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Abstract: Long range scalar fields with a coupling to matter appear to violate known bounds on
gravitation in the solar system and the laboratory. This is evaded thanks to screening mechanisms.
In this short review, we shall present the various screening mechanisms from an effective field
theory point of view. We then investigate how they can and will be tested in the laboratory and on
astrophysical and cosmological scales.
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1. Introduction: Why Light Scalars?

Light scalar fields are mainly motivated by two unexplained phenomena, the existence
of astrophysical effects associated with dark matter [1,2] and the apparent acceleration
of the expansion of the Universe [3,4]. In both cases, traditional explanations exist. Dark
matter could be a Beyond the Standard Model (BSM) particle (or particles) with weak
interactions with ordinary matter (WIMPs) [5]. The acceleration of the Universe could be
the result of the pervading presence of a constant energy density, often understood as a pure
cosmological constant term [6] in the Lagrangian governing the dynamics of the Universe
on large scales, whose origin remains mysterious [7,8]. Lately, this standard scenario, at
least on the dark matter side, has been challenged due to the lack of direct evidence in
favour of WIMPS at accelerators or in large experiments dedicated to their search (Xenon1T
and similar experiments) [9–20]. In this context, the axion or its related cousins, the ALP’s
(Axion-Like Particles) have come back to the fore [21]. More generally, (pseudo-)scalars
could play the role of dark matter thanks to the misalignment mechanism, i.e., they behave
as oscillating fields, as long as their mass m is low, typically m . 1 eV [22–24].

On the late acceleration side, the cosmological constant is certainly a strong contender,
albeit a very frustrating one. The complete absence of dynamics required by a constant
vacuum energy is at odds with what we know about another phase of acceleration, this time
in the very early Universe, i.e., inflation [25–28]. This is the leading contender to unravel a
host of conundrums, from the apparent isotropy of the Cosmic Microwave Background
(CMB) to the generation of primordial fluctuations. The satellite experiment Planck [29] has
taught us that the measured non-flatness of the primordial power spectrum of fluctuations
is most likely due to a scalar rolling down its effective potential. This and earlier results
have prompted decades of research on the possible origin of the late acceleration of the
Universe.

In most of these models, scalar fields play a leading role and appear to be very
light on cosmological scales, with masses sometimes as low as the Hubble rate now,
10−33 eV [30,31]. Quantum mechanical considerations and in particular the presence of
gravitational interactions always generate interactions between these scalars and matter.
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The existence of such couplings is even de rigueur from an effective field theory point of
view (in the absence of any symmetry guaranteeing their absence) [32]. Immediately this
leads to a theoretical dead end, however, as natural couplings to matter would inevitably
imply strong violations of the known bounds on the existence of fifth forces in the solar
system, e.g., from the Cassini probe [33]. As a typical example, f (R) models [34] with
a normalised coupling to matter of β = 1/

√
6 belong to this category of models, which

would be excluded if non-linearities did not come to the rescue [35].
These non-linearities lead to the screening mechanisms that we review here. We do so

irrespective of the origin and phenomenology of these scalar fields, be it dark matter- or
dark energy-related, and present the screening mechanisms as a natural consequence of the
use of effective field theory methods to describe the dynamics of scalar fields at all scales
in the Universe. Given the ubiquity of new light degrees of freedom in modified gravity
models—and the empirical necessity for screening—screened scalars represent one of the
most promising avenues for physics beyond ΛCDM.

There are a number of excellent existing reviews on screening and modified
gravity [36–45]. In [36], the emphasis is mostly on chameleons, in particular the inverse
power-law model, and symmetrons. K-mouflage is reviewed in [37] together with Galileons
as an example of models characterised by the Vainshtein screening mechanism. A very
comprehensive review on screening and modified gravity can be found in [39], where the
screening mechanisms are classified into non-derivative and derivative, up to second-order,
mechanisms for the first time. There are subsequent more specialised reviews such as [42]
on the chameleon mechanism, and [43] with an emphasis on laboratory tests. Astrophysical
applications and consequences are thoroughly reviewed in [40,41], whilst more theoretical
issues related to the construction of scalar-tensor theories of the degenerate type (DHOST)
are presented in [45]. Finally, a whole book [44] is dedicated to various approaches to mod-
ified gravity. In this review, we present the various screening mechanisms in a synthetic
way based on an effective field theory approach. We then review and update results on
the main probes of screening from the laboratory to astrophysics and then cosmology with
future experiments in mind. Some topics covered here have not been reviewed before
and range from neutron quantum bouncers to a comparison between matter spectra of
Brans-Dicke and K-mouflage models.

We begin with a theoretical overview (Section 2) before discussing tests of screening
on laboratory (Section 3), astrophysical (Section 4) and cosmological (Section 5) scales.
Section 6 summarises and discusses the complementarity (and differences) between these
classes of tests.

2. Screening Light Scalars
2.1. Coupling Scalars to Matter

Screening is most easily described using perturbations around a background configu-
ration. The background could be the cosmology of the Universe on large scales or the solar
system. The perturbation is provided by a matter overdensity. This could be a planet in the
solar system, a test mass in the laboratory or matter fluctuations on cosmological scales.
We will simplify the analysis by postulating only a single scalar φ, although the analysis is
straightforwardly generalised to multiple scalars. The scalar’s background configuration
is denoted by φ0 and the induced perturbation of the scalar field due to the perturbation
by an overdensity will be denoted by ϕ ≡ φ− φ0. At the lowest order in the perturbation
and considering a setting where space-time is locally flat (i.e., Minkowski), the Lagrangian
describing the dynamics of the scalar field coupled to matter is simply [37,46]

L2 =
Z(φ0)

2
(∂µ ϕ)2 +

m2
φ(φ0)

2
ϕ2 − δgµνδTµν + . . . (1)

at the second-order in the scalar perturbation ϕ and the matter perturbation δTµν. The
latter is the perturbed energy-momentum tensor of matter compared to the background. In
this Lagrangian, matter is minimally coupled to the perturbed Jordan metric δgµν and the
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Jordan frame energy-momentum tensor is therefore conserved ∂µδTµν = 0. The expansion
of the Lagrangian starts at second-order as the background satisfies the equations of motion
of the system. Notice that we restrict ourselves to situations where the Lorentz invariance
is preserved locally. For instance, in the laboratory, we assume that the time variation of the
background field is much slower than the ones of experiments performed on Earth. There
are three crucial ingredients in this Lagrangian. The first is m(φ0), i.e., the mass of the scalar
field. The second is the wave function normalisation Z(φ0). The third is the composite
metric δgµν, which is not the local metric of space-time but the leading 2-tensor mediating
the interactions between the scalar field and matter. This Jordan metric can be expanded as

δgµν =
β(φ0)

mPl
ϕηµν − γ(φ0)∂µ∂ν ϕ + δ(φ0)∂µ ϕ∂ν ϕ + . . . . (2)

At the leading order, the first term is the dominant one and corresponds to a conformal
coupling of the scalar to matter with the dimensionless coupling constant β(φ0)

1. One can
also introduce a term in second derivatives of ϕ, which depends on a dimensionful coupling
of dimension minus three. Finally, going to higher order, there are also terms proportional
to the first-order derivatives of ϕ squared and a coupling constant of dimension minus four.
These two terms can be seen as disformal interactions [47].

The equations of motion for ϕ are given by

∂µ(Z(φ0)∂
µ ϕ)−m2(φ0)ϕ− 2∂µ(δ(φ0)∂ν ϕ)δTµν = − β(φ0)

mPl
δT + ∂µ∂ν(γ(φ0))δTµν (3)

where δT ≡ δTµ
ν , and we have used the conservation of matter ∂µδTµν = 0. This equation

will allow us to describe the different screening mechanisms.

2.2. Modified Gravity

Let us now specialise the Klein–Gordon equation to experimental or observational
cases where δT00 = ρ is a static matter overdensity locally and the background is static
too. This corresponds to a typical experimental situation where overdensities are the test
masses of a gravitational experiment. In this case, we can focus on the case where φ0 can be
considered to be locally constant. As a result, we have

Kµν(φ0)∂µ∂ν ϕ−m2(φ0)ϕ = − β(φ0)

mPl
δT. (4)

The kinetic terms are modified by the tensor

Kµν(φ0) = Z(φ0)η
µν − 2δ(φ0)δTµν. (5)

When the overdensities are static, the disformal term in Kµν, which depends on the matter
energy momentum tensor, does not contribute and we have Kij(φ0) ' Z(φ0)δ

ij leading to
the modified Yukawa equation

∆ϕ− m2(φ0)

Z(φ0)
ϕ =

β̂(φ0)

mPl
ρ. (6)

where β̂(φ0) = β(φ0)
Z(φ0)

. For nearly massless fields we can neglect the mass term within

the Compton wavelength of size m−1(φ0), which is assumed to be much larger than the
experimental setting. In this case, the Yukawa equation becomes a Poisson equation

∆ϕ =
β̂(φ0)

mPl
ρ. (7)
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As a result, the scalar field behaves similarly to the Newtonian potential, and the matter
interacts with the effective Newtonian potential2

Φ = ΦN +
β(φ0)

mPl
ϕ =

(
1 +

2β2(φ0)

Z(φ0)

)
ΦN (8)

i.e., gravity is modified with an increase in Newton’s constant by

Geff =

(
1 +

2β2(φ0)

Z(φ0)

)
GN . (9)

Notice that the scalar field does not couple to photons as δT = 0; hence, matter particles
deviated with a larger Newtonian interaction than photons, Geff ≥ GN . As a result, the
modification of GN into Geff is not just a global rescaling and gravitational physics is
genuinely modified. This appears, for instance, in the Shapiro effect (the time delay of
photons in the presence of a massive object) as measured by the Cassini probe around the
Sun. When the mass of the scalar field cannot be neglected, the effective Newton constant
becomes distance-dependent:

Geff =

(
1 +

2β2(φ0)

Z(φ0)
e−m(φ0)r

)
GN , (10)

where r is the distance to the object sourcing the field. This equation allows us to classify
the screening mechanisms.

2.3. The Non-Derivative Screening Mechanisms: Chameleon and Damour–Polyakov

The first mechanism corresponds to an environment-dependent mass m(φ0). If the
mass increases sharply inside dense matter, the scalar field emitted by any mass element
deep inside a compact object is strongly Yukawa suppressed by the exponential term
e−mφ(φ0)r, where r is the distance from the mass element. This implies that only a thin shell
of mass ∆M at the surface of the object sources a scalar for surrounding objects to interact
with. As a result, the coupling of the scalar field to this dense object becomes

β(φ0)→
∆M
M

β(φ0) (11)

where M is the mass of the object. As long as ∆M/M� 1, the effects of the scalar field are
suppressed. This is the chameleon mechanism [48–51].

The second mechanism appears almost tautological. If in dense matter the coupling
β(φ0) = 0, all small matter elements deep inside a dense object will not couple to the
scalar field. As a result and similarly to the chameleon mechanism, only a thin shell over
which the scalar profile varies at the surface of the objects interacts with other compact
bodies. Hence the scalar force is also heavily suppressed. This is the Damour–Polyakov
mechanism [52].

In fact, this classification can be systematised and rendered more quantitative using
the effective field theory approach that we have advocated. Using Equation (7), we obtain

ϕ

mPl
=

2β(φ0)

Z(φ0)
ΦN . (12)

Let us first consider the case of a normalised scalar field with Z(φ0) = 1. The scalar field is
screened when its response to the presence of an overdensity is suppressed compared to
the Newtonian case. This requires that

|ϕ|
2mPl|ΦN |

≤ β(φout) (13)
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where ϕ = φin − φ0 is the variation of the scalar field inside the dense object. Here ΦN
is the Newtonian potential at the surface of the object. This is the quantitative criterion
for the chameleon and Damour–Polyakov mechanisms [48,53]. In particular, in objects
that are sufficiently dense, the field φin nearly vanishes and ϕ ' −φ0 only depends on the
environment. As a result, for such dense objects, screening occurs when |ΦN | ≥ φ0

2mPlβ(φout)
,

which depends only on the environment. Chameleon and Damour–Polyakov screenings
occur for objects with a large enough surface Newtonian potential. In fact, it turns out that

βA =
|ϕA|

2mPl|ΦA
N |

(14)

for a screened object labelled by A is the scalar charge of this object3, i.e., its coupling to
matter. The screening criterion (13) simply requires that the scalar charge of an object is
less than the coupling of a test particle β(φ0).

2.4. The Derivative Screening Mechanisms: K-Mouflage and Vainshtein

The third case, in fact, covers two mechanisms. If locally in a region of space, the
normalisation factor

Z(φ0)� 1 (15)

then obviously the effective coupling β̂(φ0)� β(φ0) and gravitational tests can be evaded.
Notice that we define screening as reducing the effective coupling. This case covers the
K-mouflage4 and Vainshtein mechanisms.

The normalisation factor is a constant at the leading order. Going beyond leading order,
i.e., including higher order operators in the effective field theory, Z(φ0) can be expanded in
a power series

Z(φ0) = 1 + a(φ0)r2
c
�ϕ

mPl
+ b(φ0)

(∂ϕ)2

Λ4 + c(φ)
�2 ϕ

Λ5 + . . . (16)

where rc is a cross over scale and has the dimension of length and mPl is the Planck scale.
The scale Λ plays the role of the strong coupling scale of the models. The functions a, b and
c are assumed to be smooth and of order unity.

2.4.1. K-Mouflage

The K-mouflage screening mechanism [46,54,55] is at play when Z(φ0) ≥ 1 and the
term in (∂ϕ)2/Λ4 dominates in (16), i.e.,

|~∇ϕ| ≥ Λ2 (17)

and therefore, the Newtonian potential must satisfy

|~∇ΦN | ≥
Λ2

2β(φ0)mPl
. (18)

Hence, K-mouflage screening occurs where the gravitational acceleration~aN = −~∇ΦN is
large enough. Let us consider two typical situations. First, the Newtonian potential of a
pointlike source of mass M has a gradient satisfying (18) inside a radius RK

RK =

(
β(φ0)M

4πmPlΛ2

)1/2

. (19)

The scalar field is screened inside the K-mouflage radius RK. Another interesting example
is given by the large scale structures of the Universe where the Newtonian potential is
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sourced by overdensities δρ compared to the background energy density ρ̄. In this case,
screening takes place for wave-numbers k such that

β(φ0)δ ≤
Λ2mPlk

ρ̄
(20)

where δ ≡ δρ
ρ̄ . In particular for models motivated by dark energy Λ4 ' m2

PlH
2
0 screening

occurs on scales such that k/H0 & β(φ0)δ, i.e., large scale structures such as galaxy clusters
are not screened as they satisfy k/H0 . 1 [56,57].

2.4.2. Vainshtein

The Vainshtein mechanism [58,59] follows the same pattern as K-mouflage. The main
difference is that now the dominant term in Z(φ0), i.e., (16), is given by the �ϕ term. This
implies that

∆ΦN ≥
1

2β(φ0)r2
c

, (21)

i.e., screening occurs in regions where the spatial curvature is large enough. Taking once
again a point source of mass M, the Vainshtein mechanism is at play on scales smaller than
the Vainshtein radius.5

RV =

(
3β(φ0)r2

c

4πm2
PlM

)1/3

. (22)

Notice the power 1/3 compared to the 1/2 in the K-mouflage case. Similarly, on large
scales where the density contrast is δ, the scalar field is screened for wave numbers such
that

δ ≥ 1
3Ωmβ(φ0)

(23)

where Ωm is the matter fraction of the Universe when rc = 1/H0. The Vainshtein mecha-
nism is stronger than K-mouflage and screens all structures reaching the non-linear regime
δ & 1 as long as β(φ0) & 1.

Finally, let us consider the case where the term in �2 ϕ dominates in (16). This corre-
sponds to6

∆2ΦN ≥
Λ5

2β(φ0)mPl
(24)

For a point source, the transition happens at the radius

RMG =

(
5M

4πmPlΛ5

)1/5
. (25)

As expected, the power is now 1/5, which can be obtained by power counting. This case is
particularly relevant as this corresponds to massive gravity and the original investigation
by Vainshtein. In the massive gravity case [60,61]

Λ5 = mPlm4
G (26)

where mG is the graviton mass.
In all these cases, screening occurs in a regime where one would expect the effective

field theory to fail, i.e., when certain higher-order operators start dominating. Contrary
to expectation, this is not always beyond the effective field theory regime. Indeed, scalar
field theories with derivative interactions satisfy non-renormalisation theorems, which
guarantee that these higher-order terms are not corrected by quantum effects [62,63]. Hence,
the classical regime where some higher-order operators dominate can be trusted. This is
in general not the case for non-derivative interaction potentials, which are corrected by
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quantum effects. As a result, the K-mouflage and Vainshtein mechanisms appear more
robust than the chameleon and Damour–Polyakov ones under radiative effects.

2.5. Screening Criteria: The Newtonian Potential and Its Derivatives

Finally, let us notice that the screening mechanisms can be classified by inequalities of
the type

(∇k)ΦN & C (27)

where C is a dimensionful constant and k = 0 for chameleons, k = 1 for K-mouflage and k =
2 for the Vainshtein mechanism. This implies that it is the Newtonian potential, acceleration
and space-time curvature, respectively, that govern objects’ degrees of screening in these
models. The case k = 4 appears for massive gravity. Of course, if higher-order terms in
the expansion of Z(φ0) in powers of derivatives were dominant, larger values of k could
also be relevant. As we have seen, from an effective field theory point of view, the powers
k = 0, 1, 2 are the only ones to be considered. The case of massive gravity k = 4 only
matters as the other cases k ≤ 2 are forbidden due to the diffeomorphism invariance of the
theory, see the discussion in Section 2.7.1.

2.6. Disformally Induced Charge

Let us now come back to a situation where the time dependence of the background is
crucial. For future observational purposes, black holes are particularly important as the
waves emitted during their collisions could carry much information about fundamental
physics in previously untested regimes. For scalar fields mediating new interactions, this
seems to be a perfect new playground. In most scalar field theories, no-hair theorems
prevent the existence of a coupling between black holes and a scalar field, implying that
black holes have no scalar charge (see Section 4.2 for observational consequences of this).
However, these theorems are only valid in static configurations; in a time-dependent
background, the black hole can be surrounded by a non-trivial scalar cloud.

Let us consider a canonically normalised and massless scalar field in a cosmological
background. As before, we assume that locally Lorentz invariance is respected on the time
scales under investigation. The Klein–Gordon equation becomes, in the presence of a static
overdensity,

∆ϕ = γ̈(φ0)ρ. (28)

As a result, we see that a scalar charge is induced by the cosmological evolution of the
background [64,65]

βind = mPl(γ2φ̇2
0 + γ1φ̈0) (29)

where γ1 = dγ
dφ and γ2 = d2γ

dφ2 . This is particularly relevant to black holes solutions with a

linear dependence in time φ̇0 = q. In this case, the induced charge is strictly constant

βind = γ2mPlq2 (30)

which could lead to interesting phenomena in binary systems.

2.7. Examples of Screened Models
2.7.1. Massive Gravity

The first description of screening in a gravitational context was given by Vainshtein
and can be easily described using the Fierz–Pauli [60] modification of General Relativity
(GR). In GR and in the presence of matter represented by the energy-momentum tensor
Tµν, the response of the weak gravitational field hµν = gµν − ηµν is given in momentum
space by 7

hµν(pλ) =
16πGN

p2

(
Tµν − ηµν

T
2

)
(31)
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where two features are important. The first is that 1/p2 = 1/pλ pλ is characteristic of the
propagation of a massless graviton. The second is the 1/2 factor, which follows from the
existence of two propagating modes. When the graviton becomes massive, the following
mass term is added

LFP = −
m2

Gm2
Pl

8
(hµνhµν − h2). (32)

The tensorial structure of the Fierz–Pauli mass term guarantees the absence of ghosts in a
flat background. The response to matter becomes

hµν(pλ) =
16πGN

p2 + m2
G

(
Tµν − ηµν

T
3

)
. (33)

The factor in 1/(p2 + m2
G) is the propagator of a massive field of mass mG. More surprising

is the change 1/2→ 1/3 in the tensorial expression. In particular, in the limit mG → 0 one
does not recover the massless case of GR. This is the famous vDVZ (van Dam-Veltman–
Zakharov) discontinuity [66,67]. Its origin can be unravelled as follows. Writing

hµν = h̄µν +
β

mPl
ϕηµν (34)

where
h̄µν(pλ) =

16πGN

p2 (Tµν − ηµν
T
2
) (35)

and
ϕ =

β

mPl

T
p2 + m2

g
(36)

corresponding to a scalar satisfying

�ϕ−m2
G ϕ = − β

mPl
T, (37)

we find that (33) is satisfied provided that

β =
1√
6

. (38)

Hence, we have decomposed the massive graviton into a helicity two part h̄µν and a scalar
part ϕ coupled to matter with a scalar charge β = 1/

√
6. These are three of the five

polarisations of a massive graviton. Notice that the scalar polarisation is always present
however small the mass mG, i.e., the massless limit is discontinuous as the number of
propagating degrees of freedom is not continuous. As it stands, massive gravity with such
a large coupling and a mass experimentally constrained to be mG ≤ 10−22 eV would be
excluded by solar system tests. This is not the case thanks to the Vainshtein mechanism.

Indeed non-linear interactions must be included as GR is not a linear theory. At the
next order, one expects terms in h3 leading to Lagrangian interactions of the type [61]

L3 ∼
(�ϕ)3

Λ5 (39)

where Λ5 = mPlm4
G. The structure in �ϕ follows from the symmetry ϕ → ϕ + λµxµ,

which can be absorbed into a diffeomorphism h̄µν → h̄µν + ∂µξν + ∂νξµ where ξµ =
β

4mPl
(−2(λ.x)xµ + λµx2). The Klein–Gordon equation is modified by terms in �((�ϕ)2).

As a result, the normalisation factor is dominated by Z(φ0) ∼ �2 ϕ/Λ5 as mentioned in
the previous section. This leads to the Vainshtein mechanism inside RMG, which allows
massive gravity to evade gravitational tests in the solar system, for instance.
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2.7.2. Cubic Galileon Models

The cubic Galileon models [59] provide an example of a Vainshtein mechanism with
the 1/5 power instead of the 1/3. They are defined by the Lagrangian

LGal3 =
1
2
(∂φ)2 +

(∂φ)2�φ

Λ3 . (40)

The normalisation factor for the kinetic terms involves �φ as expected. These theories are
amongst the very few Horndeski models, which do not lead to gravitational waves with a
speed differing from the speed of light. Unfortunately, as theories of self-accelerating dark
energy, i.e., models where the acceleration is not due to a cosmological constant, they suffer
from an anomalously large Integrated-Sachs-Wolfe (ISW) effect in the Cosmic Microwave
Background (CMB). See Section 2.8 for more details.

2.7.3. Quartic K-Mouflage

The simplest example of K-mouflage model is provided by the Lagrangian [64]

LKM4 =
1
2
(∂φ)2 − (∂φ)4

Λ4 (41)

which is associated with a normalisation factor containing a term in (∂φ)2. These models
pass the standard tests of gravity in the solar system but need to be modified to account for
the very small periastron anomaly of the Moon orbiting around the Earth. See Section 2.9
for more details.

2.7.4. Ratra–Peebles and f(R) Chameleons

Chameleons belong to a type of scalar-tensor theory [68] specified entirely by two
functions of the field. The first one is the interaction potential V(φ) and the second one is
the coupling function A(φ). The dynamics are driven by the effective potential [48,49]

Veff(φ) = V(φ) + (A(φ)− 1)ρ (42)

where ρ is the conserved matter density. When the effective potential has a minimum
φ0 ≡ φ(ρ), its second derivative defines the mass of the chameleon

m2(ρ) =
d2Veff

dφ2 |φ(ρ) (43)

Cosmologically, the chameleon minimum of the effective potential is an attractor when
m(ρ) � H, i.e., the mass is greater than the Hubble rate [50]. This is usually guaranteed
once the screening of the solar system has been taken into account, see Section 2.9. A typical
example of chameleon theory is provided by [48,49]

V(φ) =
Λn+4

φn , A(φ) = eβφ/mPl (44)

associated with a constant coupling constant β. More generally, the coupling becomes
density dependent as

β(ρ) = mPl
d ln A

dφ
|φ(ρ). (45)

Chameleons with n = 1 are extremely well constrained by laboratory experiments, see
Section 3.5.

Surprisingly, models of modified gravity defined by the Lagrangian [34]

L f (R) =

√−g f (R)
16πGN

(46)
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which is a function of the Ricci scalar R, can be transformed into a scalar-tensor setting.
First of all, the field equations of f (R) gravity can be obtained after a variation of the
Lagrangian (46) with respect to the metric gµν and they read

fRRµν −
1
2

f gµν −∇µ∇ν fR + gµν� fR = 8πGTµν , (47)

where fR ≡ d f (R)/dR and � is the d’Alembertian operator. These equations naturally
reduce to Einstein’s field equations when f (R) = R. This theory can be mapped to a scalar
field theory via

d f
dR

= e−2βφ/mPl (48)

where β = 1√
6

. The coupling function is given by the exponential

A(φ) = eβφ/mPl (49)

leading to the same coupling to matter as massive gravity. Contrary to the massive gravity
case, f (R) models evade solar system tests of gravity thanks to the chameleon mechanism
when the potential

V(φ) =
m2

Pl
2

R d f
dR − R

( d f
dR )

2
(50)

is appropriately chosen.
A popular model has been proposed by Hu–Sawicki [69] and reads

f (R) = −2Λ−
fR0 c2

n
Rn+1

0
Rn , (51)

which involves two parameters, the exponent (positive definite) n > 0 and the normalisa-
tion fR0 , which is constrained to be | fR0 | . 10−6 by the requirement that the solar system is
screened [69] (see Section 2.9). On large scales, structures are screened for which

ΦN & χ ≡ 3
2
| fR0 | (52)

for the n = 1 Hu–Sawicki model, where χ is the “self-screening parameter”. This follows
directly from the fact that

fR0 = −2βδφ

mPl
(53)

where δφ is the variation of the scalaron due to a structure in the present Universe. Assess-
ing the inequality in (52)—or equivalently requiring that the scalar charge Q = |δφ|

2βmPlΦN

must be less than β = 1/
√

6—gives a useful criterion for identifying unscreened objects
(see Section 4).

2.7.5. f (R) and Brans-Dicke

The f (R) models can be written as a scalar-tensor theory of the Brans–Dicke type. The
first step is to replace the f (R) Lagrangian density by

L =
√
−g[ f (λ) + (R− λ)

d f (λ)
dλ

] (54)

which reduces to the original model by solving for λ. Then an auxiliary field

ψ ≡ d f (λ)
dλ

(55)
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can be introduced, together with the potential V(ψ) = m2
Pl( f (λ(ψ))− λ(ψ)ψ)/2, which

corresponds to the Legendre transform of the function f (λ). After replacing back into the
original action, one recovers a scalar field action for ψ in the Jordan frame that reads

S =
∫

d4x
√
−g
[

ψR− ωBD(ψ)

ψ
∇µψ∇µψ−V(ψ)

]
+ 16πG

∫
d4x

√
−g̃Lm(ψ

(i)
m , gµν) .

(56)
This theory corresponds to the well-known generalised Jordan–Fierz–Brans–Dicke [70]
theories with ωBD = 0. When the ωBD parameter is non-vanishing and a constant, this
reduces to the popular Jordan–Brans–Dicke theory. Exact solutions of these theories have
been tested against observations of the Solar System [33,71], and the Cassini mission sets
the constraint ωBD > 40, 000, so that JBD has to be very close to GR. This bound is a
reformulation of (88), see Section 2.9 for more details. After going to the Einstein frame, the
theory must be a scalar-tensor with the Chameleon or Damour–Polyakov mechanisms in
order to evade the gravitational tests in the solar system.

2.7.6. The Symmetron

The symmetron [72] is another scalar–tensor theory with a Higgs-like potential

V(φ) = −µ2

2
φ2 +

λ

4
φ4 (57)

and a non-linear coupling function

A(φ) = 1 +
φ2

2M2 + . . . . (58)

where the quadratic term is meant to be small compared to unity. The coupling is given by

β(φ) =
mPlφ

M2 (59)

which vanishes at the minimum of the effective potential when ρ > µ2M2. This realises the
Damour–Polyakov mechanism.

2.7.7. Beyond 4D: Dvali–Gabadadze–Porrati Gravity

The Dvali–Gabadadze–Porrati (DGP) gravity model [73] is a popular theory of modi-
fied gravity that postulates the existence of an extra fifth-dimensional Minkowski space,
in which a brane of 3+1 dimensions is embedded. Its solutions are known to have two
branches, one which is self-accelerating (sDGP), but is plagued with ghost instabilities [74]
and another branch, the so-called normal branch (nDGP), which is non-self-accelerating
and has better stability properties. At the non-linear level, the fifth-force is screened by the
effect of the Vainshtein mechanism, and therefore, can still pass solar system constraints.
This model can be written as a pure scalar-field model, and in the following, we will use
the notations of [75] to describe the model and its cosmology. The action is given by

S = M3
5

∫
d5x
√
−gR +

∫
d4x
√
−g

[
−2M3

5K +
M2

4
2

R− σ + Lmatter

]
, (60)

where Lmatter is the matter Lagrangian, R is the Ricci scalar built from the bulk metric gab
and M4 and M5 are the Planck scales on the brane and in the bulk, respectively. The metric
gµν is on the brane, R its Ricci scalar, and K = gµνKµν is the trace of extrinsic curvature,
Kµν. Finally, σ is the tension or bare vacuum energy on the brane.
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These two different mass scales give rise to a characteristic scale that can be written as

r5 ≈
M2

4
M3

5
. (61)

For scales larger than r5, the five-dimensional physics contributes to the dynamics, while
for scales smaller than r5, gravity is four-dimensional and reduces to GR. The reader can
find the complete set of field equations in [75]. After solving the Friedmann equations, the
effective equation-of-state of this model is given by

weff =
P
ρ
= −

dH
dt + 3H2 + 2κ

a2

3H2 + 3κ
a2

, (62)

where κ is the three-dimensional spatial curvature. During the self-accelerating phase
weff → −1 in (62), therefore emulating a cosmological constant.

2.8. Horndeski Theory and Beyond

For four-dimensional scalar-tensor theories used so far, the action defining the system
in the Einstein frame can be expressed as

S =
∫

d4x
√
−g

[
m2

Pl
2

R− 1
2
(∇φ)2 −V(φ)

]
+
∫

d4x
√
−g̃Lm(ψ

(i)
m , g̃µν) (63)

where φ is the scalar field, V(φ), its potential and it couples to the matter fields ψ
(i)
m through

the Jordan frame metric g̃µν, which is related to the metric gµν as

g̃µν = A2(φ, X)gµν + B2(φ, X)∂µφ∂µφ . (64)

The disformal factor term in B2(φ, X) leads to the derivative interactions in (2). In the
previous discussions, see Section 2.7.4, we focused on the conformal parameter A(φ)
chosen to be X-independent where X = −(∂φ)2/2Λ2 and Λ is a given scale. Other choices
are possible, which will dot be detailed here, in particular in the case of DHOST theories
for which the dependence of A(φ, X) is crucial [45].

As can be expected, (63) can be generalised to account for all possible theories of a
scalar field coupled to matter and the metric tensor. When only second-order equations of
motion are considered, this theory is called the Horndeski theory. Its action can be written
as

S =
∫

d4x
√
−g

[
5

∑
i=2
Li + Lm(ψ

(i)
m , gµν)

]
(65)

where the four Lagrangian terms correspond to different combinations of four functions
G2,3,4,5 of the scalar field and its kinetic energy χ = −∂µ∂µφ/2, the Ricci scalar and the
Einstein tensor Gµν and are given by

L2 = K(φ, χ),

L3 = −G3(φ, χ)�φ,

L4 = G4(φ, χ) R + G4,χ [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] ,

L5 = G5(φ, χ) Gµν (∇µ∇νφ)

− 1
6

G5,χ [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ)

+ 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] , (66)

After the gravitational wave event GW170817 ([76,77], and as already anticipated in [78],
the propagation of gravitational waves is practically equal to the speed of light, implying
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that a large part of Horndeski theory with cosmological effects is ruled out, leaving mostly
only models of type L2 and Cubic Galileons (Horndeski with Lagrangians up to L3) as
the surviving class of models [79–81]. They are the ones that will be dealt with in this
review and can be linked most directly to the screening mechanisms described here. When
going beyond the Horndeski framework [82], the Vainshtein mechanism can break within
massive sources [83]. This phenomenology was studied further in [84], and may be used to
constrain such theories, as described in Section 4.1.

2.9. Solar System Tests

Screening mechanisms have been primarily designed with solar system tests in mind.
Indeed light scalar fields coupled to matter should naturally violate the gravitational tests
in the solar system as long as the range of the scalar interaction, i.e., the fifth force, is large
enough and the coupling to matter is strong enough. The first and most prominent of these
tests is provided by the Cassini probe [33] and constrains the effective coupling between
matter and the scalar to be

β2
eff ≤ 4 · 10−5 (67)

as long as the range of the scalar force exceeds several astronomical units and β2
eff corre-

sponds to the strength of the fifth force acting on the satellite. As we have mentioned, this
translates into the effective bound

β(φ0)β�
Z(φ0)

≤ 10−5 (68)

where φ0 is the value of the scalar field in the interplanetary medium of the solar system.
Here we have assumed that the Cassini satellite is not screened and the Sun is screened.
As a result, the scalar charges are, respectively, the background one β(φ0) for the satellite
and β� for the Sun. In the case of the K-mouflage and Vainshtein mechanisms, the scalar
charges of the Sun and the satellite are equal, and the Cassini bound can be achieved thanks
to a large Z(φ0) factor. As an example, for cubic Galileon models, the ratio between the
fifth force and the Newtonian force behaves such as

FN
Fφ
' 2β2

(
r

RV

)3/2
(69)

where β(φ0) = β and RV is the Vainshtein radius. For cosmological models where L ∼ H−1
0 ,

the Vainshtein radius of the Sun is around 0.1 kpc. As a result, for the planets of the solar
system, r/rV � 1 and the fifth force is negligible. K-mouflage models of cosmological
interest with Λ ' ΛDE ∼ 10−3 eV lead to the same type of phenomenology with a K-
mouflage radius of the Sun larger than 1000 a.u. and therefore no fifth force effects in the
solar system. For chameleon-like models, the Cassini constraint becomes

β� . 10−5 (70)

where we have assumed that Z(φ0) = 1 and β(φ0) ' 1. This is a stringent bound, which
translates into

φ0 . 10−11mPl (71)

for the values of the scalar in the solar system. Indeed we have assumed that in dense bodies
such as the Sun or planets, the scalar field vanishes. We have also used the Newtonian
potential of the Sun ΦN� ' 10−6.

In fact, chameleon-screened theories are constrained even more strongly by the Lunar
Ranging experiment (LLR) [85,86]. This experiment constrains the Eötvos parameter

ηAB =
|~aA −~aB|
|~aA +~aB|

(72)
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for two bodies falling in the presence of a third one C. The accelerations~aA,B are towards C
and due to C. For bodies such as the Earth A = ⊕, the moon B = moon and the Sun C = �,
a non-vanishing value of the Eötvos parameter would correspond to a violation of the
strong equivalence principle, i.e., a violation of the equivalence principle for bodies with a
non-negligible gravitational self-energy. Such a violation is inherent to chameleon-screened
models. Indeed, screened bodies have a scalar charge βA, which is dependent on the
Newtonian potential of the body βA ∝ Φ−1

A implying a strong dependence on the nature of
the objects. As the strength of the gravitational interaction between two screened bodies is
given by

GAB = GN(1 + 2βAβB) (73)

as long as the two objects are closer than the background Compton wavelength m−1(φ0),
the Eötvos parameter becomes

ηAB ' βC|βA − βB| (74)

In the case of the LLR experiment, we have βA ' φ0/2β(φ0)ΦAmPl and therefore βmoon �
β⊕. Using ΦNmoon ' 10−11 and Φ⊕ ' 10−9 we find that the LLR constraint

ηLLR ≤ 10−13. (75)

This becomes for the scalar charge of the Earth [49]

β⊕ . 10−6 (76)

which is stronger than the Cassini bound, i.e., we must impose that

φ0 . 10−15mPl. (77)

This corresponds to the energy scale of particle accelerators such as the Large Hadron
Collider (LHC). This bound leads to a relevant constraint on the parameter space of popular
models. Let us first consider the n = 1 inverse power-law chameleon model with

V(φ) = Λ4
DEe

ΛDE
φ ≈ Λ4

DE +
Λ5

DE
φ

+ . . . . (78)

This model combines the screening property of inverse power-law chameleon and the
cosmological constant term Λ4

DE leading to the acceleration of the expansion of the Universe.
The mass of the scalar is given by

m2(φ) ≈
2Λ5

DE
φ3 (79)

implying that in the solar system m0 & 106H0. Now, as long as the chameleon sits at the
minimum of its effective potential, we have mcosmo ' ( ρcosmo

ρG
)1/2m0 where ρcosmo is the

cosmological matter density and ρG ' 106ρcosmo is the one in the Milky Way. As a result,
we have the constraints on the cosmological mass of the chameleon [87,88]

mcosmo & 103H0. (80)

As the Hubble rate is smaller than the cosmological mass, the minimum of the effective
potential is a tracking solution for the cosmological evolution of the field. This bound (80) is
generic for chameleon-screened models with an effect on the dynamics of the Universe on
a large scale. In the context of the Hu–Sawicki model, and as mcosmo/H0 ∝ f−1/2

R0
, the solar

system tests imply typically that fR0 . 10−6 [69]. For models with the Damour–Polyakov
mechanism such as the symmetron, and if ρG ≤ µ2M2, the field value in the solar system
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is close to φ0 ' µ√
λ

. The mass of the scalar is also of order µ, implying that the range of

the symmetron is very short unless µ . 10−18 eV. In this case, the LLR bound applies and
leads to

M . 10−3mPl (81)

which implies that the symmetron models must be an effective field theory below the grand
unification scale.

Models with derivative screening mechanisms such as K-mouflage and Vainshtein
do not violate the strong equivalence principle but lead to a variation of the periastron of
objects such as the Moon [89]. Indeed, the interaction potential induced by a screening
object does not vary as 1/r anymore. As a result, Bertrand’s theorem8 is violated and
the planetary trajectories are not closed anymore. For K-mouflage models defined by a
Lagrangian L = Λ4K(X) where X = −(∂φ)2/2Λ4 and Λ ' ΛDE, the periastron is given
by [90]

δθ = 2πβ2 K′2

K′′
x

dX
dx

(82)

where x = r/RK is the reduced radius (RK is the K-mouflage radius). For the Moon, the
LLR experiment implies that δθ ≤ 2 · 10−11 which constrains the function K(X) and its
derivatives K′(X) and K′′(X). A typical example of models passing the solar system tests
is given by K(X) = −1 + X + K?(X − X? arctan( X

X?
)) with X? ' 1 and K? & 103. In

these models, the screening effect is obtained as K′ ∼ K? � 1 as long as |X| & |X?|. For
cubic Galileons, the constraint from the periastron of the Moon reduces to a bound on the
suppression scale [89,91]

Λ3 & mPlH2
0 . (83)

The lower bound corresponds to Galileon models with an effect on cosmological scales.
Finally, models with the K-mouflage or the Vainshtein screening properties have

another important characteristic. In the Jordan frame, where particles inside a body couple
to gravity minimally, the Newton constant is affected by the conformal coupling function
A(φ), i.e.

Geff = A2(φ)GN . (84)

For chameleon-screened objects, the difference between the Jordan and Einstein values of
the Newton constant is irrelevant as deep inside screened objects φ are constant and A(φ)
can be normalised to be unity. This is what happens for symmetrons or inverse power-law
chameleons, for instance. For models with derivative screening criteria, i.e., K-mouflage or
Vainshtein, the local value of the field can be decomposed as

φ(~x, t) ' φ(~x) + φ̇cosmo(t− t0) + φcosmo(t0) (85)

where t0 is the present time. Here φ(~x) is the value of the field due to the local and static
distribution of matter whilst the correction term depends on time and follows from the
contamination of the local values of the field by the large scale and cosmological variations
of the field. In short, regions screened by the K-mouflage or Vainshtein mechanisms are not
shielded from the cosmological time evolution of matter. As a result, the Newton constant
in the Jordan frame becomes time-dependent with a drift [92]

d ln Geff
dt

=
β

mPl
φ̇ (86)

where we have taken the scalar to be coupled conformally with a constant strength β. The
LLR experiment has given a bound in the solar system [85]

|d ln Geff
dt

| ≤ 0.02H0, (87)
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i.e., Newton’s constant must vary on timescales larger than the age of the Universe. This can
be satisfied by K-mouflage or Vainshtein models provided β ≤ 0.1 as long as φ̇ ∼ mPlH0,
i.e., the scalar field varies by an order of magnitude around the Planck scale in one Hubble
time [90].

3. Testing Screening in the Laboratory

Light scalar fields have a long range and could induce new physical effects in labo-
ratory experiments. We will consider some typical experiments that constrain screened
models in a complementary way to the astrophysical and cosmological observations dis-
cussed below. In what follows, the bounds on the screened models will mostly follow from
the classical interaction between matter and the scalar field. A light scalar field on short
enough scales could lead to quantum effects. As a rule, if the mass of the scalar in the
laboratory environment is smaller than the inverse size of the experiment, the scalar can
be considered to be massless. Quantum effects [93] of the Casimir type imply that two
metallic plates separated by a distance d will then interact and attract according to

F(d) = − π2

480d4 (88)

as long as the coupling between the scalar and matter is large enough 9. In the Casimir or
Eötwash context, this would mean that the usual quantum effects due to electromagnetism
would be increased by a factor of 3/2. Such a large effect is excluded, and therefore, the
scalar field cannot be considered as massless on the scales of these typical experiments. In
the following, we will consider the case where the scalar is screened on the scales of the
experiments, i.e., its typical mass is larger than the inverse of the size of the experimental
setup. In this regime, where quantum effects can be neglected, the classical effects induced
by the scalars are due to the non-trivial scalar profile and its non-vanishing gradient10. In
the following, we will mostly focus on the classical case and the resulting constraints.

3.1. Casimir Interaction and Eötwash Experiment

We now turn to the Casimir effect [94], associated with the classical field between two
metallic plates separated by a distance d. The classical pressure due to the scalar field with
a non-trivial profile between the plates is attractive and with a magnitude given by [95]∣∣∣∣ Fφ

A

∣∣∣∣ = Veff(φ(0))−Veff(φ0), (89)

where A is the surface area of the plates and Veff is the effective potential. This is the
difference between the potential energy in vacuum (i.e., without the plates) where the field
takes the constant value φ0 and in the vacuum chamber halfway between the plates. In
general, the field acquires a bubble-like profile between the plates and φ(0) is where the
field is maximal. The density inside the plates is much larger than between the plates,
so the field value inside the plates is zero to a very good approximation. For a massive
scalar field of mass m with a coupling strength β, the resulting pressure between two plates
separated by distance d is given by∣∣∣∣ Fφ

A

∣∣∣∣ = β2ρ2
plate

2m2
Plm

2
e−md, (90)

which makes the Yukawa suppression of the interaction between the two plates explicit. In
the screened case, the situation can be very different.

Let us first focus on the symmetron case. As long as µ & d−1, the value φ(0) is very
close to the vacuum value φ(0) ' µ√

λ
implying that Fφ/A ' 0, i.e., the Casimir effect

does not efficiently probe symmetrons with large masses compared to the inverse distance
between the plates. On the other hand, when µ . d−1, the field essentially vanishes in
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the plates and between the plates [96]. As a result, the classical pressure due to the scalar
becomes ∣∣∣∣ Fφ

A

∣∣∣∣ = µ4

4λ
. (91)

Notice that in this regime, the symmetron decouples from matter inside the experiment
as β(φ(0)) = 0. We will see how this compares to the quantum effects in Section 3.6. We
can now turn to the chameleon case where we assume that the density between the plates
vanishes and is infinite in the plates. This simplified the expression of the pressure, which
becomes [97] ∣∣∣∣ Fφ

A

∣∣∣∣ = Λ4

(√
2B( 1

2 , 2+n
2n )

nΛd

)2n/(2+n)

. (92)

where B(. , .) is Euler’s B function. In the chameleon case, the pressure is a power-law
depending on 2n/(n + 2), which can be very flat in d and, therefore, dominates the photon
Casimir pressure at large distances. Quantum effects can also be taken into account when
the chameleon’s mass is small enough, see Section 3.6.

The most stringent experimental constraint on the intrinsic value of the Casimir
pressure has been obtained with a distance d = 746 nm between two parallel plates and
reads |∆Fφ

A | ≤ 0.35 mPa [98]. The plate density is of the order of ρplate = 10 g cm−3. The
constraints deduced from the Casimir experiment can be seen in Section 3.5. It should
be noted that realistic experiments sometimes employ a plate-and-sphere configuration,
which can have an O(1) modification to (92) [99].

The Eöt-Wash experiment [100] is similar to a Casimir experiment and involves two
rotating plates separated by a distance d. Each plate is drilled with holes of radii rh spaced
regularly on a circle. The gravitational and scalar interactions vary in time as the two
plates rotate, hence inducing a torque between the plates. This effect can be understood
by evaluating the potential energy of the configuration. The potential energy is obtained
by calculating the amount of work required to approach one plate from infinity [35,101].
Defining by A(θ) the surface area of the two plates that face each other at any given
time, a good approximation to energy is simply the work of the force between the plates
corresponding to the amount of surface area in common between the two plates. The torque
is then obtained as the derivative of the potential energy of the configuration with respect
to the rotation angle θ and is given by

T ∼ aθ

∫ ∞

d
dx

Fφ

A
, (93)

where aθ = dA
dθ depends on the experiment and is a well-known quantity. As can be seen,

the torque is a direct consequence of the classical pressure between two plates.
For a Yukawa interaction and upon using the previous expression (89) for the classical

pressure, we find that the torque is given by

T = aθ

β2ρ2
plate

2m2
Plm

3
e−md, (94)

which is exponentially suppressed with the separation between the two plates d. Let us
now consider the symmetron and chameleon cases. In the symmetron case, the classical
pressure is non-vanishing only when d . µ−1, implying that

d . µ−1, T ' aθ
µ4d
4λ

d & µ−1, T ' aθ
µ3

4λ
. (95)
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Hence, the torque increases linearly before saturating at a maximal value. For chameleons,
three cases must be distinguished. First, when n > 2, the torque is insensitive to the long
range behaviour of the chameleon field in the absence of the plates and we have

T = aθ

(
2 + n
n− 2

)
Λ4d

(√
2B( 1

2 , 2+n
2n )

nΛd

)2n/(2+n)

(96)

which decreases with the distance. In the case n < 2, the torque is sensitive to the Yukawa
suppression of the scalar field at distances larger that d? ∼ m−1

0 , where m0 is the mass in
the vacuum between the plates. This becomes

T ∼ aθ

(
2 + n
n− 2

)
Λ4

d?

(√
2B( 1

2 , 2+n
2n )

nΛd?

)2n/(2+n)

− d

(√
2B( 1

2 , 2+n
2n )

nΛd

)2n/(2+n)
 (97)

for d . d? and essentially vanishes for larger distances. In the case n = 2, a logarithmic
behaviour appears.

The 2006 Eöt-Wash experiment [102] provided the bound for a separation between the
plates of d = 55µm, which is

|T| ≤ aθΛ3
T , (98)

where ΛT = 0.35ΛDE [35] and ΛDE = 2.4 meV. We must also modify the torque calculated
previously in order to take into account the effects of a thin electrostatic shielding sheet
of width ds = 10µm between the plates in the Eöt-Wash experiment. This reduces the
observed torque, which becomes Tobs = e−mcds T. As a result, we have that

e−mcds

∫ ∞

55µm

∣∣∣∣ Fφ

A

∣∣∣∣dx ≤ Λ3
T . (99)

Surprisingly, the Eötwash experiment tests the dark energy scale in the laboratory as
ΛT ≈ ΛDE.

3.2. Quantum Bouncer

Neutrons behave quantum mechanically in the terrestrial gravitational field. The
quantised energy levels of the neutrons have been observed in Rabi oscillation experiments
[103]. Typically a neutron is prepared in its ground state by selecting the width of its wave
function using a cache, then a perturbation induced either mechanically or magnetically
makes the neutron state jump from the ground state to one of its excited levels. Then the
ground state is again selected by another cache. The missing neutrons are then compared
with the probabilities of oscillations from the ground state to an excited level. This allows
one to detect the first few excited states and measure their energy levels. Now, if a new
force complements gravity, the energy levels will be perturbed. Such perturbations have
been investigated and typically the bounds are now at the 10−14 eV level.

The wave function of the neutron satisfies the Schrödinger equation(
− h̄2

2mN

d2

dz2 + V(z)

)
ψn = Enψn (100)

where mN is the neutron’s mass and the potential over a horizontal plate is

V(z) = mN gz + mN(A(φ(z))− 1) (101)

where φ(z) is the vertical profile of the scalar field. We put the mirror at z ≤ 0. The
contribution due to the scalar field is

δV(z) = mN(A(φ(z))− 1) (102)
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which depends on the model. In the absence of any scalar field, the wavefunctions are Airy
functions

ψk(z) = ckAi
(

z
z0
− εk

)
(103)

where ck is a normalisation constant, z0 = (h̄2/2m2
N g)1/3, −εk are the zeros of the Airy

function. Typically εk = {2.338, 4.088, 5.521, 6.787, 7.944, 9.023 . . . } for the first levels k =
1 . . . . At the first-order of perturbation theory, the energy levels are

Ek = E(0)
k + δEk (104)

where E(0)
k = εkmN gz0, and the perturbed energy level

δEk = mN〈ψk|(A(φ(z))− 1)|ψk〉 (105)

is the averaged value of the perturbed potential in the excited states.
Let us see what this entails for chameleon models [104,105]. In this case, the perturba-

tion depends on

A(φ)− 1 ' β

mPl
φ + . . . (106)

where the profile of the chameleon over the plate is given by

φ(z) = Λ
(

2 + n√
2

Λz
)2/(n+2)

. (107)

Using this form of the correction to the potential energy, i.e., power laws, and the fact that
the corrections to the energy levels are linear in β, one can deduce useful constraints on the
parameters of the model. Thus far, we have assumed that the neutrons are not screened.
When they are screened, the correction to the energy levels is easily obtained by replacing
β→ λβ where λ is the corresponding screening factor.

In the case of symmetrons, the correction to the potential energy depends on

A(φ)− 1 =
φ2

2M2 (108)

whilst the symmetron profile is given by [106]

φ(z) =
µ√
λ

tanh
µz√

2
(109)

where we assume that the plate is completely screened. The averaged values of δV are
constrained by

|δE3 − δE1| . 2 · 10−15 eV (110)

which leads to strong constraints on symmetron models. See Section 3.5.

3.3. Atomic Interferometry

Atomic interferometry experiments are capable of very precisely measuring the ac-
celeration of an atom in free fall [107,108]. By placing a source mass in the vicinity of the
atom and performing several measurements with the source mass in different positions,
the force Fsource between the atom and the source mass can be isolated. That force is a sum
of both the Newtonian gravitational force and any heretofore undiscovered interactions:

~Fsource = ~FN + ~Fφ . (111)

As such, atom interferometry is a sensitive probe of new theories that predict a classical
fifth force ~Fφ. In experiments such as [109,110] the source is a ball of matter and the
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extra acceleration aφ = Fφ/matom is determined at the level aφ . 5.5µm/s2 at a distance
d = RB + dB where RB = 0.95cm is the radius of the ball and dB = 0.88cm is the distance
to the interferometer. The whole setup is embedded inside a cavity of radius Rc = 6.1cm.

Scalar fields, of the type considered in this review, generically predict such a force.
The fifth force is of the form

~Fφ = −matom~∇ ln A(φ) , (112)

where A(φ) is the coupling function to matter. In essence, the source mass induces a
nonzero field gradient producing a fifth force, allowing atom interferometry to test scalar
field theories.

The fifth force depends on the scalar charge qA of the considered object A, i.e., on the
way an object interacts with the scalar field. In screened theories, it is often written as the
product qA = βAmA of the mass mA of the objects and the reduced scalar charge βA. The
reduced scalar charge can be factorised as βA = λAβ(φ0) where β(φ0) is a the coupling
of a point-particle to the scalar field in the background environment characterised by the
scalar field value φ0. The screening factor λA takes a numerical value between 0 and 1 and
in general depends on the strength and form of the scalar-matter coupling function A(φ),
the size, mass, and geometry of the object, as well as the ambient scalar field value φ0. For
a spherical object, the screening factor of object A is given by

λA =
|φA − φ0|
2mPlΦA

(113)

when the object is screened, otherwise λA = β(φ0). Here φA is the value of the scalar field
deep inside the body A, ΦA the Newtonian potential at its surface and φ0 is the ambient
field value far away from the object. In terms of the screening factors, the force between
two bodies A, B is

|Fφ| =
(

β(φ0)

mPl

)2 (λAma)(λBmB)

4πr2 e−mcr , (114)

where mc is the effective mass of the scalar particle’s fluctuations. In screened theories, the
screening factors of macroscopic objects are typically tiny, necessitating new ways to test
gravity in order to probe the screened regime of these theories. Atom interferometry fits
the bill perfectly [111,112], as small objects such as atomic nuclei are typically unscreened.
Consequently, screened theories predict large deviations from Newtonian gravity inside
those experiments. Furthermore, the experiment is performed in a chamber where the
mass m0 = m(φ0) of the scalar particles is small, and distance scales of order ∼ cm are
probed. The strongest bounds are achieved when the source mass is small, approximately
the size of a marble, and placed inside the vacuum chamber, as a metal vacuum chamber
wall between the bodies would screen the interaction.

Within the approximations that led to Equation (114), one only needs to determine the
ambient field value φ0 inside the vacuum chamber. This quantity depends on the precise
theory in question, but some general observations may be made. First, in a region with
uniform density ρ, the field will roll to minimise its effective potential Veff(φ) given by (42)
for a value φ(ρ). In a dense region such as the vacuum chamber walls, φ(ρ) is small, while
in the rarefied region inside the vacuum chamber φ(ρ) is large. The field thus starts at a
small value φmin,wall near the walls and rolls towards a large value φmin,vac near the centre.
However, the field will only reach φmin,vac if the vacuum chamber is sufficiently large. The
energy of the scalar field depends upon both potential energy V(φ) and gradient energy
(~∇φ)2. A field configuration that rolls quickly to the minimum has relatively little potential
energy but a great deal of gradient energy and vice-versa. The ground state classical field
configuration is the one that minimises the energy and, hence, is a balance between the
potential and field gradients. If the vacuum chamber is small, then the minimum energy
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configuration balances these two quantities by rolling to a value such that the mass of the
scalar field is proportional to the size R of the vacuum chamber [49,53]

m0(φvac) ≡
1
R

. (115)

If the vacuum chamber is large, though, then there is plenty of room for the field to roll to
the minimum of the effective potential. The condition for this to occur is

m0(φmin,vac)�
1
R

. (116)

As such, the field inside the vacuum chamber is

φ0 = min(φmin,vac, φvac) . (117)

It should be noted that in practical experiments, where there can be significant deviations
from the approximations used here, i.e., non-spherical source masses and an irregularly
shaped vacuum chambers, numerical techniques have been used to solve the scalar field’s
equation of motion in three dimensions. This enables the experiments to take advantage of
source masses that boost the sensitivity of the experiment to fifth forces by some 20% [110].
More exotic shapes have been shown to boost the sensitivity even further, by up to a factor
∼ 3 [113].

Atom interferometry experiments of this type, with an in-vacuum source mass, have
now been performed by two separate groups [109,114,115]. In these experiments, the
acceleration between an atom and a marble-sized source mass has been constrained to
a . 50 nm/s2 at a distance of r . 1 cm. These experiments have placed strong bounds on
the parameters of chameleon and symmetron [116] modified gravity, as will be detailed in
Section 3.5.

3.4. Atomic Spectroscopy

In the previous section, we saw that the scalar field mediates a new force, Equa-
tion (114), between extended spherical objects. This same force law acts between atomic
nuclei and their electrons, resulting in a shift of the atomic energy levels. Consequently,
precision atomic spectroscopy is capable of testing the modified gravity models under
consideration in this review.

The simplest system to consider is hydrogen, consisting of a single electron orbiting a
single proton. The force law of Equation (114) perturbs the electron’s Hamiltonian [117,118]

δH =

(
β(φ0)

mPl

)2 λpmpme

r
, (118)

where λp, mp are the screening factor and mass of the proton, and we have assumed that the
scalar field’s Compton wavelength mc is much larger than the size of the atom. The electron
is pointlike and is, therefore, unscreened.11 The perturbation to the electron’s energy levels
are computed via the first-order perturbation theory result

δEn = 〈ψn|δ̂H|ψn〉 , (119)

where ψn are the unperturbed electron’s eigenstates.
This was first computed for a generic scalar field coupled to matter with a strength

β(φ) = mPl/M [119], using measurements of the hydrogen 1s-2s transition [120–122] to
rule out

M . TeV . (120)
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However, that study did not account for the screening behaviour exhibited by chameleon
and symmetron theories. That analysis was recently extended to include screened theo-
ries [123], resulting in the bound that is illustrated in Figure 1.

Figure 1. Current bounds on n = 1 chameleon theory parameters from various experiments.

3.5. Combined Laboratory Constraints

Combined bounds on theory parameters derived from the experimental techniques
detailed in this section are plotted in Figures 1 and 2. Chameleons and symmetrons have
similar phenomenology and, hence, are constrained by similar experiments. Theories
exhibiting Vainshtein screening, however, are more difficult to constrain with local tests,
as the presence of the Earth or Sun nearby suppresses the fifth force. Such effects were
considered in [91] and only restricted to planar configurations where the effects of the Earth
are minimised.

The chameleon has a linear coupling to matter, often expressed in terms of a parameter
M = mPl/β. Smaller M corresponds to a stronger coupling. Experimental bounds on
the theory are dominated by three tests. At sufficiently small M, the coupling to matter
is so strong that collider bounds rule out a wide region of parameter space. At large
M & mPl, the coupling is sufficiently weak that even macroscopic objects are unscreened,
so torsion balances are capable of testing the theory. In the intermediate range, the strongest
constraints come from atom interferometry. One could also consider chameleon models
with n 6= 1. In general, larger values of n result in more efficient screening effects; hence,
the plots on constraints would look similar but with weaker bounds overall.

The bounds on symmetron parameter space are plotted in Figure 2. Unlike the
chameleon, the symmetron has a mass parameter µ that fixes it to a specific length scale µ−1.
For an experiment at a length scale L, if L� µ−1 then the fifth force would be exponentially
suppressed, as is clear in Equation (114). Likewise, in an enclosed experiment, if L� µ−1

then the energy considerations in the previous subsection imply that the field simply
remains in the symmetric phase where φ = 0. The coupling to matter is quadratic,

Lsymm ⊃ −
β(φ)

mPl
ρ ≡ − φ2

M2 ρ , (121)

so in the symmetric phase, where φ = 0, the coupling to matter switches off and the fifth
force vanishes. Therefore, to test a symmetron with mass parameter µ, one must test it with
an experiment on a length scale L ≈ µ−1.
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(a) (b)
Figure 2. Current bounds on symmetron theory parameters from atom interferometry and torsion
balances (a) and from cold bouncing neutrons (b). The tan curves derive from atom interferometry,
while the green region is ruled out by torsion balances. Both the tan and green regions apply only
to µ = 10−1 meV. On the right, only the red curves have been conclusively ruled out by bouncing
neutrons. Reproduced from [115,124].

3.6. Quantum Constraints

Classical physics effects induced by the light scalar field have been detailed so far. It
turns out that laboratory experiments can also be sensitive to the quantum properties of
the scalar field. This can typically be seen in two types of situations. In particle physics,
the scalars are so light compared to accelerator scales that light scalars can be produced
and have a phenomenology very similar to dark matter, i.e., they would appear as missing
mass. They could also play a role in the precision tests of the standard model. As we
already mentioned above, when the scalars are light compared to the inverse size of the
laboratory scales, we can expect that they will induce quantum interactions due to their
vacuum fluctuations. This typically occurs in Casimir experiments where two plates attract
each other or the Eötwash setting where two plates face each other.

Particle physics experiments test the nature of the interactions of new states to the
standard model at very high energy. In particular, the interactions of the light scalars to
matter and the gauge bosons of the standard are via the Higgs portal, i.e., the Higgs field
couples both to the standard model particles and the light scalar and as such mediates the
interactions of the light scalar to the standard model. This mechanism is tightly constrained
by the precision tests of the standard model. For instance, the light scalars will have an
effect on the fine structure constant, the mass of the Z boson or the Fermi interaction
constant GF. The resulting bound on β = mPl

M is [125]

M & 103 GeV (122)

which tells us that the light scalar must originate from a completion at energies much larger
than the standard model scale.

Quantum effects are also important when the light scalars are strongly coupled to the
walls of the Casimir or the Eötwash experiment and light enough in the vacuum between
the plates. The mass of the scalar field is given by

m2 = V′′(φ) + A′′(φ)ρ. (123)

The density is piece-wise constant and labelled ρ1,2,3 in the case of a Casimir experiment.
Here ρ2 is the density between the plates. Notice that as φ is continuous, the mass jumps
across boundaries as ρ varies from the vacuum density to the plate one. The force between
two objects can be calculated using a path integral formalism, which takes into account
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both the classical effects already investigated in this review and the quantum effects akin to
the Casimir interaction [126]

~Fφ = −
∫

d3x~∂dρ〈A(φ)〉 (124)

where the integration is taken over all space and ~∂dρ is the derivative in the direction
defined by the parameter d, which specifies the position of one of the bodies. Varying d
is equivalent to changing the distance between the objects. For instance, in the case of a
plate of density ρ3 positioned along the x-axis between x = d and x = d + L, the vacuum
of density ρ2 between x = 0 and L, a plate of density ρ1 for x ≤ 0 and finally again the
vacuum for x > d + L we have ∂dρ = (ρ3 − ρ2)(δ(x− d− L)− δ(x− d)) and the force is
along the x-axis. The quantum average 〈A(φ)〉 is taken over all the quantum fluctuations
of φ. When the field has a classical profile φclas, this quantum calculation can be performed
in perturbation theory

〈A(φ)〉 = A(φclas) +
A′′(φclas)

2
∆(x, x) + . . . (125)

The first contribution leads to the classical force that we have already considered. The
second term is the leading quantum contribution. Notice that the linear coupling in A′ is
absent as the quantum fluctuations involve the fluctuations around a background, which
satisfies the equations of motion of the system. The higher-order terms in the expansion of
A(φ) in a power series are associated with higher loop contributions to the force when the
first term is given by a one-loop diagram. The Feynman propagator ∆(x, x) at coinciding
points is fraught with divergences. Fortunately, they cancel in the force calculation as we
will see.

Let us focus on the one-dimensional force as befitting Casimir experiments. The
quantum pressure on a plate of surface area A is then given by

Fx

A
= −A′′

2
(ρ3 − ρ2)(∆(d, d)− ∆(d + L, d + L)) (126)

where we have considered that the derivative A′′(φclas) ' A′′ is nearly constant. This is
exact for symmetron models and chameleon models with φ � M. As the classical solution
is continuous at the boundary between the plates, the quantum force is in fact given by

Fx

A
=

m2
2 −m2

3
2

(∆(d, d)− ∆(d + L, d + L)) (127)

where m3 is the mass of the scalar close to the boundary and inside the plate, whereas m2 is
the mass close to the boundary and in the vacuum. As the quantum divergence of ∆(x, x)
are x-independent, we see immediately that they cancel in the force (127), which is finite.
Moreover, the limit L→ ∞ is finite and corresponds to the case of an infinitely wide plate.
Notice that the contribution in −∆(d + L, d + L) is the usual renormalisation due to the
quantum pressure exerted to the right of the very wide plate of width L.

In the case of a Casimir experiment between two plates, the Feynman propagator
with three regions (plate-vacuum-plate) must be calculated. In the case of the Eötwash
experiment, where a thin electrostatic shield lies between the plate, the Feynman propagator
is obtained by calculating a Green’s function involving five regions. In practice, this can
only be calculated analytically by assuming that the mass of the scalar field is nearly
constant in each of the regions. This leads to the expression

Fx

A
= − 1

2π2

∫ ∞

0
dρρ2 γ2(γ2 − γ1)(γ2 − γ3)

e2dγ2(γ1 + γ2)(γ2 + γ3)− (γ2 − γ1)(γ2 − γ3)
(128)
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with γ2
i = ρ2 + m2

i . When the density in the plates becomes extremely large compared to
the one in the vacuum, the limit m1,3 → ∞ gives the finite result

Fx

A
= − 1

2π2

∫ ∞

0
dρρ2 γ2

e2dγ2 − 1
. (129)

For massless fields in the vacuum m2 = 0, this gives the Casimir interaction (88) as expected.
When applying these results to screened models, care must be exerted as they assume

that the mass of the field is constant between the plates. The quantum contributions to
the pressure Fx/A can be constrained by the Casimir experiments and the resulting torque
between plates by the Eötwash results. These are summarised in Figure 3 for symmetrons.
In a nutshell, when the µ parameter of the symmetron model becomes lower than 1/d, the
field typically vanishes everywhere. The linear coupling to matter vanishes but A′′ = 1/M2

is non-vanishing thus providing the quadratic coupling to the quantum fluctuations. As
the density between the plate is small but nonzero, the mass of the scalar remains positive
and the quantum calculation is not plagued with quantum instabilities. For chameleons,
the coupling can be taken as A′′ ' 1/M2 too. The main difference is that when the density
between the plates is low, the mass of the scalar cannot become much lower than 1/d, see
(116), implying that the quantum constraints are less strong than in the symmetron case.

As the expansion of A(φ) involves higher-order terms suppressed by the strong
coupling scale M and contributing to higher loops, they can be neglected on distances
between the plates d & 1/

√
m1,3M. As the density in the plates is very large, this is always

a shorter distance scale than 1/M where the calculations of the effective field theory should
not be trusted naively. In the limit m1,3 → ∞, the one loop result becomes exact and
coincide with (half) the usual Casimir force expression for electrodynamics as obtained
when the coupling to the boundaries is also very strong and Dirichlet boundary conditions
are imposed.

Finally, measurements of fermions’ anomalous magnetic moments are sensitive to the
effects of new scalar fields coupled to matter. The anomalous magnetic moment is

a f =
g f − 2

2
, (130)

where g f is the fermion’s g-factor. There are two effects to consider. First is the well-known
result that at 1-loop the scalar particle corrects the QED vertex, modifying the anomalous
magnetic moment by an amount [119,127,128]

δa f ≈ 2

(
β(φ)m f

4πmPl

)2

, (131)

where m f is the mass of the fermion. Second, the classical fifth force introduces systematic
effects in the experiment, such as a modified cyclotron frequency, that must be accounted
for in order to infer the correct measured value of a f [128,129].

In the case of the electron, the measurement of ae and the standard model prediction
agree at the level of 1 part in 1012 [130]. Setting δae ≤ 10−12 yields the constraint [128]

β(φ) . 1016 . (132)

In the case of the chameleon where β = mPl/M, this rules out M < 80 GeV.
In the case of the muon, the experimental measurement of the magnetic

moment [131,132] and the standard model prediction [133–152] differ by 1 part in 109

at 4.2 σ. A generic scalar field without a screening mechanism cannot account for this
discrepancy without also being in tension with Solar System tests of gravity. However,
it has recently been shown that both the chameleon and symmetron are able to resolve
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this anomaly while also satisfying all other experimental bounds [129]. The chameleon
parameters that accomplish this are

M = 500 GeV and Λ < meV . (133)

Cosmologically, a chameleon with these parameters has an effective mass mcosmo >
10−13 eV and Compton wavelength < 103 km, so this theory does not significantly in-
fluence our universe on large scales.
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Figure 3. The constraints from the Eötwash experiment on a light symmetron as a function of the
strong coupling scale M for different values of the self-coupling λ. This involves the calculation
with a five region geometry. The quantum constraints extend the classical bounds. In the insert, the
enhancement of the quantum scalar interaction due to the presence of the thin plate between the
external ones is represented. Reproduced from [126].

4. Astrophysical Constraints and Prospects

In this section, we discuss the ways in which screened fifth forces may be searched
for using astrophysical objects beyond the solar system, specifically stars, galaxies, voids
and galaxy clusters. We describe the tests that have already been conducted and the ways
in which they may be strengthened in the future. Astrophysical constraints are most
often phrased in terms of the n = 1 Hu–Sawicki model of f (R) (taken as a paradigmatic
chameleon-screened theory; [69,153,154]) and nDGP or a more general Galileon model
(taken as paradigmatic Vainshtein-screened theories; [59,73]).

Testing screening in astrophysics requires identifying unscreened objects where the
fifth force should be manifest. Ideally this would be determined by solving the scalar’s
equation of motion given the distribution of mass in the universe, although the uncertainties
in this distribution and the model-dependence of the calculation make more approximate
methods expedient. This may be achieved by identifying proxies for the degree of screening
in certain theories, which can be estimated from the observed galaxy field. In thin-shell
screening mechanisms (chameleon, symmetron and the environmentally-dependent dila-
ton), it is the surface Newtonian potential of an object relative to the background scalar
field value that determines whether it is screened (as discussed in Section 2). This screening
criterion may be derived analytically for an object in isolation or in the linear cosmological
regime (e.g., [48,49] for the chameleon), while N-body simulations in modified gravity
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have shown that it is also approximately true in general when taking account of both
environmental and self-screening [155–157] (see Figure 4). The threshold value of potential
for screening is given by Equation 52: in n = 1 Hu–Sawicki f (R), χ ' 3

2 fR0 so that probing
weaker modified gravity (lower fR0) requires testing objects in weaker-field environments
[69]. Rigorous observational screening criteria are not so easy to derive in other screening
mechanisms, although heuristically one would expect that in kinetic mechanisms governed
by non-linearities in the first derivative of the scalar field, it is the first derivative of the New-
tonian potential (i.e., acceleration) that is relevant, while in Vainshtein theories governed
by the second derivative of the field, it is instead the space-time curvature (Section 2.5).

Several methods have been developed to build “screening maps” of the local universe
to identify screened and unscreened objects. Shao et al. [158] apply an f (R) scalar field
solver to a constrained N-body simulation to estimate directly the scalar field strength as a
function of position. Cabre et al. [155] use galaxy group and cluster catalogues to estimate
the gravitational potential field and hence the scalar field by the equivalence described
above. Desmond et al. [159] adopt a similar approach but include more contributions
to the potential, model acceleration and curvature, and build a Monte Carlo pipeline
for propagating uncertainties in the inputs to uncertainties in the gravitational field. By
identifying weak-field regions, these algorithms open the door to tests of screening that
depend on the local environment, with existing tests using one of the final two.

Figure 4. Halos produced in an f (R) N-body simulation with fR0 = 10−6. The x-axis is the total halo
mass in M�, the y-axis is the Newtonian potential sourced at the halo’s position by mass within one
Compton wavelength of the scalar field, and the points are colour-coded by the degree of screening
with red fully unscreened and dark blue fully screened. The vertical and horizontal lines mark where
the internal and external potentials equal 3

2 fR0, showing that these cuts can reliably separate screened
from unscreened galaxies. Reproduced from [155].

4.1. Stellar Tests

Gravitational physics affects stars through the hydrostatic equilibrium equation, which
describes the pressure gradient necessary to prevent a star from collapsing under its own
weight. In the Newtonian limit of GR, this is given by

dP
dr

= −GN M(r)ρ(r)
r2 . (134)

In the presence of a thin-shell-screened fifth force, this becomes

dP
dr

= −GN M(r)ρ(r)
r2

[
1 + 2β2

(
1− M(rs)

M(r)

)
Θ(r− rs)

]
, (135)

with Θ(x) the Heaviside step function, β the coupling coefficient of the scalar field and rs
the screening radius of the star beyond which it is unscreened. In the case of chameleon
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theories, the factor 1− M(rs)
M(r) corresponds to the screening factor and is associated with

the mass ratio of the thin shell, which couples to the scalar field. The stronger inward
gravitational force due to modified gravity requires that the star burns fuel at a faster rate
to support itself than it would in GR, making the star brighter and shorter-lived. The
magnitude of this effect depends on the mass of the star: on the main sequence, low-mass
stars have L ∝ G4

N while high-mass stars have L ∝ GN [160]. Thus in the case that the star
is fully unscreened (rs = 0), low-mass stars have L boosted by a factor (1 + 2β2)4, and
high-mass stars by (1 + 2β2).

To explore the full effect of a fifth force on the behaviour of stars, Equation (134) must
be coupled with the equations describing stellar structure and energy generation. This
has been achieved by modifying the stellar structure code MESA [160–163], enabling the
heuristic expectations described above to be quantified (see Figure 5). The expectation that
stars are brighter in modified gravity—and low-mass stars more so than high-mass—also
leads to the prediction that unscreened galaxies would be more luminous and redder than
otherwise identical screened ones. No quantitative test has been designed around this
though because no galaxy formation simulation, including the effect of modified gravity
on stars, has yet been run.

Figure 5. The colour-magnitude diagrams for a solar mass and metallicity star in GR (black) and
Hu–Sawicki f (R) gravity with fR0 = 10−6 (red). L is in units of solar luminosity and Teff is in units
of Kelvin.

Fifth forces also have important effects in astroseismology, the study of stellar oscilla-
tions. The equation of motion for small perturbations of mass elements in stars is

~̈δr = −1
ρ

dP
dr

+~a, (136)

with~a the force per unit mass, which is~a = −~∇Φ in GR but~a = −~∇Φ− β
mPl

~∇φ in the
presence of a scalar field. Combining this equation with the other stellar structure equations
gives the frequency of linear radial adiabatic oscillations

ω2 ∼ GN M
R3 , (137)

so that enhancing the effective value of G due to the addition of a fifth force causes the
pulsation period Π to change according to

∆Π
Π

= −βQ, (138)

where Q is the star’s scalar charge.
Stellar oscillations are useful observationally because they provide several methods

of determining distances to galaxies [164]. These afford a test of gravity when multiple
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distance indicators with different screening properties are combined. In particular, if
a distance indicator is sensitive to GN and calibrated assuming GR, it will fail to give
the correct distance to an unscreened galaxy in a fifth-force theory. This will lead to a
discrepancy with the distance estimated using an indicator that is not sensitive to GN , e.g.,
because it is based on the physics of a high-density, screened object.

This test has been carried out by comparing Cepheid and TRGB (Tip of the Red Giant
Branch) distance indicators. Cepheids are post-main-sequence stars that oscillate radially
by the κ-mechanism [165] when crossing the instability strip in the Hertzsprung–Russell
diagram. The period of this pulsation is tightly correlated with the luminosity of the star,
allowing Cepheids to be used as standard candles. TRGB stars are red giants that have
become sufficiently hot for helium fusion to occur, moving the star onto the horizontal
branch of the Hertzsprung–Russell diagram and leaving an observable discontinuity in the
I-band magnitude. This occurs at an almost fixed absolute magnitude, making the TRGB
feature another standard candle. The TRGB luminosity is sourced by a thin hydrogen-
burning shell surrounding the helium-burning core, so if the core is screened then TRGBs
exhibit regular GR behaviour. This occurs for χ . 10−6, which is the case for thin-shell
theories that pass the tests described below. With Cepheids unscreened down to much
lower values of χ, this means that TRGB and Cepheid distances would be expected to
disagree in unscreened galaxies. The fact that they seem not to—and that any discrepancy
between them is uncorrelated with the galaxy environment—has yielded the constraint
fR0 . 10−7 [166,167]. Notice that astrophysical constraints yield tighter bounds on f (R)
models than solar system tests.

Variable stars are also useful for more general tests of gravity. [168] showed that the
consistency between the mass estimates of Cepheids from stellar structure vs. astroseis-
mology allows a constraint to be placed on the effective gravitational constant within the
stars. Using just six Cepheids in the Large Magellanic Cloud afforded a 5% constraint on
GN , and application of this method to larger datasets spanning multiple galaxies will allow
a test of the environment-dependence of GN predicted by screening. Screening may also
provide a novel local resolution of the Hubble tension [167,169,170].

Finally, other types of stars are useful probes of the phenomenon of “Vainshtein
breaking” whereby the Vainshtein mechanism may be ineffective inside astrophysical
objects. An unscreened fifth force inside red dwarf stars would impact the minimum mass
for hydrogen burning, and a constraint can be set by requiring that this minimum mass
is below the lowest mass of any red dwarf observed [171,172]. It would also affect the
radii of brown dwarf stars and the mass–radius relation and Chandresekhar mass of white
dwarfs [173].

4.2. Galaxy and Void Tests

Screened fifth forces have interesting observable effects on the dynamics and morphol-
ogy of galaxies. The most obvious effect is a boost to the rotation velocity and velocity
dispersion beyond the screening radius due to the enhanced gravity. This is strongly
degenerate with the uncertain distribution of dark matter in galaxies, although the char-
acteristic upturn in the velocity at the screening radius helps to break this. In the case of
chameleon screening, Naik et al. [174] fitted the rotation curves of 85 late-type galaxies with
an f (R) model, finding evidence for fR0 ≈ 10−7 assuming the dark matter follows an NFW
profile but no evidence for a fifth force if it instead follows a cored profile as predicted by
some hydrodynamical simulations. This illustrates the fact that a fifth force in the galactic
outskirts can make a cuspy matter distribution appear cored when reconstructed with
Newtonian gravity, of potential relevance to the “cusp-core problem” [175] (see also [176]).
Screening can also generate new correlations between dynamical variables; for example,
Burrage et al. [177] use a symmetron model to reproduce the Radial Acceleration Relation
linking the observed and baryonic accelerations in galaxies [178]. Further progress here
requires a better understanding of the role of baryonic effects in shaping the dark matter
distributions in galaxies, e.g., from cosmological hydrodynamical simulations in ΛCDM.
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One way to break the degeneracy between a fifth force and the dark matter distribution
is to look at the relative kinematics of galactic components that respond differently to
screening. Since main-sequence stars have surface Newtonian potentials of∼ 10−6, they are
screened for viable thin-shell theories. Diffuse gas, on the other hand, may be unscreened
in low-mass galaxies in low-density environments, causing it to feel the fifth force and
hence rotate faster [179,180]:

v2
g

r
=

GN(1 + 2β2)M(< r)
r2 ,

v2
∗
r

=
GN M(< r)

r2 ⇒
vg

v∗
=
√

1 + 2β2, (139)

where M(< r) is the enclosed mass, and vg and v∗ are the gas and stellar velocities,
respectively. We see that comparing stellar and gas kinematics at fixed galactocentric radius
factors out the impact of dark matter, which is common to both. Comparing the kinematics
of stellar Mgb absorption lines with that of gaseous Hβ and [OIII] emission lines in six
low-surface brightness galaxies, Vikram et al. [181] place the constraint fR0 . 10−6. This
result can likely be significantly strengthened by increasing the sample size using data
from IFU surveys such as MaNGA or CALIFA—potentially combined with molecular gas
kinematics, e.g., from ALMA—and by modelling the fifth force within the galaxies using
a scalar field solver rather than an analytic approximation. A screened fifth force also
generates asymmetries in galaxies’ rotation curves when they fall nearly edge-on in the
fifth-force field, although modelling this effect quantitatively is challenging so no concrete
results have yet been achieved with it [182].

The strongest constraints to date on a thin-shell-screened fifth force with astrophysical
range come from galaxy morphology. Consider an unscreened galaxy situated in a large-
scale fifth-force field ~aφ sourced by surrounding structure. Since main-sequence stars
self-screen, the galaxy’s stellar component feels regular GR while the gas and dark matter
also experience ~aφ. This causes them to move ahead of the stellar component in that
direction until an equilibrium is reached in which the restoring force on the stellar disk due
to its offset from the halo centre exactly compensates for its insensitivity to~aφ so that all
parts of the galaxy have the same total acceleration [179,180]:

GN M(< r∗)
r2∗

r̂∗ = 2β~aφ, (140)

where~r∗ is the displacement of the stellar and gas centroids. This effect is illustrated in
Figure 6a and can be measured by comparing galaxies’ optical emission (tracing stars) to
their HI emission (tracing neutral hydrogen gas). A second observable follows from the
stellar and halo centres becoming displaced: the potential gradient this sets up across the
stellar disk causes it to warp into a characteristic cup shape in the direction of~aφ. This is
shown in Figure 6b. The shape of the warp can be calculated as a function of the fifth-force
strength and range, the environment of the galaxy and the halo parameters that determine
the restoring force:

z =
2β aφ r3

GN M(< r)
, (141)

which can be simplified by assuming a halo density profile. Desmond et al. [183–185] create
Bayesian forward models for the warps and gas–star offsets for several thousand galaxies
observed in SDSS and ALFALFA, including Monte Carlo propagation of uncertainties in
the input quantities and marginalisation over an empirical noise model describing non-
fifth-force contributions to the signals. This method yields the constraint fR0 < 1.4× 10−8

at 1σ confidence, as well as tight constraints on the coupling coefficient of a thin-shell-
screened fifth force with any range within 0.3-8 Mpc [186] (see Figure 7a). Subsequent
work has verified using hydrodynamical simulations that the baryonic noise model used
in these analyses is accurate [187]. The value of 10−8 is around the lowest Newtonian
potential probed by any astrophysical object, so it will be very hard to reach lower values
of fR0. Lower coupling coefficients may, however, be probed using increased sample
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sizes from upcoming surveys such as WFIRST, LSST and SKA, coupled with estimates of
the environmental screening field out to higher redshift using deeper wide photometric
surveys.

(a) (b)

Figure 6. Cartoons illustrating (a) separation of stars and gas in galaxies under a fifth force, and (b)
the warping of stellar disks. (b) is reproduced from [185].

The above tests target thin-shell-screened fifth forces. The Vainshtein mechanism is
harder to probe due to the efficiency of its screening on small scales and the difficulty of
developing robust observational proxies for objects’ degrees of screening. While LLR is
sensitive to cubic Galileons with small crossover scale rc ∼ O(100) kpc [37], the larger
values rc ∼ 6000 Mpc required for self-acceleration [188] must be probed on galactic
or cosmological scales. The most promising method for this utilises the breaking of the
Strong Equivalence Principle (SEP) that Galileons imply [189] in the presence of black
holes. Galileons couple to the trace of the stress-energy tensor, which is equivalent to
density but excludes gravitational binding energy. This means that non-relativistic objects
(e.g., stars, gas and dark matter in galaxies) have a scalar charge-to-mass ratio equal to
the coupling coefficient β, while black holes are purely relativistic objects with Q = 0.
Thus, in the presence of an unscreened large-scale Galileon field, the supermassive black
holes at galaxies’ centres will lag behind the rest of the galaxy, which is measurable by
comparing the galaxies’ light with radio or X-ray emission from the Active Galactic Nuclei
(AGN) powered by the black hole. Two situations can lead to an unscreened Galileon
field. The first is in galaxy cluster environments: an extended distribution of mass does
not Vainshtein-screen perfectly in its interior [190], so a residual fifth-force field is present
in cluster outskirts. This leads to O(kpc) offsets between black holes and satellite galaxy
centres for realistic cluster parameters. Sakstein et al. [191] solve the Galileon equation of
motion for a model of the Virgo cluster and use the fact that the black hole in the satellite
galaxy M87 is within 0.03 arcsec of the galaxy centre to rule out O(1) coupling coefficients
for rc . 1 Gpc. Second, the Galileon symmetry implies that the linear contribution to the
field on cosmological scales is unscreened [192,193], allowing black hole offsets to develop
even for field galaxies. Assuming a constant density ρ0 in the centre of the halo, the black
hole offset in this case is given by [189]

R = 0.1 kpc
(

2β2
)( |∇Φext

N |
20 (km/s)2/kpc

)(
0.01M�/pc3

ρ0

)
, (142)

where ∇Φext
N is the unscreened large-scale gravitational field, proportional to the Galileon

fifth-force field. Bartlett et al. [194] modelled this field using constrained N-body sim-
ulations of the local ∼200 Mpc and forward-modelled the offsets in 1916 galaxies with
AGN, including a more sophisticated model for the halo density profiles, to set the bound
β < 0.28 for rc & 1/H0 (see Figure 7b). This probes the cosmologically-relevant region of
the Galileon parameter space, complementing cosmological probes such as the Integrated
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Sachs Wolfe (ISW) effect (see Section 5). It could be improved to probe smaller rc values by
modelling the full, non-linear dynamics of the Galileon within the test galaxies. Another
possible signature is “wandering” black holes seemingly unassociated with a galaxy [191].
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Figure 7. (a) Constraints on a thin-shell-screened fifth force from displacement between the centres
of emission of optical and HI light in galaxies (i.e., separation of stars and gas), and stellar warps
observed in the r-band. λC is the Compton wavelength of the scalar, ∆G/GN ≡ 2β2 and the horizontal
dashed line marks ∆G/GN = 1/3 in f (R) gravity. Reproduced from [186]. (b) Constraints on the
Galileon coupling coefficient (on the plot denotes by α) as a function of the theory’s crossover scale.
The orange region is excluded by Lunar Laser Ranging, the green region from the position of the
supermassive black hole in M87, and the blue region from a statistical analysis of the black hole
positions in field galaxies. Reproduced from [194].

While galaxies are the directly observable tracers of the cosmic web, much dynamical
information can be found in voids, the underdense regions that comprise most of the
universe’s volume. These are particularly promising for testing screening because they
are the regions where it is least efficient. Their usefulness is, however, hampered by
the ambiguity that exists in defining voids and by the fact that voids must be identified
observationally using biased tracers of the underlying density field (galaxies). Voids
in modified gravity have been studied through both analytic [195,196] and simulation
[197,198] methods. Typically, the enhanced growth of structure in the presence of a fifth
force causes voids to become larger and emptier. In addition, when voids are identified
through lensing, the modified relation between mass and lensing potential can affect the
lensing signal [79,199]. Voids can also be cross-correlated with galaxies to infer the growth
rate of structure [200], used in the ISW effect [201], integrated along the line of sight to
produce projected 2D voids [202], and used as a means of splitting samples of galaxies
into high-density (screened) and low-density (unscreened) environments or in marked
correlation functions [203,204]. Finally, the redshift-space anisotropy of voids is a powerful
probe of the nature of gravity through redshift space distortions [205]. Future surveys will
improve 3D spectroscopic void finding and the calibration of photometric void finders
with robust photometric redshifts.

4.3. Galaxy Cluster Tests

A fifth force causes a structure to grow more quickly, leading to more cluster-sized
halos at late times. This is, however, counteracted by screening and the Yukawa cut off due
to the mass of the scalar field so that cluster abundance only deviates significantly from
the ΛCDM expectation at lower masses and in sparser environments [206]. The excursion
set formalism for halo abundance provides a good description under chameleon gravity
as well [207], albeit with a modified collapse threshold δc, and has been used to constrain
fR0 . 10−5 in the Hu–Sawicki model [208,209]. Similar constraints are achievable using
the peaks in the weak lensing convergence field, which trace massive halos [210]. Other
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formalisms for calculating cluster abundance in the presence of a fifth force have also been
developed [211–214]. Qualitatively similar results hold for Vainshtein-screened theories,
where, although the centres of clusters are efficiently screened, massive halos grow at
an increased rate because of enhanced accretion due to the fifth force in the surrounding
matter [215]. This can be significantly altered for K-mouflage models where clusters are not
screened so we expect massive halos to be more abundant than in ΛCDM. This is illustrated
in Figure 8; the “arctan" models are particularly interesting because they pass the solar
system tests.
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Figure 8. Fractional increase in halo abundance in K-mouflage relative to ΛCDM as a function of halo
mass. Results are shown for two different redshifts and K-mouflage models. Reproduced from [56].

The internal structures of cluster halos are also altered by modified gravity, particularly
through an increase in the concentration of the Navarro–Frenk–White profile [216–218],
although this is hard to use to set constraints due to degeneracies with the impact of baryons.
Another important effect is on the boundary of cluster halos, namely the splashback radius
where accreting dark matter turns around after the first infall [219]. This is marked by a
sharp drop in the logarithmic density slope and, consequently, in the lensing signal and
subhalo profile. Adhikari et al. [220] studied the splashback feature in both chameleon
and symmetron models, finding that for viable and interesting values of the fifth-force
properties, the splashback radius is increased relative to GR in Vainshtein models and
reduced in chameleon. This results from competition between the enhanced acceleration
of accreting matter and reduced dynamical friction within the halos. There is, however,
controversy observationally about the location of the cluster splashback radius [221–223],
so these predictions cannot be used to set concrete constraints. Further out, the halo–matter
correlation function is enhanced by a fifth force [208,224].

A powerful and general method for probing modified gravity leverages the inequality
between the two weak-field metric potentials, a violation of the weak equivalence principle.
This leads to a difference between the dynamical and lensing masses of objects: while
photons respond to the sum of the metric potentials, non-relativistic tracers are affected
solely by the time–time potential. Thin-shell screening alters the Newtonian potential but
not the lensing one, which in the parametrised post-Newtonian framework is captured by
the parameter γ. Although γ may be constrained on O(kpc) scales by comparing strong
lensing and stellar dynamical mass estimates [225,226], it has found the most use on the
scale of clusters. An approximation for chameleon theories of the Jordan–Brans–Dicke type
is [227]

Mdyn(r) '
(

1 +
Θ(r− rc)

3 + 2ωBD

[
1− M(rc)

M(r)

])
M(r)lens, (143)

where Θ is the Heaviside step function, ωBD is the JBD parameter (see Section 2.7.5) and
the radius at which the scalar field transitions to its background value is given by

rc '
32πGρ(rs)r3

s
3 + 2ωBD

1
1− A−2(φenv)

− rs. (144)
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Here φenv is the cosmological boundary condition for the field far from the cluster (e.g.,
1− A−2(φ) ' fR0 in the f (R) case) and rs is the scale length of the cluster’s assumed-NFW
density profile. The difference between dynamical and “true” masses of clusters in f (R)
gravity has also been calibrated from N-body simulations in [228]:

Mdyn

Mlens
=

7
6
− 1

6
tanh

[
p1
(
log10(Mlens/M�)− p2

)]
, (145)

where p1 = 2.21 and p2 = 1.503 log10

[
| fR(z)−1|

1+z

]
+ 21.64. This works well for fR0 ∈[

10−6.5, 10−4] and z ∈ [0, 1]. To test this effect, strong cluster lensing may be compared
to X-ray masses or the velocity dispersions of the cluster galaxies [190,229], and stacked
weak lensing can be compared to Sunyaev–Zel’dovich masses or infall motions at the
cluster outskirts [230]. Dynamical masses can also be estimated from X-ray data of cluster
temperature and pressure profiles. The combination of weak lensing measurements with
measurements of the X-ray brightness, temperature and Sunyaev–Zel’dovich signal from
the Coma cluster [231] (or from multiple clusters’ weak lensing and X-ray signals [232])
implies fR0 . 6× 10−5, and this test has also been applied to Galileons [233]. The modifi-
cation to clusters’ dynamical masses under a fifth force can be probed without requiring
lensing data by assuming that the gas fractions of clusters are constant in order to estimate
the true total mass. This is capable of constraining f (R) to the fR0 ∼ 5× 10−5 level [234].
All of these tests will benefit from enlarged cluster samples in the future.

5. Cosmological Consequences
5.1. Screening and Cosmic Acceleration

Screened fifth forces coupled to matter also have interesting cosmological conse-
quences. In the modified gravity models studied above, the screening mechanisms are
necessary to make the models consistent with observations at small scales. As detailed in
Sections 2.3 and 2.4, we can classify the screening types into non-derivative and derivative
screening mechanisms. From the former, the chameleon is the most popular example,
appearing in popular models such as Hu–Sawicki f (R). For the latter, the Vainshtein and
K-mouflage mechanisms are the characteristic ones, appearing in subsets of Horndeski
theory, such as models with a modified kinetic term (for K-mouflage) or models such as
Cubic Galileons, which feature the Vainshtein screening as a way to evade small scale
gravitational constraints.

No-go theorems [35,87,88] were developed for chameleon-screened theories, and they
state namely that i) the Compton wavelength of such scalars can be at most ' 1Mpc
at the present cosmic density, which means that the effective range of these theories is
restricted to non-linear scales in large scale structure formation and they have no effect on
the linear growth of structures; and (ii) that the conformal factor (64) relating the Einstein
and Jordan frames of these theories is essentially constant in one Hubble time; therefore,
these scalar fields cannot be responsible for self-acceleration and one needs to invoke either
a cosmological constant term or another form of dark energy to explain the acceleration
of the expansion of the Universe. More precisely, in the context of chameleon-screened
models one can show that the equation-of-state of dark energy at late times is of order [53]

ωφ + 1 ' O(H2

m2 ) (146)

where m is the mass of the light scalar. The bound from solar systems on the mass ratio
m/H & 103 coming from solar system tests, see (80), implies that the equation-of-state
is indistinguishable from the one of a cosmological constant. On the other hand, these
theories have effects on large scale structures and then irrespective of what would drive
the acceleration one could test the screening effects at the cosmological perturbation level.

In the second class of models, the scalar field evolves significantly on cosmic timescales,
as in the case of cubic Galileons, kinetic gravity braiding models and K-mouflage models.
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These models present either K-mouflage or Vainshtein screenings and, therefore, are not
affected by the no-go theorems.

In the following sections, we will present the different ways in which these screened
modified gravity theories affect cosmological observables and the current and future
bounds that can be placed on their parameters.

5.2. Screening and Structure Formation

The formation of a large scale structure is affected by the presence of modified gravity.
Screening could play a role too as we will see below as the growth of structure depends on
the type of screening mechanisms. For derivative screening, the growth is affected at the
linear level in a scale-independent way. For non-derivative screenings, the linear growth
is modified in a scale-dependent way. The latter can be easily understood as there is a
characteristic length scale, i.e., the Compton wavelength of the scalar field, beyond which
modified gravity is Yukawa-suppressed. Non-linear effects are also important and tend to
dampen the effects of modifying gravity on small scales.

As an example and on cosmological scales, the f (R) modification of the Einstein–
Hilbert action leads to a modified Poisson equation, which can be expressed as

∇2Φ =
16πG

3
a2δρ− a2

6
δR , (147)

in comoving coordinates and the term δρ is the matter density fluctuation compared to
the cosmological background and Φ the modified Newtonian potential. Furthermore, the
fluctuation of the Ricci scalar, δR = R− R̄ compared to the cosmological background R̄
and is expressed as

∇2δ fR =
a2

3
[δR− 8πGδρ] . (148)

The variation of the function f (R) is given by δ fR = fR(R)− fR(R̄). In these equations, we
have assumed a quasi-static approximation. It can be shown [235] that despite the fact that
these equations are non-linear in δR, they are self-averaging. This means that on large scales
one recovers δR→ 0. Using these governing equations, one can solve perturbatively the
Vlasov–Poisson system of equations, which consists in the first approximation (no vorticity
and single-stream regime) of the continuity, Euler and Poisson equations, in powers of the
linear growth factor. The results of these computations at 1-loop order and beyond can be
seen in References [235–240].

In scalar-tensor theories with screening and a conformal factor A(φ), particles feel a
total gravitational potential Φ, which is the sum of the standard Newtonian term ΦN and
an additional contribution ΦA,

Φ = ΦN + ΦA , (149)

where the governing equations are given by

1
a2 ∆ΦN = 4πGδρ , ΦA = ln A

Ā ' (A− Ā) (150)

where it is assumed that A(φ) ' 1 to satisfy constraints on the variation of fermionic
masses. As a result, ln A ' A− 1 and the dependence on ln A of the Newtonian potential
Φ becomes linear in A. This additional gravitational potential implies that matter particles
of mass m are sensitive to a "fifth force" given by

~Fφ = −m~∇ ln A. (151)

This fifth force is the one that leads to a modification of the growth of structures.
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5.3. Cosmological Probes: CMB and Large Scale Structure

Historically, the background expansion of the Universe has been the traditional way
of testing cosmological models, and this has been developed mostly through the study of
standard candles, especially with the use of observations of supernovae SNIa [3,241]. However,
recent constraints on the equation-of-state parameter of dark energy are overall consistent
with a cosmological constant w ≈ −1 [242]. This, plus the fact that self-acceleration is
mostly ruled out in the most popular screened scalar field models, has led to the tendency
in the literature to look for features of dark energy and modified gravity in the formation
of structures and the modification of gravitational lensing. Moreover, other interesting
tensions in the data, such as the H0 tension [243], cannot be satisfactorily resolved with
late-time dynamics of a dark energy field, according to the latest analysis [244,245] and
therefore will not be covered in this section. Therefore, in the following section, we will
concentrate mostly on the integrated Sachs Wolfe effect in the CMB, lensing of the CMB
and the formation of structures probed by the Galaxy power spectrum and its effect on
weak lensing (cosmic shear).

5.3.1. ISW and CMB Lensing

The relic radiation from the early Universe that we observe in the GHz frequency range,
called the Cosmic Microwave Background, is one of the most powerful cosmological probes.
It constrains not only the background of the Universe but also its growth of structure. Its
primary anisotropies, imprinted at the time of recombination, provide plenty of information
about the constituents of the Universe; while its secondary anisotropies, which happen
later when the CMB photons are traversing the Universe, provide information about the
intervening medium, the expansion of the Universe and the large scale structures. For
studying late modified gravity and dark energy, these secondary anisotropies are the most
important probes, namely the Integragted Sachs–Wolfe effect (ISW) ([246–248] that affect
the power spectrum at low multipoles (large scales) and lensing of the CMB [249,250] that
affects the spectrum at small scales (high multipoles).

In the case of ISW, the effect is observed as a temperature fluctuation caused by time
variations in the gravitational potentials that are felt by photons when they enter and leave
potential wells (or potential hills) when entering dark matter halos (or voids). The effect on
the CMB temperature T is given by

δT
T
(n̂) = −

∫ η∗

η0

dη
∂(Ψ + Φ)

∂η
, (152)

where η∗ is the conformal time at the last scattering surface and η0 at the observer. By
changing the time evolution of the gravitational potentials, MG models affect the large
scales of the CMB power spectrum through the ISW effect. The ISW effect played a major
role in ruling out cubic Galileon models, which are the only non-trivial parts left from
the Horndeski theory after GW170817. In [215], cubic Galileons were analysed, and it
was found that in the presence of massive neutrinos (model dubbed νGalileon, in red in
Figure 9), the models were still a very good fit to CMB temperature, lensing and Baryon
Acoustic Oscillation (BAO) data, using Planck-2013 temperature and lensing [251] and
WMAP-9 polarisation [252] data. For BAO they used 6dF, SDSS DR7 and BOSS DR9 data
([253–255]). In the absence of massive neutrinos (model dubbed Galileon in Figure 9),
however, ΛCDM was favoured by the data. Nevertheless, they showed that the νGalileon
model shows a negative ISW effect that is hard to reconcile with current observations. More
recently, a paper by [256] performed a detailed study of self-accelerating Galileon models
using CMB data from Planck-15 in temperature and polarisation and CMB lensing [257].
They also included BAO data, H0 data and ISW data. As in the older analysis, they showed
that the cubic Galileon predicts a negative ISW effect and, therefore, it is in a 7.8σ tension
with observations, effectively ruling this model out. Furthermore, in [258], the effect of
different neutrino masses and hierarchies was analysed, and it was also found out that all
cubic, quartic and quintic Galileons remain ruled out by CMB and ISW observations.
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Figure 9. CMB temperature power spectrum. In black dots, data from Planck-2013; in blue, the
cubic Galileon model without massive neutrinos; in red, the same model in the presence of massive
neutrinos; and in green, baseline ΛCDM with standard neutrino mass. The difference between solid
and dashed lines corresponds to an analysis of Planck with and without BAO data, respectively.
Reproduced from [215] thankfully provided by Alex Barreira.

5.3.2. Cosmological Perturbations in Large Scale Structure

As mentioned above in the corresponding sections for f (R) and scalar field models, the
dynamics of the field at large scales is given by the Poisson equation and the corresponding
Klein–Gordon equation. However, when including the full energy-momentum tensor, the
first-order perturbed Einstein equations in Fourier space give two equations that describe
the evolution of the two gravitational potentials Φ and Ψ. In the quasistatic approximation,
these equations read

−k2Φ(a, k) = 4πGa2µ(a, k)ρ(a)∆(a, k) ; (153)

−k2ΦK(a, k) = 4πGa2Σ(a, k)ρ(a)∆(a, k) . (154)

where ρ(a) is the average dark matter density and ∆(a, k) = δ + 3aHθ is the comoving
density contrast with δ, the fractional overdensity, and θ the peculiar velocity. We have
denoted by

ΦL(a, k) =
Φ(a, k) + Ψ(a, k)

2
(155)

the lensing potential. The ratio of the two gravitational potentials is denoted as η, gravita-
tional anisotropic stress or gravitational slip

η(a, k) ≡ Ψ(a, k)/Φ(a, k) . (156)

The scale and time-dependent functions η(a, k), µ(a, k) and Σ(a, k) stand for all possible
deviations of Einstein gravity in these equations, being equal to unity when standard GR is
recovered and can encompass any modification by a scalar-tensor theory at the linear level
in perturbations. Given that there are only two scalar degrees of freedom, it means that of
course there is a relationship between µ, Σ and η and they are related by

Σ(a, k) =
µ(a, k)

2
[1 + η(a, k)] . (157)

The µ(a, k) function is usually probed best by galaxy clustering experiments that directly
trace the evolution of the Φ potential, since this one affects non-relativistic particles. µ is
directly related to the effective Newtonian constant defined above in (9) as

Ge f f /GN = µ (158)

in the linear regime and in Fourier space. On the other hand, relativistic particles, and
therefore light, follows the equation for Φ(a, k) + Ψ(a, k), meaning that gravitational weak
lensing is mostly sensitive to the function Σ(a, k).
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f (R) Models and Chameleon Theories

For the f (R) theories described above, these expressions reflect the presence of an
extra fifth force. In particular, it is convenient to introduce the mass of the scalaron field,
i.e., the scalar field associated with the f (R) models [53]

m2
fR

=
fR

3 fRR
∼ 1

3 fRR
(159)

where we have used that R ' ρ/m2
Pl at a late time in the Universe. Neglecting the

anisotropic stress, the expressions for µ and η read [259]

µ(a, k) =
1

fR(a)

4 + 3k2a−2m−2
fR
(a)

3(1 + k2a−2m−2
fR
(a))

, (160)

Σ(a) =
1

fR(a)
, (161)

Given the constraints on fR,0 mentioned above, the modifications of lensing are practically
non-existent and Σ(a, k) ' 1 with great precision.

It is convenient to rewrite the above expressions as

µ(a, k) = A2(a)

1 +
2β(a)2

1 + m2(a)a2

k2

 , (162)

Σ(a, k) = A2(a) , (163)

where in the case of f (R) models, we have β(a) = β = 1/
√

6 and m fR(a) = m(a), where
β(a) is the coupling at the minimum of the effective potential Veff(φ) = V(φ)+ (A(φ)− 1)ρ
as a function of a with ρ ∝ a−3 and similarly for the mass of the scalar field m(a). These
expressions are valid for any chameleon theories.

In all chameleon theories, there is a one-to-one correspondence between the coupling
and mass variations as a function of the scale factor and the potential V(φ) and coupling
function A(φ), which is called the tomographic map. This allows to parameterise the
chameleon models with the function m(a) and β(a). The mapping reads [88]

φ(a)
mPl

=
φini

mPl
+ 9

∫ a

aini

dx
β(x)Ωm(x)H2(x)

xm2(x)
(164)

where Ωm is the matter fraction of the Universe. In this expression, the matter fraction
and the Hubble rate can be taken as the ones of the standard model as solar system tests
imply that chameleon models essentially coincide with ΛCDM at the background level.
The potential itself is given by

V(a) = Vini −
3

m2
Pl

∫ a

aini

dx
β2(x)ρ2(x)

x2m2(x)
. (165)

This provides a parametric reconstruction of V(φ). For the Hu–Sawicki models of f (R), we
have [53]

mfR(a) = m0

( Ωm0
a3 + 4ΩΛ0

Ωm0 + 4ΩΛ0

)(n+2)/2

(166)

where ΩΛ is the dark energy fraction and Ωm0 the matter fraction now. The mass of the
scalaron now is given by

m0 =
H0√

(n + 1)| fR0|
(4ΩΛ0 + Ωm0)

1/2. (167)
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which is greater than H0 for small | fR0| � 1.
Finally, the µ parameterisation allows one to see how screening works on cosmological

linear scales [50]. Defining the comoving Compton wavelength

λc(a) =
1

am(a)
(168)

we find that for scales outside the Compton wavelength, i.e., k . λc we have

µ(a, k) ' A2(a) ' 1 (169)

and GR is retrieved. This corresponds to the Yukawa suppression of the fifth force in-
duced by the light scalar. On the contrary, when k & λc, we have an enhancement of the
gravitational interaction as

µ(a, k) ' 1 + 2β2(a) (170)

which is simply due to the exchange of the nearly-massless scalar field between overdensi-
ties.

As a result, we can have a qualitative description of chameleon models such as f (R)
on the growth of structures [260]. First of all, on very large scales, GR is retrieved and
no deviation from Λ-CDM is expected. On intermediate scales, deviations are present as
(170) is relevant. Finally, on much smaller scales, the screening mechanism prevents any
deviations and GR is again retrieved. The onset of the modified gravity regime is set by the
mass of the scalar now, which is constrained by the solar system tests to be in the sub-Mpc
range. This falls at the onset of the non-linear regime of growth formation, and therefore,
one expects the effects of modified gravity to be intertwined with non-linear effects in the
growth process.

Jordan–Brans–Dicke Models

For the JBD models with a mass term, these functions are given by [261,262]

µ(a, k) =
1
φ̄

2(2 + ωBD)

3 + 2ωBD
, (171)

η(a, k) =
2 + ωBD
1 + ωBD

, (172)

so that for cosmological purposes
Σ(a) = 1 . (173)

In this case, lensing is not affected at all.

Horndeski Theory

For a generic Horndeski theory (of second-order in the equations of motion), these
two functions µ and η can be expressed as a combination of five free functions of time
p1,2,3,4,5, which are related to the free functions Gi in the Horndeski action [259,261]

µ(a, k) =
p1(a) + p2(a)k2

1 + p3(a)k2 , (174)

η(a, k) =
1 + p3(a)k2

p4(a) + p5(a)k2 . (175)

There is another physically more meaningful parametrisation of the linear Horndeski action,
given by [263], which is related to the effective field theory of dark energy [32,264,265],
where small deviations to the background cosmology are parameterised linearly. This
parametrisation is of great help when discussing current cosmological constraints. It is
defined using four functions of time αM, αK, αB and αT plus the effective Planck mass M2

?

and a function of time for a given background specified by the time variation of the Hubble
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rate H(a) as a function of the scale factor a. The term αT measures the excess of speed of
gravitational waves compared to light, and therefore, as we previously mentioned, after
the event GW170817, this term is constrained to be effectively zero. The term αK quantifies
the kineticity of the scalar field and therefore appears in models such as K-mouflage, which
require the K-mouflage screening. The coefficient αB quantifies the braiding or mixing of
the kinetic terms of the scalar field and the metric and can cause dark energy clustering.
It appears in all modified gravity models where a fifth force is present [266]. It receives
contributions also from terms related to the cubic Galileons, which present the Vainshtein
screening. Finally, αM quantifies the running rate of the effective Planck mass, and it is
generated by a non-minimal coupling. This parameter modifies the lensing terms, since
it directly affects the lensing potential. It appears in f (R) models, where the chameleon
screening is necessary, as we have seen.

DGP Models

Cosmological linear perturbations for DGP have been worked out in [267]. In the
paper by [261], it is assumed that the small-scale (quasi-static) approximation is valid, i.e.,
k/a� r5H and obtains

− k2Ψ = 4πGN

(
1− 1

3γ

)
ρ̄a2δ, (176)

and

− k2Φ = 4πGN

(
1 +

1
3γ

)
ρ̄a2δ, (177)

where γ = 1 + 2εHr5weff. This corresponds to

µ(a) = 1 +
1

3γ
, (178)

and for all practical purposes, we can set Σ = 1 within the cosmological horizon (see [261]).

5.4. Large Scale Structure Observations: Galaxy Clustering and Weak Lensing

The most important probes for a large scale structure, especially in the upcoming
decade with the advent of new observations by DESI [268]12, Euclid [269,270]13, Vera Rubin
[271]14 and WFIRST [272]15, will be galaxy clustering and weak lensing. Galaxy clustering
measures the 2-point-correlation function of galaxy positions either in three dimensions, i.e.,
angular positions and redshift, or in effectively two dimensions (angular galaxy clustering)
when the redshift information is not particularly good. In Fourier space, this correlation
function of galaxies, known as the observed galaxy power spectrum Pobs

gg is directly related
to the power spectrum of matter density perturbations Pδδ,zs in redshift space by

Pobs
gg (z, k, µθ) = AP(z)Pδδ,zs(k, z)Eerr(z, k) + Pshot(z) , (179)

where AP(z) corresponds to the Alcock–Paczynski effect, Eerr(z, k) is a damping term given
by redshift errors and Pshot(z) is the shot noise from estimating a continuous distribution
out of a discrete set of points. µθ is the cosine of the angle between the line of sight and the
wave vector k. Furthermore, the redshift space power spectrum is given by

Pδδ,zs(z, k, µθ) = FoG(z, k, µθ)K2(z, µθ ; b(z); f (z))Pδδ(k, µθ , z) , (180)

where FoG(z, k, µθ) is the "Fingers of God" term that accounts for non-linear peculiar veloc-
ity dispersions of the galaxies, and K is the redshift space distortion term that depends—in
linear theory, where it is known as the Kaiser term [273]—on the growth rate f (z) and the
bias b(z), but can be more complicated when taking into account non-linear perturbation
theory at mildly non-linear scales. For a detailed explanation of these terms, we refer the
reader to [274] and the many references therein.



Universe 2022, 8, 11 41 of 58

Relativistic effects in galaxy clustering may provide a particularly sensitive probe of
fifth forces and screening. With relativistic effects included, the cross-correlation of two
galaxy populations with different screening properties yields a dipole and octopole in the
correlation function due to the effective violation of the weak equivalence principle—as
encapsulated in Euler’s equation—as the galaxies in the two groups respond differently to
an external fifth-force field [275,276]. This may be observable in upcoming spectroscopic
surveys such as DESI [277]. Reference [278] showed that the octopole is a particularly
clean probe of screening per se (as opposed to the background modification that screened
theories also imply) because it is not degenerated with the difference in bias between the
galaxy sub-populations.

The second probe, weak lensing, is the 2-point correlation function of cosmic shear,
which emerges when galaxy shapes become distorted, their ellipticities increased and their
magnitudes changed, due to light travelling through large scale structures in the Universe,
from the source to the observer [279]. These ellipticities and magnitudes are correlated
through the distribution of matter in the Universe and the expansion. Therefore, they can
provide very valuable information about the formation of structures from high redshifts
until today. This angular correlation function can be expressed as

Cγγ
ij (`) =

c
H0

∫ Ŵγ(z)
i Ŵγ

j (z)

E(z)r2(z)
PΦ+Ψ(k`, z)dz , (181)

where E(z) = H(z)/H0 is the dimensionless Hubble function, Ŵγ(z)
j are window functions,

or lensing kernels, that project the redshift distributions and the power spectrum into
angular scales, and finally, PΦ+Ψ(k`, z) is the Weyl power spectrum, which is related to the
matter power spectrum Pδδ by

PΦ+Ψ = Σ2(k, z)

[
3
(

H0

c

)2
Ω0

m(1 + z)

]2

Pδδ . (182)

In this equation, we can see clearly the observational signature of the Σ lensing function
defined above in (154) and (157). We refer the reader again to [274] and the many references
therein for details on the formulae of weak lensing. In Figure 10, we show the non-linear
matter power spectrum P(k, z) for ΛCDM (in light blue), K-mouflage (in green), JBD (in
orange) and nDGP (in red) computed with privately modified versions of MGCAMB, hi_class
and EFTCAMB. The models and their fiducial values have been chosen to be close enough to
ΛCDM , to be still allowed by observations, but far enough so that distinctive changes can
be measured with next-generation surveys. The standard cosmological parameters set for
this specific prediction are Ωm,0 = 0.315, Ωb,0 = 0.05, h = 0.674, ns = 0.966 and σ8 = 0.8156.
For JBD, the model parameter ωBD is set to ωBD = 800, while for nDGP, the observational
parameter is Ωrc = c2/(4r2

5 H2
0), where r5 is the crossover scale defined above in (61) and we

set here Ωrc = 0.25. For K-mouflage, the physical parameter is ε2 = d ln A(a)/d ln a, and
it is related to the fifth force enacted by the scalar field, which comes from the conformal
transformation of the metric (see [280] for more details). The prediction shown here is
made for the case ε2 = −0.04.

These distinctive features can be observed when taking the ratio to ΛCDM for the three
cosmological models considered above. While at linear scales k . 0.07h/Mpc, the models
show only a slight change in amplitude compared to ΛCDM (with nDGP showing the
largest amplitude increase of about 10%), it is clear that for small scales there are distinctive
features at play that dampen the power spectrum. In the right panels of Figure 10, we
show the angular cosmic shear (weak lensing) power spectra in the 1,1 bin (lower redshifts)
defined in (181) for all three screened models defined above. Furthermore, the ratio of the
weak lensing C` with respect to ΛCDM is shown in the lower panel. In this case, the very
sharp features observed in the matter power spectrum are smoothed out by the projection
along the line of sight and into angular multipoles.

https://github.com/sfu-cosmo/MGCAMB
http://miguelzuma.github.io/hi_class_public/
https://github.com/sfu-cosmo/MGCAMB
http://eftcamb.org/
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Figure 10. (Upper left): Matter power spectrum P(k, z) for ΛCDM (in light blue), K-mouflage (in
green), JBD (in orange) and nDGP (in red) computed with privately modified versions of MGCAMB,
hi_class and EFTCAMB. (Lower left): Ratio of ΛCDM for the matter power spectra for the three
cosmological models considered above. While at linear scales k . 0.07h/Mpc, the models considered
show only a slight change in amplitude compared to ΛCDM , at smaller scales there are some
distinctive features, such as shifts in the BAO peaks and damping of power at small scales. (Upper
right): Angular cosmic shear (weak lensing) power spectra for the 1,1 bin (lower redshifts) defined
in (181) for the models mentioned above. (Lower right): Ratio of the weak lensing C` for screened
modified gravity with respect to ΛCDM . The distinctive features observed in the matter power
spectrum are smoothed out by the projection along the line of sight and into angular multipoles.

5.5. Going Beyond Linear Scales

At the linear level of perturbations in the matter density and the scalar field, these
equations above can be computed very efficiently using modified versions of Einstein–
Boltzmann codes, in particular of CAMB16 (Code for Anisotropies in the Microwave Back-
ground) (see [281]), which is written mainly in fortran, and CLASS17 (see [282,283]), which
is mainly written in the C programming language. Both of these codes come with user-
friendly python wrappers. The most common modifications of these codes accounting
for theories of modified gravity and dark energy are based on two types; the first one is
codes in which generic parametrisations of the deviations of GR as in (153) to (156) are
used. The second one is codes in which specific modified gravity (MG) models or a generic
class of models are implemented and their full scalar field equations are solved, beyond the
quasi-static approximation. From the first type, the two more common are ISitGR18 (see
[284,285], and MGCAMB19 [286,287] and more recently a branch of CLASS, called QSA_CLASS
(see [288]). For the second type, we will mention here the two most important ones, namely
hi_class20 (see [289] and EFTCAMB21 (see [290,291]).

Up to now, we have only developed the formalism to compute the perturbations
of matter and the field at the linear level. However, in order to study correctly and
accurately the power spectrum and compare it with observations of galaxy clustering
and weak lensing, one must go beyond linear scales. For galaxy clustering, the region
around k ≈ 0.1Mpc−1, where Baryon Acoustic Oscillations (BAO) and redshift space
distortions (RSD) are important, needs to be treated perturbatively in order to make
accurate predictions. This involves using either Eulerian or Lagrangian perturbation theory
[292,293] and furthermore using resummation techniques to capture accurately the large
scale contributions [294,295]. For smaller scales, formalisms such as the effective field
theory of large scale structures are needed in order to take into account the UV divergences
of the perturbative models [296]. For the models we are interested in here, there has

https://github.com/sfu-cosmo/MGCAMB
https://github.com/sfu-cosmo/MGCAMB
http://miguelzuma.github.io/hi_class_public/
http://eftcamb.org/
https://camb.info
https://class-code.net
https://labs.utdallas.edu/mishak/isitgr/
https://github.com/sfu-cosmo/MGCAMB
http://miguelzuma.github.io/hi_class_public/
http://eftcamb.org/
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been some recent work by [236,297], some new work on GridSPT by [298] and some more
foundational work by [299,300].

To obtain meaningful constraints with weak lensing, the power spectrum needs to be
calculated at even higher k-values, for up to k ≈ 10Mpc−1, which is only possible using N-
body simulations, which capture the full evolution of the non-linear gravitational dynamics.
In scalar field models and especially in models that invoke screening mechanisms, these
simulations are extremely computationally expensive and numerically complicated, since
the non-linear evolution of the field needs to be taken into account. Several interesting
approaches have been taken in the literature such as COLA [238], Ramses [301], Ecosmog
[302], MG-evolution[303], φ-enics (an interesting finite element method approach that
can capture the non-linear evolution of the scalar field and reproduce very accurately the
Vainshtein screening) [304] and the simulation work on f (R) theories by several groups
[305–308]. Since these simulations are time-consuming, faster approaches that allow for
an efficient exploration of the parameter space would be extremely valuable and would
be included in forecasts and Monte Carlo parameter estimation. Several approaches
include fitting formulae based on simulations [309], emulators for f (R) theories [310,311]
and hybrid approaches in which the halo model, perturbation theory and simulations
are calibrated to create a model, such as REACT (see [312,313]). This code can compute
predictions for nDGP and f (R) models, which are roughly 5% accurate at scales k .
5h/Mpc.

5.6. Constraints on Screened Models with Current Data

In this section, we will focus on the constraints on different screened scalar-field models
with current observations from CMB, background expansion and large scale structures.

5.6.1. Constraints on f (R) Models

From the CMB, constraints have been placed by the Planck collaboration on the f (R)
model in terms of the Compton wavelength parameter, which is defined as

B ≡ fRR
fR

R′
H
H′

, (183)

and its value today B0 is related to the fundamental parameter fR,0. Indeed, we have the
relation

B =
Ωm

1 + ω

H2

m2
fR

(184)

where ω is the equation-of-state of the Universe and m fR is the mass of the scalaron (166).
Notice that the denominator 1+ω is very small, and therefore, B is less suppressed than the
ratio H2/m2

fR
. In the analysis of [314], the datasets used were Planck TT+lowP+BAO+SNIa

+ local H0 measurements (these last three observations are usually abbreviated as BSH),
while CMB lensing was used to remove the degeneracy between B0 and the optical depth τ.
At the 95% confidence level, they found B0 < 0.12 with Planck data alone and when BAO,
weak lensing (WL) and RSD were added, a much more stringent bound of B0 < 0.79× 10−4

was found, which forces the model to be very close to ΛCDM.
A very comprehensive, but by now relatively outdated, analysis by [315] using

WMAP5 CMB data [316] and cross-correlations of ISW with galaxy clustering data provided
interesting bounds on the variations of the gravitational potentials on an interesting redshift
range 0.1 < z < 1.5. For f (R) models that follow the same expansion of the universe as
ΛCDM they obtained a bound of B0 < 0.4 at the 95% confidence level (CL). In the analysis
by [317], large scale structure data coming from WiggleZ, BAO (from 6dF, SDSS DR7 and
BOSS DR9, see [253–255]) were combined with Planck-2013 CMB [251] data and WMAP
polarisation data [316] to find log10 B0 < −4.07 at the 95% CL. A more recent paper [318]
uses the designer approach to f (R) and tests it with Planck and BAO data. In this designer
approach, one can fix the evolution of the background and then find the corresponding

https://github.com/nebblu/ReACT


Universe 2022, 8, 11 44 of 58

scalar field model that fits these constraints. With this, the bound of B0 < 0.006 (95%CL) for
the designer models with w = −1 is obtained, and a bound of B0 < 0.0045 for models with
varying equations-of-state is reached, which was then constrained to be |w + 1| < 0.002
(95%CL). All these bounds imply that f (R) models cannot be self-accelerating, and also,
if they are present, their background expansion will be very close to the one of ΛCDM
according to observational bounds. This confirms the known results from gravitational
tests in the solar system.

5.6.2. Constraints on nDGP Models

The self-accelerating branch of DGP (sDGP) has been plagued with the presence of
ghost fields; nevertheless, it has been compared to observations, most recently in [319,320]
where it was found, after using Planck temperature data, ISW and ISW-galaxy-cross-
correlations, together with distance measurements that these models are much disfavoured
compared to ΛCDM. The normal branch of DGP (nDPG) is non-self-accelerating, but it is
still of interest since it shows clear deviations at scales important for structure formation. In
[321], it was shown that the growth rate values estimated from the BOSS DR12 data [322]
constrains the crossover scale r5 of DGP gravity in the combination [r5H0]

−1, which has
to be < 0.97 at the 2σ level, which amounts to r5 > 3090Mpc/h, meaning that r5 ∼ H−1

0 ,
therefore making this model very similar to GR within our Hubble horizon. Further tests
of this model against simulations and large scale structure data have been performed in
[323,324].

5.6.3. Constraints on Brans–Dicke Theory

As mentioned previously, the most stringent constraint on JBD comes from solar
system tests, where the Cassini mission put the bound of ωBD > 40, 000 (see [33,325]).
However, under an efficient screening mechanism (invoking a specific potential), the
theory could still depart considerably from GR at cosmological scales. In an analysis
by [326], the authors used Planck [251], WMAP [316], SPT and ACT [327,328] data plus
constraints on BBN to set bounds on the JBD parameter. They assumed the scalar field to
have initial conditions such that the gravitational constant would be the Newton constant
today. With this, they found ωBD > 692 at 99% C.L. When the scalar was free and varied
as a parameter, they found ωBD > 890, which amounts to 0.981 < Geff/GN < 1.285
at the 99% C.L. In a more recent analysis by [262], the authors used the combined data
of the Planck CMB temperature, polarisation, and lensing reconstruction, the Pantheon
supernova distances, BOSS measurements of BAO, along with the joint 3× 2pt dataset
of cosmic shear, galaxy-galaxy lensing, and galaxy clustering from KiDS and 2dFLenS.
They took into account perturbation theory and N-body calculations from COLA and RAMSES
to compute the theoretical predictions for the power spectrum. They constrain the JBD
coupling constant to be ωBD > 1540 at the 95% C.L. and the effective gravitational constant,
Geff/G = 0.997± 0.029. They also found that the uncertainty in the gravitational theory
alleviates the tension between KiDS, 2dFLenS and Planck to below 1σ and the tension [243]
in the Hubble constant between Planck and the local measurements to 3σ. Despite these
improvements, a careful model selection analysis shows no substantial preference for JBD
gravity relative to ΛCDM.

5.6.4. Constraints on Horndeski Theories and Beyond

For Horndeski models, there has been a great effort by the Planck collaboration to test
the parametrised deviations of GR such as in (174) and (175) or in the α-formalism of [263].
However, in order to do so, certain conditions and restrictions on these parameters have to
be met, given the relatively limited constraining power of current data. The code used in
this case is the EFTCAMB code mentioned in Section 5.5.

In the Planck 2015 modified gravity paper [314], the authors considered Horndeski
models with αM = −αB, αT = αH = 0, and αK was fixed to a constant. This amounts to
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consider non-minimally coupled K-mouflage type models as in [263], with the only free
function being αM. Additionally, the analysis used the ansatz,

αM = α
today
M ap (185)

where α
today
M is a constant and p > 0 determines its backward time evolution. Furthermore,

they relate the evolution of αM to a linear (p=1) and exponential (p > 1, varying free)
parametrisation [314]. Using the Planck TT+TE+EE+BSH data set combination (BSH
standing again for BAO, SN and local Hubble constraints) they find α

today
M < 0.043 (95%

confidence level) for the linear case and α
today
M < 0.062 and p = 0.920.53

0.24 (95% confidence

level) for the exponential case. ΛCDM is recovered for p = 1 and α
today
M = 0, therefore

placing relatively strong limits on possible deviations of Einstein’s GR.
As we discussed above, the gravitational wave event GW170817 constrained the Horn-

deski theory to be effectively composed only of Brans–Dicke models and cubic Galileons,
and the latter are effectively ruled out by ISW observations. This then limits the interest on
an overall analysis of Horndeski models in general. However, in [329], the authors analysed
Horndeski models that still can have non-trivial modifications to GR, possible at the level
of linear perturbations, and they confirmed the conjecture by [266] that (Σ− 1)(µ− 1) ≥ 0
for surviving models.

As an extension beyond this review, DHOST models, as mentioned above, can also
provide an interesting phenomenology and are able to evade certain constraints affecting
the Horndeski theories. References [330,331] studied DHOST models that present self-
acceleration, and Reference [332], among others, have studied the astrophysical signatures
of these models. However, their theoretical modelling has not been implemented yet in
computational tools capable of analysing the full Planck CMB dataset. Finally, the authors
of [333] performed a cosmological constraint analysis, assuming the form αi = αi,0aκ on
these surviving Horndeski models, and using Planck and BICEP2/Keck [334] CMB data
and galaxy clustering data from SDSS and BOSS, they found that when setting the kineticity
to the following value αK = 0.1a3, the αM,0 parameter has an upper limit of 0.38 when
αB,0 6= 0 and 0.41 when αB,0 = 0 at the 95% C.L. More importantly, they conclude that
the effects of Horndeski theory on primordial B-modes (which at the time were expected
to be measured accurately by BICEP/KECK2) are constrained by CMB and LSS data to
be insignificant at the 95% C.L. However, they draw the attention to the fact that the
assumptions on some parameters, for example, the assumed form of the kineticity, have
major and dramatic effects on these results. In conclusion, the theory space of Horndeski
models has been mostly ruled out by measurements of the ISW effect and the combination
of CMB and large scale structure, when considering the gravitational wave event GW170817
and its electromagnetic counterpart GRB170817A. On the other hand, beyond Horndeski
theories, such as DHOST, seem promising, but computational tools required to do a proper
cosmological analysis are not available yet, so the models can only be constrained by
astrophysical observations so far.

6. Conclusions and Perspectives

Scalar-tensor theories are among the most generic and plausible extensions to ΛCDM,
with potential relevance to much of astrophysics and cosmology. They must be screened to
pass solar system tests of fifth forces. In this review, we have presented the most commonly
screened modified gravity mechanisms and introduced them using an effective field theory
point of view. The effective point of view is taken by first selecting a background, which
could be cosmological, astrophysical or local, in the solar system. The coefficients of
the different operators depend on the environment. This is a feature of all the screening
mechanisms—physics is dependent on the distribution of matter—and gives them relevance
to various different types of environments on a range of scales.

The screening mechanisms can be divided into two categories. The non-derivative
mechanisms consist of the chameleon and Damour–Polyakov cases. The derivative ones
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are the K-mouflage and Vainshtein scenarios. The latter lead to scale-independent modifi-
cations of gravity on large scales. For models with derivative screening and having effects
on large cosmological scales, the effects on smaller scales are reduced due to the strong
reduction in fifth force effects inside the K-mouflage and Vainshtein radii. Nonetheless, the
force laws on short scales in these scenarios deviates from 1/r2 and leads to effects such as
the advance of the periastron of planets and effective violation of the strong equivalence
principle in galaxies, both of which afford tight constraints. However, there is still some
capability for ground-based experiments to test Vainshtein-screened theories [91]. The time
dependence induced by the cosmological evolution is not screened in K-mouflage and
Vainshtein screened models, which also leads to tight bounds coming from solar system
tests of gravitation.

The chameleon and Damour–Polyakov mechanisms, on the other hand, have effects on
scales all the way from the laboratory to the cosmos and must be taken on a case-by-case ba-
sis for each experimental setup and astrophysical observation. This makes the comparison
between the short and large scale physics richer and leads to more complementarity be-
tween astrophysical and laboratory tests. For the symmetron, an experiment with a length
scale between objects d typically best constrains theories with mass parameter µ ≈ d−1. If
the mass were larger, then the scalar force between objects would be exponentially sup-
pressed (as in (114)), while if it were smaller, the field would remain near φ = 0, where it
is effectively decoupled from matter. It is, therefore, desirable to employ a range of tests
across as many length scales as possible. There is a notable exception to this general rule: if
the ambient matter density between objects is of the order of the symmetry-breaking value
ρamb ≈ µ2M2, then the symmetron is essentially massless. This enables even long-ranged
experiments to test symmetron theories with µ� d−1 at that particular value of M.

The chameleon does not have a fixed mass parameter and hence there is more overlap
between various experiments’ capabilities to test the theory. Here, the differentiating feature
tends to be when objects of a particular size become screened. If a given experiment’s
source and/or test mass is screened, then the experiment’s capability to test the theory is
strongly suppressed. Small values of the chameleon parameters {M, Λ} correspond to even
microscopic objects being screened, so only small-scale experiments are able to test that
region of parameter space. One can observe this general trend in Figure 1: the bottom-left
corner is constrained by particle physics experiments, the middle region by atomic-scale
experiments, and the upper-right region by experiments employing macroscopic test
masses such as a torsion balance. This trend continues with astrophysical tests constraining
the region further above and to the right of the parameter space illustrated in the figure.

We have seen that, although screening mechanisms are easily classified, empirical
testing is most often performed at the model level. Some of these models are archetypal,
such as the f (R) models of the Hu–Sawicki type for chameleons, the symmetrons for
Damour–Polyakov, and the nDGP model for Vainshtein. For K-mouflage, there is no such
template, although specific models such as the “arctan" are promising because they pass
the solar system tests. On cosmological scales, it is easier to test many theories at once,
e.g., through the effective field theory of dark energy. Unfortunately, the link between the
large scales and the small scales where screening must be taken into account is then lost.
This is also a problem on cosmological scales where non-linear effects must be taken into
account for weak lensing, for instance, and bridging the gap beyond perturbation theory
and highly non-linear scales necessitates tools such as N-body simulations, which may
be computationally expensive. A parameterisation of screening mechanisms valid from
laboratory scales to the cosmological horizon would certainly be welcome. In the realm of
non-derivative screenings, a parameterisation that exists and depends only on the mass and
coupling dependence as a function of the scale factor the Universe allows to reconstruct
the whole dynamics of the models, on all scales [53,88]. The same type of parameterisation
exists for K-mouflage where the coupling function A(a) and the screening factor Z(a) are
enough to reconstruct the whole dynamics too [280]. For Vainshtein and generalised cubic
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models defined by the function G3, this should also be the case, although it has not yet
been developed.

Fortunately, the space of theories that still need to be tested has drastically shrunk in
the last few years. The models with the Vainshtein mechanisms and some influence on large
scales are restricted to theories parameterised by one function G3, which must be non-trivial
because the simplest case, the cubic Galileon, has been excluded by observations of the
Integrated Sachs Wolfe effect. Quartic and quintic Galileons are powerfully constrained
by GW170817, the observation of a gravitational wave event with a near-simultaneous
optical counterpart. Of course, theories with the Vainshtein property and no link with the
cosmological physics of late-time acceleration of the Universe’s expansion are fine, although
the parameter space is restricted by galaxy-scale tests. On the thin-shell-screening side, wide
regions of chameleon and symmetron parameter space are ruled out by laboratory probes
and a largely complementary part by astrophysical tests involving stars and galaxies. The
n = 1 Hu–Sawicki theory—the workhorse chameleon-screened model for over a decade—is
now constrained by galaxy morphology to the level fR0 < 1.4× 10−8 [186], such that it can
no longer have appreciable astrophysical or cosmological effects. The phenomenological
description of DHOST models is less developed, and it would be interesting to see whether
and how these models could answer some of the pressing questions in cosmology such as
the origin of the acceleration.

Future observations on cosmological scales from upcoming surveys such as Euclid will
certainly provide a host of new results on screened models such as K-mouflage or nDGP.
Only recently has it been realised that galactic scales afford strong probes of screening,
and many more tests will likely be developed in the future. In the solar system, future
satellite tests [335], which will test the equivalence principle down to a level of 10−17 in the
Eötvos parameter, should also constrain screening mechanisms of the non-derivative type
[336,337]. Finally, laboratory experiments ranging from the search for new interaction with
Casimir configurations to atom interferometry should also provide new possibilities for
the detection of screened modified gravity. While we have focused in this review on the
relevance of screened scalar fields to the physics of dark energy, it may also be relevant to
the other missing pillar of ΛCDM, dark matter. This is a key target for many upcoming
astrophysical and cosmological surveys. Much less is known about screening in this regard,
although fifth forces are clearly degenerate with dark matter in determining diverse objects’
dynamics.

In conclusion, screening is a crucial ingredient in the physics of light scalar fields.
Testing it with the next generation of experiments and observations may well lead to
surprises and new discoveries.
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Notes
1 A term in ϕ2ηµν could also be introduced leading to a contribution to the mass of the scalar field proportional to δT. This

term represents a density-dependent contribution to the scalar mass, which would naturally occur in the case of the chameleon
mechanism as the perturbation to the scalar mass by the local overdensity and does not alter the discussion that follows.

2 This follows from the coupling of the Newtonian potential to matter, LN = −ΦNδT.
3 One can also introduce the screening factor λA =

βA
β(φ0)

whereby screening occurs when λA ≤ 1. The screening factor is also

related to the mass of the thin shell ∆MA as ∆MA
MA

= 3 ∆RA
RA

= λA where ∆RA is its width and (MA, RA) are respectively the mass
and the typical radius of the object.

4 To be pronounced as camouflage.
5 Equation (21) should be understood as integrated over a ball of radius r. The left hand side is proportional to the point mass and

the right hand side to the volume of the ball
6 This inequality can be understood as ∆ΦN ≥ Λ5

2β(φ0)mPl

∫
d3r∆−1(r) where the integration volume is taken as a ball of radius r

and ∆−1(r) = − 1
4πr .

7 As the background metric is the Minkowskian one, the use of Fourier modes is legitimate.
8 This theorem states that only potentials in 1/r and r2 lead to closed trajectories.
9 The usual Casimir interaction due to photon fluctuations is obtained using Dirichlet boundary conditions for the electromagnetic

modes corresponding to the limit of infinite fine structure constant [93]. In the scalar case, the same Dirichlet boundary conditions
correspond to the limit where the density in the boundaries is considered to be very large compared to the one in the vacuum
between the plates. In this case, the minimum of the effective potential almost vanishes in the plates. This applies to screening
models of the chameleon or Damour–Polyakov types. For K-mouflage and Vainshtein screenings, the scalar profile is dictated by
the presence of the Earth, and therefore, the plates have very little influence and thus do not lead to classical and quantum effects.
The only exception to this rule appears for Galileon models where planar configurations do not feel the field induced by the
Earth. In this case, planar Casimir experiments lead to a constraint on the conformal coupling strength β ≤ 0.05 [91].

10 This reasoning, as we will see, does not apply to the symmetron case as the field vanishes between two plates when very light.
11 The response of scalar fields coupled to pointlike objects was considered in detail in [117,118], but for our purposes, the

approximate result of Equation (113) will suffice.
12 https://www.desi.lbl.gov/ (accessed on 15 November 2021)
13 https://www.euclid-ec.org/ (accessed on 15 November 2021)
14 https://www.lsst.org/ (accessed on 15 November 2021)
15 https://roman.gsfc.nasa.gov/ (accessed on 15 November 2021)
16 https://camb.info (accessed on 15 November 2021)
17 https://class-code.net (accessed on 15 November 2021)
18 https://labs.utdallas.edu/mishak/isitgr/ (accessed on 15 November 2021)
19 https://github.com/sfu-cosmo/MGCAMB (accessed on 15 November 2021)
20 http://miguelzuma.github.io/hi_class_public/ (accessed on 15 November 2021)
21 http://eftcamb.org (accessed on 15 November 2021)
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