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Chapter One

Introduction



2

The past hundred years has seen the birth and development of two successful and

far-reaching theories in physics. Cosmology describes the structure and evolution on

the largest scales while the Standard Model of particle physics explains the interac-

tions between elementary particles. Both theories have proven to have remarkable

explanatory power when applied to diverse observations.

For most of the twentieth century these fields proceeded in parallel, each without

input from the other. By the 1970s both cosmology and particle physics stood on

solid experimental foundations. However, the standard cosmological model appeared

to require the existence of a new type of matter in great abundance: dark matter

dominated the structure, dynamics, and stability of galaxies. Around the same time

several conceptual conundrums of the Standard Model could be solved by extensions

which predicted the existence of new species of particles at the weak scale. Perhaps

these candidate theories could explain the cosmic dark matter as well.

Beginning in the 1970s and 1980s a remarkable confluence between disciplines

began and serious consideration arose about the microscopic nature of dark matter.

If it was a new particle, what were its properties? How did it fit into the current

taxonomy of elementary particles and how did it interact with them? Could experi-

ments and observations be performed that would reveal the nature of dark matter?

The modern field of astroparticle physics seeks to answer this question. In this the-

sis I will describe progress toward understanding the nature of dark matter particle

through astrophysical observations.



3

1.1 Cosmology is applied physics

Modern cosmology is an edifice built out of a collection of interdependent theories.

In fact, cosmology has never been a fundamental branch of physics in the manner

of electromagnetism or quantum theory. It does not postulate the existence of new

physical objects (like electromagnetic fields and wave functions) and new dynamical

laws that describe them. It does not require us to alter our interpretations of reality

as we must do to conceive of relativistic spacetime or that the world is described by

superpositions of quantum states. At an essential level, cosmology is the application

of general relativity, thermodynamics, nuclear physics, and particle physics within

the framework of an expanding universe.

For example, our modern cosmological model is based on the simple “Cosmologi-

cal Principle” that space is homogeneous and isotropic [5], an assumption well borne

out by observation [e.g. 6]. We know that general relativity governs the dynamics of

space on large scales and so we are immediately led to equations governing the struc-

ture and evolution of such symmetric spacetimes [7–9]. The spacetime is described

by the Friedmann metric which contains a single dynamical quantity, the scale factor

a(t). The scale factor governs how the proper distance between two freely-falling ob-

servers (e.g. those living in “typical” galaxies) changes with time. Generically, a(t)

is not constant but grows over time. The observational consequence is an apparent

expansion of the Universe: distant galaxies appear to recede from us, and the more

distant the galaxy, the faster it recedes [10, 11].

The time-evolution of the scale factor is determined by the contents of the Uni-

verse — the energy densities of matter, radiation, and dark energy — through the
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Friedmann equation

H2(t) +
kc2

a2(t)
= H2

0

ρ(t)

ρcrit

, (1.1)

where H = ȧ/a is the Hubble constant, H0 is its value today, ρcrit = 3H2
0/(8πG)

is the critical density of the Universe today, k = −1, 0, or 1 describes the intrinsic

curvature of space, and ρ(t) quantifies the energy density in the various constituents

of the Universe; it is the sum of the densities of all types of particles, radiation, and

dark energy (or an effective density due to a cosmological constant). We will use

the notation Ωi = ρi/ρcrit, where i labels a component contributing to the energy

density (e.g. non-relativistic matter, photons), and ρi is the value of the density at

the present time.

Every species of particle we know of is present in the Universe to a greater or

lesser extent and contributes to the total ρ(t). Therefore, the balance of species in

the Universe controls the expansion rate. On the other hand, the expansion history

affects the particle content through thermodynamic processes (e.g. changing den-

sity and temperature) coupled with particle interactions (e.g. particle-antiparticle

creation and annihilation, Coulomb scattering, and nuclear fusion and decay). This

interplay between the dynamics of spacetime and the contents of the Universe pro-

vides a fertile framework for making testable predictions.

1.2 A combination of concordant theories

There are a number of individual theories which explain various aspects of the observ-

able Universe. All of them rely on a set of basic ingredients. Observations show that

on the largest scales the Universe is homogeneous, isotropic, and can be described

by a spatially flat metric (k = 0 in Eq. 1.1). The matter in the Universe is composed
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of photons, “baryons”1 (protons, neutrons, electrons and positrons), three neutrino

species, and cold dark matter. The dark matter, as far as existing observations have

constrained it, is a phenomenological category and does not involve any microscopic

understanding of particle interactions. In the standard cosmological model, cold dark

matter is some substance which couples to the metric (has gravitational mass) and

has no known interactions either with itself or with particles of the Standard Model.

It is “cold” in the sense that it behaves as a non-relativistic fluid with small velocity

dispersion at least as far back as the time when the Universe had a temperature

T & MeV. While all extant observations are consistent with dark matter having no

interactions with the Standard Model this is not required. In fact, discovering such

interactions will be key if we wish to have a microscopic understanding of the nature

of dark matter — an idea that will concern us over the next hundred or so pages.

Along with a set of initial conditions on the nature of metric and curvature per-

turbations in the early Universe, these ingredients suffice to compute a multitude of

effects. The particulars of these effects depend on the various values of the cosmolog-

ical parameters (e.g. on the abundance of baryons Ωb or of cold dark matter Ωc). At

the present time, all cosmological observations can be explained by a particular set of

these values. That is, a diverse abundance of phenomena support a common model.

In this model Ωc is required to be greater than 0 with extremely high confidence. In

fact, baryonic matter makes up only about 15% of all matter (Ωb = 0.183 Ωc) [12].

In the following sections I will review the combination of independent probes,

spanning vast spatial scales and all temporal epochs, that together provide firm evi-

1When discussing the energy density of normal matter (e.g. non-relativistic particles of the
Standard Model) I will refer to all such matter as baryons. While leptons (electrons and Standard
Model neutrinos) play a vital role in many cosmological phenomena, their contribution to the
energy density is negligible compared with that of the protons and neutrons. The energy density of
non-relativistic particles is equivalent to their mass density. The neutrality of the Universe requires
equal numbers of protons and electrons but the mass of a nucleon is ∼ 1800× that of an electron.
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dence for the standard cosmological model, including the existence of a vast amount

of cold dark matter in the Universe.

1.2.1 Big bang nucleosynthesis and the concept of freeze-out

The light atomic nuclei were built up by nuclear processes during the seconds and

minutes after the big bang [e.g. 13–20]. Therefore, measurements of the abundances

of these elements are a direct probe of the conditions in the Universe at these early

times. The following description of big bang nucleosynthesis serves two purposes.

First, the theory allows for the determination of the total baryonic matter density,

therefore pointing to the existence of additional (dark) matter. Second, big bang

nucleosynthesis illustrates the concept of the freeze-out of particles as they decouple

from thermal equilibrium. In Sec. 1.3.3, I will describe how this freeze-out mechanism

can naturally explain the abundance of dark matter in the Universe.

When the temperature of the Universe is above about2 1 MeV protons and neu-

trons are kept in equilibrium by the weak interactions:

n + νe 
 p + e− n + e+ 
 p + ν̄e (1.2)

Equilibrium between particles is maintained as long as the relevant reaction rates

are sufficiently fast. The cosmological expansion provides a natural timescale to

compare with a given reaction rate: the Hubble parameter H = ȧ/a is a measure

of the instantaneous expansion rate. Intuitively, if the reaction rate Γ for a process

2It is important to note that nuclear interactions at MeV energies are quite well understood
and tested experimentally on Earth. The early Universe is simply a particular laboratory in which
nuclear reactions took place, the only intricacy being the concurrent expansion of space.
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is larger than H the process occurs many times before the Universe can appreciably

expand. If Γ � H the process will not have a chance to occur before the present

day. This is handwaving but the intuition is correct. A thorough analysis based

on the Boltzmann equation makes the analysis rigorous and bears out this simple

interpretation (see discussion in Sec. 1.3.3.

Conditions for equilibrium change because of the Universal expansion. The Hub-

ble parameter is a dynamical quantity. So is the reaction rate Γ = nT 〈σv〉, where

nT is the number density of target particles and 〈σv〉 is the velocity-averaged cross

section for the process [e.g. 9, 21]. Both factors in Γ can change with time; in par-

ticular, 〈σv〉 changes because the velocity distribution of a species is a function of

its temperature.

In the case of big bang nucleosynthesis the relevant reactions are those shown in

Eqs. 1.2. The reaction rate for these processes is Γn↔p ∝ T 5, while the expansion

rate in the radiation dominated era is H ∝ T 2 (where T is photon temperature).

Thus, as the temperature drops the reaction rate falls below the Hubble rate and

this occurs around T ∼ 1 MeV.

From this time on, the abundance of protons and neutrons are not determined

by equilibrium statistics and neutrons will either become bound up in nuclei or

decay. The buildup of nuclei proceeds through various reaction networks, which

in the process produce (among other nuclei) deuterium, lithium, and helium. The

formation of these nuclei does not begin until about a minute after the big bang,

when the temperature of the Universe is far below the binding energy of nuclei. This

is because the high density of radiation photo-dissociates nuclei as soon as they form

and the formation can only proceed once the temperature is sufficiently low. The

key point is that the abundances of nuclei are controlled by the baryon-to-photon
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ratio η. Accurate measurements of the cosmic microwave background temperature

(hence the photon density), allow a conversion between η and the cosmic density of

baryons Ωb.

One can predict the fraction of baryonic mass in the form of 4He (and other

nuclei) as a function of η. When the helium fraction is measured (e.g. in extremely

metal-poor galaxies and gas clouds) it is found to be Yp = 0.249± 0.009 [20, 22–25],

corresponding to a particular value of η. The measured abundance of deuterium is

more sensitive to η and is found to be in excellent agreement with the value derived

from the helium abundance [e.g. 26–28].

1.2.2 Cosmic microwave background

Even after nucleosynthesis took place the temperature of the primordial Universe

was still too high to allow the recombination of electrons with nuclei into neutral

atoms. When the temperature dropped below ∼ 0.3 eV the ionized plasma became

neutral [e.g. 29–31]. Shortly thereafter, photons stopped scattering off of electrons

and travelled freely, making the Universe “transparent”. As with nucleosynthesis,

these events are governed by the balance between cosmic expansion and cooling and

the time scales for particle interactions (in this case Thompson and Compton scatter-

ing of photons on electrons and the ionization-recombination of neutral hydrogen).

This entire process — from ionized to neutral along with the photon decoupling —

occurred over a rapid timescale and the free-streaming photons can be observed to-

day in the form of the cosmic microwave background (CMB). The detection of this

relic radiation [32, 33] was a major achievement in support of the big bang and the

thermal picture of the Universe.
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Because the recombination process took place over such a short period, the mi-

crowave background radiation we observe today was essentially emitted from a very

thin shell. Therefore, the image of this radiation represents a snapshot of the early

Universe. The linear growth of primordial perturbations [e.g. 9, 34] leaves a charac-

teristic imprint on temperature fluctuations of the CMB [35, 36]. Thirty years after

the discovery of the CMB the anisotropies induced by gravitational perturbations

were measured by Smoot et al. [37]. The key observable is the correlation function

of temperature anisotropies across the sky. This is represented as a power spec-

trum (correlation as a function of wavenumber). Recent studies of the shape of this

power spectrum [e.g. 38, 12, 39, 40] have led to impressively precise measurements

of cosmological parameters.

The physics governing the structure of the CMB anisotropies can be solved nearly

exactly because, at the relevant times and observable angular scales, perturbations

were small enough to be treated by first order perturbation theory to an excellent

approximation. The mathematical structure describing the growth of perturbations

is quite similar to that of a harmonic oscillator [34, 41]. The Universe was seeded with

metric perturbations at very early times. When a perturbation enters the horizon it

begins to grow due to gravitational collapse. The perturbation attracts matter and

radiation. However, radiation pressure of the photons resists the collapse. The result

is that the amplitude of the perturbation behaves similarly to a harmonic oscillator.

Baryonic matter, tightly coupled to radiation by Compton scattering, is analogous

to the mass of the oscillator. That is, it affects the amplitude of the oscillations.

Cold dark matter, on the other hand, interacts with the photons and baryons only

through gravity and is therefore much more weakly coupled to the photons. The

complex (but treatable) balance between metric perturbations and matter/radiation

perturbations is partially tuned by the abundances of the various components (e.g.
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Ωc, Ωb). The latest results from the Planck collaboration indicate that Ωc = 5.451 Ωb

— there is a matter component in the Universe which does not couple to photons in

the way that baryonic matter does.

1.2.3 Structure

The observational confirmation of the theories of big bang nucleosynthesis and CMB

anisotropies do far more than reveal the presence of dark matter in the Universe.

They give insight into physical processes which took place when the Universe was

very young. In contrast, dark matter makes its presence known through the dynamics

and formation of structure at the present time. In fact, evidence that there is unseen

mass in galaxies and galaxy clusters predated the precision measurements discussed

earlier [e.g. 42–46].

The visible Universe we see today is populated by galaxies which are arranged

into groups and clusters. The kinematics of the visible material in these objects

is governed by all the mass in the system, not just the baryonic mass. Generally,

one studies the distribution of visible matter through optical observations and com-

pares this to total mass inferred from dynamics. For instance, the light emitted by

a galaxy is a tracer of its baryonic mass, and the cataloguing of stellar populations

allows a more or less robust correspondence between baryonic mass and luminosity.

For galaxy clusters, most of the baryonic mass is in the form of hot x-ray emit-

ting gas. The temperature and luminosity of the gas can be related to its density

and pressure using relatively straightforward thermodynamics. The assumption of

hydrostatic equilibrium of the system leads to conclusions about the gravitational

pressure exerted by the total mass in the cluster. Gravitational lensing induced by

a cluster can also be used to determine its total mass, metric deformations being
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insensitive to the type of mass in the system. Recently, colliding clusters of galax-

ies have been studied which show a clear separation between the baryonic gas and

the dark matter [47–49]. As the clusters passed through each other the gas, being

a collisional system, is disrupted and bow shocks form. Mass maps made through

lensing, on the other hand, show that the non-interacting dark matter halos of the

two clusters passed directly through each other. In general, a vast array of astro-

physical systems all show the presence of an unseen and non-interacting cold dark

matter component [e.g. 50–53].

1.2.4 Dark matter is cold

Currently, all the evidence we have about dark matter comes only by virtue of its

gravitational attraction with itself and with normal matter and radiation. A vital

clue that may point toward the nature of dark matter is the evidence that dark

matter in the Universe is cold, i.e. it behaves as a non-relativistic particle. This is a

requirement of the theory of structure formation. In order to reproduce the observed

power spectrum of density fluctuations at small scales dark matter must have a very

small velocity dispersion. If dark matter posses significant velocities (i.e. is hot)

small-scale structure will be unable to form. The upshot would be a suppression

of the matter power spectrum at small scales [e.g. 54–57]. Simulations also confirm

this requirement of minimal velocity dispersion [e.g. 58–60]. The concept of “warm”

dark matter is viable, though constraints on its abundance exist [e.g. 61–65]. The

constraints on the primordial velocity dispersion of dark matter can directly translate

to requirements on its particle mass in individual theories [e.g. 61].
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1.3 Astroparticle physics: What is dark matter?

I don’t know — but this thesis documents progress towards answering the question.

The wealth of cosmic observations over the past century firmly establishes the ex-

istence of dark matter in the Universe. In fact, dark matter’s fundamental role in

cosmology is matched only by its conspicuous absence from the very successful Stan-

dard Model of particle physics. Any explanation of the nature of dark matter will

require new physics beyond the Standard Model. What sort of particle is the dark

matter and how does it interact with those of the Standard Model? These central

questions, lying at the boundary of astrophysics and particle physics, are the subject

of a vast contemporary experimental and observational effort.

The convergence of the fields of astrophysics and particle physics began as the

Standard Model was becoming confirmed experimentally. A number of problems and

coincidences were quickly identified which all seemed to point toward the existence

of new physics at the weak scale. Such theories generally entail existence of a new

particle having properties consistent with cosmic dark matter. Furthermore, the new

particle will have (feeble) interactions with the Standard Model, which directly leads

to the prospect of detection and discovery.

1.3.1 Example: Supersymmetry

From an internal consistency perspective, the naive Standard Model seems to require

extreme fine-tuning to keep the mass of the Higgs boson light [e.g. 66]. The elec-

troweak symmetry breaking mechanism contains a parameter associated with the

Higgs mass, a quantity directly measured to be 125 GeV [67, 68]. However, one
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expects this mass parameter to receive quantum corrections from virtual loops of all

particles to which the Higgs couples (quarks and leptons in particular). The cor-

rection from each such loop is quadratically divergent unless cut off at some energy

scale, e.g. when some new physics becomes important. The next energy scale we

know of above the electroweak scale is the Planck scale, about 17 orders of magnitude

larger than the Higgs mass. Therefore, each quark and lepton contributes a term of

order 34 orders of magnitude to the (squared) Higgs mass. In order to have a 125

GeV Higgs, these terms would have to cancel with a stupendous degree of precision.

This exact canceling does arise naturally if the Standard Model is extended to

include supersymmetry (SUSY). In analogy to CP symmetry which relates particles

and antiparticles, SUSY is a symmetry between fermions and bosons. This implies

at least a doubling of the number of particles: every particle has a supersymmetric

partner with spin different by 1/2. Members of a pair (or multiplet) will exactly

cancel each other’s corrections to the Higgs mass (up to a logarithmic divergence) [e.g.

69]. For consistency with experimental constraints, SUSY particles need to be heavier

than their Standard Model partners — i.e. SUSY must be broken. Again, to keep

the Higgs mass where it is, this breaking scale must be around the weak (TeV) scale.

The lightest of these SUSY particles have a mass at this scale and must also be stable,

protected from decaying into Standard Model particles by so-called R-parity [70, 71].

This symmetry prevents lepton number and baryon number from being violated in

supersymmetric extensions to the Standard Model (e.g. SUSY without R-parity

allows proton decay). Thus SUSY provides a dark matter candidate: the lightest

SUSY particle is a stable particle with a mass at the weak scale, a so-called WIMP.
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1.3.2 WIMPs

Supersymmetry is but one of a number of extensions to the Standard Model that

provide a dark matter candidate. I will not describe this zoo of theories in detail —

see, for example, Bertone et al. [72, Sec. 3] — but there is a general, phenomeno-

logical class of models which arise in many different theories. These are the weakly

interacting massive particles (WIMPs); massive, in this case, referring to particles

in the GeV to TeV range. While often predicted from the particle physics world,

WIMPs are, in some sense, a natural candidate from a cosmological perspective.

The process of freeze-out predicts that WIMPs should exist today in significant

abundance. Perhaps more importantly, the two properties (GeV masses and weak

interactions) immediately imply a number of potential observable phenomena. In

fact, nearly all the experimental probes search for a signal that depends simply on

the mass of the particle and its various interaction cross sections. This class of mod-

els is therefore characterized by a very small set of parameters, making experimental

and observational results relevant to a large class of models.

1.3.3 Relic abundance

As early as 1965 Zel’dovich had begun to tackle the issue of the relic abundance of

new massive particles [73, 74]. In the West it would take another decade before the

problem was taken up in earnest [e.g. 75–83, 21, 84]. As discussed in Sec. 1.2.1, the

abundance of a species of particle is determined by balancing the expansion rate of

the Universe with the rate of interactions keeping the particle in equilibrium. Here I

will give a more thorough description of the calculation of the relic abundance. The

result connects the (measurable) abundance of dark matter Ωc with its annihilation
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cross section 〈σAv〉. Thus cosmological measurements provide us with a quantitative

estimate of a WIMP’s interaction with the Standard Model.

The argument is powerful and general because it makes very minimal assump-

tions. Assume that a WIMP exists — i.e. there is some new particle χ which

participates in weak interactions and has a mass & O(GeV). By virtue of its weak

interactions, it has some cross section for annihilation with its antiparticle into Stan-

dard Model particles. Likewise, there is the chance that given enough energy, a col-

lision of Standard Model particles can produce a χχ̄ pair. At early enough times,

the temperature of the Universe is larger than the mass Mχ of the new particle and

χχ̄ pairs are continuously being created and destroyed. During this time the number

density of χ is governed by simple equilibrium thermodynamics,

n = nR =
3ζ(3)

4π2
gχT

3,

where n is the local number density (number of χ per volume), ζ(3) ≈ 1.2 is the

zeta function, T is the temperature of radiation in the Universe (i.e. the photon

temperature), and nR is the equilibrium number density for a relativistic particle

(T �Mχ) [9]. The quantum degrees of freedom gχ depends on what type of particle

χ is. If χ is a Majorana fermion with spin 1/2 then gχ = 2 (in this case χ is its own

antiparticle).

As the Universe cools, and the temperature falls below Mχ, the creation process

no longer takes place because the average collision of Standard Model particles does

not have enough energy to produce χχ̄. The abundance n begins to drop expo-

nentially as the temperature decreases. It is important to note that this is still an

equilibrium process — the annihilation rate and the Standard Model particle colli-

sion rate are large relative to the Hubble rate H = ȧ/a. In this regime the number
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density goes as,

n = nNR = gχ

(
MχT

2π

)3/2

exp

(
−Mχ

T

)
,

where nNR is the equilibrium number density for a particle when the temperature is

much less than the particle mass.

At some later time the annihilation rate drops below the expansion rate. After

this point (known as freeze-out) χ particles can no longer find each other and anni-

hilate. The system goes out of equilibrium and from this time forward the comoving

number density of χ is constant. The physical number density today is simply

n0 = nf

(
af

a0

)3

, (1.3)

where nf is the physical number density at freeze-out and af (a0) is the scale factor

at freeze-out (today).

The present day abundance Ωχ has simple dependencies on the phenomenological

parameters Mχ and 〈σAv〉. First, Ωχ is inversely proportional to 〈σAv〉. It is easy to

qualitatively understand this behavior. After χ becomes non-relativistic its abun-

dance starts to drop until the annihilation rate becomes too small. The annihilation

rate (per particle) is given simply by

Γ = n〈σAv〉. (1.4)

The larger 〈σAv〉 the more time it takes before the annihilation rate becomes small.

More χχ̄ pairs will have had time to annihilate and the total abundance will be

lower.

Second, Ωχ is independent of the mass of the WIMP. This is not an exact re-
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sult but holds to an excellent precision over a wide range of WIMP masses. To see

how this comes about one can perform the very simple derivation of the relic abun-

dance layed out in Jungman et al. [69, Sec. 3.1]. Freeze-out takes place once the

annihilation rate drops below the Hubble rate. Using Eq. 1.4 this condition is

H = n〈σAv〉 when T = Tf . (1.5)

I assume that 〈σAv〉 is independent of time (equivalently temperature), an assump-

tion I will return to later. The above equality determines nf , the abundance at

freeze-out. Equation 1.3 is then used to evolve nf forward to today to find n0. All

that needs to be done is relate H and a to the temperature.

Matter-radiation equality occurs at a temperature of a few eV but the freeze-out

process occurs when the temperature is approximately Tf ≈Mχ/20 [69]. Therefore,

freeze-out takes place during the radiation dominated era of the early Universe.

Inserting the energy density of blackbody radiation into Eq. 1.1 allows the Hubble

rate to be written in terms of temperature:

H = 1.66g1/2
∗

T 2

MPl

, (1.6)

where MPl ≈ 1019 GeV is the Planck mass and g∗ counts the degrees of freedom

of all the relativistic species in the Universe contributing to the energy density at

temperature T [e.g. 9] (it is about 70-100 at the relevant epochs [84, 69, 85]). The

conservation of the entropy of the Universe can be used to relate the scale factor at

freeze-out to the scale factor today. Entropy conservation takes the form s∗a
3T 3 =

const, where s∗ counts the number of degrees of freedom contributing to the entropy
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density [e.g. 9]. Combining Eqs. 1.5 and 1.6 with entropy conservation gives

ρχ = Mχn0 =
1.66

MPl

(
g

1/2
∗f
s∗0
s∗f

)
T 3

0

Mχ

Tf

1

〈σAv〉
. (1.7)

Finally, recall that the freeze-out temperature is proportional to the mass of the

particle, eliminating both Mχ and Tf from Eq. 1.7. Normalizing to the critical

density ρc = 3(100h km/s/Mpc)2/(8πG) we find the relic abundance of the WIMP

Ωχh
2

0.120
=

1.65× 10−26cm3/s

〈σAv〉
, (1.8)

where I have set g∗f = s∗f = 100 [84], s∗0 = 3.91 [86], T0 = 2.725 K [87] and

Mχ/Tf = 20 [69]. The quantity 0.120 is the best-fit value of Ωch
2 from Ade et al.

[12]. The cross section required to explain the observed dark matter abundance is

known as the thermal (relic abundance) cross section. The remarkable fact about the

result in Eq. 1.8 is that 10−26 cm3/s is at the scale of weak interaction cross sections.

Nothing about the microphysics of the χ particle ever entered the calculation, in

particular the strength of its interactions. The cosmological observation of Ωch
2 ∼ 1

itself points to the existence of a WIMP, a particular dark matter candidate. The

effect of this “coincidence” on the direction of experimental and theoretical physics

over the last 30 years cannot be overstated.

Before we move on, I would like to discuss the assumptions and approximations

made in the above exercise. I supposed that χ is its own antiparticle. If this is not

the case then Eq. 1.8 holds separately for χ and χ̄, leading to twice the total dark

matter density compared to when χ = χ̄. In this case, the cross section 〈σAv〉 must

be twice as large in order to explain the observed relic abundance Ωch
2 = 0.120.

In practice, the relic abundance must be calculated by using the Boltzmann
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equation [e.g. 41] to formulate a differential equation for the abundance as a function

of temperature. This procedure correctly takes into account the changing degrees of

freedom g∗(T ) and provides a cross section accurate at the percent level [84].

I took 〈σAv〉 to be a constant, independent of temperature. Because the particles

are non-relativistic at freeze-out the cross section can be expanded as, σAv = a +

bv2 + . . . , where the first term represents s-wave annihilation and the second term

represents a combination of s- and p-wave annihilation [e.g. 69]. These two terms

suffice to treat most possible models. It is certainly possible to compute the relic

abundance for purely p-wave (and higher) interactions but such models will have

cross sections today that are extremely weak — well below the reach of current

probes [84]. The velocity-averaging can be written in a way [21] that allows the

computation of the relic abundance for complicated interactions (e.g. resonances

or poles in the interaction amplitude) where the cross section cannot be simply

expanded in powers of v2.

Finally, the cross section required to reproduce the given relic abundance is not

truly independent of the mass of the particle. For Mχ & 10 GeV the abundance Ωχ

has a logarithmic dependence on the mass and the approximation Ωχh
2 ∝ 1/〈σAv〉

is quite accurate. However, for particle masses below 10 GeV there is a significant

variation due to the decreasing number of relativistic degrees of freedom as the

strongly interacting quark-gluon plasma breaks up into mesons and eventually into

baryons [84, 88].
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1.4 The experimental effort

Weakly interactive massive particle dark matter is an attractive candidate from

the theoretical point of view and if it exists, it exists in the right amount. It is

also a testable theory and a large experimental effort over the past several decades

has sought proof of the WIMP hypothesis. The WIMP category is general enough

that these experiments are sensitive to a wide variety of specific particle models.

WIMP phenomenology is based on three basic properties: particle mass, cross section

for annihilation into Standard Model particles, and cross section for scattering off

Standard Model particles. WIMPs may participate in other interactions and may

have multiple cross sections describing interactions with various particles. But this

simple set of interactions (annihilation and scattering) allows generic predictions of

physical phenomena. If one assumes a specific model (e.g. supersymmetry) precise

calculations can be performed and the masses and cross sections can be related to

each other and to fundamental parameters of the theory.

1.4.1 Annihilation and indirect detection

This thesis is mainly concerned with the detection of WIMPs through the obser-

vations of Standard Model products of dark matter annihilation3 . The search for

WIMP annihilation is well-motivated because of the freeze-out process — WIMPs

must have annihilated in the early Universe to explain their current abundance.

However, the freeze-out mechanism, by its very nature, requires that annihilation

cease after the expansion rate overtakes the per particle annihilation rate. This is

3 Dark matter may also decay into Standard Model particles. The observable consequences
are often quite similar to annihilation, though the details of calculating the expected signal differ.
Generally any experiment designed to search for annihilation can place constraints on theories
predicting unstable dark matter.
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only true if one assumes a homogeneous distribution of matter that becomes more

and more rarified as time goes on. In reality, inhomogeneities grow in the matter-

dominated epoch and structure begins to form hierarchically (that is, small, dense

regions collapse first and subsequently merge into larger halos) [e.g. 89, 29, 41]. In

these overdensities dark matter can continue to annihilate (though never at a rate

which affects its total abundance).

It makes sense, therefore, to seek direct evidence of annihilation in the local Uni-

verse as well as in the structure along any line of sight. The annihilation products can

be observed directly and can emit secondary radiation which can be detected. Most

probes search for high-energy particles as signatures of dark matter — since WIMPs

are typically more massive than Standard Model particles the annihilation products

are relativistic. In all of these searches the principal difficulty is distinguishing a

signal from background. Astrophysical sources, both known and unknown, generate

high-energy cosmic rays which can mimic a dark matter signal. In this section I will

discuss the observational efforts to discover evidence of dark matter annihilation.

Dark matter must be electrically neutral and therefore produces equal numbers of

particles and antiparticles in an annihilation event. In fact, the most likely outcome

is the production of a particle-antiparticle pair. These products are relativistic and

typically create cascades of other Standard Model particles. For instance, a pair of

relativistic strongly-interacting particles (quarks, gluons, gauge bosons) will produce

hadronic jets. These eventually give rise to all stable particles in the Standard Model:

protons, electrons, gamma-rays and neutrinos (and their antiparticles) [90]. Dark

matter annihilation into a pair of leptons again gives rise to all stable particles. The

ratios of the final products depend on the annihilation channel — this is quantified

by the collection of branching ratios Bf , the probability that an annihilation event

produces final state particles f (see Eq. 2.2).
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A vital ingredient required to predict annihilation rates is the distribution of dark

matter in the system of interest (e.g. the Milky Way, nearby galaxies or clusters,

or throughout the Universe). Typically this is done through kinematic analysis of

the visible objects in the system combined with insights from N-body simulations.

As will be seen later, such modeling of the distribution represents a major source of

systematic uncertainty in WIMP constraints derived from astrophysical observations.

Antiprotons

Antimatter searches are attractive because background cosmic rays are dominated by

matter (as opposed to antimatter). In particular, antiprotons make up a tiny fraction

(10−6−10−4 depending on energy) of cosmic rays [91]. They are produced by cosmic

ray spallation on hydrogen atoms [92, 69]. These spallation processes, however, are

unable to produce antiprotons with energies much below a few GeV. Such low energy

antiprotons require a collision with a high energy primary protons but these events

are rare since the proton energy spectrum falls sharply [93]. Antiprotons produced

in WIMP annihilation suffer no such low energy cutoff. The current strongest mea-

surements on the cosmic antiproton flux as well as the antiproton-proton ratio come

from the PAMELA satellite [91, 94]. PAMELA measures the antiproton spectrum

down to 60 MeV and observes the expected cutoff due to an astrophysical formation

mechanism. Donato et al. [95] provide constraints on WIMP models based on the

PAMELA antiproton spectrum. The Alpha Magnetic Spectrometer (AMS) [96] will

soon provide a precise measurement of the antiproton (and perhaps antideuteron)

spectrum.
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Electrons and positrons

Cosmic ray electrons and positrons at GeV energies are extremely subdominant

compared with protons. They lose their energy quickly in Galactic magnetic fields

(traveling only a few kpc) [97] and therefore provide a probe of the local dark matter

distribution. Furthermore, astrophysical uncertainty is minimized because of this

localization.

Two notable features of the positron and electron spectra have been identified in

recent years. The first is the fraction of positrons to electrons as a function of energy

(see [98, Fig. 1] for a comparison of recent measurements). Unlike antiprotons, which

are produced above a certain threshold by spallation, the positron fraction is expected

to decrease with energy [99]. However, several experiments have now confirmed the

surprising result that the positron fraction increases with energy above about 5 GeV.

Of the current generation of detectors, PAMELA provided the first unambiguous

detection of the excess [100]. The Fermi Large Area Telescope (LAT) [101] was able

to make an independent measurement confirming the rising positron fraction to a

slightly higher energy, though with a somewhat offset normalization [102]. AMS

recently published a precision measurement of the positron fraction [103] that agrees

nicely with the PAMELA result (above a few GeV). They also set an upper limit on

the degree of anisotropy of the positron fraction signal.

This unanticipated finding is in stark contrast to conventional hypotheses on

astrophysical sources of electrons and positrons. The feature is consistent with the

injection of equal numbers of electrons and positrons [103] and was immediately

seized upon as a possible discovery of dark matter annihilation (see e.g. [104] and

many more). Dark matter, being cold, can only produce annihilation products with

energies less than the mass of the WIMP. Therefore, an essential signature would be
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the precipitous drop in the positron fraction at an energy equal to the WIMP mass.

At the present time, the fraction continues to increase up to the energy limits that

experiments can probe. In the future AMS will measure the positron fraction to

higher energies, perhaps revealing the characteristic drop at the dark matter mass.

The second unusual feature associated with cosmic ray leptons was first reported

by two balloon-borne cosmic ray detectors ATIC [105] and PPB-BETS [106]. These

experiments measured the spectrum of electrons and positrons and found a signif-

icant “bump” around 400 GeV. Such a sharp feature is difficult to explain using

conventional sources. Two years later Fermi published a more precise measurement

of the total electron-positron spectrum [107] which did not contain such a pronounced

bump. The Fermi spectrum, however, does appear to show some feature in the 200

GeV to 1 TeV range — perhaps a less pronounced bump.

The dark matter interpretation of both the positron fraction and the lepton

spectrum features is somewhat difficult to explain. It would appear to require a

“leptophillic” model, where dark matter annihilated to muons and antimuons or

directly to electron-positron pairs to avoid disturbing the antiproton fraction [e.g.

95]. Furthermore, the annihilation cross section required is at least an order of

magnitude larger than that required to reproduce the dark matter relic abundance.

This concern can be mitigated if the Earth is particularly near a dark matter subhalo.

On the other hand, it appears one or more nearby pulsars could be providing the

requisite numbers of electrons and positrons to account for the positron excess and

lepton spectrum [e.g. 108, 109]. Both hypotheses are the subject of very active

investigation.
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Neutrinos

Detecting neutrino annihilation products is a significant challenge. Beacom et al.

[110] present a conservative upper limit on the dark matter annihilation cross section

by assuming annihilation into neutrinos only. The flux from annihilation throughout

the history of the Universe is calculated and data from three neutrino experiments

is used to constrain any possible model. A more direct search by the IceCube col-

laboration set constraints on the annihilation cross section by searching for energetic

neutrinos from the Galactic halo [111]. These searches are not yet competitive with

other indirect probes but they offer the only prospect of detection if WIMPs an-

nihilate predominantly into neutrinos. In Sec. 1.4.3 I will discuss another exciting

prospect for WIMP detection from neutrinos, but this first requires a discussion of

WIMP scattering.

Gamma-rays

The search for gamma-rays from WIMP annihilations is the main subject of this the-

sis. Photons and neutrinos are distinct from the other annihilation products in that

they are electrically neutral — therefore, they do not bend in the Galactic magnetic

field but travel in straight lines from their sources. This allows targeted searches of

specific locations in the sky. The annihilation rate at some location is proportional

to the square of the dark matter density at that location. High-density, nearby re-

gions are therefore the most attractive targets in principle. However, astrophysical

contaminants are typically more numerous in highly dense regions. There is often a

tradeoff, therefore, between strong signal and low backgrounds.

There are many targets for dark matter searches with gamma-rays. The closest is
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the Galactic center, about 8 kpc away. Numerical simulations uniformly predict that

dark matter halos have central density peaks. However, the exact matter distribution

within such a peak strongly affects the expected annihilation signal. For galaxies, the

central regions are dominated by baryonic matter, which is very difficult to simulate

numerically. The upshot is that the dark matter distribution near the center of

our galaxy is subject to large uncertainties. There is also the issue of astrophysical

backgrounds. The Galactic center is home to a concentrated population of gas clouds,

supernova remnants, and pulsars. Thus it is not surprising that LAT data show

significant gamma-ray emission from the Galactic center. What is more interesting is

recent work showing that the emission is spatially extended and spectrally consistent

with annihilation of a low mass (Mχ ∼ 10–30 GeV) dark matter particle [112–114]

(see also [115]). Other authors have suggested that the unconstrained population of

pulsars at the Galactic center explain the signal [116, 117]. Searches of other targets

(e.g. dwarf galaxies [e.g. 1, 118]) can provide a check on the dark matter hypothesis.

The all-sky survey of Fermi allows for the search for emission from elsewhere in

the Galactic halo. That is, one can look away from the disk (heavily contaminated

by astrophysical point sources and emission from gas) and search for gamma-ray

annihilation at slightly higher galactic latitudes. Ackermann et al. [119] have used

this strategy to place limits on the WIMP cross section. The results are highly

dependent on the modeling of the density profile of the Galactic halo. Depending on

the choice of profile the limits are within an order of magnitude of the relic abundance

cross section (Eq. 1.8).

Beyond the Milky Way, nearby clusters of galaxies may be detectable in gamma-

rays. Clusters contain more dark matter mass than in any other collapsed objects

in the Universe and the densities at their centers should by quite significant. No

clusters have been unambiguously detected in gamma-rays yet. However, even if one
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were to be seen, it would be unclear whether the emission was due to dark matter

annihilation — clusters are filled with hot gas which is known to emit gamma-rays

through cosmic ray collisions that produce pions. Currently, clusters provide gamma-

ray constraints on the annihilation cross section that are several orders of magnitude

above the thermal cross section [120–126]. There is currently no way to probe the

substructure in clusters. Depending on the distribution of dark matter in subhalos of

various densities the predicted annihilation signal can vary by orders of magnitude.

Finally, one can consider dark matter annihilation along a line of sight through-

out the entire history of the Universe. This should give rise to a completely isotropic

gamma-ray signal. The amplitude of the emission depends on the formation his-

tory of cosmic structure, and is particularly sensitive to the nonlinear evolution.

Semi-analytic and numerical solutions can be used to get a handle on the history

of the the nonlinear structure but uncertainties remain. At cosmological distances,

gamma-rays may be attenuated by pair production of electron-positron pairs in in-

teractions with starlight and the cosmic microwave background. The current mea-

surement of the isotropic gamma-ray background can be found in Abdo et al. [127].

There are numerous astrophysical contributors to this background including star

forming galaxies, active galactic nuclei including blazars, and unresolved gamma-ray

bursts. Additionally, local populations of unresolved sources such as Galactic pulsars

and Solar System bodies may masquerade as an extragalactic background. Current

dark matter constraints based on the isotropic gamma-ray background can be found

in [e.g. 128–130].

The future of gamma-ray astronomy is a combination of space-based and ground-

based detectors. Fermi will continue to operate for the foreseeable future and will

eventually release a complete re-analysis of their data, increasing the effective area,

angular resolution, and energy resolution of the instrument. The AMS-02 experi-
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ment has just begun releasing results and is sensitive to photons as well as charged

particles.

On the ground, imaging atmospheric Cherenkov telescope arrays (ACTs) can

detect gamma-rays at even higher energies (up to hundreds of TeV) [131]. These

telescopes detect Cherenkov radiation emitted by the shower of particles created

when an energetic photon strikes an atom in the atmosphere. The shower direction

and energy can be reconstructed through observations of the Cherenkov cone by

multiple separated telescopes. The angular resolution of these detectors is generally

much better than that of Fermi. Unlike Fermi, ACTs perform pointed observations

and have a small field of view, making it difficult to measure the isotropic gamma-ray

flux. However, ACTs are well suited to perform deep observations of dark matter

dominated targets like the Galactic center and nearby dwarf galaxies.

The current generation of ACTs consists of VERITAS [132], MAGIC [133], and

H.E.S.S. [134], all of whom actively conduct dark matter searches. The next gen-

eration project is the Cherenkov Telescope Array (CTA) [135], which will extend

the energy range at both the high and low ends by several orders of magnitude.

The sensitivity will also enjoy an improvement of about an order of magnitude over

existing ACTs [131].

1.4.2 Scattering and direct detection

Weakly interacting dark matter generally has a cross section for scattering with

Standard Model particles. This is implied by crossing symmetry of the Feynman di-

agram describing annihilation. In 1985 the concept of direct detection was proposed

by Goodman and Witten [136]. The idea is quite straightforward. Dark matter
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particles that make up the Milky Way halo continually pass through the Earth. In a

very low background detector one may observe the recoil of a nucleus after it scatters

off a WIMP. The rate of scattering events in such an experiment is determined by

the intrinsic WIMP properties (mass and scattering cross section) and by the num-

ber density and velocity distribution of WIMPs at the location of Earth. While the

average dark matter density can be determined by the motions of relatively nearby

stellar populations the ultra-local structure of the dark matter halo is unknown.

Therefore, it may be the case that the Earth sits on a local underdensity or overden-

sity [e.g. 137, 138]. Unfortunately, unlike annihilation there is no analog to the relic

abundance argument that provides a natural scattering cross section. Experiments

must probe smaller and smaller cross sections with no floor.

Many groups currently compete to perform the most sensitive searches for dark

matter scattering. As with indirect detection the key imperative is understanding

the backgrounds in the detector. Radioactivity and cosmic rays will induce nuclear

and electron recoils within the detector volume and it is vital to be able identify

such events. The spectrum of dark matter induced nuclear recoils falls exponentially

with energy. The field evolves by lowering the energy threshold and by increasing

the number of target nuclei in the detectors.

The current state of affairs is quite interesting with several groups reporting

excess events above the expected background. An early, novel approach taken by

the DAMA/LIBRA experiment is to sacrifice background rejection by looking for an

annual modulation of the recoil rate. This modulation is due to the Sun’s motion

relative to the Milky Way dark matter halo [139]. In June, the Earth is moving along

with the Sun and in December it moves in the opposite direction. This induces a

yearly oscillation in the WIMP scattering rate. The experiment has been running

for thirteen years and has detected an annual modulation unambiguously [e.g. 140].



30

The challenge is whether or not there is another explanation for the modulation.

Since the background rejection is minimal compared to other direct detection efforts

there may be an unaccounted for background source.

Over subsequent years other experiments [e.g. XENON100 141] appear to have

ruled out the parameter space (mass and scattering cross section) that corresponds

to the DAMA/LIBRA WIMP. However, at the current time three other experiments

report excess events. The CRESST-II dark matter search reports events inconsistent

with a background-only hypothesis at 4σ [142]. Similarly, the CoGeNT collaboration

has seen an excess of low-energy events [143]. The dark matter interpretations for

both results appears to be ruled out by the XENON100 data, though not by a large

margin. There is no shortage of explanations and dark matter models that explain

the DAMA/LIBRA, CRESST-II, and CoGeNT events and the null XENEON100

result [e.g. 144].

Most recently, the CDMS II collaboration reported three excess events in their

silicon detectors with an estimated background of 0.41 [145]. As with the other

experiments this result is in tension with the XENON100 null result. Interestingly,

all of the tentative detections indicate a low mass WIMP (mass around 10 GeV).

It is important to note, however, that the excess events occur very near the lower

energy thresholds of the detectors. The various tentative hints for dark matter will

be confirmed or ruled out by the current and future generations of direct detection

experiments. A small sample of notable upcoming efforts include LUX [146] and

LZ [147], SuperCDMS [148], XENON1T [149], ArDM [150], and DEAP-3600 [151].
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1.4.3 Capture and annihilation in solar system bodies

The ideas underlying direct and indirect detection can be combined in a creative

way to use neutrino detectors to search for WIMPs. The phenomena requires both

scattering and annihilation. If a WIMP passes through a solar system body (e.g. the

Sun or Earth) it may scatter off a nucleus and lose enough energy that it becomes

gravitationally bound to the body. Scatters on subsequent orbits will cause the

WIMP to “sink” to the center of the body. Therefore, we generically expect the

Sun, for example, to contain a reservoir of WIMPs at its center. These particles

can then annihilate into Standard Model products. Of these products, neutrinos will

freely escape and may be detected on Earth. This idea has led to searches for high-

energy neutrinos from the direction of the Sun with the IceCube and AMANDA-II

experiments [152]. In most dark matter models the capture rate is the limiting

factor making the annihilation rate a function of the scattering cross section (and

independent of the annihilation cross section). These neutrino experiments thus

provide a complementary search to direct detection experiments.

1.4.4 Creation and colliders

Again using crossing symmetry of the Feynman diagram describing WIMP annihila-

tion, we find that it may be possible to create WIMPs in high-energy particle physics

experiments. Unfortunately, one can never be sure that a new particle discovered

(e.g. at the LHC) is the cosmic dark matter. However, based on the new particle’s

properties one can calculate the relic abundance and see if it agrees with Ωc. Ad-

ditionally, the mass and other couplings would be vital in directing the progress of

dedicated dark matter experiments, both direct and indirect.
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Colliders perform searches for “missing momentum” where new particles are cre-

ated but leave the detector unseen. The total momentum in the direction transverse

to the beam is zero. Dark matter particles created in a collision may carry some

momentum out of the detector leaving a net transverse momentum of the hadronic

jets, photons, and other Standard Model particles. The current strongest collider

constraints on such new particles come from the CMS [153] and ATLAS [154] at the

LHC.

Perhaps the most important dark matter search that can be performed by col-

liders is the search for new physics beyond the Standard Model. For example, if the

LHC collaborations discover evidence for supersymmetry they will immediately pro-

vide a dark matter candidate. This particle can then be targeted directly by other

means.

1.5 Structure of this thesis

The following chapters contain the contents of the four papers [1–4] along with some

unpublished supplementary material.

Chapters 2, 3, and 4 develop new statistical frameworks for analyzing data from

multiple datasets. The techniques are applied to search for gamma-rays from dark

matter annihilation in Milky Way dwarf spheroidal galaxies with data from the

Fermi Gamma-ray Space Telescope. In Chapter 2 (based on Geringer-Sameth and

Koushiappas [1]) a search for continuum emission is performed.

After the publication of this paper I generalized the methods to take full account

of the information contained in the data, resulting in the individual event weighting
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framework described in Chapter 3. This chapter is based on work for a forthcoming

article. This event weighting framework is applied in Chapter 4 (based on Geringer-

Sameth and Koushiappas [2]) to search for gamma-ray line emission from the same

collection of dwarf galaxies.

I then turn the reader’s attention to the subject of astrophysical backgrounds.

Understanding these backgrounds is vital in any dark matter search (indeed in any

gamma-ray observation). In Chapter 5 (based on Geringer-Sameth and Koushiappas

[3]) I discuss a new method developed to identify the presence of moving sources in

a diffuse background. The technique is not specific to Fermi but it will be useful

in understanding a potentially important population contributing to the gamma-ray

background.

Finally, in Chapter 6 (based on Geringer-Sameth and Koushiappas [4]) I explore

a new technique to identify the presence of unresolved pulsars. This study grew out

of the previous one: instead of focusing on correlations induced in the background

by moving objects, I study correlations in the time domain caused by stationary

sources.



Chapter Two

Search for continuum annihilation

from dark matter
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Introduction

Dwarf spheroidal galaxies are known to be excellent targets for the detection of

annihilating dark matter [e.g. 155, 156]. In this chapter I present limits on the

annihilation cross section of Weakly Interacting Massive Particles (WIMPs) based on

the joint analysis of seven Milky Way dwarfs using a frequentist Neyman construction

and Pass 7 data from the Fermi Gamma-ray Space Telescope. The analysis excludes

generic WIMP candidates annihilating into bb̄ with mass less than 40 GeV that

reproduce the observed relic abundance. To within 95% systematic errors on the

dark matter distribution within the dwarfs, the mass lower limit can be as low as 19

GeV or as high as 240 GeV. For annihilation into τ+τ− these limits become 19 GeV,

13 GeV, and 80 GeV respectively.

It is well known that Milky Way dwarf galaxies are excellent targets to search

for the signature of dark matter annihilation: they are dark matter dominated ob-

jects with no astrophysical backgrounds (no hot gas). Measurements of the velocity

dispersion of stars in these systems allows the reconstruction of the gravitational

potential and thus the density profile of the dark matter distribution [157–159].

In order to place constraints on the annihilation cross section, we must quan-

tify how the value of 〈σAv〉 influences the number of γ-ray events detected with

the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope

(Fermi). There are two sources of detected photon events: those arising from dark

matter matter annihilation (signal), and those produced by any other processes

(background).
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Expected signal

In the canonical picture, dark matter annihilates and gives rise to a γ-ray flux that is

a function of two independent terms, one describing the dark matter particle physics

and one involving the astrophysical properties of the dwarf galaxy. The expected

number of signal events is

µ(ΦPP) ≡ (AeffTobs)× ΦPP × J, (2.1)

where Aeff is the effective area of the detector and Tobs is the observation time. The

product AeffTobs is called the exposure. The goal is to place limits on the quantity

ΦPP which encompasses the particle physics. For self-conjugate particles it is defined

as

ΦPP ≡
〈σAv〉
8πM2

χ

Mχ∫
Eth

∑
f

Bf
dNf

dE
dE, (2.2)

where Mχ is the mass of the dark matter particle and 〈σAv〉 is its total velocity-

averaged cross section for annihilation into standard model particles. The index f

labels the possible annihilation channels and Bf is the branching ratio for each. For

any channel, dNf/dE is the final γ-ray spectrum. This quantity is integrated from

a threshold energy Eth to the mass of the dark matter particle.

The quantity J contains information about the distribution of dark matter and

is defined by

J ≡
∫

∆Ω(ψ)

∫
`

[ρ(`, ψ)]2 d` dΩ(ψ).

Here, the square of the dark matter density is integrated along a line of sight in a

direction ψ, and over solid angle ∆Ω.
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Strategy for backgrounds

Typically, the background is derived through detailed modeling of possible contri-

butions [160]. This was the approach taken in the Fermi Collaboration analysis

[161–163, 118]. In this work I eschew such detailed modeling of the origin and spec-

tral properties of the γ-ray background, and instead use the photon events in the

region near each dwarf to empirically derive the background from all unresolved

sources.

The fundamental assumption of the strategy is this: whatever the processes are

which give rise to the photon events nearby each dwarf, these same processes are also

at work in the direction of the dwarf. That is, the probability that background pro-

cesses produce photons at the location of a dwarf can be determined by the empirical

probability distribution found by sampling the observed counts in the surrounding

region. The region surrounding each dwarf is a “sideband” used to determine the

background. This approach requires zero free parameters and the entire analysis

depends only on the value of ΦPP.

Data selection

This analysis is uses data from the dwarf galaxies Boötes I, Draco, Fornax, Sculptor,

Sextans, Ursa Minor, and Segue 1 because none are in a crowded field or near known

γ-ray sources. We utilize the updated values of J presented in Ackermann et al. [118]

(see also Charbonnier et al. [164]). The J values are derived based on modeling the

velocity dispersion profiles of stars in each dwarf [157–159].

For this work, a Region of Interest (ROI) is a region of the sky with a radius of 0.5◦
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containing all Pass 7 photons of evclass=2 available publicly on the Fermi Science

Support Center (FSSC) [165], in the Mission Elapsed Time interval of [239557417-

334619159] seconds (August 4, 2008 15:43:36 UTC to August 9, 2011 21:45:57 UTC),

and with energies [1-100] GeV (at these energies, the point spread function (PSF) is

always less than 1◦). For each ROI, we use the publicly available version v9r23p1

of the Fermi Science Tools to extract photons (with zmax=100), select good time

intervals (with all standard recommendations as stated on the FSSC), and compute

the exposure (AeffTobs), which also takes into account the shape of the PSF within

the ROI using the Instrument Response Function P7SOURCE V6. Because the PSF

is energy dependent, the exposure must be averaged with the annihilation energy

spectrum. For a range of power-law indices of the spectrum the exposure within

an ROI changes by at most 5%, making this a negligible effect in the cross section

limits.

Empirical background distributions

We identify and mask all sources present within 10◦ of each dwarf using the 2nd Fermi

Source Catalogue [166] (with a masking size of 0.8◦). We calculate the probability

of observing background events at the location of the dwarf by sampling 105 ROIs

which are randomly selected within a distance of 10◦ from each dwarf, and counting

the events in each. A window is rejected if it overlaps with a masked location or with

the boundary. There are approximately (10/0.5)2 = 400 independent ROIs for each

dwarf. The background probability mass function (PMF) is given by the fraction of

ROIs that contained a given number of counts (the PMF is not sensitive to increasing

the mask size to 2◦). This PMF is taken to be the probability distribution governing

the number of background photons which contribute to the central ROI.
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The accuracy of this strategy requires the total exposure not vary within a 10◦

radius around each dwarf and we find that it varies by at most ∼ 5%. If a γ-ray

source is close to a dwarf it may contribute photons to the central ROI. These source

photons are not accounted for in the empirical background PMF. Therefore, such

photons are considered more likely to be from dark matter annihilation and will

weaken the derived limit. In this sense, our analysis is conservative. The PMFs are

well fit by Poisson distributions and do not contain features that would be expected

from source contamination. Figure 2.1 shows the PMFs derived from the background

sampling for each dwarf ROI. The red distribution is the empirical PMF found by

sampling. The blue curve represents a best-fit Poisson distribution (i.e. a Poisson

PMF having the same mean). The interpretation of the vertical and dashed black

lines will be discussed below.

Statistical framework

In statistical inference one wants to generate confidence intervals for a model pa-

rameter µ based on observed data x. In a frequentist analysis the main task is to

decide on an algorithm which constructs a region in µ-space for any value of x. This

region is said to be an α-confidence interval if the algorithm has “coverage” α (see

e.g. [167, 168]). An algorithm has coverage α if the chances of it “working” is α.

That is, no matter what the true value of µ actually is, there is an α chance that

the constructed confidence interval (region of µ-space) contains the true value.

One way to construct and visualize confidence intervals is by using the Neyman

construction [168, 169]. The ingredients needed are the parameter space of possible µ

values, a space of possible measurements x, and a likelihood function P(x|µ), which

gives the probability of observing x if µ were the true value of the parameter (µ and x
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Figure 2.1: This figure illustrates the ingredients and data required to derive upper limits on the
dark matter annihilation cross section. Each plot corresponds to a different dwarf galaxy. Sampling
the counts in 0.5◦ regions surrounding each dwarf results in an empirical background probability
mass function (PMF) shown in red. The blue curves are Poisson distributions having the same mean
as the empirical background PMFs. The vertical line represents the number of counts observed in
the ROI centered on the dwarf’s location. The dashed curve is the convolution of the background
PMF with the Poisson distribution representing the contribution from dark matter annihilation
when ΦPP = 5.0 × 10−30 cm3 s−1 GeV−2 (the 95% upper limit on ΦPP). This convolution is the
probability distribution of the sum of signal and background. The label w is the weight given to
each dwarf in the construction of Neyman confidence belts. It is given by the ratio of the strength
of the expected dark matter signal to the mean expected background.
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can both live in any number of dimensions). For each possible value of the parameter

µ one selects a region D(µ) of the measurement space such that
∫
D(µ)

P(x|µ) = α (i.e.

the probability of measuring x to be in D(µ) is α if the true value of the parameter

were µ). The regions D(µ) are called confidence belts. For an actual measurement

x∗, these pre-selected belts can be used to generate an α-confidence region for µ:

the confidence region is simply the collection of all the µ values whose belt D(µ)

contains x∗. This algorithm for constructing a region in µ-space out of a measured

value x∗ provides the proper coverage: whatever the true value µt is, there is an α

chance that x∗ will lie in D(µt) (by construction) and therefore an α chance that the

resulting confidence interval will contain µt.

Combining multiple observations

In this analysis, the observations consist of the number of counts Ni from the central

ROI containing each dwarf (i = 1, . . . , 7). These can be considered the components

of a vector N living in a 7-dimensional integer lattice. To apply the Neyman con-

struction we must choose a confidence belt in this 7-dimensional “N -space” for every

possible value of ΦPP such that the probability that N is measured to be in this belt

is α.

There is complete freedom in the choice of belts (provided they have coverage

α). Nevertheless, it is vital that the shape of the belts for each ΦPP not be based on

the measured data. This offense is known as “flip-flopping” [168]. It may result in

confidence levels having lower coverage than stated. Here, the confidence belts are

constructed without prior knowledge of the number of counts within the central ROI

around each dwarf. Under the assumption that the empirically derived background

PMFs, exposures, and J values are correct, the belts have the proper coverage.
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Figure 2.2: Illustration of the Neyman confidence belt construction used to generate upper limits
on ΦPP. Each axis represents the number of events that could be observed from a given dwarf (here,
Dwarf A has a larger J value than Dwarf B does). The shaded area, bordered by the solid line,
represents the confidence belt for a particular value of ΦPP. The dashed lines are the borders of
the confidence belts for different values of ΦPP, with ΦPP increasing from left to right. The borders
are chosen to be normal to a vector of “sensitivities”, which weights each dwarf according to the
relative strength of its dark matter signal. Once a measurement is made (shown by the star) the
confidence interval for ΦPP contains all values of ΦPP whose confidence belt contains the measured
point. The dotted line shows the border for an alternative construction of the confidence belts
which gives equal weight to each dwarf.
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In order to derive an upper limit on ΦPP, the N -space should be divided into

two simple parts and the belt D(ΦPP) should consist of the “large” N values (i.e.

the region containing Ni = ∞). This is illustrated in Fig. 2.2 for an example joint

analysis of two dwarfs. The simplest choice for the confidence belt boundaries are

planes with normal vectors parallel to (1, . . . , 1), represented in Fig. 2.2 by the dotted

line. A measured set of Ni is in such a confidence belt if the sum of the Ni is greater

than some value. This is equivalent to “stacking” the events from each dwarf and

then analyzing this single image. However, because the dwarfs are treated equally,

photons from a dwarf with a small J value are considered as likely to have come from

dark matter as are photons from a dwarf with large J . This is an inefficient choice

for the confidence belts. Naively, one extra photon from Draco (J ∝ 0.63) should

raise the upper limit more than an extra photon from Boötes I (J ∝ 0.05) because,

a priori, a given photon from Boötes I is much more likely to be from background

than a photon from Draco.

To overcome this obstacle we take advantage of the recent idea by Sutton [170]

to use planes at angles other than 45◦ as boundaries of the confidence belts. Sutton

suggests letting the normal vector to the planes be equal to a vector representing

the “sensitivity” of each observation. We take the sensitivity (or weight) of each

dwarf observation to be proportional to the ratio of the expected dark matter flux

(AeffTobs J) to the mean expected empirical background flux. In contrast, giving

every dwarf the same weight can weaken the limits by as much as 25% for this set

of dwarfs.
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Probability distributions

The number of photons received in the central ROI containing each dwarf is the

sum of the number of photons from dark matter annihilation and the number pro-

duced by all background processes. The number of signal photons is governed by a

Poisson distribution with mean µ(ΦPP) (Eq. 2.1). The number of background pho-

tons is described by the empirical background PMF. Therefore, the total number of

events detected is distributed according to the convolution of these two probability

distributions. An illustration of this convolution is represented as the black dashed

curves in Fig. 2.1 for a particular choice of ΦPP. The counts found for each dwarf

are independent variables and so the joint probability of measuring N is given by

the product of the individual PMFs.

Results

Using this statistical framework we derive a 95% upper bound of ΦPP = 5.0+4.3
−4.5 ×

10−30 cm3 s−1 GeV−2. In order to translate the bound on ΦPP into a bound on

〈σAv〉 as a function of Mχ we need to assume a specific annihilation channel and

its spectrum dN/dE. It is generally assumed that a WIMP annihilates primarily

into hadrons (e.g. bb̄) or heavy leptons (e.g. τ+τ−), which then decay by fairly

well constrained channels into γ-rays. We compute dN/dE for these channels using

DarkSUSY [171, 172].

Figure 2.3 shows the derived 95% upper bound on 〈σAv〉 as a function of WIMP

mass. For annihilation into bb̄ (τ+τ−) WIMP masses less than 40 GeV (19 GeV) are

excluded using the central J values. The dominant source of systematic uncertainty

comes from the poorly constrained J for each dwarf and is shown by the shaded
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Figure 2.3: Derived 95% upper limit on 〈σAv〉 as a function of mass for dark matter annihilation
into bb̄ and τ+τ−. The shaded area reflects the 95-percentile of the systematic uncertainty in the
dark matter distribution of the dwarfs. The canonical annihilation cross section for a thermal
WIMP making up the total observed dark matter abundance is shown by the dashed line. The
inset figure shows detail for lower masses.
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regions in Fig. 2.3. The ΦPP limit is recalculated for each dwarf as its J varies

between its upper and lower 95% error bar given in Ackermann et al. [118]. The

results for each dwarf are then added in quadrature (this procedure gives a nearly

identical region as that derived by scanning over the log-normal priors on J for

each dwarf [157, 158, 118]). Figure 2.4 shows 95% cross section limits for WIMP

annihilation into various Standard Model final states (quarks, leptons, gauge bosons).

Interpretation of systematic uncertainties

If we knew the exact J value of each dwarf, the width of the shaded regions in

Fig. 2.3 would shrink to zero. However, due to the uncertainties in J , we have

no knowledge of where this upper limit lies within the shaded region. Presenting

the limit in this fashion separates the inherent statistical uncertainties (Poisson-

distributed photon counts) from the systematic errors in the J ’s, which in principle

could be known exactly (each dwarf has some particular, though unknown, dark

matter distribution). At the present time there is no consensus on the dark matter

distribution within Milky Way dwarfs. The systematic error bands should be thought

of as an exploration of possible models for the dark matter distribution (for an

alternative analysis of J values see Charbonnier et al. [164]). Nevertheless, for any

model (set of J values) the construction presented here gives a rigorous 95% upper

limit on ΦPP.

For the most (least) conservative model the lower limit on the mass is 19 GeV (240

GeV) for bb̄, while for τ+τ− these limits are 13 GeV (80 GeV). Segue 1 is responsible

for most of the uncertainty in the limit due to its high weight and uncertain dark

matter content. However, if Segue 1 has a low J value, the statistical construction

downgrades its weight relative to other dwarfs such as Draco and Ursa Minor. This
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Figure 2.4: Dark matter annihilation cross section limits for various Standard Model final states.
The best-fit J values are assumed to avoid the clutter of the systematic error bars. The curves are
for annihilation into bb̄ (red), τ+τ− (blue), W+W− (black), and µ+µ− (green). Annihilation into
other quark final states gives nearly identical results as for bb̄.



48

is one of the powerful features of the statistical framework.

Sensitivity to background PMFs

The strength of the analysis relies on the validity of the assumption that the back-

ground at the location of each dwarf is adequately described by the empirical PMF.

In general, if the assumed background PMF is skewed toward higher numbers of

counts the upper limit on ΦPP becomes stronger. This is because more of the ob-

served counts can be attributed to background and therefore fewer to dark matter

annihilation. We can quantify the effect of an error in the empirical PMF by con-

sidering the radical case where we are certain there is no background at all. This

is a false assumption, but is one which will produce the most conservative limit on

ΦPP. If we force the background PMFs to be equal to 1 when the number of counts

is 0 and equal to 0 otherwise, the 95% limit on ΦPP increases by a factor of 4.4 over

the actual limit. This represents the case where every photon received from a dwarf

is believed to be due to dark matter annihilation. We interpret this as a test of the

robustness of the method, not as any sort of actual confidence limit. We can also

test our conclusions against less violent changes to the background PMF. For each

dwarf we replace the background PMF with a Poisson distribution having the same

mean, and find that the limit on ΦPP decreases by 7%. These Poisson PMFs are

shown as the blue curves in Fig. 2.1.

Discussion

What is the significance of this new bound on 〈σAv〉? It signals, perhaps, that we

are imminently approaching an epoch of discovery. Three decades of experimental
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design have given rise to many detectors sensitive enough to probe a very generic

class of dark matter candidates. The prime motivation for WIMP dark matter is

the coincidence that a weak-scale annihilation cross section naturally reproduces the

observed relic abundance. Unlike the scattering cross section probed in direct de-

tection experiments, cosmology gives a lower limit for the annihilation cross section.

The parameter space in which a WIMP can hide is therefore bounded at both ends.

This work, together with the Fermi-LAT collaboration result [162, 118, 163], pushes

the contact point between the upper and lower bounds on 〈σAv〉 to increasing WIMP

masses, suggesting that observations have become powerful enough to either discover

or rule out the best-motivated and most sought-after dark matter candidates.



Chapter Three

Development of the event

weighting framework
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3.1 Hypothesis testing and confidence intervals

In the frequentist paradigm we interrogate the data through the framework of hy-

pothesis testing. For example, to find out whether observations of a dwarf show

evidence for dark matter annihilation we may start by testing the hypothesis Hb :

the observed data D were generated from background processes only. We find a way

to calculate the probability P(D|Hb) of observing D if Hb were true. If this proba-

bility is small, say P(D|Hb) = 0.01, the hypothesis is “rejected at 99% significance”

— i.e. it is very unlikely to have measured the data we did if there were no dark

matter annihilation.

Confidence intervals on dark matter model parameters can be generated by per-

forming an ensemble of hypothesis tests. For simplicity, imagine that dark matter

annihilation is governed by two parameters, the particle mass M and the (velocity-

averaged) annihilation cross section 〈σv〉. For every possible pair of values of these

parameters we perform the hypothesis test “dark matter has mass M and annihi-

lation cross section 〈σv〉.” We classify a point in parameter space by whether its

associated hypothesis is rejected at a given level α (e.g. α = 0.05 for a 95% con-

fidence region). That is, we divide the parameter space into allowed regions where

P(D|M, 〈σv〉) > α and excluded regions where P(D|M, 〈σv〉) < α. The allowed

region constitutes an α-level confidence region for mass and cross section. The inter-

pretation of the two regions is straightforward (e.g. for α = 0.05): whatever the true

values of M and 〈σv〉 are, there is only a 5% chance that the hypothesis associated

with those true values will be rejected. Equivalently, there is a 95% chance that the

constructed confidence region contains the true parameters.



52

3.1.1 Test statistics

The implementation of this scheme is made possible by the construction of a test

statistic T , a single number that is a function of the data we measure. The test

statistic is a random variable and when we make a measurement we sample this

variable. For a given a hypothesis, a probability distribution function (PDF) governs

the measurement of T . Before making the measurement, we decide on a critical

region C1 of T -space such that P(T ∈ C|H) = α. Should T be measured to lie in the

critical region we reject the hypothesis H at level α.

The use of a test statistic allows us to make precise the “probability of observing

the data given a hypothesis”. For this purpose it is useful to choose a test statistic

that reflects how “signal-like” or “background-like” the data are, with larger values

of T indicating the presence of a signal (e.g. dark matter annihilation). For instance,

when testing the hypothesis Hb that there is no dark matter annihilation we might

choose a special value T ∗ to define the critical region as C : T > T ∗, where P(T >

T ∗|Hb) = 0.01 (i.e. α = 0.01). The interpretation of C is that there is only a 1%

chance of the data being so “signal-like” if there were no dark matter annihilation.

If the measured T is larger than T ∗ the hypothesis Hb is rejected at 99% significance.

Constraints on the the particle physics parameters should take the form of upper

limits on the annihilation cross section. Upper limits on 〈σv〉 are generated by

choosing the critical region to be C : T < T ∗, where P(T < T ∗|M, 〈σv〉) = α. We

will reject the hypothesis that dark matter has a particular mass M and cross section

〈σv〉 if T is found to be smaller than T ∗ (i.e. the measurement is too background-

like). This choice of critical region for T (i.e. T < T ∗ as opposed to T > T ∗)

generates upper limits on the cross section: for large cross sections T ∗ will increase

1C is equivalent to the D(µ) of Chaper 2.
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since the data is likely to be more “signal-like”. For sufficiently large cross sections

the associated hypothesis will be always be rejected, leading to upper limits on 〈σv〉.

3.2 General form of the test statistic

In principle, T can be an arbitrary function of the data. However, some functions

are better than others in a well-defined sense. Here I detail the construction of an

optimal test statistic.

The gamma-ray data is in the form of a list of discrete detector events. We wish

to jointly analyze the gamma-ray signal from multiple targets simultaneously and to

take full advantage of the information contained in the data. Each event is assigned

a numerical weight w(Q) based on its properties Q and the hypothesis we are testing.

We use a test statistic that is simply the sum of the weights of all the events in the

entire data set

T =
N∑
i=1

w(Qi), (3.1)

where i runs over all detected events. The total number of eventsN and the collection

{Qi} are random variables.

For the dataset we are working with the dark matter physics is encoded in three

properties of each detected event: which dwarf ν field the event came from, the

reconstructed energy E of the photon, and the reconstructed direction θ of the

photon (i.e. the angular separation between the event and the location of the dwarf

galaxy). Therefore, in our study Q = (ν, E, θ) is the set of these three variables, the

first being discrete and the second two continuous.
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This general form for the test statistic is capable of reproducing many other anal-

yses by making particular choices for the weight function. For example, a standard

event counting analysis can be performed by setting w(Q) = 1 for events in some

energy range and within some angular separation of one of the dwarfs, and w(Q) = 0

for all other events. In this case the test statistic T just counts the number of events

detected. As a second example, the analysis performed in [1] (Chapter 2) is recov-

ered by having w(Q) be a function only of which dwarf field the event came from

(and not of the energy or angular separation of the event). The test statistic then

becomes a simple weighted sum of counts observed from each dwarf.

3.3 Designing the weight function

Given this general form of test statistic the important work lies in designing the

weight function. In this section I show that there is a statistically most powerful

weight function.

Recall that α denotes the probability of rejecting the hypothesis when the hy-

pothesis is true. The power of a statistical test is the probability of rejecting the

hypothesis when the hypothesis is false (i.e. when it ought to be rejected). Therefore,

we seek a test statistic that maximizes the power for a given α. The power of a test

is an ambiguous concept because it depends on what the truth actually is. That is, a

test that is powerful at rejecting H0 when H1 is true may not be powerful at rejecting

H0 when H2 is true [167, §21.16-18]. We therefore restrict our task to finding the test

statistic that maximizes the power of rejecting H0 for a suitable single alternative

hypothesis H1.
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As discussed above, for constructing upper limits on dark matter particle pa-

rameters we test hypotheses of the form “dark matter has mass M and annihilation

cross section 〈σv〉”. For these cases we take the alternative hypothesis to be Hb,

the background-only hypothesis of no dark matter annihilation. This gives the most

constraining upper limits on 〈σv〉 if dark matter has an annihilation cross section too

low for the instrument to detect. When performing a search for annihilation we see if

we can reject the hypothesis Hb. In this case the test statistic is chosen to maximize

the power versus an alternative hypothesis that dark matter has a particular mass

and an infinitesimal annihilation cross section. That is, the test is designed to be

sensitive to weak signals. The choice of particle parameters besides the cross section

will be dealt with using a “trials factor”. We may test Hb against several different

masses and branching ratios.

Below we present two ways to construct a most-powerful weight function w(Q).

The first is heuristic and more intuitive, the second more rigorous. Both yield similar

conclusions.

It will be useful to write the test statistic (3.1) in an alternate form by introduc-

ing a new set of random variables that are easier to work with. The random variable

ZQ is the number of events that were detected with properties in an infinitesimal

bin centered on Q. Using the set Q = (ν, E, θ) described above, ZQ is the number

of events from dwarf ν that have energy between E and E + dE and were detected

between θ and θ + dθ from the location of the dwarf. The size of these bins are

infinitesimal so that ZQ is almost always 0 and is occasionally 1. Making a measure-

ment is equivalent to measuring the infinite collection D = {ZQ} (for a finite set of

Q, ZQ will be 1; for the rest, ZQ will be 0). The weight of a photon with properties



56

Q is denoted wQ. The test statistic can be written in terms of the variables ZQ as

T =
∑
Q

wQZQ, (3.2)

where the sum is over all possible properties of a detected event. In our case the

notation
∑

Q is shorthand for
∑

ν

∫
E

∫
θ
. The test statistic is determined by the

infinite collection of random variables {ZQ} and the infinite collection of numerical

weights {wQ}. Defining a weight function w(Q) is equivalent to fixing values for each

of the {wQ}.

In our situation it is useful to write each ZQ as the sum ZQ = XQ+YQ, where XQ

is the number of events detected with properties Q that originated from dark matter

annihilations in a dwarf galaxy (signal events) and YQ is the number of detected

events originating from all other sources (background events). The collection of

{XQ} are independent random variables and are also independent of all of the {YQ}.

The probability distribution for XQ is

P(XQ) =


1− sQ for XQ = 0,

sQ for XQ = 1,

(3.3)

where sQ is the (infinitesimal) expected number of detected dark matter events

having properties Q. The probability distribution describing YQ may not be as simple

because different YQ may be correlated (e.g. if the background has a contribution

from unresolved sources). In deriving an optimal choice of weights we will make the

assumption that the YQ are independent and each is described by

P(YQ) =


1− bQ for YQ = 0,

bQ for YQ = 1,

(3.4)
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with bQ the expected number of background events having properties Q. Because of

this assumption the choice of weights may not be strictly the most powerful but we

expect the deviations from optimality to be minimal. We note that the calculation

of the PDF of T does not use this simplifying assumption and correctly includes the

effects of any correlations present in the background.

3.3.1 Signal-to-noise method

To construct confidence regions we test the hypothesis that dark matter is present

and has a particular set of particle physics parameters. This test is to be most

powerful against the alternative that the data is generated by background processes

only. The two hypotheses are referred to as Hs+b and Hb.

The problem of maximizing the power of Hs+b versus Hb can be visualized as

trying to maximally separate the PDFs of T for the two hypotheses. The specific

shapes of the PDFs are controlled by the weight function w(Q). An approximate

way of describing the PDFs is by their means and standard deviations: µs+b, µb,

σs+b, σb. The “separation” of the two PDFs can be quantified by constructing a

signal-to-noise ratio:

SNR =
µs+b − µb

σb
(3.5)

We will write the quantities in the above equation in terms of the weights wQ

and find the collection of wQ that maximizes the signal-to-noise ratio. Using (3.2),

(3.3), (3.4), the independence of the {XQ} and {YQ}, and the fact that all sQ=0 if
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Hb is true, it is straightforward to show that

µb ≡ E [T |Hb] =
∑
Q

wQbQ,

µs+b ≡ E [T |Hs+b] =
∑
Q

wQ(sQ + bQ),

σ2
b ≡ Var [T |Hb] =

∑
Q

w2
QbQ,

where E[T |H] and Var[T |H] are the mean and variance of T assuming the hypothesis

H is true. Inserting these results into (3.5) yields

SNR =

∑
wQsQ√∑
w2
QbQ

.

We find the weights that maximize this quantity by differentiating it with respect to

an arbitrary weight wR and setting the derivative to zero. This leads to the following

condition that holds for each R:

wR
bR
sR

=

∑
w2
QbQ∑

wQsQ
.

The solution to this set of equations is

wQ =
sQ
bQ
. (3.6)

Had we used σs+b instead of σb in the definition of SNR (3.5) the resulting optimal

weights would be

wQ =
sQ

sQ + bQ
. (3.7)

Note that even though sQ and bQ are each infinitesimal their ratio is finite.

This argument tells us that each event should be given a weight determined by
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the ratio of the expected signal to the expected background for events of that type.

This makes intuitive sense: events which are more likely to be signal are given a

larger weight than those likely to be due to background processes. One upshot of

this weighting applied to the dark matter search is that events which have an energy

larger than the mass of the dark matter particle we are considering in Hs+b will be

ignored (given a weight of 0) because they must be due to background.

3.3.2 Likelihood ratio method

An alternative derivation of the optimal weights is based on famous statistical the-

orem. The Neyman-Pearson lemma [173, 167, §21.10] states that the most powerful

test between two simple hypotheses such as Hs+b and Hb can be performed by using

a likelihood ratio as the test static. The likelihood P(D|H) is the probability of ob-

serving the data D if the hypothesis H were true. In our case, to test the hypothesis

Hs+b against the alternative Hb we would calculate the likelihood ratio

Λ =
P(D|Hs+b)

P(D|Hb)
(3.8)

and reject the hypothesis Hs+b if Λ is found to be smaller than a critical value Λ∗.

This critical value is determined by α, the desired level of the test: P(Λ < Λ∗|Hs+b) =

α.

In the case under consideration (independent {XQ} and {YQ}) it is easy to write

down the likelihoods under the two hypotheses. Let {Qi | i = 1 . . . N} denote the

properties Q of the N observed events. That is, ZQ was found to be 0 for all but the

finite set {Qi} for which ZQ = 1. The probability of measuring this collection of ZQ
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under the two hypotheses is

P({ZQ}|Hb) =
∏
Q

(1− bQ)
∏
i

bQi ,

P({ZQ}|Hs+b) =
∏
Q

(1− sQ − bQ)
∏
i

(sQi + bQi).

(3.9)

In these equations, the first product contains the infinite set of all Q except for the

finite set {Qi} while the second product only contains N factors corresponding to

the {Qi}. In the limit that the binning of event space becomes infinitesimal, bQ and

sQ approach zero and it makes no difference whether the first product omits a finite

collection of Q. One can also show that in this limit these infinite products converge

exactly to exponentials:

∏
Q

(1− bQ)→ exp

(
−
∑
Q

bQ

)
,

∏
Q

(1− sQ − bQ)→ exp

(
−
∑
Q

(sQ + bQ)

)
.

(3.10)

Using (3.9) and (3.10), the likelihood ratio (3.8) is given by

Λ = exp

(
−
∑
Q

sQ

)∏
i

(
1 +

sQi
bQi

)
.

It makes no difference if we use log Λ as the test statistic since the logarithm is a

monotonic function:

log Λ = −
∑
Q

sQ +
N∑
i=1

log

(
1 +

sQi
bQi

)
.

The first term is a constant that does not depend on the data so it has a trivial effect

on the probability distribution governing the test statistic. Ignoring this term leaves
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us with a test statistic that is most powerful at distinguishing Hs+b from Hb:

T =
N∑
i=1

log

(
1 +

sQi
bQi

)
, (3.11)

where Hs+b should be rejected if T is below T ∗, specified by the condition P(T <

T ∗|Hs+b) = α. Comparing (3.11) with (3.1) we see that if we set the weight function

to be

w(Q) = log

(
1 +

sQ
bQ

)
(3.12)

the test statistic (3.1) is equivalent to a likelihood ratio test statistic. Therefore,

using the weight function (3.12) gives rise to the most powerful test statistic. Note

that if we are testing the hypothesis Hb and want the test to be optimally sensitive to

Hs+b we can use precisely the same weight function (3.12). The only difference is that

Hb will be rejected when T is larger than T ∗, as determined by P(T > T ∗|Hb) = α.

It is interesting to observe that the log-weighting in (3.12) is in some sense a

compromise between the two weighting schemes derived in (3.6) and (3.7). Con-

sidered as functions of x ≡ sQ/bQ we see that x/(1 + x) ≤ log(1 + x) ≤ x for all

physical values of x (non-negative sQ and bQ). When considering a very weak signal

(sQ � bQ) all three become equivalent to (3.6). In this case the test statistic is

actually independent of the annihilation cross section since 〈σv〉 enters as a multi-

plicative factor in sQ (e.g. Eqs. 4.6 and 2.1) and two test statistics are equivalent if

they differ by a constant factor. This implies that when searching for the presence

of a small signal (i.e. testing the background-only hypothesis) the test statistic is

optimal against all alternative hypotheses Hs+b with small cross section (keeping

other model parameters fixed).
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3.4 Probability distribution of the test statistic

Here we derive the PDF of the test statistic defined by (3.1) for any choice of weight

function w(Q). First note that T is the sum of two terms

T = Ts + Tb, (3.13)

where Ts is the total weight of all detected photons originating from dark matter

annihilation in dwarfs (signal) and Tb is the total weight of all other detected events

(background). The signal events and background events are statistically independent

of one another. Therefore, the the PDF of T is the convolution of the PDFs of Ts

and Tb. The PDF of Tb is found by sampling the events from the regions surrounding

each dwarf galaxy as described in Chapters 2 and 4.

To find the PDF of Ts note that the number of detected signal events Ns is

a random variable distributed according to a Poisson distribution. The weights of

the detected signal events {w(Qi) | i = 1 . . . Ns} are independent and identically

distributed random variables. Therefore, the random variable Ts is the sum of inde-

pendent variables where the number of terms in the sum is itself a Poisson random

variable. Such a quantity is distributed according to a compound Poisson distribu-

tion (e.g. [174, 175]).

This compound Poisson distribution is determined by two quantities. The first

is the mean µ of the Poisson distribution determining the total number of signal

events observed. In terms of the definitions given in (3.3) we have µ =
∑

Q sQ. The

second input is the single-event weight distribution f(w). Specifically, f(w)dw is

the probability that a detected signal event has properties Q that cause it to be

given a weight w(Q) between w and w + dw. It is completely determined from the
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collection sQ once the weight function has been chosen. To compute f(w) we divide

the Q-space into small tiles (i.e. for each dwarf we divide the E-θ plane into small

bins) and find the weight wQ and the (unnormalized) probability sQ in each bin.

The weights wQ are binned into a histogram where each wQ adds a probability of sQ

to the histogram. This procedure can be made arbitrarily accurate by dividing the

Q-space into small enough bins. In practice, we chose the bins to be small enough

so that our results do not depend on the binning.

The Fourier transform φT (k) of the PDF of a compound Poisson distribution

takes a simple form [175]:

φT (k) = exp [µ (φW (k)− 1)] , (3.14)

where φW (k) is the Fourier transform of the single-event weight distribution f(w).

Numerically, this function can computed quickly using fast fourier transforms (FFTs).

Working in Fourier-space also makes convolutions efficient — one can simply multi-

ply the Fourier transforms. After this processing an inverse FFT is used to produce

the PDF.

3.5 Carrying out the tests

We are concerned with two related hypothesis tests. First, we can perform a search

for dark matter annihilation by asking whether the data is consistent with the hy-

pothesis Hb that there is no annihilation in the dwarf galaxies against the alternative

hypotheses Hs+b that dark matter has particular properties. If Hb cannot be rejected

we construct limits by testing the ensemble of hypotheses Hs+b to find which dark
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matter properties are ruled out (i.e. which of the Hs+b are rejected at, say, 95% con-

fidence). In both cases the optimal test statistic is determined by the two hypotheses

under consideration.

For the annihilation search the weight function is (3.12), which reduces to (3.6)

for an infinitesimal signal amplitude (e.g. small annihilation cross section). The

probability distribution of the test statistic is calculated. In this case the PDF of T

receives no contribution from dark matter annihilation: T = Tb. Then the observed

value of the test statistic Tobs is measured and the significance calculated by finding

P(T > Tobs | Hb). If this probability is small the background-only hypothesis is

rejected.

To construct upper limits we perform a hypothesis test for every possible an-

nihilation cross section. We find the value of the cross section 〈σv〉 such that

P(T < Tobs | 〈σv〉) = α. Hypotheses with a larger 〈σv〉 will be rejected and those

with smaller 〈σv〉 are not rejected. Therefore this value of the cross section represents

an α-upper limit.

3.6 Expected results

A very powerful benefit of being able to find the PDF of T for any hypothesis

is the straightforward computation of expected results. Computing the PDF of

the test statistic is equivalent to simulating the results of the observations under

a particular hypothesis. Instead of simulating millions of realizations of the raw

data (e.g. collections of photon and background events) we can exactly compute the

probability distribution of the test statistic that would have been derived form the
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raw data. Therefore, without “uncovering” the actual photon data we can predict

how our methods are likely (in a precise sense) to perform.

For example, suppose we wish to predict how strong our upper limits will be if

there was no dark matter annihilation in the dwarf galaxies. We can perform the

usual hypothesis test of Hs+b. However, instead of using the actual observed data

to compute Tobs we can assume that the observed test statistic will just be sampled

from the background-only PDF of T . That is, we compute P(T | Hb) and sample

Tobs from this distribution. A central estimate of the expected limit can be found

by taking Tobs to be the median of the background-only distribution. To find the

statistical uncertainty in the limit we can compute limits when Tobs is at, say, the

25th and 75th percentile of the background distribution to find where the upper limit

is likely to be found.

Likewise, we can simulate the results of a search for dark matter annihilation by

sampling Tobs from the PDF of T including the component Ts due to dark matter

annihilation. When searching for a signal we test the background-only hypothesis

Hb multiple times against signal hypotheses Hs+b with different dark matter prop-

erties for each. It is important to determine how “finely-grained” the Hs+b are. For

example, for how many trial dark matter masses should the search be performed

for? Should the search be performed for different annihilation channels? Or will a

dark matter signal be detected regardless of the specific alternative hypothesis we

are testing against?

There are several additional benefits to being able to compute the distribution of

expected results. In frequentist statistical analysis it is vital that the choice of test

statistics and critical regions not be influenced by the observed data. One issue that

has not been addressed is the selection of what events to consider for the analysis.
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In our case this entails selecting which dwarf galaxies to consider. We also need

to decide on the energy range of the events we consider and the maximum angular

separation from a dwarf an event can have. These choices define our Regions of

Interest (ROIs) for each dwarf galaxy. We can use the expected limits formalism to

find out how different choices of ROI parameters will affect the annihilation limits.

Finally, we can use this formalism to make predictions for future experiments:

with more observation time, different detector properties, and different targets, how

strong are the dark matter limits expected to be?



Chapter Four

Search for gamma-ray lines
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Introduction

The search for dark matter annihilation directly into a photon final state is extremely

important because the line emission occurs at an energy that corresponds to the

mass of the dark matter particle (or thereabouts if the second particle is a heavy

neutral particle) [176–180, 69, 181]. In addition, line emission is free of background

contamination as no known astrophysical process can result in line emission at the

energies of interest (a few GeV up to tens of TeV).

Recently there have been claims of the presence of a gamma-ray line at Eγ =

130 GeV [182–184]. These studies, based on 3.5 years of data from Fermi, find a line

emission signature from the direction of the Galactic center. The interpretation of

these results as dark matter annihilating directly to a photon final state implies a

cross section of 〈σv〉 ≈ [10−27− 10−26] cm3/s. It is important to emphasize that this

annihilation cross section is much larger than what one would expect from second

order diagrams that lead to a two-photon final state (or a single photon and a Z gauge

boson or h — for a summary see e.g., [69]). Several dark matter interpretations for

the alleged line feature have been offered [e.g. 183, 185–191] while other work raises

doubts about the statistical significance of the line and its interpretation as dark

matter [192, 193]. A recent search by the Fermi collaboration did not detect the

presence of line emission in the Galactic halo (including the Galactic center) [194].

The Galactic center is clearly a place of interest when it comes to dark matter

annihilation because of its large expected dark matter density [195]. As the annihila-

tion rate is proportional to the square of the number density of dark matter particles,

its high density, coupled with its proximity to Earth, makes the Galactic center an

attractive target for the search for an annihilation signal [e.g. 113].
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In this chapter I discuss an independent search for dark matter annihilation to a

photon final state in Milky Way dwarf galaxies using data from the Fermi Gamma-

ray Space Telescope (Fermi). By virtue of their pristine dark matter environment

(absence of high-energy baryonic processes) and high concentration of dark matter,

dwarf galaxies have been used to place the strongest bounds to-date on the s-wave

annihilation cross section of dark matter [1, 118]. Given the paucity of background

contamination along the lines of sight to the dwarf galaxies, it is natural to consider

what limits the dwarfs may place on the annihilation cross section of dark matter

into photon final states.

Statistical framework

The approach we take is a generalization of Geringer-Sameth and Koushiappas [1]

described in Chapter 2. We perform a line search by testing, at each line energy Eγ,

the null hypothesis that the observed data was generated by background processes.

Each hypothesis test is based on a test statistic T , which can be an arbitrary function

of the data; however, it is vital that the choice of test statistic be made without

reference to the data actually measured in the direction of the dwarf galaxies. A

detailed development of the statistical framework is found in Chapter 3.

We choose a simple form for the test statistic that combines the photon informa-

tion from each of the dwarfs. Each photon i within a Region of Interest (ROI) of size

1◦ is assigned a weight w based on which dwarf ν it came from, its energy E, and its

angular separation θ from location of the dwarf. We denote this set of properties as

Qi : {ν, E, θ}. The test statistic T is the sum of the weights of the photons detected
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within the ROIs centered on each dwarf:

T =
∑
ν

Tν (4.1)

where the single-dwarf test statistic Tν is

Tν =
Nν∑
i=1

w(Qi). (4.2)

Here, Nν is the number of photons detected within the ROI centered on dwarf ν.

The weights w(Qi) and the total number of photons Nν from each dwarf are random

variables1.

To calculate the statistics of T it is useful to divide the parameter space of energy

and angular separation (for each dwarf) into infinitesimal bins, each labeled by Q =

{ν, E, θ}. The number of photons detected in each bin is a random variable ZQ. This

total number of photons is the sum of two random variables: the number of photons

from dark matter annihilation XQ and the number originating from background

processes YQ (i.e., ZQ = XQ + YQ). In Eq. 3.6 I showed that the weight function

that maximizes an expected signal to noise ratio for a line emission search (in the

weak-signal regime) is

w(Q) =
sQ
bQ
, (4.3)

where sQ and bQ are the expected number of signal and background counts in the

parameter space bin Q.

Note that while sQ and bQ are infinitesimal quantities (being proportional to

1In Chapter 2, describing the analysis of the continuum gamma-ray emission from a combination
of dwarf galaxies [1], the weight of each photon was determined only by which dwarf it came from.
The test statistic was therefore the weighted sum of the total number of photons collected from
each dwarf.
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the size of the infinitesimal Q bin) their ratio is finite. In addition, sQ depends on

signal characteristics in such a way that the expected signal in any infinitesimal Q

bin is directly proportional to the annihilation cross section. Therefore, changing

the annihilation cross section will simply scale the test statistic by a constant factor

and will not affect any statistical conclusions, i.e. this weight function is optimally

powerful for any cross section.

The quantity Tν (Eq. 4.2) is the sum of two terms: the weights of photons from

dark matter plus the weights of background photons. These terms are independent

variables so the probability distribution function (PDF) for Tν is the convolution

of these individual PDFs. As in Geringer-Sameth and Koushiappas [1] (described

in Chapter 2) we model the background processes using data from the region sur-

rounding each dwarf galaxy. The fundamental assumption made is that the processes

which give rise to the background nearby the dwarf also generate the background at

the location of the dwarf.

For each dwarf we find the PDF of Tν due only to background processes by sam-

pling the photons in the region within 15◦ of the dwarf. Sources from the second

Fermi LAT source catalog [196] are masked with 0.8◦ masks (the 95% containment

angle for photons with energies greater than 10 GeV [197]). The sampling is per-

formed by randomly placing 1◦ ROIs over the 15◦ field of view (rejecting those ROIs

which overlap with a masked source, the ROI centered on the dwarf, or the bound-

ary of the field of view). The photons in these ROIs are then weighted according to

Eq. 4.3 and summed as in Eqs. 4.1 and 4.2.

In order to derive the PDF of T due to an annihilation signal, consider first a

single dwarf Tν as given in Eq. 4.2. The quantity Tν is the sum of Nν independent,

positive random variables (the weights), where Nν is drawn from a Poisson distri-
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bution with mean µν , the expected number of dark matter photons from dwarf ν.

This distribution is known as a compound Poisson distribution [174]. The PDF for

T due to dark matter (Eq. 4.1) for all the dwarfs is therefore the convolution of the

individual compound Poisson distributions for each of the dwarfs. The PDF for each

weight in the sum Tν is the same and is found by dividing the energy-angular sep-

aration plane into infinitesimal bins and computing the probability that a detected

dark matter photon will land in each bin. The weight assigned to a photon landing

in each bin is set by Eq. 4.3.

There are several methods for finding the PDF of the compound Poisson dis-

tribution Tν for dwarf ν. An early algorithm was developed by Panjer [198] but

we take advantage of a straightforward and efficient fast Fourier transform (FFT)

method [175] which has also found use in astrophysics [199–201].

For a single dwarf ν, let Fw,ν be the Fourier transform (or characteristic function)

of the probability distribution for the weight of a detected dark matter photon from

ν. The Fourier transform of the PDF for Tν (due to dark matter annihilation),

denoted FTν , is given by (see e.g. [175]),

FTν = exp[µν (Fw,ν − 1)]. (4.4)

To incorporate both signal and background photons into the PDF for T we use the

fact that a convolution is equivalent to multiplication in Fourier space. The full PDF

for T is

FT =
∏
ν

exp[µν(Fw,ν − 1)] ×
∏
ν

FB,ν (4.5)

where FB,ν is the Fourier transform of the empirically measured distribution of the

sum of weights due to background processes for dwarf ν.
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In practice the Fourier transforms are performed using an FFT on a discrete grid

of possible T values. The single-event weight PDFs and the background PDFs are

“tilted” [175] before taking the FFTs to form Fw,ν and FB,ν and the PDF of T is

“tilted back” after applying the inverse FFT to FT . The tilting prevents aliasing

which can be induced by the FFT.

Expected signal and background

The search for a line proceeds by first using Eqs. 4.5 and 4.3 to derive the PDF of

T under the null hypothesis that there is no dark matter signal (all µν ’s are 0). The

measured value of T , called T ∗, is obtained by summing the weights of all photons

in the 1◦ ROIs centered on each of the dwarfs. The significance of the detection is

the probability that T would be measured to be less than T ∗ if the null hypothesis

were true. For example, if there is 99.7% chance that T < T ∗ then a line has been

detected at 99.7%, or 3σ, significance.

The expected number of background counts bQ is found by fitting a power law to

all photons within 15◦ of the dwarf (excluding the central 1◦ and the masked sources).

For purposes of weighting, the background is assumed to be statistically isotropic,

i.e. independent of angular separation from the ROI center. This may not be true in

practice due to the presence of unresolved sources; however, the background sampling

automatically includes any non-Poisson aspect of the background in the PDF of Tν

(or equivalently in FB,ν).

The expected number of dark matter annihilation events sQ, detected from a

particular dwarf, with energy between E and E + dE and with angular separation
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in a solid angle interval dΩ(θ) is

sQ = J
〈σAv〉
8πM2

χ

dNγ(E)

dE
ε(E) PSF(E, θ) dE dΩ(θ). (4.6)

In the above Mχ is the mass of the dark matter particle, 〈σAv〉 is the velocity-

averaged annihilation cross section into a pair of gamma-rays, and dNγ/dE is the

number of photons per energy interval emitted per annihilation. The point spread

function PSF(E, θ) is the probability per solid angle of detecting a photon of energy

E an angular distance θ from the source, and ε(E) is the detector exposure in units

of cm2s. The quantity J quantifies the dark matter distribution within a particular

dwarf [157, 158, 164, 202, 203, 161, 159, 155, 204].

We use the publicly available data from the Fermi Science Support Center (FSSC)2

and version v9r27p1 of the Fermi Science Tools. We extract all photons of evclass =

2 using the tool gtselect in the Mission Elapsed Time interval [239557417 - 357485329]

in the energy range between 8 GeV and 1 TeV, and with zmax = 100. We select

good time intervals (with all standard recommendations as stated on the FSSC),

and compute ε(E) and PSF(E, θ) using gtpsf with the P7SOURCE V6 instrument

response functions.

The dark matter annihilation is modeled as point source emission from each

dwarf, and we utilize the values for J given by Ackermann et al. [118]. For a line

search the energy dispersion of the detector can be important. We incorporate this

uncertainty by giving a width to dNγ/dE. The spectrum due to line emission is

simply dNγ/dE = 2δ(E−Eγ) (but see also [183, 205]). The 68% containment on the

energy uncertainty of Fermi is approximately 10% for photon energies above 10 GeV.

We model this energy uncertainty by setting the annihilation spectrum dNγ/dE to

2http://fermi.gsfc.nasa.gov/ssc/data/analysis/
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Figure 4.1: A snapshot of every photon having an energy between 10 GeV and 1 TeV that has
been detected within 1◦ of each of the seven dwarfs. The black dashed line is at 130 GeV [182, 183].
The gray region is ±15% around 130 GeV, a rough gauge of the energy dispersion of the LAT. The
vertical axis is scaled according to solid angle so that an isotropic distribution of photons will be
spread uniformly along this axis.

be a Gaussian centered on Mχ, normalized to 2, with a standard deviation of 10% of

the mean. We have reproduced the analysis with top hat distributions with widths

from 5% to 30%. The effects are small and leave our conclusions unchanged.

Results

Figure 4.1 shows the individual photon events between 10 GeV and 1 TeV that were

detected within 1◦ of each of the seven dwarfs. The vertical axis measures the angular

separation between the event and the center of the dwarf. It is scaled according to
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solid angle so that an isotropic distribution of events should be distributed uniformly

over the vertical axis. There are no photons with energy within 15% of 130 GeV

(gray shaded region). The 68% energy resolution of the LAT ranges from about 8%

at 10 GeV to about 14% at 1 TeV while the 68% containment angle (PSF) varies

from 0.3◦ to 0.2◦ over this energy range (95% containment is about 0.8◦) [197]. We

conclude that the dwarfs show no evidence of a gamma-ray line at 130 GeV.

Using the formalism described above we perform a search for line emission over

a range of energies. A Gaussian energy spectrum with a standard deviation of 10%

is used to calculate sQ (Eqs. 4.3 and 4.6). We perform a separate search for each

possible line energy, taking 100 log-spaced steps from 10 GeV to 1 TeV. The results of

the search are illustrated in Fig. 4.2. Note that the inclusion of a trials factor dilutes

the significance of any line. We can make a very rough estimate of the number of

“independent” trials by assuming that a search for a line at Eγ uses the photons

in the window Eγ(1 ± α). If the energy of the (−α) edge of the window is E1 the

upper edge of the window is at an energy E2 = E1 (1 + α)/(1 − α). Therefore the

number of “independent” (i.e. non-overlapping) windows n between Emin = 8 GeV

and Emax = 1 TeV is specified by Emax = Emin[(1 +α)/(1−α)]n. An energy window

of α = 0.10 corresponds to about 24 trials. On the right vertical axis of Fig. 4.2

we plot the significance including a trials factor of 24 as a rough guide to the true

significance of any tentative line. It is clear that the data do not strongly suggest

that line emission is present at any energy.

Given that there is no evidence of line emission from the dwarfs we can place

upper limits on the annihilation cross section into two photons. In this case, the

weight choice analogous to Eq. 4.3 that maximizes the signal to noise ratio is w(Q) =

sQ/(bQ + sQ) (see Eq. 3.7). For each mass we find the cross section above which

there is less than a 5% chance of measuring the test statistic T to be smaller than
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Figure 4.2: Results of the a search for line emission using an optimized combined search of seven
dwarf galaxies. The horizontal axis represents the energy of the gamma-ray line searched for. The
left vertical axis is the significance of the detection (in terms of Gaussian standard deviations). The
right vertical axis incorporates a trials factor of 24, roughly the number of independent energies
searched. The non-significant peak at 200 GeV is due to a single photon from Sculptor (see Fig. 4.1).
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Figure 4.3: 95% upper limits on 〈σAv〉 for annihilation into a pair of photons each having energy
Eγ . The black line is the limit using the best fit J values for the dwarfs. The blue region corresponds
to the 95% systematic uncertainty in the estimates of J . The two points are the dark matter
interpretations for the tentative signals observed by [182, 183] under the assumption of an Einasto
dark matter profile and annihilation into two gamma-rays, with 95% error bars.

observed. The resulting upper limits are plotted in Fig. 4.3 (together with the results

from [182, 183]). By far, the largest source of systematic uncertainty is in the J values

for the dwarfs. The black line in the figure is the limit found when the J values are

set to their best fit values found in Ackermann et al. [118]. The effect of varying the

J values within their observational uncertainties is shown by the blue shaded region.

One at a time, we set the J value for each dwarf to its upper or lower 95% error

bar and recompute the 95% cross section upper limit. The differences induced by

each dwarf are added in quadrature to produce the boundaries of the shaded region.

This procedure gives an estimate of the systematic effect due to the difficulty of

determining each dwarf’s dark matter distribution.
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Discussion

For annihilation channels producing continuum emission (e.g. into heavy quark or

lepton pairs) dwarf galaxies provide strong limits on the annihilation cross section [1,

118, 161, 202, 206–213]. It is challenging to produce such limits from the Galactic

center: despite the high dark matter density (J value hundreds to thousands of times

larger than the dwarfs) the astrophysical background cannot be easily subtracted or

modeled. However, a gamma-ray line search is not hindered by these backgrounds to

the degree that a continuum search is. For this reason, the Galactic center may be a

more attractive target when searching for line emission. The upper limits obtained

by [214, 182] are much stronger than those obtained here from the dwarf data. A

recent search by the Fermi collaboration for gamma-ray lines in the Galactic halo

(including the Galactic center) [194] did not show evidence for a 130 GeV line and

places stronger upper limits than found here.

It appears that the large increase in dark matter density, and the proximity of the

Galactic center are much more constraining than are dwarf galaxies when it comes

to line emission searches. At the present time dwarf galaxies can neither confirm nor

deny a dark matter line interpretation of the Galactic center data.



Chapter Five

Detecting unresolved moving

sources in a diffuse background
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5.1 Introduction

Diffuse background light is very important in understanding conditions and classes of

objects in the Universe. This is due to the fact that the spectral, spatial, and ampli-

tude information in a diffuse background is linked to the properties of the otherwise

unresolved contributing sources. For example, microwave background measurements

include contributions of cosmic origin [215], as well as foregrounds of Galactic origin

[216–220]. As another example, γ-ray background measurements include contribu-

tions from unresolved blazars [221–230], inverse Compton scattering of CMB photons

by electrons accelerated at shocks around galaxy clusters and cosmic filaments [231–

234], starburst galaxies [235], cosmic ray interactions with atomic and molecular

gas in the Milky Way [236, 237], as well as the possible annihilation of dark matter

[238–243, 200, 244–247, 201]. All searches for new sources of emission require an

as-complete-as-possible understanding of the astrophysical backgrounds.

Background events may be divided into two classes. Some events are generated

by localized sources while others are generated by mechanisms which cannot be

localized. In the first class the sources can be either spatially fixed (in celestial coor-

dinates) or may exhibit proper motion (i.e. over a period of time their displacements

are larger than the angular resolution of the detector).

Using again the diffuse γ-ray background as an example, unresolved blazars,

starburst galaxies, and emission from structure formation shocks would be considered

spatially fixed sources of background. Cosmic ray events with interstellar gas would

be considered a non-localized random process. Sources of background which will

exhibit proper motion include the interaction of energetic cosmic rays with solar

system bodies (e.g., small objects in the asteroid belt or objects in the Kuiper belt
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and the Oort cloud) [248–250], dark matter annihilation around primordial black

holes [251, 252], and potentially nearby remnants of high density dark matter density

peaks [253–256]. In all these cases, individual emission from any single object is not

distinguishable, but the sum of these contributions may contribute to the diffuse

γ-ray background.

Correlations between individual events can help disentangle the contribution of

various sources to the background. In this chapter I present a formalism and a

technique that can be used to identify the presence of background sources that

exhibit spatial motion. In Sec. 5.2 I present an overview of the problem. Section 5.3

contains detailed definitions that are used in the statistical techniques that follow.

This allows us to write down the formal definition of the spacetime 2-point correlation

function, which can be used to extract the moving signal in the diffuse background.

In Sec. 5.4 I derive the form of the spacetime correlation function in 2 dimensions. A

quantitive account of the uncertainty in the method is found in Sec. 5.5. In Sec. 5.7

I demonstrate the method’s robustness in toy experiments and comment about the

use of an instrumental point spread function. I extend the formalism to realistic

problems in 3 dimensions in Sec. 5.8, discuss generalizations of the formalism in

Sec. 6.5m and explore applications and conclude in Sec. 5.10.

5.2 Overview of the problem

Suppose we have some objects moving on a 2-dimensional surface, each with a con-

stant velocity. Every so often the objects emit photons, which, when detected, we

call “events”. We record the location and time of each photon detection. The prob-

lem we are interested in is to take this collection of events and extract information
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Figure 5.1: Illustration of the two limits in the problem. The upper figure contains 5 objects
each with event rate 10 and the one on the lower left contains 50,000 objects with event rate 0.01.
The lower two figures contain the same number of events but those on the right are distributed
randomly. Naively, it is impossible to tell which of the last two figures contains random events and
which contains moving objects.
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about the objects: their existence, their velocity distribution, their density distribu-

tion, and their event rate or luminosity (i.e. the rate at which photons are emitted

from each object).

There are two natural variables in this problem which ought to determine how

difficult it will be to extract this information: the event rate of the objects and their

number density. If there are very few objects and their luminosities are very high it

should be easy to identify the path of each object individually. In the opposite limit

the objects’ luminosities are small but their number density is large. In this case it

will be difficult to identify the sequences of events that trace the paths corresponding

to individual objects.

These two limits are represented in Fig. 5.1. Each panel in Fig. 5.1 is a plot of

the location of all events in 10 arbitrary units of time1. The top panel contains 5

objects each having a luminosity of 10 and an average speed of 5. The lower left

panel contains 50,000 objects each with an event rate of 0.01 and drawn from the

same velocity distribution as before. The lower right panel contains the same number

of events as on the left, but they occur at random positions and times (i.e., there

are no “objects”). In the top panel it is easy to measure the speed and event rate

of every object (each generating about 100 events in total). This task is impossible,

by eye, for the lower left panel where each object generates 0.1 events on average.

Indeed, it is even difficult to say whether or not the events come from objects at

all, or if they are simply generated randomly as in the right panel. In practice, the

top panel is analogous to resolvable sources in the absence of any contaminating

backgrounds while the lower left and right panels represent diffuse backgrounds in

the sky. Our goal is to be able to distinguish between the lower left and right panels

1In these examples time and distance have arbitrary units and from now on these units will be
set equal to 1. A phrase like “luminosity equal to 10” means an event rate of 10 per unit time; “an
average speed of 5” means 5 units of distance per unit time, etc.
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while learning something about the objects on the left panel.

The technique we employ is an application of the 2-point correlation function.

One takes every pair of events and calculates their time separation and “velocity

separation” (their spatial separation divided by their temporal separation). One can

then bin this data and make a 3-dimensional plot of number of pairs as a function

of both time separation and velocity separation. The shape of this surface reveals

information about the contributing objects. For instance, if all the objects are moving

exactly at speed v, there will be lots of pairs of events whose velocity separation is

v. The effect will be a ridge in this 2-dimensional parameter space.

The situation can be made more realistic. Instead of the moving objects all having

speed v, their speeds could be drawn from a distribution. Their event rates could

also be drawn from a distribution. In fact we might have many different populations

of objects each having a different set of distributions for speed and luminosity. On

top of this we could add a set of completely random events: a Poisson process such

that there is some constant probability that an event occurs in any small region

of spacetime. Below we will systematically discuss all these possibilities. First we

present the simple 2-dimensional case with one class of moving objects along with

a component of random events. This is the easiest way to present our formalism.

Then we straightforwardly generalize to a realistic case where a diffuse background

is made up of signals coming from various populations of objects as well as random

processes.
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5.3 Definitions

The analysis takes place on a 2-dimensional sky map, which is a collection of dis-

crete signals that we define as “events”. Each event is assigned a spatial coordinate

(position) and a time coordinate. For example, in the case of the Fermi Gamma-ray

Space Telescope (Fermi), discrete signals are γ-ray events recorded by the Large Area

Telescope (LAT). The position is the location on the sky where the photon origi-

nated, and the time is the time of detection. It is important to note that in realistic

experiments the data comes not as a list of (position, time) for each event but as a

list of (point spread function, time) for each event. The analysis that follows can be

reworked for this more realistic situation. However, we will start out by assuming

that we simply have a collection of events where each event is specified by a position

and a time.

As we are interested in sources of events that can have velocities we also need

a notion of distance. For realistic sky maps, the distance between two events is

defined to be their angular separation. In our toy model with objects moving on a

2-dimensional surface, the distance between events is their Euclidean distance. We

also define the “velocity separation” between two events to be the distance between

them divided by their time separation. With these definitions, the appropriate way

to visualize the data is in a spacetime diagram where each event has both position

and time coordinates.

We will employ the 2-point function in a similar way to its use in galaxy-galaxy

correlation studies. The galaxies correspond to what we have called events. To

calculate the galaxy 2-point function for a particular angular separation θ one counts

the number of pairs of galaxies in the sky map whose angular separation is between
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θ and θ+ ∆θ. That is, for every galaxy one looks in a ring of radius θ and width ∆θ

around the galaxy and counts the number of other galaxies in this ring. The count

is denoted by C(θ, θ + ∆θ)(p), where p is an index labeling the central galaxy (see

Fig. 5.2). If the events were distributed randomly one expects to find on average

ρV (θ, θ+∆θ) galaxies in this ring, where ρ is the overall density of galaxies (number

of galaxies in the sky map divided by the area of the map) and V (θ, θ + ∆θ) is the

area of the ring, equal to 2π(cos(θ)−cos(θ+∆θ)). One then computes the correlation

function ξ at separation θ according to

ξ(θ, θ + ∆θ) =

〈
C(θ, θ + ∆θ)(p)− ρV (θ, θ + ∆θ)

ρV (θ, θ + ∆θ)

〉
, (5.1)

where the average is taken over the index p of each galaxy. The correlation function

ξ(θ, θ + ∆θ) is interpreted as the fractional increase in probability (above random)

that there is a galaxy in a ring between θ and θ+ ∆θ around any given galaxy. This

is most easily seen by rearranging (5.1) into the form C = ρV (1 + ξ). Notice that

the correlation function is inherently a function of the shape and size of the ring in

which the search for pairs of events is performed.

Now we apply the 2-point function in our situation. We denote spacetime by

S and we label spacetime events with the abstract index p, which carries all the

information we have about the event. For example, for the event p, p(t) is the

time the event occurred, p(x) is the x-coordinate of the event, etc. We define the

spacetime 2-point function as follows. For an event at p, let V (p) ⊂ S denote some

volume of spacetime which is analogous to the shaded region in Fig. 5.2. When there

is no confusion V (p) may also refer to the spacetime volume of the region V (p). Two

choices for V (p) are illustrated in Fig. 5.3. Let the number of events that occur

within the region V (p) be denoted by C(p). When it is important to remember that

C(p) depends on the region V (p) we will write it as C(p;V ). The spacetime 2-point
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Figure 5.2: For a galaxy-galaxy correlation function we look in rings of a certain size centered on
each galaxy and count the number of galaxies that lie inside each ring. The ring shown is V (p),
centered on the galaxy (represented by the black ×) having coordinates p.
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function is then given by

ξ(V ) ≡
〈
C(p;V )− ρV (p)

ρV (p)

〉
, (5.2)

where the average2 is taken over every event in the sky map (i.e. over p) and V (p)

denotes the spacetime volume of the region V (p). As before, ρ is equal to the overall

spacetime density of events (total number of events divided by the spacetime volume

of the sky map). In a realistic application ρ will have dimensions of flux: events per

square degree per time.

If the events were all generated by a completely random Poisson process we would

expect C(p;V ) = ρV (p) on average and ξ(V ) would be 0. The 2-point function ξ(V )

is therefore to be interpreted as the fractional probability above random that the

region V (p) contains an event given that there is an event at p. In the rest of this

paper we will develop a formalism for deriving ξ(V ).

5.4 2-dimensional model

5.4.1 Ingredients

Consider objects moving over a two dimensional surface with constant speeds and

each having the same event rate (a “blinking rate”, so to speak). Each event is

2In order to be thorough we should really define ξ by ξ(p;V ) ≡ 〈[C(p;V ) − ρV (p)]/ρV (p)〉U,
where the average is taken over an ensemble of Universes. Then we assume that our physical
situation is spacetime translation invariant so that ξ(p;V ) actually does not depend on the location
p. Finally, in order to estimate ξ from a set of data we claim that the average of ξ(p;V ) over an
ensemble of Universes is equal to the average taken over all the events in our dataset. These are
exactly the assumptions which must be made in the theory of galaxy n-point functions (referred to
as ergodic conditions). We will have more to say on the subject of estimators below.
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Figure 5.3: The spacetime regions V (r1, r2; t1, t2)(p) and V (v1, v2; t1, t2)(p) where p is at the
origin. The vertical axis is time and the horizontal axes are the x and y coordinates. In the upper
figure the region between the two cylinders contains all events which have a radial distance from
p between r1 and r2. In the lower figure the region between the two cones represents the possible
worldlines of an object starting at p and having a speed between v1 and v2. Imposing a time
separation between t1 and t2 gives the filled regions.
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then associated with an x, y, and t value and our “sky map” consists of the list of

(x, y, t) for each event. The “blinking” of an object is a Poisson process with mean

rate λ: during the time dt each object has a λdt chance of generating an event. Let

the average density of objects be given by n, which has units of objects per area.

The objects have speeds drawn from the distribution Pv(v): the probability for any

given object to have a speed between v and v + dv is Pv(v)dv. We consider the

case where the velocity distribution is isotropic (accommodating the more general

case, P~v(~v)d2~v, is straightforward). Finally, some fraction of the events will come

from a random (Poisson) component with spacetime density ρ0: there is a ρ0 dx dy dt

probability of having such an event in any spacetime volume dx dy dt.

5.4.2 The form of V (p) in 2 dimensions

There are many possible choices for the spacetime region V (p). The simplest one is

V (r1, r2; t1, t2)(p) ≡ {p′ ∈ S : t1 ≤ p′(t)− p(t) < t2

∧ r1 ≤ d(p′, p) < r2}, (5.3)

where d(p′, p) is the spatial separation of spacetime events p and p′ and ∧ is the

logical AND operator. This volume corresponds to all the events whose temporal

separation from p is between t1 and t2 and whose spatial separation is between r1 and

r2: a ring in spacetime with rectangular cross section (see upper panel of Fig. 5.3).

The volume of such a region is simply

V (r1, r2; t1, t2) = π(r2
2 − r2

1)(t2 − t1). (5.4)
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A more convenient choice for V (p) is

V (v1, v2; t1, t2)(p) ≡ {p′ ∈ S : t1 ≤ p′(t)− p(t) < t2

∧ v1 ≤
d(p′, p)

|p′(t)− p(t)|
< v2}. (5.5)

This region is interpreted as the volume of spacetime that an object might explore

between time t1 and t2 if it started at p and had any speed in the range from v1 to

v2. V (v1, v2; t1, t2)(p) is illustrated in the lower panel of Fig. 5.3 for the case where

p is at the origin of spacetime coordinates. If the event was an object which had

velocity between v1 and v2 its worldline would lie between the cones x2 + y2 = v1t
2

and x2 + y2 = v2t
2 and we only consider the region where t1 ≤ |p′(t)− p(t)| < t2.

The volume of this region may be found by slicing the shaded region in the x − t

plane, and rotating each small piece around the t−axis. The result is

V (v1, v2; t1, t2) =

t2∫
t1

v2t∫
v1t

2πxdxdt =
π

3
(v2

2 − v2
1)(t32 − t31). (5.6)

5.4.3 Coordinate systems

The forms of V (p) presented in the previous section are easiest to visualize in the

cartesian coordinate system (x, y, t) (see Fig 5.3). However, a more appropriate

choice of spacetime coordinates are (v, t, φ), defined by

v =
√

(x2 + y2)/|t|

t = t

φ = tan−1(y/x). (5.7)
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These are just cylindrical coordinates (r, z, φ) but with r scaled by the absolute value

of z. The Jacobian for this change of variables is

dV (v, t, φ) ≡ dx dy dt = vt2dv dt dφ. (5.8)

The volume V of any region of spacetime V (p) is given by

V =

∫
V (p)

dV (v, t, φ) =

∫
V (p)

vt2dv dt dφ . (5.9)

For example, we can recover (5.4) as

V (r1, r2; t1, t2) =

∫ t2

t1

∫ r2/t

r1/t

∫ 2π

0

dV (v, t, φ)

and (5.6) as

V (v1, v2; t1, t2) =

∫ t2

t1

∫ v2

v1

∫ 2π

0

dV (v, t, φ).

For later use we define the (v, t, φ)p coordinate system which is the same as the

coordinate system described in (5.7) except the center of coordinates (v = 0, t →

0) is at the spacetime point p. We also define the corresponding volume element

dVp(v, t, φ) or dVp for short. The region dVp(v, t, φ) is the infinitesimal version of

(5.5), i.e dVp(v, t, φ) = V (v, v + dv; t, t+ dt), only not rotated about the t-axis.

Finally we should note that it is just as easy to derive our results for rectangular

coordinates. One just uses the coordinate system (vx, vy, t) where

vx = x/t

vy = y/t

t = t, (5.10)
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instead of (5.7). The analogue of (5.8) is then

dV (vx, vy, t) ≡ dx dy dt = t2dvx dvy dt. (5.11)

5.4.4 The form of ξ(V ) in 2 dimensions

Our goal is to write down an analytic expression for (5.2). In the previous subsection

we showed how to calculate the volume V (p). Now we move on to C(p;V ), which

can be interpreted as follows. Given an event at p, C(p;V ) is the probability3 of

finding another event in the spacetime region V (p).

There are two processes by which an event might occur in V (p). Accordingly,

we can break up C(p;V ) into the sum of two terms: C(p;V ) = [the probability of

getting an event from an object that was at p] + [the probability of getting an event

from any other source]. The first term can be thought about in a series of steps:

given an event at p find the probability that it came from an object, that this object

moves into the region V (p), and that this object triggers a new event while in this

region.

The probability p1 that any given event came from a moving object (as opposed

to being generated by the Poisson component of the background) is the ratio of the

flux from moving objects to the total flux:

p1 =
nλ

nλ+ ρ0

=
ρ1

ρ
, (5.12)

where ρ1 ≡ nλ is the average flux of the moving objects, n is the number density

3Or, if it is greater than 1, C(p;V ) is the expected number of events in the region V (p).
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of objects, and λ is the event rate for an object. As before, ρ is the total spacetime

density of all events (i.e. the overall flux).

The probability that the object moves into the region dVp(v, t, φ) is simply the

probability that its speed is between v and v + dv, Pv(v)dv, multiplied by dφ/2π,

the probability that it is moving in a direction4 between φ and φ+ dφ. If the object

makes it into the region V (p) the probability of it generating a second event is λdt.

Therefore, the probability that there was an object at p which moved into V (p) and

generated another event is5.

p1

∫
V (p)

Pv(v) dv λdt
dφ

2π
. (5.13)

The second term in C(p;V ) is simply ρV (p), where ρ dx dy dt is the probability that

any random spacetime volume dx dy dt contains an event from either an object or

the random component (note that ρ = ρ1 + ρ0).

Therefore, putting together these parts and plugging them into (5.2) we find

ξ(V ) =

〈
C(p;V )− ρV (p)

ρV (p)

〉
=

p1

∫
V (p)

Pv(v) dv λdt dφ/2π

ρV (p)

=
ρ1

∫
V (p)

Pv(v) dv λdt dφ/2π

(ρ1 + ρ0)2 V (p)
. (5.14)

As is usually done for galaxy-galaxy correlation functions let’s see what happens

4If the objects do not have an isotropic velocity distribution then this probability is P~v(v, φ)dvdφ,
where P~v(v, φ) is the probability density for the velocity vector.

5In full generality this equation would be p1

∫
V (p)

P~v(v, φ)λ(t) dv dt dφ, where λ(t)dt is the prob-

ability that an object which generated an event at t = 0 generates another event in the time interval
between t and t+ dt.
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when we take the limit V (p)→ dVp(v, t, φ). Using (5.8) we see that

ξ(V )→ ξ[dV (v, t, φ)] =
ρ1λ

2π(ρ1 + ρ0)2

Pv(v)

vt2
. (5.15)

This limit is finite and the function ξ traces the velocity distribution of the

population of objects. Therefore, if ξ can be measured for multiple values of v then

it is possible to directly reconstruct both the velocity distribution of the moving

objects and information about their abundance and luminosity.

5.5 The error in ξ

Getting a handle on the error ∆ξ in a measurement of ξ(V ) is just as important as

calculating ξ(V ) itself: any practical application of this method will reveal nothing

if the uncertainty in ξ(V ) is comparable to ξ(V ). The zeroth order discovery that

can be made using the 2-point function is the detection of the presence of moving

objects. This is done by rejecting the hypothesis that ξ(V ) = 0 for all choices of

V (p), which is possible only if ∆ξ/ξ(V ) < 1 for some choices of V (p). An estimate

of the error is also essential when fitting the theoretical value for ξ to the data;

i.e. when performing a χ2 fit to determine the physical parameters describing the

density, luminosity, and velocity distribution of contributing sources.

Fortunately, the errors in correlation functions have been thoroughly studied in

the case of galaxy-galaxy correlations [257–265]. We emphasize that all the tech-

nology that has been developed for calculating 2-point functions for galaxies and

quantifying their errors can (and should) be straightforwardly applied to our 2-point

function. As stated before, the only conceptual difference between the two tools is
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the choice of V (p).

In particular, we apply the results of Landy and Szalay [261] (hereafter LS93)

to the present problem. In the examples below we measure ξ(V ) using an unbiased

estimator which is identical to the DD/RR ratio in LS93. This is done for simplicity.

The unbiased LS93 (DD − 2DR+RR)/RR estimator was shown to have a smaller

variance and should be used in practical applications. (In LS93, DR refers to the

cross-correlation of the observed data with sets of completely random data, while

DD and RR are the auto-correlation functions computed for the data and for a

completely random set of data, respectively.)

To quantify the error in ξ(V ) we adapt the LS93 expression for the variance of

the (DD − 2DR + RR)/RR estimator for small correlations (i.e. small values of

ξ(V ), likely in cases of physical interest). For a given shape V (p) (with spacetime

volume V ) the variance of the estimator is given by

∆ξ2(V ) =
[1 + ξ(V )]2

NρV
, (5.16)

where N is the total number of events in the sky map. This can be seen to be the

same as Eqs. 43 and 48 in LS93 by writing ρ = N/V , where V is the total spacetime

volume of the sky map and noting that V (p)/V is equal to LS93’s Gp(θ). The signal

to noise ratio is then

ξ(V )

∆ξ(V )
=

ξ(V )

1 + ξ(V )

√
NρV . (5.17)

These expressions should be used to determine the optimal volumes V (p) for any

given application. Ideally, V (p) should be chosen to make the signal to noise ratio

large while keeping V (p) small enough that many choices for V (p) can be measured

for the sky map. This dilemma occurs with galaxy-galaxy correlation studies as
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well. An annulus of specific size (see Fig. 5.2) corresponds to one choice of V (p).

One would like to choose the width of the annulus as small as possible so that the

correlation function can be measured at many different angular scales. However, the

smaller the width of the annulus the larger the uncertainty in the measured value of

the 2-point function.

As is well-known in galaxy-galaxy correlation studies, measurements of ξ at two

different angular sizes can be highly correlated. This issue will also affect any mea-

surement of the spacetime 2-point function: the measured ξ(V ) for different choices

of V (p) may be correlated. Therefore, a χ2 fitting to extract physical parameters

should include an estimate of the covariance of ξ(V ) between different V (p)’s. A va-

riety of methods have been developed to estimate or predict this covariance matrix.

Many of these are trivially adapted for use in this case. Bootstrapping (e.g. [266–

268]) and jackknife resampling [269, 270] require measuring the correlation function

on various subsets of the full data set and analyzing the variation among these es-

timates of ξ. If generating fake data sets is feasible then one can simply measure

the correlation function on many fake maps to find the covariance of ξ(V ) between

various V (p)’s.

5.6 Point spread function and computational con-

siderations

In this section we discuss two ways to include information about the point spread

function (PSF) into the derivation of the form of the 2-point function. This will

serve as a guide for incorporating the PSF in realistic applications.
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The PSF of a detector quantifies the uncertainty in its measurement of the loca-

tions of events in spacetime [271]. The PSF typically takes the form PSF(pt − po),

where pt is the true location of the event and po is the location that the detec-

tor reports, the “observed” location. The PSF is a probability density on space-

time: PSF(pt − po)dV is the probability that if the detector reports an event at

po it actually arrived from the spacetime region dV centered at pt
6. As a result,∫

PSF(pt− po)dVt = 1. Additionally, there is the probability pd that if a signal (e.g.

a photon) arrives at the detector it will actually be detected as an event.

If we are given the PSF for a given event we can do a more precise job of com-

puting C(p;V ). As above we want to answer the question: given that the detector

reported an event at po what is the probability that the detector reports another

event in the spacetime region V (p)?

If the detector reports an event at p there is a p1 chance that it received a signal

from a moving object. But the true location of the object could be anywhere, with

probability given by the PSF. The object can have any velocity and can emit a signal

at any later time. This signal has a pd chance of being detected. The location of the

observed event is again determined by the PSF. Specifically, we have

C(p;V ) = p1

∫
pt∈S

PSF(pt − p) dVp(vt, tt, φt)

×
∫

p′t∈S

1

2π
Pv(v′)λpddv

′ dt′ dφ′

×
∫

po∈V (p)

PSF(p′t − po) dVp′t(vo, to, φo). (5.18)

6Because the time resolution of detectors is generally excellent compared with the spatial (or
angular) resolution, the PSF is usually given as a function of spatial coordinates only. The PSF we
have defined would then be equal to δ(tt − to) PSF(~rt − ~ro).
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In words, there is a p1 chance that the observed event at p came from a moving

object. Given that it came from a moving object there is a PSF(pt−p) dVp(vt, tt, φt)

chance the event actually occurred in the region dVp(vt, tt, φt) around the point

pt = (vt, tt, φt)p (recall the definition of dVp at the end of the section on the choice of

V (p)). Then there is a (1/2π)Pv(v′)λpd dv
′ dt′ dφ′ chance that the object moves into

the region dVpt(v
′, t′, φ′) around the point p′t = (v′, t′, φ′)pt and emits a signal which

is reported by the detector. Finally there is a PSF(p′t − po) dVp′t(vo, to, φo) chance

that this event is reported as having occured in the region dVp′t(vo, to, φo) around the

point po = (vo, to, φo)p′t .

All the possibilities are taken into account by integrating pt and p′t over all of

spacetime (the object could actually have been located at any point and could have

moved to any other point) and by integrating po over the region V (p) (we are only

interested in the possibilities where the detector reports the second event in the region

V (p)). For clarity we have omitted the ρV (p) term in C(p;V ), which represents the

probability of a reported event in V (p) from any source besides an object moving

from p into V (p). One can show that (5.18) reduces to the numerator of (5.14) when

PSF(pt − po) = δ(pt − po) and pd = 1.

The spacetime correlation function is an example of a 2-point correlation function

and so any method that is used to compute 2-point functions may also be used here.

In galaxy-galaxy studies, the galaxies are localized sources and the 2-point function

is measured by counting pairs of galaxies which have a particular separation. When

looking for moving objects using gamma-ray data, for instance, the events are also

localized. Computational procedures then carry over directly. Typically, counting

pairs of events is an N2 process7. For example, in gamma-ray diffuse studies the

7We point out that efficient algorithms with better than N2 scaling have recently been developed.
See, for example, [272–274].
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number of events is proportional to the observation time as well as to the effective

area of the detector.

In other situations the data do not come as localized events but as a continuous

amplitude across the sky. This case can be treated by first discretizing the survey

area into small “cells” or pixels. Each pixel now has a continuous value. For a

particular V (p), the correlation function is found by multiplying the value of the

pixel p by the sum of the values in the pixels in the volume V (p). The expected

value of this quantity (i.e. the denominator in (5.2)) is the average pixel amplitude

squared multiplied by the volume of V (p).

This method of computing the 2-point function can be used as an alternative way

to account for the detector point spread function. Following Morales et al. [271], ev-

ery discrete photon event in spacetime is replaced by its point spread function. The

overlap of the point spread functions for all observed events forms a continuous den-

sity over the survey area and observation window. The 2-point correlation function

for any choice of V (p) can then be measured as described above. We note that this

method suffers no performance penalty for increased numbers of observed events

because the events are essentially binned into pixels in spacetime, with each pixel

having a value given by the linear superposition of all contributing PSFs.

5.7 Examples of the 2-Dimensional formalism

In this section we will demonstrate the accuracy of the derivations by measuring

ξ for three different simulations in which the objects move according to a specific

speed distribution. A generic choice for Pv is the Rayleigh distribution: the speed
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distribution for a 2-dimensional isotropic Gaussian velocity distribution. It has the

form

Pv(v) =
v

a2
e−v

2/2a2 , (5.19)

with mean speed v̄ = a
√
π/2. We choose V (p) to be the region described by (5.5)

and shown in the lower panel of Fig. 5.3. We note that any choice of the shape

of V (p) is allowed. The shape V (p) used here is adapted to the search for objects

which move in straight lines at constant speed. For sources with different patterns

of motion, other choices for V (p) may be more appropriate. However, because the

choice affects the counting of pairs of events when measuring ξ it must be taken into

account in the theoretical derivation of ξ.

With these choices the integral in (5.14) becomes

∫
V (p)

Pv(v) dv dt
dφ

2π
=

t2∫
t1

v2∫
v1

2π∫
0

v

a2
e−v

2/2a2dv dt
dφ

2π

= (t2 − t1)
[
e−v

2
1/2a

2 − e−v22/2a2
]
.

Inserting this expression into (5.14) and using (5.6) we find

ξ(v1, v2; t1, t2) =
ρ1λ (t2 − t1)

[
e−v

2
1/2a

2 − e−v22/2a2
]

(π/3)(ρ1 + ρ0)2 (v2
2 − v2

1)(t32 − t31)
. (5.20)

Given an event map we can measure ξ(v1, v2; t1, t2) for any choice of the 4 pa-

rameters (v1, v2, t1, t2). In practice, a fit can be attempted in order to discover the

4 physical parameters λ, ρ1, ρ0, and a. While ρ = ρ1 + ρ0 is measured directly the

parameters ρ1 and λ are combined as a single normalization factor and so the most

a fitting analysis would reveal would be the combination ρ1λ. In the 2-dimensional

case this is true for any choice of V (p), as can be seen from (5.14). Of course,
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knowledge of any one of λ, ρ1, or ρ0 can be used to find the other two.

Our first simulation will only contain moving objects. In the second we will

add a component of random noise and in the third simulation both random noise

and a population of stationary objects will be considered in addition to the moving

objects. One of the goals of these simulations is to demonstrate that the 2-point

function can tell the difference between a background containing a population of

sources and a completely random background. We do this by generating a second

sky map for each example with the same number of events but distributed completely

randomly throughout the spacetime volume. The 2-point function is measured for

this randomly generated sky map and is plotted along with the 2-point function

measured from the actual simulation. If the events are randomly generated there

should be no correlations at all: ξ(v1, v2; t1, t2) should be 0 for all values of v1, v2, t1,

and t2.

5.7.1 Example 1: Moving sources only

In the first simulation there is no random noise: ρ0 = 0. We simulate an area with

dimensions 13,200 × 13,200 for time 10. The density of objects is n = 0.2 and each

has an event rate λ = 0.01 yielding an estimated flux of ρ1 = nλ = 0.002 events

per unit area per unit time. Their speeds are distributed according to a Rayleigh

distribution with a mean speed v̄ = 5. The objects then have the same density,

event rate, and speeds as in the lower left image of Fig. 5.1. The expected number

of events triggered by each object is 0.1 which means that although there are about

35 million objects present, less than 10% of them will trigger even a single event.

Overall, there are roughly 3.5 million events in our sky map.
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Figure 5.4: A toy example demonstrating the use of the spacetime correlation function to discover
the presence of localized event sources with non-zero speeds. The t = 0 slice of ξ(v, t) is plotted
showing the theoretical prediction (red ×’s), the measured value (blue squares), and the measured
value for the case of completely random events (black triangles). The hypothesis that the pattern
of events in the sky map is Poisson (ξ(v, t) = 0) is clearly rejected at high significance. The error
bars in the measured quantities are explained in the discussion surrounding (5.16). The sky map
contained 3.5 million events, all from moving objects, though each object contributed only 0.1
events on average. The blue data points are measured from a larger version of the map shown in
the lower left panel of Fig. 5.1 while the black points are measured from a larger version of the map
shown in the right panel.
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In the measurement of ξ(v1, v2; t1, t2) we take v2 = v1 + 1 and t2 = t1 + 1, i.e.

we choose non-overlapping bins of size 1 in both time and velocity separation. The

subscripts on v1 and t1 are dropped and ξ(v1, v2; t1, t2) is relabeled ξ(v, t). The 2-

point function is then measured for v = 0, . . . , 19 and for t = 0, 1, 2. The t = 0

slice of the measured ξ(v, t) is shown in blue in Fig. 5.4 along with the theoretical

value (5.20), shown in red. The black curve is the 2-point function measured for a

sky map containing the same number of events but placed randomly. The separation

v2−v1 = 1 was selected for illustrative purposes. The time separation t2−t1 = 1 was

then chosen to be close to the optimal separation found by maximizing the signal to

noise ratio (5.17) for t1 = 0. The error bars are computed according to (5.16). This is

a slight abuse since the estimator plotted is DD/RR and not (DD−2DR+RR)/RR.

In practice it is recommended to use the latter estimator.

It is clear that moving objects are detected at a very high significance (i.e. the

hypothesis ξ(v, t) = 0 is rejected). The measured value ξ(0, 0) = 0.15, for example, is

about 15 standard deviations from ξ = 0. A fit to recover the parameters λ, ρ1, and

a can be attempted using ξ(v, t), which is measured at the lattice of points {(v, t) :

v = 0, 1, . . . ; t = 0, 1, . . . }. In practice, the full covariance matrix of errors between

different v-bins should be included in such a fit (see last paragraph in Sec. 5.5).

5.7.2 Example 2: Moving sources and a random component

Let us see if the spacetime 2-point function can tell the difference between a collection

of moving objects plus random noise and a situation with just random noise, where

both cases have the same total flux ρ. The sky map has the same dimensions as

before and the moving objects have the same number density, luminosity, and speed

distribution as before yielding ρ1 = 0.002. We choose the random component to
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have the same flux ρ0 = ρ1 so that ρ = ρ0 + ρ1 = 0.004. There are about 7 million

events in this sky map, half coming from objects and the other half coming from the

random component.

In the calculation of ξ(v1, v2; t1, t2) we choose v2 = v1 + 1 and t2 = t1 + 0.9. The

results are plotted in the top panel of Fig. 5.5. Again it is clear that the moving

objects are detected even in the presence of random signal in the sky map.

How impressive is this result? Could we have just looked at the data by eye and

spotted the presence of moving objects? If each object generates at most a single

event then clearly it is impossible to determine anything about their motion or to

distinguish this from the case of completely random events. The fraction of events

which come from objects that trigger more than one event is

P>1 =

nA
∞∑
k=2

k π(k;λT )

(ρ1 + ρ0)AT

=
nA λT (1− e−λT )

(ρ1 + ρ0)AT

=
ρ1

ρ1 + ρ0

(1− e−λT ), (5.21)

where A total area of the sky map, T is the observation time, and π(i;M) ≡

e−MM i/i! is the Poisson distribution with mean M . In our case, ρ1 = ρ0 = 0.002,

λ = 0.01, and T = 10. Substituting these values into (5.21) gives P>1 = 0.048.

That is, less than 5% of the events in our simulated sky map come from objects

which generate more than one event. Furthermore, 95% of these events come from

objects which generate exactly two events during the time T . If one was to try to

spot individual moving objects in the sky map one would need to be able to take 200

events and out of the nearly 20,000 possible pairs of these events spot the 5 pairs

which correspond to an object triggering an event, moving, and triggering a second
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Figure 5.5: The 2-point function ξ measured for two simulations color-coded as in Fig. 5.4. Each
contained 7 million events. Objects had the same event rate as the first simulation. Top: Moving
sources and random noise. Half the events came from moving objects and half were generated
completely randomly to represent noise. Bottom: Moving sources, stationary sources and random
noise. A third of the events are from moving objects, a third from stationary objects, and the last
third were generated randomly.
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event.

We can illustrate this difficulty by examining a small area of the sky map from

our simulation. The top panel of Fig. 5.6 shows all the events that occurred in a

150 × 150 area during the entire 10 units of time. On the bottom the same events

are shown but are identified as having come from objects (blue) or as random events

(orange). Events which came from the same object are connected with a line. The

difficulty of discovering moving objects by eye is evident. The 2-point function is

statistically able to pick up on the rare occurrences where an object generates more

than one event.

5.7.3 Example 3: Moving sources, fixed sources, and a ran-

dom component

As a final example, a third class of objects are added to the simulation. These are

stationary objects which do not move during the course of the observation. The

presence of such objects should manifest itself as a spike in the 2-point function at

v = 0.

The dimensions of the sky map are the same as in the two previous examples.

The moving and stationary objects have the same event rate, λ = 0.01, and spatial

density, n ≈ 0.133. The moving objects have the same velocity distribution as before.

The random component has spacetime density ρ0 ≈ 0.00133. Therefore, the total

density of events is ρ = ρ0 +ρ1 +ρ2 = 0.004, which is the same as in the last example.

The subscript 2 denotes the stationary objects. Each component contributes roughly

the same number of events to the sky map.
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Including the stationary objects into the 2-point function just requires replacing

the Rayleigh distribution with the Dirac delta function centered at v = 0: Pv(v) =

δ(v). Eq. 5.20 becomes,

ξ2(v1, v2; t1, t2) =
3 ρ2λ (t2 − t1)δv1,0

π ρ2 (v2
2 − v2

1)(t32 − t31)
, (5.22)

and ξ1(v1, v2; t1, t2) is given by (5.20) except that the total density in the denominator

includes the stationary objects, ρ = ρ0 + ρ1 + ρ2. The function δv1,0 is 0 if v1 > 0

and is 1 if v1 = 0. The measured 2-point function ξ(v1, v2; t1, t2) is simply the sum

of the 2-point functions for each class of objects: ξ = ξ1 + ξ2.

As before we choose v2 = v1 + 1 and t2 = t1 + 1. The results are plotted in the

lower panel of Fig. 5.5. The spike at v = 0 due to the stationary objects is apparent.

Its height is determined by both ξ1 and ξ2. Since the shape of ξ when v > 0 can

be measured the contribution of the moving objects to the spike at v = 0 can be

subtracted.

5.8 Objects in 3 dimensions

The 2-dimensional situations examined so far are, of course, only toy models for

astrophysical applications. In this section we develop a more realistic theory of the

use of the 2-point function. The derivation of the form of ξ is based on precisely the

same arguments as in the 2-dimensional case. Simulations analogous to those in the

previous section can also be performed in three dimensions and will agree with the

theoretical form of ξ. In performing an actual measurement of ξ simulations should

be tailored to the specific application. We defer such detailed modeling to future
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Figure 5.6: Top: All events which occured in an area of the sky map with dimensions 150 × 150
during the entire observation time. Bottom: The same events but identified as objects (blue) and
random events (orange). Events which came from the same object are connected with a line. Less
than 5% of events come from objects which caused more than one event.
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work wherein we will apply the formalism to all-sky gamma-ray data [275].

A diffuse emission all-sky map (e.g. from Fermi-LAT) is a 3-dimensional repre-

sentation of a 4-dimensional process since we cannot measure line-of-sight distances

for individual events. The distance to a source determines both its flux on Earth and

its angular speed across the sky. This coupling between distance, speed, and flux

is what makes the analysis more complicated. Previously, the velocity distribution

Pv(v) and the luminosity λ were independent quantities. Now we must consider

probability distributions which depend on both v and λ: closer objects have higher

angular speeds and look brighter than distant objects. While the spacetime 2-point

function in this situation is still defined by (5.2) it is more difficult to derive the ana-

logue of (5.14). The analysis of this section will develop the theory of the spacetime

2-point function in the case of a realistic sky survey.

5.8.1 Summary of the measurement of ξ

The computation of ξ proceeds exactly as in the 2-dimensional case. The sky map

consists of events, each having a directional coordinate (the apparent direction of

the photon’s origin) and a time coordinate. The “distance” between events is the

angle between them measured along a great circle. The velocity of interest is now

an angular velocity: the “velocity separation” of two events is defined as the angle

between the two events divided by their time separation. The sky map is again a

spacetime diagram, though not with the usual rectangular coordinates for the spatial

axes. It can be visualized as a series of concentric spheres, each representing the

celestial sphere, with different spheres corresponding to different slices of time (with

t increasing as the radius of the spheres increases). In this picture the worldlines

of objects moving at constant angular speed are Archimedean spirals in spacetime.
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The volume of a region in this spacetime has units of solid angle × time.

In the next sections we derive expressions for V (p) and C(p;V ), the latter in

terms of parameters describing the various populations of objects which contribute

to the sky map.

5.8.2 The form of V (p) in 3 dimensions

One defines V (p) as some volume of spacetime S. Convenient choices include

V (θ1, θ2; t1, t2)(p) = {p′ ∈ S : t1 ≤ p′(t)− p(t) < t2

∧ θ1 ≤ d(p′, p) < θ2}, (5.23)

where p(t) is the time coordinate of the event p and d(p′, p) is the angle between

spacetime points p and p′, and

V (ω1, ω2; t1, t2)(p) = {p′ ∈ S : t1 ≤ p′(t)− p(t) < t2

∧ω1 ≤
d(p′, p)

|p′(t)− p(t)|
< ω2}, (5.24)

where ω1 and ω2 are angular speeds. These are the analogues of Eqs. 5.3 & 5.5.

In (5.23), V (p) contains the events which occur in an annulus around p with inner

and outer radii θ1 and θ2 and which occur in the time interval p(t) + t1 to p(t) + t2.

Note that when t1 = 0 and t2 =∞ this region is exactly that used for galaxy-galaxy

correlation studies. In (5.24), V (p) represents all the events which could have been

triggered by an object moving from p if it had an angular speed between ω1 and ω2
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and with the same time separation constraint.

If we are looking at a small area of the celestial sphere that can be approximated

as flat space then we can choose V (p) to be “anisotropic”. i.e. choose volumes such

as

V (vx1, vx2; vy1, vy2; t1, t2) = {p′ ∈ S : (5.25)

t1 ≤ p′(t)− p(t) < t2,

∧ vx1 ≤
p′(x)− p(x)

p′(t)− p(t)
< vx2,

∧ vy1 ≤
p′(y)− p(y)

p′(t)− p(t)
< vy2}.

This choice of V (p) is useful when a class of moving objects has an anisotropic velocity

distribution, or when the proper motion of the earth or the detector is important.

The volume of the region V (p) is calculated in a way similar to the 2-dimensional

case. For instance, the volume of the region specified by (5.23) is found by first

computing the solid angle of the annulus between θ1 and θ2, and multiplying this by

the time interval:

V (θ1, θ2; t1, t2) = 2π (cos θ1 − cos θ2) (t2 − t1). (5.26)

The volume specified in (5.24) is slightly more complicated:
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V (ω1, ω2; t1, t2) =

∫ t2

t1

dt

∫ 2π

0

dφ

∫ ω2t

ω1t

sin θ dθ

= 2π

[
sin(ω1t2)− sin(ω1t1)

ω1

]
− 2π

[
sin(ω2t2)− sin(ω2t1)

ω2

]
. (5.27)

Equations 5.26 and 5.27 hold only when θ2 < π and ω2t2 < π, respectively. Otherwise

the annulus begins to overlap itself. This is only an issue if one is searching for objects

which moved across the entire sky during the observation period.

In the limit where t2 → t1 + dt and ω2 → ω1 + dω (5.27) becomes (dropping

subscripts)

V (ω1, ω2; t1, t2)→ dV (ω, t) = 2πt sin(ωt) dω dt. (5.28)

This is the analogue of the 2-dimensional (5.8).

As in the 2-dimensional case we now define a convenient coordinate system for

every point on the celestial sphere. The coordinates (ω, φ, t)p are related to the

global celestial coordinates (plus time) as follows. First we consider a rotated set

of spherical coordinates (Θ,Φ)p in which p is at the north pole and the line Φ = 0

intersects the north celestial pole. That is, the new and old coordinates are related

by a rotation in which p slides along a line of longitude to the north celestial pole.

Then new coordinates (ω, φ, t)p are related to (Θ,Φ) by Θ = ωt and Φ = φ. This is

a mapping from (ω, φ, t)p to the global celestial coordinates (the time coordinate is

unchanged). Using (5.28) we can write down the volume element in these coordinates.

The spacetime volume (solid angle × time) between ω and ω + dω, between φ and
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φ+ dφ, and between t and t+ dt is

dVp(ω, φ, t) = t sin(ωt) dω dφ dt, (5.29)

and one can check that (5.27) is recovered as the integral

ω2∫
ω1

2π∫
0

t2∫
t1

dVp(ω, φ, t).

5.8.3 Ingredients needed to derive C(p;V ) in 3-D

Besides the volume V (p) we need to derive an expression for C(p;V ) in (5.2). This

quantity depends on the properties of the sources which contribute events to the sky

map. Generally, the sky is populated by different classes of objects, each with its

own velocity distribution, luminosity function, and spatial distribution. Let’s denote

the different classes of objects by the subscript i. Then for each class we define the

following functions.

• Pi,L(L) dL is the probability that an object of class i has an intrinsic luminosity

between L and L+ dL. L is the number of photons per second emitted by the

object. The distribution Pi,L(L) is normalized to 1:
∫∞

0
Pi,L(L)dL = 1. The

function Pi,L is commonly called the luminosity function of the population.

• ni(R, Ω̂) is the physical number density of i-type objects which lie a distance R

away from the detector in the direction Ω̂ on the celestial sphere. This quantity

has units [length]−3.

• fi(~v; Ω̂) specifies the tangential velocity distribution of i-type objects. The

quantity fi(~v; Ω̂)d2~v is the probability than an object of class i located in the
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direction Ω̂ on the celestial sphere has its tangential velocity vector in the range

d2~v around ~v. These velocities are proper velocities, measured relative to the

earth (or the detector). “Tangential” means that the velocity is perpendicular

to the line of sight8. This distribution is also normalized to 1.

• ρ, defined above, is the average number of events detected per solid angle per

time. It can be estimated from the sky map by dividing the total number of

events by the time over which the sky map was measured and by the total solid

angle of the map. For maps with large numbers of counts this estimator will

be adequate. In practice, one may need to modify the procedure for surveys

with unequal exposures across the sky: the quantity ρ may be position and

time-dependent. If we divide ρ by the detector area A we get ρ̃, the total flux

per solid angle.

5.8.4 Derivation of C(p;V ) in 3 dimensions

The quantity C(p;V ) is the probability of finding an event in the region V (p) given

that the detector reported the event p. It can also be thought of as the expected

number of events in V (p), given an event p. First we break C(p;V ) into the sum

of 2 terms: C(p;V ) = [the probability that the event p was caused by an object

which moved into the region V (p) and triggered another event] + [the probability

of finding an event in V (p) for any other reason]. As in the 2-dimensional case the

second term is simply ρV (p).

The first term can be broken up into the product of 3 probabilities: [C1: the

8We have implicitly assumed that the line of sight velocity of any object is small enough that
the change in its distance does not affect its flux. That is, the objects are all far enough away so
that v̄lost̄/R � 1, where t̄ is a measure of the time separation between the region V (p) and the
event p.
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probability that the event p came from an object of class i with luminosity L located

a distance R from the detector] × [C2: the probability that this object has a velocity

that takes it into the region V (p)] × [C3: the probability it triggers an event while

in V (p)]. The product then needs to be integrated over R and L and summed over

i.

The first factor, C1, is the ratio of photons received from i-type objects with

luminosity L and distance R in the direction Ω̂p to the total number of photons

received from the same direction:

C1 =
1

ρ

[
ni(R, Ω̂p)R

2 dR
]

[Pi,L(L) dL]

[
LA

4πR2

]
, (5.30)

where A is the effective area of the detector. It is worth noting that C1 does not

actually depend on A since ρ will also be proportional to A.

The second factor, C2, is the probability that an i-type object will have a velocity

which takes it into the region V (p). We will have to integrate over a range of velocities

which correspond to the object moving into V (p). It will, therefore, be useful to use

the coordinate system defined in the discussion leading to (5.29). We can adapt

the velocity distribution fi(~v; Ω̂) to the new coordinates by introducing the function

fi(v, φ; Ω̂) defined so that

fi(v, φ; Ω̂) dv dφ = fi(~v; Ω̂)d2~v. (5.31)

The quantity fi(v, φ; Ω̂) dv dφ is to be interpreted as the probability that an object

of type i has tangential speed between v and v + dv and is moving in a direction

between φ and φ+ dφ, where φ refers to the coordinate label in our new coordinate

system whose north pole coincides with the direction Ω̂ as described previously. Next
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we relate the distance to the object to its angular velocity using the relation v = Rω.

Therefore, the quantity

fi(Rω, φ; Ω̂)Rdω dφ (5.32)

gives the probability that the object, which is at a distance R, has angular speed

between ω and ω + dω and is moving in a direction between φ and φ + dφ. This

expression is adapted for use with our new coordinate system.

The third factor, C3, is the probability that the object triggers another event.

This is simply given by

C3 =
LAdt

4πR2
. (5.33)

Combining this with (5.32) and integrating over V (p) yields the quantity C2 × C3:

C2 × C3 =

∫
V (p)

fi(Rω, φ; Ω̂p)R
LA

4πR2
dω dφ dt, (5.34)

which illustrates the benefits of our choice of coordinates (ω, φ, t)p. In words, C2×C3

is the probability that an i-type object with luminosity L, distance R, and starting

at the location Ω̂p, moves into the region V (p) and triggers an event.
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Now we can put together all the factors which make up C(p;V ) to find

C(p;V ) = ρV (p) +
∑
i

∞∫
L=0

∞∫
R=0

C1 × C2 × C3

= ρV (p) +

(
A

4π

)2
1

ρ

×
∑
i

∞∫
L=0

∞∫
R=0

∫
V (p)

ni(R, Ω̂p)

R

× Pi,L(L)L2 fi(Rω, φ; Ω̂p) dω dφ dtdL dR. (5.35)

In practice, since resolved objects will be removed from the sky map, the lower

limit of the R integral should be cut off so that these objects are not counted. If the

detector can resolve any source with flux greater than Fres then the lower limit on

the R integral should be
√
L/4πFres.

Of course, if ni(R, Ω̂) is cut off at a lower limit Rmin and Pi,L(L) is cut off at an

upper limit Lmax such that (Lmax/4πR
2
min) < Fres no changes need to be made to the

limits of integration in (5.35) since all i-type objects will be unresolved.



120

5.8.5 The form of ξ in 3 dimensions

Finally, we can substitute (5.35) into the definition of the 2-point function ξ (5.2) and

arrive at an expression for the 2-point spacetime correlation function in 3 dimensions,

ξ =

(
1

4πρ̃

)2∑
p

∑
i

∞∫
L=0

∞∫
R=
√
L/4πFres

∫
V (p)

ni(R, Ω̂p)

R

× Pi,L(L) L2fi(Rω, φ; Ω̂p) dω dφ dt

×

[∑
p

V (p)

]−1

. (5.36)

Notice that the detector area A has cancelled when using ρ̃, the average flux per solid

angle, instead of ρ. It is also apparent that the contribution to the ξ from different

classes of objects as well as from objects of different distances and luminosities is

additive. The observed 2-point function is simply the sum of contributions from

different types of objects. As expected, the correlation is increased for brighter-

appearing objects as is seen by the presence of L2 and R−1. The interplay between

distance and angular speed appears in the argument of the velocity distribution fi.

The expression for ξ given by (5.36) is a main result of this paper. In its general

form, however, it is fairly opaque. We can get a qualitative feel for the 2-point

function by calculating ξ for a very simple model where we have only one class

of objects. These objects have a constant number density n and are found only at

distances between R1 and R2. The intrinsic luminosity of all the objects will be fixed

at λ so that Pi,L(L) = δ(L−λ). We choose an isotropic Maxwell-Boltzmann velocity

distribution. Projected into 2 dimensions it becomes the Rayleigh distribution:

f(v, φ; Ω̂) dv dφ =
v

a2
e−v

2/2a2dv
dφ

2π
, (5.37)
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independent of Ω̂. Finally we choose V (p) to be given by (5.24) in which φ runs from

0 to 2π. With these choices no quantity in (5.36) depends on p so both sums over p

disappear.

Let’s look at the limiting form for ξ by choosing an infinitesimal volume for V (p)

where ω2 = ω1 + dω and t2 = t1 + dt. Dropping the subscripts on ω1 and t1 we have

the following expression for the 2-point function,

ξ(ω, t) =
1

2πt sin(ωt)

(
1

4πρ̃

)2

nλ2

R2∫
R1

dR

R

Rω

a2
e−(Rω)2/2a2

=
1

2πt sin(ωt)

√
π

2

(
1

4πρ̃

)2
nλ2

a

×
[
Erf

(
R2ω√

2a

)
− Erf

(
R1ω√

2a

)]
. (5.38)

Note that the contribution to ξ(ω, t) from objects at different distances serves

to smear the influence of f(v) so that ξ is not simply proportional to the velocity

distribution as it was in the 2-dimensional model. There is, however, a functional

similarity to the 2-dimensinal case:

ξ3D ∼ 1

V (p)

nλ2

ρ̃2
f(Rω)

ξ2D ∼ 1

V (p)

nλ2

ρ2
Pv, (using ρ1 = nλ in Eq. 5.15) (5.39)

where f(Rω) represents the smeared velocity distribution.
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5.8.6 Mock Fermi search for solar system bodies

In order to verify the formulation of ξ in (5.36) we simulate a mock 5-year Fermi

observation of nearby moving gamma-ray sources. These objects might correspond

to a population of bodies in the asteroid belt (see Sec. 5.10 for motivation).

For simplicity, the detector is a stationary observer at the center of the solar

system and the moving objects are placed on circular orbits with Keplerian velocities

determined by their distance from the Sun (v ∝ R−1/2). The objects are distributed

uniformly in a disk with uniform surface density between distances of 0.95 AU and 1.5

AU. For geometric simplicity, the inclination angles of the orbits are random so that

the flux is statistically isotropic. Each object has the same luminosity and the closest

object (at 0.95 AU) has a photon flux of 1.8× 10−10cm−2s−1. Note that this flux is

below the point source detection limit of Fermi so that none of these moving objects

would be individually identified as localized sources9. The sky contains 7371 objects

so that, for a 5 year Fermi observation (effective area ∼ 2000 cm2), the population

of moving objects contributes roughly 2.5× 105 events to the sky map. In addition,

as in the 2-dimensional simulation, we include a population of stationary objects as

well as completely random events. The stationary sources generate detected events

at an average rate of 0.2 events per year and are distributed isotropically. The

stationary and random components each comprise about 1.25 × 105 events so that

the sky map contains about 5 × 105 events, 50% from moving objects, 25% from

stationary sources, and 25% random events.

In computing the correlation function we use spacetime volumes V (p) given by

(5.24) with t1 = 0 and ∆T = t2 − t1 = 0.015 yr (∼ 5.5 days). The angular velocity

9In fact, moving sources will be more difficult to detect than stationary ones because of their
apparent motion, i.e. standard point source analysis may be inefficient at detecting moving sources.
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bins run from 0 to 500◦/yr in steps of 20◦/yr. Results of the measurement of ξ for

the different angular velocities are shown with blue squares in Fig. 5.7. As with

the 2-dimensional simulations, the error bars are found using (5.16). The presence

of both the stationary and moving sources can be easily seen in the shape of the

correlation function.

The theoretical value of ξ based on the properties of the sources is a straightfor-

ward application of (5.36). The number density of moving objects is

n(R) =

 Nobjs/[2πR(R2
2 −R2

1)] R1 < R < R2

0 otherwise.
(5.40)

Here, R1 = 0.95 AU, R2 = 1.5 AU, and Nobjs = 7371. The luminosity function and

the velocity distribution are delta functions:

PL(L) = δ
(
L− 4.45× 1017 sec−1

)
(5.41)

f(v, φ) =
1

2π
δ
(
v − v0(R/R0)−1/2

)
. (5.42)

In the above, R0 = 1 AU and v0 = 2πR0/yr ≡ ω0R0. The average event rate ρ

is estimated by dividing the total number of events by the solid angle of the sky

map and by the observation time: ρ = 5 × 105/(4π × 5yr). Carrying through the

calculation of (5.36) yields ξ for the particular choice of V (p):

ξ(ω1, ω2; ∆T ) =
∆T

4πρ2V (ω1, ω2; ∆T )

(
LA

4πR2
0

)2

× Nobjs

R2
2 −R2

1

(
1

R2
a

− 1

R2
b

)
. (5.43)

The quantity V (ω1, ω2; ∆T ) is the volume of the spacetime region given in (5.27),

Ra = Max(R1, R0(ω0/ω2)2/3), Rb = Min(R2, R0(ω0/ω1)2/3), and ξ = 0 if Ra > Rb.
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Figure 5.7: Results from a simulation of moving objects in the solar system, along with stationary
sources and random noise. The correlation function is plotted for angular velocities between 0 and
500◦/yr. Red ×’s represent the theoretical value of ξ calculated from (5.36) while the blue squares
show the measured value of ξ from the sky map. The width of each angular velocity bin is 20◦/yr.
Error bars are derived using (5.16). The spike at zero angular velocity is due to the presence
stationary background sources. The correlation function is also non-zero between ω = 196◦/yr and
389◦/yr, corresponding to moving sources orbiting between 0.95 and 1.5 AU.
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In (5.43) the quantities R1, R2, Ra, and Rb are in units of R0 = 1 AU.

The correlation for the stationary objects is much simpler. It is equal to zero

unless ω1 = 0, in which case it is given by

ξ(ω1 = 0, ω2; ∆T ) =
∆T Nstat λ

2

4πρ2V (0, ω2; ∆T )
, (5.44)

where Nstat = 1.25 × 105, the number of stationary objects and λ = 0.2/yr, the

detected event rate for each stationary object.

The total correlation function will be the sum of the correlation functions for

each component. This sum is plotted in Figure 5.7 as red ×’s, demonstrating that

the formalism predicts the correct value for the correlation function.

Although intended as a toy model, this simulation captures the essential com-

ponents of a large area analysis of Fermi data. In reality, Fermi has detected far

more than 5 × 105 events. If all the components in our toy model were scaled up

appropriately the detection of ξ 6= 0 would be even more significant.

5.8.7 Errors and flux-limited vs. counts-limited surveys

In three dimensions the errors on ξ given by Eqs. 5.16 & 5.17 also apply. As above,

choosing the regions V (p) requires balancing a large signal to noise ratio against

having many independent choices of V (p). In order to make more independent

measurements of ξ the size of V (p) must decrease.

A larger V (p) has its advantages and disadvantages. A large volume V will

decrease the fluctuations in ξ because more events are collected in each such volume



126

(the signal-to-noise contains a V 1/2 factor). On the other hand, having a lot of

events in V (p) which are uncorrelated to the event at p will dilute the amplitude of ξ

because of the ρV (p) term in the denominator (c.f. the definition of ξ (5.2)). There

is then a tradeoff between the fluctuations in ξ and the amplitude of ξ.

If the sky map has a large number of events then it is permissible to choose V (p)

to be small and still have small fluctuations in ξ. In the opposite limit, if the sky

map is “counts-limited” then it will be necessary to choose V (p) to have a large

volume. The safest method for deciding is to run realistic simulations for various

combinations of physical parameters and experiment with different choices for V (p).

There is an additional requirement on V (p) which depends on the detector’s

resolution. If one chooses V (p) to be very small (in the angular sense) then one

is essentially asking the detector to distinguish events at this angular scale. The

detector has a smallest “pixel size” and V (p) cannot be smaller than that.

The most convenient choice for V (p) when calculating ξ according to (5.36) is

given by (5.24). Unfortunately, this choice is inconvenient when dealing with a

detector with a finite angular resolution (a real detector). The projection of the

spacetime region V (ω1, ω2; t1, t2) onto the celestial sphere must have an angular size

no smaller than the detector’s angular resolution. However, for fixed ∆ω = ω2 − ω1

and ∆t = t2 − t1, changing ω1 and t1 will change the projected angular size of

V (p). The bin sizes ∆ω and ∆t must be varied with ω1 and t1. An estimate

of this constraint is that the angular resolution of the detector be no worse than

θ ≈ ∆(ωt) ≈ ω̄∆t+ ∆ωt̄, where ∆ω = ω2 − ω1 and ∆t = t2 − t2.

All of these choices are part of the analysis, not the collection, of the data. If

the diffuse background events are already in hand one can experiment with different
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choices for the V (p)’s to find the right balance between signal-to-noise and number of

independent measurements of ξ while maintaining the detector resolution constraint.

Of course, it is best to use PSF information instead of an assumption of “pixel

size”. We have discussed this option for the 2-dimensional case (see (5.18)). The

generalization to 3 dimensions is straightforward.

5.9 Generalizations

There are several ways to make this technique more powerful. Here we mention two:

the inclusion of spectral data and the use of n-point functions.

5.9.1 Including spectral information

Not only do sky surveys keep track the direction and time of each photon they

receive, they can also measure wavelength (or energy of the photon). The easiest

way to make use of this information is to note that the above analysis holds for

every wavelength separately. One can bin the events by energy, make separate sky

maps for each energy bin, and then compute the 2-point function for each of the

maps. Typically, this procedure will add more data points than free parameters: the

same distributions ni and fi are used for different energy bins. Only the luminosity

functions will vary, though the physical parameters in Pi,L are likely to be universal

over all energy bins. Thus, ξ measured at one energy will be related to ξ measured at

another. As a result, an analysis which includes event energies can help in untangling

the different components of the background.
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5.9.2 n-point functions

Another generalization of the 2-point function is, naturally, the n-point function.

One asks, “Given an event at p what is the probability of finding events in V1(p) and

in V2(p)?” If the objects move in straight lines then this probability will spike when p,

V1(p), and V2(p) lie along a straight line. The jump from n = 2 to n = 3 is significant

for this reason — every pair of points is collinear but not every trio. The downside of

measuring n-point functions (besides the computational cost) is that they require a

much larger number of events to overcome statistical fluctuations. Recall that in our

2-dimensional toy model only 5% of events came from objects which generated more

than one event and that of these events, 95% came from objects which generated

exactly two events. Therefore, only 0.25% of the events in the map came from

objects which generated three or more events. Although they will be slightly more

cumbersome, analytic forms for these higher correlation functions can be found by

applying the same reasoning we used for the 2-point function.

5.10 Discussion and Conclusions

We present a new tool, based on the familiar 2-point correlation function, which can

be applied to astrophysical maps of diffuse emission. The measured quantity ξ is

designed to detect the presence of moving objects, each of which is too dim to be

resolved individually. We derived the form of ξ based on the physical parameters

which describe the classes of objects which might be present in the sky (5.36). A

measurement of ξ along with the theoretical prediction for ξ can be used to find

best-fit quantities for the physical parameters describing the populations of objects.

We emphasize that all the technology invented to study the angular 2-point correla-
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tion function can be directly applied to the generalization to the spacetime 2-point

correlation function.

There are numerous applications of the derived formalism. An obvious place to

start is the diffuse gamma-ray background measured by the Fermi-LAT instrument.

The all-sky capabilities of LAT, coupled with its high angular resolution provide a

convenient testbed where this technique can be applied. The interesting question

is what kind of sources contribute to the gamma-ray background and also exhibit

proper motion over the duration of observation.

One potential source is the generation of gamma-rays from cosmic-ray interac-

tions in rocky debris present in the solar system. Cosmic ray interactions with nuclei

on a solar system body lead to hadronization, and the subsequent decay of neutral

pions to a photon final state [276, 277, 236, 278]. A detection of a large population

of these sources is important as it provides information about the origin of the solar

system and its evolution with time, as well as the energy spectrum and composition

of the incident cosmic ray flux.

The detection of gamma-rays from cosmic ray interactions with solar system

bodies has been discussed in the context of past measurements by the Energetic

Gamma Ray Experiment Telescope (EGRET) on board the Compton Gamma-ray

Observatory, and measurements with Fermi-LAT [249, 250, 279]. Sources include

small objects in the main asteroid belt, Trans-Neptunian objects in the Kuiper belt,

as well as objects in the Oort cloud, including icy bodies such as comets. It was

shown that for objects where the cosmic ray cascade fully develops (objects with

size greater than ∼ 1 m) it may be possible for Fermi to detect the cumulative

gamma-ray emission from a collection of such bodies. These estimates are based on

the distribution and composition of objects. Even though both of these quantities
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are partially constrained for objects in the main asteroid belt, large uncertainties are

present for the populations in the Kuiper belt and the even more speculative Oort

cloud. It is conceivable that a very large number of bodies may be present in the

outskirts of the solar system.

The proximity of these populations makes them ideal for an application of the

spacetime correlation function, as each source will traverse an angular distance

which is larger than the angular resolution limit of Fermi. Typical angular dis-

placement (assuming Keplerian orbits) of an object at distance d from the Sun is

θ = 2π rad(∆T/yr)(d/AU)−3/2 during the course of an integration for time ∆T . The

composition of these objects can be assumed to be similar to the composition of the

Moon, though their mass density varies considerably. This similarity in composition

is convenient as the gamma-ray flux due to cosmic interactions with the lunar rock is

well understood [280, 248] (see also [281, 282]). If we assume that the spectral shape

of the gamma-ray emission from solar system bodies is similar to that of the rim

of the Moon (emission above 600 MeV is dominated by the rim of the Moon rather

than the lunar disc) and we scale the flux from the object to the flux from the Moon

(ΦM = 1.1 × 10−6cm−2s−1, [281]), the flux from an object of radius r at distance d

would then be Φ = ΦM(r/rM)(dM/d)2. For a distance to the Moon of dM = 0.0024

AU and a lunar radius of rM = 1740 km, the total number of photons per year de-

tected by the Fermi-LAT instrument (with an orbit-averaged effective area of 2000

cm2) is Φ ≈ 2 × 10−4yr−1(r/km)(d/1AU)−2. Therefore, given this information, one

can apply the spacetime correlation function to determine the abundance and radial

distribution of solar system objects that contribute to the gamma-ray background

[275]. It is important to note that even though a theoretical estimate of ξ requires

knowledge of the objects one is searching for, the measurement of ξ requires no such

knowledge.
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Similar arguments can be used in search of the energetic neutrino signal from

cosmic ray interactions with solar system bodies. The decay of kaons to charged

pions leads to an energetic signal with a spectral signature that is different from

the cosmic ray neutrino flux expected from spallation of nuclei. Therefore, energetic

neutrinos from cosmic ray interactions with solar system bodies should be present in

the signal measured by IceCube [283]. The sources of these neutrinos will traverse an

angular distance based on the distance of the source from the Sun, and therefore the

spacetime correlation function derived here can be used in search of these sources.

However, as in the case of gamma-rays, the uncertainties in the distribution and

composition of small solar system bodies make predictions for such signal difficult.

Nevertheless, a blind analysis of neutrino events from IceCube could place constraints

on the parameters that describe the different populations of small bodies in the solar

system.

Another application is in the search for primordial black holes in the solar neigh-

borhood. Primordial black holes may form in the early Universe through the collapse

of large primordial fluctuations [284]. Current bounds on the abundance of such black

holes are of order ΩPBH ∼ 10−9 for most of the range of black hole masses [252]. If

primordial black holes exist in an otherwise dark matter dominated Universe, they

will acquire a dark matter halo [251, 285]. Dark matter annihilation around primor-

dial black holes and/or high density ultracompact halos will result in gamma-ray

emission [286, 287]. Such objects with very small mass will in fact be very dense and

survive in the Milky Way halo. If we assume that primordial black holes trace the

distribution of dark matter in the Milky Way we can use their abundance to deter-

mine the angular distance that a black hole may traverse in a given time interval.

For simplicity, let’s assume that primordial black holes have mass MPBH = 10−15M�,

ΩPBH = 10−9, and that the local dark matter density is 0.01 M�pc−3. Then the mean
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distance between primordial black holes in the solar neighborhood is ∼ 10−2pc. As-

suming that this is the maximum distance to a primordial black hole, and that the

mean velocity of primordial black holes is similar to the mean velocity of dark mat-

ter, i.e., 220 km/s, then the angular displacement of these gamma ray sources can be

as large as 4.5 degrees in 10 years. As the angular resolution of Fermi is significantly

less for energies greater than 1 GeV, constraints on the abundance and size of these

black holes can be placed by applying the spacetime correlation function to the LAT

all-sky map.

A more speculative contribution to the gamma-ray background is from dark mat-

ter halos formed on scales close to the cutoff scale of the dark matter power spectrum.

These objects typically have sub-solar masses [288–294]. Even though their survival

and abundance in the present-day Milky Way halo is unknown, it is possible that dark

matter annihilation in these high-density objects may contribute to the gamma-ray

background [254, 255]. The probability that such sources will exhibit spatial motion

in the duration of the Fermi-LAT mission is directly linked to their abundance, and

thus the use of the correlation function can provide information on the survival rate

of these extremely early-forming objects.

The spacetime correlation function can be applied to lensing surveys to search

for compact objects in the Milky Way. Past studies suggest that up to 20% of unseen

matter is in the form of Massive Compact Halo Objects (MACHOs) [295, 296]. With

the advent of dedicated surveys e.g., LSST, [297], as well as astrometric missions

such as SIM [298] and Gaia [299], it will be possible to generate time-domain maps of

lensing events in dense stellar fields. Such information can be used to probe correlated

events originating from the spatial translation of compact objects, thus probing the

projected velocity distribution of the compact population in the Milky Way. In

addition, it may also be possible to place constraints on the density, abundance and
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distribution of dark matter substructure [300].

Throughout the development of the analysis we assumed that the event rate

due to any source was constant in time. There are many classes of astrophysical

objects with time-dependent emission. Most notably, unresolved pulsars are thought

to contribute to the diffuse gamma-ray background (e.g. [301, 302]). While these

sources will not exhibit proper motion over the course of observations the temporal

correlations of their emitted photons may be discovered through techniques based on

the ones presented here [4]. Essentially, one chooses the volumes V (p) according to

(5.3) (illustrated in the upper panel of Fig. 5.3), but with a non-trivial slicing along

the time axis. Such a V (p) picks up on stationary objects which exhibit correlations

within their photon time series.

The power of this analysis for untangling the contribution of different classes

of sources requires that each class have “different enough” velocity, luminosity, and

spatial distributions. For example, if two classes have similar velocity and spatial

distributions then one may as well just treat them as a single class with a modified

luminosity function. This points to a problem that is likely to be encountered in

many realistic astrophysical applications: the angular velocities of almost all objects

will be much too small to be resolved by a detector. That is, when one combines

the velocity distribution fi with the spatial distribution ni in (5.36) it may be that

ξ = 0 at all angular velocities except in a tiny range near ω = 0. This is because

virtually all of the objects have distances and speeds such that their apparent proper

motion is below the angular resolution of the detector. A large degeneracy is created

and it will be impossible to pull out information about any specific class of objects.

The fact that ξ is not zero at ω = 0 indicates the existence of objects. However,

without being able to measure the shape of ξ for different angular speeds ω the 2-

point function loses its value as a tool to untangle the contributions from different
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classes of objects.

Of course, as the resolutions of detectors improve, the 2-point function becomes

more useful. It is a straightforward task to calculate ξ(ω1, ω2; t1, t2) for specific classes

of objects and find out over what ranges of ω and t the correlation drops to zero.

For example, if ξ goes to zero around (ω1 = ω′, t1 = t′) then a detector which has

resolution better than θ ≈ ω′t′ can measure the shape of ξ(ω, t) as it goes from a

maximum at (ω1 = 0, t1 = 0) to zero at (ω1 = ω′, t1 = t′).

In summary, we introduced the spacetime correlation function, a statistical tool

that can be used to search for the presence of moving, flux-unresolved sources in a

diffuse background. This formalism has numerous applications. With large area sky

surveys and long duration baselines the spacetime correlation function can be used

to disentangle the contributions from spatially moving sources, and may aid in the

discovery of new sources.



Chapter Six

Extracting the unresolved pulsar

contribution to the gamma-ray

background
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6.1 Introduction

The Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope

(Fermi) is a powerful instrument that collects energetic photons from the whole sky,

at an energy and spatial resolution as well as in an energy range that offers a new

window on high energy astrophysics. In over four years since the launch of Fermi, the

sensitivity of the instrument has facilitated the discovery of new classes of objects,

including gamma-ray pulsars. Over 80 gamma-ray pulsars have been discovered in

the Fermi−LAT all-sky data (see [303], and also [304–313, 307, 314]).

While it is expected that more pulsars will be discovered as the baseline of the

experiment is extended, most will remain undetected because their fluxes are below

the sensitivity level of current detection techniques. These pulsars, as a population,

contribute to the diffuse gamma-ray background. Untangling the contributions to

this background has been a subject of great interest, not only in the context of pulsar

physics [301], but also in studies aimed at understanding the gamma-ray background

near the Galactic center [315, 112, 116, 316, 117, 317]. Additionally, understanding

the gamma-ray background is necessary to extract faint signals due exotic sources

such as dark matter [318] and antimatter [319].

In this paper we propose a new statistical search strategy that can be used to learn

about the cumulative contribution of pulsars to the gamma-ray background. This

technique is an example of a general philosophy/strategy that we advocate, which

is based on the concept that even though individual data samples may not contain

a detectable source, the statistics of a large number of samples contains information

about the sources (see also [3] described in Chapter 5). For the particular case we

are studying here, even when a pulsar is not detected within a region of the sky, the
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data from that region will still contain information. When a large amount of such

data is aggregated one can identify a statistical signature of the presence of pulsars

even though the individual objects may not pass sensitivity thresholds.

Such a statistical analysis can reveal the properties of the unresolved pulsar

population. Application of this technique to Fermi-LAT data can place bounds

on the cumulative contribution of pulsars to the gamma-ray background which are

independent of known sources. It is therefore a complimentary approach to the

individual studies of bright pulsars with Fermi [320, 321].

We begin in Sec. 6.2 by describing the general strategy that can be used to

learn about populations of objects when each individual one is undetectable on its

own. We discuss this in the context of the unresolved pulsar contribution to the

gamma-ray background. In Sec. 6.3 we propose a specific implementation involving

the statistics of the maximum peaks in a collection of power spectra. It is developed

in the framework of classical hypothesis testing, where the goal is to reject the null

hypothesis that no pulsars are present in the gamma-ray sky. This includes the

development of the statistical tests used to reject this null hypothesis. In Sec. 6.4 we

make predictions for this method as applied to data from Fermi-LAT and show that

under a wide range of circumstances Fermi should be able to discover the presence of

unresolved pulsars. Additionally, we show that individual, flux-unresolved, pulsars

may be discovered based only on analysis of their time series. We discuss ways

to extract the cumulative pulsar contribution to the background, which requires

making assumptions about parameters of describing the pulsar population. Finally,

in Sec. 6.5 we outline how this technique can be generalized to use more powerful tests

for periodicity and discuss caveats which can affect the sensitivity of the method.
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6.2 General Methodology

The detection of a pulsar at high significance relies on statistical tests performed on

a collection of photon arrival times. (At radio frequencies, where the vast majority

of pulsars have been discovered, the time series is in the radio intensity, not photon

counts.)

For the sake of simplicity assume that a certain statistical test boils down the

entire time series into a single number, a ”score”1, which is supposed to represent

the “level of periodicity present”. The higher the number the stronger the periodic

signal. “Detecting” a pulsar is an exercise in classical hypothesis testing and one

needs to take into account the fact that even if there is no pulsar present the score

may be high because of random chance. Specifically, one needs the probability

distribution for the score conditioned on the null hypothesis that there is no pulsar

present. The question is asked, “What are the chances that the score would have

been as high as measured if there was no underlying periodicity in the time series?”

If the answer is, for example 0.3%, then a pulsar is said to be detected at 99.7%

(or “3σ”) significance. In this example, the value of 0.3% is called the false alarm

probability and in practice a 3σ detection is hardly convincing. Usually, discoveries

are claimed when the false alarm probability is less than 6× 10−7, a “5σ” detection

threshold.

The dominant factor in the detectability of a gamma-ray pulsar is the number

of its photons which are collected by the LAT (i.e. the pulsar’s photon flux). So

far, Fermi has detected pulsars with fluxes as low as 10−8 cm−2 s−1 [303]. These

are pulsars whose time series are extremely unlikely to have been generated by a

1Throughout this article “score” is used in this sense and has nothing to do with the statistical
concept of score defined as the derivative of the log-likelihood.



139

non-periodic process — unlikely in the sense just discussed. However, it is quite

likely that for every pulsar with such a flux the Galaxy contains a great many more

with much smaller fluxes. If we assigned a periodicity score to the time series of

these faint pulsars the false alarm probabilities would be considerably greater. Most

of them would be of order 1. Individually, these pulsations are undetectable with

current data and periodicity tests.

However, what if one computes the periodicity score for 40,000 time series, i.e.

for every 1 square degree pixel on the sky? A few of these pixels will contain bright

pulsars that will be unambiguously detected (these are the pulsars that are discov-

ered using current pulsar search techniques). It is possible that many more pixels

contain pulsars which are not obvious in the data (i.e. their periodicity scores are

not improbably high), while most of the pixels will likely contain no pulsars at all.

The goal then is to infer the presence of the undetected population of pulsars.

The method we propose in this manuscript is based on a very simple observa-

tion: The periodicity scores from many separate time series, taken as collection, will

be skewed toward larger values due to the presence of pulsars. By analyzing the

distribution of scores we can learn about a population of objects whose individual

members remain undetected.

This general idea is not limited to the study of the galactic pulsar population. In

fact, the concept of analyzing a collection of individually ambiguous signals to learn

about a population underlies many studies of diffuse backgrounds. As an example,

measuring the empirical counts PDF in sky pixels has been exploited in the study of

blazars [322, 323], dark matter annihilation in substructure [324, 201, 323, 200, 325],

as well as pulsars [302, 326]. In these cases, the fact that the PDF differs from

Poisson indicates that localized sources contribute to the background (even though
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any single “hot pixel” does not constitute a detection of an individual source.)

A very simple example can illustrate the idea. Imagine we have a collection of

40,000 coins of which 98% are fair while the other 2% are rigged to land on heads

90% of the time. We get to flip each of the coins once and then try to answer the

question, “Are there any unfair coins in this sample?” On the basis of one flip we

have no way of saying whether any individual coin is fair or not. But perhaps the

overall distribution of flip results can reveal information about the population of

unfair coins. For example, suppose this experiment results in getting the expected

number of heads: 40000 × (0.98 × 0.5 + 0.02 × 0.90) = 20320 heads. We pose the

hypothesis test: if the coins were all fair what is the probability of getting 20320 or

more heads? The answer is

P(≥ 20320) =
40000∑
i=20320

(
40000

i

)
(0.5)40000 ' 0.0007. (6.1)

That is, there is a 0.07% chance of getting the results we did if every coin were fair.

The hypothesis that all the coins are fair has been rejected with greater than 99.9%

significance.

Translating this scenario into pulsar language, each coin represents a one square

degree patch of the sky. Flipping a coin corresponds to computing the periodicity

score from that pixel’s photon time series. Heads is a “high” score and tails a “low”

one. If a pixel contains a pulsar the periodicity statistic gives a high score 90% of

the time. The periodicity score for a pixel with no pulsar present has equal chances

of being high or low and one can not make any definitive claims based on the results

of an individual measurement. However, the cumulative number of “high periodicity

scores” from all 40,000 square degrees is strongly inconsistent with “no pulsars”.
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6.2.1 Cookbook

The strategy discussed so far is general but can be decomposed into several specific

tasks. Here, we will outline the necessary steps, and in Sec. 6.4 we will develop

a specific realization of this procedure which has been designed for application to

Fermi-LAT data.

The first step is to take the gamma-ray events in a region of the sky and divide

them into spatially separated time series. This can be done based on a simple

pixelization of the sky or by collecting the photon time series from many promising

locations (we will address these choices in Sec. 6.5). Some preprocessing of the

data should also be performed (e.g. applying a barycenter correction to each time

series which corrects for the detector’s motion with respect to the “fixed” solar

system barycenter), as well as detector-specific corrections (e.g., see the Fermi Science

Support Center2).

Next, a periodicity test statistic is chosen and applied to each time series. The

choices for the test are numerous. We will detail a straightforward choice in Sec. 6.4.

In general, the requirement is that one must assign a “score” to each time series

which in some sense reflects the level of periodicity present. The test should be

tailored to the type of objects one is searching for. For millisecond pulsars (MSPs),

for example, it may not be necessary to take into account the effects of spin-down

(see Sec. 6.5).

It is essential to quantify the response of the test statistic to a white noise

time series, i.e. an uncorrelated sequence of photons which was not generated

by a pulsar. Specifically, one needs the probability distribution for the score un-

2http://fermi.gsfc.nasa.gov/ssc/
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der the null hypothesis that no pulsar is present. This is called the null distribu-

tion. In the coin flipping example we used above, this probability distribution was

P0(heads) = P0(tails) = 0.5. In some cases the null distribution can be derived an-

alytically. For more complicated periodicity tests the distribution can be found by

simply running the periodicity test many times on randomly generated white noise

time series.

Finally, given the collection of scores from the various time series, one tests the

collection as a whole for deviation from the null distribution. There are a number of

statistical tests that can be used for this purpose. Choices include the Kolmogorov-

Smirnov and Anderson-Darling tests as well as the traditional χ2 test of the binned

histogram of scores. For the present application, we introduce an additional test, the

A-test. It is designed to be sensitive to a very small tail of high periodicity scores

(see next section and Appendix for more details).

6.3 Specific implementation

In this section we present a methodology based on the above strategy. The goal is to

detect the presence of unresolved pulsars by jointly examining the photon time series

from numerous pixels in some area of the sky. For the sake of simplicity, we will

assume that the pulsar period derivatives are very small. This particular implemen-

tation is appropriate for a search for the cumulative contribution of MSPs [327, 328]

but can easily be generalized to the case where period derivatives are significant.
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6.3.1 Choice of periodicity test

We need a numerical quantity, calculated from the measured photon data from each

pixel on the sky, that describes the level of periodicity present in the time series. For

this exercise the periodicity score of a time series is chosen to be the normalized peak

magnitude of the power spectrum. We now explain what this quantity represents and

how to compute it from a list of discrete photon arrival times.

The Fourier transform is an alternate representation of the time series which

highlights the various sinusoidal components that make up the signal. If a pulsar

light curve is a pure sine wave its Fourier transform is a delta function spike at the

pulse frequency. A well-used technique in pulsar searches is to take the squared

magnitude of the complex Fourier transform, called the power spectrum, and search

for peaks in this function. The statistics of the power spectrum for both random

data [e.g. 329] and for data which contains a signal [330, 331] have been well studied

in general and in the context of pulsar searches.

If photons arrive at times t1, t2, . . . , tN we treat the signal as a train of delta

pulses at these times:

s(t) =
N∑
j=1

δ(t− tj).

Plugging this into the definition of the continuous-time Fourier transform yields

s̃(f) ≡
∞∫

−∞

e−2πifts(t)dt =
N∑
j=1

e−2πiftj . (6.2)

The unnormalized power spectrum is the absolute square magnitude of the Fourier

transform. It is normalized by dividing by the mean power at each value of f . For
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data which contains systematic noise, calculating a running mean is required and

may not be trivial. Ransom et al. [329] present several techniques, including using a

running mean or a running median (divided by ln(2)) to normalize the power spec-

trum. For gamma-ray data at the high frequencies associated with MSPs there is

likely no systematic non-white noise spectrum contaminating the time series. In this

case (pure white noise) the mean is simply equal to the number of discrete photon

events in the time series. Therefore we search for peaks in the normalized power

spectrum P (f) defined as

P (f) ≡ 1

N
|s̃(f)|2 (6.3)

=
1

N


[

N∑
j=1

cos(2πiftj)

]2

+

[
N∑
j=1

sin(2πiftj)

]2
 .

We are only interested in the maximum of this quantity, and so computationally it

is not necessary to store the entire Fourier transform in memory at any one time.

This obviates the need for the 10 billion point Fast Fourier Transforms (FFTs) that

would be required for time series that are years long. Instead, one can calculate

the power spectrum by making incremental steps in the frequency, only saving the

maximum power seen so far. This procedure is trivially parallelized by dividing the

frequency interval to be searched into subintervals and searching each of these for

its highest peak. [329] provide trigonometric recurrences which can keep track of

the the two sums in Eq. 6.4 as f is incremented in small steps without having to

compute sines and cosines.

The power spectrum is not an independent quantity for all values of f . It is

a standard result from the study of discrete Fourier transforms that independent

frequency “bins” have width 1/T , where T is the elapsed time over which the data

was taken. For example, a three year LAT observation results in a width of 10−8 Hz
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for each independent frequency bin. In searching for MSPs we would like to search

over a frequency range corresponding to pulsar periods between, say, 1 ms and 100

ms. In order to perform the search for peaks in the power spectrum we would first

compute P (f) starting at fmin = (100 ms)−1 = 10 Hz and then take steps of size3

δf = 1/T ' 10−8 Hz until reaching fmax = (1 ms)−1 = 1000 Hz. Therefore, the

exploration of the normalized power spectrum for each time series requires searching

Nbins frequency bins, where

Nbins = (fmax − fmin)T ≈ 9× 1010. (6.4)

In general, pulsar light curves are more complicated than sine waves which results

in the Fourier transform having a series of spikes at integer multiples of the pulsar

frequency. This fact motivates many pulsar searches to look for spikes in the sum of

the first k harmonics of the power spectrum. Here we perform a more simple analysis

that does not include the statistical details of searching the harmonic sum. However

in practice, the pulsar search may be more sensitive if the highest harmonic-summed

peak is used as the test statistic. We defer the discussion of various choices for the

test statistic to a later section.

In summary, we compute the normalized power spectrum for the photon arrival

time series for each pixel on the sky. The peak power in the power spectrum (in the

frequency range of interest) is assigned to that pixel as its “periodicity score”. We

will now explore the probability distributions describing the scores.

3In practice, one usually searches using a smaller step size in order to accurately explore each
potential peak in the power spectrum. However, this does not change the number of independent
frequency bins searched.
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6.3.2 Statistics of the power spectrum peak for random data

For each pixel the maximum of the power spectrum is a random variable. Following

standard notation we call the random variable X. A specific realization (or mea-

surement) of X is denoted by a lowercase x. If a pixel does not contain a pulsar, we

assume that its power spectrum is just white noise, i.e. there are no periodic signals

present in the frequency range of interest. In this case, the normalized power in each

independent frequency bin is distributed according to an exponential distribution

with a mean of 1 (e.g. [329]).

Under the null hypothesis of no pulsars the score X is the maximum of Nbins in-

dependent exponentially distributed random variables. The cumulative distribution

function (CDF) F (x) is the probability that all of the Nbins random variables are less

than x. This is simply equal to [F1(x)]Nbins , where F1(x) = 1− exp(−x) is the CDF

for a single exponentially distributed variable. The value of Nbins is large (Eq. 6.4)

and we can therefore make the following approximation,

F (x) = [1− exp(−x)]Nbins

=

[
1− e−(x−logNbins)

Nbins

]Nbins

' e−e
−(x−logNbins) . (6.5)

This result holds to high precision when Nbins ∼ 1010.

The above expression shows that X is distributed according to what is known as

a Gumbel distribution, sometimes called an “extreme value distribution”. The prob-

ability distribution falls off extremely rapidly to the left of the mode at x = logNbins

and has a less steep tail to the right. Because logNbins is a location parameter of the

distribution the width of the Gumbel distribution does not change as Nbins increases.
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Also note that as the observation time increases the distribution shifts to the right at

a logarithmic rate. This has important consequences that we discuss later. Looking

ahead, as the observation time T increases, a pulsar’s power will grow in proportion

to T while the random power it competes with grows only as log T .

It is easy to invert F (x) to find

x = logNbins − log(− logF ). (6.6)

Therefore, given a uniform deviate F between 0 and 1, Eq. 6.6 can be used to

transform it into a Gumbel distributed random variable.

6.3.3 Statistics of the power spectrum peak when a pulsar

is present

The only distribution needed in order to perform an experiment that tests whether

pulsars are present in the gamma-ray background is the null distribution given by

Eq. 6.5. The test is simply whether the collection of time series is consistent with

none of them containing any pulsar signal. In that case the score X for each time

series is distributed as Eq. 6.5.

However, in order to test the sensitivity of this method we need to be able to

simulate situations where pulsars are present in the sky. In fact, to learn anything

about the details of the pulsar population one needs some sort of model for the

way pulsars contribute to the background. Here we discuss how the presence of a

pulsar affects the chosen periodicity statistic. We will return later to the question of

extracting population parameters from the time series data.
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When a pulsar contributes photons to the time series, the peak of the power

spectrum is distributed differently. In this case X is distributed as the maximum of

two variables. The first is a random variable representing the power in the bin at

the pulsar’s frequency. The second is a Gumbel distributed variable corresponding

to the maximum power in the other (Nbins − 1) frequency bins. For frequency bins

which are not at the pulsar’s frequency, the pulsar photons contribute to the Fourier

transform as if they were randomly distributed along with all the other photons.

That is, the normalized power spectrum for the (Nbins − 1) other frequency bins is

a white noise spectrum. We have already shown that the maximum power that will

be found in these (Nbins − 1) bins is distributed according to F (x) (Eq. 6.5).

In order to determine the height of the normalized power spectrum for the bin at

the pulsar’s frequency we have to go back to the definition of the Fourier transform4.

The Fourier transform (Eq. 6.2) is seen to be the sum of unit vectors in the complex

plane, one vector for each photon in the time series. In the case of white noise, each

of these N vectors has a random direction and the sum can be thought of as the

endpoint of a random walk. This gives rise to the power in one frequency bin being

distributed according to the exponential distribution with scale parameter N . More

precisely, let y be the sum of N randomly directed 2-dimensional unit vectors. The

direction of y will be uniformly distributed between 0 and 2π. The squared length

of y will be distributed according to

Prob(ζ < |y|2 < ζ + dζ) =
e−ζ/N

N
dζ (6.7)

It is easy to see that the normalized power in such a frequency bin, given by |y|2/N ,

is exponentially distributed with scale parameter equal to 1, as stated above.

4This paragraph is based on the geometric interpretation given in [331].
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Consider now a time series where Ns photons come from a pulsar and Nbg are

uncorrelated background photons, such that the total number of photons is N =

Ns + Nbg. We examine the Fourier bin at the pulsar’s frequency and consider the

idealized case where all the pulsar power lies in this single frequency bin with no

power in harmonics. In this case each vector in the sum in Eq. 6.2 over the Ns

pulsar photons points in the same direction. It therefore has a length equal to Ns.

The other Nbg background photons point in random directions and their sum in the

Fourier transform is given by a randomly directed vector whose squared length l is

distributed according to Eq. 6.7 with N replaced by Nbg. To get the value of the

normalized power spectrum for this frequency bin we take the squared length of the

sum of the “signal vector” and the “background photon vector” and divide by the

total number of photons in the time series. Defining Pp to be the normalized power

in the frequency bin at the pulsar’s frequency we have

Pp =
1

N

[
Ns

2 + l + 2Ns

√
l cos(θ)

]
.

The power spectrum height is seen to be a random variable: the quantity l is dis-

tributed as l ∼ (1/Nbg) exp(−l/Nbg) and θ is a uniform random variable between 0

and 2π.

We introduce the following new variables:

S ≡ Ns√
N

=
Ns√

Ns +Nbg

(6.8)

fb ≡
Nbg

N
=

Nbg

Ns +Nbg

(6.9)

The first can be thought of as a signal to noise term representing how many photons

in a pixel are due to a pulsar vs. background. The second measures the fraction of
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photons in a pixel which are not due to the pulsar. In terms of these the normalized

power spectrum becomes

Pp = αS2 + l′ + 2
√
αS
√
l′ cos θ, (6.10)

where the variables θ and l′ are distributed according to

l′ ∼ 1

fb

e−l
′/fb

θ ∼ Uniform[0, 2π].

In Eq. 6.10, α is introduced to take into account the fraction of the pulsar’s total

power that lies in this single frequency bin. If the light curve of the pulsar were

a perfect sine wave all of the signal power would lie in the bin at the fundamental

frequency and α = 1. In more realistic situations the power will be divided up into

higher harmonics and α may be less than 1.

For reference, we note that the probability distribution of Pp has been worked

out analytically in [330], which also contains general results that may be of use when

considering more complicated tests for periodicity. In particular, the probability

distribution for the sum of an arbitrary number of harmonics in the power spectrum

is also derived.

6.3.4 Rejecting the null hypothesis of “No pulsars”

As described above, each sky pixel is assigned a periodicity score X which is defined

to be the peak height of its normalized power spectrum. The goal is to take this
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collection of X values and perform a statistical test of the following null hypothesis:

The time series for every pixel is nothing but white noise, i.e. no pulsars are present

in any of the pixels. More precisely, we ask if the collection of measured X values

is consistent with each score being drawn from the distribution in Eq. 6.5 (i.e.

generated by a random white noise time series).

This task can be accomplished by a number of statistical methods. Here, we use

a new test developed specifically for this application. In this section we outline how

the test works and refer the reader to the Appendix for details.

It is desirable (and possible) to use a classical hypothesis test to learn about the

sensitivity of this method. The idea is to boil the collection of measured X values

into a single test statistic we call A. The quantity A should, in some sense, indicate

the overall level of periodicity present in the gamma-ray sky, just as X did for a

single pixel. Small values of A should indicate “less evidence for periodicity” than

do large values of A.

The “A test” is based on the quantity (see Appendix),

A =
1√
N

{[
N∑
i=1

− log [1− F (xi)]

]
−N logN + logN !

}
, (6.11)

where the xi are the measured scores (normalized power spectrum peaks) for each

of the N time series and F (x) is the CDF of the null distribution given by Eq. 6.5.

The test is designed to give more weight to time series with large scores.

The test statistic is treated as a random variable and its probability distribution

under the null hypothesis (that every sky pixel contained only non-periodic, random

photons) is quantified. A significance threshold is chosen and the critical value A∗ is
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defined so that if the null hypothesis holds, then the probability that A < A∗ equals

the chosen significance. For example, if we want to perform a “3σ” search one finds

A∗ such that P(A < A∗) = 0.997. If we find that the observed value of A is in fact

greater than A∗ the null hypothesis is to be rejected at “3σ” significance. In other

words, it would be extremely unlikely to measure such a high value of A if there were

no pulsars. This indicates that pulsars contribute to the gamma-ray background.

6.4 Application to Fermi-LAT

We now turn to the question of detecting the presence of pulsars in the gamma-

ray sky using current data. We assess the conditions where the proposed formalism

is successful in rejecting the null hypothesis of “no pulsars” in the diffuse back-

ground as measured by the LAT instrument on board Fermi. In this section, we will

demonstrate the robustness of this method by generating simulations which contain

a controlled population of pulsars with known properties. We utilize the maximum

normalized power periodicity test along with the A test as described above.

Assume that a region of the sky is isotropically populated with pulsars that all

have the same flux, Φp, defined as photons per area per time in some energy range.

These pulsars contribute a fraction γ of all the photons received by the LAT in this

energy range. That is, of all the photons that LAT detects over the entire sky a

fraction γ of these originated from pulsars each having a flux Φp. The projected

number density of pulsars is given by σp (number of pulsars per solid angle).

The average flux the LAT measures is given by Ftot in units of photons per area

per time per solid angle (in the relevant energy range). In addition to pulsars we
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assume a uniform, isotropic background flux Fbg (same units as Ftot). The inde-

pendent parameters of this model are Φp and γ. The background flux is chosen to

make up the difference between the pulsar contribution and the observed total flux.

Specifically,

Ftot = Fbg + σpΦp, (6.12)

and

γFtot = σpΦp. (6.13)

These two equations determine Fbg and σp in terms of Φp, γ, and the observed Ftot.

These equations are more easily interpreted by multiplying through by the solid angle

of the survey and by the observation time and effective area of the detector. Then

Ftot becomes the total number of photons received by the LAT over the entire survey

area, σp becomes the total number of pulsars in the survey area, Φp the number of

photons received from each pulsar, and Fbg the total number of background (non-

pulsar) photons received over the survey area. Solving the above equations we find

Fbg = (1− γ)Ftot, (6.14)

and

σp =
γFtot

Φp

. (6.15)

We assume a value of Ftot = 8.72 × 10−10cm−2s−1deg−2, in the energy range

[0.8 − 6.4] GeV [127]. This includes the energy range in which pulsars are most

important relative to the total flux [303].

In order to generate simulated data, we need a survey area and pixel size. We

choose the pixel size, Ω, to be 1 square degree, and we will use two choices for the

survey area: 40,000 square degrees which represents the all-sky survey, and 1,000
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square degrees, which roughly represents the inner ∼ 32 × 32 degrees around a

region such as the Galactic center.

We must evaluate Eqs. 6.8 and 6.9 to generate a normalized power for each pixel

that contains a pulsar. The number of background photons in a pixel is

Nbg = Fbg ΩAeff T, (6.16)

where Aeff is the (orbit-averaged) effective area of LAT (2000 cm2) and T is the

observation time (3 years). The number of pulsar (signal) photons in a pixel which

contains a pulsar is

Ns = ΦpAeff T. (6.17)

Inserting these quantities in Eqs. 6.8 & 6.9, we have

S =

√
Φp

FbgΩ + Φp

ΦpAeffT (6.18)

=

(
1− γ +

Φp

FtotΩ

)−1/2(
Φp

FtotΩ

)√
Ftot ΩAeff T ,

and

fb =
1− γ

1− γ + (Φp/FtotΩ)
. (6.19)

For a given choice of Φp and γ we can use these last two equations along with

Eq. 6.10 to generate a normalized power in a pixel that contains a pulsar 5. For

simplicity the simulations were performed using α = 1. Consequences of relaxing

5There are many choices for Φp and γ that give a number of pulsars which is larger than the
number of pixels, i.e. σpΩ > 1. When this is the case we need to generate a normalized power for
each pulsar in the pixel, a peak power from the other ∼ Nbins frequency bins and then take the
maximum of all these to be the periodicity score X for the pixel. We have found that for the range
of parameter space we discuss the extra pulsars in each pixel do not change the results. Therefore,
we run the simulations with at most one pulsar per pixel (though σp is allowed to be greater than
1).
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this assumption will be discussed later.

We explore the parameter space to see when pulsars will be detected by this

method using the A statistic defined above. We choose a value of A∗ corresponding

to a 99.7% (“3σ”) detection. For each pair of values Φp and γ we create 1,000

realizations. For each realization we simulate 40,000 (all-sky) and 1,000 (Galactic

center) values of X (one for each pixel) and compute the A statistic. Out of the 1,000

trials we count the number in which the null hypothesis is rejected. The fraction

of trials in which the null hypothesis is rejected is the sensitivity (or power) of the

proposed test. For example, if for a particular choice of Φp and γ we find that in 900

out of 1,000 simulations the null hypothesis is rejected (i.e. A > A∗ in 900 of the

simulations), then there is an 90% chance of making a “3σ” detection of the presence

of pulsars.

6.4.1 Results

Figure 6.1 shows the results of the parameter space scan over values of Φp below 10−9

cm2 s−1 and over the full range of γ from 10−5 to 1 for a simulated all-sky survey

of 40,000 square degrees. The color-coding corresponds to the power of this method

to reject the null hypothesis that there are no pulsars at 99.7% (“3σ”) significance.

In the dark red region the null hypothesis is practically guaranteed to be rejected.

In the blue region the null hypothesis will be rejected only 0.3% of the time (as

expected for a 99.7% significance threshold). The solid contours correspond to the

number density of pulsars (in units of pulsars per square degree) as computed using

Eq. 6.15.

There are two competing factors which shape the transition between the sensi-
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Figure 6.1: A demonstration of the statistical power of the method to detect the presence of pulsars
over the entire sky. The color coding represents the probability of rejecting the null hypothesis of
“no pulsars” at 99.7% significance. Φp is the photon flux of each individual pulsar in the energy
range [0.8 − 6.4]GeV. The quantity γ represents the fraction of the total gamma-ray background
due to pulsars. Solid contours give the number density of pulsars (in units of pulsars per square
degree). The proposed method can reveal the presence of a pulsar population contributing as little
as 10−3 of the diffuse gamma-ray background. Note that, within the range of pulsar fluxes shown,
every individual pulsar is flux-unresolved because Φp is less than LAT’s point source sensitivity
threshold. Many of these flux-unresolved sources may be individually discovered based solely on
an analysis of their time series: the dashed line represents the 5σ detection threshold for individual
pulsars based on the height of their power spectrum peak (see text for details).
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tive and insensitive regions of parameter space. The plateau at small values of γ

represents the limit of low numbers of pulsars. Obviously, if there are no pulsars in

the sky there is no signal to be detected. Within the flux range explored here the A

test is not sensitive if there are fewer than ∼ 10 pulsars in the 40,000 pixels.

The vertical transition is explained by the fact that pulsars must contribute the

highest peak in the power spectrum in order to be detected by the periodicity test.

As the flux of each pulsar is increased (moving to the right in Fig. 6.1) the power

spectrum peak at the pulsar’s frequency will eventually become the highest peak in

the power spectrum. This then causes the non-Gumbel-ness of the pixel scores which

is detected by the A test.

We can view this as a requirement that the quantity Pp (Eq. 6.10) be comparable

to logNbins, the mode of the distribution for the maximum normalized power in the

case of no pulsars. The αS2 term in Eq. 6.10 is most important in governing the

transition. Because the Gumbel distribtion only contains a location parameter we

can write an approximate equation describing the vertical part of the sensitivity

transition:

αS2 ' logNbins. (6.20)

The left hand side is an estimate of the height of the peak corresponding to the actual

pulsar signal. The right hand side is the maximum power in the other Nbins − 1

frequency bins. Only when the left hand side is greater than the right hand side

will the method be able to reject the null hypothesis of no pulsars. This is because

the periodicity statistic we have chosen is not sensitive to pulsar peaks which are

subdominant in the power spectrum.

The photon fluxes of individual pulsars in the simulated parameter space are all
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below the point source sensitivity of the LAT [101]. The pulsars in the simulation

would be undetected by Fermi as bright sources. Therefore, “blind searches” would

not consider these pulsars as candidates for periodicity searches. Such objects truly

contribute to the diffuse background.

Nevertheless, if we measure the power spectrum for a pixel which contains an

unresolved pulsar the spike at the pulsar’s frequency might be large enough to con-

stitute a detection of a periodic source. To estimate when this occurs we consider

the following hypothesis test. We measure a power spectrum peak height of x, and

ask “What is the probability that at least one peak in any of the observed time series

has a value of x or higher if there were no periodic sources present in the data?” The

answer again follows from the Gumbel distribution (Eq. 6.5) but with Nbins replaced

with Nbins×Npix, i.e. the number of independent frequency bins for each time series

multiplied by Npix, the number of time series considered (in this case 40,000). The

quantity F (x) is the significance of this peak.

In the region to the right of the dashed line in Fig. 6.1 individual pulsars would

be detected at 5σ based on the height of the power spectrum peak derived from

their pixel’s time series. The region’s shape is governed by an equation similar to

Eq. 6.20 except that the right-hand side is replaced by a peak height x5σ such that

1−F (x5σ) ' 5.7× 10−7, corresponding to a 5σ detection. This suggests that simply

computing the power spectra for the entire sky may turn up detections of pulsars

which are too faint to be flux-resolved.

In Fig. 6.2 we show the results of a similar simulation but for an observation of

only 1,000 square degrees of sky. This situation represents a study of the galactic

center, a region whose source population is of great interest [315, 112, 116, 316, 117,

317]. The shape of the sensitivity region is similar to the all-sky survey. The stripe
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Figure 6.2: Same as Fig. 6.1 but for an observation area of 1,000 square degrees corresponding
to a study of the Galactic center. Here, solid contours depict the total number of pulsars present
in the observed region. The dashed line denotes the 5σ detection threshold of individual pulsars
based on power spectrum peak height as in Fig. 6.1.
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pattern is caused by the discrete addition of pulsars to the survey area. The method

is sensitive to the presence of pulsars even when individual pulsars are unresolved in

both flux and Fourier power. The sensitive (dark red) region is larger in the all-sky

survey than in the galactic center study. This demonstrates that the statistical test

benefits from larger numbers of measured time series (assuming equal fluxes and

number densities of pulsars).

6.5 Discussion

Using the approximation to the sensitivity transition given by Eq. 6.20 we can es-

timate how the result of the simulations discussed in the previous section will scale

with changing parameters. The Gumbel distribution we have been exploring has the

beneficial property that the location parameter goes as the logarithm of the number

of independent trials. We expect this to be a general feature of any periodicity test.

Thus, as observation time T increases the right hand side of Eq. 6.20 increases as

log T . The left-hand side increases in proportion to Φp
2AeffT/Ω. Thus, this technique

benefits from longer observation times, larger effective areas, and smaller pixel sizes

(i.e. future gamma-ray observatories) in the same “root N” way that conventional

searches do.

The main difficulty in the outlined strategy lies in choosing a good test of period-

icity and in the computational challenge of computing it many times for the different

time series. Traditionally, pulsars are searched for either by taking a Fourier trans-

form of the time series or by folding the time series in the time domain at many

different trial periods.
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Regular pulsars do not have constant periodicity but experience spin-down (mag-

netic braking) and glitches. These complicating factors force statistical tests for pe-

riodicity to be performed on a large grid of trial frequency derivatives or on short

stretches of the time series [321, 320]. In Fourier space the changing period of the

pulsar acts to spread its signal power over many frequency bins, diluting the peak

amplitude. Millisecond pulsars, on the other hand, have extremely stable rotations,

with period derivatives on the order of 10−19 s/s [327]. Even over observation peri-

ods of years the frequency of many MSPs will not drift into neighboring Fourier bins

[328]. Thus, the number of trials performed when computing the test statistic can

be significantly lower than for regular pulsars.

Additionally, MSPs are thought to form in binary star systems. Because binary

systems are more common than single stars most galactic pulsars are likely mem-

bers of a binary pair that have been spun up into MSPs [332–335] In addition, it

has recently been suggested that MSPs might dominate normal pulsars in their con-

tribution to the gamma-ray background [302]. Millisecond pulsars are also older,

have had more orbital trips around the galaxy, and therefore are more likely to be

found at higher galactic latitudes than normal pulsars. Therefore, these pulsars may

be important contributors to the so-called “extra-galactic” or isotropic gamma-ray

background [326].

6.5.1 Caveats and Improvements

We have been optimistic in some areas and overly simplistic in others. Here we

review some of the practical difficulties in performing this test on LAT data and

point out the simplifications we have made and how they affect the results.
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The most obvious difficulty we have glossed over is the fact that pulsar light

curves are not simple sine waves. This has the effect of dispersing the power in the

frequency bin centered at the pulsar’s frequency into higher harmonics. The simple

periodicity test we proposed (maximum normalized power) is almost certainly not

optimal for the case when power is found at higher harmonic frequencies (see below

for ways to try to recover this power). We have left room in the analysis (see Eq. 6.10)

for a reduction of α, designed to account for the effect of power being dispersed into

other frequency bins. Equation 6.20 suggests that the pulsar flux one is sensitive to

goes as 1/
√
α (since S scales proportionally to Φp).

While millisecond pulsars are extremely stable and do not experience glitches or

suffer from rapid spin-down, their rotation is not completely constant. It is there-

fore probable that some power is dispersed into neighboring frequency bins by non-

negligible period derivatives. The techniques used to try to recover this power involve

performing many analyses with different trial period derivatives. Specifically, the ar-

rival times of the photons are corrected to account for a spin-down effect and then

the periodicity search is performed on this modified time series. The decrease in

sensitivity due to spin-down increases as the observation time increases.

As millisecond pulsars are found in binary systems, the orbital motion of the

binary can cause distortions in the Fourier spectrum of the time series. Essentially,

the orbit of the pulsar causes a doppler shift in its period which disperses Fourier

power into different frequency bins. Methods have been proposed that can sweep up

this power [336]. Such methods can be incorporated into a more advanced periodicity

test.

Errors in source position are known to affect the detectability of individual pul-

sars. The first step in analyzing a time series is to correct for motion of the detector
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with respect to the pulsar. This correction depends on an accurate “barycenter-

ing” procedure, which in turn relies on precise knowledge of the pulsar’s position.

In searching the background for unresolved pulsars we have no information as to

where the pulsars are located within the pixels, and this affects the quality of the

barycentering.

The most important consideration that goes into a realistic application of the pro-

posed method is the choice of periodicity statistic. In practice, one is bound by finite

computational resources — ideally, one would perform a detailed time series analysis

on every pixel in the sky, including searching over trial periods, period derivatives,

and other ephemera. We have been simplistic in the choice of the maximum nor-

malized power as a test statistic. A first generalization is to search harmonic sums

of the normalized power spectrum. This would take into account that pulsar light

curves are not sine waves. Considering the harmonic sum of the power spectrum is

an attempt to recover the as much signal power as possible. The statistics of such a

test are relatively straightforward to compute.

In addition, there are several choices of tests for periodicity currently in use to

search for pulsars in radio data and in gamma-rays. The H test [337] and the Z2
2

test [338] are based on binning the photon arrival times by phase for a given trial

pulsar period and then checking whether the distribution of phases is consistent with

random. These tests require a guess for the pulsar period. However, it is compu-

tationally intensive to calculate the statistic for every possible value of the pulsar

period for a large sample of pixels. More recently, a time-differencing technique [321]

has been proposed to overcome some of these computational challenges and has been

very successful in discovering new pulsars with Fermi-LAT [339, 303].

To adapt these tests to the present task, we propose to first find the power
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spectrum of the time series (or its harmonic sum) and take the n highest peaks to be

trial periods for the more advanced algorithms. The number of trials n would need to

be adjusted based on computational resources and the choice could be calibrated by

examining the power spectra from time series which are known to contain gamma-

ray pulsars. An automated analysis pipeline can be conceived in which one would

perform a cursory scan of the time series looking for semi-significant peaks and

then perform additional, computationally intensive scans of these peaks, assigning a

periodicity score at the end.

Besides computational cost one has to balance two factors when deciding on a

periodicity test. The test should be as sensitive as possible to the presence of periodic

signals but should also minimize the number of “trials”. A large number of trials

raises the possibility that a random signal, by chance, could appear periodic. In

our case the number of trials was the number of independent Fourier bins that were

scanned when looking for peaks. As the number of “trials” grows it is more likely to

find a random outlier that mimics periodicity.

Any periodicity test or analysis procedure can be adapted to the search for unre-

solved pulsars. The key ingredient is the null distribution of the periodicity scores.

For example, an arbitrarily complex analysis pipeline can be established which takes

a time series and outputs a periodicity score. The inner-workings of the pipeline

can involve scanning over trial periods and period derivatives. It can include iden-

tifying promising peaks for more careful scanning. Once the procedure is set, one

simply runs it many times on uncorrelated photon time series (i.e. white noise). The

resulting set of periodicity scores constitutes the null distribution. The pipeline is

then applied to actual measured time series and the resulting scores are collectively

checked for inconsistency with the null distribution.
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We can illustrate the effect of different tests using the sensitivity plot in Fig. 6.1.

Different periodicity tests would shift both the sensitive (red) region and dashed

line together. However, the scaling is not necessarily fixed. The dark red region of

parameter space to the left of the dashed line remains the most interesting. It is here

where searches for individual pulsars would fail but where the collective statistics

would succeed in revealing their presence. The size and shape of this region likely

depends on which periodicity test is chosen. We plan to explore other tests in future

work.

Furthermore, the division of a region of the sky into spatially separated time

series (step one in Section 2.1) can also be optimized. Instead of breaking the

sky into pixels and taking the time series of each one, an alternate technique is to

only search promising sky locations for evidence of periodicity. One could consider

only “bright spots” or “hot pixels”, regions of the sky with a signal to noise ratio

greater than 1, say. Alternatively, the candidate locations can be chosen from lists

of known sources (see Fermi bright source list, [340], [341]), or from pulsar candidate

locations in blind searches. The later have been previously analyzed for pulsations

but have not been jointly searched for unresolved pulsars. These strategies have

several advantages. The computational burden would be reduced because of the

fewer number of time series to scan. The barycenter correction would be improved

by the better localization of the sources’ positions. A priori, hot pixels have a higher

chance of containing pulsars than randomly selected pixels, leading to a larger fraction

of the searched pixels that contain pulsars (effectively increasing σp in Fig. 6.1).

Because the analysis is sensitive only to the highest power spectrum peak it is

almost completely insensitive to the possibility that there may be multiple pulsars

contributing to a single time series. However, this situation likely occurs in globular

clusters and in the galactic center region, both places conceivably containing impor-
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tant populations of pulsars. A periodicity statistic should be tailored specifically to

studies of these regions. A simple generalization of the periodicity test would be to

take the top n highest peaks in each time series instead of just the highest. Then

we would have n periodicity scores from each pixel instead of one. Alternatively,

one could count the number of peaks with height greater than some threshold. The

score from each pixel would be this integer number. (In both cases the search could

take place using the harmonically summed power spectra.)

6.5.2 Pulsar population parameter estimation

This analysis begs the followup question of how we can learn the details of the pulsar

population from studies like this, where individual pulsars remain undiscovered. In

particular, it is of great interest to determine what fraction of the gamma-ray back-

ground is due to unresolved pulsars (the value of the quantity γ in the simulations

of Sec. 6.4). The detailed extraction of population parameters from the collection

of periodicity scores requires some kind of modeling of the population. However, we

can use the simplified model presented here to place interesting constraints on the

number of pulsars with certain fluxes without any detailed modeling.

In the simulations of Sec. 6.4 we assumed that every pulsar had the same flux.

This is obviously false if we claim that the simulated pulsars make up all the pulsars

in the sky. However, the simulated pulsars can instead be interpreted as a “slice” of

the number function of pulsars.

An important description of the pulsar population is the number density of pul-

sars σp(Φp) with flux greater than Φp. This function can be used to define the total
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contribution from pulsars:

γ =
1

Ftot

∫
Φp

∣∣∣∣ dσpdΦp

∣∣∣∣ dΦp. (6.21)

The simple simulations of Sec. 6.4 can be used to constrain σp(Φp) as follows.

Imagine that we have performed a test over the whole sky (Fig. 6.1) but failed to

reject the null hypothesis. At each flux Φp we can draw a line straight upwards in

Fig. 6.1 until we reach the transition to the dark red region. Let the number density

of pulsars simulated at this transition point be given by σ̃p(Φp). Then we can claim

that the true number density function at this flux σp(Φp) must be less than σ̃p(Φp).

If this were not the case then there is a 99.7% (in this example) chance that the

statistical test would have detected the presence of these pulsars. This constraint

relies on the choice of α and in practice the choice should be calibrated using known

pulsar light curves.

If we are willing to make some assumptions about the shape of σp(Φp) and only

allow its overall normalization to vary we can make stronger statements. In this case

we could actually simulate a population of pulsars for different choices of normal-

ization and find the sensitivity of the method to each choice. The test will become

sensitive above some critical value of the normalization. Depending on whether the

test rejects or does not reject the null hypothesis we could then place a lower or up-

per bound on the normalization of the number density function. This bound would

then immediately translate into a bound on the total contribution of pulsars to the

background (Eq. 6.21). There are several motivated choices for the shape of σp(Φp)

which depend on the spatial distribution of pulsars [302]. In reality, however, the

population of gamma-ray pulsars is completely unconstrained at fluxes below about

10−8 photons cm−2s−1 [303].
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In addition, one can analyze the measured distribution of periodicity scores using

conventional χ2 minimization. In this case it is necessary to know what the distri-

bution of scores will be as a function of the pulsar population parameters. One then

can bin the measured scores and find the best fitting population parameters. The

pulsar population models can be made as complicated as one likes — the analysis

requires a scan over this parameter space looking for regions whose score distribution

matches the observed one. We defer applications of these techniques to the LAT data

in future work.

6.6 Conclusions

In this manuscript we propose a new technique whose application to Fermi-LAT data

can reveal the extent to which pulsars contribute to the gamma-ray background. The

method is based on the cumulative statistics of photon time series that are binned

spatially. The motivation behind this approach lies in the general idea that even

though individual pulsar searches may be unsuccessful, information from undetected

pulsars is still measurably encoded in the gamma-ray background.

In general, current pulsar searches are based on the evidence of a source at a

particular location. These sources are subjected to a battery of periodicity tests,

and careful analysis of LAT data has already revealed the presence of gamma-ray

pulsars. However, it is likely that large numbers of pulsars are beyond the current

reach of LAT to even identify their associated events. These pulsars (with very weak

signals) will contribute to the diffuse gamma-ray background.

Our main results are:
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• The proposed technique has the ability to discover a pulsar contribution to the

gamma-ray background if the fraction due to pulsars is greater than 10−3.

• It is sensitive to a population of pulsars whose individual photon fluxes are as

low as 10−10 cm−2 s−1.

• Using the photon time series derived from a specific location on the sky, one

can discover individual pulsars with photon fluxes down to about 6 × 10−10

cm−2 s−1, which is below the current point source sensitivity threshold.

• By considering only “hot pixels” or current blind search candidates the sensi-

tivity of the method is increased markedly.

• Any periodicity test or analysis pipeline can be applied to the search for the

unresolved population. The only requirement is the response of the test to

uncorrelated photon time series. This allows the technique to be optimized for

any given application (e.g. all-sky surveys, galactic center, globular clusters,

etc.).

The method proposed in this work takes advantage of all events in the diffuse

gamma-ray background and gives information about the population of unresolved

pulsars. The importance of this task goes beyond pulsar astrophysics. It is manifestly

apparent that a detailed understanding of astrophysical backgrounds is vital in any

gamma-ray observation, including surveys of astrophysical sources (e.g., blazars), as

well as studies of more exotic and hypothetical contributions (e.g., annihilating dark

matter). It is therefore of extreme interest to apply this technique to current and

future gamma-ray data.



Appendix A

The A test
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In this appendix I provide details about the statistical test used in Chapter 6. The

test is designed to determine if a collection of observations is inconsistent with having

been drawn from a given null distribution. It is meant to be sensitive to a small upper

tail in excess of what is predicted by the null distribution. Although motivated by

the application to pulsars the A test has nothing to do with astrophysics and may

be used in any statistical study.

A.1 Motivation

Recall the situation presented in the text. We have a collection of periodicity scores

(denoted xi) and want to test whether the collection is consistent with having been

drawn from the null distribution (in this case a Gumbel distribution). The goal is

to boil the collection of scores down into a single number A and then study the

distribution of A under the null hypothesis. The quantity A is meant to reflect the

overall level of periodicity in the sample.

The critical value A∗ is defined by the property that, if the null hypothesis is true,

the probability that A is less than A∗ is e.g., 99.7%. To be precise, A is a function

of the collection xi. If the x’s are each drawn from the null distribution then the

probability that A is less than A∗ is 0.997, or whatever the desired significance is.

Different choices of A may be more or less powerful. In general, the power of a

test is defined as the probability that the null hypothesis is rejected when the null

hypothesis is, in fact, false. If it is unlikely that A is above some critical value A∗

even when there are many pulsars present in the sky a poor definition for A has

been chosen. Unfortunately, only in special, simple cases is there a “uniformly most
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powerful” test. In the particular case we are studying here there are many degrees

of freedom associated with the alternative hypothesis. For example, the light curves

of pulsars and their number density are functions which must be specified by many

parameters. As a result there is no uniformly most powerful test in this case. (See

e.g. [167] for an more detailed discussion.)

In order to choose a powerful statistical test we must examine the behavior of

the collection of x’s in the case where pulsars are present. Consider a pixel which

contains a pulsar. The only way the x-value of this pixel will contain any information

about the pulsar is if the peak in the normalized power spectrum is actually due to

the pulsar. Under the null hypothesis, each x is drawn from the Gumbel distribution

in Eq. 6.5. The effect of pulsars is to skew the distribution towards higher values of

x: the pixels with a pulsar have a chance of replacing the peak power in a random

frequency bin with the power at the pulsar’s frequency. Based on these considerations

we would like to choose a statistical test that puts more weight on higher x values.

There are a wide variety of statistical tests that are in common use. The

Kolmogorov-Smirnov (KS) statistic is commonly used in astronomy. Kuiper’s ex-

tension of the KS statistic gives more weight to the tails of the distribution. This

would be beneficial for looking an excess of large x-values. The Anderson-Darling

statistic is used more rarely but also gives extra weight to the tails. Likelihood ratio

statistics are another option, though these require some knowledge of the alternative

hypothesis that one is testing for. It is known that likelihood ratio tests are the

most powerful tests for “point” hypotheses [167]. They are based on the likelihood

function for the data under various hypotheses, and should therefore exploit all the

information available in the data.

The proposed A test statistic is designed to be sensitive to the upper tail of a
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distribution. It shares properties with the Anderson-Darling and KS tests and can

also be interpreted as a likelihood-ratio test. Unlike these other tests, however, the

distribution of the A test statistic under the null hypothesis is very simple (a gamma

distribution). It is expected to be powerful (like a likelihood test) but also very easy

to use (no sorting of the data and no lookup tables).

A.2 Details

In this subsection I present the details of the A test. The task is to take a collection

of numerical values and determine if this collection is consistent with being drawn

from a given probability distribution (the null distribution). Below, this collection

of numbers will also be referred to as the “data” or the “samples”.

When looking for an extended tail in a collection of measured quantities we

noticed that it is often useful to look at the logarithm of the empirical survival

function (SF) of the data. The empirical SF is defined as 1−FN(x), where FN(x) is

the empirical cumulative distribution function (CDF). Simply put, the SF at some

value x is the fraction of the sample values which are greater than x. Thus, at

x = −∞ the empirical SF equals 1 and decreases by 1/N every time x crosses one of

the measured values, where N is the sample size. This empirical SF can be compared

to the theoretical SF for the case where the data come from the null distribution.

For the null distribution, the survival function is simply 1−F (x), where F (x) is the

usual cumulative distribution function for the null distribution.

When comparing the logarithm of the empirical and theoretical SFs any excess

at large values of x becomes more pronounced, even if only a small fraction of the
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samples are at such large values. Therefore, we order the data by increasing x-value

and define the A statistic as

A ≡ 1√
N

N∑
i=1

{log [1− FN(xi)]− log [1− F (xi)]} , (A.1)

where x1 < x2 < · · · < xN and FN(xi) = (i − 1)/N is the empirical CDF. We can

make some simplifications to the first term in the sum:

N∑
i=1

log [1− FN(xi)] =
N∑
i=1

log

[
1− (i− 1)

N

]
= log

[
1

(
1− 1

N

)(
1− 2

N

)
· · ·
(

1− N − 1

N

)]
= log [N (N − 1) (N − 2) · · · 1]− log

[
NN
]

= logN !−N logN. (A.2)

Inserting this back into the definition of A we have

A =
1√
N

{[
N∑
i=1

− log [1− F (xi)]

]
−N logN + logN !

}
, (A.3)

The statistics of A is governed by the term in curly brackets. In this sum the

numerical ordering of the x’s does not matter since the sum is over all of them. The

distribution of A under the null hypothesis is now straightforward to find. For any

random variable X with CDF F the quantity F (X) is distributed uniformly in the

interval between 0 and 1. This implies that 1−F (X) is also uniformly distributed on

this interval. Now, the negative logarithm of such a uniformly distributed variable is

distributed according to the exponential distribution with scale factor 1. Therefore,

under the null hypothesis the quantity

G ≡
N∑
i=1

− log[1− F (xi)] (A.4)
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is the sum of N exponentially distributed random variates. This sum is described by

the well-known gamma distribution (also called the Erlang distribution in this case)

with shape parameter N . The inverse CDF of the gamma function then provides

the critical value A∗. For instance, to find the value of A∗ under which there is a

99.7% chance of measuring A (under the null hypothesis) one determines the value

of G∗ that satisfies

0.997 =

∫ G∗

0

xN−1e−x

(N − 1)!
dx. (A.5)

The quantity G∗ is then inserted into Eq. A.3, replacing the term in large square

brackets. The resulting value of A is A∗. If for a given sample of N x-values the

quantity A (Eq. A.3) is greater than A∗ then one can reject that the sample came

from the distribution with CDF F (x) at 99.7% significance.

A.3 Properties of A

Of course, there is no reason to include the constant terms in Eq. A.3. One can

just take the test statistic to be G (Eq. A.4), the only quantity that depends on

the data. Then G∗, discussed above, is the critical value for the test statistic. (In

fact, this is how we actually performed the simulations.) However, the definition

we have given for A (Eq. A.3) has a nice asymptotic property for large sample sizes

(i.e. as N → ∞). The central limit theorem says that the gamma distribution

converges to a normal distribution with mean N and standard deviation
√
N . In

the same limit the constant term Eq. A.2 converges to −N as can be seen using the

approximation for log(N !) found in every statistical mechanics textbook (e.g. [342],

section A.6). Therefore as N → ∞ the distribution for A converges to a standard

normal distribution (i.e. normal with mean 0 and variance 1).
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The A test statistic is similar to the KS and Anderson-Darling statistics in that

is based on the CDF of the null distribution. The CDF has the nice property

that it is distributed uniformly (if the null hypothesis is true). This allows the

null distributions for the KS, Anderson-Darling, and A test statistics to be found

analytically.

The specific application of the A test statistic shown in this paper can also be

interpreted as a likelihood-ratio test. The null distribution is given by the Gumbel

distribution with a peak at logNbins. Imagine that the alternative distribution for

the x’s follows the null distribution for values of x less than logNbins but does not

fall off for higher values. This is supposed to represent the situation when pulsars

are present: there are more large values of x. The likelihood ratio is the ratio of

the alternative PDF to the null PDF (as functions of x). When this quantity is

large it indicates that the alternative describes the sample better than the null does.

The likelihood ratio is the product of these ratios for each xi. It is usually easier to

work with the logarithm of this quantity which is the sum of the logarithms of the

individual likelihood ratio terms.

Let us see how each term in the log-likelihood ratio compares to each term in the

G statistic (i.e. each term in the curly bracketed sum in Eq. A.3). If x is less than

logNbins both statistics contribute approximately 0. In the case of the likelihood

ratio this is because the null and alternative PDFs are defined to be the same there

(so the log of their ratio is 0). It is also easy to see from Eq. 6.5 that when x is less

than logNbins, F (x) is close to 0. If x is greater than logNbins the quantity 1−F (x)

becomes approximately exp(−(x− logNbins)) and so − log(1−F (x)) ' x− logNbins.

For the likelihood ratio when x > logNbins the alternative hypothesis PDF is 1 and

the null PDF is approximately exp(−(x − logNbins)). Thus the logarithm of this

ratio is also approximately x− logNbins.
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For all values of x, therefore, the A statistic (based on the quantity G) behaves

just like a likelihood ratio test that is designed to pick up an extended upper tail in

the sample. This implies that the A test should be a powerful test in looking for such

a tail. Moreover, the null distribution of A has a particularly simple form (a shifted

and scaled gamma distribution) and converges to the standard normal distribution

when the sample size is large, making A an attractive addition to the current library

of statistical tests.
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[172] Gondolo, P., Edsjö, J., Ullio, P., Bergström, L., Schelke, M., Baltz, E. A.,
Bringmann, T. and Duda, G., 2011. URL:
http://www.darksusy.org

[173] Neyman, J. and Pearson, E. S., 1933, “On the Problem of the Most Efficient
Tests of Statistical Hypotheses”, Philosophical Transactions of the Royal So-
ciety of London. Series A, Containing Papers of a Mathematical or Physical
Character , 231, pp. 289–337, ISSN 02643952URL:
http://www.jstor.org/stable/91247

[174] Adelson, R. M., 1966, “Compound Poisson Distributions”, OR, 17(1), pp. 73–
75, ISSN 14732858URL:
http://www.jstor.org/stable/3007241

[175] Embrechts, Paul and Frei, Marco, 2009, “Panjer recursion versus FFT for
compound distributions”, Mathematical Methods of Operations Research, 69
(3), 497–508. [DOI]URL:
http://dx.doi.org/10.1007/s00186-008-0249-2

[176] Rudaz, S., 1989, “Annihilation of heavy-neutral-fermion pairs into monochro-
matic γ rays and its astrophysical implications”, Phys. Rev. D, 39, 3549–3556.
[DOI], [ADS]

[177] Bergström, L., 1989, “Radiative processes in dark matter photino annihila-
tion”, Physics Letters B , 225, 372–380. [DOI], [ADS]

[178] Giudice, G. F. and Griest, K., 1989, “Rate for annihilation of galactic dark
matter into two photons”, Phys. Rev. D, 40, 2549–2558. [DOI], [ADS]

[179] Bergström, L. and Kaplan, J., 1994, “Gamma ray lines from TeV dark matter”,
Astroparticle Physics , 2, 261–268. [DOI], [ADS], [arXiv:hep-ph/9403239]

[180] Jungman, G. and Kamionkowski, M., 1995, “γ rays from neutralino annihila-
tion”, Phys. Rev. D, 51, 3121–3124. [DOI], [ADS], [arXiv:hep-ph/9501365]

[181] Jackson, C. B., Servant, G., Shaughnessy, G., Tait, T. M. P. and Taoso, M.,
2010, “Higgs in space!”, J. Cosmology Astropart. Phys., 4, 4. [DOI], [ADS],
[arXiv:0912.0004 [hep-ph]]

http://dx.doi.org/10.1098/rsta.1937.0005
http://adsabs.harvard.edu/abs/1937RSPTA.236..333N
http://dx.doi.org/10.1088/0264-9381/26/24/245007
http://adsabs.harvard.edu/abs/2009CQGra..26x5007S
http://arxiv.org/abs/0905.4089
http://dx.doi.org/10.1088/1475-7516/2004/07/008
http://adsabs.harvard.edu/abs/2004JCAP...07..008G
http://arxiv.org/abs/arXiv:astro-ph/0406204
http://arxiv.org/abs/arXiv:astro-ph/0406204
http://www.darksusy.org
http://www.jstor.org/stable/91247
http://www.jstor.org/stable/3007241
http://dx.doi.org/10.1007/s00186-008-0249-2
http://dx.doi.org/10.1007/s00186-008-0249-2
http://dx.doi.org/10.1103/PhysRevD.39.3549
http://adsabs.harvard.edu/abs/1989PhRvD..39.3549R
http://dx.doi.org/10.1016/0370-2693(89)90585-6
http://adsabs.harvard.edu/abs/1989PhLB..225..372B
http://dx.doi.org/10.1103/PhysRevD.40.2549
http://adsabs.harvard.edu/abs/1989PhRvD..40.2549G
http://dx.doi.org/10.1016/0927-6505(94)90005-1
http://adsabs.harvard.edu/abs/1994APh.....2..261B
http://arxiv.org/abs/arXiv:hep-ph/9403239
http://dx.doi.org/10.1103/PhysRevD.51.3121
http://adsabs.harvard.edu/abs/1995PhRvD..51.3121J
http://arxiv.org/abs/arXiv:hep-ph/9501365
http://dx.doi.org/10.1088/1475-7516/2010/04/004
http://adsabs.harvard.edu/abs/2010JCAP...04..004J
http://arxiv.org/abs/0912.0004


191

[182] Weniger, C., 2012, “A tentative gamma-ray line from Dark Matter annihilation
at the Fermi Large Area Telescope”, J. Cosmology Astropart. Phys., 8, 7.
[DOI], [ADS], [arXiv:1204.2797 [hep-ph]]

[183] Tempel, E., Hektor, A. and Raidal, M., 2012, “Fermi 130 GeV gamma-ray
excess and dark matter annihilation in sub-haloes and in the Galactic centre”,
J. Cosmology Astropart. Phys., 9, 32. [DOI], [ADS], [arXiv:1205.1045 [hep-ph]]

[184] Su, M. and Finkbeiner, D. P., 2012, “Strong Evidence for Gamma-ray Line
Emission from the Inner Galaxy”, ArXiv e-prints . [ADS], [arXiv:1206.1616
[astro-ph.HE]]

[185] Dudas, E., Mambrini, Y., Pokorski, S. and Romagnoni, A., 2012, “Extra U(1)
as natural source of a monochromatic gamma ray line”, Journal of High Energy
Physics , 10, 123. [DOI], [ADS], [arXiv:1205.1520 [hep-ph]]

[186] Cline, J. M., 2012, “130 GeV dark matter and the Fermi gamma-ray line”,
Phys. Rev. D, 86(1), 015 016. [DOI], [ADS], [arXiv:1205.2688 [hep-ph]]

[187] Choi, K.-Y. and Seto, O., 2012, “Dirac right-handed sneutrino dark matter
and its signature in the gamma-ray lines”, Phys. Rev. D, 86(4), 043 515. [DOI],
[ADS], [arXiv:1205.3276 [hep-ph]]

[188] Kyae, B. and Park, J.-C., 2013, “130 GeV Fermi gamma-ray line from
dark matter decay”, Physics Letters B , 718, 1425–1429. [DOI], [ADS],
[arXiv:1205.4151 [hep-ph]]

[189] Lee, H. M., Park, M. and Park, W.-I., 2012, “Fermi gamma ray line at 130
GeV from axion-mediated dark matter”, Phys. Rev. D, 86(10), 103 502. [DOI],
[ADS], [arXiv:1205.4675 [hep-ph]]

[190] Rajaraman, A., Tait, T. M. P. and Whiteson, D., 2012, “Two lines or not two
lines? That is the question of gamma ray spectra”, J. Cosmology Astropart.
Phys., 9, 3. [DOI], [ADS], [arXiv:1205.4723 [hep-ph]]

[191] Buckley, M. R. and Hooper, D., 2012, “Implications of a 130 GeV gamma-
ray line for dark matter”, Phys. Rev. D, 86(4), 043 524. [DOI], [ADS],
[arXiv:1205.6811 [hep-ph]]

[192] Profumo, S. and Linden, T., 2012, “Gamma-ray lines in the Fermi data: is it a
bubble?”, J. Cosmology Astropart. Phys., 7, 11. [DOI], [ADS], [arXiv:1204.6047
[astro-ph.HE]]

[193] Boyarsky, A., Malyshev, D. and Ruchayskiy, O., 2012, “Spectral and spatial
variations of the diffuse gamma-ray background in the vicinity of the Galactic
plane and possible nature of the feature at 130 GeV”, ArXiv e-prints . [ADS],
[arXiv:1205.4700 [astro-ph.HE]]

[194] Ackermann, M. et al., 2012, “Fermi LAT search for dark matter in gamma-ray
lines and the inclusive photon spectrum”, Phys. Rev. D, 86(2), 022 002. [DOI],
[ADS], [arXiv:1205.2739 [astro-ph.HE]]

http://dx.doi.org/10.1088/1475-7516/2012/08/007
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://arxiv.org/abs/1204.2797
http://dx.doi.org/10.1088/1475-7516/2012/09/032
http://adsabs.harvard.edu/abs/2012JCAP...09..032T
http://arxiv.org/abs/1205.1045
http://adsabs.harvard.edu/abs/2012arXiv1206.1616S
http://arxiv.org/abs/1206.1616
http://arxiv.org/abs/1206.1616
http://dx.doi.org/10.1007/JHEP10(2012)123
http://adsabs.harvard.edu/abs/2012JHEP...10..123D
http://arxiv.org/abs/1205.1520
http://dx.doi.org/10.1103/PhysRevD.86.015016
http://adsabs.harvard.edu/abs/2012PhRvD..86a5016C
http://arxiv.org/abs/1205.2688
http://dx.doi.org/10.1103/PhysRevD.86.043515
http://adsabs.harvard.edu/abs/2012PhRvD..86d3515C
http://arxiv.org/abs/1205.3276
http://dx.doi.org/10.1016/j.physletb.2012.12.041
http://adsabs.harvard.edu/abs/2013PhLB..718.1425K
http://arxiv.org/abs/1205.4151
http://dx.doi.org/10.1103/PhysRevD.86.103502
http://adsabs.harvard.edu/abs/2012PhRvD..86j3502L
http://arxiv.org/abs/1205.4675
http://dx.doi.org/10.1088/1475-7516/2012/09/003
http://adsabs.harvard.edu/abs/2012JCAP...09..003R
http://arxiv.org/abs/1205.4723
http://dx.doi.org/10.1103/PhysRevD.86.043524
http://adsabs.harvard.edu/abs/2012PhRvD..86d3524B
http://arxiv.org/abs/1205.6811
http://dx.doi.org/10.1088/1475-7516/2012/07/011
http://adsabs.harvard.edu/abs/2012JCAP...07..011P
http://arxiv.org/abs/1204.6047
http://arxiv.org/abs/1204.6047
http://adsabs.harvard.edu/abs/2012arXiv1205.4700B
http://arxiv.org/abs/1205.4700
http://dx.doi.org/10.1103/PhysRevD.86.022002
http://adsabs.harvard.edu/abs/2012PhRvD..86b2002A
http://arxiv.org/abs/1205.2739


192

[195] Bergström, L., Ullio, P. and Buckley, J. H., 1998, “Observability of gamma
rays from dark matter neutralino annihilations in the Milky Way halo”, As-
troparticle Physics , 9, 137–162. [DOI], [ADS], [arXiv:astro-ph/9712318]

[196] Nolan, P. L. et al., 2012, “Fermi Large Area Telescope Second Source Catalog”,
ApJS, 199, 31. [DOI], [ADS], [arXiv:1108.1435 [astro-ph.HE]]

[197] 2012. URL:
http://www.slac.stanford.edu/exp/glast/groups/canda/lat_
Performance.htm

[198] Panjer, Harry H., 1981, “Recursive evaluation of a family of compound distri-
butions”, Astin Bulletin, 12, 22–26

[199] Scheuer, P. A. G., 1957, “A statistical method for analysing observations of
faint radio stars”, Proceedings of the Cambridge Philosophical Society , 53,
764–773. [DOI], [ADS]

[200] Lee, S. K., Ando, S. and Kamionkowski, M., 2009, “The gamma-ray-flux PDF
from galactic halo substructure”, J. Cosmology Astropart. Phys., 7, 7–+. [DOI],
[ADS], [arXiv:0810.1284]

[201] Baxter, E. J., Dodelson, S., Koushiappas, S. M. and Strigari, L. E., 2010,
“Constraining dark matter in galactic substructure”, Phys. Rev. D, 82(12),
123 511–+. [DOI], [ADS], [arXiv:1006.2399 [astro-ph.GA]]

[202] Essig, R., Sehgal, N., Strigari, L. E., Geha, M. and Simon, J. D., 2010, “Indirect
dark matter detection limits from the ultrafaint Milky Way satellite Segue 1”,
Phys. Rev. D, 82(12), 123 503–+. [DOI], [ADS], [arXiv:1007.4199 [astro-ph.CO]]

[203] Martinez, G. D., Minor, Q. E., Bullock, J., Kaplinghat, M., Simon, J. D. and
Geha, M., 2011, “A Complete Spectroscopic Survey of the Milky Way Satellite
Segue 1: Dark Matter Content, Stellar Membership, and Binary Properties
from a Bayesian Analysis”, ApJ, 738, 55. [DOI], [ADS], [arXiv:1008.4585 [astro-
ph.GA]]

[204] Walker, M. G., Combet, C., Hinton, J. A., Maurin, D. and Wilkinson, M. I.,
2011, “Dark Matter in the Classical Dwarf Spheroidal Galaxies: A Robust
Constraint on the Astrophysical Factor for γ-Ray Flux Calculations”, ApJ,
733, L46. [DOI], [ADS], [arXiv:1104.0411 [astro-ph.HE]]

[205] Bringmann, T., Bergström, L. and Edsjö, J., 2008, “New gamma-ray contri-
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