes place ondata collected by theBABAR

experiment from electron-positron collisions at theΥ (3S) resonance. In order to select events

relevant to this search, the presence of two oppositely charged pions is required. This allows the

presence of an invisible decayingΥ (1S) meson to be inferred from the mass the dipion system

is recoiling against due to the dipion transitionΥ (3S) → π+π−Υ (1S). There are two distinct

backgrounds to the invisible signal:

• A non-peaking combinatoric background due to events containing containing two pions

which are not due to theΥ transition, but that are kinematically similar to signal events

• A peaking background where theΥ (3S) undergoes the dipion transition to a non-invisibly

decayingΥ (1S) but where the final decay products of theΥ (1S) escape detection
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Methods are developed to suppress the combinatoric background and precisely understand the

peaking background. Calculations are performed to understand the statistical sensitivity of this

measurement. Finally, a maximum likelihood fit is performedto extract the yield of signal

events. This yield is combined with the statistical sensitivity and systematic error calculations

to quote an upper limit on the branching fractionB(Υ (1S) → invisible). This chapter serves

as an introduction to the analysis and a road map of the procedures that are described in greater

detail in the following chapters.

3.1 Data and Monte Carlo Simulation

3.1.1 Data

From December 23, 2007 to March 1, 2008, PEP-II delivered beams at theΥ (3S) res-

onance to theBABAR detector with an integrated luminosity of 30 fb−1. This analysis depends

on the development of a special trigger configuration that was deployed in early January, and so

uses 23.294 fb−1 of this data. This corresponds to96.5 × 106 Υ (3S) mesons. Approximately

5% of the data is used for training, testing, and validating event selection methods which is then

discarded, leaving 22.092 fb−1 or 91.4 × 106 Υ (3S) mesons for the final measurement.

3.1.2 Monte Carlo Simulation

A number of Monte Carlo samples are generated to model various components of this

analysis:

• invisible Υ (1S) decays
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• leptonicΥ (1S) decays

• genericΥ (1S) decays

• continuum processes

– τ+τ−

– light-quark production

– radiative dilepton events

Monte Carlo simulations are run in large batches by theBABAR computing group.

These simulations are discussed in more detail in Chapter 4.2.

3.2 Event Selection

The presence of the two pions from the transitionΥ (3S) → π+π−Υ (1S) is required

for identification of aΥ (1S) meson in an event. The formula for the mass that the two pions

are recoiling against

m2
recoil = s + m2

ππ − 2
√

sEππ (3.1)

determines whether or not a pair of pions might have originated from this transition. While

events that contain only these two oppositely charged pionsare used for the actual measurement,

important control samples are also available within the data. The leptonic transition of the

Υ (1S) can be detected and is used for two control samples: events with one lepton detected
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and events with both leptons detected. We also use a sample with a single high energy neutral

particle as a “nearly” invisible sample.

3.2.1 Υ (1S) → invisible

This selection chooses events that have the two oppositely charged tracks (presumed

to be from the dipion transition) with a recoil mass∈ [9.35, 9.57]GeV/c2. There may be addi-

tional activity in the detector, as it is expected other activity from beams or noise will register

during these events. This selection will contain a large amount of background from events that

contain two pions but do not contain aΥ (1S). The region inmrecoil that is far away from the

Υ (1S) mass can be used as a sideband region to study this background. This sideband is used

for the measurement of, and to understand, the combinatoricbackground in the data.

3.2.2 Υ (1S) → ℓ+ℓ−

In addition to the dipion system in theΥ (1S) → invisible sample, this sample re-

quires the presence of two high energy tracks from the leptonic decay of theΥ (1S). This

sample is extremely pure, allowing the derivation of themrecoil distribution shape from data.

From this distribution, the sideband regions can be defined as being more than5σ from the

peak, and the signal region can be defined as being within5σ of the peak. This sample is also

used to calculate a scaling factor for the Monte Carlo simulation of leptonicΥ (1S) decays so

the number of leptonic decays of theΥ (1S) escaping detection is accurately predicted.
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3.2.3 Υ (1S) → ℓ

We also collect events where there is one high energy track inaddition to the dipion

system. While this sample is not as pure as the two lepton sample, it occupies a different fiducial

range of the detector. Its location in the back end of the detector is used to correct differences

in event acceptance between the simulation and data.

3.2.4 “Nearly” Invisible Sample

This control sample is collected with the same dipion requirements as theΥ (1S) →

invisible, but requires the presence of an extra neutral cluster in thecalorimeter to separate it

from the invisible sample. We use this collection to comparethe Monte Carlo predictions of

genericΥ (1S) decays to those in actual data to constrain the number of peaking background

events that might come from non-leptonic decays.

3.3 Non-Peaking Background Reduction

Since this analysis simply requires the presence of a dipionsystem with an invariant

mass in a window, a large quantity of combinatoric background initially overwhelms the signal.

In order to suppress this background, two methods are explored. A cut and count method is

used as a baseline, and as a sanity check, and a sophisticatedmultivariate selection algorithm

is trained and used for final event selection. For each method, a number of observables are

explored for their power to discriminate between Monte Carlo signal events and sideband data

from theΥ (1S) → invisible sample. Eventually the total signal yield will be determined using
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a fit tomrecoil, so these variables must also be uncorrelated withmrecoil. A variety of variables

are identified that can be used to discriminate between signal and background irrespective of

recoil mass.

3.3.1 Cut and Count

Initially, a cut and count routine is performed to establisha baseline significance.

This uses the PRIM algorithm [19] to find a multidimensional box containing the highest signal

significanceS ≡ s/
√

s + b. This gives a baseline significance that can be compared witha

more sophisticated selection algorithm. While the cut and count routine is not used for the rest

of the analysis, it is important to make sure that the multivariate algorithm works at least as well

as the cut and count routine (preferably better), and that itdoes not give completely unbelievable

gains over this routine, as that may point to errors elsewhere in the analysis.

3.3.2 Random Forest Decision Tree

The multivariate ”Random Forest” algorithm (MVA) is based on a large number of

“decision trees” trained with a set of random inputs. Decision tree outputs are weighted and

summed to optimize the Gini index [20] of the Random Forest. Once the algorithm has been

developed, a cut point must be determined. This is done by defining the procedure through

which the signal yield will be measured and running several Monte Carlo experiments to un-

derstand the statistical sensitivity of the measurement. The results of these “toy” Monte Carlo

experiments are used to minimize the 90% Confidence Limit on this measurement so that the

best upper bound can be found.
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3.4 Maximum Likelihood Fit

An extended maximum likelihood fit is performed on the data inthemrecoil to deter-

mine the yield of peaking and background components. We use the signal shape derived from

theΥ (1S) → ℓ+ℓ− control sample as a shape for both the peaking background andthe signal,

and we use a polynomial of order one as a shape for the non-peaking background.

3.5 Statistical Sensitivity Estimations

We create a Monte Carlo procedure that will generate distributions inmrecoil accord-

ing to the signal shape for signal and background. The sideband data is used to estimate the

shape of the non-peaking background, and theΥ (1S) → ℓ+ℓ− control sample is used again to

estimate the distribution of the peaking background and signal. These distributions are used to

generate sample data sets which are added together to createa sample distribution of signal and

background which can then be put through the fitting procedure described in section 3.4. Since

in these toy experiments we know exactly the quantity of signal and background events, the

fitted yield can be compared to the actual yield to determine the signal sensitivity of the fitting

procedure.

By running these toy Monte Carlo experiments many times, we can create a distribu-

tion of yields based on various assumptions about values of signal yield. These distributions are

used to determine confidence intervals around various branching fraction measurements. This

includes both 68% and 90% confidence intervals. We use these confidence intervals to optimize

the statistical signal sensitivity of the measurement as a function of Random Forest output.
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3.6 Peaking Background Determination

When theΥ (1S) in the Υ (3S) → π+π−Υ (1S) transition decays into potentially

detectable states, these products can sometimes escape detection. These decays result in a

decay that is indistinguishable from a signal event, as onlythe dipion system can be detected.

In order to estimate the number of decays of this sort, we use our Monte Carlo predictions and

control samples to predict the number of undetectable events that occur. The most common type

of undetectable decay is a leptonic transition of theΥ (1S) where the two final state leptons are

produced outside the fiducial range of the detector. This accounts for approximately 99.8% of

the peaking background after the MVA cut. We use the control samples to correct the Monte

Carlo simulation of theΥ (1S) decay channels, and then use this corrected simulation to find

the predicted number of peaking background events

Using theΥ (1S) → ℓ+ℓ− control sample, we correct the scaling on the Monte Carlo

simulation of the leptonic decays of theΥ (1S). We use theΥ (1S) → ℓ control sample to mea-

sure the backwards detector acceptance and correct the Monte Carlo simulation of the leptonic

decays of theΥ (1S). We use the “near” invisible control sample to compare the prediction of

non-leptonic decays of theΥ (1S) to the generic Monte Carlo prediction.

3.7 Systematic Errors and Results

Throughout the analysis, we operate on a set of data that is called “blinded”. This

simply means that we do not allow ourselves access to the invisible data in the signal region

(defined in Chapter 3.2.2). The analysis is designed in this blind state to remove any potential

24



bias towards finding a signal. Once the MVA output cut has beenfixed and the number of

expected peaking events determined, the extended maximum likelihood fit is performed on the

unblinded data. The systematic errors involved in this analysis are listed, added together, and

combined with the statistical upper limit derived from thisfitting (Chapter 3.4) using a Bayesian

approach to calculate the upper limit onB(Υ (1S) → invisible).
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Chapter 4

Data, Monte Carlo Simulation, and

Preliminary Event Selection

This section describes the data used in this analysis, alongwith Monte Carlo (MC)

samples which are intended to model the data. We explain the conditions of the data which

we use in the analysis, as well as the luminosity of that data.We also document the assumed

cross-sections for the various processes modeled in MC.

We describe the selection of several subsets of events from the entire data set. This

type of selection is intended to be loose, efficiently selecting events of interest while reject-

ing the bulk of other kinds of events. These subsets are subsequently used to develop more

sophisticated event selection techniques.
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4.1 Data

The data used in this analysis were taken during a period between December 23,

2007 and March 1, 2008. During this period, data was taken both at and below theΥ (3S)

resonance, but only data taken at theΥ (3S) resonance is used in this analysis. A special trigger

configuration were developed to optimize the selection of the signal events, but this trigger was

not deployed until early January. The new trigger provides afactor of seven gain in signal

efficiency; we therefore only use data taken after this trigger was deployed.

The data are split into three subsamples. We use these subsamples to study selec-

tion criteria backgrounds that are not be possible to simulate, and then develop techniques to

reject these backgrounds. Where the samples are used in sucha way as to be unblinded (see

Chapter 3.7) or otherwise potentially biased, they are removed from the rest of the analysis.

These samples are nicknamed the “Low” and “High” , and “Medium” datasets. The “Low” and

“High” sets are comprised of runs early in theΥ (3S) Run (Low) and later in the Run (High),

representing a coarse sampling of conditions during data taking. The “Medium” dataset repre-

sents all of the runs which are not in either the “Low” or “High” samples. Taken together, these

three subsamples consitute the availableΥ (3S) data with the new trigger.

We use the “Low” data to train, test, and validate our event selection method (detailed

in Chapter 5). Since this data represents a small fraction (5%) of the total dataset, we will

exclude this data from the final signal selection. The final dataset will therefore contain only

the “High” and “Medium” samples, totaling 22.092 fb−1.
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Dataset Name Integrated Luminosity ( fb−1) Υ (3S) Count (×106)

Low 1.201 5.12
High 1.282 5.49

Medium 20.810 85.9

Total 23.294 96.5

Table 4.1: The dataset names and luminosities

4.2 Monte Carlo (MC) Samples

The BABAR computing group creates large batches of Monte Carlo simulation la-

belled by a Simulation Production (SP) number. This analysis takes place using the SP-10

series simulation. A number of MC samples were produced to model specific components of

the data, including invisibleΥ (1S) decay, leptonicΥ (1S) decay, genericΥ (3S) decay, and

continuum processes (includingτ+ τ−, light-quark production, and radiative dilepton events).

Each of these is labelled with its own specific SP-mode number. These samples are detailed

in Table 4.2. The simulation of the dipion transitionΥ (3S) → π+π−Υ (1S) uses the ma-

trix element analysis from [21] input to EvtGen [22]. The generic decays of theΥ (3S) and

Υ (1S) and the continuum processes are generated by eitherBABAR specific event generators or

PYTHIA/JETSET [23, 24]. The bhabha events are generated by BHWIDE [25] and the dimuon

simulator is BKQED [26, 27, 28]

Once the events have been generated, the interaction with the detector are simulated

by a detailed model of theBABAR detector based onGEANT 4 [29]

There are two signal MC samples. The “v01” sample resulted from the first full MC

production for Run7 in SP10. However, due to a mistake MC wereonly generated in this
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production to simulate conditions from a subset of the totalΥ (3S) run, although the intention

was to sample correctly over all conditions. The benefit of this sample is that we can use it to

optimize cuts or train a multivariate discriminant and “throw it away” afterward, leaving us to

use the full and correct simulation to compute efficiencies,etc. We will compare these two MC

samples to show that there are no significant differences when using them in this way.

The Particle Data Group [30] branching fraction for the charged dipion transition is

used,B(Υ (3S) → π+π−Υ (1S)) = 0.0448. We normalize genericΥ (3S) MC to the count of

Υ (3S) mesons in each given conditions period of data-taking. Lepton universality is assumed

for the leptonic decays of theΥ (1S) and the branching fraction for each leptonic final state is

assumed to be 0.025 (the average value of leptonic branchingfractions found in the PDG [30]).

The cross-sections for light-quark continuum ande+e− → τ+τ− production are scaled from

their values at theΥ (4S) assuming1/s scaling:σuds = 2.18 nb, σcc = 1.36 nb, andστ+τ− =

0.94 nb. The cross-sections for radiative dilepton processes are taken from the generators for

these processes, and areσγe+e− = 25.79 nb andσγµ+µ− = 1.1985 nb.

4.3 Event Selection

4.3.1 Event Objects and Their Properties

In order to select particular events, it is convenient to define some objects that exist in

the events. We need a way to define tracks in the detector, and away to identify them. For our

selections, the following object definitions are used:
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Decay Mode SP Mode Number Generated Events

Υ (3S) → π+π−Υ (1S)(→ invisible) 8618 127000
Υ (3S) → π+π−Υ (1S)(→ invisible) 8618 155000
(SP10 “v01” Production)
Υ (3S) → π+π−Υ (1S)(→ µ+µ−) 8780 1163000
Υ (3S) → π+π−Υ (1S)(→ e+e−) 8781 1163000
Υ (3S) → π+π−Υ (1S)(→ τ+τ−) 8782 993000
Υ (3S) Generic 8739 161704000
uu, dd, ss 998 45360000
cc 1005 53456000
τ+τ− 3429 34712000
Radiative Bhabha 2400 113368000
Radiative Dimuon 2981 33608000

Table 4.2: MC samples details, including SP mode number and number of generated events

• ChargedTracks are any track in the detector. These tracks are fit using a Kalman Filter

(detailed in [14, 31, 32]) as helices in the detector.

• GoodTracksVeryLoose (GTVL) are Charged tracks that come from the interaction point

(IP) of the experiment. In order to assure this, each must:

– Have a maximum reconstructed momentum of 10GeV

– Have a distance of closest approach in thex − y plane of no more than1.5cm

– Have a distance of closest approach on thez axis of no more than2.5cm

For our GoodTracksVeryLoose (GTVL) we also use particle identification. Particle

identification algorithms are developed by the PID group at theBABAR collaboration. The par-

ticle identification selectors used in this analysis employa boosted decision tree algorithm [33]

to determine the identity of a certain track. Boosted decision trees are used for particle identi-
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fication in many particle physics experiments (e.g. [34]), and have been found to be extremely

effective atBABAR. The output of a boosted decision tree algorithm is a real number between 0

and 1. In order to transform this real number into a binary selection (i.e. this track is or is not

a muon), cut values on the decision tree output are set forth by the PID group. Each decision

tree selector is divided into a hierarchy of cut values on theoutput which correspond to the false

positive rate of that selector. There are typically 4 such levels named “VeryLoose”, “Loose”,

“Tight”, and “VeryTight”, though there may be more or less depending on the particulars of the

PID selector. The “Tight” values will have few false positives, and so collect a cleaner sample,

but will also reject more true particles. In this analysis, our particle identification requirements

are found to be fulfilled using loose particle selectors, andrequiring tracks believed to be from

pions to fail the selector. The names of the algorithms are: eKMVeryLoose, an electron selec-

tor; muBDTLooseLoP, a low momentum muon selectron; muBDTVeryLoose, a muon selector;

and KKMVeryLoose, a kaon selector.

4.3.2 Data Samples

There are several different data samples in this analysis which are used in separate

ways. We define how we select the events that are contained in each of these. We make use of

one signal sample and three control samples.

4.3.2.1 Signal Sample Selection

The signal events in this analysis are expected to contain only the two pions from

the dipion transition of theΥ (3S) to the Υ (1S) with no other detectable particles from the
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primary physics processes involved. As with any other eventin BABAR, we also expect there to

be activity in detector systems due to noise or PEP-related activity

The signal selection is defined as follows. Events must contain exactly two Good-

TracksVeryLoose (GTVL). No further restrictions are placed on, for instance, the number of

ChargedTracks, which may exceed two. The tracks much have opposite charge, and have mo-

menta in the center-of-mass (CM) frame satisfyingp∗ < 0.8GeV/c. The two pions must have

an invariant mass satisfyingmππ ∈ [0.25, 0.95]GeV/c2. The physical boundaries of the dipion

mass are2mπ = 0.28GeV (minimum) andMΥ (3S) − MΥ (1S) = 0.89GeV (maximum). We

widen the boundary around these physical limits to admit reconstruction resolution effects on

the pions. Finally, we define the mass recoiling against the dipion system,

m2
recoil = s + m2

ππ − 2
√

sEππ, (4.1)

where
√

s is the collider CM energy (assumed to be
√

s = MΥ (3S) = 10.36GeV) andEππ is

the energy of the dipion system. This should be centered around theΥ (1S) mass (MΥ (1S) =

9.46GeV) We require thatmrecoil ∈ [9.35, 9.57]GeV/c2. This skim is found to be64.4% effi-

cient on signal MC events, where the bulk of the efficiency loss is simply due to the requirement

that both pions be reconstructed.

4.3.2.2 Two Lepton Control Sample and One Lepton Control Sample Selection

The control sample of fully reconstructed visible leptonicΥ (1S) decays is con-

structed similarly to the signal sample. The only differences are that we require three or four

GoodTracksVeryLoose (GTVL) (to select events where one or both of the final-state leptons are
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reconstructed), and that these additional GTVL have CM momenta satisfyingp∗ > 2.0GeV/c.

We attempt to recover radiative energy loss by the lepton dueto Bremsstrahlung radiation us-

ing nearby photons. No particle identification is required of these tracks, so while this is most

effective for electrons, the procedure is carried out for both high energy tracks.

In the case where both leptons are reconstructed (i.e. thereare exactly 4 GTVL), the

Υ (1S) candidate is required to have a mass satisyfingMΥ (1S) ∈ [9.0, 9.8]GeV/c2. This skim

is 60% efficiency on the Monte Carlo Simulation of the muon final state and42% efficient on

the Monte Carlo Simulation of the electron final state. A brief study of the electron final state

using the MC truth reveals that the efficiency of the skim selection is the same between electron

and muon until theΥ (1S) mass cut. Even after Bremsstrahlung recovery, radiation effects on

the final-state electrons have a significant effect on the reconstructed mass.

Our sample of one-lepton final-state events is also constructed similarly to the two-

lepton case, except we do not apply aΥ (1S) mass cut and we explicitly require three GTVL.

These events will be discussed later, in section 8, when we describe our systematic errors.

The above selections reject all but3.8% of the entire data triggered set.

4.3.2.3 “Near” Invisible Control Sample Selection

We create a control sample to study the data to Monte Carlo simulation agreement in

a “near” invisible region. This selection is similar to the signal selection, but requires an extra

high energy neutral object in the detector to isolate it fromthe signal sample. This selection is

detailed in section 7.3.
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4.3.3 Υ (1S) → ℓ+ℓ− Sample Selection Refinements

The selection of the two lepton control sample is refined in this section in order to

determine the signal and sideband regions for the analysis.Once the preliminary selections

on two lepton events have beens made, we begin a more in depth evaluation. We wish to

construct a sample of events which contain a dipion transition fromΥ (3S) to Υ (1S) and have

very little contamination from other sources. This will enable us to measure the spectrum of

recoil mass from the data rather than the Monte Carlo simulation, and it will serve as a check

on theΥ (1S) → ℓ+ℓ− simulation.

Figure 4.1 shows the recoil mass of the events passing the preliminary two lepton

sample selection. We see that the MC are generally in excess of the data everywhere, a signifi-

cant shift of the MC relative to the data, and that there is a significant contribution (about 12%)

from radiative dilepton events (e+e− → ℓ+ℓ−γ), dominated by the radiative Bhabha. This

latter effect is more obvious in Fig. 4.2.
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Figure 4.1: The recoil mass of the preliminary two lepton sample. The red and magenta sections
are contamination from radiative dilepton events

We study these events and develop selection techniques to remove these backgrounds.
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Since the radiative dilepton events should only have two hard tracks in them, the dipion system

must be faked. The most likely candidate is photon pair-production in material, creating a pair of

soft tracks. Since these are not trueΥ (3S) events, the mass difference between the recontructed

Υ (3S) andΥ (1S) must also be combinatoric. We also expected a small opening angle between

the “pions”, consistent with photon pair-production.

We plot these two variables (∆MΥ (3S),Υ (1S), and∆φππ) in Fig. 4.2 and confirm

that the majority of the radiative dilepton backgrounds have one or both “pions” identified as

electrons (using eKMVeryLoose), a uniformly distributed value of the mass difference, and a

narrow opening angle. We thus reject events where either “pion” is identified as an electron, and

keep events where∆MΥ (3S),Υ (1S) ∈ [0.890, 0.920]GeV/c2. We do not cut on the opening angle

to avoid altering the kinematics of the dipion system in a significant way. This leaves us with

a sample of events that is 99.8% pureΥ (3S) → π+π−(Υ (1S) → ℓ+ℓ−) in the simulation. A

comparison of two lepton samplemrecoil spectrum in data and Monte Carlo after this selection

can be seen in Figure 4.3

After these selection criteria area applied, we can fit the recoil mass distribution to

obtain the yield of visible events, and to obtain a preliminary model of the recoil mass shape for

signal events. This will allow us to define a “blinding region” in the recoil mass,±5σ around

the peak position. We model the recoil mass distribution as the sum of a Cruijff function:

C(mrecoil) =
1

N















exp[−(mrecoil − µ)2/(2σ2
L + αL(mrecoil − µ)2)], mrecoil < µ

exp[−(mrecoil − µ)2/(2σ2
R + αR(mrecoil − µ)2)], mrecoil > µ

(4.2)

and a linear background. A fit of this model to the data yields the result shown in Figure 4.4.
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(a) A binary output, requiring either pion passeK-

MVeryLoose. A majority of the radiative back-

grounds have at least one “pion” identified as

an electron, while the pions fromΥ (3S) →

π+π−(Υ (1S) → ℓ+ℓ−) are almost completely iden-

tified as “not electrons”
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(b) The mass difference between the reconstructed

Υ (3S) and Υ (1S). The mass difference in the ra-

diative dilepton samples is flat, while the distribution

from Υ (1S) → ℓ+ℓ− peaks at the true mass differ-

ence
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(c) The opening angle between the pions in the plane

transverse to the z-axis before performing any cuts to

remove radiative dilepton events

ππφ∆
-3 -2 -1 0 1 2 3

0

500

1000

1500

2000

2500

3000

3500

4000

ππφ∆
-3 -2 -1 0 1 2 3

0

500

1000

1500

2000

2500

3000

3500

4000 Rad. Bhabha
Rad. Dimuon

)-µ +µ (-π+π
)- e+ (e-π+π
)-τ +τ (-π+π

Data

(d) The opening angle between the pions in the plane

transverse to the z-axis, after cuts on electron ID

and the mass difference to remove radiative dilepton

events

Figure 4.2: Variables under study to reject the radiative dilepton background
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Figure 4.3: Comparing the recoil mass in data and Monte Carloafter cuts to reject radiative
dilepton background.

The parameters of the fit are given in Table 4.3. Since this selection is a pure sample of dipion

transition between theΥ (3S) and theΥ (1S) it is an ideal place to determine the shape of

the recoil mass distribution of the dipion system. The differences between this sample and

the invisible sample come from differences in triggering and are treated as systematic errors in

Chapter 8.

We study the MC modeling of these events by fitting the sum of the muon and electron

final-state Monte Carlo simulations with the same model. We use an unweighted number of

events from these MC samples equivalent to an integrated luminosity of 30 fb−1. We allow for

the linear component. We find that without this linear component, the quality of the fit to the

MC is very poor (χ2/ndof ∼ 10 with 120 bins). This suggests that the linear component fit

in the data is due to effects in the reconstructed signal events and not just due to an unmodeled

flat background component. Including the linear component improves the fit quality, though it’s

still not perfect. The results of the fit are shown in Fig. 4.5 and in the right-most column of

Table 4.3. We take the signal PDF model from the data, and use it in the rest of the analysis.
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Figure 4.4: Fitting the recoil mass after rejecting radiative dilepton background.
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Figure 4.5: A fit for the PDF shape of the signal using visible final states signal MC simulations.
The MC simulation is sampled at a rate consistent with the expected data luminosity, and is not
weighted.
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Cruijff Parameter Data Value MC Value

Peak Position (µ) (9.46103 ± 0.00004)GeV/c2 (9.46015 ± 0.00002)GeV/c2

Left Width (σL) (2.50 ± 0.04) × 10−3 GeV/c2 (2.41 ± 0.02) × 10−3

Right Width (σR) (2.98 ± 0.03) × 10−3 GeV/c2 (2.51 ± 0.02) × 10−3

Left Tail (αL) 0.139 ± 0.006 0.114 ± 0.004

Right Tail (αR) 0.175 ± 0.003 0.171 ± 0.002

Cruijff (Peak) Fraction (96.5 ± 0.4)% (96.4 ± 0.2)%

Table 4.3: Fit results from the visible events in both data and MC

A few of the parameters are of immediate interest. First, thepeak of the recoil mass

distribution is found to be at(9.46103 ± 0.00004)GeV/c2, while the PDG value of theΥ (1S)

mass is(9.46030 ± 0.00026)GeV/c2, which are not in great agreement with one another (the

difference is about2.8σ from zero). However, this analysis is not intended to perform a mass

measurement. The width of the peak is asymmetric, which one would expect from the recon-

struction uncertainty of the pions, and averages on the leftand right to about2.7MeV/c2. An

underlying flat part of the signal is just3% of the total distribution, and is in good agreement

with the number from the MC prediction.

We define the±5σ blinding region around the signal peak asmrecoil ∈ [9.4485,9.4759]

GeV/c2. Data in our signal sample which hasmrecoil in this window will be excluded from con-

sideration when we develop algorithms to reject background. Data outside of this window will

be referred to as “sideband” data.
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4.3.4 Υ (1S) → invisible Sub-sample Selection Criteria

Now that we have defined the shape of the recoil mass in the events of interest, we

examine the complete spectrum of recoil mass in our signal sample. While the peaking com-

ponent is present, it is completely dwarfed by combinatoricbackgrounds from other processes

that generate two pions.

In Fig. 4.6, the left plot in the figure shows the stack of all MCbackgrounds; radiative

dilepton events contribute very little to this plot, and arehard to see between theτ+τ− back-

ground and the genericΥ (3S) background. The right plot adds the data (the “Low” sample),

and we see that the majority of the background events are actually not modeled at all by the

MC.

Figure 4.6 illustrates the two major components of the background. The most sig-

nificant is a non-peaking background comprised of light-quark continuum,τ+ τ−, and a much

larger unmodeled component. This unmodeled component comes primarily from two photon

fusion processes that result inπ+π− pairs. The second, much smaller (but potentially irre-

ducible) background is a peaking background from genericΥ (3S) decays. In Fig. 4.7, we plot

the genericΥ (3S) broken down into events without a dipion transition to theΥ (1S), events with

a dipion transition but with excluding leptonic decays of the Υ (1S), and finally the subsample

containing only leptonic decays of theΥ (1S). At this early stage of the selection, the contribu-

tion of peaking backgrounds which are not from leptonic finalstates is about one-quarter of the

total peaking background.

We will develop a multivariate selection algorithm to suppress the flat, combinatoric
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Υ (3S) and theΥ (1S) with non-invisible final states which are simply

not detected.
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(b) Including data from the “Low” sample - notice that the MC pre-

diction is still present but has been suppressed by the preponderance of

unmodeled backgrounds.

Figure 4.6: The recoil mass in the invisible sample after allselection cuts
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background using the signal Monte Carlo (MC) sample and the “Low” signal sample sideband.

We will also conduct a detailed study of the peaking backgrounds and use this to predict the

expected number of undetected dipion transitions in the signal sample.
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Chapter 5

Background Suppression Techniques

In this chapter we describe the refinement of the selection ofinvisible decays of the

Υ (1S), henceforth referred to as the “signal” channel. We describe the variables used to dis-

criminate between signal and background processes, including both simple selection cuts and a

more advanced multivariate approach to selecting these events.

5.1 Candidate Variables

There are a number of variables that may be potentially valuable for rejecting back-

grounds. Backgrounds are expected to exhibit several features that distinguish them from

the signal. First, the kinematics of the pions should differfrom pions that come from a real

Υ (3S) → π+π−Υ (1S) transition. Second, we expect backgrounds to typically have more ex-

tra detector activity, either in the form of extra tracks, neutrals, or IFR activity. We study these

possibilities using signal MC and data from the recoil mass sidebands, which are defined in

Chapter 4.3.3. Our first approach is designed to remove the dominant non-peaking background.
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However, this process is also extremely effective at removing the peaking background from non-

leptonic decays of theΥ (1S). The remaining peaking backgrounds will be discussed in Chap-

ter 7. We require events in the following comparisons to satisfy mrecoil ∈ [9.4, 9.52]GeV/c2,

which will serve as our fitting region at the end of this analysis (representing approximately20σ

to either side of the recoil mass peak).

Before proceeding to describe the variables, we make one important comment. We

perform a pre-cut on the dipion transverse momentum atpT < 0.1GeV/c . Very low-pT back-

grounds overwhelm signal forpT less than this, and they are removed later anyway by our cuts

(even very loose cuts). We therefore show the rawpT distribution (Figure 5.1), but require

pT > 0.1GeV/c for all other plots. For completeness, we show the same variables without the

pre-cut in Appendix A.

The variables that we study are as follows:

• Dipion kinematics and properties

– Dipion transverse momentum: we compute the magnitude of thedipion system’s

transverse momentum,pT , in the laboratory frame. We expect backgrounds with

small pT , such as two-photon fusion processes, to appear quite distinctly in this

variable (Figure 5.1). We find excellent separation betweensideband data and signal

MC.

– Dipion polar angle: we use the absolute value of the cosine ofthe dipion system in

the laboratory frame (Figure 5.2).

– Dipion vertex probability: the dipions are required to meetat a common vertex,
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with a beamspot constraint. We compare the vertexχ2 probability [35, 36, 37] for

signal and background (Figure 5.3). We find that the background tends to contain

more failed vertexes (low probability) than signal.

– We check whether either pion passes a particle identification (PID) selector level

and define a variable for each pion that is ”true” if it does pass the selector at the

desired level. We identify the pions using the selectors eKMVeryLoose (electron

ID), muBDTLooseLoP (muon ID), or KKMVeryLoose (kaon ID) (for a description

of PID selectors, see Chapter 4.3.1). We then define a single boolean variable that

is true if either of the pions passes this PID selector level.These single booleans

for each of the three PID types are shown in Figures 5.4-5.6. We observe that the

background exhibits a significantly larger electron and muon contamination than the

signal, and a slightly larger kaon contamination.

• Extra Neutral/Charged Information

– The number of ChargedTracks in an event, including the pions(Figure 5.7). We an-

ticipate that while all events must contain just two GoodTracksVeryLoose (GTVL),

backgrounds will tend to include several additional tracksthat fail GTVL but popu-

late the ChargedTracks list.

– The total extra neutral energy: we compute the sum in the center of mass (CM)

frame of all calorimeter energy deposits (Figure 5.8) that are not associated with the

signal reconstruction (in the case of the signal events, there are no such neutrals; for

the one and two lepton control samples, Bremsstrahlung neutrals are excluded from
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this calculation).

– The CM energy of the highest-energy neutral cluster (Figure5.9)

– The mass of the highest-momentum pair of neutral clusters (Figure 5.10). This will

reveal background fromπ0 andη decay, specifically, in the content of the extra

neutrals. We see that there is a significant contribution from both sources.

– The cosine of the angle between the highest-energy neutral cluster and the normal

to the plane of the dipion system (Fig 5.11). This variable reveals any correlation in

production between the highest energy neutral and the dipion system. Events with

no extra photons are defaulted to a value of 1.1, just above the physical region.

– We compare the number of “Tight” EMCK0
L candidates (Figs. 5.12). We find that

the EMCK0
L multiplicity is a good discriminant between signal and background

(though it’s expected to be correlated with other neutral EMC cluster variables).

EMC objects are identified as beingK0
L candidates based on a boosted decision tree

algorithm [38]

5.2 A Note on Data Subsamples for Training

In the following sections, we will discuss the use of the aforementioned variables in

rejecting non-peaking background. Before doing this, we need to describe our procedure for

splitting the data and MC into subsamples for training, testing, and validating any procedure for

using these variables.
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Figure 5.1: The dipion systempT , compared between signal MC (blue, unshaded histogram),
sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pure comparison of the shape.

We use the “Low” sample of data, and all signal MC from the signal v01 Monte

Carlo (MC) dataset. After all selection cuts described in Chapter 4.3.2.1 and choosing events

within the fit region (mrec ∈ [9.4, 9.52]) of the recoil mass, we are left with 630k data sideband

events and 70k signal events. We split these samples into three subsamples, two for training the

background rejection algorithm and one for validating the performance of the algorithm. Two

training samples are needed because the algorithm learns about signal and background from

one, but its performance is measured (in order to correct thetraining) from the second. We will

quote efficiencies and plot the output of multivariate discriminants using the validation sample,

which is statistically independent of the other two samplesand thus unbiased.

For the sake of simplicity, we exclude the “Low” sample from the final analysis of
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Figure 5.2:|cos(θππ)|, whereθππ is the lab polar angle of the dipion system, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.3: The dipion vertex probability, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape. 50
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Figure 5.4: A boolean that is true if either pion passes eKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.5: A boolean that is true if either pion passes muBDTLoPLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.6: A boolean that is true if either pion passes KKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.7: The number of ChargedTracks in the event, compared between signal MC (blue,
unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Figure 5.8: The extra neutral energy, compared between signal MC (blue, unshaded histogram),
sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pure comparison of the shape.

the signal sample. This avoids having to disentangle the 1/3of unbiased events from the biased

2/3 of the “Low” sample. Excluding the “Low” sample reduces the totalΥ (3S) count from

96.5 × 106 to 91.4 × 106.

5.3 Candidate Variable Correlations

Since we will eventually be performing a fit to recoil mass to determine the total yield

of invisible decays of theΥ (1S), it is imperative that the efficiency of the selection we develop

be flat inmrec. We first group variables into their two supercategories - dipion variables and

extra energy variables - and plot their relative correlations and their correlations with the recoil

mass. We have chosen the limited sample of available pion variables specifically to avoid strong
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Figure 5.9: The center of mass (CM) energy of the highest-energy cluster, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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(a) A wide range of the two-neutral mass
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(b) Theπ0 mass region
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Figure 5.10: The mass of the highest-momentum (center of mass (CM) frame) neutral pair,
compared between signal MC (blue, unshaded histogram), sideband data (black points), and
Υ (3S) generic MC (grey, shaded histogram). All distributions arenormalized to the yield in
the sideband data, for a pure comparison of the shape.
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Figure 5.11: The cosine of the angle (center of mass (CM) frame) between the highest en-
ergy neutral and the normal to the plane of the dipion system,compared between signal MC
(blue, unshaded histogram), sideband data (black points),andΥ (3S) generic MC (grey, shaded
histogram). All distributions are normalized to the yield in the sideband data, for a pure com-
parison of the shape. Events that do not have any extra photons are defaulted to 1.1 and are not
shown on this plot.

58



L
Number of Tight EMC K

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

30000

35000

40000 Y(3S) Generic MC

 + invisible MC-π+π

Sideband Data

Figure 5.12: The multiplicity of EMCK0
L candidates, compared between signal MC (blue,

unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Ntuple Variable Name Description

m rec Dipion recoil mass
dipivtxprobchi2 Dipion vertex probability
absdipicosth | cos(θππ)|
dipipt Dipion pT

pi[1,2]{kaon,elec,muon}ID Pion PID

ntracks
ChargedTrack multiplicity, in-
cluding the pions

nklemc EMC K0
L multiplicity

g1pipicosthCMplane

cosine of the CM angle between
the highest-momentum neutral
cluster and the normal to the dip-
ion plane

ggmass
Invariant mass of the highest-
momentum pair of neutral clus-
ters

eTotCalorNeutral
Total extra neutral energy in the
CM frame

g1ECM
CM Energy of the highest-energy
neutral cluster

Table 5.1: The mapping between ntuple variable name and the variable description

correlations with the recoil mass, or a large number of weak ones that when taken together allow

the background rejection algorithm to infer the value of therecoil mass in that event (and thus

create a bias). The correlations of the PID, vertexing, and dipion kinematics are shown in

Figure 5.13, while the correlations of the extra particles variables are shown in Figure 5.14. The

key for deciphering the ntuple variable names is in Table 5.1.

The dipion variables are, for the most part, only weakly correlated with one another

in the signal MC and sideband data (at the level of 6% or less),and also weakly correlated with

the recoil mass. In the background, we see a pattern of correlations which are not present in the
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Figure 5.13: The correlations between dipion variables in signal MC and sideband data. The
plots are symmetric about the diagonal.
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Figure 5.14: The correlations between extra energy variables in signal MC and sideband data.
The plots are symmetric about the diagonal.
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signal. The notable ones are:

• When one pion passes a certain PID selector, the other tends to as well

• A number of weak correlations, at the few percent level, across a wide range of variables

that are not present at all in the MC signal sample – this should enable a multivariable

algorithm to identify classes of background events.

Therefore, there is a lot of promise in these variables to reject backgrounds.

The extra particle variables are similarly very weakly or not at all correlated with

recoil mass. However, in many cases they are strongly correlated with each other in both the

signal and data, although from the plots above the nature of the correlation would tend to fa-

vor background rejection. We note that, as expected, the EMCK0
L multiplicity is strongly

correlated with other neutral variables.

5.3.1 A Neural Net Study of Correlations

It is possible that while a group of variables may not be individually correlated with

another variable, some function of those variable can be used to predict the variable in question.

We are concerned that this may be the case with the input variables we choose for our analysis

andmrecoil. In order to confirm that there is no way to reconstructmrecoil from these inputs, we

use a Neural Net algorithm trained on the same sideband data in the “Low” sample discussed

earlier, withmrecoil as its output. We perform this training using several different sets of inputs

to determine whether they can be used to reconstructmrecoil. We then choose the maximal set

that cannot reconstructmrecoil. In Figure 5.15 the Neural Net has access to variables that allow
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reconstruction ofmrecoil. These extra variables are information about the individual pions in

the events. Once information on the individual pions removed from the Neural Net (Figure

5.16), it cannot reconstructmrecoil

Figure 5.15: The output of a Neural Net algorithm trained to predictmrecoil that has access to
variables allowing it to do so plotted vs the truemrecoil.

5.4 A Benchmark Cut-and-Count Analysis

We implement the PRIM algorithm [19] to create a preliminarycut-based selection

routine. This algorithm makes multi-dimensional cuts on a sequence of variables in order to op-

timally reject background and select signal by searching for “bumps” in each variable that are

signal-rich. We apply this algorithm to develop a baseline cut-and-count analysis on the afore-

mentioned variables. This will serve as the standard against which we measure improvement

in a more sophisticated multivariate approach. We want to make sure that there is a sensible
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Figure 5.16: The output of a Neural Net algorithm trained to predictmrecoil that does not have
access to variables allowing it to do so plotted vs the truemrecoil.

improvement from a multivariate approach.

We use the training and testing samples to train the algorithm, using the signal signifi-

cance as the figure-of-merit (FOM) for the training. The signal is weighted to a target branching

fraction of5×10−4 for the optimization. There is one parameter that can be tuned to obtain the

optimal FOM: the “peel parameter”, which represents the maximum number of signal and back-

ground events that can be “peeled” away by a cut for a given cycle in the optimization. This is

varied between 1% and 90%. The optimal peel parameter (maximizing the FOM) is found to be

50%. The cuts determined by the algorithm are shown in Table 5.2. The algorithm determines

that with these cuts, it is not necessary to cut on the invariant mass of the highest-momentum

pair of neutral clusters, the EMCK0
L multiplicity, or the angle between the highest-momentum

neutral cluster and the normal to the dipion plane.
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Variable Selection

Kaon ID fail
Electron ID fail
Muon ID fail
Dipion pT [0.647, 0.821]GeV/c

| cos(θππ)| < 0.834

Dipion Vertex Probability > 6 × 10−4

ChargedTrack Multiplicity 2
CM Energy of highest-energy photon < 0.170GeV

Total Extra Neutral Energy (CM) < 0.707GeV

Table 5.2: The selection criteria for optimal background rejection, as determined by the PRIM
algorithm

We then apply these cuts to the validation sample and check the performance. We

find a significanceS ≡ s/
√

s + b (where thes, the signal, is the signal Monte Carlo (MC), and

b, the background, is the sideband data) of 0.205 in the validation sample, which represents a

luminosity of just0.4 fb−1. This represents 437 background and 4.31 signal events (assuming

the previously mentioned signal branching fraction of5 × 10−4) in this integrated luminosity.

These will be our benchmark number for a more complex multivariate algorithm. Also, note

that we are computing this significance in a very wide region of the recoil mass (mrecoil =

[9.41, 9.52]GeV/c2). This is the region in which we will later perform a maximum likelihood

fit.

5.5 The Random Forest-based Multivariate Analysis (MVA)

We pursue a more advanced algorithm for rejecting background: the random forest.

A “Random Forest” [20] is a method by which a number of decision trees [33] are trained, and

the output of the algorithm is taken as the weighted vote of the output of each of the trees. The
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training procedure sets the weights for the vote, to maximize the Gini index (the figure of merit

(FOM) for this approach), which is related to the minimization of the loss of events from each

category (signal categorized as signal, background as background). We use the same samples

of events to train, test, and validate as were used for the cut-and-count approach. As an input

to the Random Forest algorithm, we use the complete set of inputs defined in this chapter, and

listed in Table 5.1. Each training cycle grows a decision tree from a random subset of the input

variables - thus the name: “random forest”.

We can control two parameters during the training process: the number of trees grown

(training cycles) and the minimum number of events that are allowed to populate a terminal node

of the tree (a node with no further splits). We fix the number oftrees to 100 and try a variety

of minimal events per terminal node, which we denote “l”. Figure 5.17 shows the resulting

training curves for the FOM vs. training cycle. We find the best performance (lowest FOM) for

l = 50.

We then cross-check the performance of this algorithm against the cut-and-count anal-

ysis developed in the previous section. We fix the cut on the MVA output to 0.875 to obtain the

same background yield and compare the signal yield and significance. We find that the MVA

passes3% more signal (4.43 events) for the same background, giving usa significance of 0.211

instead of 0.205.

We also cross-check the use of the “v01” signal MC to train andvalidate the algo-

rithm. We compare the MVA output in the “v01” signal MC we usedto train the MVA to the

MVA output in the official signal MC (Figure 5.18). We find no significant differences between

the two.
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Figure 5.17: The figure of merit (FOM) of the random forest vs.the number of trees grown
(training cycles), for a variety of minimal events allowed per terminal node (“l”). The optimal
training configuration is shown as the dark green (dashed) line.

The output of the random forest algorithm, compared betweensignal MC and side-

band data, is shown in Figure 5.19. We also compare the outputof the algorithm just on the

sideband data, for events in the upper and lower sidebands (Figure 5.20, and find no concerning

differences between events from these two regions.

5.6 Signal Monte Carlo/Control Sample Comparison of MVA Out-

put

The MVA can almost be applied to the control sample (two-lepton) events without

changing its input configuration. We expect that most of the inputs will be very similar between

signal MC and the control sample MC. However, this is not truefor the track multiplicity vari-
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Figure 5.18: The output of the Random Forest (MVA) on signal MC from the “v01” validation
sample (cyan, solid histogram) and the official signal MC (black, unfilled histogram). The plots
are unit normalized over the MVA range of [0,1].

able. The track multiplicity contains the final-state leptons, which need to be subtracted. There-

fore, for events reconstructed in the two-lepton final statewe redefineNtracks → Ntracks − 2.

We additionally ignore any photon used in Bremsstrahlung reconstruction so that this extra en-

ergy will not enter into the MVA inputs involving neutral objects. Later, when we discuss the

one-lepton control sample, we will similarly modify this MVA input.

We can compare the overall shape of the MVA output between thesignal MC and

the two lepton control sample, and obtain a qualitative evaluation of the systematic difference

between the MC and the data for a signal-like sample. The comparison of the MVA output is

shown in Figure 5.21.

Qualitatively, the comparison of the distributions in thiscontrol sample is quite favor-
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Figure 5.19: The output of the Random Forest (MVA) on signal MC and sideband data from
the validation sample. The plots are unit normalized over the MVA range of [0,1].
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Figure 5.20: The output of the Random Forest (MVA) on lower and upper sideband data from
the validation sample. The plots are unit normalized over the MVA range of [0,1].
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Figure 5.21: The output of the MVA compared between signal MC(cyan, filled histogram),
control sample MC (black unfilled histogram), and the control sample data (black points). The
plots are unit normalized over the MVA range of [0,1].

able. However, we observe clear shape differences above 0.6between the signal MC and the

two lepton control sample MC. While the control sample MC models the data almost perfectly,

the signal MC and the control sample are not in perfect agreement. These differences are due

to triggering effects and are investigated when we study systematic uncertainties in Chapter 8.

There, we will use these samples to quantitatively calculate systematics errors in the use of this

MVA.
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5.7 Backgrounds After Loose Random Forest (MVA) Selection:

Peaking Backgrounds

In Chapter 4.3.4, we studied the genericΥ (3S) MC and looked at the peaking and

non-peaking background contributions from that source (Figure 4.7) prior to any additional

cuts. We can now look at these events again, with the MVA applied to them. We are specifically

interested in the contribution to the peaking background from the non-leptonicΥ (1S) decay.

After the preliminary event selection, this source constituted 25% of the peaking background.

While there is a great deal of information on theΥ (1S) → ℓ+ℓ− decays available,

these decays only account for a small percentage of the totalΥ (1S) branching fraction. There

is a danger that theΥ (1S) may decay into much less well-understood non-leptonic states, and

that these states will not be detected, contributing to our peaking background. In Figure 5.22 we

plot the MVA output for various subsamples of theΥ (3S) generic MC, including both leptonic

and non-leptonicΥ (1S) decays. We observe that most of the non-leptonic peaking background

events also have a low-valued output from the MVA, and so we expect that once a cut has been

applied, this background will be greatly suppressed. In order to make a preliminary estimate of

the background we expect from this source, we apply a cut on the MVA output at 0.8 (which

is determined to be the optimal cut in Chapter 6) to the generic Υ (3S) MC. We find that the

leptonic final states dominate the peaking background sample, with less than0.2 percent of the

total contributed by non-leptonic sources after requiringMV A > 0.8, as shown in Figure 5.23.

Since there are so few remaining non-leptonic Monte-Carlo events remaining, we list

them here:
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• Υ (1S) → π0p̄nK+K̄0

• Υ (1S) → K∗+K−γ

• Υ (1S) → ωηπ0

• Υ (1S) → π−n̄pγ

• Υ (1S) → π0n̄nγ

In Chapter 7 we use the one and two lepton control samples to calculate the ex-

pected peaking background from undetected leptonic decaysof the Υ (1S). We also explore

the uncertainties introduced into this measurement by the peaking backgrounds from both the

Υ (1S) → ℓ+ℓ− and the non-leptonicΥ (1S) decay modes using all three control samples: the

leptonic control samples just mentioned, and the “near” invisible sample.

5.8 Backgrounds After Loose Random Forest (MVA) Selection:

Other Backgrounds

We can now plot the sideband data and the sum of the Monte Carlo(MC) backgrounds

after making a loose selection at MVA ¿ 0.5. The resulting distribution of the recoil mass is

shown in Figure 5.24. The peaking component from theΥ (3S) MC contains all the subsamples

described in the previous section, added together into a single distribution. Another example,

with MV A > 0.7, is shown in Figure 5.25. For the cut at 0.5, we see the peakingbackground

appears as a fairly prominent feature on top of the non-peaking background. However, non-

peaking background is still clearly the dominant source of background events.
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Figure 5.22: Comparing the MVA output distributions for theleptonic and non-leptonic peaking
backgrounds. We plot the entire genericΥ (3S) sample (black points), the subsample of events
containing a dipion transition and a leptonic decay of theΥ (1S) (the stack of histograms), and
overlay the contribution from non-leptonicΥ (1S) decays after a real dipion transition (the blue
points). In the case where there are no events in the non-leptonic peaking background (blue
points), there is no entry in the bin.
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Figure 5.23: The recoil mass distribution of the peaking background components after a
MV A > 0.8 cut. We plot the entire genericΥ (3S) sample (black points), the subsample of
events containing a dipion transition and a leptonic decay of theΥ (1S) (the stack of histograms),
and overlay the contribution from non-leptonicΥ (1S) decays after a real dipion transition (the
blue points). In the case where there are no events in the non-leptonic peaking background (blue
points), there is no entry in the bin.
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For a tighter cut, the ratio of peaking and non-peaking background gets closer to 1.0,

and the peaking background will be an even more prominent feature at this cut level. We will

optimize the cut on the MVA using toy Monte Carlo experimentsin Chapter 6. These studies

will allow us to find the cut on the MVA output that maximizes our signal sensitivity.

5.9 Behavior of MVA Input Variables After MVA cut

We plot the input variables to the Random Forest Algorithm (MVA) after a cut on

the MVA output. Using the optimized value of the MVA cut determined in Chapter 6.5. In

general, the MVA cut of 0.8 cuts quite hard on most of the inputvariables and shapes them to

look signal-like for the sideband data. This suggests thereis little extra gain to be had by any

additional cuts on these input variables, and that the MVA has performed its intended function.

Since there non-peaking background has been suppressed as much as possible, we

measure the remaining background using a fitting procedure (described in Chapter 6). This

allows us to find the statistical error on the measurement. The systematic errors are calculated

using the finalized selection routine. These errors are listed in Chapter 8
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(b) Including sideband data

Figure 5.24: Recoil mass, after making an example selectionon the MVA output ofMV A >
0.5. Signal is normalized to a branching fraction of5 × 10−4.
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(b) Including sideband data

Figure 5.25: Recoil mass, after making an example selectionon the MVA output ofMV A >
0.7. Signal is normalized to a branching fraction of5 × 10−4.
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Figure 5.26: The dipion systempT , compared between signal MC (blue, unshaded histogram),
sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pure comparison of the shape.
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Figure 5.27:|cos(θππ)|, whereθππ is the lab polar angle of the dipion system, compared be-
tween signal MC (blue, unshaded histogram), sideband data (black points), andΥ (3S) generic
MC (grey, shaded histogram). All distributions are normalized to the yield in the sideband data,
for a pure comparison of the shape.
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Figure 5.28: The dipion vertex probability, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape.
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Figure 5.29: A boolean that is true if either pion passes eKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.30: A boolean that is true if either pion passes muBDTLoPLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.

84
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Figure 5.31: A boolean that is true if either pion passes KKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.32: The number of ChargedTracks in the event, compared between signal MC (blue,
unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Figure 5.33: The extra neutral energy, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape.
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Figure 5.34: The CM energy of the highest-energy cluster, compared between signal MC (blue,
unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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(a) A wide range of the two-neutral mass
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(b) Theπ0 mass region
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Figure 5.35: The mass of the highest-momentum (CM frame) neutral pair, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.36: The cosine of the angle (CM frame) between the highest energy neutral and the
normal to the plane of the dipion system, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape. Events that do not have any extra photons are defaulted to 1.1 and are not shown on this
plot.
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Figure 5.37: The multiplicity of EMCK0
L candidates, compared between signal MC (blue,

unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Chapter 6

Maximum Likelihood Fit of Recoil Mass,

Statistical Signal Sensitivity Calculations, and

Final Event Selection

We describe the maximum likelihood (ML) fit used to extract the signal events from

the final signal selection in data. We develop the signal and peaking background models from

data in the visible control sample, and the combinatoric background model from data in the

recoil mass sideband. We use Monte Carlo experiments, called toys, to study the stability of the

fit, and estimate the sensitivity of the final signal yield measurement.

6.1 Signal PDF

We construct the signal PDF by fitting the recoil mass in the two lepton control sample

(as was done in Chapter 4.3.3) after making different levelsof cuts on the Random Forest (MVA)
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output. We scan over MVA cuts so that we can later optimize thecut on the output of the MVA

using our full branching fraction extraction procedure. For each MVA cut, we fit the recoil mass

and we compare the parameters of the model as a function of thecut (Table 6.1). We model

the signal shape as the sum of a peaked shape - the Cruijff function - and a flat component; the

fraction of the model occupied by the Cruijff is denotedfpeaking. The Cruijff function is given

by,

C(mrecoil) =
1

N















exp[−(mrecoil − µ)2/(2σ2
L + αL(mrecoil − µ)2)], mrecoil < µ

exp[−(mrecoil − µ)2/(2σ2
R + αR(mrecoil − µ)2)], mrecoil > µ

(6.1)

There are slight changes in the parameterization of the Cruijff shape as a function of the cut on

the MVA, while the fraction occupied by the Cruijff is relatively constant. An example fit, for

MV A > 05, is shown in Fig. 6.1.
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MVA Cut µ σL σR αL αR fpeaking

0.0 9.46101 ± 0.00004 0.00249 ± 0.00004 0.00301 ± 0.00003 0.14087 ± 0.00596 0.17412 ± 0.00346 0.96528 ± 0.00388

0.1 9.46099 ± 0.00004 0.00248 ± 0.00004 0.00301 ± 0.00003 0.14077 ± 0.00595 0.17136 ± 0.00356 0.96589 ± 0.00390

0.2 9.46099 ± 0.00004 0.00247 ± 0.00004 0.00301 ± 0.00003 0.14282 ± 0.00601 0.16945 ± 0.00370 0.96850 ± 0.00405

0.3 9.46099 ± 0.00004 0.00249 ± 0.00004 0.00300 ± 0.00003 0.14107 ± 0.00617 0.16796 ± 0.00377 0.96976 ± 0.00406

0.4 9.46098 ± 0.00004 0.00249 ± 0.00004 0.00300 ± 0.00003 0.14210 ± 0.00630 0.16540 ± 0.00398 0.97143 ± 0.00422

0.5 9.46096 ± 0.00004 0.00248 ± 0.00004 0.00301 ± 0.00004 0.14382 ± 0.00642 0.16197 ± 0.00429 0.97326 ± 0.00444

0.6 9.46093 ± 0.00004 0.00246 ± 0.00004 0.00301 ± 0.00004 0.14459 ± 0.00662 0.15869 ± 0.00467 0.97530 ± 0.00468

0.7 9.46091 ± 0.00004 0.00243 ± 0.00004 0.00299 ± 0.00004 0.14907 ± 0.00696 0.15577 ± 0.00536 0.97998 ± 0.00525

0.8 9.46090 ± 0.00005 0.00244 ± 0.00005 0.00296 ± 0.00005 0.14278 ± 0.00722 0.14363 ± 0.00613 0.98291 ± 0.00508

0.9 9.46079 ± 0.00006 0.00239 ± 0.00005 0.00299 ± 0.00006 0.13522 ± 0.00814 0.12094 ± 0.00833 0.98092 ± 0.00515

Table 6.1: Signal model parameters as a function of MVA output selection
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The peaking background PDF is also taken to be this shape. We will fix the yield of

the peaking background (calculated in Chapter 7) in the finalmaximum likelihood fit and fit for

a signal excess on top of that component.

)2 (GeV/crecoilm
9.44 9.445 9.45 9.455 9.46 9.465 9.47 9.475 9.48

E
ve

n
ts

 / 
( 

0.
00

1 
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
 / ndf = 0.9832χ

 0.0064± =  0.1438 Lα

 0.000039± =  0.002477 Lσ

 0.000041± =  9.460960 µ

 0.0043± =  0.1620 Rα

 0.000035± =  0.003005 Rσ

 0.0044±frac_Signal =  0.9733 

)2 (GeV/crecoilm
9.44 9.445 9.45 9.455 9.46 9.465 9.47 9.475 9.48

E
ve

n
ts

 / 
( 

0.
00

1 
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 6.1: An example of fitting the recoil mass in the control sample forMV A > 0.5

6.2 Non-Peaking Background PDF

The non-peaking background shape is determined by a fit to thesideband data (the

“Low” sample) using a linear function and interpolating through the blinding region. We fit

the data using the functionP1 + P2 × mrecoil using only events from the sideband. The linear

shape, as a function of Random Forest (MVA) cut, is shown in Table 6.2. An example fit with

MV A > 0.5 is shown in Fig. 6.2. We also compare the slope, as determinedfrom the “Low”

data sample, to that obtained by separately fitting the “High” sample. There is good agreement
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MVA Cut P2 (“Low”) P2 (“High”)

0.0 0.03019 ± 0.00485 0.02199 ± 0.00034

0.1 0.01898 ± 0.00244 0.10354 ± 0.00654

0.2 0.00887 ± 0.07490 0.10845 ± 0.01506

0.3 −0.04109 ± 0.02817 −0.02572 ± 0.00950

0.4 −0.04651 ± 0.01134 −0.04299 ± 0.00736

0.5 −0.04315 ± 0.00534 −0.04878 ± 0.00517

0.6 −0.03484 ± 0.00275 −0.05067 ± 0.00359

0.7 −0.04700 ± 0.00232 −0.04444 ± 0.00203

0.8 −0.05093 ± 0.00181 −0.04766 ± 0.00093

0.9 −0.03338 ± 0.00122 −0.04599 ± 0.00205

Table 6.2: Non-peaking background model slope parameter asa function of MVA output
selection

between these two, suggesting that any change in detector conditions is not strongly reflected

in this procedure; and, this suggests that the MVA cut has thesame effect on non-peaking

background events taken earlier and later in the data set.

6.3 Signal Efficiency and Background Expectation

Signal efficiency, peaking background efficiencies, and bkg. yield are given in Table

6.3 as a function of the cut on the MVA output. The background yield is computed for a target

luminosity, integrating the background model through the entire fit region for each MVA cut.

The number of background at the target luminosity is extrapolated from the number of events

in the “High” sample.
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Figure 6.2: An example of fitting the recoil mass sideband data for the linear non-peaking
background model, forMV A > 0.5

Efficiencies

MVA Cut Signal Υ (1S) → e+e− Υ (1S) → µ+µ− Υ (1S) → τ+τ−

Non-Peaking
Bkg Yield
(Projected from
“High”)

0.0 0.443 0.0301 0.0282 0.01182 7258226
0.1 0.423 0.0276 0.0263 0.00461 1576924
0.2 0.398 0.0257 0.0247 0.00366 1007835
0.3 0.373 0.0237 0.0229 0.00311 712514
0.4 0.344 0.0217 0.0210 0.00264 512332
0.5 0.309 0.0194 0.0187 0.00217 353689
0.6 0.267 0.0166 0.0161 0.00175 225725
0.7 0.214 0.0133 0.0130 0.00126 124047
0.8 0.164 0.0100 0.0098 0.00089 61512
0.9 0.102 0.0060 0.0060 0.00046 22471

Table 6.3: Signal and peaking background efficiencies, and the non-peaking background expec-
tation, as a function of MVA cut
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6.4 Example Uses of the Fit:MV A > 0.5

Before we optimize the cut, we explain how we conduct toy MC experiments and

how we compute sensitivity using only statistical uncertainty. The following sections illustrate

our techniques after making a cut ofMV A > 0.5.

6.4.1 Toy Monte Carlo Studies

A “toy” Monte Carlo experiment is conducted using the signaland background PDFs

described previously in this chapter. Random events are thrown from these distributions and

added together to create a distribution that corresponds toa specific hypothesis about signal and

background yields. This sample is then used to perform a maximum likelihood fit of the yields

of the same PDF’s used in its generation. This experiment is carried out many times to create

a distribution of fitted signal yields for each signal hypothesis, which should be centered at the

hypothetical yield. This enables us to determine what levelof signal is required for us to detect

any signal on top of a background.

We now study the behavior of the maximum likelihood functionin the null signal

hypothesis, to check for potential biases in the fit. We float the yield of signal events and non-

peaking background events. The yield of peaking backgroundis fixed for a given MVA cut

using the following relationship:

Npeaking = NΥ (3S) × B(Υ (3S) → π+π−Υ (1S)) ×
3

∑

i=1

B(Υ (1S) → ℓ+
i ℓ−i ) × εi (6.2)

where theNpeaking is the number of peaking background events,NΥ (3S) is the number of

Υ (3S) mesons, the sum overi is over the threeΥ (1S) → ℓ+ℓ− peaking background modes so
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far under consideration, andεi is the inefficiency of the detector in each mode. For instance, for

an MVA cut of 0.5, the number of leptonic peaking background events expected is about 4100.

We construct toy Monte Carlo experiments corresponding to the total luminosity

available to the analysis. We generate and fit 1000 toy experiments, assuming the true branch-

ing fraction for the signal process is 0.0. We fit for the shapeof the non-peaking background

(floating the parameters of the shape), and the yields of the non-peaking background and signal.

The peaking background is fixed to the nominal MC prediction.The pull distribution for the

fitted signal yield is shown in Fig. 6.3. We find the pull distribution to be centered at 0.0 with

a width statistically consistent with 1.0. We show the mean and width of the pull distribution

as a function of input branching fraction hypothesis in Table 6.4. There is no trend suggesting

obvious bias in the fit.

hSignalPull_0.00000
Entries  1000
Mean   -0.005127
RMS     1.027
Underflow       0
Overflow        0
Integral    1000

 / ndf 2χ  46.16 / 30
Prob   0.02997
Constant1  3.16± 79.01 
Mean      0.03251± -0.03705 
Width1    0.0232± 0.9653 
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Figure 6.3: The pull distribution for 500 toy Monty Carlo experiments generated assuming the
null signal hypothesis
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Pull Distribution
Branching Fraction Hypothesis Mean Width
(Number of Signal)

0.00000 −0.037 ± 0.033 0.965 ± 0.023
(0)
0.00010 0.004 ± 0.033 0.983 ± 0.026
(127)
0.00025 0.001 ± 0.032 0.973 ± 0.026
(317)
0.00050 −0.039 ± 0.032 0.995 ± 0.023
(633)
0.00075 0.030 ± 0.030 0.908 ± 0.025
(950)
0.00100 0.012 ± 0.033 1.001 ± 0.025
(1266)
0.00250 0.024 ± 0.031 0.941 ± 0.023
(3165)

Table 6.4: The variation of the mean and width of the pull distribution as a function of input
branching fraction hypothesis (and, correspondingly, theinput number of true signal events).
The requirement on the MVA isMV A > 0.5.
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6.4.2 Expected Sensitivity

We explore the potential sensitivity of this analysis in twoscenarios: where we mea-

sure a branching fraction, and where we observe nothing and set an upper limit. We adopt the

method of Cousins and Feldman [39] and construct confidence belts, where for a given input

value of the true branching fraction we determine an allowedregion of the fitted branching frac-

tion. The branching fraction is expressed in terms of the signal efficiency, fitted signal yield,

and the number ofΥ (3S) as follows:

B(Υ (1S) → invisible) =
ninvisible

NΥ (3S) · B(Υ (3S) → π+π−Υ (1S)) · εinvisible
(6.3)

whereninvisible is the fitted yield of events with an invisible final state,εinvisible is the efficiency

for reconstructing invisible final states, andB(Υ (3S) → π+π−Υ (1S)) is the branching fraction

for the dipion transition to theΥ (1S).

We build confidence belts for each true branching fraction value by generating 500 toy

experiments per hypothesis. We fit for the number of signal and fit the signal yield distribution

using a single Gaussian. This approximates the fitted signaldistribution using a smooth function

(the Gaussian), which makes the next step easier. We then integrate the Gaussian from the left

and the right and find the values ofBfitted(Υ (1S) → invisible) that give us the probability of

lying below (above) those values equal toα/2, where the the Confidence Level(CL) = 1 − α

defines the desired confidence level. If we want to measure thebranching fraction, we construct

68% confidence belts; if we want an upper limit, we use 90% confidence belts. We construct

these only assuming statistical uncertainty.

We choose a number of benchmark branching fraction hypotheses ((0.0, 1.0, 2.5, 5.0,
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MVA Cut Upper Limit (×10−4) Branching Fraction Error (×10−4)
0.5 2.8 1.6
0.6 2.6 1.6
0.7 2.6 1.6
0.8 2.5 1.6
0.9 2.6 1.7

Table 6.5: The results of computing the upper limit or error on the branching fraction for each
cut on the MVA output

7.5, 10.0, 25.0)×10−4) and interpolate between the confidence belts for these points to get the

confidence belts in-between. The 68% and 90% confidence beltsare shown in Fig. 6.4. Based

on these confidence belts, one expects to either measure a true branching fraction of5 × 10−4

with an uncertainty of1.6 × 10−4 (3.1σ statistical significance) or to set an upper limit in the

absence of signal ofB(Υ (1S) → invisible) < 2.8 × 10−4.

6.5 Optimization of the MVA Selection

We optimize the cut on the MVA output by scanning over cut values and performing

the aforementioned toy MC study for each cut. We compute the expected upper limit and the

error on the branching fraction (forB = 5 × 10−4) for each cut, and compare them. We find

(Table 6.5) that the error and the upper limit improve or remain the same until we move past

MV A > 0.8. We therefore place the cut atMV A > 0.8 for the remainder of the analysis.

After performing the optimization, we look again for biasesin the branching fraction

measurement as a function of the input signal branching fraction. An example of a pull distri-

bution for the null hypothesis is shown in Fig. 6.5. Table 6.6shows the change in the mean and

width of the pull distribution as a function of signal branching fraction.

102



Fitted Branching Fraction
-0.0002 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014

T
ru

e 
B

ra
nc

hi
ng

 F
ra

ct
io

n
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-310×

(a) 68% confidence belts. The solid vertical line indicates the expected

signal yield for a branching fraction of5 × 10−4 and the horizontal

lines the1σ region on the branching fraction measurement.
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(b) 90% confidence belts

Figure 6.4: Confidence belts constructed from toy Monte Carlo experiments for a number of
true branching fraction hypotheses.
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Pull Distribution
Branching Fraction Hypothesis Mean Width
0.00000 −0.014 ± 0.032 0.988 ± 0.024

0.00010 −0.048 ± 0.033 1.012 ± 0.026

0.00025 −0.010 ± 0.034 1.050 ± 0.028

0.00050 −0.039 ± 0.032 0.966 ± 0.022

0.00075 −0.015 ± 0.033 1.007 ± 0.024

0.00100 −0.018 ± 0.032 0.977 ± 0.022

0.00250 0.005 ± 0.033 0.998 ± 0.026

Table 6.6: The variation of the mean and width of the pull distribution as a function of input
branching fraction hypothesis. The requirement on the MVA isMV A > 0.8.

hSignalPull_0.00000
Entries  1000
Mean   0.004686
RMS    0.9963
Underflow       0
Overflow        0
Integral    1000

 / ndf 2χ  23.34 / 28
Prob   0.7158
Constant1  3.15± 79.11 
Mean      0.03231± -0.01429 
Width1    0.0241± 0.9881 
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hSignalPull_0.00000
Entries  1000
Mean   0.004686
RMS    0.9963
Underflow       0
Overflow        0
Integral    1000

 / ndf 2χ  23.34 / 28
Prob   0.7158
Constant1  3.15± 79.11 
Mean      0.03231± -0.01429 
Width1    0.0241± 0.9881 

Figure 6.5: The pull distribution for 1000 toy Monte Carlo experiments generated assuming the
null signal hypothesis, withMV A > 0.8
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6.6 Limit of Sensitivity Due to Peaking Background Uncertainty

We here consider the physical limit of our sensitivity due tostatistical uncertainty

on the peaking background. Even if we could reject all non-peaking background, the peaking

background would essentially be irreducible. Therefore, we can ask to what branching fraction

our current analysis is limited before we can no longer improve the measurement. Given the

efficencies for selecting peaking background at a cut ofMV A > 0.8 (yielding 2119 MC-

predicted leptonic peaking background events), we must observe a number of signal events,Ns,

equal to a multiple of the error on the peaking background. Ifwe consider the statistical error

only and want to obtain a signal yield with a sigificance ofNσ = Ns/
√

Ns + Npeaking, then

we find that the number of signal we observe must satisfy,

Ns =
N2

σ

2

(

1 +
√

1 + 4Npeaking/N2
σ

)

. (6.4)

For the peaking background we estimated above, and forNσ = 3, this this limits us to a

branching fraction measurement that is no smaller than

B(Υ (1S) → invisible) =
ninvisible

NΥ (3S) · B(Υ (3S) → π+π−Υ (1S)) · εinvisible
= 2.1×10−4. (6.5)

whereεmathrminvisible = 0.164, B(Υ (3S) → π+π−Υ (1S)) = 0.0448, andNΥ (3S) =

91.42 × 106. In other words, the statistical error on this analysis coming from the peaking

background component is quite a bit smaller than the statistical error coming from the non-

peaking peaking background.

However, the systematic uncertainty on the number of peaking background events is

a more important problem. In the case of a systematic error the number of signal we have to
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observe to achieve a given significanceNσ is given asNs = Nσ × σpeaking
syst, × Npeaking, where

σpeaking
syst, is a percent systematic error. Even a 10% uncertainty on the peaking background limits

the sensitivity of this analysis (again, at the3σ level) to9.5× 10−4. Controlling this systematic

will be critical to interpreting the result.

6.7 Final Fit Configuration

The toy Monte Carlo (MC) approach has allowed us to determinethe optimal con-

figuration for our Random Forest. When we perform the final fit on the unblinded data, we

will use the maximum likelihood fit to propagate the systematic errors through the yield calcu-

lation. Thus, once the systematic errors have been determined, they will be incorporated into

the fit automatically, and the toy MC approach will not be needed to calculate the confidence

intervals.
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Chapter 7

Peaking Background

As discussed in Chapter 6.6, our understanding of the central value and uncertainty

on the peaking background (coming from real dipion transistions (Υ (3S) → π+π−Υ (1S))

where theΥ (1S) decays into visible final states that escape detection) is critical to the unbiased

extraction of the yield of invisible signal events, as well as to the limitation of our sensitivity to

a non-zeroΥ (1S) → invisible branching fraction. In this section, we discuss our method for

calculating our expected peaking background yield and determining a systematic uncertainty

on that predicted background.

7.1 Naive Peaking Background Estimates

We can obtain a naive peaking background estimate by usingΥ (3S) generic Monte

Carlo (MC) simulation. After applying all selection criteria, the MC simulation predicts that

we should expect peaking background from these sources following a real dipion transition:

Υ (1S) → e+e− (1019.5 events),Υ (1S) → µ+µ− (1007.4 events),Υ (1S) → τ+τ− (91.8
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events), andΥ (1S) → other (2.9 ± 1.3 events). Thus, based on the assumption that the MC

simulation is correct, we expect 2121.6 peaking backgroundevents, with the dominant contri-

bution coming from electronic or muonic final states (48.1% and 47.5%, respectively), followed

by theτ+τ− final state (4.33%), and then other final states (0.14%).

However, we do not want to rely on the unchecked simulation for these predictions,

especially when we have access to control samples from real data. There may be improperly-

simulated detector or trigger effects, and there may be non-leptonicΥ (3S) decays which are

not (or not properly) modelled by the generator. In principle, the latter effects could be quite

substantial. We use the two lepton, one lepton, and “near” invisible control samples (defined in

Chapter 4) in data to check the MC predictions.

7.2 Studies of the Leptonic Peaking Backgrounds

For a significant fraction of dilepton decays ofΥ (1S), both leptons may escape de-

tection, thus appearing just like an invisible decay. We canstudy this contribution by comparing

data to Monte Carlo (MC) simulation for the large sample of visible events with both leptons

detected, and also the substantial sample of events in whichonly one lepton is detected. The

goal is to obtain a data/MC correction factor for the leptonic peaking background.

7.2.1 Control Samples forΥ (1S) → ℓ+ℓ− Final States

We expect the dominant effects that cause an incorrect prediction of the peaking back-

ground to arise form two sources: an overall scale factor, based on inherent uncertainties in the
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Υ (3S) count (about 1%), and branching fractions (at the level of about 5%), and detector ac-

ceptance mis-modeling. We can test both of these cases usingcontrol samples in which we

reconstruct either two or one of the final-state leptons fromdecay of theΥ (1S).

In Chapter 4.3.2.2 we discussed the selection of events withone or two reconstructed

hard tracks, assumed to be leptons fromΥ (1S) decay . We refine the selection of these events by

applying all cuts described in the discussion of the selection of invisible final states, including

the cut on the modified Random Forest (MVA) output (as defined in Chapter 5.6) for these

control sample events (Chapter 5.6).

7.2.2 Correcting for an Overall Υ (3S) Scaling Factor

After all selections are applied, we obtain 38833 events in the 2-lepton category and

4816 events in the 1-lepton category in data. We show the distribution of the cosine of the polar

angle of the lepton (in the 2-lepton case, it’s the polar angle of the positively charged lepton)

in Figure 7.1. This figure shows that in both cases we have at least an overall normalization

discrepancy between the MC prediction and the data in these events. We correct for this scaling

factor using the 2-lepton sample. We determine the data and MC yield of events in the region

cos θ ∈ [−0.3, 0.3] (Figure 7.2), which is safely within the barrel of the detector and contains a

large number of events. Tracking inefficiency of these tracks is negligible, as can be seen from

the very small occupancy in the 1-lepton sample (Figure 7.1(b)) in this angular range. We find

the Monte Carlo (MC) underpredicts the data yield, and needsto be scaled upward by 1.0882.

Henceforth, we apply this scaling factor toΥ (3S) MC events. We will apply this scaling factor

to the prediction of peaking background events, as well.
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We show the lepton polar angle distribution after rescalingthe MC simulation to the

data in Figure 7.3. Overall, the MC models the data very well in shape. The modeling in

the front-end is shown to be particularly good, suggesting that the acceptance modeling of the

detector is excellent in the forward direction. The 2-lepton sample, however, has almost no

statistics at the back-end of the detector. We check the modeling of the detector at the back-end

in the next sample, using an independent 1-lepton control sample.
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(a) 2-lepton control sample
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(b) 1-lepton control sample

Figure 7.1: Cosine of the lepton polar angle in the lab frame in the 2-lepton and 1-lepton control
samples before applying scaling correction.

7.2.3 Aside – ThesPlots Technique

We briefly pause here to discuss a method for computing the distributions contributed

to a data set by different species of events. ThesPlots [13] method allows one to use a fit of

signal and background distributions in one or more variables to project the signal and back-

ground distributions in another variable. Give a set of datawhich is a sum of different species

of events (in the case of this analysis signal and background), an Extended Maximum Like-

lihood fit is performed on one or more of the observed variables (in the case of this analysis
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Figure 7.2: Cosine of the lepton polar angle in the lab frame in the 2-lepton control sample,
shown in the center of the detector barrel and before applying scaling correction.

we perform a fit onmrecoil). The sPlots technique takes this fit and the resulting correlation

matrix, and computes a vector of weights for each event basedon its position in the space of

fitted observables. ThesesWeights correspond to the species of events populating the sam-

ple. In the case of the 1-lepton sample about to be explored wehave signal (from the pro-

cessΥ (3S) → π+π−(Υ (1S) → ℓ+ℓ−)) sWeights and background (from other processes)

sWeights. Essentially, thesesWeights tell us how signal like or background like an event is.

Using these weights, we can fill a histogram in a variable thatis not used in the Likelihood fit

with thesWeights of the species we wish to study. In the case of the 1-lepton sample we will

be creating a histogram ofcos θ filled with the signalsWeights of events, creating a plot of

1-leptoncos θ variable contributed only by the processΥ (3S) → π+π−(Υ (1S) → ℓ+ℓ−).

ThesPlots mathematics assumes that the variable(s) that are used in the Likelihood
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(a) Positively charged lepton in 2-lepton events
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(b) Back-end of the detector
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(c) Front-end of the detector

Figure 7.3: Cosine of the positively charged lepton polar angle in the lab frame in the two-track
control sample, after renormalizing MC to data in the regioncos θ = [−0.3, 0.3].
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fit are uncorrelated with the variables beingsPlotted. In Appendix B, we explore the effects of

correlations on the effectiveness of thesPlots technique. We find that for the use in the 1-lepton

sample, this may introduce a small error which is calculatedin Chapter 7.2.4.2, but that when

used later for the full invisible fit, care must be taken to account for correlation effects.

7.2.4 Checking Detector Acceptance Using the 1 Lepton Control Sample

The primary concern with our estimate of the peaking background from electronic

or muonic decays of theΥ (1S) is when one or both leptons are very close to the edge of the

detector. If the detector edge is not well-simulated, we might be incorrectly predicting the rate

at which final-state particles go from being detected to being undetected, and thus fake the

invisible signal.

We study the detector edge using the 1-lepton events. As illustrated in Figure 7.1,

the reconstructed one-lepton events occur primarily when the lepton is in the backward end of

the detector. Due to the boost, even if the leptons are going back-to-back in the CM frame

the forward-going lepton will tend to be boosted outside of the detector acceptance while

the backward-going lepton will be boosted into the detectoracceptance. The prevailance of

backward-going 1-lepton events confirms this assumption.

We can see from the MC that the 1-lepton events contain a non-negligible fraction

of peaking-background events, including a potentially unmodeled fraction in the far-backward

direction, just before the efficiency drop for the 1-lepton events. In order to subtract these events

from the polar angle distribution, we fit the recoil mass distribution of these events and unfold

the polar angle distribution for peaking events using thesPlots method [13]. The fit to the recoil
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mass is shown in Figure 7.4 and the unfoldedcos θ distribution is shown in Figure 7.5 overlaid

on Υ (3S) MC only. The recoil mass fit is performed using the signal PDF parameterization

from the 2-lepton sample (Table 6.1) and a 1st-order polynomial background; the signal PDF

parameters are fixed, the polynomial parameters are floated,and all yields are floated. The

fit returns 4199 peaking and 617 non-peaking events; the non-peaking background is quite

significant.

We see that the unfoldedcos θ distribution matches the re-scaled MC perfectly, ex-

cept at the very back end of the detector; in the front end, it’s unclear beyond the statistical

uncertainty whether there is an effect. We concluded from the 2-lepton events that the front of

the detector is well-modeled; given the statistics here, wehave no strong reason to alter that

assumption.
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Figure 7.4: Fit for the peaking and non-peaking components of the 1-lepton recoil mass, show-
ing (a) the whole fit and (b) a zoom of the region by the tails of the peak.
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Figure 7.5: Overlay of the unfolded 1-lepton samplecos θ distribution in data (usingsPlots)
on theΥ (3S) MC for (a) the whole angular region, (b) the back end of the detector, and (c) the
front end of the detector.

115



7.2.4.1 Applying a “Killing” Technique to 1-Lepton Events

We would like to account for the events in the Monte Carlo (MC)simulation that

should have been classified as peaking background but were identified as single lepton events.

We can determine this effect by applying a “killing” procedure to the MC simulation. We do

this as follows:

• We bin the 1-lepton data and MC incos θ bins of size 0.02. We compute the ratio of

data/MC in each bin.

• We apply the ratio in a random-number based lepton killing procedure as follows: For

each bin, we define the killing factor as the data/MC ratio if it is between 0 and 1. If the

ratio exceeds 1, we cannot add more MC events to that bin than already exist so we set

the killing factor to 1.

• For each MC event, we determine in what bin the single lepton lies. If the killing factor

for that bin is between 0 and 1, we throw a uniform random number for the lepton. If the

value of that number exceeds the killing factor, we kill the lepton and treat the event as a

0-lepton event. Otherwise, we keep the event as a 1-lepton event.

• We only apply the killing procedure in the backward region defined earlier (cos θ ∈

[−1.0,−0.84]).

Applying this killing procedure and redefining the 1-leptonevents leads to thecos θ

distributions in Figure 7.6, which are the post-killing analogues of Figure 7.5. We observe that

the killing procedure appears to work very well; the MC now reproduces the data distribution in
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the backward and forward regions of the detector. We then usethe re-defined 0-lepton category

to determine the peaking background prediction from this source, and we find 2470.1 predicted

peaking leptonic background events.

One more correction needs to be applied to the prediction from the killing procedure.

This procedure cannot simulate the difference in trigger and selection efficiency for events that

actually do not contain the reconstructed lepton. This effect could be quite significant, and we

explore this possibility here.

We perform the following study using MC events. After all other cuts in the analysis,

the signal selection described in Chapter 4.3.2.2 is 86% efficient on the 1-lepton events, and the

trigger is 99% efficient. The total efficiency is therefore atleast 85% when a lepton is present,

in addition to the pions. However, once the lepton is lost thetrigger and filter decisions are

done entirely using the pions. The trigger is only 78% efficient on 0-lepton events that pass

all other cuts, and the signal selection (Chapter 4.3.2.1) is 95% efficient. Therefore, once the

lepton is lost the efficiency of selecting that event as a fakesignal event is actually lower by

0.74/0.85 = 0.87. This reduces the predicted peaking background from this killing procedure

to 2301.1 + (2470.1 − 2301.1) · 0.87 = 2448.1.

We take the difference between the unscaled and scaled numbers (2470.1−2448.1 =

22.0) as a systematic uncertainty on this procedure.

7.2.4.2 Uncertainty on the Leptonic Peaking Background Estimate

The uncertainty on the peaking background estimate comes from several sources. The

first is MC statistics, and is negligible. The second has beendiscussed in the previous section,
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Figure 7.6: Overlay of the unfoldedcos θ distribution in data (usingsPlots) on theΥ (3S) MC,
after applying the killing procedure, for (a) the whole angular region, (b) the back-end of the
detector, and (c) the front-end of the detector. The blue histogram is the sum of allΥ (1S)
leptonic final state MC, after a dipion transition, and the magenta histogram contains all other
Υ (3S) decays.

118



and is due to the differences in event selection efficiencies. Based on this, we assigned the

difference between correcting and not correcting the background prediction for this effect as the

systematic uncertainty due to this correction. This represents a 0.90% systematic uncertainty

on the leptonic peaking background prediction.

There is also a systematic uncertainty on the number of events introduced by the

sPlots procedure This comes from the correlations between the angle of the single lepton and

the recoil mass of the dipion system. We compare the number ofevents in the back of the detec-

tor in the pure MC sample and in the MC sample after being put through the samesWeighting

procedure as the 1 lepton data control sample (Figure 7.7) and find a total difference of∼17

events. Since the data has a lower occupancy in these bins than the MC we scale this effect by

the ratio of events in the data sample and those in the MC and find an uncertainty of 14 events.

This gives an uncertaintainty of14/2448.0 = 0.6%
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Figure 7.7: Plots of the one lepton Monte Carlo (MC) sample (Cyan Histogram) and the same
MC sample after undergoing the samesWeighting as the 1 lepton data control sample (black
points).
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Finally, we have the statistical uncertainty on the 1-lepton events. By scaling the

data/MC ratios used for killing up or down by 1σ, we would reclassify more or less 1-lepton

events as 0-lepton. We find that moving the killing factors upby 1σ yields 2440.8 events, and

down by1σ yields 2496.7. Taking half the difference between these twoas the uncertainty

yields 28.0 events. We then obtain a total uncertainty of(22.0 + 28.0)/2448.0 = 2.0%

We add these effects in quadrature therefore take the total uncertainty on the leptonic

peaking background to be2.1%.

7.3 Studies of Non-leptonic Peaking Backgrounds

The Monte Carlo (MC) predictions for peaking background from Υ (1S) decays other

than to dilepton states is very small. However there is no good reason to trust this prediction,

so we need to use data to constrain such a contribution. We do this by comparing data to MC

for “near” invisible Υ (1S) decays. In particular, we examine final states for which there are

no extra tracks, but only one or more neutral calorimeter clusters, using variables such as total

extra neutral energy or the center of mass (CM) energy of the highest-energy neutral.

We originally carried out this study on the Low + High data samples before unblinding

the signal region. Thus we had to ensure that the range of values which could be studied for

each variable lay outside the range accepted by the invisible-signal event selection. Events for

the study were selected with a special skim, in which, based on figure 5.34, the highest-CM-

energy photon in an event was required to be at least 0.25GeV. (Even with an MVA cut reduced

to 0.5 from its normal value of 0.8, there are very few signal events predicted to have a larger
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value.) Otherwise, the selection used the standardπ+π− selection. Finally, the cosine of the

thrust angle was required to be below 0.85, to suppress an excess seen in sideband data but not

in the genericΥ (3S) MC sample.

Fits to the recoil mass spectra for these pre-unblinding samples resulted in217 ± 14

peaking events in the MC (after scaling by the nominal luminosity ratio of 0.35), and260±101

in the data, an encouraging similarity. We usedsPlots of maximum photon energy to show

that in this near-invisible region the non-leptonic background for data is no more than five times

the MC prediction, and we conservatively take this factor offive as the uncertainty for the

non-leptonic peaking background in the invisible region.

However, rather than show these statistics-limited results here, we repeat the study

post-unblinding using the full data sets. Figure 7.8 shows the recoil mass fits for generic MC

(186.2 million Υ (3S) events) and all data (98.9 million, there being no need to exclude the

Low+High data sets for this study), respectively. The relative luminosity of 0.5306 is nominal,

not renormalized by the factor found from the two-lepton sample. The fits yield3786 ± 100

peaking events in the MC (unscaled) and3101 ± 308 in the data, for a data/scaled-MC ratio

of 1.54 ± 0.16. Figure 7.9 comparessPlots of this maximum photon energy for the MC and

data fits, while figure 7.10 shows the data/MC ratio. The interesting region is toward the lowest

energies, since that is closest to the region of interest forthe invisible analysis. The plots do not

show an increasing ratio as the energy decreases toward the inivisible region, and suggest that

the limiting ratio is unlikely to exceed 4. Thus the factor-of-5 allowed for pre-unblinding is still

safe as a systematic uncertainty.

Also post-unblinding, we have carried out a similar study for the total extra neutral
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Figure 7.8: Fits of recoil mass spectra for a generic Monte Carlo (left) and all Υ (3S) data
(right), for the “near-invisible” selection described in the text. The green dot-dashed curves
show the peaking components of the fit (not visible on the zero-suppressed data plot), the red
dashed curves show the linear non-peaking background, and the solid black curves show the
total fits.
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Figure 7.9:sPlots of the maximum center of mass frame photon energy for the signal compo-
nents of the fits shown in figure 7.8. The points with errors arefrom the full data sample, the
histogram is the scaled generic Monte Carlo fit. The small MC uncertainties are not shown.
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Figure 7.10: Ratio ofsPlots of the data to Monte Carlo simulationsPlots shown in figure 7.9.
Error bars include both data and MC uncertainties.

lab-frame energy,eTot. To avoid overlap with the first study, we required that the highest CM-

frame photon energy bebelow0.25GeV. The effect of the MVA cut is less sharp oneTot, with

the efficiency tailing off between about 0.4 and 0.55GeV, but since we have already unblinded

it is safe to look at theeTot spectrum down to 0.4GeV. Other cuts are as in the first “near”

invisible selection. Figure 7.11 shows the recoil mass fits The fits yield1112 ± 37 peaking

events in the MC (unscaled) and739±208 in the data, for a data/scaled-MC ratio of1.25±0.36.

Figure 7.12 comparessPlots of this maximum photon energy for the MC and data fits, while

figure 7.13 shows the data/MC ratio. It is most instructive toconsider the first few bins above

0.6GeV, which are free of signal-like events. This study supports the upper limit for data of 4

to 5 times the MC prediction which we assigned based on the higher-statistics first study.

This study suggests that the MC prediction for the non-leptonic peaking background

is appropriate, so we do not change that prediction of 2.8 events, and set the uncertainty on this
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prediction at 14 events.
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Figure 7.11: Fits of recoil mass spectra for a generic Monte Carlo (left) and allΥ (3S) data
(right), for the second “near-invisible” selection (with maximum extra-photon center of mass
frame energy below 0.25GeV). The green dot-dashed curves show the peaking components
of the fit (not visible on the zero-suppressed data plot), thered dashed curves show the linear
non-peaking background, and the solid black curves show thetotal fits.

7.4 Final Peaking Background Estimate

Summing the prediction from leptonic and non-leptonic backgrounds, we obtain a

final peaking background estimate of 2450.9 events, a0.12% increase over the purely leptonic

peaking background estimate. The systematic errors on thisestimate, as well as all other sys-

tematics in the analysis are listed in Chapter 8
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Figure 7.12:sPlots of the maximum center of mass frame photon energy for the signal com-
ponents of the fits shown in figure 7.11. The points with errorsare from the full data sample,
the histogram is the scaled generic Monte Carlo fit. The smallMC uncertainties are not shown.
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Figure 7.13: Ratio ofsPlots of the data to MCsPlots shown in figure 7.12. Error bars include
both data and MC uncertainties.
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Chapter 8

Systematic Uncertainties

We describe the methods we use to assign systematic uncertainties to different parts

of the analysis. We explain the way in which these uncertainties are combined to achieve a total

systematic uncertainty on the signal yield and efficiency.

8.1 Scaling Correction

We discussed in Chapter 7.2.2 that we observe an overall normalization offset be-

tween MC and data in the two-lepton control sample. We take this correction (1.0882) as an

overall correction to the normalization of the MC. Due to thestatistics of the data used in de-

termining this correction, there is a 1.1% uncertainty on this scaling factor. This scaling factor

was determined after all selection criteria were applied tothe two-lepton events.

We consider this as a measure of many effects at once, including:

• The branching fraction uncertainty and central value forΥ (3S) → π+π−Υ (1S), which
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is reported by the Particle Data Group (PDG) [30] to be 4.48% with a 5% uncertainty.

• The branching fraction uncertainty onΥ (1S) → ℓ+ℓ−, whereℓ = e, µ, τ , which the

PDG reports as having a 5%/2%/4% uncertainty on the electron/muon/tau channel

• The tracking efficiency of the dipions, independent of trigger effects

• The tracking efficiency of the lepton tracks

Given the fact that systematic effects not applicable to theinvisible final state (lepton

tracking, leptonic branching fraction) contribute to in this correction, it is certainly conservative

to apply this correction to the invisible final state (and therefore its efficiency).

8.2 Trigger Studies

BABAR triggering is discussed in Chapter 8.2.1. We consider both the hardware (Level

1) and software (Level 3) triggering systematic errors. TheLevel 1 triggering systematics use

the 2 lepton control sample as an analog for signal events before triggering, and simulate the

triggering in software. For the Level 3 triggering systematics we use a small sample of events

which are passed through the Level 3 trigger expressly for this purpose.

8.2.1 Level 1 Trigger Systematics

We wish to compare the efficiencies of the hardware trigger onthe Monte Carlo (MC)

signal simulation and the invisible data. The objects that trigger the detector in these events are

the two pions from the dipion transitionΥ (3S) → π+π−Υ (1S). In the two lepton control
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sample the two hard tracks from theΥ (1S) → ℓ+ℓ− decay are responsible for triggering the

detector, and so represent a sample of pions without triggerbias. We construct an offline algo-

rithm to mimic the trigger and apply it to the two lepton sample in both data and MC simulation.

The efficiency of this algorithm is used as the Level 1 triggersystematic.

We can use the final signal fit (discussed in Chapter 9.1) to create ansPlot of the

trigger lines fired by peaking events in data, and compare that to trigger lines fired in the peaking

background MC. This is shown in Fig. 8.1. We find generally good agreement across the lines,

with some cases where the data and the MC appear to disagree outside of the errors on each by

several sigma.

We find that the trigger lines are highly correlated with one another and that the two-

track triggers dominate the efficiency. We therefore concentrate on the study of just the two-

track trigger lines. These lines are defined as follows:

• 2Zt & 1A & 1M

• 2A & 1Zk & 1M

• D2 & 1Zk & 1M

• D2 & 2M & 1Zt

• M*&1Z

The trigger objects involved are defined in Table 8.1.

There are a few steps that need to be taken to establish the effect of these trigger lines on

invisible data:
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Figure 8.1: The number of events passing each Level 1 triggerline (inclusively) in the peaking
component of data (black points with errors made with thesPlot procedure) and in the peaking
background MC (white with cyan error boxes).
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Trigger Object Cuts

A
a track reaching DCH superlayer (SL) 10, with
pT > 0.150GeV/c

B a track reaching SL5 withpT > 0.120GeV/c

D2 2B & 1A
Z A track withpT > 0.2GeV/c and|z| < 12 cm

Zt
a track reaching SL7, withpT > 0.2GeV/c and
|z| < 10 cm

Zk

a track reaching SL7, with a charge-asymmetric
pT cut. If positive, the track must satisfypT >
0.8GeV/c and if negative, the track must satisfy
pT > 0.2GeV/c. In addition|z| < 12 cm

M an EMC cluster with at least0.13GeV of energy

M*
two back-to-back M clusters with at least an open-
ing angle of 117 degrees.

Table 8.1: Definitions of trigger objects using cuts on the off-line reconstructed quantities.

• The 2-lepton sample contains dipions that, in principle, are not affected significantly

by the two-track triggers since they have likely been fired bythe presence of the two

high-momentum leptons, or the combination of one of the pions and one of the leptons.

We need to test this assumption - that is, that the pion kinematics represent those in an

“untriggered” signal sample

• Having established that the pions in the 2-lepton sample areanalogous to untriggered

pions in the signal MC, we then proceed to dissect the triggerlines and reproduce their

effects using offline cuts (that is, cuts based on fully reconstructed objects instead of the

more coarse trigger objects).

• After creating an algorithm that largely reproduces the effect of trigger cuts on signal

using control sample MC, we apply those cuts to the data in thecontrol sample and
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measure the efficiency difference.

8.2.1.1 Pion Kinematics in the Two Lepton Control Sample

We begin by investigating whether the pions in the two leptoncontrol sample Monte

Carlo (MC) are a good analog of the pions in the untriggered signal MC events. We apply all

cuts to the signal MC except the Level 1, Level 3, and invisible sample selection cuts. We apply

to the control sample MC all cuts originally used to select those events, including trigger cuts.

Again, the premise is that the trigger doesn’t shape the pions in this sample like it does in the

signal events. In addition, we have to apply all cuts used to define the 2-lepton sample if we are

to reproduce that sample in data, where a trigger is already applied by definition.

We compare the individual pionpT andcos θ distributions, along with the opening

angle of the negative pion with respect to the positive pion,in Figures 8.2-8.4. These plots are

all unit-normalized, so that the shape alone can be compared. We see small differences in the

distributions but in general we find that the control sample MC is a very good analog of signal

MC, prior to trigger cuts.

8.2.1.2 “Level 1 Trigger Inspired” Cuts

Before trying to reproduce the trigger lines with offline cuts, the basic ability to map

drift chamber trigger (DCT) quantities (most likely to affect the efficiency) onto offline recon-

struction quantities (e.g. pionpT , dipion opening angle, radial extent of pion track) needs tobe

established. The most basic issue is whether thepT cutoff is the same in the reconstructed ob-

ject (track) as in the trigger object. For instance, signal Monte Carlo (MC) events passing a line
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Figure 8.2: Individual reconstructed pionpT distributions for signal MC (black markers, no
errors shown) and the 2-lepton control sample MC (black histogram). Both distributions are
unit normalized.
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Figure 8.3: Individual reconstructed pioncos θ distributions for signal MC (black markers, no
errors shown) and the 2-lepton control sample MC (black histogram). Both distributions are
unit normalized.
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Figure 8.4: The dipion opening angle, relative to theπ+, for signal MC (black markers, no
errors shown) and the 2-lepton control sample MC (black histogram). Both distributions are
unit normalized.

containing 2Zt is expected to have neither track withpT < 0.2GeV/c. We find that fewer than

1% of signal events have a track withpT below the expected threshold, and the distributions are

suppressed rapidly below the cut threshold. While the cutoff is not perfectly sharp, it is very

close to expectation.

We apply cuts to reproduce each line, treating the tracks like DCT objects. A few

comments are required on our choices here. We use thepT cuts outlined in the DCT definitions.

We use the outermost drift chamber (DCH) layer hit by a reconstructed track to determine

whether a track reaches the needed DCH superlayer. Since thetracks are GoodTracksVeryLoost

(GTVL) (defined in Chapter 4.3.1), the|z| cuts are already applied. We use the electromagnetic

calorimeter (EMC) clusters associated with the tracks, andthe EMC cluster associated with

the highest energy photon, to define the M objects. The coarseness of the DCT (illustrated in
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Figure 8.5) is the hardest effect to reproduce.

To reproduce the DCT coarseness, we cut on the opening angle between the pions

in the plane transverse to the beam axis. There is a subtlety in defining the opening angle

cut; it is not as simple as requiring that the opening angle begreater than the minimumφ bin

width for a given object. Tracks bending in the magnetic fieldcan either curve quickly away

from one another, even for a small opening angle, or cross over each other, even for a larger

opening angle. This type of effect can be seen in Figure 8.5, where we illustrate some possible

dipion configurations. We rely on the signal MC to guide the cut on this opening angle. The

opening angle distributions for each of the five trigger lines in question is shown in Figure 8.6.

Figures 8.7–8.11 show the efficiency of each trigger line as afunction of the opening angle.

These plots make it much easier to observe where the effective veto cut on the opening angle

needs to be placed.

The cuts that we will apply to the opening angle will be hard cuts, but it is clear that

the cuts are by no means hard in the way they affect the reconstructed signal events. Therefore,

we do not expect our cuts to reproduce the efficiency of the trigger in the control MC. We are

primarily interested in how the cuts affect the shape of the dipion kinematic variables as they

are presented to the Random Forest Algorithm (MVA).

The opening angle cuts were determined by setting the cut boundaries to a point

halfway down the slope of the efficiency on either side of the minimum in the efficiency plots

(Figures 8.7–8.11). The regions we veto to approximate the effect of the trigger are detailed in

Table 8.2.

The effect of trigger cuts is most pronounced on the dipionpT , so we focus on that
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Figure 8.5: Diagram of three different dipion system configurations. In each case theπ+ is in
red and haspT = 0.5GeV/c and theπ− is in blue and haspT = 0.25GeV/c. The angular
separation in (a) is 0.0 radians, in (b) is 0.7 radians, and in(c) is -0.5 radians. The detector
has been divided into 16 sections to illustrate the coarseness of the Level 1 Trigger, and the
concentric black circles indicate the radius of the innermost sense wire in each superlayer.
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Figure 8.6: The dipion opening angle, relative to theπ+, for the application of different two-
track triggers to the signal MC. All distributions are unit normalized. The distributions corre-
spond to 2Zt & 1A & 1M (black, solid), 2A & 1Zk & 1M (black, dotted), D2 & 1Zk & 1M
(blue, solid), D2 & 2M & 1Zt (blue, dotted), M* & 1Z (red, solid).
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Figure 8.7: The efficiency of the 2Zt & 1A & 1M as a function of the dipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other trigger lines, are already made prior
to applying this trigger line cut. The dashed lines indicatewhere we define veto regions.
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Figure 8.8: The efficiency of the 2A & 1Zk & 1M as a function of the dipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other trigger lines, are already made prior
to applying this trigger line cut. The dashed lines indicatewhere we define veto regions.
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Figure 8.9: The efficiency of the D2 & 1Zk & 1M as a function of the dipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other trigger lines, are already made prior
to applying this trigger line cut. The dashed lines indicatewhere we define veto regions.

Trigger Object Veto Region(s) in∆φxy
ππ

2Zt & 1A & 1M [−0.1, 2.0]

2A & 1Zk & 1M [0.5, 1.7]

D2 & 1Zk & 1M [0.1, 1.1]

D2 & 2M & 1Zt [0.05, 1.7]

M* & 1Z [−0.4, π] or [−π,−2.8]

Table 8.2: Opening angle veto regions for each two-track trigger line.
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Figure 8.10: The efficiency of the D2 & 2M &1Zt as a function of the dipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other trigger lines, are already made prior
to applying this trigger line cut. The dashed lines indicatewhere we define veto regions.
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Figure 8.11: The efficiency of the M* & 1Z as a function of the dipion opening angle in signal
MC. All cuts except the MVA cut, and cuts on other trigger lines, are already made prior to
applying this trigger line cut. The dashed lines indicate where we define veto regions.
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variable in our comparison. Figures 8.12 - 8.16 demonstratethe difference between not applying

and applying these cuts to the control MC, compared to signalMC where the corresponding real

trigger cut has been applied. Figure 8.17 shows the cumulative effect of applying all of these

lines to the two lepton control sample MC events.
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Figure 8.12: The dipionpT for control MC (solid histogram) and signal MC (dot markers with
errors). The left plot shows control MC before making the effective trigger cut (2Zt&1A&1M)
and the right plot is after making the effective offline cut. The signal MC in both has all re-
construction cuts applied, and has the trigger line cut applied as well. All distributions are unit
normalized.

We find the the cuts largely reproduce the shape of the dipionpT . In addition, we

look at two other dipion-kinematics-related variables used in the MVA - the dipioncos θ and

the cosine of the angle between the highest-energy photon and the normal to the dipion decay

plane. These variables show significant differences between the control MC and signal MC until

the application of our trigger cuts (Fig. 8.18). After the trigger cuts the agreement is excellent.

The variable with the largest remaining discrepancy in shape between control and signal MC
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Figure 8.13: The dipionpT for control MC (solid histogram) and signal MC (dot markers with
errors). The left plot shows control MC before making the effective trigger cut (2A&1Zk&1M)
and the right plot is after making the effective offline cut. The signal MC in both has all re-
construction cuts applied, and has the trigger line cut applied as well. All distributions are unit
normalized.

is the dipionpT , although this shape difference has been greatly reduced. We proceed with the

selection and determine the net effect on MC-vs-MC agreement in the MVA output. We also

apply the same “level 1 inspired” pseudo-trigger cuts to thesignal MC before the real trigger

cuts and observe the agreement between the signal and 2-lepton control MC samples under the

same cuts.

We quantify the differences between signal and control MC when applying these

cuts, and control data and MC, in Table 8.3. We find that the difference between the signal MC

and control MC efficiencies is large, as expected - we did not anticipate that we could exactly

reproduce efficiency numbers in the MC (the opening angle cutis clearly not a hard cut, as we

modeled it). However, we find that application of the pseudo-trigger cuts to signal MC creates
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Figure 8.14: The dipionpT for control MC (solid histogram) and signal MC (dot markers with
errors). The left plot shows control MC before making the effective trigger cut (D2 & 1Zk &
1M) and the right plot is after making the effective offline cut. The signal MC in both has all
reconstruction cuts applied, and has the trigger line cut applied as well. All distributions are
unit normalized.

good agreement between the signal MC and the 2-lepton control sample MC. We also find that

for those cuts the 2-lepton control MC and data agree very well. Relative to the control MC

efficiency, the difference in the control data and MC efficiencies is a 2.1% effect. We take that

as the systematic on the application of Level 1 trigger cuts to invisible signal.

Sample L1 Trigger Efficiency

Signal MC (Trigger Simulation) 76.46%
Signal MC (Pseudo-Trigger Cuts) 70.58%
Control MC (Pseudo-Trigger Cuts) 68.13%
Control Data (Pseudo-Trigger Cuts) 66.69%

Table 8.3: Efficiency of Level 1 Trigger Cuts
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Figure 8.15: The dipionpT for control MC (solid histogram) and signal MC (dot markers with
errors). The left plot shows control MC before making the effective trigger cut (D2 & 2M &
1Zt) and the right plot is after making the effective offline cut. The signal MC in both has all
reconstruction cuts applied, and has the trigger line cut applied as well. All distributions are
unit normalized.

8.2.2 Level 3 Trigger Systematics

We study the ratio of Level 3 trigger efficiencies in data and Monte Carlo (MC) using

events which pass Level 1, but are passed through Level 3 (L3OutL1Open). In other words,

these events are not required to pass the software trigger, but are marked as passing if they do.

These events are prescaled by a factor of 200 so as not to overwhelm us with statistics. We

select events in data which pass all cuts, except the Level 3 trigger and in addition are part of

this pass-through. We then apply the Level 3 trigger to theseevents, and compute the ratio of

those which pass the Level 3 trigger to those which do not. In signal Monte Carlo, we perform

a similar study, but are not limited by the pass-through statistics. Finally, we compute the ratio

of data to MC and take that as a systematic correction with an uncertainty from the statistics of
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Figure 8.16: The dipionpT for control MC (solid histogram) and signal MC (dot markers
with errors). The left plot shows control MC before making the effective trigger cut (M* &
1Z) and the right plot is after making the effective offline cut. The signal MC in both has all
reconstruction cuts applied, and has the trigger line cut applied as well. All distributions are
unit normalized.

each sample of pass-through events.

The results are summarized in Table 8.4. We find the efficiencies in data and MC

to be very similar, so that the data/MC ratio is essentially 1.0. The uncertainty on the ratio is

dominated by the data statistics of events passing through Level 3.

8.2.3 Random Forest Systematics

The systematic uncertainty on the cut efficiency of the Random Forest MVA is po-

tentially entangled with any issues that arise prior to the MVA. We find that it is essential to

study the MVA output after applying Level 1 trigger inspiredcuts to our 2-lepton events. The

reason for needing to do this is two-fold: (1) the MVA was trained on sideband and signal MC
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Figure 8.17: The dipionpT for control MC (solid histogram) and signal MC (dot markers with
errors). The left plot shows control MC before making the effective two-track trigger cuts
and the right plot is after making the effective offline cuts.The signal MC in both has all
reconstruction cuts applied, and has the trigger line cut applied as well. All distributions are
unit normalized.

Selection Data Signal MC

All Cuts (except
Level 3) and 324 57501
L3OutL1Open
All Cuts and 316 56268
L3OutL1Open

Efficiency (97.53 ± 0.86)% (97.86 ± 0.06)%

data/MC 0.9966 ± 0.0088

Table 8.4: Results of the study of events passingL3OutL1Open in data and signal Monte
Carlo
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Figure 8.18: The cosine of the angle between the highest-energy photon and the normal to the
dipion decay plane and the dipioncos θ in control MC (histogram) and signal MC (points with
errors). The top pair of plots is shown for control MC before Level 1 two-track-trigger cuts and
for signal with all cuts, including trigger cuts, applied. The bottom pair shows the same samples
after Level 1 two-track triggers. All distributions are unit normalized.
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events after trigger cuts, and those cuts cannot be removed from sideband data, and (2) the Level

1 trigger significantly shapes the inputs before they enter the MVA. It is critical to reproduce

those shapes in the control sample before studying the MVA output.

The distribution of the MVA output after trigger cuts is shown in Figure 8.19 for

control MC and signal MC. We see that there are residual shapedifferences when the real

trigger simulation is applied to the signal MC (Figure 8.19(a)). Those disagreements largely

go away if we instead compare signal MC and 2-lepton control MC, both with pseudo-trigger

cuts applied (Figure 8.19(b)). We also plot the distribution for data and MC in the 2-lepton

control sample (Figure 8.20), and see small differences in shape there are well. We then apply

our standardMV A > 0.8 cut and compare, quantitatively, the efficiency of making that cut.

We find (Table 8.5) that the MC-to-MC difference is at the level of several percent. We find the

data-to-MC difference is 4.0% relative to the control MC.

We move the cut on the MVA output in the 2-lepton control MC to achieve (almost)

the same efficiency as in signal MC at the chosen cut ofMV A > 0.8. A cut atMV A > 0.787

replicates this efficiency. For this cut (Table 8.5) we find the data/MC difference is slightly

reduced to the level of 3.8%.

We use the data-MC difference for the nominal cut ofMV A > 0.8 as the systematic

uncertainty on the MVA.

8.2.4 Aside –sPlots of MV A inputs

As a cross-check of our modeling of the data using the peakingbackground MC

samples, which clearly dominate the peak in data, we use thesPlot technique [13] to unfold
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Control MC
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Figure 8.19: The MVA output for 2-lepton control sample Monte Carlo (histogram) and signal
sample Monte Carlo (points). Both distributions are unit-normalized.
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Figure 8.20: The MVA output for 2-lepton control sample Monte Carlo (histogram) and 2-lepton
control sample data (points). Both distributions are unit-normalized.
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Sample MV A > 0.8 Efficiency

Signal MC (Trigger Simulation Applied) 35.91%
Signal MC (Pseudo-trigger Cuts Applied) 35.64%
Control MC (Pseudo-Trigger Cuts Applied) 34.50%
Control Data (Pseudo-Trigger Cuts Applied) 33.12%

Sample MVA Cut Achieving Signal MC Efficiency

Signal MC (Trigger Simulation Applied) 35.91%
Signal MC (Pseudo-trigger Cuts Applied) 35.64%
Control MC (Pseudo-Trigger Cuts Applied) 35.91% (MV A > 0.787)
Control Data (Pseudo-Trigger Cuts Applied) 34.55% (MV A > 0.787)

Table 8.5: Efficiency ofMV A cuts, both nominal (> 0.8) and when forcing the 2-lepton control
MC to have the same efficiency as the signal MC.

the peaking component in variables other than the recoil mass, using our Maximum Likelihood

fit to the recoil mass from Chapter??. The resulting plots are shown below, with the projected

peaking component of data overlaid on the sum of peaking background MC samples. The most

significant shape difference we observe is in the dipioncos(θ), which appears more peaked

in the forward direction in data than in MC. This is due to the correlations between the fitted

variablemrecoil and the dipioncos(θ), and is explained in detail in Appendix B.8

8.3 Peaking Background Systematic Uncertainties

Our prediction of the peaking background comes from leptonic and non-leptonic con-

tributions. We discuss these contributions in Chapter 7. The systematic uncertainty on the

peaking background prediction is found to be 2.1%.

The systematic uncertainty on the leptonic peaking background prediction discussed

in Chapter 7.2.4.2 has several sources. We found the the total systematic uncertainty to be 2.0%.
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Figure 8.21: The dipion systempT , compared between peaking background MC (cyan his-
togram) and the peaking component of the data projected fromthe recoil mass fit. MC is
normalized to theΥ (3S) count, with corrections applied.
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Figure 8.22: The dipion systemcos(θ), compared between peaking background MC (cyan
histogram) and the peaking component of the data projected from the recoil mass fit. MC is
normalized to theΥ (3S) count, with corrections applied.
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Figure 8.23: The dipion system vertex fitχ2 probability, compared between peaking back-
ground MC (cyan histogram) and the peaking component of the data projected from the recoil
mass fit. MC is normalized to theΥ (3S) count, with corrections applied.
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Figure 8.24: Whether either pion passes eKMVeryLoose, compared between peaking back-
ground MC (cyan histogram) and the peaking component of the data projected from the recoil
mass fit. MC is normalized to theΥ (3S) count, with corrections applied.

150



Pion Muon ID
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

500

1000

1500

2000

2500

(3S) MCΥPeaking 

Peaking Signal Region Data

Figure 8.25: Whether either pion passes muBDTVeryLoose, compared between peaking back-
ground MC (cyan histogram) and the peaking component of the data projected from the recoil
mass fit. MC is normalized to theΥ (3S) count, with corrections applied.
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Figure 8.26: Whether either pion passes KKMVeryLoose, compared between peaking back-
ground MC (cyan histogram) and the peaking component of the data projected from the recoil
mass fit. MC is normalized to theΥ (3S) count, with corrections applied.
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Figure 8.27: ChargedTrack multiplicity, compared betweenpeaking background MC (cyan his-
togram) and the peaking component of the data projected fromthe recoil mass fit. MC is
normalized to theΥ (3S) count, with corrections applied.
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Figure 8.28: Total extra neutral energy (lab frame), compared between peaking background MC
(cyan histogram) and the peaking component of the data projected from the recoil mass fit. MC
is normalized to theΥ (3S) count, with corrections applied.
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Figure 8.29: Energy of the highest-energy photon (CM frame), compared between peaking
background MC (cyan histogram) and the peaking component ofthe data projected from the
recoil mass fit. MC is normalized to theΥ (3S) count, with corrections applied.
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Figure 8.30: Highest lab-momentum photon pair-mass, compared between peaking background
MC (cyan histogram) and the peaking component of the data projected from the recoil mass fit.
MC is normalized to theΥ (3S) count, with corrections applied.
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In section 7.3, we describe our approach to studying the non-leptonic peaking back-

grounds and determine that the MC describes the yield of nearly invisible hadronic events to

within a factor of 5. The non-leptonic peaking backgrounds represent0.12% of the total peak-

ing background. We therefore assign a0.6% systematic uncertainty for this source, to be added

in quadrature with the systematic uncertainty from the leptonic peaking background study.

8.4 Uncertainty on theΥ (3S) Count

This has been determined by theBABAR collaboration [17] to be 1.1%.

8.5 Systematic Uncertainties due to Signal Shape Parameters

We fix all of the parameters of the signal PDF in the fit to the data. We vary the

parameters by their uncertainties determined from the 2-lepton control sample and observe a

small variation on the branching fraction of just0.033 × 10−4. We include this as an additive

systematic error on the branching fraction.

8.6 Total Systematic Uncertainty and Corrections

Table 8.6 summarizes the systematic uncertainties, their sources, and their applica-

bility to the elements of the branching fraction extraction. Systematics which are correlated

between signal efficiency and the peaking background estimate are marked by “[*]”.
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Source Correction Uncertainty (%)

Background Estimate

2-lepton scaling correction [*] 1.088 1.1
1-lepton correction 1.000 2.1
hadronic peaking backgrounds 1.000 0.6
L1 Trigger [*] 1.000 2.1
L3 Trigger [*] 0.997 0.9
MVA [*] 1.000 4.0

Total (uncorrelated 2.2
with Signal efficiency)
Total (correlated 4.7
with Signal efficiency) [*]

Signal Efficiency

2-lepton scaling correction [*] 1.088 1.1
L1 Trigger [*] 1.000 2.1
L3 Trigger [*] 0.997 0.9
MVA [*] 1.000 4.0

Total (uncorrelated 0.0
with Peaking Bkg.)
Total (correlated 4.7
with Peaking Bkg.) [*]

Υ (3S) Counting

Counting 1.000 1.1

Additive Uncertainties (in BF units×10−4)

Signal Shape Parameters N/A 0.033

Table 8.6: Systematic uncertainties and their applicability. The marker “[*]” indicates an un-
certainty that is correlated between signal and peaking background.
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Chapter 9

Results and Conclusions

We apply the extended maximum likelihood fit to the events in the data.

9.1 Unblinded Results

We unblind the fit region of the91.42×106 Υ (3S) events (the sum of the “High” and

“Medium” samples) and perform the final Extended Maximum Likelihood fit inmrecoil. For

the fit, we:

• Fix the peaking background yield to 2357.8 events, which corresponds to the prediction

from section 7.4 multiplied by the Level 3 trigger systematic correction from section

8.2.2. We fix the shape to that determined from the 2-lepton control sample

• Float the yield and shape of the non-peaking background

• Float the signal yield and fix the signal shape to that determined from the 2-lepton control

sample
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The remaining inputs to the unblinding are as follows:

• Υ (3S) Count:91.42 × 106

• Signal efficiency: 16.4%

• Dipion transition BF: 4.48% [30]

We obtain a signal yield of

Nsignal = −94.9 ± 102.3 (9.1)

The fit is shown in Fig. 9.1.
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Figure 9.1: The result of the ML fit to the data sample. The total maximum likelihood fit is
shown in solid blue; the non-peaking background component is shown in dashed magenta; the
peaking background component is shown in blue dashed; the signal component is shown in
green dashed.
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We fit directly for the branching fractionB(Υ (1S) → invisible) by writing the

branching fraction in terms of the signal yield, as described at the beginning of Chapter 6.4.2.

B(Υ (1S) → invisible) =
ninvisible

NΥ (3S) · B(Υ (3S) → π+π−Υ (1S)) · εinvisible
(9.2)

whereninvisible is the fitted yield of events quoted above. This equation has several sources

of uncertainty, detailed in Chapter 8. We write the peaking background in terms of correction

factors (C) determined to correct the MC prediction of this background:

Npeaking = Nnominal
peaking ·

n
∏

i=0

Ci. (9.3)

We further write the efficiency of reconstructing signal andthe efficiencies of mis-reconstructing

Υ (1S) → ℓ+ℓ− events as signal in terms of a component that includes correction factors, and

their uncertainties. We expect the selection efficiencies to be the same for signal events and

peaking background events, so these efficiencies are correlated between the signal and peaking

background estimate. For instance,

εsignal = εnominal
signal ·

n
∏

i=0

Ci. (9.4)

This allows the fit to determine the systematic of varying theefficiencies (such as trigger effi-

ciency) simultaneously for the peaking background and signal.

After incorporating the errors detailed in Chapter 8, we finda branching fraction of

B(Υ (1S) → invisible) = (−2.4 ± 1.4(stat.) ± 1.7(syst.)) × 10−4 (9.5)

where the systematic errors have been incorporated in the Likelihood function as Gaussians.

Integrating the total Likelihood function upwards until itreaches 90% of its total area above 0,
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we find that

B(Υ (1S) → invisible) < 2.6 × 10−4 at 90% CL (9.6)

This result is consistent with the Standard Model prediction (1 × 10−5) for this decay, and im-

proves upon the previous 90% confidence limit of2.5× 10−3 by almost an order of magnitude.

9.2 Conclusions

While this result probes into regions which could contain new physics, it does not

approach the predictions of the Standard Model in sensitivity. Certainly there is substantial

room between1 × 10−5 and2.9 × 10−4 in which light Dark Matter candidates or unparticles

could be hiding. Additionally, should new physics be discovered elsewhere, this channel could

be an effective precision probe of these physics effects if the differences between the Standard

Model predictions and effects from these new physics effectthe Υ (1S) system. This is the

case in [6], where Super-Symmetric extensions to the standard model can suppress or enhance

invisible Υ decays by a factor of 2.

This measurement on theBABAR data set is most limited by the systematic uncertainty

on the expectation of the peaking background. Certainly themost direct way to improve this

measurement will be by creating a more hermetic detector. A veto device close to the beam pipe

to detect leptons fromΥ (1S) → ℓ+ℓ− decays would drastically reduce this problem. Trigger

efficiency for low energy pions would also be extremely beneficial to this analysis, allowing

a larger collection ofΥ (1S) mesons from the same number ofΥ (3S) decays. In addition to

improving this analysis, though, that triggering ability would allow the measurements of other
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invisible Υ decays through their dipion transitions. We cannot performthis analysis either on

the transitionΥ (3S) → π+π−(Υ (2S) → invisible) or Υ (2S) → π+π−(Υ (1S) → invisible)

due to the low energies of the pions in those decays. As there are many interactions which have

two low energy pions as a final state (as shown in the large non-peaking background to our

analysis), an approach must be developed to to remove those events or the triggering rate will

be much too large. For example a dependence on thepT of the dipion system could be used

to veto the vast majority of background coming from two photon fusion but allowing through

almost all signal events. These consideration might be taken into account by those developing

detectors for future high luminositybb̄ factories.
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Appendix A

Υ (1S) → invisible candidate variables, without

a pre-cut onpT

In section 5.1, we showed plots of candidate variables for the Υ (1S) → invisible

analysis. These plots required events in the sideband data,signal MC, and genericΥ (3S) MC

to pass the invisible signal selection, and have a pre-cutpT > 0.1GeV/c. We here show, for

completeness, the variables without such a pre-cut.
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Figure A.1:|cos(θππ)|, whereθππ is the lab polar angle of the dipion system, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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(b) A zoomed probability range, 0.0-0.2

Figure A.2: The dipion vertex probability, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape. 163



Pion is eKMVeryLoose
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Figure A.3: A boolean that is true if either pion passes eKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Pion is muBDTLoPLoose
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Figure A.4: A boolean that is true if either pion passes muBDTLoPLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Pion is KKMVeryLoose
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Figure A.5: A boolean that is true if either pion passes KKMVeryLoose, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.
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Figure A.6: The number of ChargedTracks in the event, compared between signal MC (blue,
unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Figure A.7: The extra neutral energy, compared between signal MC (blue, unshaded histogram),
sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pure comparison of the shape.
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Figure A.8: The CM energy of the highest-energy cluster, compared between signal MC (blue,
unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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(a) A wide range of the two-neutral mass
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(b) Theπ0 mass region
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(c) Theη mass region

Figure A.9: The mass of the highest-momentum (CM frame) neutral pair, compared between
signal MC (blue, unshaded histogram), sideband data (blackpoints), andΥ (3S) generic MC
(grey, shaded histogram). All distributions are normalized to the yield in the sideband data, for
a pure comparison of the shape.

170



)γ plane normal, ππθcos(
-1 -0.5 0 0.5 1

0

100

200

300

400

500

600

700

800 Y(3S) Generic MC

 + invisible MC-π+π

Sideband Data

Figure A.10: The cosine of the angle (CM frame) between the highest energy neutral and the
normal to the plane of the dipion system, compared between signal MC (blue, unshaded his-
togram), sideband data (black points), andΥ (3S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sideband data, for a pure comparison of the
shape. Events which do not have any extra photons are defaulted to 1.1 and are not shown on
this plot.
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Figure A.11: The multiplicity of EMCK0
L candidates, compared between signal MC (blue,

unshaded histogram), sideband data (black points), andΥ (3S) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield in the sideband data, for a pure comparison
of the shape.
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Appendix B

Understanding Effects of Variable

Correlations on sPlots

The following appendix deals with understanding the effects of correlations in data

on sPlots and how that effect can be removed fromsPlotsof MVA inputs.

B.1 Toy Monte Carlo used to understand the effect of correlations

in data on sPlots

In our analysis, we fit in one variable and usesPlots to project out the distribution in

another variable. If there is a correlation in the data between the two variables, this can have an

effect on the projected distribution that would not be expected if the correlation is not taken into

account. This means that when we project out the signal portion of the data, there is a distortion

being applied by the interaction of thesPlot procedure and the correlations between the two
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variables in the data.

In order to see if this effect can cause a significant problem,we create a toy Monte

Carlo experiment with two variables (x andy) where there is a significant correlation in the

background and no correlation in the signal. In this experiment, x ∈ [0, 1] andy ∈ [−1, 2.5]

and the two PDF’s are:

fsignal = e
−

(x−1/2)2

2(0.01)2
−

(y−1/2)2

2(0.1)2 (B.1)

fbackground = e
−

(y−(x+1/2))2

2(0.1)2 (B.2)

A plot of the signal is shown in Fig. B.1 with a zoomed version in Fig. B.2. A plot of

the background is shown in Fig. B.3. The correlation coefficient of Equation B.2 is0.24.
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Figure B.1: Plot of eq. B.1,x ∈ [0, 1] andy ∈ [−1, 2.5]
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Figure B.2: Plot of eq. B.1,x ∈ [0.4, 0.6] andy ∈ [0.2, 0.8]
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Figure B.3: Plot of eq. B.2,x ∈ [0, 1] andy ∈ [−1, 2.5]
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B.2 Toy Monte Carlo Experiment Results Part 1- Proof of Concept

The first run of this toy experiment has 1,000 signal events and 10,000 background

events (experiment 1). The signal inx can be seen in fig. B.4, the background can be seen in

fig. B.5, and their sum can be seen in B.6.

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s 

/ (
 0

.0
1 

)

0

50

100

150

200

250

300

350

400

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ve

nt
s 

/ (
 0

.0
1 

)

0

50

100

150

200

250

300

350

400

Figure B.4: Toy Monte Carlo signal simulation - experiment 1

We can then apply thesWeighting procedure and derive a function (Fig. B.7) of the

signalsWeight in terms ofx. Then we can look at the real and signalsWeighted distributions

in they variable. The signal (Fig. B.8), background (Fig. B.9), andsum (Fig. B.10) can be seen

to change as we expected, and introduce a large discrepancy from the true signal distribution in

the sPlot.
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Figure B.5: Toy Monte Carlo background simulation - experiment 1
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Figure B.6: Toy Monte Carlo combined simulation - experiment 1
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Figure B.7: Toy Monte Carlo signalsWeight as a function of dipionx - experiment 1
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Figure B.8: Toy Monte Carlo signal simulation iny raw (above) and signalsPlot (below) -
experiment 1
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Figure B.9: Toy Monte Carlo background simulation iny raw (above) and signalsPlot (below)
- experiment 1
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Figure B.10: Toy Monte Carlo combined simulation iny raw (above) and signalsPlot (below)
- experiment 1
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B.3 Toy Monte Carlo Experiment Results Part II - Smaller Signal

We can run the same toy with 1,000 signal events and 100,000 background events (ex-

periment 2). Plots similar to those in sec. B.2 can be seen in fig. B.11,B.12,B.13,B.14,B.15,B.16,B.17
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Figure B.11: Toy Monte Carlo signal simulation - experiment2
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Figure B.12: Toy Monte Carlo background simulation - experiment 2
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Figure B.13: Toy Monte Carlo combined simulation - experiment 2
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Figure B.14: Toy Monte Carlo signalsWeight as a function of dipionx - experiment 2
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Figure B.15: Toy Monte Carlo signal simulation iny raw (above) and signalsPlot (below) -
experiment 2
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Figure B.16: Toy Monte Carlo background simulation iny raw (above) and signalsPlot (below)
- experiment 2
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Figure B.17: Toy Monte Carlo combined simulation iny raw (above) and signalsPlot (below)
- experiment 2
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B.4 Toy Monte Carlo Experiment Results Part III - Larger Signal

We can run the same toy with 50,000 signal events and 10,000 background events

(experiment 3). This is similar to the case for our 1 lepton sample where there is very little

background and we find good agreement between data and Monte Carlo. Plots similar to those

in sec. B.2 can be seen in fig. B.18,B.19,B.20,B.21,B.22,B.23,B.24. The effect from the back-

ground is greatly reduced. In a simulation with 100,000 signal and 10,000 background events,

the effect is invisible.
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Figure B.18: Toy Monte Carlo signal simulation - experiment3
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Figure B.19: Toy Monte Carlo background simulation - experiment 3
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Figure B.20: Toy Monte Carlo combined simulation - experiment 3
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Figure B.21: Toy Monte Carlo signalsWeight as a function of dipionx - experiment 3
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Figure B.22: Toy Monte Carlo signal simulation iny raw (above) and signalsPlot (below) -
experiment 3
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Figure B.23: Toy Monte Carlo background simulation iny raw (above) and signalsPlot (below)
- experiment 3
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Figure B.24: Toy Monte Carlo combined simulation iny raw (above) and signalsPlot (below)
- experiment 3
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B.5 Toy Monte Carlo Experiment Results Part IV - Less Corre-

lated Background

We can change the toy experiment so that the correlation in the background is much

weaker. We redefine the background function to be

fbackground = e
−

(y−(0.05x+1))2

2(0.1)2 (B.3)

The correlation coefficient of Equation B.3 is0.036. A plot of this function can be

seen in Fig. B.25.

Figure B.25: Plot of eq. B.3,x ∈ [0, 1] andy ∈ [−1, 2.5]

We generate 1,000 signal and 100,000 background events (experiment 4). We have
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seen that in our real data, there is a correlation between themrecoil and the dipioncos(θ) angle,

and this may be accountable for the change in projection shape. Plots similar to those in sec.

B.2 can be seen in fig. B.26,B.27,B.28,B.29,B.30,B.31,B.32.
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Figure B.26: Toy Monte Carlo signal simulation - experiment4
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Figure B.27: Toy Monte Carlo background simulation - experiment 4
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Figure B.28: Toy Monte Carlo combined simulation - experiment 4
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Figure B.29: Toy Monte Carlo signalsWeight as a function of dipionx - experiment 4
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Figure B.30: Toy Monte Carlo signal simulation iny raw (above) and signalsPlot (below) -
experiment 4
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Figure B.31: Toy Monte Carlo background simulation iny raw (above) and signalsPlot (below)
- experiment 4
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Figure B.32: Toy Monte Carlo combined simulation iny raw (above) and signalsPlot (below)
- experiment 4
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B.6 Conclusion ofsPlots Toy Monte Carlo

Correlations in the variables involved in asPlot can have real effects on the distribu-

tion, and we should study this in out data sample.

B.7 Removing Correlation Corrections from Dipion cos(θ)

Since we have observed a correlation betweenmrecoil and the dipioncos(θ) variables

in our data, we wish to correct for this effect in oursPlots. While we have a simulated sample

that predicts the peaking background distribution, we do not have a similar simulation for the

non-peaking background. However, we do have the sideband data which we used to create our

MVA and which is included in our maximum likelihood fit of the signal and background shape.

We can take this sideband and use it to fit an estimate of the background distribution in the

signal region.

After performing this fit, we use the extrapolated distribution to estimate what effect

the correlation has on thesPlot of peaking background. This distortion can then be removed

from thesPlot to compare directly with our simulation.

B.8 Fitting the Background Distribution

While it is difficult to create a two dimensional p.d.f of themrecoil vs. cos(θ) distri-

bution, it is not difficult to define slices incos(θ) and fit themrecoil distribution as a polynomial.

We dividecos(θ) into 10 bins, and perform an independent fit in each bin. This can be seen in

Fig. B.33, B.34, B.35, B.36, B.37, B.38, B.39, B.40, B.41, and B.42.
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Figure B.33:mrecoil fit, cos(θ) ∈ [−1.0,−0.8]
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Figure B.34:mrecoil fit, cos(θ) ∈ [−0.8,−0.6]
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Figure B.35:mrecoil fit, cos(θ) ∈ [−0.6,−0.4]
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Figure B.36:mrecoil fit, cos(θ) ∈ [−0.4,−0.2]
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Figure B.37:mrecoil fit, cos(θ) ∈ [−0.2, 0.0]
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Figure B.38:mrecoil fit, cos(θ) ∈ [0.0, 0.2]
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Figure B.39:mrecoil fit, cos(θ) ∈ [0.2, 0.4]
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Figure B.40:mrecoil fit, cos(θ) ∈ [0.4, 0.6]
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Figure B.41:mrecoil fit, cos(θ) ∈ [0.6, 0.8]
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Figure B.42:mrecoil fit, cos(θ) ∈ [0.8, 1.0]
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B.9 Adding sWeighting to the Fitted Background p.d.f

From our complete maximum likelihood fit, we derive a function of signalsWeight

in terms ofmrecoil (Fig. B.43). We can then take this function and multiply it bythe p.d.f

of the background that we have just derived (Sec. B.8) in the signal region for each bin in

cos(θ) to create a p.d.f of signalsWeights. This is multiplied by the number of non-peaking

background events predicted to be in the signal region to findthe total expected signalsWeight

contributed by the non-peaking background in the signal region for each bin ofcos(θ) (Fig.

B.44). Similarly, the sum of the square of the signalsWeights is calculated to compute the

errors as
√

∑

(sWeight)2. These are conservative errors, as there is no consideration of how

fitting through the signal region might effect the results.
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Figure B.43: SignalsWeight as a function ofmrecoil
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Figure B.44: Result ofcos(θ) slice fitting and signalsWeighting with errors calculated as the
square root of the sum of the signalsWeights. This represents the expected contribution to the

sPlot from the non-peaking background in the signal region.
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B.10 Total Non-Peaking Background Distortion

Now that we have the distribution of the signalsWeights in the signal region (Fig.

B.44), we add the signalsWeighted sideband data (Fig. B.45) and find the distortion introduced

by the background correlation (Fig. B.46).
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Figure B.45: SignalsPlot of the sideband data. This is contribution to thesPlot from the data
in the sideband region
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Figure B.46: Distortion to signalsPlot from mrecoil andcos(θ) correlation (sum of Fig. B.44
and B.45). This is the expected signalsPlot from the non-peaking background distribution in
both the sideband and signal region. It is subtracted from the signalsPlot of the full data set to
arrive at the signalsPlot of the peaking background distribution (Fig. B.47)
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B.11 Correcting the sPlot

We can now subtract the calculated distortion to the signalsPlot from the signal

sPlot of the unblinded data and compare it to the signalsPlot of the Monte Carlo simulation

of the peaking background. This is displayed in Fig. B.47.
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Figure B.47: Uncorrected data signalsPlot in dark blue with triangular markers, corrected data
signalsPlot in black with circular markers, Monte Carlo simulation of non-peaking background
signalsPlot in Cyan histogram.
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