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Abstract

Search for Invisible Decays of tH&1S) Meson aBABAR

by

Lucas O. Winstrom

This details the search for invisible decays of ig3S) meson at theBABAR experiment.
This decay is potentially sensitive to new physics beyored Standard Model. We use the
BABAR T7'(3S) data set, analyzing 22.1 b of data, which corresponds to 91.4 milliai{(35)
mesons delivered by PEP-II. The dipion transitib(8S) — 77~ 7 (15)) is studied to iden-

tify a collection of 7°(1S) mesons upon which to perform this search. The measurement is
B(T(1S) — invisible) = (—1.2 4 1.4(stat.) 4+ 1.7(syst.)) x 10~* which is consistent with

the Standard Model prediction ef 1 x 10~°. This measurement sets an upper limit on the

branching fraction o2.9 x 10~* at the 90% confidence level.



To the invisible particles. .

where are you?
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Chapter 1

Motivation

Invisible decays of heavy particles can be used both asftestandard Model (SM)
predictions and as probes for “new physics” phenomena rgaired by the SM. Measure-
ments of invisibleZ® decays at LEP were able to precisely test the hypothesised tjenera-
tions of light neutrinos [1, 2, 3, 4]. A search for invisibleahys of the3° meson [5], a channel
with a SM branching fraction far below the sensitivity of tB&BAR experiment, probed poten-
tial new physics that could enhance the decay rate.

In a similar vein, searches for the invisible decays ofXi{&S) meson can be used to

explore the possibility of physics beyond the standard ribeé might couple to théb system.

1.1 7T — invisible Decays - Theory

Invisible upsilon decays can in principle be used both to ties Standard Model
(SM), and as a search for new physics. The Standard Modetgsdor invisible decays of the

T(15) meson proceeds by the transition of thendb quarks to a pair of neutrinos mediated

1



by aZ° boson as show in Figure 1.1.

b v

Figure 1.1: The procesS — invisible in the Standard Model.

A leading order calculation of this transition yields

0 —vp)  21G*Mj} 4 ., 2
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where neglected QCD corrections, electroweak radiativeections, and corrections due to

Higgs loops amount te- 2 — 3% [6]. This leads to a prediction for the Standard Model
branching fraction ok~ 1 x 107°. Since theBABAR data set can set an upper limit on this
branching fraction at the 90% Confidence Level (CL}08 x 10~* (Chapter 6.5), this allows
a search for potential new physics enhancing the invisibtay rate of thg (15). A precision
measurement of this decay will have to wait for the next gati@n of of bb factories.

There are a variety of hypothesized effects that can aleef'tinvisible branching
fraction. Extensions to the Standard Model due to Supersgtric enhancements, which are
explored in [6], can change this branching fraction, butdratstically enough for this search

to differentiate them from a branching fraction of 0. Thegees of measurements will have to



wait for a data set capable of probing down to the 10~° level or below.

However, light dark matter candidates which are not supensgtric in origin could
couple weakly to standard model particles to enhance tloiyd@, 8]. This type of phenomeno-
logical coupling simply hypothesizes a new coupling betwEstates and Dark Matter particles
below one half the mass of tHémeson (in the case of this analys%sMy(ls) = 4.7GeV/c?).
Using relic density and the upper limit on dark matter caatidnass as constraints, this type
of enhancement can lead to branching fraction¥ ef: invisible of up to1.8 x 10~3 [8]. This
lies within reach of thaBABAR data set and offers a compelling motivation for this search.

Unpatrticles [9], a hypothesized scale invariant sectomaéffective field theory, can
enhance this decay [10]. Scale invariant theories can asselow energy effective theory of
high energy extensions to the Standard Model [9]. The uigtestof this theory do not have
a definite mass, but rather a mass spectrum. The enhancenmenthis theory is sensitive to
the dimensionality of the scale invariant sector and thepliog between the SM sector and
this scale invariant sector. The current limits on theseatsf come from measurements of
B(Y(1S) — invisible) done elsewhere, and there are no other measurements thzt breig
used to constrain effects from this framework to an unmediyiismall contribution. Although

not as compelling as dark matter, unparticles provide amfdit motivation for this study.

1.2 T — invisible Decays - Experiments

While all of these theories are potential explanations lierinvisible decays of the

Y (15) meson, they all have an identical signature: an enhanceafatvisible decays. Should



this decay be measured in the future, other channels, surfil&§ — -~ invisible, will have
to be explored to differentiate between them.

Previous experimental searches for this decay have beenbyahe CLEO and Belle
collaborations. Using 1.2 fi} of data collected at th&(35) resonance, CLEO measured an
upper limits at a 90% confidence level BfY(1S) — invisible) < 3.9 x 1073 [11]. Using
2.9 fb~! of data collected at th&(3S) resonance, Belle measured an upper limits at a 90%
confidence level 0B(Y(15) — invisible) < 2.5x1073 [12]. In this analysis, we use 22.1 b
of data collected at th¥(35) resonance. While we cannot measure down to the Standard Mode
prediction for this decay, we do manage to set a limiB@T' (1.5) — invisible) < 2.9 x 1074
We use a sophisticated multivariate event selection dlgario create a sample of events with a
minimum of background. We employ a statistical techniquevikm as, Plots [13] to calculate
the expected number of events faking signal. Finally, wéoper a Maximum Likelihood fit to

extract the upper limit on the branching fraction.



Chapter 2

The B:Bx Experiment

This thesis discusses a measurement which was performeg dafa collected by
the BABAR [14] collaboration using th&ABAR detector. TheBABAR detector is a solenoidal,
general purpose particle detector designed to observégresiectron collisions produced by
the PEP-II (Positron Eelctron Project Il) [15] accelera#rthe SLAC National Accelerator
Laboratory. A thorough description of this detector is shed elsewhere [14]. This chapter
will summarize the detector, the tracking and particle idieation, and the event triggering
detailed in that work and elsewhere. All figures showing tke&ecktor in this chapter come
from [14].

Although BABAR was originally designed as B meson factory observing thB 3
decays ofr'(4S) mesons, this analysis uses a special collectiof’@S) mesons produced
between December 23, 2007 and March 1, 2008. This data setsalls to search for new
physics not accessible in tHE(4S) data, such as light Higgs and Dark Matter candidates,

as well as pieces of the Standard Model particle spectrunciwhave not previously been



observed, such as thg[16]. The search for invisible decays of tifg1.S) meson is a search

for new physics, as motivated in Chapter 1.

2.1 Positron Electron Project Il (PEP-II)

PEP-II is a positron electron collider originally desigrtecoperate with a center-of-
mass (CM) energy of 10.58&eV, the mass of th@"(4S5) meson. The PEP-II team and the
BABAR collaboration worked together to operate the collider atrtrass of th@(3.S) meson,
10.36 GeV, to collect the data that this analysis uses.

Positrons and electrons are accelerated into the two gtanags that make up PEP-
Il. These electrons have an energy of 4@V and the positrons have an energy of &@V.
The beams in these two counterrotating rings are tuned todimect energies and brought into
collision inside theBABAR detector. The different energies of the beams make thissiooll
asymmetric, boosting the center of mass frametyy= 0.58 relative to the laboratory frame.
These two beams are bunched to create dense, well spacestgpatiparticles before being
brought into collision. The RMS spatial extent of these paskn the laboratory frame is
or, = 120pm, o, = 5.6um, andoz, = 9mm, where the coordinate frame of the experiment
is defined as follows. Thé direction is along the direction of electron beam flight, the
direction is upwards, and thedirection is defined such thgtx % = z.

PEP-II has delivered a total luminosity at tiig3.S) resonance of 30.2 fdf, corre-
sponding to 122 millior?"(3.5) mesons [17]. Through its lifetime, it delivered a total of755

fb~! of data, with a peak luminosity af2.069 x 1033cm~'s~!, more than four times the



original design specifications.

2.2 TheBaBa Detector

BABAR is an azimuthally symmetric general-purpose particle aete designed to
work with PEP-II and detect thete~ collisions generated by the collider. Diagrams of the
detector and its subsystems are seen in Figures 2.1 and 2@auge, as discussed earlier,
BABAR is designed to measure asymmetric collisions, there isveafar-backward asymmetry
in the detector systems, giving a better center-of-mass) ({@vhe fiducial coverage.

The detector consists of a number of subsystems, which gdoaially outwards
from the beam pipe. Nearest the interaction point (IP) issilieon vertex tracker (SVT) fol-
lowed by the drift chamber (DCH). These two subsystems q@paie in particle identification
(PID) and are the inputs for the tracking algorithms useti@BBBAR collaboration. Outside of
these lies the detector of internally reflected Cherekoiatixh (DIRC), a key piece of the PID
system and the electromagnetic calorimeter (EMC). Thesswrounded by a superconducting
solenoid which creates a 1.5T field. Finally, the instruradritux return (IFR) surrounds the
magnet and functions as a muon and neutral hadron detector.

This analysis particularly depends on the SVT, DCH, and EliQvieasurement of
the physics signal. The DIRC plays an important role in g&aoof control samples for the

analysis, and the IFR is largely unused.
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Figure 2.1: TheBABAR detector longitudinal view.

2.2.1 Silicon Vertex Tracker (SVT)

The SVT is designed to measure angles and position of chaagidles just outside
the beam pipe. The SVT is composed of five layers of doubledsgilicon strip detectors that
are assembled from modules with readout at each end, thusingdthe inactive material in
the acceptance volume. The inner three layers primarilyigegposition and angle information
for the measurement of the vertex position, but also add mameinformation to tracks that
extend into them. They are mounted as close to the wateeddmryllium beam pipe as prac-
tical, thus minimizing the impact of multiple scatteringtime beam pipe on the extrapolation
to the vertex. The outer two layers are at much larger rabyigding the coordinate and angle
measurements needed for linking SVT and DCH tracks.

The principal use of the SVT in this analysis is the identtfaa of tracks, and guar-

anteeing that tracks originate at the interaction poinheft"e~ collision. Information on the
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Figure 2.2: TheBABAR detector transverse view.

origins of tracks is found by fitting track hits in both the S\Amnd the Drift Chamber (DCH)
using a Kalman Filter. The resolution on distance from thieraction point is momentum de-
pendent, and in the energy range of the tracks of interestiscanhalysis £ 0.1 — 0.8 GeV),
the resolution is~ 0.1 — 0.3mm for both the resolution in the axis and the distance travelled
in thez — y plane. These are both far less than 2k&m cut in z and1.5c¢cm cut in thex — y
plane imposed on tracks used in this analysis. For highegeracks, the resolution becomes
much better, with a resolution df)um in the z axis and25um in thez — y plane. Information
on the vertex probability of the two tracks is also used is #malysis, but the requirements on
the vertexing are also very loose, much less than @fiem in z and80um in thex — y plane
resolution that the SVT is capable of providing. DiagramthefSVT can be seen in Figures 2.3

and 2.4.
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2.2.2 Drift Chamber (DCH)

The principal purpose of the DCH is the momentum measurei@eaattiracking of

charged particles. It also provides information for thergbkd particle trigger and a measure-

ment of dE/dz (with a resolution of 6.9%) for particle identification. TBECH has 40 layers

of approximated hexagonal cells that extend the lengthefiftector. These are divided into

10 superlayers. Low-mass wires and the gas mixture of heboivutane minimizes multiple

scattering inside the DCH. The readout electronics are meduon the backward endplate of
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the chamber, minimizing the amount of material in front & talorimeter endcap.

This analysis relies heavily on the momentum measureménkssossubsystem, and
its input to the particle identification (PID) algorithmshi$ system is the primary PID input
for particles up to 0.GeV, which includes almost all of the particles subject pagticlentifi-
cation in signal sample of this study. When the DCH and SVorimfation is combined, the
momentum resolution on a particle trackis, /pr = (0.13 £ 0.01)% - pr + (0.45 £ 0.03)%.
Figure 2.5 shows a tranverse view of the DCH, and Figure 2@/sta schematic of the first 4
superlayers of the DCH. Figure 2.7 shows the separationdegté andr particles indE/dx

as a function of momentum. The separation power bel@w\l/c can be seen very clearly.
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Figure 2.5: The DCH detector longitudinal view.

2.2.3 Detector of Internally Reflected Cherenkov Radiatior(DIRC)

The DIRC is a novel device which provides separation infaromafor pions and
kaons from about 0.6¢eV. Cherenkov light is produced ih9m long bars of synthetic fused
silica or rectangular cross sectionycm x 3.5c¢cm, and transported by total internal reflection,

preserving the angle of emission, to an array of photomigdtigubes. This array forms the
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Figure 2.6: The first 4 superlayers of the DCH.

backward wall of a toroidal water tank that is located beytirelbackward end of the magnet.
DIRC information plays some role in the PID information tliais analysis uses, as
the algorithms to discriminate pions and kaons use all mé&dion available to them. Our con-
trol samples benefit greatly from the ability to distinguisptons from kaons at high energies.
However, since the tracks in signal events that we study arng soft (maximally 0.&eV),
most of the identification information is delivered by the BCA schematic of the DIRC is

seen in Figure 2.8.
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2.2.4 Electromagnetic Calorimeter (EMC)

The EMC is designed to detect electromagnetic shower witklent energy and an-
gular resolution of the energy range of 20:V to 4 GeV. The EMC is a finely segmented array
of projective geometry made of thallium doped cesium iodidsI(TI)) crystals. The crystals
are arranged in modules that are supported individualipfan external support structure. This
structure is built in two section, a barrel and a forward epddo obtain the best possible reso-
lution, the amount of material in front of and in-between thgstals is held to a minimum. The
energy resolution of this componentig/E = (2.3240.30)//E(GeV)% @ (1.85+0.12)%.

This analysis uses the EMC to guarantee that potential Isayeats are free of high
energy particles not associated with the physics beingestud he requirements that an event
be categorized as a signal event in this analysis requisgsthsingle particle in the EMC be
too energetic, and that the total energy deposited in thewioadter be low. These statements

are made precise later in the thesis, where these quatigegefined as inputs to a multivariate
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Figure 2.8: The DIRC detector.

selection algorithm. A longitudinal cross section of the Egan be seen in Figure 2.9.

2.2.5 Instrumented Flux Return (IFR)

The IFR is designed to identify muons and to detect neutrdfdres. For this pur-
pose, the magnet flux return steel in the barrel and the twalends is segmented into layers.
Between the steel absorbers, resistive plate capacitdrtimaited streamer tubes are inserted,
which detect ionizing particles.

The IFR is not used in this analysis, as none of the high eneagis, which could
be either muons or electrons, used in control samples eegaiticle identification. A drawing

of the IFR can be seen in Figure 2.10.
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Figure 2.9: Longitudinal view of the top half of the EMC.
2.3 TheBaBa Triggering System

The trigger system operates as a sequence of two indepesidges, the second
conditional upon the first. The Level 1 (L1) trigger is respibite for interpreting incoming
detector signal, recognizing, and removing beam-indueattdround to a level acceptable for
the Level 3 (L3) software trigger which runs on a farm of comered processors.

L1 consists of pipelined hardware processors designedowid® an output rate of
< 2kHz. The L1 trigger selection is based on data from the DCH and ER&Ww data from
these components are delivered to the L1 processors andrbeinto trigger objects, some
of which are defined as follows: Hits in the DCH that reachegitbuperlayer 5 (classified as
a short track) or superlayer 10 (classified as a long trackgs@ tracks must haye- at least
120 or 180MeV/c to reach this far in the detector. Hir(> 120 MeV/c¢) tracks in the DCH.
Energy deposits in small segments of the EMC which exceedM60. Other trigger objects
can be defined to match different physics conditions (see@t@pter 8.2.1). The maximum
latency for a given collision i32us. L1 has 24 trigger lines which can be changed based on
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different physics conditions[18]. These lines can be setigger on the presence of different
combinations of trigger objects (see e.g. Chapter 8.2.1)ce.1 passes an event to L3, it
is analyzed and, if found to be interesting physics, passefbropermanent storage. A small
subsample of events are passed without requiring L3 primgeas a control sample check on

this triggering system. A diagram of the data flow can be sedfigure 2.11.

raw processed digital
analog digital event
signals signals data
Event Bld
BABAR Front-End VME Dataflow Lol Intermediate
. fr| —= L3 Trigger =
detector Electronics Crates L Event Store
Monitoring
trigger L1 Accept, clocks
\ ég%a and tr|g%er data
: 24
L1 Trigger Fast Control

Processor trigger | and Timing
lines

Figure 2.11: Schematic diagram of the data acquisition.
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Chapter 3

Analysis Overview

This analysis seeks to measure or put an upper limit on thecbiag fraction of
7' (15) mesons to invisible final states. The analysis takes plac&atancollected by thBABAR
experiment from electron-positron collisions at #ig3S) resonance. In order to select events
relevant to this search, the presence of two oppositelygelaigpions is required. This allows the
presence of an invisible decayifi1.5) meson to be inferred from the mass the dipion system
is recoiling against due to the dipion transiti#it3S) — 7#+7~7(1S). There are two distinct

backgrounds to the invisible signal:

e A non-peaking combinatoric background due to events caimgicontaining two pions

which are not due to th& transition, but that are kinematically similar to signatets

e A peaking background where th&3S5) undergoes the dipion transition to a non-invisibly

decaying?’(15) but where the final decay products of thél.S) escape detection

17



Methods are developed to suppress the combinatoric baskgrand precisely understand the
peaking background. Calculations are performed to urataisthe statistical sensitivity of this
measurement. Finally, a maximum likelihood fit is performedextract the yield of signal
events. This yield is combined with the statistical sewisjtiand systematic error calculations
to quote an upper limit on the branching fractiBir’(1S) — invisible). This chapter serves
as an introduction to the analysis and a road map of the puoesdhat are described in greater

detail in the following chapters.

3.1 Data and Monte Carlo Simulation

3.1.1 Data

From December 23, 2007 to March 1, 2008, PEP-II deliveredises thel"(35) res-
onance to théABAR detector with an integrated luminosity of 30 th This analysis depends
on the development of a special trigger configuration that eegployed in early January, and so
uses 23.294 f'! of this data. This corresponds 6.5 x 10 7'(3S) mesons. Approximately
5% of the data is used for training, testing, and validativené selection methods which is then

discarded, leaving 22.092 B or 91.4 x 10 7(35) mesons for the final measurement.

3.1.2 Monte Carlo Simulation

A number of Monte Carlo samples are generated to model \v&@domponents of this

analysis:
e invisible 7°(15) decays

18



e leptonicT’(1S) decays
e genericY'(15) decays

e continuum processes

—
— light-quark production

— radiative dilepton events

Monte Carlo simulations are run in large batches by BABAR computing group.

These simulations are discussed in more detail in Chagfer 4.

3.2 Event Selection

The presence of the two pions from the transitiof3S) — =7~ 7 (1) is required
for identification of al"(1.5) meson in an event. The formula for the mass that the two pions

are recoiling against

m?“ecoil =s+ m?l’ﬂ' - 2\/EE7F7T (31)

determines whether or not a pair of pions might have origthdtom this transition. While
events that contain only these two oppositely charged @omssed for the actual measurement,
important control samples are also available within thedafhe leptonic transition of the

Y (15) can be detected and is used for two control samples: evetitsowe lepton detected
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and events with both leptons detected. We also use a samjpl@wingle high energy neutral

particle as a “nearly” invisible sample.

3.2.1 7(15) — invisible

This selection chooses events that have the two oppositelged tracks (presumed
to be from the dipion transition) with a recoil masg9.35,9.57] GeV/c%. There may be addi-
tional activity in the detector, as it is expected othenaistifrom beams or noise will register
during these events. This selection will contain a large @amof background from events that
contain two pions but do not contain’g15). The region inm,....; that is far away from the
7' (1S) mass can be used as a sideband region to study this backgrbaisdsideband is used

for the measurement of, and to understand, the combindiadkground in the data.

3.2.2 T(18) — (+¢-

In addition to the dipion system in tHE(1S) — invisible sample, this sample re-
quires the presence of two high energy tracks from the léptdecay of thel'(1S). This
sample is extremely pure, allowing the derivation of the...; distribution shape from data.
From this distribution, the sideband regions can be defiredeing more thano from the
peak, and the signal region can be defined as being withiof the peak. This sample is also
used to calculate a scaling factor for the Monte Carlo sitimareof leptonic?’(15) decays so

the number of leptonic decays of tif§1.5) escaping detection is accurately predicted.
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3.23 T(15) — ¢

We also collect events where there is one high energy traeldition to the dipion
system. While this sample is not as pure as the two leptonlgarhpccupies a different fiducial
range of the detector. Its location in the back end of theatietes used to correct differences

in event acceptance between the simulation and data.

3.2.4 *“Nearly” Invisible Sample

This control sample is collected with the same dipion rezaents as th&'(1.5) —
invisible, but requires the presence of an extra neutral cluster icdlgimeter to separate it
from the invisible sample. We use this collection to compheMonte Carlo predictions of
genericT (15) decays to those in actual data to constrain the number ofrgealackground

events that might come from non-leptonic decays.

3.3 Non-Peaking Background Reduction

Since this analysis simply requires the presence of a digystem with an invariant
mass in a window, a large quantity of combinatoric backgdomitially overwhelms the signal.
In order to suppress this background, two methods are egloA cut and count method is
used as a baseline, and as a sanity check, and a sophisticalidchriate selection algorithm
is trained and used for final event selection. For each methowimber of observables are
explored for their power to discriminate between Monte €artjnal events and sideband data

from the?'(1S) — invisible sample. Eventually the total signal yield will be deterntinging
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a fit tom,..0i1, SO these variables must also be uncorrelated mith,;. A variety of variables
are identified that can be used to discriminate between Isagrthbackground irrespective of

recoil mass.

3.3.1 Cutand Count

Initially, a cut and count routine is performed to establ@slivaseline significance.
This uses the PRIM algorithm [19] to find a multidimensionaklzontaining the highest signal
significanceS = s/v/s +b. This gives a baseline significance that can be comparedawith
more sophisticated selection algorithm. While the cut anght routine is not used for the rest
of the analysis, it is important to make sure that the muiiata algorithm works at least as well
as the cut and count routine (preferably better), and tlolatss not give completely unbelievable

gains over this routine, as that may point to errors elsesvhrethe analysis.

3.3.2 Random Forest Decision Tree

The multivariate "Random Forest” algorithm (MVA) is based & large number of
“decision trees” trained with a set of random inputs. Dextidiree outputs are weighted and
summed to optimize the Gini index [20] of the Random Foregticéthe algorithm has been
developed, a cut point must be determined. This is done byidgfthe procedure through
which the signal yield will be measured and running severahtd Carlo experiments to un-
derstand the statistical sensitivity of the measuremehe résults of these “toy” Monte Carlo
experiments are used to minimize the 90% Confidence Limib@rheasurement so that the

best upper bound can be found.
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3.4 Maximum Likelihood Fit

An extended maximum likelihood fit is performed on the dattham,....; to deter-
mine the yield of peaking and background components. Wehgssignal shape derived from
theT(15) — ¢+¢~ control sample as a shape for both the peaking backgrounthargignal,

and we use a polynomial of order one as a shape for the nonrgelakckground.

3.5 Statistical Sensitivity Estimations

We create a Monte Carlo procedure that will generate digidhs inm,....;; accord-
ing to the signal shape for signal and background. The sidkbata is used to estimate the
shape of the non-peaking background, andXffieS) — ¢*¢~ control sample is used again to
estimate the distribution of the peaking background andasigrhese distributions are used to
generate sample data sets which are added together to arsatgple distribution of signal and
background which can then be put through the fitting proedescribed in section 3.4. Since
in these toy experiments we know exactly the quantity of aigmd background events, the
fitted yield can be compared to the actual yield to deterntieestgnal sensitivity of the fitting
procedure.

By running these toy Monte Carlo experiments many times, avecteate a distribu-
tion of yields based on various assumptions about valuggmédlsyield. These distributions are
used to determine confidence intervals around various biragdraction measurements. This
includes both 68% and 90% confidence intervals. We use tluediglence intervals to optimize

the statistical signal sensitivity of the measurement amation of Random Forest output.
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3.6 Peaking Background Determination

When theT’(15) in the T°(3S) — w7~ 7(15) transition decays into potentially
detectable states, these products can sometimes escaptioet These decays result in a
decay that is indistinguishable from a signal event, as tmydipion system can be detected.
In order to estimate the number of decays of this sort, we usdonte Carlo predictions and
control samples to predict the number of undetectable sihat occur. The most common type
of undetectable decay is a leptonic transition of1t{&.S) where the two final state leptons are
produced outside the fiducial range of the detector. Thiswaus for approximately 99.8% of
the peaking background after the MVA cut. We use the continifdes to correct the Monte
Carlo simulation of th&"(15) decay channels, and then use this corrected simulationdo fin
the predicted number of peaking background events

Using theT’(1S) — ¢* ¢~ control sample, we correct the scaling on the Monte Carlo
simulation of the leptonic decays of th&1.S). We use th&@"(1S) — ¢ control sample to mea-
sure the backwards detector acceptance and correct theeNamio simulation of the leptonic
decays of th&"(1S). We use the “near” invisible control sample to compare tregljotion of

non-leptonic decays of tHE(1.5) to the generic Monte Carlo prediction.

3.7 Systematic Errors and Results

Throughout the analysis, we operate on a set of data thatlésd cdlinded”. This
simply means that we do not allow ourselves access to thsiliteidata in the signal region

(defined in Chapter 3.2.2). The analysis is designed in timigl Istate to remove any potential
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bias towards finding a signal. Once the MVA output cut has Heed and the number of
expected peaking events determined, the extended maxiikelihdod fit is performed on the
unblinded data. The systematic errors involved in thisysislare listed, added together, and
combined with the statistical upper limit derived from tfiiting (Chapter 3.4) using a Bayesian

approach to calculate the upper limit 817" (1.5) — invisible).
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Chapter 4

Data, Monte Carlo Simulation, and

Preliminary Event Selection

This section describes the data used in this analysis, algihgMonte Carlo (MC)
samples which are intended to model the data. We explaindhditions of the data which
we use in the analysis, as well as the luminosity of that défa.also document the assumed
cross-sections for the various processes modeled in MC.

We describe the selection of several subsets of events fiereritire data set. This
type of selection is intended to be loose, efficiently sadgcevents of interest while reject-
ing the bulk of other kinds of events. These subsets are qubady used to develop more

sophisticated event selection techniques.
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4.1 Data

The data used in this analysis were taken during a perioddegtvibecember 23,
2007 and March 1, 2008. During this period, data was takeh hband below th&"(35)
resonance, but only data taken at 8.5) resonance is used in this analysis. A special trigger
configuration were developed to optimize the selection efsiignal events, but this trigger was
not deployed until early January. The new trigger providdacdor of seven gain in signal
efficiency; we therefore only use data taken after this &iggas deployed.

The data are split into three subsamples. We use these spllesata study selec-
tion criteria backgrounds that are not be possible to sitapknd then develop techniques to
reject these backgrounds. Where the samples are used irasuai as to be unblinded (see
Chapter 3.7) or otherwise potentially biased, they are wemhidrom the rest of the analysis.
These samples are nicknamed the “Low” and “High” , and “Medidatasets. The “Low” and
“High” sets are comprised of runs early in tif&3.S5) Run (Low) and later in the Run (High),
representing a coarse sampling of conditions during d&tagaThe “Medium” dataset repre-
sents all of the runs which are not in either the “Low” or “Higlamples. Taken together, these
three subsamples consitute the availab{85) data with the new trigger.

We use the “Low” data to train, test, and validate our evelgicsion method (detailed
in Chapter 5). Since this data represents a small fractiét) @& the total dataset, we will
exclude this data from the final signal selection. The finghsket will therefore contain only

the “High” and “Medium” samples, totaling 22.092th.
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| Dataset Name Integrated Luminosity (o) | 7°(35) Count (x10°) |

Low 1.201 5.12
High 1.282 5.49
Medium 20.810 85.9

\ Total \ 23.294 \ 96.5 \

Table 4.1: The dataset names and luminosities
4.2 Monte Carlo (MC) Samples

The BABAR computing group creates large batches of Monte Carlo siouolda-
belled by a Simulation Production (SP) number. This analyakes place using the SP-10
series simulation. A number of MC samples were produced tdeingpecific components of
the data, including invisibl@*(15) decay, leptonicr’(1S) decay, generi@’(3S) decay, and
continuum processes (including” 7, light-quark production, and radiative dilepton events).
Each of these is labelled with its own specific SP-mode numbbhese samples are detailed
in Table 4.2. The simulation of the dipion transitiaf(3S) — 7*7~7(15) uses the ma-
trix element analysis from [21] input to EvtGen [22]. The gen decays of th@"(3S) and
7' (15) and the continuum processes are generated by é&#@B4R specific event generators or
PYTHIA/JETSET [23, 24]. The bhabha events are generatedByWHBE [25] and the dimuon
simulator is BKQED [26, 27, 28]

Once the events have been generated, the interaction \eiithetiector are simulated
by a detailed model of thBABAR detector based 0BEANT 4 [29]

There are two signal MC samples. The “v01” sample resulteoh fihe first full MC

production for Run7 in SP10. However, due to a mistake MC veenlg generated in this
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production to simulate conditions from a subset of the t8¥@S) run, although the intention

was to sample correctly over all conditions. The benefit of $gample is that we can use it to
optimize cuts or train a multivariate discriminant and thrit away” afterward, leaving us to

use the full and correct simulation to compute efficienoéts, We will compare these two MC
samples to show that there are no significant differencesiwhimg them in this way.

The Particle Data Group [30] branching fraction for the gealrdipion transition is
used,B(7'(35) — nt7~7(1S)) = 0.0448. We normalize generit’(35) MC to the count of
Y'(35) mesons in each given conditions period of data-taking. drephiversality is assumed
for the leptonic decays of tHE(1.S) and the branching fraction for each leptonic final state is
assumed to be 0.025 (the average value of leptonic branéfsicigons found in the PDG [30]).
The cross-sections for light-quark continuum ant~ — 77~ production are scaled from
their values at th&'(4S) assumingl /s scaling: 0,45 = 2.18 nb, 0 = 1.36 nb, ando .+ ,- =
0.94nb. The cross-sections for radiative dilepton processesakentfrom the generators for

these processes, and atg+.- = 25.79nb ando.,,,+,- = 1.1985nb.

yut

4.3 Event Selection

4.3.1 Event Objects and Their Properties

In order to select particular events, it is convenient torseefiome objects that exist in
the events. We need a way to define tracks in the detector, wag & identify them. For our

selections, the following object definitions are used:
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Decay Mode | SP Mode Numbet Generated Events

7(3S) — nt7~ T (15)(— invisible) 8618 127000
T(3S) = ntm T (15)(— invisible) 8618 155000
(SP10 “vOl” Production)

7(35) — *T(ls)(—> wr ) 8780 1163000
1 (3S) — (15)(—> e+ 7) 8781 1163000
1 (3S) — “YAS)(— ttr) 8782 993000
7 (3S5) Generlc 8739 161704000

U, dd, 55 998 45360000

cc 1005 53456000

Tt 3429 34712000

Radiative Bhabha 2400 113368000

Radiative Dimuon 2981 33608000

Table 4.2: MC samples details, including SP mode number antber of generated events

e ChargedTracks are any track in the detector. These traekBtarsing a Kalman Filter

(detailed in [14, 31, 32]) as helices in the detector.

e GoodTracksVeryLoose (GTVL) are Charged tracks that commm fihe interaction point
(IP) of the experiment. In order to assure this, each must:
— Have a maximum reconstructed momentum ofG&V
— Have a distance of closest approach in:the y plane of no more thaih.5¢cm

— Have a distance of closest approach on:lais of no more thag.5cm

For our GoodTracksVeryLoose (GTVL) we also use particlenifieation. Particle
identification algorithms are developed by the PID groughatBABAR collaboration. The par-
ticle identification selectors used in this analysis empldyoosted decision tree algorithm [33]

to determine the identity of a certain track. Boosted denisiees are used for particle identi-
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fication in many particle physics experiments (e.g. [34id &ave been found to be extremely
effective atBABAR. The output of a boosted decision tree algorithm is a realbmirhetween 0
and 1. In order to transform this real number into a binarga@n (i.e. this track is or is not
a muon), cut values on the decision tree output are set fgrthdPID group. Each decision
tree selector is divided into a hierarchy of cut values orottput which correspond to the false
positive rate of that selector. There are typically 4 susielenamed “VeryLoose”, “Loose”,
“Tight”, and “VeryTight”, though there may be more or lespdading on the particulars of the
PID selector. The “Tight” values will have few false pos#s; and so collect a cleaner sample,
but will also reject more true particles. In this analysisr particle identification requirements
are found to be fulfilled using loose particle selectors, mtpliring tracks believed to be from
pions to fail the selector. The names of the algorithms afdéeryLoose, an electron selec-
tor; muBDTLooseLoP, a low momentum muon selectron; muBDyMeose, a muon selector;

and KKMVeryLoose, a kaon selector.

4.3.2 Data Samples

There are several different data samples in this analysistwdre used in separate
ways. We define how we select the events that are containeatina# these. We make use of
one signal sample and three control samples.

4.3.2.1 Signal Sample Selection

The signal events in this analysis are expected to contdintba two pions from

the dipion transition of th@(3S) to the 7°(1S) with no other detectable particles from the
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primary physics processes involved. As with any other eireBABAR, we also expect there to
be activity in detector systems due to noise or PEP-relattdits

The signal selection is defined as follows. Events must aoreactly two Good-
TracksVeryLoose (GTVL). No further restrictions are plde®, for instance, the number of
ChargedTracks, which may exceed two. The tracks much hgwesidp charge, and have mo-
menta in the center-of-mass (CM) frame satisfyirig< 0.8 GeV/c. The two pions must have
an invariant mass satisfying.., € [0.25,0.95] GeV/c%. The physical boundaries of the dipion
mass ar€m, = 0.28 GeV (minimum) andMy35) — My15) = 0.89 GeV (maximum). We
widen the boundary around these physical limits to admibmetruction resolution effects on

the pions. Finally, we define the mass recoiling against ipiewl system,

m%ecoil =5+ m721'7l' - 2\/5E7T7F7 (41)

where,/s is the collider CM energy (assumed to p& = My (3q) = 10.36 GeV) and B is
the energy of the dipion system. This should be centerechdrthe?’(15) mass (/r(1S) =
9.46 GeV) We require thatn,....;; € [9.35,9.57] GeV/c?. This skim is found to b&4.4% effi-
cient on signal MC events, where the bulk of the efficiencg issimply due to the requirement

that both pions be reconstructed.

4.3.2.2 Two Lepton Control Sample and One Lepton Control Samle Selection

The control sample of fully reconstructed visible leptoffi¢1.S) decays is con-
structed similarly to the signal sample. The only differehare that we require three or four

GoodTracksVeryLoose (GTVL) (to select events where onetr bf the final-state leptons are
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reconstructed), and that these additional GTVL have CM rmiansatisfyingp™ > 2.0 GeV/c.
We attempt to recover radiative energy loss by the leptontdiBremsstrahlung radiation us-
ing nearby photons. No particle identification is requirédhese tracks, so while this is most
effective for electrons, the procedure is carried out fahldogh energy tracks.

In the case where both leptons are reconstructed (i.e. #nerexactly 4 GTVL), the
T(15) candidate is required to have a mass satisylifig; 5, € [9.0,9.8] GeV/c?. This skim
is 60% efficiency on the Monte Carlo Simulation of the muon finalestand42% efficient on
the Monte Carlo Simulation of the electron final state. A bsieidy of the electron final state
using the MC truth reveals that the efficiency of the skimd@a is the same between electron
and muon until th@(1.5) mass cut. Even after Bremsstrahlung recovery, radiatifactsfon
the final-state electrons have a significant effect on thenstcucted mass.

Our sample of one-lepton final-state events is also cortetfugimilarly to the two-
lepton case, except we do not appl9"él.S) mass cut and we explicitly require three GTVL.
These events will be discussed later, in section 8, when werite our systematic errors.

The above selections reject all 818% of the entire data triggered set.

4.3.2.3 “Near” Invisible Control Sample Selection

We create a control sample to study the data to Monte Carlolation agreement in
a “near” invisible region. This selection is similar to thgrsl selection, but requires an extra
high energy neutral object in the detector to isolate it fittw signal sample. This selection is

detailed in section 7.3.

33



4.3.3 7(1S) — (¢~ Sample Selection Refinements

The selection of the two lepton control sample is refined ia ffection in order to
determine the signal and sideband regions for the analydixe the preliminary selections
on two lepton events have beens made, we begin a more in deglirton. We wish to
construct a sample of events which contain a dipion tramsitiom2'(35) to 7°(15) and have
very little contamination from other sources. This will bleus to measure the spectrum of
recoil mass from the data rather than the Monte Carlo sinemagnd it will serve as a check
on theY'(15) — ¢* ¢~ simulation.

Figure 4.1 shows the recoil mass of the events passing thienjpprary two lepton
sample selection. We see that the MC are generally in exéeks data everywhere, a signifi-
cant shift of the MC relative to the data, and that there igaitant contribution (about 12%)
from radiative dilepton events{e~ — ¢/~ ~), dominated by the radiative Bhabha. This

latter effect is more obvious in Fig. 4.2.
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Figure 4.1: The recoil mass of the preliminary two lepton gemThe red and magenta sections
are contamination from radiative dilepton events

We study these events and develop selection techniqguestvethese backgrounds.
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Since the radiative dilepton events should only have twd braccks in them, the dipion system
must be faked. The most likely candidate is photon pair4pectidn in material, creating a pair of
soft tracks. Since these are not tldE3.S) events, the mass difference between the recontructed
7' (3S) andT'(15) must also be combinatoric. We also expected a small openigig &etween
the “pions”, consistent with photon pair-production.

We plot these two variables\(My(35) r(15), and A¢r,) in Fig. 4.2 and confirm
that the majority of the radiative dilepton backgroundsehaxe or both “pions” identified as
electrons (using eKMVeryLoose), a uniformly distributealue of the mass difference, and a
narrow opening angle. We thus reject events where eithen"ps identified as an electron, and
keep events wher My (35 r(1s) € [0.890,0.920] GeV/c. We do not cut on the opening angle
to avoid altering the kinematics of the dipion system in anifigant way. This leaves us with
a sample of events that is 99.8% patE3S) — ntx— (' (1S) — £1£7) in the simulation. A
comparison of two lepton sampie,....;; spectrum in data and Monte Carlo after this selection
can be seen in Figure 4.3

After these selection criteria area applied, we can fit tleeilenass distribution to
obtain the yield of visible events, and to obtain a prelimyjmaodel of the recoil mass shape for
signal events. This will allow us to define a “blinding regdian the recoil mass;5¢ around

the peak position. We model the recoil mass distributiorhastim of a Cruijff function:

exp[_(mrecoil - /1)2/(20% + aL(mrecoil - N)Q)]a Myecoil < W (4 2)

1
C (mrecoil) = N

exp[_(mrecoil - /1)2/(20'%2 + aR(mrecoil - M)Q)]a Myecoil > W
and a linear background. A fit of this model to the data yiel#sresult shown in Figure 4.4.
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Figure 4.2: Variables under study to reject the radiatiepdon background
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Figure 4.3: Comparing the recoil mass in data and Monte Catir cuts to reject radiative
dilepton background.

The parameters of the fit are given in Table 4.3. Since thecteh is a pure sample of dipion
transition between th&'(3S5) and the?'(1S5) it is an ideal place to determine the shape of
the recoil mass distribution of the dipion system. The di#ffees between this sample and
the invisible sample come from differences in triggering ane treated as systematic errors in
Chapter 8.

We study the MC modeling of these events by fitting the sumefitiion and electron
final-state Monte Carlo simulations with the same model. e an unweighted number of
events from these MC samples equivalent to an integratethasity of 30 fo~!. We allow for
the linear component. We find that without this linear cormgranthe quality of the fit to the
MC is very poor ?/ndof ~ 10 with 120 bins). This suggests that the linear component fit
in the data is due to effects in the reconstructed signaltevaerd not just due to an unmodeled
flat background component. Including the linear componaptroves the fit quality, though it's
still not perfect. The results of the fit are shown in Fig. 4l an the right-most column of

Table 4.3. We take the signal PDF model from the data, and irséhie rest of the analysis.
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Figure 4.4: Fitting the recoil mass after rejecting rag@tililepton background.
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Figure 4.5: Afitfor the PDF shape of the signal using visibhalfstates signal MC simulations.
The MC simulation is sampled at a rate consistent with theebgal data luminosity, and is not
weighted.
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Cruijff Parameter \ Data Value \ MC Value |

Peak Position() (9.46103 4+ 0.00004) GeV/c? | (9.46015 4 0.00002) GeV/c?
Left Width (o) (2.50 +0.04) x 1073 GeV/c? (2.414£0.02) x 1073
Right Width @) (2.98 £ 0.03) x 1073 GeV/c? (2.51 +0.02) x 103
Left Tail (o) 0.139 + 0.006 0.114 + 0.004
Right Tail (ag) 0.175 + 0.003 0.171 + 0.002

[ Cruijff (Peak) Fraction| (96.5 + 0.4 % \ (96.4 +0.2)% \

Table 4.3: Fit results from the visible events in both datd siC

A few of the parameters are of immediate interest. Firstptek of the recoil mass
distribution is found to be a19.46103 4 0.00004) GeV/ 2, while the PDG value of th&(15)
mass is(9.46030 + 0.00026) GeV/c?, which are not in great agreement with one another (the
difference is abou?.8¢ from zero). However, this analysis is not intended to penfer mass
measurement. The width of the peak is asymmetric, which anddwexpect from the recon-
struction uncertainty of the pions, and averages on theatedtright to abou®.7 MeV/c2. An
underlying flat part of the signal is ju8fs of the total distribution, and is in good agreement
with the number from the MC prediction.

We define thet50 blinding region around the signal peakias...i;; € [9.4485,9.4759]
GeV/c2. Data in our signal sample which has....;; in this window will be excluded from con-
sideration when we develop algorithms to reject backgrolrata outside of this window will

be referred to as “sideband” data.
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4.3.4 T(1S) — invisible Sub-sample Selection Criteria

Now that we have defined the shape of the recoil mass in thdseéimterest, we
examine the complete spectrum of recoil mass in our sigmapka While the peaking com-
ponent is present, it is completely dwarfed by combinatbeackgrounds from other processes
that generate two pions.

In Fig. 4.6, the left plot in the figure shows the stack of all M&:-kgrounds; radiative
dilepton events contribute very little to this plot, and hexd to see between the 7~ back-
ground and the generit(3S) background. The right plot adds the data (the “Low” sample),
and we see that the majority of the background events aralbctiot modeled at all by the
MC.

Figure 4.6 illustrates the two major components of the bemkgd. The most sig-
nificant is a non-peaking background comprised of lightriu@ntinuum,=* 7, and a much
larger unmodeled component. This unmodeled component cnmarily from two photon
fusion processes that result i 7~ pairs. The second, much smaller (but potentially irre-
ducible) background is a peaking background from gerié(gS) decays. In Fig. 4.7, we plot
the generi@"(3.5) broken down into events without a dipion transition to1f@.S), events with
a dipion transition but with excluding leptonic decays & #(1.5), and finally the subsample
containing only leptonic decays of th&15). At this early stage of the selection, the contribu-
tion of peaking backgrounds which are not from leptonic fstates is about one-quarter of the
total peaking background.

We will develop a multivariate selection algorithm to suggs the flat, combinatoric
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Figure 4.6: The recoil mass in the invisible sample aftesaliéction cuts
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Figure 4.7: The recoil mass, in genefi¢3S) MC. In order of stacking from bottom to top,
the components are: events where 1{85) decays into any final staexceptrt 7~ 7 (15);
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background using the signal Monte Carlo (MC) sample and o/ signal sample sideband.
We will also conduct a detailed study of the peaking backgdsuand use this to predict the

expected number of undetected dipion transitions in theesigample.
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Chapter 5

Background Suppression Techniques

In this chapter we describe the refinement of the selectianvidible decays of the
Y (15), henceforth referred to as the “signal” channel. We desdtfie variables used to dis-
criminate between signal and background processes, inglimbth simple selection cuts and a

more advanced multivariate approach to selecting thesdseve

5.1 Candidate Variables

There are a number of variables that may be potentially Wdufmr rejecting back-
grounds. Backgrounds are expected to exhibit several resatilnat distinguish them from
the signal. First, the kinematics of the pions should diffem pions that come from a real
T(3S) — 7~ 7 (15) transition. Second, we expect backgrounds to typicallyehaere ex-
tra detector activity, either in the form of extra tracksytals, or IFR activity. We study these
possibilities using signal MC and data from the recoil madslsmnds, which are defined in

Chapter 4.3.3. Our first approach is designed to remove thén@mt non-peaking background.
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However, this process is also extremely effective at rempthie peaking background from non-
leptonic decays of th&'(1.5). The remaining peaking backgrounds will be discussed irp€ha
ter 7. We require events in the following comparisons taséatin,....;; € [9.4,9.52] GeV/c?,
which will serve as our fitting region at the end of this ansyeepresenting approximatedo

to either side of the recoil mass peak).

Before proceeding to describe the variables, we make onertart comment. We
perform a pre-cut on the dipion transverse momentupyat 0.1 GeV/c . Very low-py back-
grounds overwhelm signal f@r; less than this, and they are removed later anyway by our cuts
(even very loose cuts). We therefore show the ggwdistribution (Figure 5.1), but require
pr > 0.1 GeV/c for all other plots. For completeness, we show the sameblasavithout the
pre-cut in Appendix A.

The variables that we study are as follows:

¢ Dipion kinematics and properties

— Dipion transverse momentum: we compute the magnitude oflifhien system’s
transverse momentunpy, in the laboratory frame. We expect backgrounds with
small p7, such as two-photon fusion processes, to appear quitealgtiin this
variable (Figure 5.1). We find excellent separation betvgedeband data and signal

MC.

— Dipion polar angle: we use the absolute value of the cosirikeoflipion system in

the laboratory frame (Figure 5.2).

— Dipion vertex probability: the dipions are required to maeta common vertex,
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with a beamspot constraint. We compare the vegtéprobability [35, 36, 37] for
signal and background (Figure 5.3). We find that the backgtdends to contain

more failed vertexes (low probability) than signal.

— We check whether either pion passes a particle identifitgfdD) selector level
and define a variable for each pion that is "true” if it doesspe selector at the
desired level. We identify the pions using the selectors &KMLoose (electron
ID), muBDTLooseLoP (muon ID), or KKMVeryLoose (kaon ID) (fa description
of PID selectors, see Chapter 4.3.1). We then define a singledn variable that
is true if either of the pions passes this PID selector leifdlese single booleans
for each of the three PID types are shown in Figures 5.4-5.6.old¢erve that the
background exhibits a significantly larger electron and meantamination than the

signal, and a slightly larger kaon contamination.

e Extra Neutral/Charged Information

— The number of ChargedTracks in an event, including the piBiggire 5.7). We an-
ticipate that while all events must contain just two GoodKed/eryLoose (GTVL),
backgrounds will tend to include several additional trattie fail GTVL but popu-

late the ChargedTracks list.

— The total extra neutral energy: we compute the sum in theecaftmass (CM)
frame of all calorimeter energy deposits (Figure 5.8) thatnmt associated with the
signal reconstruction (in the case of the signal eventsethee no such neutrals; for

the one and two lepton control samples, Bremsstrahlungalsatre excluded from
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this calculation).
— The CM energy of the highest-energy neutral cluster (Figudg

— The mass of the highest-momentum pair of neutral clustégsi(€ 5.10). This will
reveal background from® andn decay, specifically, in the content of the extra

neutrals. We see that there is a significant contributiomfbmth sources.

— The cosine of the angle between the highest-energy nelilistec and the normal
to the plane of the dipion system (Fig 5.11). This variableads any correlation in
production between the highest energy neutral and therdigystem. Events with

no extra photons are defaulted to a value of 1.1, just abavehlisical region.

— We compare the number of “Tight” EM&? candidates (Figs. 5.12). We find that
the EMC K multiplicity is a good discriminant between signal and kgrckind
(though it's expected to be correlated with other neutralEMuster variables).
EMC objects are identified as beitfgf candidates based on a boosted decision tree

algorithm [38]

5.2 A Note on Data Subsamples for Training

In the following sections, we will discuss the use of the afentioned variables in
rejecting non-peaking background. Before doing this, wedri® describe our procedure for
splitting the data and MC into subsamples for training jmgstand validating any procedure for

using these variables.
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Figure 5.1: The dipion systemy, compared between signal MC (blue, unshaded histogram),
sideband data (black points), alig3.5) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pumgpesison of the shape.

We use the “Low” sample of data, and all signal MC from the algrD1 Monte
Carlo (MC) dataset. After all selection cuts described im@br 4.3.2.1 and choosing events
within the fit region ... € [9.4,9.52]) of the recoil mass, we are left with 630k data sideband
events and 70k signal events. We split these samples irde gubsamples, two for training the
background rejection algorithm and one for validating teefgrmance of the algorithm. Two
training samples are needed because the algorithm leaows signal and background from
one, but its performance is measured (in order to corredrair@ng) from the second. We will
quote efficiencies and plot the output of multivariate disgnants using the validation sample,
which is statistically independent of the other two sampled thus unbiased.

For the sake of simplicity, we exclude the “Low” sample frone tfinal analysis of
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Figure 5.2:|cos(0, )|, wheref,.. is the lab polar angle of the dipion system, compared between
signal MC (blue, unshaded histogram), sideband data (kgagks), andY’(3S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for

a pure comparison of the shape.
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Figure 5.3: The dipion vertex probability, compared betwsignal MC (blue, unshaded his-
togram), sideband data (black points), ah@S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
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Figure 5.4: A boolean that is true if either pion passes eKiMeose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.5: A boolean that is true if either pion passes muB@HPLoose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.6: A boolean that is true if either pion passes KKM/@ose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for

a pure comparison of the shape.
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Figure 5.7: The number of ChargedTracks in the event, comapbetween signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Figure 5.8: The extra neutral energy, compared betweenldig@ (blue, unshaded histogram),
sideband data (black points), alid3.5) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pumgpesison of the shape.

the signal sample. This avoids having to disentangle thefld@biased events from the biased
2/3 of the “Low” sample. Excluding the “Low” sample reducée ttotal7"(3.S) count from

96.5 x 10 t091.4 x 109.

5.3 Candidate Variable Correlations

Since we will eventually be performing a fit to recoil mass étedimine the total yield
of invisible decays of th&(15), it is imperative that the efficiency of the selection we depe
be flat inm,... We first group variables into their two supercategoriespiadi variables and
extra energy variables - and plot their relative corretaiand their correlations with the recoil

mass. We have chosen the limited sample of available picablas specifically to avoid strong
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Figure 5.9: The center of mass (CM) energy of the highestggneluster, compared between
signal MC (blue, unshaded histogram), sideband data (lpagks), andr’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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compared between signal MC (blue, unshaded histograngbaidi data (black points), and
Y'(3S5) generic MC (grey, shaded histogram). All distributions acemalized to the yield in
the sideband data, for a pure comparison of the shape.
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Figure 5.11: The cosine of the angle (center of mass (CM) d)abetween the highest en-
ergy neutral and the normal to the plane of the dipion systemmpared between signal MC
(blue, unshaded histogram), sideband data (black poams))"(3S) generic MC (grey, shaded

histogram). All distributions are normalized to the yietdthe sideband data, for a pure com-
parison of the shape. Events that do not have any extra phaterdefaulted to 1.1 and are not
shown on this plot.
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Figure 5.12: The multiplicity of EMCK" candidates, compared between signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Ntuple Variable Name \ Description |

mr ec Dipion recoil mass

di pi vt xprobchi 2 Dipion vertex probability
absdi pi costh | cos(Orr)]

di pi pt Dipion pr

pi [ 1, 2] {kaon, el ec, muon}l D | Pion PID

ChargedTrack multiplicity, in-

ntracks cluding the pions

nkl ent EMC K multiplicity

cosine of the CM angle between
the highest-momentum neutra
cluster and the normal to the dip
ion plane

glpi pi cost hCvpl ane

Invariant mass of the highest
ggmass momentum pair of neutral clug
ters

Total extra neutral energy in th
CM frame

CM Energy of the highest-energ
neutral cluster

D

eTot Cal or Neut r al

<

glECM

Table 5.1: The mapping between ntuple variable name anckttiele description

correlations with the recoil mass, or a large number of wessdahat when taken together allow
the background rejection algorithm to infer the value ofbeoil mass in that event (and thus
create a bias). The correlations of the PID, vertexing, aptui kinematics are shown in
Figure 5.13, while the correlations of the extra particlasables are shown in Figure 5.14. The
key for deciphering the ntuple variable names is in Table 5.1

The dipion variables are, for the most part, only weakly eated with one another
in the signhal MC and sideband data (at the level of 6% or lesg),also weakly correlated with

the recoil mass. In the background, we see a pattern of atime$ which are not present in the
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(b) Correlations in sideband data

Figure 5.13: The correlations between dipion variablesgna MC and sideband data. The
plots are symmetric about the diagonal.
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Figure 5.14: The correlations between extra energy vasainl signal MC and sideband data.
The plots are symmetric about the diagonal.
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signal. The notable ones are:

e When one pion passes a certain PID selector, the other terdswell

e A number of weak correlations, at the few percent level, s&eowide range of variables
that are not present at all in the MC signal sample — this sheahble a multivariable

algorithm to identify classes of background events.

Therefore, there is a lot of promise in these variables &ctdjackgrounds.

The extra particle variables are similarly very weakly ot aball correlated with
recoil mass. However, in many cases they are strongly etdectlwith each other in both the
signal and data, although from the plots above the naturbeo€orrelation would tend to fa-
vor background rejection. We note that, as expected, the EICmultiplicity is strongly

correlated with other neutral variables.

5.3.1 A Neural Net Study of Correlations

It is possible that while a group of variables may not be imtlially correlated with
another variable, some function of those variable can be tasgredict the variable in question.
We are concerned that this may be the case with the inputol@siave choose for our analysis
andm,....;;. In order to confirm that there is no way to reconstrugt...;; from these inputs, we
use a Neural Net algorithm trained on the same sideband @ i‘Low” sample discussed
earlier, withm,....;; as its output. We perform this training using several différsets of inputs
to determine whether they can be used to reconstrygt,;;. We then choose the maximal set

that cannot reconstruet,....;;. In Figure 5.15 the Neural Net has access to variables tloat al
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reconstruction ofn,....;;- These extra variables are information about the indivighians in
the events. Once information on the individual pions rendofrem the Neural Net (Figure

5.16), it cannot reconstru@t.c.o;;

| NN output vs m_rec | Entr'i‘le':zDzE;ooo

Mean x 9.46
Mean y 9.461

9.54
RMS x  0.03463
RMSy 0.03386
9.52 - -
9.5

NN Output
©
=
[
L A O
| | | | | | |

1 1 | 1 1 1 1 1 1 | 1 1 1

[ 1 | 1 | 1
9.4 9.42 9.44 Recoil ]\%-3459((}8\//02?-48 9.5 9.52

Figure 5.15: The output of a Neural Net algorithm trained redict m,....;; that has access to
variables allowing it to do so plotted vs the trug....;;.

5.4 A Benchmark Cut-and-Count Analysis

We implement the PRIM algorithm [19] to create a preliminang-based selection
routine. This algorithm makes multi-dimensional cuts oe@uence of variables in order to op-
timally reject background and select signal by searchimgbomps” in each variable that are
signal-rich. We apply this algorithm to develop a baselineand-count analysis on the afore-
mentioned variables. This will serve as the standard agaihich we measure improvement

in a more sophisticated multivariate approach. We want tkensare that there is a sensible
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Figure 5.16: The output of a Neural Net algorithm trainedredict m,....; that does not have
access to variables allowing it to do so plotted vs the tryg..;;.

improvement from a multivariate approach.

We use the training and testing samples to train the algorittsing the signal signifi-
cance as the figure-of-merit (FOM) for the training. The aiga weighted to a target branching
fraction of5 x 10~ for the optimization. There is one parameter that can bedttmebtain the
optimal FOM: the “peel parameter”, which represents theimear number of signal and back-
ground events that can be “peeled” away by a cut for a giveleégahe optimization. This is
varied between 1% and 90%. The optimal peel parameter (n&rigthe FOM) is found to be
50%. The cuts determined by the algorithm are shown in TalBlleEhe algorithm determines
that with these cuts, it is not necessary to cut on the inwari@ass of the highest-momentum
pair of neutral clusters, the EME" multiplicity, or the angle between the highest-momentum

neutral cluster and the normal to the dipion plane.
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Variable Selection

Kaon ID fail
Electron ID fail

Muon ID fail

Dipion pr [0.647,0.821] GeV/¢
| cos(Orr)] < 0.834
Dipion Vertex Probability >6x 1071
ChargedTrack Multiplicity 2

CM Energy of highest-energy photgn < 0.170 GeV
Total Extra Neutral Energy (CM) < 0.707 GeV

Table 5.2: The selection criteria for optimal backgroun@cgton, as determined by the PRIM
algorithm

We then apply these cuts to the validation sample and checkdhformance. We
find a significances = s/v/s + b (where thes, the signal, is the signal Monte Carlo (MC), and
b, the background, is the sideband data) of 0.205 in the aid@ample, which represents a
luminosity of just0.4fb~!. This represents 437 background and 4.31 signal evenisnfass
the previously mentioned signal branching fractiorsof 10~4) in this integrated luminosity.
These will be our benchmark number for a more complex muitta algorithm. Also, note
that we are computing this significance in a very wide regibthe recoil massi,ccoii =
[9.41,9.52] GeV/c?). This is the region in which we will later perform a maximuikelihood

fit.

5.5 The Random Forest-based Multivariate Analysis (MVA)

We pursue a more advanced algorithm for rejecting backgtrotire random forest.
A “Random Forest” [20] is a method by which a number of decigiees [33] are trained, and
the output of the algorithm is taken as the weighted vote efatlitput of each of the trees. The
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training procedure sets the weights for the vote, to maértiie Gini index (the figure of merit
(FOM) for this approach), which is related to the minimipatiof the loss of events from each
category (signal categorized as signal, background agbahkd). We use the same samples
of events to train, test, and validate as were used for thamdicount approach. As an input
to the Random Forest algorithm, we use the complete set afsngefined in this chapter, and
listed in Table 5.1. Each training cycle grows a decisior frem a random subset of the input
variables - thus the name: “random forest”.

We can control two parameters during the training procéssntimber of trees grown
(training cycles) and the minimum number of events that boerad to populate a terminal node
of the tree (a node with no further splits). We fix the numbetreés to 100 and try a variety
of minimal events per terminal node, which we denadle ‘Figure 5.17 shows the resulting
training curves for the FOM vs. training cycle. We find thetlsformance (lowest FOM) for
I =50.

We then cross-check the performance of this algorithm ag#ie cut-and-count anal-
ysis developed in the previous section. We fix the cut on théMwtput to 0.875 to obtain the
same background yield and compare the signal yield andfisignce. We find that the MVA
passes% more signal (4.43 events) for the same background, givirysignificance of 0.211
instead of 0.205.

We also cross-check the use of the “v01” signal MC to train ealdate the algo-
rithm. We compare the MVA output in the “v01” signal MC we udedrain the MVA to the
MVA output in the official signal MC (Figure 5.18). We find naysificant differences between

the two.

67



0.041800
0.040800 4
—_—=1
i =

0.039800 4 -0
t1=1=50
=|=100
=250
=|=500
==1=1000

0.038800 4

FOM

0.037800 4

uasasjn-k

0.034800

5 I.I’J I'5 2.0 2.5 S'I’_l 3.5 4'0 4.5 SlCI 5.5 G.D BlE ?.'ZI ?.5 B.D 8'5 9.0 9.5 \[']CI
Cycles
Figure 5.17: The figure of merit (FOM) of the random forest ttse number of trees grown

(training cycles), for a variety of minimal events alloweer perminal node (). The optimal
training configuration is shown as the dark green (dashed) li

The output of the random forest algorithm, compared betveégmal MC and side-
band data, is shown in Figure 5.19. We also compare the oofgbe algorithm just on the
sideband data, for events in the upper and lower sidebangisré.20, and find no concerning

differences between events from these two regions.

5.6 Signal Monte Carlo/Control Sample Comparison of MVA Out
put

The MVA can almost be applied to the control sample (twodaptevents without
changing its input configuration. We expect that most of tipeiis will be very similar between

signal MC and the control sample MC. However, this is not farghe track multiplicity vari-
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Figure 5.18: The output of the Random Forest (MVA) on sign& fvbm the “v01” validation
sample (cyan, solid histogram) and the official signal M@c¢kl unfilled histogram). The plots
are unit normalized over the MVA range of [0,1].

able. The track multiplicity contains the final-state lappwhich need to be subtracted. There-
fore, for events reconstructed in the two-lepton final stederedefineVy,qcks — Niracks — 2-
We additionally ignore any photon used in Bremsstrahlumgmstruction so that this extra en-
ergy will not enter into the MVA inputs involving neutral agts. Later, when we discuss the
one-lepton control sample, we will similarly modify this M\input.

We can compare the overall shape of the MVA output betweersitheal MC and
the two lepton control sample, and obtain a qualitative eatin of the systematic difference
between the MC and the data for a signal-like sample. The adsgn of the MVA output is
shown in Figure 5.21.

Qualitatively, the comparison of the distributions in tbentrol sample is quite favor-
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Figure 5.19: The output of the Random Forest (MVA) on sign& &hd sideband data from
the validation sample. The plots are unit normalized oveiVA range of [0,1].
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Figure 5.20: The output of the Random Forest (MVA) on lowet apper sideband data from
the validation sample. The plots are unit normalized oveiVA range of [0,1].
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Figure 5.21: The output of the MVA compared between signal (dgan, filled histogram),
control sample MC (black unfilled histogram), and the cdrgeomple data (black points). The
plots are unit normalized over the MVA range of [0,1].

able. However, we observe clear shape differences abovee®ieen the signal MC and the
two lepton control sample MC. While the control sample MC mlsdhe data almost perfectly,

the signal MC and the control sample are not in perfect ageeénThese differences are due
to triggering effects and are investigated when we studiesyatic uncertainties in Chapter 8.
There, we will use these samples to quantitatively caleudgstematics errors in the use of this

MVA.
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5.7 Backgrounds After Loose Random Forest (MVA) Selection:

Peaking Backgrounds

In Chapter 4.3.4, we studied the gen€li3S) MC and looked at the peaking and
non-peaking background contributions from that sourcgui& 4.7) prior to any additional
cuts. We can now look at these events again, with the MVA agdgb them. We are specifically
interested in the contribution to the peaking backgrouwdnfthe non-leptoni@”(15) decay.
After the preliminary event selection, this source conti 25% of the peaking background.

While there is a great deal of information on tli¢1S) — ¢*¢~ decays available,
these decays only account for a small percentage of theXf¢ia) branching fraction. There
is a danger that th&(15) may decay into much less well-understood non-leptoniestatnd
that these states will not be detected, contributing to eaking background. In Figure 5.22 we
plot the MVA output for various subsamples of thi¢3.5) generic MC, including both leptonic
and non-leptoni@”(15) decays. We observe that most of the non-leptonic peakinkpbaiand
events also have a low-valued output from the MVA, and so vpeetxthat once a cut has been
applied, this background will be greatly suppressed. Ieiotd make a preliminary estimate of
the background we expect from this source, we apply a cut @A output at 0.8 (which
is determined to be the optimal cut in Chapter 6) to the geréfs.S) MC. We find that the
leptonic final states dominate the peaking background sgmith less thai®.2 percent of the
total contributed by non-leptonic sources after requidd A > 0.8, as shown in Figure 5.23.

Since there are so few remaining non-leptonic Monte-Cardmes remaining, we list

them here:
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e (18) — n'%pn K+ KO

e V'(1S) - K* K~

T(1S) — wnr®

T(1S) — n~npy

T(1S) — 7%nany

In Chapter 7 we use the one and two lepton control samplesitolate the ex-
pected peaking background from undetected leptonic desfagee 1°(15). We also explore
the uncertainties introduced into this measurement by ¢agipg backgrounds from both the
7(1S) — ¢+¢~ and the non-leptoni@’(15) decay modes using all three control samples: the

leptonic control samples just mentioned, and the “nearsible sample.

5.8 Backgrounds After Loose Random Forest (MVA) Selection:

Other Backgrounds

We can now plot the sideband data and the sum of the Monte @4@dbackgrounds
after making a loose selection at MVA ¢, 0.5. The resultingritlistion of the recoil mass is
shown in Figure 5.24. The peaking component fromfiigaS) MC contains all the subsamples
described in the previous section, added together intogesdistribution. Another example,
with MV A > 0.7, is shown in Figure 5.25. For the cut at 0.5, we see the pedidogground
appears as a fairly prominent feature on top of the non-pgakackground. However, non-
peaking background is still clearly the dominant sourceamidground events.
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Figure 5.22: Comparing the MVA output distributions for tBptonic and non-leptonic peaking
backgrounds. We plot the entire gen€li€3.S) sample (black points), the subsample of events
containing a dipion transition and a leptonic decay of¥t{eS) (the stack of histograms), and
overlay the contribution from non-leptoni€(15) decays after a real dipion transition (the blue
points). In the case where there are no events in the noodieppeaking background (blue
points), there is no entry in the bin.
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Figure 5.23: The recoil mass distribution of the peakingkjeaund components after a
MV A > 0.8 cut. We plot the entire generit(3S) sample (black points), the subsample of
events containing a dipion transition and a leptonic ded¢#yad"(1.5) (the stack of histograms),
and overlay the contribution from non-leptonit1.5) decays after a real dipion transition (the
blue points). In the case where there are no events in théapoornic peaking background (blue
points), there is no entry in the bin.
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For a tighter cut, the ratio of peaking and non-peaking bamkgd gets closer to 1.0,
and the peaking background will be an even more prominetrieat this cut level. We will
optimize the cut on the MVA using toy Monte Carlo experimeint€hapter 6. These studies

will allow us to find the cut on the MVA output that maximizesra@ignal sensitivity.

5.9 Behavior of MVA Input Variables After MVA cut

We plot the input variables to the Random Forest AlgorithmVi}lafter a cut on
the MVA output. Using the optimized value of the MVA cut detened in Chapter 6.5. In
general, the MVA cut of 0.8 cuts quite hard on most of the infartables and shapes them to
look signal-like for the sideband data. This suggests tislitle extra gain to be had by any
additional cuts on these input variables, and that the M\@\gexformed its intended function.

Since there non-peaking background has been suppressedchasas possible, we
measure the remaining background using a fitting procedigscfibed in Chapter 6). This
allows us to find the statistical error on the measuremeng siistematic errors are calculated

using the finalized selection routine. These errors aredist Chapter 8
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Figure 5.24: Recoil mass, after making an example selectiothe MVA output of MV A >
0.5. Signal is normalized to a branching fractionsok 10~%.
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Figure 5.25: Recoil mass, after making an example selectiothe MVA output of MV A >
0.7. Signal is normalized to a branching fractionsok 10~%.
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Figure 5.26: The dipion systepy, compared between signal MC (blue, unshaded histogram),
sideband data (black points), alid3.S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pungpesison of the shape.
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Figure 5.27:|cos(0r)|, whereé,., is the lab polar angle of the dipion system, compared be-
tween signal MC (blue, unshaded histogram), sideband t&tek(points), and"(3.S) generic
MC (grey, shaded histogram). All distributions are normedi to the yield in the sideband data,
for a pure comparison of the shape.
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Figure 5.28: The dipion vertex probability, compared betwsignal MC (blue, unshaded his-
togram), sideband data (black points), ah@S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
shape.

82



L B L B [ U LN N
2500 = ¥(35) Generic MC

— TUTT + invisible MC
2000

—e— Sideband Data
1500

1000

500

PRI BRI BT REN MAURAEN R
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Pion is eKMVeryLoose

Figure 5.29: A boolean that is true if either pion passes el€MVoose, compared between
signal MC (blue, unshaded histogram), sideband data (lgagks), andl"(3S) generic MC
(grey, shaded histogram). All distributions are normalizethe yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.30: A boolean that is true if either pion passes muB&PLoose, compared between
signal MC (blue, unshaded histogram), sideband data (lgagks), andl"(3S) generic MC
(grey, shaded histogram). All distributions are normalizethe yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.31: A boolean that is true if either pion passes KN, oose, compared between
signal MC (blue, unshaded histogram), sideband data (lgagks), andl"(3S) generic MC
(grey, shaded histogram). All distributions are normalizethe yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.32: The number of ChargedTracks in the event, cozdpaetween signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Figure 5.33: The extra neutral energy, compared betwearalsigC (blue, unshaded his-
togram), sideband data (black points), ah@S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
shape.
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unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison

of the shape.
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Figure 5.35: The mass of the highest-momentum (CM framelralgpair, compared between
signal MC (blue, unshaded histogram), sideband data (lgagks), andl’(3S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure 5.36: The cosine of the angle (CM frame) between tgbdst energy neutral and the
normal to the plane of the dipion system, compared betwagrasMC (blue, unshaded his-
togram), sideband data (black points), @&\@S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
shape. Events that do not have any extra photons are defaolfel and are not shown on this
plot.
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Figure 5.37: The multiplicity of EMCK? candidates, compared between signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Chapter 6

Maximum Likelihood Fit of Recoil Mass,
Statistical Signal Sensitivity Calculations, and

Final Event Selection

We describe the maximum likelihood (ML) fit used to extract fignal events from
the final signal selection in data. We develop the signal aakipg background models from
data in the visible control sample, and the combinatorickgamind model from data in the
recoil mass sideband. We use Monte Carlo experimentsddales, to study the stability of the

fit, and estimate the sensitivity of the final signal yield suga@ment.

6.1 Signal PDF

We construct the signal PDF by fitting the recoil mass in thelgpton control sample

(as was done in Chapter 4.3.3) after making different leviatsits on the Random Forest (MVA)
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output. We scan over MVA cuts so that we can later optimizecthien the output of the MVA

using our full branching fraction extraction procedurer &ach MVA cut, we fit the recoil mass
and we compare the parameters of the model as a function auth@able 6.1). We model
the signal shape as the sum of a peaked shape - the Cruijtidoncand a flat component; the

fraction of the model occupied by the Cruijff is denotggd,in,. The Cruijff function is given

by,

exp[_(mrecoil - /1)2/(20% + aL(mrecoil - N)Q)]a Meyecoil < W

C(Myecoit) (6.1)

_ 1
N _ o )2 2 2 o )2 .
exp[ (mrecml ,U') /( OR + aR(mrecozl ,U') )]7 Myecoil > W

There are slight changes in the parameterization of thgfiCshape as a function of the cut on
the MVA, while the fraction occupied by the Cruijff is relegily constant. An example fit, for

MV A > 05, is shown in Fig. 6.1.
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6

[MVACut |

1

oL

OR

ar

QR

f peaking

0.0

9.46101 = 0.00004

0.00249 +£ 0.00004

0.00301 £ 0.00003

0.14087 £ 0.00596

0.17412 £ 0.00346

0.96528 £ 0.00388

0.1

9.46099 + 0.00004

0.00248 £ 0.00004

0.00301 £ 0.00003

0.14077 £ 0.00595

0.17136 £ 0.00356

0.96589 + 0.00390

0.2

9.46099 + 0.00004

0.00247 £ 0.00004

0.00301 £ 0.00003

0.14282 £ 0.00601

0.16945 £ 0.00370

0.96850 + 0.00405

0.3

9.46099 + 0.00004

0.00249 + 0.00004

0.00300 + 0.00003

0.14107 £ 0.00617

0.16796 £ 0.00377

0.96976 + 0.00406

0.4

9.46098 + 0.00004

0.00249 + 0.00004

0.00300 = 0.00003

0.14210 £ 0.00630

0.16540 £ 0.00398

0.97143 £ 0.00422

0.5

9.46096 + 0.00004

0.00248 £ 0.00004

0.00301 £ 0.00004

0.14382 £ 0.00642

0.16197 £ 0.00429

0.97326 £ 0.00444

0.6

9.46093 + 0.00004

0.00246 + 0.00004

0.00301 + 0.00004

0.14459 £ 0.00662

0.15869 £ 0.00467

0.97530 £ 0.00468

0.7

9.46091 + 0.00004

0.00243 + 0.00004

0.00299 + 0.00004

0.14907 £ 0.00696

0.15577 £ 0.00536

0.97998 + 0.00525

0.8

9.46090 = 0.00005

0.00244 + 0.00005

0.00296 + 0.00005

0.14278 £ 0.00722

0.14363 £ 0.00613

0.98291 + 0.00508

0.9

9.46079 = 0.00006

0.00239 +£ 0.00005

0.00299 + 0.00006

0.13522 £ 0.00814

0.12094 £ 0.00833

0.98092 £ 0.00515

Table 6.1: Signal model parameters as a function of MVA ouselection




The peaking background PDF is also taken to be this shape. ilM&wthe yield of
the peaking background (calculated in Chapter 7) in the firdimum likelihood fit and fit for

a signal excess on top of that component.
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Figure 6.1: An example of fitting the recoil mass in the cangeomple forM V' A > 0.5

6.2 Non-Peaking Background PDF

The non-peaking background shape is determined by a fit teitledand data (the
“Low” sample) using a linear function and interpolatingdhgh the blinding region. We fit
the data using the functioBR; + P X m....o;; USing only events from the sideband. The linear
shape, as a function of Random Forest (MVA) cut, is shown blelé.2. An example fit with
MV A > 0.5 is shown in Fig. 6.2. We also compare the slope, as deternfinedthe “Low”
data sample, to that obtained by separately fitting the “Hégimple. There is good agreement
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[MVACut| P (‘Low’) P, ("High) |
0.0 0.03019 = 0.00485 | 0.02199 + 0.00034
0.1 0.01898 £ 0.00244 | 0.10354 = 0.00654
0.2 0.00887 £ 0.07490 | 0.10845 + 0.01506
0.3 —0.04109 £ 0.02817 | —0.02572 £ 0.00950
0.4 —0.04651 £ 0.01134 | —0.04299 £ 0.00736
0.5 —0.04315 £ 0.00534 | —0.04878 £ 0.00517
0.6 —0.03484 £ 0.00275 | —0.05067 £ 0.00359
0.7 —0.04700 £ 0.00232 | —0.04444 £ 0.00203
0.8 —0.05093 £ 0.00181 | —0.04766 % 0.00093
0.9 —0.03338 £ 0.00122 | —0.04599 £ 0.00205

Table 6.2: Non-peaking background model slope parameter fasiction of MVA output
selection

between these two, suggesting that any change in deteatditioms is not strongly reflected
in this procedure; and, this suggests that the MVA cut hasst#ime effect on non-peaking

background events taken earlier and later in the data set.

6.3 Signal Efficiency and Background Expectation

Signal efficiency, peaking background efficiencies, and lyligid are given in Table
6.3 as a function of the cut on the MVA output. The backgrouiettlyis computed for a target
luminosity, integrating the background model through there fit region for each MVA cut.
The number of background at the target luminosity is extetpd from the number of events

in the “High” sample.
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Figure 6.2: An example of fitting the recoil mass sideband dat the linear non-peaking
background model, foMV A > 0.5

Efficiencies

Non-Peaking
MVA Cut | Signal | 7(15) — ete™ | T(1S) — ptp~ | T(AS) — 7 ?Ft(%jecte dY:ff(')C:n

“High™)
0.0 0.443 0.0301 0.0282 0.01182 7258226
0.1 0.423 0.0276 0.0263 0.00461 1576924
0.2 0.398 0.0257 0.0247 0.00366 1007835
0.3 0.373 0.0237 0.0229 0.00311 712514
0.4 0.344 0.0217 0.0210 0.00264 512332
0.5 0.309 0.0194 0.0187 0.00217 353689
0.6 0.267 0.0166 0.0161 0.00175 225725
0.7 0.214 0.0133 0.0130 0.00126 124047
0.8 0.164 0.0100 0.0098 0.00089 61512
0.9 0.102 0.0060 0.0060 0.00046 22471

Table 6.3: Signal and peaking background efficiencies, aaddon-peaking background expec-
tation, as a function of MVA cut
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6.4 Example Uses of the FitMV A > 0.5

Before we optimize the cut, we explain how we conduct toy M@eziments and
how we compute sensitivity using only statistical uncetai The following sections illustrate

our techniques after making a cutdfV' A > 0.5.

6.4.1 Toy Monte Carlo Studies

A “toy” Monte Carlo experiment is conducted using the sigaradl background PDFs
described previously in this chapter. Random events amvthifrom these distributions and
added together to create a distribution that correspondspecific hypothesis about signal and
background yields. This sample is then used to perform amaxi likelihood fit of the yields
of the same PDF’s used in its generation. This experimerdriset] out many times to create
a distribution of fitted signal yields for each signal hypesis, which should be centered at the
hypothetical yield. This enables us to determine what lef/slgnal is required for us to detect
any signal on top of a background.

We now study the behavior of the maximum likelihood functiarthe null signal
hypothesis, to check for potential biases in the fit. We flbatyield of signal events and non-
peaking background events. The yield of peaking backgrasiritked for a given MVA cut

using the following relationship:
3
Npeaking = Nrsy X BX(3S) = ntn T (15)) x Y " B(Y(18) — £1¢;) x & (6.2)
=1

where theNeqking is the number of peaking background evem; sq is the number of

7(3S) mesons, the sum oveis over the thre@ (1S) — ¢*¢~ peaking background modes so
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far under consideration, angis the inefficiency of the detector in each mode. For instafure
an MVA cut of 0.5, the number of leptonic peaking backgrounengs expected is about 4100.
We construct toy Monte Carlo experiments correspondinghetotal luminosity
available to the analysis. We generate and fit 1000 toy exgeris, assuming the true branch-
ing fraction for the signal process is 0.0. We fit for the shapthe non-peaking background
(floating the parameters of the shape), and the yields ofdhepeaking background and signal.
The peaking background is fixed to the nhominal MC predictidhe pull distribution for the
fitted signal yield is shown in Fig. 6.3. We find the pull dibtriion to be centered at 0.0 with
a width statistically consistent with 1.0. We show the mead width of the pull distribution
as a function of input branching fraction hypothesis in €&hK. There is no trend suggesting

obvious bias in the fit.

hSignalPull_0.00000
Entries 1000
TTTTTTT Mean -0.005127
RMS 1.027
Underflow 0
Overflow 0
Integral 1000
X2/ ndf 46.16 / 30
Prob 0.02997
Constantl 79.01+ 3.16|
Mean -0.03705t 0.03251
Width1 0.9653+ 0.0232
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Pull of the Fitted Branching Ratio

Figure 6.3: The pull distribution for 500 toy Monty Carlo expnents generated assuming the
null signal hypothesis
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Pull Distribution
Branching Fraction Hypothesis Mean Width
(Number of Signal)
0.00000 —0.037 £ 0.033 | 0.965 £ 0.023
(0)
0.00010 0.004 £ 0.033 | 0.983 + 0.026
(127)
0.00025 0.001 £0.032 | 0.973 £ 0.026
(317)
0.00050 —0.039 £ 0.032 | 0.995 4 0.023
(633)
0.00075 0.030 £ 0.030 | 0.908 +0.025
(950)
0.00100 0.012 £ 0.033 | 1.001 +=0.025
(1266)
0.00250 0.024 +0.031 | 0.941 £ 0.023
(3165)

Table 6.4: The variation of the mean and width of the pullriistion as a function of input
branching fraction hypothesis (and, correspondingly,itipeit number of true signal events).
The requirement on the MVA i8/V A > 0.5.
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6.4.2 Expected Sensitivity

We explore the potential sensitivity of this analysis in tse@narios: where we mea-
sure a branching fraction, and where we observe nothing etrahsupper limit. We adopt the
method of Cousins and Feldman [39] and construct confidealts, vhere for a given input
value of the true branching fraction we determine an allovegibn of the fitted branching frac-
tion. The branching fraction is expressed in terms of thaedigfficiency, fitted signal yield,

and the number df'(35) as follows:

. o Ninvisible
B(T(1S) — invisible) = Nrss) -B(Y(35) = mta=T(185)) - Einvisible (6.3)

whereninyisible IS the fitted yield of events with an invisible final staig,.isi1e IS the efficiency
for reconstructing invisible final states, a’"(3S) — =7~ 7 (15)) is the branching fraction
for the dipion transition to th&"(1.5).

We build confidence belts for each true branching fractiduesby generating 500 toy
experiments per hypothesis. We fit for the number of signdlfarhe signal yield distribution
using a single Gaussian. This approximates the fitted satistaibution using a smooth function
(the Gaussian), which makes the next step easier. We thegrate the Gaussian from the left
and the right and find the values Bf;y.q(2'(15) — invisible) that give us the probability of
lying below (above) those values equakit¢2, where the the Confidence LeVél'L) = 1 — «
defines the desired confidence level. If we want to measuterimehing fraction, we construct
68% confidence belts; if we want an upper limit, we use 90% denfie belts. We construct
these only assuming statistical uncertainty.

We choose a number of benchmark branching fraction hypesh@8.0, 1.0, 2.5, 5.0,
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MVA Cut | Upper Limit (x10~%) | Branching Fraction Errorx10~%)
0.5 2.8 1.6
0.6 2.6 1.6
0.7 2.6 1.6
0.8 2.5 1.6
0.9 2.6 1.7

Table 6.5: The results of computing the upper limit or ernoitlee branching fraction for each
cut on the MVA output

7.5, 10.0, 25.0x10~*) and interpolate between the confidence belts for theseasptirget the
confidence belts in-between. The 68% and 90% confidencedreltshown in Fig. 6.4. Based
on these confidence belts, one expects to either measure brémching fraction of x 10~
with an uncertainty ofl.6 x 10~ (3.1¢ statistical significance) or to set an upper limit in the

absence of signal d#(Y(1S5) — invisible) < 2.8 x 1074,

6.5 Optimization of the MVA Selection

We optimize the cut on the MVA output by scanning over cut galand performing
the aforementioned toy MC study for each cut. We compute thbeaed upper limit and the
error on the branching fraction (f& = 5 x 10~*) for each cut, and compare them. We find
(Table 6.5) that the error and the upper limit improve or rienthe same until we move past
MV A > 0.8. We therefore place the cut &V A > 0.8 for the remainder of the analysis.

After performing the optimization, we look again for biaseshe branching fraction
measurement as a function of the input signal branchingiéracAn example of a pull distri-
bution for the null hypothesis is shown in Fig. 6.5. Table $héws the change in the mean and

width of the pull distribution as a function of signal braivaip fraction.
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(a) 68% confidence belts. The solid vertical line indicatesexpected
signal yield for a branching fraction &f x 10~* and the horizontal

lines thelo region on the branching fraction measurement.

x10°

True Branching Fraction
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(b) 90% confidence belts

Figure 6.4: Confidence belts constructed from toy Monte cCaxiperiments for a number of
true branching fraction hypotheses.
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Pull Distribution

Branching Fraction Hypothesis Mean Width

0.00000 —0.014 +0.032 | 0.988 + 0.024
0.00010 —0.048 +0.033 | 1.012 £+ 0.026
0.00025 —0.010 +0.034 | 1.050 £ 0.028
0.00050 —0.039 4+ 0.032 | 0.966 + 0.022
0.00075 —0.015 +0.033 | 1.007 £ 0.024
0.00100 —0.018 £ 0.032 | 0.977 £ 0.022
0.00250 0.005 £0.033 | 0.998 £+ 0.026

Table 6.6: The variation of the mean and width of the pullriistion as a function of input
branching fraction hypothesis. The requirement on the M&/AdiV A > 0.8.

40

20

hSignalPull_0.00000

Entries 1000

100 == Mean 0.004686
i RMS 0.9963

N Underflow 0
80 [— Overflow 0
- Integral 1000

B X2/ ndf 23.34/ 28

60 |— Prob 0.7158
= Constantl 79.11%¢ 3.15

B Mean -0.01429+ 0.03231
- Width1 0.9881+ 0.0241

Figure 6.5: The pull distribution for 1000 toy Monte Carlgeximents generated assuming the

null signal hypothesis, witd/V A > 0.8

1 0 1 2

Pull of the Fitted Branching Ratio
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6.6 Limit of Sensitivity Due to Peaking Background Uncertanty

We here consider the physical limit of our sensitivity duestatistical uncertainty
on the peaking background. Even if we could reject all noakjyg background, the peaking
background would essentially be irreducible. Therefore can ask to what branching fraction
our current analysis is limited before we can no longer inaprthe measurement. Given the
efficencies for selecting peaking background at a cub&df A > 0.8 (yielding 2119 MC-
predicted leptonic peaking background events), we mugtragbs number of signal events,,
equal to a multiple of the error on the peaking backgroundvdfconsider the statistical error
only and want to obtain a signal yield with a sigificanceMf = N/+/Ny + Npcaking, then
we find that the number of signal we observe must satisfy,

2

N,
N, = 7" (1 + \/1 + 4Npeaking/Ng—2> . (6.4)

For the peaking background we estimated above, andVipor= 3, this this limits us to a

branching fraction measurement that is no smaller than

.. . Ninvisible _ —4
B(T(1S) — invisible) = Nras) BIBS) = wrr T(19)) e 2.1x107". (6.5)

where e, athrminvisible = 0.164, B(T'(3S) — n"n~1(15)) = 0.0448, andNy3s) =
91.42 x 105. In other words, the statistical error on this analysis ecarfrom the peaking
background component is quite a bit smaller than the statistrror coming from the non-
peaking peaking background.

However, the systematic uncertainty on the number of pgaétkground events is

a more important problem. In the case of a systematic erntimber of signal we have to
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observe to achieve a given significan¥g is given asV, = N, x P9 « N,

syst, peakings where

peaking

syst. IS apercent systematic error. Even a 10% uncertainty onetakiipg background limits

the sensitivity of this analysis (again, at thelevel) to9.5 x 10~%. Controlling this systematic

will be critical to interpreting the result.

6.7 Final Fit Configuration

The toy Monte Carlo (MC) approach has allowed us to deterrfieeoptimal con-
figuration for our Random Forest. When we perform the finalrittlee unblinded data, we
will use the maximum likelihood fit to propagate the systamairors through the yield calcu-
lation. Thus, once the systematic errors have been detednihey will be incorporated into
the fit automatically, and the toy MC approach will not be rezktb calculate the confidence

intervals.
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Chapter 7

Peaking Background

As discussed in Chapter 6.6, our understanding of the dergthge and uncertainty
on the peaking background (coming from real dipion traiwist "(3S) — 7t7x~1(19))
where thel’(15) decays into visible final states that escape detection)tisatrto the unbiased
extraction of the yield of invisible signal events, as wallta the limitation of our sensitivity to
a non-zerdl'(1S) — invisible branching fraction. In this section, we discuss our mettoyd f
calculating our expected peaking background yield androhitténg a systematic uncertainty

on that predicted background.

7.1 Naive Peaking Background Estimates

We can obtain a naive peaking background estimate by G§{§) generic Monte
Carlo (MC) simulation. After applying all selection criter the MC simulation predicts that
we should expect peaking background from these sourcesamal) a real dipion transition:
T(1S) — ete™ (1019.5 events)Y(1S) — ptu~ (1007.4 events)Y (1S) — 77~ (91.8
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events), and"(1S) — other (2.9 + 1.3 events). Thus, based on the assumption that the MC
simulation is correct, we expect 2121.6 peaking backgraweshts, with the dominant contri-
bution coming from electronic or muonic final states (48.1% 47.5%, respectively), followed

by ther 7~ final state (4.33%), and then other final states (0.14%).

However, we do not want to rely on the unchecked simulatigrifese predictions,
especially when we have access to control samples from a¢@l dhere may be improperly-
simulated detector or trigger effects, and there may beleptonic 7°(35) decays which are
not (or not properly) modelled by the generator. In pringjghe latter effects could be quite
substantial. We use the two lepton, one lepton, and “ne&iSilile control samples (defined in

Chapter 4) in data to check the MC predictions.

7.2 Studies of the Leptonic Peaking Backgrounds

For a significant fraction of dilepton decays 6{1S), both leptons may escape de-
tection, thus appearing just like an invisible decay. Westady this contribution by comparing
data to Monte Carlo (MC) simulation for the large sample aihle events with both leptons
detected, and also the substantial sample of events in vaimighone lepton is detected. The

goal is to obtain a data/MC correction factor for the leptgueaking background.

7.2.1 Control Samples forY'(1S) — ¢*¢~ Final States

We expect the dominant effects that cause an incorrectqiiealiof the peaking back-

ground to arise form two sources: an overall scale fact@edan inherent uncertainties in the
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7' (3S) count (about 1%), and branching fractions (at the level oualb%), and detector ac-
ceptance mis-modeling. We can test both of these cases csimigpl samples in which we
reconstruct either two or one of the final-state leptons fdaTay of the'(15).

In Chapter 4.3.2.2 we discussed the selection of eventsom#tor two reconstructed
hard tracks, assumed to be leptons ffb(.S) decay . We refine the selection of these events by
applying all cuts described in the discussion of the sedaabif invisible final states, including
the cut on the modified Random Forest (MVA) output (as defime@hapter 5.6) for these

control sample events (Chapter 5.6).

7.2.2 Correcting for an Overall 7°(35) Scaling Factor

After all selections are applied, we obtain 38833 eventtén2-lepton category and
4816 events in the 1-lepton category in data. We show thelditibn of the cosine of the polar
angle of the lepton (in the 2-lepton case, it’s the polar amjlthe positively charged lepton)
in Figure 7.1. This figure shows that in both cases we haveaat En overall normalization
discrepancy between the MC prediction and the data in thesgs We correct for this scaling
factor using the 2-lepton sample. We determine the data atd/ikld of events in the region
cos f € [—0.3,0.3] (Figure 7.2), which is safely within the barrel of the deteand contains a
large number of events. Tracking inefficiency of these tsasknegligible, as can be seen from
the very small occupancy in the 1-lepton sample (Figureb}) 1 this angular range. We find
the Monte Carlo (MC) underpredicts the data yield, and néedtle scaled upward by 1.0882.
Henceforth, we apply this scaling factor¥g3.S) MC events. We will apply this scaling factor

to the prediction of peaking background events, as well.
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We show the lepton polar angle distribution after rescalirgMC simulation to the
data in Figure 7.3. Overall, the MC models the data very welshape. The modeling in
the front-end is shown to be particularly good, suggestirag the acceptance modeling of the
detector is excellent in the forward direction. The 2-lepsample, however, has almost no
statistics at the back-end of the detector. We check the lingdef the detector at the back-end

in the next sample, using an independent 1-lepton contropka

E EMCT ——— 3 T —— ave
800 - T MC = £ Tt MC ]

E Rad. Dilepton MC 3 300 — Rad. Dilepton MC -
700 Fpmmmy Y(35) (other) 4 E i = Y(35) (other)

F=== Y(3S) Leptonic ™ o 250 £ Y(3S) Leptonic |
600 pata g E }# £+ pata

-1 05 0 05 -1 05 [ 0.5

cose,)1 COS@.)1

(a) 2-lepton control sample (b) 1-lepton control sample

Figure 7.1: Cosine of the lepton polar angle in the lab framtee 2-lepton and 1-lepton control
samples before applying scaling correction.

7.2.3 Aside — The,Plots Technique

We briefly pause here to discuss a method for computing tietdisons contributed
to a data set by different species of events. TRé&ts [13] method allows one to use a fit of
signal and background distributions in one or more varglbbeproject the signal and back-
ground distributions in another variable. Give a set of aetéch is a sum of different species
of events (in the case of this analysis signal and backgneuard Extended Maximum Like-
lihood fit is performed on one or more of the observed variglfile the case of this analysis
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Figure 7.2: Cosine of the lepton polar angle in the lab framée 2-lepton control sample,
shown in the center of the detector barrel and before applstaling correction.

we perform a fit onm,....;1). The sPlots technique takes this fit and the resulting correlation
matrix, and computes a vector of weights for each event baséts position in the space of
fitted observables. Thes@Veights correspond to the species of events populating the sam-
ple. In the case of the 1-lepton sample about to be exploretiave signal (from the pro-
cessY(3S) — ntn— (Y (1S) — £747)) sWeights and background (from other processes)
sWeights. Essentially, theseWeights tell us how signal like or background like an event is.
Using these weights, we can fill a histogram in a variable ithabt used in the Likelihood fit
with the ;Weights of the species we wish to study. In the case of the 1-leptorpkeawe will

be creating a histogram ebs @ filled with the signal;Weights of events, creating a plot of
1-leptoncos 6 variable contributed only by the procek¢3S) — ntn— (T(1S) — £+¢7).

The ;Plots mathematics assumes that the variable(s) that are used Irikiflihood
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Figure 7.3: Cosine of the positively charged lepton polaiem the lab frame in the two-track
control sample, after renormalizing MC to data in the regios¥ = [—0.3,0.3].
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fit are uncorrelated with the variables bei¥@lotted. In Appendix B, we explore the effects of
correlations on the effectiveness of f#@lot s technique. We find that for the use in the 1-lepton
sample, this may introduce a small error which is calcul&e@hapter 7.2.4.2, but that when

used later for the full invisible fit, care must be taken tocact for correlation effects.

7.2.4 Checking Detector Acceptance Using the 1 Lepton Cordl Sample

The primary concern with our estimate of the peaking baakggofrom electronic
or muonic decays of th&(15) is when one or both leptons are very close to the edge of the
detector. If the detector edge is not well-simulated, wehinige incorrectly predicting the rate
at which final-state particles go from being detected to dpeindetected, and thus fake the
invisible signal.

We study the detector edge using the 1-lepton events. Adriited in Figure 7.1,
the reconstructed one-lepton events occur primarily wherdpton is in the backward end of
the detector. Due to the boost, even if the leptons are goatgg-to-back in the CM frame
the forward-going lepton will tend to be boosted outside la# tletector acceptance while
the backward-going lepton will be boosted into the deteatmreptance. The prevailance of
backward-going 1-lepton events confirms this assumption.

We can see from the MC that the 1-lepton events contain a egligible fraction
of peaking-background events, including a potentially adeied fraction in the far-backward
direction, just before the efficiency drop for the 1-lepteems. In order to subtract these events
from the polar angle distribution, we fit the recoil massrisition of these events and unfold

the polar angle distribution for peaking events using,fh&ts method [13]. The fit to the recoil
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mass is shown in Figure 7.4 and the unfoldesd distribution is shown in Figure 7.5 overlaid
on 7(3S) MC only. The recoil mass fit is performed using the signal PRFameterization
from the 2-lepton sample (Table 6.1) and a 1st-order polyabbackground; the signal PDF
parameters are fixed, the polynomial parameters are floatetiall yields are floated. The
fit returns 4199 peaking and 617 non-peaking events; thepeaking background is quite
significant.

We see that the unfoldeebs 8 distribution matches the re-scaled MC perfectly, ex-
cept at the very back end of the detector; in the front engd,uiticlear beyond the statistical
uncertainty whether there is an effect. We concluded froeni2tthepton events that the front of
the detector is well-modeled; given the statistics herehase no strong reason to alter that

assumption.

Events / (0.001)
Events / (0.001)

2001~ -

1000 =

- P i L
9.48 9.5 9.52

9.42 9.44 946 948 9.5 952 9
) Meecon (GEVICT)

Myecoit (GEVIC?)

(a) Entire fit (b) Zoomed view of the tail region

Figure 7.4: Fit for the peaking and non-peaking componehiissol-lepton recoil mass, show-
ing (a) the whole fit and (b) a zoom of the region by the tailshef peak.
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Figure 7.5: Overlay of the unfolded 1-lepton sampie 6 distribution in data (usingPlots)
on the?'(3S) MC for (a) the whole angular region, (b) the back end of theder, and (c) the
front end of the detector.
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7.2.4.1 Applying a “Killing” Technique to 1-Lepton Events

We would like to account for the events in the Monte Carlo (M@hulation that
should have been classified as peaking background but wamsfidd as single lepton events.
We can determine this effect by applying a “killing” proceeuo the MC simulation. We do

this as follows:

e We bin the 1-lepton data and MC itvs 6 bins of size 0.02. We compute the ratio of

data/MC in each bin.

e We apply the ratio in a random-number based lepton killingcpdure as follows: For
each bin, we define the killing factor as the data/MC ratia i between 0 and 1. If the
ratio exceeds 1, we cannot add more MC events to that bin theads exist so we set

the killing factor to 1.

e For each MC event, we determine in what bin the single legtm If the killing factor
for that bin is between 0 and 1, we throw a uniform random nurfdoethe lepton. If the
value of that number exceeds the killing factor, we kill taptbn and treat the event as a

O-lepton event. Otherwise, we keep the event as a 1-leptmt.ev

e We only apply the killing procedure in the backward regiorirtetl earlier ¢osf €

[—1.0, —0.84]).

Applying this killing procedure and redefining the 1-lep@vents leads to theos 0
distributions in Figure 7.6, which are the post-killing bogues of Figure 7.5. We observe that
the killing procedure appears to work very well; the MC noproaluces the data distribution in
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the backward and forward regions of the detector. We thenhgsee-defined O-lepton category
to determine the peaking background prediction from thiss® and we find 2470.1 predicted
peaking leptonic background events.

One more correction needs to be applied to the predictian fiee killing procedure.
This procedure cannot simulate the difference in trigger selection efficiency for events that
actually do not contain the reconstructed lepton. Thisceffeuld be quite significant, and we
explore this possibility here.

We perform the following study using MC events. After all etlcuts in the analysis,
the signal selection described in Chapter 4.3.2.2 is 86%ieffi on the 1-lepton events, and the
trigger is 99% efficient. The total efficiency is therefordestst 85% when a lepton is present,
in addition to the pions. However, once the lepton is lostttigger and filter decisions are
done entirely using the pions. The trigger is only 78% effitien O-lepton events that pass
all other cuts, and the signal selection (Chapter 4.3.3.86M0 efficient. Therefore, once the
lepton is lost the efficiency of selecting that event as a f&igeal event is actually lower by
0.74/0.85 = 0.87. This reduces the predicted peaking background from tHiagiprocedure
t02301.1 + (2470.1 — 2301.1) - 0.87 = 2448.1.

We take the difference between the unscaled and scaled msi@lve0.1 — 2448.1 =

22.0) as a systematic uncertainty on this procedure.

7.2.4.2 Uncertainty on the Leptonic Peaking Background Egtnate

The uncertainty on the peaking background estimate corogsdeveral sources. The

first is MC statistics, and is negligible. The second has liksrussed in the previous section,
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Figure 7.6: Overlay of the unfoldegbs ¢ distribution in data (usingPlots) on theT(3S) MC,
after applying the killing procedure, for (a) the whole alaguegion, (b) the back-end of the
detector, and (c) the front-end of the detector. The blutogiam is the sum of alt’(1.5)
leptonic final state MC, after a dipion transition, and thegerdia histogram contains all other
7' (3S) decays.
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and is due to the differences in event selection efficiencieased on this, we assigned the
difference between correcting and not correcting the baekyl prediction for this effect as the
systematic uncertainty due to this correction. This regmessa 0.90% systematic uncertainty
on the leptonic peaking background prediction.

There is also a systematic uncertainty on the number of svietrbduced by the
sPlots procedure This comes from the correlations between theearighe single lepton and
the recoil mass of the dipion system. We compare the numbmrenits in the back of the detec-
tor in the pure MC sample and in the MC sample after being potuth the sameWeighting
procedure as the 1 lepton data control sample (Figure 7 ¥iad a total difference of&17
events. Since the data has a lower occupancy in these bmshidC we scale this effect by
the ratio of events in the data sample and those in the MC adafiruncertainty of 14 events.

This gives an uncertaintainty @ft/2448.0 = 0.6%
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Figure 7.7: Plots of the one lepton Monte Carlo (MC) samplgafCHistogram) and the same
MC sample after undergoing the sag&eighting as the 1 lepton data control sample (black
points).
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Finally, we have the statistical uncertainty on the 1-lapgwents. By scaling the
data/MC ratios used for killing up or down by 1we would reclassify more or less 1-lepton
events as O-lepton. We find that moving the killing factorsyd o yields 2440.8 events, and
down by 1o yields 2496.7. Taking half the difference between these awdhe uncertainty
yields 28.0 events. We then obtain a total uncertaint{28f0 + 28.0)/2448.0 = 2.0%

We add these effects in quadrature therefore take the totairtainty on the leptonic

peaking background to ke1%.

7.3 Studies of Non-leptonic Peaking Backgrounds

The Monte Carlo (MC) predictions for peaking backgroundrff5(1.5) decays other
than to dilepton states is very small. However there is nalgeason to trust this prediction,
so we need to use data to constrain such a contribution. Weislby comparing data to MC
for “near” invisible 7°(15) decays. In particular, we examine final states for whichetteee
no extra tracks, but only one or more neutral calorimetestels, using variables such as total
extra neutral energy or the center of mass (CM) energy ofitjteest-energy neutral.

We originally carried out this study on the Low + High data géas before unblinding
the signal region. Thus we had to ensure that the range oévaitnich could be studied for
each variable lay outside the range accepted by the ingisighal event selection. Events for
the study were selected with a special skim, in which, basefigore 5.34, the highest-CM-
energy photon in an event was required to be at least@®@%¥5 (Even with an MVA cut reduced

to 0.5 from its normal value of 0.8, there are very few signedngés predicted to have a larger
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value.) Otherwise, the selection used the standdrd~ selection. Finally, the cosine of the
thrust angle was required to be below 0.85, to suppress as&®seen in sideband data but not
in the generid’(35) MC sample.

Fits to the recoil mass spectra for these pre-unblindingpéesiresulted 217 + 14
peaking events in the MC (after scaling by the nominal lursityaratio of 0.35), an@60 + 101
in the data, an encouraging similarity. We usétlots of maximum photon energy to show
that in this near-invisible region the non-leptonic backgrd for data is no more than five times
the MC prediction, and we conservatively take this factoffied as the uncertainty for the
non-leptonic peaking background in the invisible region.

However, rather than show these statistics-limited resudtre, we repeat the study
post-unblinding using the full data sets. Figure 7.8 shdwesrécoil mass fits for generic MC
(186.2 millionY'(3S) events) and all data (98.9 million, there being no need tdueecthe
Low+High data sets for this study), respectively. The redaluminosity of 0.5306 is nominal,
not renormalized by the factor found from the two-lepton gkem The fits yield3786 + 100
peaking events in the MC (unscaled) a3id1 + 308 in the data, for a data/scaled-MC ratio
of 1.54 4+ 0.16. Figure 7.9 comparesPlots of this maximum photon energy for the MC and
data fits, while figure 7.10 shows the data/MC ratio. The @gting region is toward the lowest
energies, since that is closest to the region of intereghfomvisible analysis. The plots do not
show an increasing ratio as the energy decreases towarditisghle region, and suggest that
the limiting ratio is unlikely to exceed 4. Thus the factdrsoallowed for pre-unblinding is still
safe as a systematic uncertainty.

Also post-unblinding, we have carried out a similar studytfee total extra neutral
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[ Recoil mass (Gev) spectrum and fit, generic Y3S MC, near-invisible events Recoil mass (GeV) spectrum and fit, full data sample, near-invisible events
—— T T — T

- 5 ~ T ‘ = e e
P | ; f=) | 4
g 900F E S 7000 -
=] E = = C 7
< 800F" E =z K E
o E = 0 6500 g ™ T fg g - =
5 7005 E 5 f 3
% 600/ = & 6000 E
5001 E 5500 -
400[* 3 = E 1
£ 5000 —
300F E F E
2005 = 4500E" E
100E = 40001 -
S| | | | L = E. 1 P N NS SRR IR

9.42 9.44 9.46 9.48 95 9.52 9.42 9.44 9.46 9.48 9.5 9.52
mrec mrec

Figure 7.8: Fits of recoil mass spectra for a generic MontdoCgeft) and all 7°(3S) data
(right), for the “near-invisible” selection described imettext. The green dot-dashed curves
show the peaking components of the fit (not visible on the-seppressed data plot), the red
dashed curves show the linear non-peaking background,hengalid black curves show the
total fits.

sPlots of highest-CM-energy neutral, 0 extra tracks, Data (red points) vs. scaled MC (hist.)
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Figure 7.9:,Plots of the maximum center of mass frame photon energy for theabigympo-
nents of the fits shown in figure 7.8. The points with errorsfeom the full data sample, the
histogram is the scaled generic Monte Carlo fit. The small M€eutainties are not shown.
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Figure 7.10: Ratio of Plots of the data to Monte Carlo simulatigPlots shown in figure 7.9.
Error bars include both data and MC uncertainties.

lab-frame energyge Tot . To avoid overlap with the first study, we required that thghleist CM-
frame photon energy beelow0.25GeV . The effect of the MVA cut is less sharp eifot , with
the efficiency tailing off between about 0.4 and 0%8/, but since we have already unblinded
it is safe to look at theTot spectrum down to 0.&eV. Other cuts are as in the first “near”
invisible selection. Figure 7.11 shows the recoil mass fiie Tits yield1112 + 37 peaking
events in the MC (unscaled) afg9+ 208 in the data, for a data/scaled-MC ratiolo25+0.36.
Figure 7.12 comparegPlots of this maximum photon energy for the MC and data fits, while
figure 7.13 shows the data/MC ratio. It is most instructivedosider the first few bins above
0.6GeV, which are free of signal-like events. This study suppdrésupper limit for data of 4
to 5 times the MC prediction which we assigned based on tHeehigtatistics first study.

This study suggests that the MC prediction for the non-leiptpeaking background

is appropriate, so we do not change that prediction of 2.8tsyand set the uncertainty on this
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prediction at 14 events.

[ Recoil mass (GeV), generic non-leptonic MC, near-invisible evts with Egam1 < 0.25 GeV ‘ Recoil mass (GeV), full data sample, near-invisible evts with Egam1 < 0.25 GeV ‘
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Figure 7.11: Fits of recoil mass spectra for a generic MoraddZ(left) and all?’(3S) data
(right), for the second “near-invisible” selection (withasimum extra-photon center of mass
frame energy below 0.25¢V). The green dot-dashed curves show the peaking components
of the fit (not visible on the zero-suppressed data plot) réidedashed curves show the linear
non-peaking background, and the solid black curves showothéfits.

7.4 Final Peaking Background Estimate

Summing the prediction from leptonic and non-leptonic lgmokinds, we obtain a
final peaking background estimate of 2450.9 events] 2% increase over the purely leptonic
peaking background estimate. The systematic errors orestithate, as well as all other sys-

tematics in the analysis are listed in Chapter 8
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Figure 7.12:,Plots of the maximum center of mass frame photon energy for theakigpm-
ponents of the fits shown in figure 7.11. The points with erasesfrom the full data sample,
the histogram is the scaled generic Monte Carlo fit. The sk@lluncertainties are not shown.
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Figure 7.13: Ratio of Plots of the data to MG Plots shown in figure 7.12. Error bars include
both data and MC uncertainties.

125



Chapter 8

Systematic Uncertainties

We describe the methods we use to assign systematic umtiedatio different parts
of the analysis. We explain the way in which these uncertsrdre combined to achieve a total

systematic uncertainty on the signal yield and efficiency.

8.1 Scaling Correction

We discussed in Chapter 7.2.2 that we observe an overallalization offset be-
tween MC and data in the two-lepton control sample. We taledbrrection (1.0882) as an
overall correction to the normalization of the MC. Due to #tatistics of the data used in de-
termining this correction, there is a 1.1% uncertainty da $icaling factor. This scaling factor
was determined after all selection criteria were appliethéotwo-lepton events.

We consider this as a measure of many effects at once, ingudi

e The branching fraction uncertainty and central valuef¢3S) — ="z~ 7(15), which
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is reported by the Particle Data Group (PDG) [30] to be 4.48% 5% uncertainty.

e The branching fraction uncertainty af(1S) — ¢*¢~, where/ = e, u, 7, which the

PDG reports as having a 5%/2%/4% uncertainty on the eldatnaon/tau channel
e The tracking efficiency of the dipions, independent of teggffects

e The tracking efficiency of the lepton tracks

Given the fact that systematic effects not applicable tarthisible final state (lepton
tracking, leptonic branching fraction) contribute to imstborrection, it is certainly conservative

to apply this correction to the invisible final state (andrdfere its efficiency).

8.2 Trigger Studies

BABAR triggering is discussed in Chapter 8.2.1. We consider tathardware (Level
1) and software (Level 3) triggering systematic errors. Theel 1 triggering systematics use
the 2 lepton control sample as an analog for signal eventadéfiggering, and simulate the
triggering in software. For the Level 3 triggering systeicgaive use a small sample of events

which are passed through the Level 3 trigger expressly femphrpose.

8.2.1 Level 1 Trigger Systematics

We wish to compare the efficiencies of the hardware triggeghemMonte Carlo (MC)
signal simulation and the invisible data. The objects thggér the detector in these events are

the two pions from the dipion transitioli(3S) — 77~ 7(15). In the two lepton control
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sample the two hard tracks from ti&1S) — ¢*¢~ decay are responsible for triggering the
detector, and so represent a sample of pions without trigiger We construct an offline algo-
rithm to mimic the trigger and apply it to the two lepton saenipl both data and MC simulation.
The efficiency of this algorithm is used as the Level 1 triggyestematic.

We can use the final signal fit (discussed in Chapter 9.1) tateran,Plot of the
trigger lines fired by peaking events in data, and compatddhegger lines fired in the peaking
background MC. This is shown in Fig. 8.1. We find generallydjagreement across the lines,
with some cases where the data and the MC appear to disagstdeonf the errors on each by
several sigma.

We find that the trigger lines are highly correlated with onether and that the two-
track triggers dominate the efficiency. We therefore cotragm on the study of just the two-

track trigger lines. These lines are defined as follows:

2Zt & 1A & 1M

2A & 1Zk & 1M

D2 & 1Zk & 1M

e D2&2M & 17t

M*&1Z

The trigger objects involved are defined in Table 8.1.
There are a few steps that need to be taken to establish et eff these trigger lines on
invisible data:
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3B&2A&1Z&2M

3B&2A&27Z

3B&B*&1G&1Z

2E

EM*

G*

D2&1E&1Z

1E

B*&1A&17Z’

am

3M&M*

2M&1A&1Z'&17t

M*&5U

2Z1&1A&IM

2A&17k&IM

D2&17Zk&1M

D2&2M&17t

M*&1Z

1Zk

17t

2M

D2

1B

M

3M&1G

M*&1G&0B

Figure 8.1: The number of events passing each Level 1 trigge(inclusively) in the peaking
component of data (black points with errors made with,tRét procedure) and in the peaking
background MC (white with cyan error boxes).
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| Trigger Object| Cuts

A a track reaching DCH superlayer (SL) 10, with
pr > 0.150 GeV/¢

B a track reaching SL5 withy > 0.120 GeV/c¢

D2 2B & 1A

z A track withpy > 0.2 GeV/c and|z| < 12cm

2t a track reaching SL7, with; > 0.2 GeV/c and
|z] <10cm _
a track reaching SL7, with a charge-asymmetric

7k pr cut. If posi'_[ive, thg track must satisfyr >
0.8 GeV/c and if negative, the track must satisfy
pr > 0.2GeV/c. In addition|z| < 12cm

M an EMC cluster with at least 13 GeV of energy

M* two back-to-back M clusters with atleast an opén-
ing angle of 117 degrees.

Table 8.1: Definitions of trigger objects using cuts on tHdiak reconstructed quantities.

e The 2-lepton sample contains dipions that, in principles aot affected significantly
by the two-track triggers since they have likely been firedthwy presence of the two
high-momentum leptons, or the combination of one of the pimmd one of the leptons.
We need to test this assumption - that is, that the pion kitiemeepresent those in an

“untriggered” signal sample

e Having established that the pions in the 2-lepton sampleanadogous to untriggered
pions in the signal MC, we then proceed to dissect the triiges and reproduce their
effects using offline cuts (that is, cuts based on fully retarcted objects instead of the

more coarse trigger objects).

e After creating an algorithm that largely reproduces theafof trigger cuts on signal

using control sample MC, we apply those cuts to the data inctivgrol sample and
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measure the efficiency difference.

8.2.1.1 Pion Kinematics in the Two Lepton Control Sample

We begin by investigating whether the pions in the two lemontrol sample Monte
Carlo (MC) are a good analog of the pions in the untriggergdaiMC events. We apply all
cuts to the signal MC except the Level 1, Level 3, and invesgample selection cuts. We apply
to the control sample MC all cuts originally used to seleosthevents, including trigger cuts.
Again, the premise is that the trigger doesn’t shape thespioithis sample like it does in the
signal events. In addition, we have to apply all cuts usecdfimd the 2-lepton sample if we are
to reproduce that sample in data, where a trigger is alrepplyea by definition.

We compare the individual piop; andcos @ distributions, along with the opening
angle of the negative pion with respect to the positive pinrkigures 8.2-8.4. These plots are
all unit-normalized, so that the shape alone can be compa&iedsee small differences in the
distributions but in general we find that the control sampl@ ¢ a very good analog of signal

MC, prior to trigger cuts.

8.2.1.2 “Level 1 Trigger Inspired” Cuts

Before trying to reproduce the trigger lines with offline guthe basic ability to map
drift chamber trigger (DCT) quantities (most likely to aftehe efficiency) onto offline recon-
struction quantities (e.g. pign-, dipion opening angle, radial extent of pion track) needseto
established. The most basic issue is whetheptheutoff is the same in the reconstructed ob-

ject (track) as in the trigger object. For instance, signahké Carlo (MC) events passing a line
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Figure 8.2: Individual reconstructed pign- distributions for signal MC (black markers, no
errors shown) and the 2-lepton control sample MC (blackobistm). Both distributions are
unit normalized.

(@) 7 cos(6) (b) 7~ cos(0)
Figure 8.3: Individual reconstructed piens @ distributions for signal MC (black markers, no

errors shown) and the 2-lepton control sample MC (blackogistm). Both distributions are
unit normalized.
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Figure 8.4: The dipion opening angle, relative to tte, for signal MC (black markers, no
errors shown) and the 2-lepton control sample MC (blackogistm). Both distributions are
unit normalized.

containing 2Zt is expected to have neither track with< 0.2 GeV/c. We find that fewer than
1% of signal events have a track with below the expected threshold, and the distributions are
suppressed rapidly below the cut threshold. While the €udafiot perfectly sharp, it is very
close to expectation.

We apply cuts to reproduce each line, treating the tracks T objects. A few
comments are required on our choices here. We use;tleaits outlined in the DCT definitions.
We use the outermost drift chamber (DCH) layer hit by a retanged track to determine
whether a track reaches the needed DCH superlayer. Sintratke are GoodTracksVeryLoost
(GTVL) (defined in Chapter 4.3.1), tHe| cuts are already applied. We use the electromagnetic
calorimeter (EMC) clusters associated with the tracks, tiedEMC cluster associated with

the highest energy photon, to define the M objects. The coasseof the DCT (illustrated in
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Figure 8.5) is the hardest effect to reproduce.

To reproduce the DCT coarseness, we cut on the opening aagledn the pions
in the plane transverse to the beam axis. There is a subtledgfining the opening angle
cut; it is not as simple as requiring that the opening anglgreater than the minimum bin
width for a given object. Tracks bending in the magnetic fiedth either curve quickly away
from one another, even for a small opening angle, or crose eaeh other, even for a larger
opening angle. This type of effect can be seen in Figure &gravwe illustrate some possible
dipion configurations. We rely on the signal MC to guide theauthis opening angle. The
opening angle distributions for each of the five trigger dime question is shown in Figure 8.6.
Figures 8.7-8.11 show the efficiency of each trigger line &sation of the opening angle.
These plots make it much easier to observe where the effeatito cut on the opening angle
needs to be placed.

The cuts that we will apply to the opening angle will be hartscbut it is clear that
the cuts are by no means hard in the way they affect the recotet signal events. Therefore,
we do not expect our cuts to reproduce the efficiency of tlygéri in the control MC. We are
primarily interested in how the cuts affect the shape of tipgod kinematic variables as they
are presented to the Random Forest Algorithm (MVA).

The opening angle cuts were determined by setting the cutdaoies to a point
halfway down the slope of the efficiency on either side of theimum in the efficiency plots
(Figures 8.7-8.11). The regions we veto to approximate ffieeteof the trigger are detailed in
Table 8.2.

The effect of trigger cuts is most pronounced on the dipipnso we focus on that
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1.0

(c) Angular Separation of -0.5 radians

Figure 8.5: Diagram of three different dipion system configions. In each case the" is in
red and hagr = 0.5 GeV/c and ther™ is in blue and hapy = 0.25 GeV/c. The angular
separation in (a) is 0.0 radians, in (b) is 0.7 radians, an@)ins -0.5 radians. The detector
has been divided into 16 sections to illustrate the coassenéthe Level 1 Trigger, and the
concentric black circles indicate the radius of the innesnsense wire in each superlayer.
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Figure 8.6: The dipion opening angle, relative to the, for the application of different two-
track triggers to the signal MC. All distributions are undrmalized. The distributions corre-
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Figure 8.7: The efficiency of the 2Zt & 1A & 1M as a function oktldipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other tegtines, are already made prior
to applying this trigger line cut. The dashed lines indicatere we define veto regions.
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Figure 8.8: The efficiency of the 2A & 1Zk & 1M as a function okthipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other tegtines, are already made prior
to applying this trigger line cut. The dashed lines indicabere we define veto regions.
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Figure 8.9: The efficiency of the D2 & 1Zk & 1M as a function oétHipion opening angle in
signal MC. All cuts except the MVA cut, and cuts on other tegtines, are already made prior
to applying this trigger line cut. The dashed lines indicatere we define veto regions.

| Trigger Object | Veto Region(s) imM\ g7y

27t & 1A & IM [0.1,2.0]

2A & 1Zk & 1M [0.5,1.7]

D2 & 17k & 1M 0.1, L.1]

D2 & 2M & 17t [0.05,1.7]

M* & 1Z [—0.4, 7] or [—m, —2.8]

Table 8.2: Opening angle veto regions for each two-tragjgéi line.
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Figure 8.11: The efficiency of the M* & 1Z as a function of th@idin opening angle in signal
MC. All cuts except the MVA cut, and cuts on other trigger 8nare already made prior to
applying this trigger line cut. The dashed lines indicaterehwe define veto regions.
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variable in our comparison. Figures 8.12 - 8.16 demonsthatdifference between not applying
and applying these cuts to the control MC, compared to sigi@lvhere the corresponding real
trigger cut has been applied. Figure 8.17 shows the cumaelaffect of applying all of these

lines to the two lepton control sample MC events.
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Figure 8.12: The dipiop for control MC (solid histogram) and signal MC (dot markerishw
errors). The left plot shows control MC before making theetifve trigger cut (2Zt&1A&1M)
and the right plot is after making the effective offline cutheTsignal MC in both has all re-
construction cuts applied, and has the trigger line cutiaggs well. All distributions are unit
normalized.

We find the the cuts largely reproduce the shape of the dipjonin addition, we
look at two other dipion-kinematics-related variablesdusethe MVA - the dipioncos # and
the cosine of the angle between the highest-energy photbthamnormal to the dipion decay
plane. These variables show significant differences betweecontrol MC and signal MC until

the application of our trigger cuts (Fig. 8.18). After thiggjer cuts the agreement is excellent.

The variable with the largest remaining discrepancy in sHagtween control and signal MC
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Figure 8.13: The dipiop for control MC (solid histogram) and signal MC (dot markerishw
errors). The left plot shows control MC before making theetifve trigger cut (2A&1Zk&1M)
and the right plot is after making the effective offline cutheTsignal MC in both has all re-
construction cuts applied, and has the trigger line cutiaggs well. All distributions are unit
normalized.

is the dipionpy, although this shape difference has been greatly reducedrid¢eed with the
selection and determine the net effect on MC-vs-MC agreéinethe MVA output. We also
apply the same “level 1 inspired” pseudo-trigger cuts todigmal MC before the real trigger
cuts and observe the agreement between the signal ando?-legtrol MC samples under the
same cuts.

We quantify the differences between signal and control M@nvhpplying these
cuts, and control data and MC, in Table 8.3. We find that tHemihce between the signal MC
and control MC efficiencies is large, as expected - we did ntitipate that we could exactly
reproduce efficiency numbers in the MC (the opening anglésctiearly not a hard cut, as we

modeled it). However, we find that application of the psetriyger cuts to signal MC creates
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Figure 8.14: The dipiop for control MC (solid histogram) and signal MC (dot markerishw
errors). The left plot shows control MC before making thesefifve trigger cut (D2 & 1Zk &

1M) and the right plot is after making the effective offlinet.cihe signal MC in both has all
reconstruction cuts applied, and has the trigger line cptiegh as well. All distributions are
unit normalized.

good agreement between the signal MC and the 2-lepton ¢aatmgple MC. We also find that
for those cuts the 2-lepton control MC and data agree very. vikslative to the control MC
efficiency, the difference in the control data and MC efficies is a 2.1% effect. We take that

as the systematic on the application of Level 1 trigger auisuisible signal.

| Sample | L1 Trigger Efficiency |
Signal MC (Trigger Simulation) 76.46%
Signal MC (Pseudo-Trigger Cuts) 70.58%
Control MC (Pseudo-Trigger Cuts 68.13%
Control Data (Pseudo-Trigger Cuts) 66.69%

Table 8.3: Efficiency of Level 1 Trigger Cuts
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Figure 8.15: The dipiop for control MC (solid histogram) and signal MC (dot markerishw
errors). The left plot shows control MC before making theeetifve trigger cut (D2 & 2M &

17t) and the right plot is after making the effective offlinat.cThe signal MC in both has all
reconstruction cuts applied, and has the trigger line cptiegh as well. All distributions are
unit normalized.

8.2.2 Level 3 Trigger Systematics

We study the ratio of Level 3 trigger efficiencies in data anohité Carlo (MC) using
events which pass Level 1, but are passed through LeveB@t L1Open). In other words,
these events are not required to pass the software triggiear® marked as passing if they do.
These events are prescaled by a factor of 200 so as not to loelenvus with statistics. We
select events in data which pass all cuts, except the Levaget and in addition are part of
this pass-through. We then apply the Level 3 trigger to tleesats, and compute the ratio of
those which pass the Level 3 trigger to those which do notigmes Monte Carlo, we perform
a similar study, but are not limited by the pass-throughisdtes. Finally, we compute the ratio

of data to MC and take that as a systematic correction witmaemainty from the statistics of
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Figure 8.16: The dipiorpy for control MC (solid histogram) and signal MC (dot markers
with errors). The left plot shows control MC before making tffective trigger cut (M* &
17) and the right plot is after making the effective offling.ctihe signal MC in both has all
reconstruction cuts applied, and has the trigger line cptiegh as well. All distributions are
unit normalized.

each sample of pass-through events.
The results are summarized in Table 8.4. We find the efficgsniti data and MC
to be very similar, so that the data/MC ratio is essential§; T'he uncertainty on the ratio is

dominated by the data statistics of events passing throeghl (3.

8.2.3 Random Forest Systematics

The systematic uncertainty on the cut efficiency of the Rem@f@rest MVA is po-
tentially entangled with any issues that arise prior to théAMWe find that it is essential to
study the MVA output after applying Level 1 trigger inspiredts to our 2-lepton events. The

reason for needing to do this is two-fold: (1) the MVA wasttead on sideband and signal MC
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Figure 8.17: The dipiop for control MC (solid histogram) and signal MC (dot markerishw
errors). The left plot shows control MC before making thesefifre two-track trigger cuts
and the right plot is after making the effective offline cufBhe signal MC in both has all
reconstruction cuts applied, and has the trigger line cptiegh as well. All distributions are
unit normalized.

| Selection \ Data | SignalMC |
All Cuts (except
Level 3) and 324 57501
L3Qut L1Open
All Cuts and 316 56268
L3Qut L1Open
| Efficiency | (97.53 +0.86)% | (97.86 & 0.06)% |
| data/MC \ 0.9966 =+ 0.0088 \

Table 8.4: Results of the study of events pasdi8g@ut L1Open in data and signal Monte
Carlo
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dipion decay plane and the dipiens # in control MC (histogram) and signal MC (points with
errors). The top pair of plots is shown for control MC beforvel 1 two-track-trigger cuts and
for signal with all cuts, including trigger cuts, appliech&bottom pair shows the same samples
after Level 1 two-track triggers. All distributions are tinbrmalized.
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events after trigger cuts, and those cuts cannot be remowesideband data, and (2) the Level
1 trigger significantly shapes the inputs before they efterMVA. It is critical to reproduce
those shapes in the control sample before studying the M\{pubu

The distribution of the MVA output after trigger cuts is shown Figure 8.19 for
control MC and signal MC. We see that there are residual skéferences when the real
trigger simulation is applied to the signal MC (Figure 8d)9( Those disagreements largely
go away if we instead compare signal MC and 2-lepton contr@l, lsoth with pseudo-trigger
cuts applied (Figure 8.19(b)). We also plot the distributfor data and MC in the 2-lepton
control sample (Figure 8.20), and see small differencebapes there are well. We then apply
our standard\/VA > 0.8 cut and compare, quantitatively, the efficiency of makinaf ttut.
We find (Table 8.5) that the MC-to-MC difference is at the lefeseveral percent. We find the
data-to-MC difference is 4.0% relative to the control MC.

We move the cut on the MVA output in the 2-lepton control MC thiave (almost)
the same efficiency as in signal MC at the chosen cit/&fA > 0.8. AcutatMV A > 0.787
replicates this efficiency. For this cut (Table 8.5) we find ttata/MC difference is slightly
reduced to the level of 3.8%.

We use the data-MC difference for the nominal cufléi” A > 0.8 as the systematic

uncertainty on the MVA.

8.2.4 Aside —Plots of MV A inputs

As a cross-check of our modeling of the data using the pealsaukground MC

samples, which clearly dominate the peak in data, we usgRh& technique [13] to unfold
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Figure 8.20: The MVA output for 2-lepton control sample Meftarlo (histogram) and 2-lepton
control sample data (points). Both distributions are moitmalized.
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Sample \ MYV A > 0.8 Efficiency

Signal MC (Trigger Simulation Applied) 35.91%
Signal MC (Pseudo-trigger Cuts Applied) 35.64%
Control MC (Pseudo-Trigger Cuts Applied 34.50%
Control Data (Pseudo-Trigger Cuts Applied) 33.12%
| Sample | MVA Cut Achieving Signal MC Efficiency |
Signal MC (Trigger Simulation Applied) 35.91%
Signal MC (Pseudo-trigger Cuts Applied) 35.64%
Control MC (Pseudo-Trigger Cuts Applied 35.91% MV A > 0.787)
Control Data (Pseudo-Trigger Cuts Applied) 34.55% MV A > 0.787)

Table 8.5: Efficiency of\/ V A cuts, both nominal¥¢ 0.8) and when forcing the 2-lepton control
MC to have the same efficiency as the signal MC.

the peaking component in variables other than the recoismesng our Maximum Likelihood
fit to the recoil mass from Chapt@f. The resulting plots are shown below, with the projected
peaking component of data overlaid on the sum of peakinggraokd MC samples. The most
significant shape difference we observe is in the dipio#(), which appears more peaked
in the forward direction in data than in MC. This is due to tleerelations between the fitted

variablem,....;; and the dipiorcos(), and is explained in detail in Appendix B.8

8.3 Peaking Background Systematic Uncertainties

Our prediction of the peaking background comes from lejgtand non-leptonic con-
tributions. We discuss these contributions in Chapter 7e 3ystematic uncertainty on the
peaking background prediction is found to be 2.1%.

The systematic uncertainty on the leptonic peaking backgi@rediction discussed

in Chapter 7.2.4.2 has several sources. We found the tHesystamatic uncertainty to be 2.0%.
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Figure 8.21: The dipion systemy, compared between peaking background MC (cyan his-
togram) and the peaking component of the data projected flenrecoil mass fit. MC is
normalized to th@*(3.5) count, with corrections applied.
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Figure 8.22: The dipion systervs(f), compared between peaking background MC (cyan
histogram) and the peaking component of the data projected the recoil mass fit. MC is
normalized to th@"(3S) count, with corrections applied.
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Figure 8.23: The dipion system vertex fit probability, compared between peaking back-
ground MC (cyan histogram) and the peaking component of #ite jorojected from the recoll
mass fit. MC is normalized to tHE(3.S) count, with corrections applied.
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Figure 8.24: Whether either pion passes eKMVeryLoose, ewethbetween peaking back-
ground MC (cyan histogram) and the peaking component of #éite jgrojected from the recoil
mass fit. MC is normalized to tHE(3.S) count, with corrections applied.
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Figure 8.25: Whether either pion passes muBDTVeryLoosepewed between peaking back-
ground MC (cyan histogram) and the peaking component of #ite jorojected from the recoll
mass fit. MC is normalized to tHE(3.S) count, with corrections applied.
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Figure 8.26: Whether either pion passes KKMVeryLoose, canegh between peaking back-
ground MC (cyan histogram) and the peaking component of #éite jgrojected from the recoil
mass fit. MC is normalized to tHE(3.S) count, with corrections applied.
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Figure 8.27: ChargedTrack multiplicity, compared betwpeaking background MC (cyan his-
togram) and the peaking component of the data projected flenrecoil mass fit. MC is
normalized to th@*(3.5) count, with corrections applied.
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(cyan histogram) and the peaking component of the datagieajérom the recoil mass fit. MC
is normalized to th@ (35) count, with corrections applied.
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Figure 8.29: Energy of the highest-energy photon (CM francejmpared between peaking
background MC (cyan histogram) and the peaking componetiteofiata projected from the
recoil mass fit. MC is normalized to th&(3S) count, with corrections applied.
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MC (cyan histogram) and the peaking component of the dajaqienl from the recoil mass fit.
MC is normalized to th@(3.S) count, with corrections applied.
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In section 7.3, we describe our approach to studying thelegtonic peaking back-
grounds and determine that the MC describes the yield ofynawatisible hadronic events to
within a factor of 5. The non-leptonic peaking backgrourelsresent.12% of the total peak-
ing background. We therefore assigf.&% systematic uncertainty for this source, to be added

in quadrature with the systematic uncertainty from thedejat peaking background study.

8.4 Uncertainty on theT'(3S) Count

This has been determined by tBABAR collaboration [17] to be 1.1%.

8.5 Systematic Uncertainties due to Signal Shape Parameter

We fix all of the parameters of the signal PDF in the fit to theadaiVe vary the
parameters by their uncertainties determined from theptecontrol sample and observe a
small variation on the branching fraction of jus033 x 10~*. We include this as an additive

systematic error on the branching fraction.

8.6 Total Systematic Uncertainty and Corrections

Table 8.6 summarizes the systematic uncertainties, tbeitces, and their applica-
bility to the elements of the branching fraction extractid®ystematics which are correlated

between signal efficiency and the peaking background ettiara marked by “[*]”.
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| Source | Correction | Uncertainty (%) |
| Background Estimate \

2-lepton scaling correction [*] 1.088 1.1
1-lepton correction 1.000 2.1
hadronic peaking backgrounds 1.000 0.6
L1 Trigger [*] 1.000 2.1
L3 Trigger [*] 0.997 0.9
MVA [*] 1.000 4.0
Total (uncorrelated 2.2

with Signal efficiency)

Total (correlated 4.7

with Signal efficiency) [*]
‘ Signal Efficiency \

2-lepton scaling correction [*] 1.088 1.1
L1 Trigger [*] 1.000 2.1
L3 Trigger [*] 0.997 0.9
MVA [*] 1.000 4.0
Total (uncorrelated 0.0

with Peaking Bkg.)

Total (correlated 4.7

with Peaking Bkg.) [*]
| 7 (3S) Counting

|
| Counting | 1000 | 1.1 |
\ Additive Uncertainties (in BF units10~%) \
| Signal Shape Parameters | N/A | 0.033 |

Table 8.6: Systematic uncertainties and their applidgbilThe marker “[*]” indicates an un-
certainty that is correlated between signal and peakingdraand.
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Chapter 9

Results and Conclusions

We apply the extended maximum likelihood fit to the eventhiendata.

9.1 Unblinded Results

We unblind the fit region of the1.42 x 10° 7(3S) events (the sum of the “High” and
“Medium” samples) and perform the final Extended Maximumellitkood fit inm,.c..;;. FOr

the fit, we:

e Fix the peaking background yield to 2357.8 events, whichesmonds to the prediction
from section 7.4 multiplied by the Level 3 trigger systematorrection from section

8.2.2. We fix the shape to that determined from the 2-leptartrobsample
¢ Float the yield and shape of the non-peaking background

¢ Float the signal yield and fix the signal shape to that detezthfrom the 2-lepton control
sample
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The remaining inputs to the unblinding are as follows:

e 7(35) Count:91.42 x 105

e Signal efficiency: 16.4%

e Dipion transition BF: 4.48% [30]

We obtain a signal yield of

Nyignar = —94.9 + 102.3 (9.1)

The fit is shown in Fig. 9.1.
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Figure 9.1: The result of the ML fit to the data sample. Theltotaximum likelihood fit is
shown in solid blue; the non-peaking background comporgesihdwn in dashed magenta; the
peaking background component is shown in blue dashed; gimalstcomponent is shown in
green dashed.
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We fit directly for the branching fractio®8(7'(1S) — invisible) by writing the

branching fraction in terms of the signal yield, as desctiaethe beginning of Chapter 6.4.2.

.. . Ninvisible
B(T(1S) — invisible) = Nrss) -B(Y(35) = mta=T(185)) - Einvisible (9.2)

wheren;uisible IS the fitted yield of events quoted above. This equation kasral sources
of uncertainty, detailed in Chapter 8. We write the peakiagkground in terms of correction

factors () determined to correct the MC prediction of this backgraund

Nypeaking = Nycaiing. Hc 9.3)
We further write the efficiency of reconstructing signal éimelefficiencies of mis-reconstructing
T(1S) — ¢+¢~ events as signal in terms of a component that includes ¢mmefactors, and
their uncertainties. We expect the selection efficienaebe the same for signal events and
peaking background events, so these efficiencies are at@mudbetween the signal and peaking

background estimate. For instance,

Esignal = Enggnat H Ci. (9.4)
This allows the fit to determine the systematic of varying éffeciencies (such as trigger effi-
ciency) simultaneously for the peaking background andadign

After incorporating the errors detailed in Chapter 8, we firfstanching fraction of
B(Y(1S) — invisible) = (—2.4 & 1.4(stat.) £ 1.7(syst.)) x 107* (9.5)

where the systematic errors have been incorporated in #adilhdod function as Gaussians.
Integrating the total Likelihood function upwards untiréaches 90% of its total area above 0,
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we find that

B(Y(1S) — invisible) < 2.6 x 10~* at 90% CL (9.6)

This result is consistent with the Standard Model predic(iox 10~°) for this decay, and im-

proves upon the previous 90% confidence limi2df x 10~3 by almost an order of magnitude.

9.2 Conclusions

While this result probes into regions which could contaimvrghysics, it does not
approach the predictions of the Standard Model in sensitiCertainly there is substantial
room betweerl x 1075 and2.9 x 10~* in which light Dark Matter candidates or unparticles
could be hiding. Additionally, should new physics be disa@d elsewhere, this channel could
be an effective precision probe of these physics effectsifdifferences between the Standard
Model predictions and effects from these new physics efieetl’(15) system. This is the
case in [6], where Super-Symmetric extensions to the stdmdadel can suppress or enhance
invisible T decays by a factor of 2.

This measurement on tlBABAR data set is most limited by the systematic uncertainty
on the expectation of the peaking background. Certainlymbet direct way to improve this
measurement will be by creating a more hermetic detectoetd device close to the beam pipe
to detect leptons fror'(15) — ¢*¢~ decays would drastically reduce this problem. Trigger
efficiency for low energy pions would also be extremely benaffito this analysis, allowing
a larger collection of’(15) mesons from the same number2(3.5) decays. In addition to

improving this analysis, though, that triggering abilitpwd allow the measurements of other
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invisible 7" decays through their dipion transitions. We cannot perftnis analysis either on
the transitionl’(3S) — n "7~ (7(25) — invisible) or 7(25) — 7t7x~ (Y (1S) — invisible)
due to the low energies of the pions in those decays. As tlienmany interactions which have
two low energy pions as a final state (as shown in the largepeaiing background to our
analysis), an approach must be developed to to remove thestseor the triggering rate will
be much too large. For example a dependence ompithef the dipion system could be used
to veto the vast majority of background coming from two pimotosion but allowing through
almost all signal events. These consideration might bentake account by those developing

detectors for future high luminosity factories.
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Appendix A

7(1S) — invisible candidate variables, without

a pre-cut on pr

In section 5.1, we showed plots of candidate variables fetfilS) — invisible
analysis. These plots required events in the sideband slgtegl MC, and generiz’(3.S) MC
to pass the invisible signal selection, and have a presgut- 0.1 GeV/c. We here show, for

completeness, the variables without such a pre-cut.
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Figure A.1:|cos(0,, )|, wheref,.. is the lab polar angle of the dipion system, compared between
signal MC (blue, unshaded histogram), sideband data (lpagks), andr’(3S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for

a pure comparison of the shape.
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Figure A.2: The dipion vertex probability, compared betwsegnal MC (blue, unshaded his-
togram), sideband data (black points), ah@S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
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Figure A.3: A boolean that is true if either pion passes eKWleose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure A.4: A boolean that is true if either pion passes muBBHLoose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure A.5: A boolean that is true if either pion passes KKMNaose, compared between
signal MC (blue, unshaded histogram), sideband data (lpagits), andl’(3.S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure A.6: The number of ChargedTracks in the event, coethbhetween signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.

167



e L LR
= Y(3S) Generic MC

1200

— 7't + invisible MC
1000
—e— Sideband Data
800
600
400

200

02 04 06 038 1 12 14
Total Extra Neutral Energy

o
o

Figure A.7: The extra neutral energy, compared betweemkM@ (blue, unshaded histogram),
sideband data (black points), alid3S) generic MC (grey, shaded histogram). All distributions
are normalized to the yield in the sideband data, for a pungpesison of the shape.
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Figure A.8: The CM energy of the highest-energy cluster, garad between signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Figure A.9: The mass of the highest-momentum (CM frame)raéptir, compared between
signal MC (blue, unshaded histogram), sideband data (lpagks), andr’(3S) generic MC
(grey, shaded histogram). All distributions are normalize the yield in the sideband data, for
a pure comparison of the shape.
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Figure A.10: The cosine of the angle (CM frame) between tiygdst energy neutral and the
normal to the plane of the dipion system, compared betwagrasMC (blue, unshaded his-
togram), sideband data (black points), ai®S) generic MC (grey, shaded histogram). All
distributions are normalized to the yield in the sidebanthdéor a pure comparison of the
shape. Events which do not have any extra photons are dafaoltl.1 and are not shown on

this plot.
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Figure A.11: The multiplicity of EMCK? candidates, compared between signal MC (blue,
unshaded histogram), sideband data (black points),Yd8d’) generic MC (grey, shaded his-
togram). All distributions are normalized to the yield ietsideband data, for a pure comparison
of the shape.
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Appendix B

Understanding Effects of Variable

Correlations on ;Plots

The following appendix deals with understanding the effextcorrelations in data

on ;Plots and how that effect can be removed frgflotsof MVA inputs.

B.1 Toy Monte Carlo used to understand the effect of correlabns

in data on ;Plots

In our analysis, we fit in one variable and ug&ots to project out the distribution in
another variable. If there is a correlation in the data betwibe two variables, this can have an
effect on the projected distribution that would not be expédf the correlation is not taken into
account. This means that when we project out the signalquoati the data, there is a distortion

being applied by the interaction of th&lot procedure and the correlations between the two
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variables in the data.

In order to see if this effect can cause a significant problemgcreate a toy Monte
Carlo experiment with two variables: @ndy) where there is a significant correlation in the
background and no correlation in the signal. In this experite € [0,1] andy € [—1,2.5]

and the two PDF's are:

_@=1/2)?  (y-1/2)°
fsignal = e 2(0.01)2 2(0.1)2 (B.l)

_ =(a1/2))?
fbackground =€ 20-1) (B.2)

A plot of the signal is shown in Fig. B.1 with a zoomed versioriig. B.2. A plot of

the background is shown in Fig. B.3. The correlation coeffitof Equation B.2 i§.24.
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Figure B.1: Plot of eq. B.13 € [0, 1] andy € [—1, 2.5]
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Figure B.2: Plot of eq. B.13 € [0.4,0.6] andy € [0.2,0.8]
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Figure B.3: Plot of eq. B.2; € [0, 1] andy € [—1,2.5]
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B.2 Toy Monte Carlo Experiment Results Part 1- Proof of Concet

The first run of this toy experiment has 1,000 signal events#hH000 background
events (experiment 1). The signalincan be seen in fig. B.4, the background can be seen in

fig. B.5, and their sum can be seen in B.6.
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Figure B.4: Toy Monte Carlo signal simulation - experiment 1

We can then apply the/Veighting procedure and derive a function (Fig. B.7) of the
signal; Weight in terms ofz. Then we can look at the real and sigp@eighted distributions
in they variable. The signal (Fig. B.8), background (Fig. B.9), anth (Fig. B.10) can be seen
to change as we expected, and introduce a large discrepamoyttie true signal distribution in

the sPlot.
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Figure B.5: Toy Monte Carlo background simulation - expeninl
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Figure B.6: Toy Monte Carlo combined simulation - experitnen
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Figure B.7: Toy Monte Carlo signaWeight as a function of dipion: - experiment 1
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Figure B.8: Toy Monte Carlo signal simulation jnraw (above) and signatPlot (below) -
experiment 1
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Figure B.9: Toy Monte Carlo background simulatioryiraw (above) and signaiPlot (below)
- experiment 1

Events /(0.035)
w
a
o

-0.5 0

Events /(0.035)

Figure B.10: Toy Monte Carlo combined simulatioriimaw (above) and signalPlot (below)
- experiment 1
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B.3 Toy Monte Carlo Experiment Results Part Il - Smaller Sigral

We can run the same toy with 1,000 signal events and 100,@0@twaund events (ex-

periment 2). Plots similar to those in sec. B.2 can be seeg.iBfil1,B.12,B.13,B.14,B.15,B.16,B.17
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Figure B.11: Toy Monte Carlo signal simulation - experim2nt
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Figure B.12: Toy Monte Carlo background simulation - expemt 2
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Figure B.13: Toy Monte Carlo combined simulation - expern2
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Figure B.14: Toy Monte Carlo signalWeight as a function of dipiorr - experiment 2
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Figure B.15: Toy Monte Carlo signal simulation gnraw (above) and signalPlot (below) -
experiment 2
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Figure B.16: Toy Monte Carlo background simulatioryiraw (above) and signalPlot (below)

- experiment 2
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Figure B.17: Toy Monte Carlo combined simulatioriimaw (above) and signalPlot (below)

- experiment 2
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B.4 Toy Monte Carlo Experiment Results Part Il - Larger Signal

We can run the same toy with 50,000 signal events and 10,06Kglaund events
(experiment 3). This is similar to the case for our 1 leptomgle where there is very little
background and we find good agreement between data and Marite €lots similar to those
in sec. B.2 can be seen in fig. B.18,B.19,B.20,B.21,B.23B24. The effect from the back-
ground is greatly reduced. In a simulation with 100,000 aigmd 10,000 background events,

the effect is invisible.
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Figure B.18: Toy Monte Carlo signal simulation - experimant

186



Events/(0.01)
=
N
o
——
=
——
——
——
|III|

o

01 02 03 04 05 06 07 08 09 1
X

Figure B.19: Toy Monte Carlo background simulation - expemt 3
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Figure B.20: Toy Monte Carlo combined simulation - expermn@
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Figure B.21: Toy Monte Carlo signalWeight as a function of dipiorn: - experiment 3
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Figure B.22: Toy Monte Carlo signal simulation gnraw (above) and signalPlot (below) -
experiment 3
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Figure B.23: Toy Monte Carlo background simulatioryiraw (above) and signalPlot (below)
- experiment 3
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Figure B.24: Toy Monte Carlo combined simulatioriimaw (above) and signalPlot (below)
- experiment 3
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B.5 Toy Monte Carlo Experiment Results Part IV - Less Corre-

lated Background

We can change the toy experiment so that the correlatioreimétkground is much
weaker. We redefine the background function to be
_ (y—(0.05241))?
fbackground =e€ 2. (B.3)
The correlation coefficient of Equation B.3(19036. A plot of this function can be

seen in Fig. B.25.

Figure B.25: Plot of eq. B.3; € [0,1] andy € [—1,2.5]

We generate 1,000 signal and 100,000 background eventsriggnt 4). We have
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seen that in our real data, there is a correlation betweemthg;; and the dipiortos(#) angle,
and this may be accountable for the change in projectioneshBfots similar to those in sec.

B.2 can be seen in fig. B.26,B.27,B.28,B.29,B.30,B.31,B.32
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Figure B.26: Toy Monte Carlo signal simulation - experimént
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Figure B.27: Toy Monte Carlo background simulation - exmpemnt 4
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Figure B.28: Toy Monte Carlo combined simulation - experitré
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Figure B.29: Toy Monte Carlo signaWeight as a function of dipior: - experiment 4
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Figure B.30: Toy Monte Carlo signal simulation gnraw (above) and signalPlot (below) -
experiment 4
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Figure B.31: Toy Monte Carlo background simulatioryiraw (above) and signalPlot (below)

- experiment 4
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Figure B.32: Toy Monte Carlo combined simulatioryimaw (above) and signalPlot (below)

- experiment 4
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B.6 Conclusion of,Plots Toy Monte Carlo

Correlations in the variables involved in,Rlot can have real effects on the distribu-

tion, and we should study this in out data sample.

B.7 Removing Correlation Corrections from Dipion cos(6)

Since we have observed a correlation betwegp.,; and the dipiorcos(6) variables
in our data, we wish to correct for this effect in ailots. While we have a simulated sample
that predicts the peaking background distribution, we dohaee a similar simulation for the
non-peaking background. However, we do have the sidebaadadach we used to create our
MVA and which is included in our maximum likelihood fit of the@ggal and background shape.
We can take this sideband and use it to fit an estimate of thiegb@mand distribution in the
signal region.

After performing this fit, we use the extrapolated distribatto estimate what effect
the correlation has on théPlot of peaking background. This distortion can then be removed

from the,Plot to compare directly with our simulation.

B.8 Fitting the Background Distribution

While it is difficult to create a two dimensional p.d.f of the...,;; vs. cos(f) distri-
bution, it is not difficult to define slices its(#) and fit them,....;; distribution as a polynomial.
We dividecos() into 10 bins, and perform an independent fit in each bin. Taisle seen in

Fig. B.33, B.34, B.35, B.36, B.37, B.38, B.39, B.40, B.41d &42.
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Figure B.33:m¢c0i fit, cos(0) € [—1.0, —0.8]
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Figure B.34:m,.co; fit, cos(6) € [—0.8,—0.6]
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Figure B.36:m.c0i fit, cos(6) € [—0.4, —0.2]
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Figure B.37:mccoq fit, cos(0) € [—0.2,0.0]
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Figure B.38:m.cc0i fit, cos(6) € [0.0,0.2]
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Figure B.39:m,.cc0i fit, cos(6) € [0.2,0.4]
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Figure B.40:mccoq fit, cos(0) € [0.4,0.6]
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Figure B.41:m,.cq0 fit, cos(6) € [0.6,0.8]
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Figure B.42:m.ccoy fit, cos() € [0.8,1.0]
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B.9 Adding ;Weighting to the Fitted Background p.d.f

From our complete maximum likelihood fit, we derive a funotiof signal;Weight
in terms of m,..oi (Fig. B.43). We can then take this function and multiply it tme p.d.f
of the background that we have just derived (Sec. B.8) in itpeas region for each bin in
cos(f) to create a p.d.f of signalWeights. This is multiplied by the number of non-peaking
background events predicted to be in the signal region tafiadotal expected signgiWeight
contributed by the non-peaking background in the signabrefpr each bin ofcos(6) (Fig.
B.44). Similarly, the sum of the square of the sigpEVeights is calculated to compute the
errors as\/> . (sWeight)2. These are conservative errors, as there is no consideatioow

fitting through the signal region might effect the results.
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Figure B.43: SignalWeight as a function ofn, ...
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Figure B.44: Result ofos(0) slice fitting and signalWeighting with errors calculated as the
square root of the sum of the signdeights. This represents the expected contribution to the
sPlot from the non-peaking background in the signal region.
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B.10 Total Non-Peaking Background Distortion

Now that we have the distribution of the signd/eights in the signal region (Fig.
B.44), we add the signaWeighted sideband data (Fig. B.45) and find the distortion introduced

by the background correlation (Fig. B.46).
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Figure B.45: SignalPlot of the sideband data. This is contribution to {ffot from the data
in the sideband region
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Figure B.46: Distortion to signatPlot from m,....;; andcos(6) correlation (sum of Fig. B.44
and B.45). This is the expected sign@iot from the non-peaking background distribution in
both the sideband and signal region. It is subtracted fransitnal, Plot of the full data set to
arrive at the signalPlot of the peaking background distribution (Fig. B.47)
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B.11 Correcting the /Plot

We can now subtract the calculated distortion to the sig#dbt from the signal
sPlot of the unblinded data and compare it to the sigrfalot of the Monte Carlo simulation

of the peaking background. This is displayed in Fig. B.47.
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Figure B.47: Uncorrected data sign&lot in dark blue with triangular markers, corrected data
signal Plot in black with circular markers, Monte Carlo simulation ofmpeaking background
signalsPlot in Cyan histogram.
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