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Abstract

Observational cosmology is a rapidly evolving field. Thanks to technological advance-
ments, the advent of big data, machine learning, and international collaborations, there have
been significant advances in cosmology in recent years, which have greatly enhanced our
understanding of the universe. Observational cosmology aims to thoroughly test theoretical
predictions about the expansion history of the universe and the evolution of cosmic structure
over time. This is achieved through cosmological surveys associated with a variety of ob-
servables. Measurements derived from sources such as the cosmic microwave background
(CMB), exemplified by the Planck satellite’s detailed mapping of the CMB’s temperature
fluctuations, and the distance-redshift relationship using Type Ia supernovae, as observed in
projects like the Supernova Legacy Survey, provide essential data. Baryonic acoustic os-
cillations (BAO) observed in the clustering of galaxies, such as those charted by the Sloan
Digital Sky Survey (SDSS), along with the observed growth of cosmic structure through
galaxy clustering and gravitational lensing phenomena, as investigated by surveys like the
Dark Energy Survey (DES), the Kilo-Degree Survey (KiDS) and the Hyper Suprime-Cam
(HSC), all contribute to a coherent picture.

The collective evidence from these surveys indicates that deviations from the predictions
of the ACDM (Lambda Cold Dark Matter) standard cosmological model are minor, typically
within a few percent. However, the next phase in this research program is to achieve even
greater precision and accuracy in our measurements to robustly challenge the ACDM model
with empirical data. Current and upcoming experiments, such as the Euclid mission, the
Nancy Grace Roman Space Telescope and the Vera C. Rubin Observatory’s Legacy Survey of
Space and Time (LSST), have been meticulously designed to reduce statistical uncertainties
in cosmological measurements, aiming to surpass the current state of the art. Nonetheless, as-
suming that these surveys successfully gather data, it is anticipated that the primary challenges
in our quest for deeper cosmological insights will arise from systematic uncertainties. Thus,
the future challenges we face are not solely about improving statistical precision but also in-
volve identifying and mitigating sources of systematics that could influence the accuracy and
integrity of our cosmological findings. This thesis explores several crucial facets pertaining
to systematic uncertainties in cosmological inquiries. Moreover, considering that the con-
cordance of predictions across different surveys is essential for validating the cosmological
model, this thesis also encompasses a critical examination of inter-survey consistency.

The first major emphasis of this study is the mitigation of systematics associated with
photometric redshift estimation. An accurate characterization of the redshift distribution,
n(z), for the observed sample is crucial for cosmological analyses, particularly in the context
of weak lensing shear studies. To this end, I have improved the Self-Organizing Map (SOM)
method for photometric redshift estimation, which I refer to as SOMPZ. This approach, which
leverages unsupervised machine learning, was initially implemented for the DES Year 3 (DES
Y3). I have further enhanced it for the upcoming DES Y6 data set. The analyses in this thesis
show substantial improvements by substituting the Y3 SOM algorithm with an optimized
version that better addresses the intricacies of redshift estimation. Moreover, the integration
of g-band flux data has markedly enhanced redshift precision, achieving a reduction in the
overlap between redshift bins by as much as 66%. These advancements are key in refining
weak lensing redshift characterization, setting a higher standard not just for DES Y6, but also
for future stage IV surveys like the Rubin Observatory.



The second pivotal subject of this thesis is an empirical approach to model selection,
with a focus on explicitly balancing parameter bias against model complexity. This approach
utilizes synthetic data to calibrate the relationship between bias and the y? difference between
models. It enables the interpretation of y? values obtained from real data, even when catalogs
are blinded, facilitating informed decisions regarding model selection. This method is applied
to tackle the challenge of intrinsic alignments, a significant systematic uncertainty in weak
lensing studies that substantially contributes to the error budget in modern lensing surveys.
Specifically, I compare two commonly used models, nonlinear alignment (NLA) and tidal
alignment & tidal torque (TATT), against bias in the Q, — Sg plane, with a particular focus
on the DES Y3. In this case, there is a roughly a 30% chance that were NLA to be the fiducial
model, the results would be biased (in the Qy, — Sg plane) by more than 0.30 .

Lastly, the third focus of this thesis involves the application of several tension estima-
tors to assess the DES large-scale structure measurement and Planck cosmic microwave
background data. These tension metrics are evaluated for their responsiveness to artificially
introduced tension between the two data sets using synthetic DES data. Given the importance
of tensions, which represent discrepancies in cosmological parameter measurements across
different experiments, identifying them is critical. Statistical significant tensions may hint at
novel physics beyond the standard cosmological model, or unaccounted systematics. These
tension metrics are then applied to compare Planck and actual DES Y1 data. The parameter
differences, Eigentension, and Suspiciousness metrics yield consistent results on both simu-
lated and real data, while the Bayes ratio stands out due to its dependence on the prior volume.
Using these metrics, we calculate the tension between DES Y1 3 x 2pt and Planck revealing
that the surveys are in approximately 2.30 tension under the ACDM paradigm. This suite
of metrics provided a robust tool set for testing tensions in the DES Y3 data, where we found
approximately 0.70 tension to Planck 2018 under the ACDM paradigm.

In summary, the projects that compose this thesis are dedicated to the development and
enhancement of statistical and machine learning methodologies for the analysis of extensive
data sets in large-scale structure surveys.
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Chapter 1

Introduction

In this chapter, I will provide an overview of the foundational topics that underpin this thesis.
Section|[1.1]delves into the cosmological background, offering an overview of the Standard Model
of Cosmology and its general relativity foundations. It also elucidates several key concepts that
are central to the thesis. Section serves as an introduction to some of the primary techniques
that cosmologists use to study the cosmos — galaxy clustering and weak gravitational lensing.
This section outlines the formalism and elucidates the challenges associated with contemporary
cosmological observations. As much of cosmological research relies on statistical techniques,
Section introduces a number of fundamental statistical concepts that will play a pivotal role
throughout the entirety of the thesis. In recent years, Machine Learning has been emerging in
cosmology as well. One of the key contributions of this thesis uses an unsupervised machine
learning technique, so I will review some key concepts here as well. Section provides
an overview of the thesis structure, offering a roadmap for the subsequent chapters and their
interconnections.

1.1 Standard Model of Cosmology

The Expanding Universe

In the early 20th century, astronomers found that the spectral lines in the light from distant galaxies
were shifted towards the red end of the electromagnetic spectrum. This shift, known as redshift,
was first observed by Vesto M. Slipher (1917), and plays a central role in this thesis. The redshift
quantifies the relative change in a spectral line’s wavelength compared to its original wavelength,
denoted as A,,;. It can be calculated using the formula:

P
=29 . (1.1)

/lemit

While the intrinsic motion of a galaxy relative to the reference coordinate system can cause a
redshift, commonly referred to as the Doppler redshift, Edwin Hubble compared the redshift of
galaxies to their distance from Earth (Hubble, 1929), finding that galaxies farther away had larger



redshifts, which indicated that they were receding from us. This relationship is now known as
Hubble’s Law, and can be expressed as

v = Hod, (1.2)

where v is the recessional velocity, d is the distance to the galaxy, and Hy is the Hubble constant.
The key insight here is that this observed redshift of galaxies is not due to any peculiar motion
of the galaxies themselves, but rather represents a fundamental property of the universe itself.
In fact, theoretical models by Alexander Friedman (1922) and Georges Lemaitre (1927), based
on Einstein’s field equations in general relativity (Einstein, 1916), independently predicted an
expanding universe. Friedmann showed that the universe could be described as expanding or
contracting, and the scale factor a(z) was introduced to quantify how the size of the universe
changes with time. It is related to the cosmological redshift, z, as

_a(t)

¢ a(t)

where its value at the present age of the universe is defined to be a(#yp) = 1. It is also useful to
define the Hubble rate in terms of the scale factor
1da
H(t) = ——. 1.4

(n=—- (1:4)
Those works, alongside with the works of Howard Robertson (1929) and Arthur Walker (1937)
played a pivotal role in establishing the expanding universe. They also formed an early theoretical
basis for the Cosmological Principle, by describing the metric of a universe that is both homoge-
neous and isotropic at large scales. We will look into the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric in more detail in Section|[1.1.1}

1, (1.3)

Big Bang and the Cosmic Microwave Background

Building upon the earlier work of Lemaitre, George Gamow (1946) made significant contributions
to the Big Bang theory, particularly with his work on Big Bang Nucleosynthesis (BBN). He
proposed that during the early moments of the universe, conditions were suitable for the fusion
of light elements. Gamow and his collaborators, Ralph Alpher and Robert Herman, predicted
the existence of residual radiation from the Big Bang, a sort of afterglow from the hot, early
universe (Alpher, Herman & Gamow 1948). In 1965, the discovery of the Cosmic Microwave
Background (CMB) Radiation by Arno Penzias and Robert Wilson was a monumental moment in
cosmology (Penzias & Wilson 1965). This discovery provided strong empirical evidence for the
Big Bang theory, as it was the predicted remnant radiation from the universe’s hot, dense, early
state. Subsequent observations confirmed the predictions of Big Bang Nucleosynthesis regarding
the abundances of light elements (like hydrogen, helium, and lithium) in the universe (Peebles
1966;Yang et al. 1984). The Hot Big Bang model, which describes the universe as evolving from
an extremely hot and dense initial state, not only explains the expansion of the universe but also



provides a coherent framework for understanding the formation of basic elements and the cosmic
background radiation.

Despite its successes, the Big Bang Theory faced challenges, such as explaining the uniformity
of the CMB temperature, also known as the horizon problem (how regions of the universe far
beyond causal reach could have the same temperature), and the flatness problem (why the density
of the universe is so close to the critical value required for a flat universe, despite sensitive
dependence on initial conditions). These issues were later addressed with the introduction of
the inflationary paradigm in the 1980s (Guth 1981; Linde 1982; Albrecht & Steinhardt 1982).
Inflation proposes an exponential expansion in the universe’s first moments, stretching space-time
and evening out temperature differences, and driving the universe’s density towards the critical
value for flatness, regardless of initial conditions.

Dark Matter and Dark Energy

The latter part of the 20th century in cosmology was marked by two monumental discoveries
that profoundly changed our understanding of the universe: dark matter and dark energy. These
components are not directly observable but are inferred from their gravitational effects and the
expansion of the universe, respectively. The first galaxy surveys also started to provided evidence
of inhomogeneity and anisotropy in the distribution of galaxies at small-scales (Geller & Huchra
1989; York et al.[2000; Colless et al. 2001).

Vera Rubin and Kent Ford’s observations of the rotation curves of galaxies provided crucial
evidence for dark matter (Rubin & Ford, 1970). Their observation that stars in galaxies rotate
at such speeds that they could not be held together by the gravitational pull of the visible matter
alone, suggested the presence of an unseen mass, or dark matter. Observations of gravitational
lensing (Tyson et al., 1984), where the light from distant galaxies is bent by the gravitational field
of a foreground object, further supported the existence of dark matter. In addition, more detailed
studies of the CMB by Bennett et al. (1994) provided indirect evidence for dark matter through the
analysis of the temperature fluctuations in the CMB. These fluctuations reflect density variations
in the early universe, which align more closely with theories including dark matter.

In 1998, two independent research teams, the High-Z Supernova Search Team (Riess et al.,
1998) and the Supernova Cosmology Project (Perlmutter et al., 1999), made an astounding
discovery: the expansion rate of the universe is accelerating. They used Type la supernovae as
standard candles to measure the expansion rate and found that distant supernovae were dimmer
than expected, indicating that the universe was expanding more rapidly than in the past. This
acceleration implied the existence of an unknown energy component, now known as dark energy,
working against the pull of gravity and responsible for the accelerated expansion. Einstein’s
cosmological constant A, once introduced to allow a static universe and later abandoned (Einstein,
1916), gained new significance as a plausible candidate for dark energy.

ACDM and the Era of Precision Cosmology

The 21st century, often described as era of precision cosmology, is characterized by unprecedented
advancements in observational techniques, data analysis, robust theoretical frameworks, and
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international collaboration. The Planck satellite has provided incredibly detailed observations of
the cosmic microwave background (CMB) and the early universe (Planck Collaboration et al.,
2016, 2018). Large-scale survey projects, including the first ones like the Sloan Digital Sky
Survey (SDSS) (York et al., 2000), Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett
et al., 2003), the current Stage III surveys like the Kilo-Degree Survey (KiDS) (de Jong et al.,
2013), the Hyper Suprime-Cam survey (HSC) Aihara et al. 2018; Hamana et al. 2020, and the
Dark Energy Survey (DES) DES Collaboration 2016a; Troxel et al. 2018, and the forthcoming
Legacy Survey of Space and Time (LSST) by the Vera C. Rubin Observatory (Ivezic et al., 2019)
Nancy Grace Roman Space Telescope (Spergel et al., 2015), and Euclid (Laureijs et al., 2011),
are mapping millions of galaxies, providing a comprehensive view of the universe’s large-scale
structure.

The standard model of cosmology, often referred to as the Lambda Cold Dark Matter (ACDM)
model, is the prevailing framework used to describe the properties and evolution of the universe.
It employs Einstein’s general relativity to characterize the gravitational phenomena of the universe
and posits a large-scale uniformity and isotropy, also incorporating the observed expansion of
the universe. In addition, it integrates observations from the several probes described above to
elucidate the expansion history of the universe. In this model, dark energy, in the form of the
cosmological constant, drives the accelerated expansion of the Universe, while cold dark matter
plays a major role in explaining the formation and the clumping of structure.

The ACDM model continues to be tested against increasingly precise data. The nature of
dark energy and dark matter remains a central focus. Precision cosmology aims to resolve current
puzzles like the apparent Hubble tension: discrepancy between the current rate of expansion of
the universe as predicted by CMB measurements, which are based on the early universe under the
ACDM model, and the rate derived from direct measurements in the local universe (see Valentino
et al. (2021) for a review, and also Riess et al. (2019); Verde et al. (2019)); and the possible o
tension: the conflict between the amount of clustering of matter in the universe as predicted
by ACDM, when calibrated with CMB observations, and observations in the late-time universe
through galaxy surveys and other structure measurements (Dark Energy Survey Collaboration
& Kilo-Degree Survey Collaboration, 2023; Miyatake et al., 2023; Sugiyama et al., 2023; DES
Collaboration, 2018; Asgari et al., 2021). The resolution of these apparent tensions is crucial for
enhancing our understanding of the fundamental constituents of the Universe and may point the
way to a new paradigm in cosmology.



1.1.1 Framework and Parameterization

In this subsection I provide a summarized introduction to the theoretical framework and the
components of the cosmological model we will use throughout this thesis. I refer to Dodelson &
Schmidt (2020) for a detailed read on the topics presented here.

Cosmology uses Albert Einstein’s theory of general relativity as the basis for describing
the gravitational behavior of the universe. The Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, g,,, for a Euclidean, or flat, universe is given by

ds? = g,y defdx” = —dt* + a*(1)6;;dx’dx’ (1.5)

where I am using Einstein’s summation notation, and the units where 72 = ¢ = kg = 1. Applying
the field equations of General Relativity to the FLRW metric, we can derive the Friedmann
equations, which relates the evolution of the scale factor with the composition of the homogeneous
constituents in the universe:

. 2
H*(1) = (%) = S”TGp(t), (1.6)
and i(6) G
T =3 03], (1.7)

where G is Newton’s constant, p(7) is the energy density in the universe as a function of time,
and p(¢) is the pressure.

Distances

The comoving coordinate system, is a spatial coordinate system that is stationary relative to the
large-scale motion of the universe. This is a convenient system that allows us to think of the
physical distance between us and an object in an expanding universe as the comoving distance
scaled by the scale factor:

d(x,1) =a(t)x. (1.3)
It can be written in terms of the scale factor a(#) and the redshift z as:
© o dr’ boda ¢ d
)((t):/ ; :/ T —. (1.9
¢oalt)  Jana?H(a’) Jo H(Z)

Measurements of the cosmic expansion are generally done in terms of two types of cosmo-
logical distances, the angular diameter distance and the luminosity distance. The former relates
the apparent angular size of an object in radians, 6, to its physical size, D:

D
dy=—. 1.10
A= (1.10)
In ACDM, with Euclidean geometry, we have § = (D/a) y(a), and therefore we can re-write
X
A2 =ay = 2—. 1.11
AT (11D



The luminosity distance, relates the observed flux (integrated over all frequencies), F, of an object
to its intrinsic luminosity, L, emitted in its rest frame:

L
g = X (1.12)

dp =+—=:;
L 4dnF a

The luminosity and angular diameter distances are related by
dr = (1+2)%d,. (1.13)

The cosmological redshift, angular diameter distance and luminosity distance are the three
basic distance metrics used in the field of observational cosmology.

Components

The ACDM universe contains three basic density components: radiation, matter, and dark energy.
The radiation term includes all highly relativistic particles, like photons, which travel at or near
the speed of light and are significant in the early universe. The matter term is divided into baryonic
matter and dark matter. In a cosmological context, baryons refers collectively to all known forms
of matter that emit or absorb photons, including protons, electrons and even neutrons that make
up the visible components of galaxies. Dark matter is a phenomenological term to describe that
mass component that must be present to explain gravitational effects observed but which cannot
be accounted for by baryons. Dark energy accounts for the observed fact that the expansion of
the universe is speeding up over time, contrary to the expectations from gravitational attraction
alone.

On cosmological scales (> 10 Mpc) each of these is well approximated as a continuous ideal
fluid, which is governed by a linear equation of state relating the pressure p and energy density
P, in the form

Di = Wip; (1.14)

where the subscript i denotes the component, and w; is the dimensionless state parameter. Ap-
plying equation 1.6/and the redshift evolution can be derived as,

pi(2) = pio(1 + )30, (1.15)

where p;o = pi(z = 0) is the present-day mean density of component i. Let us define the
present-day density parameter of component i in units of the critical density
_ Pio

Per

Q; (1.16)

where p¢; = 3H§ /8nG is defined as the threshold density, below which a universe with no dark
energy expands forever. Many observable probes are sensitive to physical rather than comoving
densities, which mean it is often convenient to cast the density parameter in a form that depends on
the expansion rate, Q;42. The factor & represents the Hubble parameter in units of 100 km/s/Mpc,
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Figure 1.1: Taken from Dodelson & Schmidt (2020): Energy density as a function of scale factor
for different constituents of the Euclidean fiducial cosmology. Matter (o< a~3), radiation (oc a=#),
and a cosmological constant. All are in units of the critical density today. Even though matter
and the cosmological constant appear to dominate today, at early times, the radiation density was
largest. The epoch at which the energy densities of matter and radiation are equal is a.4, while
the epoch at which the densities of matter and cosmological constant match is ax.

which accounts for the uncertainty in the actual value of the Hubble constant and allows for a way
to express results that are somewhat independent of this uncertainty. We can then re-write the
Friedman’s equation in a more convenient form:

H(z) = Hy[Qum(1 +2) 2+ Qu(1+2)™* + Qi (1 + 2) 72 + Qe (2)] /2. (1.17)

The expansion is initially driven by radiation, with the universe gradually evolving through
matter and finally dark energy dominated eras. Figure shows the type of density energy that
dominates in different epochs of the universe, as a function of the scale factor. Setting # = 7o,
equation|I.17]yields 1 - Qg = Qp +Q,+Qqe, Where Q is the curvature density. Qg > 0 implies a
spatially finite closed universe, which will recollapse; Qg < 0 indicates an infinite open universe,
which will expand forever; and Qg = 0 implies an infinite, perpetually expanding universe with
flat geometry. The latter is favored by all observational evidence, therefore a flat universe is what
we have been assuming and will continue to assume in what follows.



1.1.2 Power Spectrum

Let us begin with a general treatment of the 2-point statistics of a generic density field p(X). The
density contrast of the field can be defined as

§(X) = M, (1.18)

where p is the mean value of the density field. Then, by definition, the mean value of §(X) is
(6(x)) =0, (1.19)

where the brackets stand for the average over the entire space. The next step in describing the
statistics of the density fields is to consider the two-point correlation function,

£(X,5) = (6(X)s(¥)), (1.20)

which encodes the information about statistical dependence of the density field between any two
points.

We are going to assume the field to be homogeneously and isotropically distributed, which
implies there is no preferred position or direction. As a consequence, the correlation function
will depend only on the magnitude of the difference between X and ¥,

- . homogeneity - -, lsotropy N
Exy) = TER-Y) =7 Edx =YD, (1.21)

While the statistical interpretation of the correlation function is quite intuitive, it is often useful

to consider its Fourier transform, leading to the definition of the so-called power spectrum, P(k),

L0 = [ e [ v e

d3xe—ik~f/d3ye—ik'-§§()-c>_y)

(5(k)5(K"))

_ / d3xe—i(lz+l?’)~5c'/ d3ze_”?'zf(2), ( I=¥-5 )
= (27)363 (k +K')P(k), (1.22)
where we have used homogeneity in the second line and
Pk’ = / Bze ®Zg(z) = P(IF)) = PK). (1.23)

Note that the dependence only in the magnitude of k’ is a manifestation of isotropy in £ and that we
are allowed to exchange P(k’) by P(k) in due to the Dirac delta function, 6p. Specifically,
since the correlation function for the density field depends only on the distance between two
points, the fluctuations in the Fourier modes are uncorrelated unless the two modes have equal
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and opposite wave vectors, which is the information encoded in the delta function. Alternatively,
one can also integrate (1.22) to write the power spectrum as

d3 Koo . -,
P(k) = / ) (0(k)o(k)). (1.24)

The power spectrum is a crucial statistical tool in cosmology, with a simple physical interpre-
tation. We can think of the random field of mass density fluctuations in the universe at a given time
as a collection of Fourier modes, or a superposition of standing waves with varying wavelengths.
In this context, each kK mode within the matter power spectrum corresponds to a sine wave with a
specific angular frequency, and the power P(k) represents the amplitude squared of that wave.

Post-inflation, it is widely held that the power spectrum of density perturbations adheres to a
power-law distribution with an index n; approximately equal to 1. This linear shape is called the
Harrison-Zel’dovich-Peebles spectrum, and can be written as

Ppr(k,a) = AT (k,a)k™, (1.25)

where Ay is the amplitude of P,,, and T'(k, a) is the transfer function, describing later linear
modifications to the power spectrum. Before matter-radiation equality, Fourier modes with
A < dpy are suppressed due to the dominance of radiation pressure, where dy is the horizon
distance. This defines a threshold k; above which growth is suppressed. As dy expands, k; shifts
downwards, and larger overdensities are gradually allowed to begin growing. The position of
the peak is frozen at the time of equality, k;(a.4) = ko, and subsequent growth, governed by the
growth function D, (a), distributes power evenly across all £ modes.

The growth function describes how these initial perturbations generated in the radiation-
dominated epoch are amplified under the influence of gravity, when the universe transitions to a
matter-dominated phase

P(k,a) = P,.(k,a)D%(a), (1.26)

where P(k, a) is the linear power spectrum of matter at late times.

With the onset of dark energy dominance (A in Figure [1.1), an additional complexity is
introduced to the evolution of cosmic structure. Dark energy begins to oppose the gravitational
attraction that drives the growth of structures. This interplay is captured by the growth function,
which shows a modified growth rate in the presence of dark energy. Therefore, the growth
function is sensitive to the overall matter density of the universe and the properties of dark energy,
especially its equation of state w.

The matter power spectrum today has the approximate form

k k<k0

1.27
k3 k> k. (1.27)

P(k) {

Figure shows the matter power spectrum at redshift z = 0 in the fiducial ACDM cosmology
for different values of Q,. The shape of P(k) depends on the primordial spectrum and the peak
position indicates dy at equality, making it sensitive to Q4. The amplitude of the linear spectrum
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at a redshift of zero is set by a normalisation parameter oy, which by convention is defined as
the root mean square (rms) of overdensity fluctuations, averaged in spheres of comoving radius
8h~! Mpc. This is a key physical parameter describing the large scale clustering of the late-time
universe, and can be measured directly by any data set which is sensitive to P(k).

_ 10*

103

Pr(k) [(h"Mpc)3

102 ' A | ' Lol ' -
1073 1072 107! 100

k [hMpc™!]

Figure 1.2: Taken from Dodelson & Schmidt (2020): The matter power spectrum at redshift z = 0
in the fiducial ACDM cosmology (thick black line). The other lines show the result when varying
Qn, around the fiducial value, keeping 4 fixed and Q, + Q4 = 1. Changing Q, changes the epoch
of equality, k¢, and hence the shape of the matter power spectrum.

Theory makes no a priori predictions for the exact values of Ay, ng, og beyond ruling out
unphysical regions of parameter space. Thus, they must be treated as free parameters in the
cosmological model, to be constrained by observation. The way in which changes in the linear
fluctuation amplitude og affect P(k) is strongly degenerate with variations in the background
average mass density Qp,, and it is thus common to define best-constrained combinations for
particular observational probes (e.g. Sg = 0g+/Q,/0.3 in cosmic shear).
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1.2 Observational Cosmology

Observations of the large-scale distribution of galaxies allow us to study the large-scale structure
of the universe. Wide-field surveys, like the the ongoing Kilo-Degree Survey(KiDS) (de Jong
etal., 2013), the Dark Energy Survey (DES) (DES Collaboration, 2016a), and the Hyper Suprime-
Cam survey (HSC) (Aihara et al., 2018), have mapped millions of galaxies, providing important
insights into the properties of dark energy and the growth of structure.

In this section, I will review the basic theory of galaxy clustering and weak lensing — two
pivotal observables in the analysis of large-scale structure. Additionally, the role and impact
of photometric redshifts on these observables will be explored, alongside with the statistical
treatment of their two-point correlations: galaxy-galaxy, shear-shear, and the cross-correlation
of galaxy-shear. This section is mainly inspired and based on Dodelson & Schmidt (2020),
Mandelbaum (2018), Dodelson (2017), Liddle (2015), and I refer to these works for a more
complete read on the topics presented here.

1.2.1 Photometric Redshifts

Photometric redshift estimation is a critical piece in wide-field surveys analysis. These surveys
have the advantage of a great sky area coverage in a relatively short time, which compensates for
the lack of radial precision. The radial distances of galaxies can be estimated using photometric
redshifts, by making observations in multi-band color filters. The redshifts estimated using filters
are much less accurate than spectroscopic estimates, which measure the full spectra of light
emitted for each object separately. Spectroscopic surveys provide high-precision radial distances;
however, even though there are large spectroscopic surveys such as BOSS (Dawson et al., 2013)
and DESI (Levi et al., 2013; DESI Collaboration, 2023), they are very resource-intensive and
therefore observe far fewer galaxies.

The statistical power inherent in the large number of galaxies observed in photometric surveys
helps to mitigate the lower precision in the redshift estimation. In these surveys, galaxies are
sorted into redshift bins, a process analogous to tomographic imaging due to the stratified analysis
of data layers. These bins reflect the mean redshift estimate and its uncertainty. This limitation
has to be taken into account during the theoretical modeling such that the radial integrations of
the correlation functions are done in the redshift bins, and the redshift uncertainty is accounted
as a systematic error.

When modeling, we introduce a free parameter Az (along with a prior) that accounts for the
redshift uncertainty for bin i:

n'(2) = np(z = A7), (1.28)
where niPZ is the estimated redshift distribution for the galaxy sample under consideration. This
adjustment is crucial to accommodate the inherent uncertainties in the photometric redshift

estimates. The redshift distribution of galaxies within a specific bin, i, is expressed as né(z). The
mean angular number density for bin 7 is then given by the integral over the redshift distribution:

il = / dz nj (2). (1.29)
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Chapter [2| will delve into the details of photometric redshift characterization for weak lensing
source galaxies, in the context of the method used in the Dark Energy Survey.

1.2.2 Galaxy clustering

Galaxy clustering has long served as a pivotal cosmological probe, with its foundations tracing
back to the initial observations of complex patterns in the spatial distribution of galaxies across
the sky. The study of these patterns has advanced significantly over the years, informed by
sophisticated statistical analyses and the advent of large-scale surveys that provide comprehensive
samples of the universe.

Angular correlation function and angular power spectrum

In the absence of full redshift information, the use of the three-dimensional power spectrum,
detailed in Section is not feasible. Photometric surveys provide two-dimensional positions
for numerous galaxies but lack distance measurements. They do, however, collect multi-band
photometric information that facilitates the estimation of photometric redshifts. This enables the
use of the projected two-dimensional angular power spectrum to study of the cosmic structure.

Consider the projection of the galaxy density fluctuation &, (7, z), where z is the redshift in
a given direction 7 in the sky plane. Geometrically, we are projecting X = (x,x2,x3) in the
(x1,x2)-plane and locating a point on the plane by a two-dimensional vector n = (61, 6;). This
is called the flat-sky approximation. The projection of §,(7i, z) along some direction 7 in the sky
plane is accomplished as

5(7) = / d2W ()6, (7, 2), (1.30)
0

where W is the radial selection function, which is the probability of observing a galaxy at redshift
Z, such that

/Oodz W(z) =1. (1.31)
0

One can also write the selection function in terms of the redshift distribution of galaxies, ng, as
follows,

(1.32)

The angular number density of galaxies in the redshift bin i is independent of whether the bin is
parameterized by z of y, meaning that

dity = ny(z)dz = ny(x)dy, (1.33)

where né(z) is redshift distribution of the galaxy sample in this redshift bin. Therefore we can
also express W in terms of the coming distance as:

W(x) = / dy'n(x). (134)

12



As we have seen in Section|1.1.2] the power spectrum is the Fourier transform of the correlation
function. In this section, we denote the 2D power spectrum by C§ ¢ (£), such that
g8v8

: & i ®dee L[ tcoss
v = [ Laticy, - [Tl 0L [T ager
®dee ;
_ /0 S t0)CY,, (0 (1.35)

The 2D power spectrum can be expressed in terms of the 3D one as

. o We 0 s
Cha (0= [ a5y

Equations and allow us to utilize the two-dimensional statistics on galaxy clustering
from photometric surveys to infer the three-dimensional power spectrum and hence get insight in
the underlying mass distribution in the universe.

,Z(X)). (1.36)

Galaxy bias

Galaxies are biased tracers of the underlying total matter field. This concept was introduced by
Kaiser (1984) through the idea that galaxies are quite rare objects, standing on the peaks in the
matter distribution. The effect of this hypothesis in the correlation function of galaxies is an
increment relative to the mass by the so-called bias parameter, b:

0g(x) = b0y (x), (1.37)

linking relative fluctuations in the galaxy field d, to those in the matter field 6,,. The bias factor
is not directly measurable but must be inferred from observations, such as galaxy clustering
statistics, and can vary with galaxy properties such as luminosity, color, and morphology. At large
scales, we can safely assume a linear bias model, with a single parameter for each redshift bin i:

b'(z) =b', (1.38)

where the subscript “1” represents the linear term in the Taylor expansion of the galaxy density
field with respect to the matter density field. Then, the radial weight function for angular galaxy
clustering can be expressed as:

1
Wi (p) = by 2N d2 (1.39)
g nfg dX
On smaller scales, particularly those comparable to the sizes of galaxies or galaxy groups,
non-linear, stochastic, and scale-dependent aspects of biasing come into play. Galaxy bias is
determined by the physics of galaxy formation and evolution, which are influenced by the local
environment. Therefore, it is a function of both the scale and the redshift, with galaxies at higher
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redshifts exhibiting a stronger bias at small scales due to the nature of structure formation in the
early universe.

In cosmological analyses, galaxy bias is a nuisance parameter that must be marginalized over
or otherwise accounted for to extract precise measurements of cosmological parameters. If not
accounted for, it can mimic or mask the signatures of other effects, such as those from dark energy.

1.2.3 Weak lensing

Gravitational lensing, the deflection of light by matter as it traverses the cosmos, is a pivotal
phenomenon in observational cosmology. In its strong form, it can produce dramatic effects such
as the formation of multiple images of a single astronomical source. However, it is the subtle
regime of this process, known as weak lensing, that offers invaluable insights for cosmology.
Crucially, weak lensing serves as an unbiased probe of the total matter distribution, including
dark matter, independent of the complex galaxy bias that affects other observational methods,
such as galaxy clustering as we discussed in the previous section. By directly mapping the mass
distribution in the universe irrespective of the luminous matter, weak lensing allows us study the
cosmic structure and the dark sector, providing essential insights into the fundamental constituents
and evolution of the universe.

Lens equation

Consider a light ray traveling from a faraway source to an observer, separated by a distance Dy,
that passes near to a gravitational potential — represented by the shaded region in Figure -
which acts as a lens, at a distance Dyg from the source. We also define the line connecting the
observer to the lens as the z-axis and Dy, = Ds — Dgp, to be the distance between the lens and the
observer. There are three relevant angles that can be thought as vectors in the xy-plane containing
the sheared image: the true angular position of the source, ,5, the position where the observer sees
the light coming from due the lensing, 6, and the deflection angle, a.
From the relation between those three angles we can write the lens equation,

- - -

f=d-a), (1.40)

which reflects the fact that on its journey from the source up to the observer, light encounters
several lensings, undergoing multiple deflections due to the variation of the gravitational potential,
¢, along the line of sight. Let us define the projected gravitational potential

- 2 D
®(0) = D_/ dDLi‘p(DLHl Dy;to — Dp/c), (1.41)
s Jo
using the geodesic equation for the emitted light, one can show that
P
a'(0) = 2391(1)(0) (1.42)

where ' are the components of the 2D deflection angle.
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Figure 1.3: Figure adapted from Mandelbaum (2018)).

Distortion tensor

The surface brightness, S, of an object or region in the sky is defined as the flux (energy per unity
of time per unity of area) per solid angle. By definition, S remains constant no matter how far
the object is from the observer: the drop in the flux as the object moves away is compensated by
the increase in the physical size subtended by a square arcsecond. This conservation of surface
brightness is expressed as Su“_]ensed(ﬁ) = S'ensed(é).

The magnification u is the ratio of the lensed to the unlensed flux,

Slensed(é’) d26 d26
Sun-lensed ( B) dz :8 d,32

which is the Jacobian of the transformation from the source area d?8 to the image area d26. Using
the lens equation (1.40), the Jacobian matrix acquires the form

day _day
o (1-5" -~ (1 0

, (1.43)

u

— = - ¥ (1.44)
. Jda oa Ly
99 “w. - 01

Note that the off-diagonal terms are equal due to (1.42). Therefore, we are left with three
independent terms describing the effects of lensing: the convergence, «, and the two components
of shear, y; and >, composing the so-called distortion tensor, ‘¥;;,

K+ Y1 Y2 )
Y2 K=Y
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quantifying the deviation of the Jacobian matrix from unity. Figure|1.4/provides an illustration of
the effect of each of its components. Alternatively, its definition in terms of the projected potential
corresponds to

1 [0> 82 1 9% 0? 1 0°®
= —|=—=+-—=]|9, =—|—=-—=]| = — . 1.46
=22 (ae,% ae;) =50 (aeg 96 "= G50.00, (0
x>0 Y1 > 0 Yo > 0
K <0 v <0 o < 0

Figure 1.4: Graphical illustration of convergence and shear. The shaded circles represent an
un-lensed source, while the black ellipses are the same source under various types of distortion.

Convergence Power Spectrum

Convergence, k, describes the magnification or demagnification of images due to lensing. It is
directly related to the scalar potential of the mass distribution along the line of sight. The power
spectrum of this convergence quantifies the variance of these convergence fields as a function of
scale and hence is a direct probe of the matter power spectrum at different cosmic epochs. Let us
substitute the projected gravitational potential, defined via (1.42), in (1.46),

- 1 [Ps  DgD : :
@) = = [ dDL—==V?¢(x' = DL, D1)
= Jo S
Dg .
:/ dDLW(Dy,Ds)6(DpL6, Dy). (1.47)
0

The function W is usually referred to as the weighting function, since it weights the density along
the line of sight. Note that it resembles the radial selection function (1.30) we encountered in
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Section justifying the same notation (though with a slightly different interpretation). In
addition, the scale factor a is evaluated at a redshift corresponding to the distance Dy. We can
re-write Equation in terms of the comoving distance and redshift as

R Xs .
«(@) = /0 dx We(0)5(xd. x)- (148)

Now that we have the expression for the effect of lensing on a particular object, we can go
ahead and compute the two point correlation function of x between many lensed objects. In other
words, we can write the 2D power spectrum of « in the same way we obtained the one for ¢,

. X (Zmax) i J
cio = [ ay MO, (“ 1/ 2,z<X)), (1.49)

where, for each redshift bin i, we have

2
3H2Q i
2¢2 a(y)

] AH ) ’ dz X/ - X
We(x) = dy'n' (z(x") —=———. (1.50)
dy
X
The convergence power spectrum is related to the matter power spectrum via the redshift distri-
bution of the ensemble of galaxies at redshift bin i and bin j, explicitly showing that uncertainty
in the redshift distribution impacts the weak lensing analysis as well. Equipped with this power

spectrum, we are now able to write the shear—shear and galaxy—shear correlation functions.

Cosmic Shear

Cosmic shear is a phenomenon that involves the slight distortions of the images of distant galaxies
due to the bending of light by the gravitational field of matter. Shear-shear correlations are direct
correlations of the shapes of galaxies. If the distortion of galaxy shapes is random, the correlation
function should be zero at all separations. However, the presence of a cosmic shear signal would
result in a non-zero correlation function, indicating that the shapes of galaxies are coherently
distorted by intervening mass structures.

The two-point statistics that quantify correlations between the shapes of galaxies is captured
by a pair of two-point functions:

Y= (iyDye = iylye, (1.51)

defined for two populations of galaxies at redshift bins i and j, and with the angular brackets
denoting averaging over galaxy pairs separated by a particular angular distance 6. The subscripts
(t, %) indicate the orthogonal components of shear rotated into coordinate axes defined by the
separation vector between the galaxies:

(71> ¥x) = (=(y1c0s(2¢) + y2 sin(2¢)), —(y2 cos(2¢) — y1 sin(2¢))), (1.52)
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where ¢ is the polar angle of the vector connecting the lens and the source galaxy position. By
noting the equivalence of y = y; + iyx = 1 + iy2, and writing the shears in terms of their inverse
Fourier transforms it can be shown that

) = % / de £Jo(L6)CY () (1.53)
E9(0) = % / de €14(£6)Cl(0) (1.54)

where the Bessel function of the first kind,
Ja(x) = % /On ¢*¢8(0) cos(na)de, (1.55)

serves as an effective window function onto the angular shear spectrum. The distortions due
to cosmic shear are typically very small and not noticeable for individual galaxies without a
comparison to the undistorted shape which is unknown. However, by statistically analyzing the
shapes of many galaxies over a portion of the sky, we can detect a coherent pattern of alignment
and distortion. Cosmic shear is particularly powerful because it is sensitive to all matter, not
just the luminous matter we can see with telescopes. Therefore, it is a direct probe of the mass
distribution, and is less susceptible to some of the biases, such as galaxy bias, that can affect other
observables.

Galaxy-Galaxy Lensing

Position-shear correlations are correlations between the positions of galaxies and the shear of
background galaxies (galaxy-galaxy lensing). The tangential shear is related to the projected
mass distribution around the lens galaxy and is used to probe the dark matter halo properties of
the lens.

The tangential shear is related to the excess surface density AX around the lens galaxy by:

¥(R)Zerit = AZ(R) = (< R) - Z(R), (1.56)
where £(< R) is the mean surface density inside the radius R, X(R) is the surface density at
radius R, and X is the critical surface density defined as:

6‘2 DS
drG D LD LS ’

erit = (L.57)

The galaxy—shear correlation function captures the characteristic distortion of the shapes of
background source galaxies due the mass associated with foreground lenses. This is due to the
tangential shear, which gives rise to a correlation between the density field of the lens with the
distortion on the source via

Wi COWL(x) (g+ 12

1 dee ;i dee
ij _ tj —
W) = [ Gneocho= [ SEneo [ a——"—,

o ,Z(X)) :

18



By measuring the tangential shear as a function of radius from the lens galaxy, we can infer
the mass profile of the lens galaxy’s dark matter halo. This is particularly useful for understanding
the properties of dark matter, such as its distribution and its interaction with baryonic matter.

Systematics

In cosmological analyses, a significant amount of effort is dedicated to understanding and mitigat-
ing systematics to ensure that the constraints on cosmological parameters are robust. Systematic
errors can mimic real signals and lead to incorrect interpretations of the data. Unlike statistical
errors, which are random and can be reduced by increasing the sample size, systematic errors can
persist or even scale with the amount of data and need to be identified and corrected for to avoid
misleading conclusions about our cosmological analysis. There are several source of systematics
in large-scale structure analysis, both for galaxy clustering and weak lensing. I already touched
upon two sources of systematics in the previous subsections, redshift uncertainties and galaxy
bias, and in this subsection I will be introduction other two sources of systematics that enter in
our analysis, shear calibration and intrinsic alignments.

Shear calibration: While measuring the shear effect, a multiplicative error can be generated
by a variety of sources. For example, in ground-based telescopes the images of galaxies can be
blurred due to atmospheric effects. To produce the observed image, a point-spread function (PSF)
is convolved with the true image of the galaxy, and this process introduces a multiplicative error.

The multiplicative shear calibration is currently modeled using one parameter m' per redshift
bin, which affects cosmic shear and galaxy—galaxy lensing correlation functions, (1.54) and (1.58),
respectively, via

&) - (L+m)(1+m)E!, ()
Y0 — (1+ml)y (). (1.58)

We then marginalize over all four m’ independently, usually assuming Gaussian priors with mean
0 and width of about 0.01, which corresponds to a 1% uncertainty in the shear calibration in the
most recent analysis.

Intrinsic alignment: Besides lensing, there are several other physical effects that could cause
the alignment of galaxies shapes. Since we do not have access to the unlensed field, it is a quite
complex problem to determine whether these alignments are due to shear effects or are intrinsic
to the galaxy field. These intrinsic alignments (IA) are the major theoretical uncertainty for weak
lensing (Mandelbaum, 2018). I will discuss [As in detail in Chapter
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1.2.4 3Xx2-point correlations

Collecting the results from previous sections, we summarize the two-point correlation functions
for galaxy clustering, cosmic shear and galaxy—galaxy lensing:

,~ "y W’ (m/z )ng(fu/z’)() (412
wi () :/ J({’H)/ " u P5( " ,z()())
y Wi(x)W t+1/2
&)@ = armem) [Saeo) [ ax ("))(2 (X)P(s( *XI/ ,z<x>)
3 W, 5”/2,)( Wi (x)
W = avm) [ Toneo [a ) Pa(“”z,zm) (1.59)
%

Equation is the theory that depends on Q;, and o through the power spectrum. Theory is
compared to the data, which will be described in latter chapters. The comparison is done with
Bayesian statistics, which I describe in the next section.

Figure|1.5/shows the cosmological parameter contours obtained with this observables, as well
as with their combination, the 3x2-point correlation function for the Dark Energy Survey Year
3. We can see that the combined evaluation of these 3 two-point correlation function provides
strong constraints in the Q, and og parameters. Since these two parameters are correlated, it is
useful to introduce the S§ = 0g+/Q, /0.3 parameter.

1.3 Statistical Methods and Machine Learning

Statistical analysis is an integral part of cosmology, and we rely on it to analyse and interpret
vasts amounts of observational data. Statistical measures, such as the power spectrum and the
two-point correlation function — referenced in the previous sections — are vital for quantifying the
underlying properties of the cosmic structure and testing the predictions of different cosmological
models. This section aims to review additional statistical tools that are integral to the analyses
presented later in this thesis. In addition, this section will introduce some foundational concepts
of Machine Learning and preview a specific technique that will be instrumental in Chapter 2|

1.3.1 Bayesian Statistics

Bayesian statistics is grounded in a distinctive interpretation of probability as a measure of
certainty. Traditionally, probability is viewed as the long-run frequency of an event occurring
after numerous trials. This perspective is quite fitting for stochastic processes, such as those in
particle physics experiments where one can repeatedly observe and count occurrences, such as
particle decays, to establish probabilities. However, this frequency-based interpretation becomes
problematic when applied to one-off or unique events where repetition under identical conditions
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Figure 1.5: Taken from DES Collaboration (2022): Marginalized constraints on the three pa-
rameters og, Sg = 08/Qm/0.3, and Q, in the ACDM model from cosmic shear (£., blue),
galaxy clustering and galaxy—galaxy lensing (y, + w(#), orange) and their combination (3x2pt,
solid black). We also show a ACDM-optimized 3x2pt analysis that is valid for ACDM using
smaller angular scales in cosmic shear (dashed black). The marginalized contours in this and
further figures below show the 68% and 95% confidence levels. The top and side panels show 1D
marginalized constraints with the 68% confidence region indicated.

is impossible or does not make much sense. For instance, determining the probability of a
singular event in the future or estimating cosmological parameters, which are fixed attributes of
our singular universe, does not lend itself well to a frequency-based approach. In these cases,
repeating measurements would not yield different outcomes as these are not variables subject to
randomness.

Bayesian statistics offers a more nuanced approach, conceptualizing probability as a measure
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of an observer’s belief or confidence in a particular event or hypothesis. Rather than envisioning
countless iterations across multiple universes, Bayesian probability allows for a single reality but
quantifies the observer’s confidence level. For example, stating a probability of an event as 25% is
not claiming that the event will occur in one out of four identical universes. Instead, it is expressing
that, given the existing information and understanding, there is a moderate level of skepticism
about the event’s occurrence. This interpretation underpins much of contemporary scientific
investigation, providing a framework for incorporating new evidence and updating beliefs or
hypotheses accordingly.

Consider a hypothesis A and a set of background information / which encapsulates all our
existing knowledge, including the universe and its physical laws. The assertion that P(A, ) =
P(I, A) is fundamentally true. We can then formulate this relationship in terms of the probability
of A given I, P(A|I), as

P(A|I)P(I) = P(I|A)P(A), (1.60)

this equation is an universal expression of Bayes’ theorem, and is often written as

Pl = EUADPA) (1.61)
P(I)

Consider an observation, labeled as D, which might be one of the two-point correlation
functions from the previous section, like shear across angular scales. This observation, a series
of scalar values arranged in a vector, is influenced by the set of cosmological parameters denoted
by 6 = (01,65, ...,0,). These parameters are chosen based on the cosmological model being
tested, the capabilities of the observing instrument, and the nature of the data collected. For a
given set of parameters, our model M predicts what we should expect to see in our data D. Our
goal is to derive the probability distribution of the parameters @ given our data D and the model
M. This is achieved through Bayes’ theorem:

L(D|§,M)P(0|M)

PO|D, M) = PO . (1.62)

In this formula, P(@|M) represents the prior probability, which constrains # based on prior
knowledge or physical principles. The denominator, P(D|M), also known as the evidence,
is constant over the parameter space and hence does not influence the posterior distribution
P(0|D, M), although it is crucial for comparing different models. The likelihood, L(D|0, M),
assesses the chance of observing the data D given the parameters #. This likelihood is typically
calculated by comparing the observed data D to the model predictions T, usually under the
assumption of Gaussian errors, leading to:

L(D|6, M) Xp —%(D ~TO,M)"C'(D-T(6,M))|, (1.63)

1
=-— ¢
V2r|C|1/?

where C denotes the covariance matrix of the data, and |C| is its determinant. Notice that the
determinant of the covariance matrix in denominator of the likelihood function plays a crucial role
in normalizing the probability distribution. However, for the purpose of parameter estimation,
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this determinant can often be ignored if it is independent of the parameters being estimated, as it
then acts as a constant and does not influence the maximum of the likelihood, which determines
the best-fit parameters. Cosmological analyses currently assume this independence and validate
it by recalculating the covariance at the best-fit parameters, repeating the analysis, and checking
for consistency in the resulting parameters. Therefore, simplifying, we get:

—2InL£=2y*=RTC'R, (1.64)

with R defined as the residual between the data and model predictions, R = D — T. The
computation and inversion of C, especially when it is large, can be computationally intensive.
With the covariance matrix in hand, estimating parameters boils down to iteratively calculating
these equations for different sets of 6.

For models with a small number of parameters, P(6|D, M) can be computed across a grid in
the parameter space. However, for models with many parameters, methods such as Markov Chain
Monte Carlo (MCMC), Importance Sampling, and adaptive techniques like MultiNest (Feroz
et al., 2009, 2019) or PolyChord (Handley et al., 2015a,b) are more computationally feasible and
effective.

In cosmology, it is often more useful to ascertain a confidence region — a region of plausible pa-
rameter values — than to rely on a singular maximum likelihood estimate. Often, these parameters
are a mix of the cosmological parameters we are interested in, and those representing systematic
errors. To refine our focus on the essential parameters, we employ marginalization. Consider a
study examining two parameters: the primary interest a; and the secondary a,, possibly related
to systematic bias. If they are independent, a, can be disregarded, but if they are degenerate and
intertwined, we must consider their joint probability distribution,P (a1, az). To remove the effect
of a,, we integrate over all its possible values against each value of a;

P(ay) =/P(a1,a2)daz~ (1.65)

This effectively simplifies our analysis to a one-dimensional probability distribution for a; alone,
thus marginalizing over a;.

Goodness of fit and > metric

The concept of goodness of fit and the chi-square (x*) test are essential tools in statistics for
assessing how well a theoretical distribution fits an observed set of data. This test is particularly
designed to determine whether there is a significant match between the observed distribution of
data and what is expected theoretically.

We defined the y? in Equation as

1
X’ = ERTC‘IR, (1.66)

where it is clear its relation to the residuals R — the discrepancies between what we observe
and what our model predicts — and the covariance matrix C, which accounts for variances and
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covariances among data points. The y? statistic is a scalar value, indicating the fit of the model
to the observed data. This value is then divided by the effective number of degrees of freedom,
which depends on the number of parameters that a data set ends up constraining compared to the
priors it began with.

If the y? statistic is too high, it suggests that the model may not be an adequate representation
of the data. If it’s too low, it might indicate that the model is over fitting the data or that the
errors have been overestimated. It is important to note that the y? test assumes that the errors are
normally distributed and that the model is correct. If these assumptions are not met, the y? test
may not be valid.

1.3.2 Machine Learning

Machine learning has found significant application in cosmology. This subsection delineates
an array of machine learning methodologies, for a more detailed discussion on these methods,
readers are referred to comprehensive texts such as Bishop (2006), Goodfellow et al. (2016).
Machine learning paradigms are categorized into supervised learning, unsupervised learning, and
reinforcement learning.

In supervised learning, algorithms process labeled data sets for predictive modeling and clas-
sification. Techniques such as decision trees, ensemble methods (Random Forests and Gradient
Boosting Machines), Support Vector Machines, and Neural Networks are utilized for a variety
of problems, usually under the assumption that some "truth" sample is available for comparison
with the results of the regression or classification method. Conversely, unsupervised learning
algorithms are applied to unlabeled data sets to infer patterns and gain new insights. Techniques
such as Principal Component Analysis, Hierarchical Clustering and Self-Organizing Maps are
employed for dimensionality reduction and clustering. In these cases, the "truth" is not avail-
able, and the algorithm itself has to learn the information contained in the data. Reinforcement
learning, characterized by algorithms optimizing decision-making through environmental interac-
tions, holds prospective applications in cosmology, such as the optimization of telescopic survey
strategies.

Within this thesis, some machine learning techniques are leveraged, with a particular focus
on self-organizing maps (SOMs) for the analysis and interpretation of photometric data. SOM
is a type of neural network that uses the unsupervised learning approach. Its architecture is
simpler than that of a deep neural network, composed of multiple layers, since it essentially
has only the input and output layers. The SOM effectively reduces high-dimensional data into
two-dimensional representations, while preserving the original topology through the concept of
neighborhood between its nodes. Figure shows an schematic representation of a SOM.

The SOM employs an iterative learning process where network nodes adjust their weights to
align more closely with input vectors, influenced by both the node’s weight vector and its distance
from the best matching unit. Through iterative training, the network forms a map with adjacent
nodes representing similar data vectors. SOMs provide an efficient mechanism for the reduction
and interpretation of the extensive and high-dimensional data sets encountered in cosmology. In
particular, SOMs have been applied to the problem of photometric redshifts, since it can learn
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Figure 1.6: From Carrasco Kind & Brunner (2014): A schematic representation of a SOM. The
training set of n galaxies, with m features each, is mapped into a two-dimensional lattice of k
neurons (or cells). The weights matrix has dimensions k X m, and makes the connection between
the input vectors and the output map, such that each cell is associated with a weight vector. In
the training phase, all neurons compete to best match each galaxy, but ultimately, each galaxy is
mapped to only one neuron that most closely represents its features in the m-dimensional space.
The colour of the map encodes the organization of groups of galaxies with similar properties. The
main characteristic of the SOM is that it produces a non-linear mapping from an m-dimensional
space of attributes (e.g. magnitudes) to a two-dimensional lattice of neurons.

the complex relations in flux (or color/magnitude) space, and effectively map it to redshift space.
That makes it a power tool for redshift characterization for galaxy samples in weak lensing and
galaxy clustering. We will explore SOMs in detail in Chapter 2|
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1.4 Thesis Outline

This thesis presents the findings of three distinct research projects. These projects are dedicated
to the development and enhancement of statistical and machine learning methodologies for the
analysis of extensive data sets in large-scale structure surveys, with special focus on the problem of
systematic uncertainties. While the the first two project primarily apply these methods to address
weak lensing phenomena, they present enough generality to be applied for galaxy clustering,
3x2pt and a wider range of problems in large-scale structure data analysis. Each project showcases
novel approaches and techniques, contributing to a more sophisticated understanding of complex
cosmological data.

Chapter |2 focuses on improving one of the state of the art methods for photometric redshift
characterization, a crucial component of weak lensing analysis. I investigate three modifications
to the existing Self-Organizing Map (SOM) methodology used in the Dark Energy Survey Year 3
analysis. The first modification involves using a new SOM algorithm, which has a distance metric
designed for the problem of photometric redshifts. The second modification involves incorporating
additional information about the g-band flux, which in general has low signal-to-noise ratio (SNR)
but can still provide crucial information about redshifts. The third modification involves trying to
incorporate the redshifts available for some galaxies in the sample as an additional feature. I apply
these modifications to the DES Year 3 data and compare the results to the original methodology,
finding that the new SOM algorithm performs better, especially when combined with the addition
of the g-band fluxes. This study is pivotal for the DES Year 6 analysis, since my findings lead to
the adoption of the pipeline that I developed for the characterization of redshifts for the source
and lens galaxies. In addition, this method can be applied to future surveys, like LSST. In fact, my
pipeline is being implemented in RAIL and will be available for redshift characterization. This
work is currently internal collaboration review in DES and will soon be submitted for publication
as “Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy
Survey Self-Organizing Map Photo-z method”.

Chapter 3| addresses the problem of model selection in cosmology, which is the challenge
of choosing the best model to fit observational data while avoiding biases and balancing model
complexity. We propose an empirical approach that uses synthetic data to calibrate the relation
between parameter bias and model complexity, and applies this method to the problem of intrinsic
alignments in weak lensing surveys. We assess the bias that could be introduced due to model
mispecification, in the context of the DES Y3, between the NLA and TATT models for intrinsic
alignment. We also show that the level of conservatism when choosing a model can be controlled
through analysis choices, which makes the method more explicit and quantifiable than other
approaches to model selection. This approach can be applied to any type of data and/or systematics,
and can help to choose the best model for their data, especially in the absence of informative priors.
This work resulted in the publication of the paper “An empirical approach to model selection: weak
lensing and intrinsic alignments”, published in the “Monthly Notices of the Royal Astronomical
Society, Volume 525, Pages 1885-1901”(Campos, Samuroff & Mandelbaum 2023).
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In chapter |4 we address the problem of quantifying if measurements of different surveys,
in this case DES and Plack, are in tension. 1 create a suite of simulated DES data sets with a
controlled level of induced tension relative to the best-fitting Planck 2018 cosmology, and we
apply a number of methods to quantify this synthetic tension and assess their performance. We
also apply the same tension metrics to quantify any tension between the published constraints
from the first year of DES data and the Planck 2015 and 2018 data sets. We recommend a strategy
to evaluate if the predictions from different surveys are in accordance. We also conclude that
there is evidence suggesting some tension between DES and Planck data, which could indicate
unaccounted-for systematic effects in one or both experiments or that the underlying model is
inadequate to explain the data. The results of this study have been used to inform concordance in
several analyses in cosmology by providing a framework for evaluating tensions between different
data sets. This work resulted in the publication of the paper “Assessing tension metrics with dark
energy survey and Planck data”, published in the “Monthly Notices of the Royal Astronomical
Society, Volume 505, Pages 6179-6194”(Lemos, Raveri, Campos et al. 2021).

In Chapter |5} I discuss the implications of the work described in this thesis.
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Chapter 2

Enhancing weak lensing redshift
distribution characterization by optimizing
the Dark Energy Survey Self-Organizing
Map Photo-z method

Abstract

Characterization of the redshift distribution of ensembles of galaxies is pivotal for cos-
mological studies. In this work, we focus on improving the Self-Organizing Map (SOM)
methodology for photometric redshift estimation (SOMPZ), specifically in anticipation of
the Dark Energy Survey Year 6 (DES Y6) data. This data set, featuring deeper and fainter
galaxies, demands adapted techniques to ensure accurate recovery of the underlying redshift
distribution. We investigate three strategies for enhancing the existing SOM-based approach
used in DES Year 3: 1) Replacing the Y3 SOM algorithm with one tailored for redshift
estimation challenges. 2) Incorporating g-band flux information to refine redshift estimates.
3) Augmenting redshift data for galaxies where available. These methods are applied to DES
Y3 data, and results are compared to the Y3 fiducial ones. Our analysis indicates significant
improvements with the first two strategies, notably reducing the overlap between redshift
bins. By combining strategies 1 and 2, we have successfully managed to reduce redshift
bin overlap in DES Y3 by up to 66%. Conversely, the third strategy, involving the addition
of redshift data for selected galaxies as an additional feature in the method, yields inferior
results and is abandoned. Our findings contribute to the advancement of weak lensing redshift
characterization and lay the groundwork for better redshift characterization in DES Year 6
and future stage IV surveys, like the Rubin Observatory.

gravitational lensing: weak — methods: statistical — techniques: photometric — galaxies: distances
and redshifts — cosmology: observations.
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2.1 Introduction

Large galaxy surveys afford us promising opportunities to learn about the constituents of the
universe and the way they are distributed in space. This in turn can help us connect fundamental
physics — for example of dark energy and dark matter — to observations and to learn about the nature
of the most mysterious substances postulated to exist. Photometric surveys can capture images
of many more galaxies than spectroscopic surveys but are hindered by the inability to measure
accurate distances to the objects they image. Photometric redshifts, or distances inferred from the
observed galaxy properties such as colors, have become essential in extracting information about
cosmology from these large surveys.

One of the observables for which photometric redshifts play a major role in is weak gravi-
tational lensing. Weak gravitational lensing is a fundamental cosmological probe that enables
the investigation of the large-scale structure of the universe and has been employed in many
contemporary analyses (see, e.g., Heymans et al. 2013; DES Collaboration 2016a; Jee et al. 2016;
Hildebrandt et al. 2017; Troxel et al. 2018; Hikage et al. 2019; Hamana et al. 2020; Asgari et al.
2021; Loureiro et al. 2022; Amon et al. 2022; |Secco, Samuroff et al.|2022; Doux et al.|2022;
Dalal et al. 2023; Li et al.[2023).

In photometric surveys, while galaxy positions serve as tracers of matter density, it is by
measuring the distortions in the shapes and orientations of background galaxies induced by the
gravitational influence of intervening mass distributions that we can obtain a direct connection
to the underlying density field. However, to extract precise cosmological information from weak
lensing, it is imperative to have a robust characterization of the redshift distribution, n(z), of the
observed galaxies. Measuring the spectrum of each galaxy in a large optical imaging survey,
though, is unfeasible, and therefore spectra are available only for small subsets of galaxies. As a
result, photometric surveys heavily rely on limited, noisy photometric bands to estimate redshifts.
The main challenge arises from degeneracies in the color-redshift relation, which prevent the
unique determination of redshifts from wide-band photometry. The accurate characterization
of the redshift distribution thus becomes one of the main challenges, and yet a crucial aspect,
for interpreting gravitational lensing measurements, including cosmic shear and galaxy-galaxy
lensing correlation functions.

Techniques to estimate photometric redshifts date back several decades. Template-fitting
methods compare the observed photometric data of galaxies with a library of template spectra,
allowing for redshift estimation (Benitez, 2000; Ilbert et al., 2009). However, this approach can
be sensitive to template choices and might not capture all spectral features accurately, leading
to biases in redshift predictions, particularly for poorly represented galaxy populations. Empir-
ical approaches exploit statistical correlations between observable features (e.g., color-redshift
relations) to estimate photometric redshifts (Blake & Bridle, 2005; Mandelbaum et al., 2008).
However, these methods necessitate accurate and extensive spectroscopic data for calibration.
Machine learning techniques, such as artificial neural networks or random forests, have gained
popularity due to their ability to learn complex photometry-redshift relationships from training
data sets (Collister & Lahav, 2004; Carrasco Kind & Brunner, 2013). Nonetheless, these methods
heavily rely on the quality and representativeness of the training data, and their performance can
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degrade when extrapolating to redshift regimes not adequately covered by the training set. Most
recently, unsupervised machine learning methods that compress data embedded in a Bayesian
approach have emerged as a promising direction (see for example, Buchs et al., 2019).

A Self-Organizing Map (SOM), also known as a Kohonen map (Kohonen, 1982), is an
unsupervised machine learning algorithm and neural network architecture used for dimensionality
reduction and data mining. It allows for complex and high-dimensional data to be represented
in a lower-dimensional space while preserving the topological relationships between data points.
For the purposes of redshift estimation, when assigning each galaxy to a cell in a Self Organizing
Map (SOM), galaxies with similar redshifts are grouped in the same cell, or “nearby” cells if the
grouping is in a 2D grid, and the redshift distribution for those galaxies can be determined fairly
accurately. DES used this technique in its Year 3 weak lensing cosmological analyses (Myles,
Alarcon et al. (2021); DES Collaboration| (2022); Amon et al. (2022); Secco, Samuroff et al.
(2022)) and KiDS has used it (Wright et al., 2020) to achieve few-percent level constraints on
the mean of the redshift distribution for each redshift bin. It has emerged as a viable candidate
for upcoming surveys such as Rubin and Euclid (Ivezi¢ et al., 2019; Laureijs et al., 2011), but
improvements are required to achieve sub-percent level constraints (The LSST Dark Energy
Science Collaboration et al., 2018; |[Euclid Collaboration et al., 2020).

Here, we explore several improvements to the SOM methodology used in DES-Y3, ahead
of the final DES Year-6 (Y6) analysis. This serves two primary purposes: (i) allowing for
the potential of improving on the Y3 implementation and (ii) stress-testing the robustness of
the cosmological conclusions. The latter point is particularly important in the context of more
stringent requirements that come with more statistically powerful data, as well as applying this
methodology to deeper photometric data. If different implementations of the SOM framework
give the same answer, we will become more confident applying it moving forward as statistical
errors continue to decrease.

First, we test replacing the SOM algorithm used in Y3 by the one proposed in Sdnchez,
Raveri, Alarcon & Bernstein (2020). This new algorithm implements a Self-Organizing Map
with a distance metric specific for the problem of photometric redshift estimation. Although it
was shown in the Year 3 analysis that the generic SOM algorithm is already successful at estimating
redshifts at the percentage level (Myles, Alarcon et al. 2021), we hope that by introducing a SOM
that is tailored for the problem of redshifts, we can achieve even better precision. Second, we show
the impact that including an extra flux band, the g-band, has on our ability to obtain well-defined
redshift bins, motivating the importance of well calibrated point spread functions in those limits,
such that we do not lose this very crucial piece of information. Finally, we try adding the redshift
information of the spectroscopic galaxies in our sample as an additional feature in the SOM. This
is an unconventional approach to a unsupervised machining learning method, since the norm is
for the quantity being estimated to not be part of the features, and indeed we find that it is not
beneficial, but we present our attempts for the sake of completeness.

Section details the DES Year 3 data that we re-analyse with the proposed modifications
to our redshift estimation method. Section presents a summary of the Self-Organizing Map
algorithm and the SOMPZ method for redshift estimation used by DES. Section 2.4|presents the
proposed modifications to the SOMPZ method used in DES Y3. Section[2.5|discusses the results
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Table 2.1: Summary of the catalogs used in DES Year 3 for redshift estimation of the weak lensing
source galaxies, including the area covered and the number of galaxies.

Sample Area (sq. deg.) | Number of Galaxies
Wide 4143 100,208,944
Deep 5.88 2.8M

Redshift - 57,000

Deep/Balrog - 2,417,437

of implementing these different modifications, and their impact on the redshift bins. Finally,
Section shows the impact on cosmological parameter constraints.

2.2 The Dark Energy Survey

We summarize the samples used in this work in Table[2.1| These are the same ones used for redshift
characterization of the weak lensing source galaxies in DES Year 3. The strategy employs Self-
Organizing maps (SOMs), which we detail in Section and leverages the information present
in three catalogs - wide, deep, and redshift - as well as Balrog injections:

Wide: The weak lensing source catalog is described in detail in Gatti et al. (2021). After the
applied selections § in magnitudes and colors, the wide sample is composed of 100, 208, 944
galaxies, spread over 4143 square degrees. DES has made flux measurements for all of
these galaxies in the griz bands of the electromagnetic spectrum (although the g-band was
not used in DES-Y3).

Deep: The deep sample refers to the DES deep field galaxies, which have measured fluxes
in additional bands ugrizJHK. There are four deep-fields mapped in DES Y3, see Hartley
et al. (2021), that added cover an area of 5.88 square degrees. Notice that Y-band data in
the deep fields had large offsets between the constituent exposures, and therefore could not
be used.

Redshift: A subset of the deep field galaxies have accurate redshifts (Myles, Alarcon et al.
2021) obtained from a variety of external data sets. We call this set, containing 57, 000
galaxies, the redshift sample.

Balrog: In order to connect the information in our samples, we use Balrog injections.
The Balrog software, developed by Suchyta et al. (2016), enables the creation of simulated
galaxies, or Balrog injections, which are inserted into authentic images. These synthetic
galaxies are designed based on the DES deep field photometry and are placed multiple
times at various positions across the broader wide-field footprint, as specified in Everett
et al. (2022). The resulting catalogue, called the deep/Balrog sample, includes 2,417,437
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injection-realization pairs, each of which has both deep and wide photometric data. This
sample is a crucial element of our redshift calibration inference technique.

In what follows, we denote the wide data by & with covariance matrix £ and the deep data by
x with covariance X, and the selection by §, following the notation in Buchs et al. (2019); Myles,
Alarcon et al. (2021). The wide field data vector has three components, X = [r, i, z]. For the deep
fields, there are 3 infrared bands available — J,H, and K — and the DES u, g bands are also used,
such thatx = [u, g,r,i,z,J, H, K] has eight components in total. Since the redshift galaxies are
a subset of the deep galaxies, they too have the 8 components x; Balrog galaxies typically have
approximately 15 realizations X (corresponding to the number of wide field injections) for a single
x (corresponding to a single deep field galaxy).

2.3 Self-organizing maps for photometric redshifts

In what follows, we review the SOM standard algorithm, and describe the SOMPZ method, i.e.,
how SOMs are used in practice for redshift estimation in DES-Y3.

2.3.1 The SOM Algorithm

A Self-Organizing Map (SOM) is a type of Artificial Neural Network (ANN) that produces a
discretized, lower dimensional, representation of the input space, while preserving its topology.
Proposed by Kohonen (1982), it is an unsupervised Machine Learning method that uses soft
competitive learning: the cells of the map (also known as nodes or neurons) compete to most
closely resemble each training example until the best matching unit (BMU) is found, then the
winner and its neighborhood are adapted.

Consider a set of n training samples, each with m features, i.e., for each sample we have an
input vector x € R”. In our case, for instance, each sample is a single galaxy and the features are
its fluxes (or colors or magnitudes) in m bands. The SOM can be understood as collection of C
cells arranged in a /-dimensional grid that has a specified topology. Each cell is associated with a
weight vector wy; € R™, where k = 1,--- , C. Both the input and weight vectors live in the input
space, while the cells live in the output, or lattice, space.

The training of a SOM is relatively simple. The weights are initialized to random or from
data samples and the learning happens in three stages: Competition, cooperation, and weight
adaptation.

* Competition: at each step, a random sample of the training set is presented to the self-
organizing map. The cell whose weight vector is the closest to the sample vector is

identified as the best matching unit (BMU):

cp = argmkin dx,wy). 2.1)
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The "closeness" is measured by some distance metric d(x, wy ) between the sample and the
cell in the map. Typically the Euclidian distance is used, but in Buchs et al. (2019) the
chi-square distance was chosen:

d*(x,wp) = (x —w)TE N (x —wyp), (2.2)

where X is the covariance matrix for the training vector, x. The cell minimizing this distance
is identified as the BMU, and the sample is then assigned to it.

* Cooperation: to preserve the topology of the input space, not only the BMU is identified
and updated, but also its neighborhood. The neighborhood function Hy x(t) creates the
connection between the input space and the cells in the map, responsible for the self-
organizing property of the map. The size of the BMU’s neighborhood decreases as a
function of time steps, 7. In addition, Hy, x should decrease as the distance from the BMU
increases. It must also satisfy the properties that it is maximum in the winning cell » and
is symmetric about it. A Gaussian neighborhood function attend those requirements:

Hp i (1) = exp[=Dj ;[0 (1)]. (23)

The distance between the BMU, ¢, and any cell on the map, ¢y, is the Euclidian distance
in the /-dimensional map:

l
D} = D (chi—cx). (2.4)
i=1

The width of the Gaussian kernel is given by
o (1) = gl 7/ imax (2.5)

At the beginning of the training, o; should be large enough that most of the map is initially
affected. As the training progresses, the width shrinks until only the BMU and its closest
neighbours are significantly affected by new data.

* Weight adaptation: once the BMU is computed, we can calculate the updated value of the
weight vectors for the 7 + 1-th iteration through the following relation:

wi (1 +1) = wp(1) + a(®)Hp i (1) [x(1) - wi (1)], (2.6)
where ¢ is the current time step in training, a() is the learning rate:
p— t/tmax
a(t) =ay, ™", 2.7)

where aq € [0, 1]. In each iteration, this update function is applied to each of the cells in
the map.

These steps describe the standard SOM algorithm, which has been applied for the purpose of
redshift estimation in previous works (see e.g. Masters et al. (2015); Speagle et al. (2019); Buchs
et al. (2019)), including the DES-Y3 analyses (Myles, Alarcon et al. 2021).
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Figure 2.1: Visualization of the self-organizing maps constructed using the fiducial Y3 SOM
algorithm described in Section[2.3.1, Top: Deep field self-organizing map composed of 4096
cells. Bottom: Wide field self-organizing map composed of 1024 cells. The left-hand panels
show the total number of galaxies assigned to each SOM, the middle panels show the mean
redshift for each cell, and the right panels show the standard deviation of the redshift distribution
in each cell of the map. The white cells found in the deep SOM are due to the lack of spectroscopic
information in those regions of the color space, i.e., there are no galaxies in the COSMOS2015
sample that were assigned to those cells.

2.3.2 Dark Energy Survey SOMPZ

In order to estimate the redshift distribution of the wide sample, we construct two SOMs:

1. Deep SOM: trained using the deep data, to which we assign the deep galaxies (and their
subset of galaxies with redshifts);

2. Wide SOM: trained using a random sub-sample of the wide data, to which we assign the
wide sample, and the Balrog injections of the deep samples.

Figure shows the number of objects, the redshift distribution and the standard deviation
in the deep (top) and wide (bottom) SOMs used in the DES Y3 analysis. As we can see, and the
name suggests, the deep SOM has deeper, and fainter, galaxies, going to higher z values compared
to the wide SOM.

Each SOM cell acts as a way of discretizing the continuous colour and colour-magnitude
spaces spanned by x and X (and £, £ ) into discrete categories ¢ and ¢é. Therefore, the probability

34



distribution function for the redshift of an ensemble of galaxies, conditioned on being observed
in a particular cell ¢, and on passing a selection function §, can be written by marginalizing over
the deep-field information:

p(21é,5) = > p(zle, &, H)p(elé, ). 2.8)

We then assign each cell ¢ to a tomographic bin (see Myles, Alarcon et al. 2021 for the
details on the assignment algorithm) and construct the n(z) of each bin by summing over the cells
belonging to the bin:

ny(2) = p(2lb,5) = " p(2l¢, $)p(éls, b) 2.9)
éeb
= > > p(e,é 8)p(clé, Hp(els, b). (2.10)
ceb ¢

In the equation above, each term is obtained from one of the galaxy samples we are using:

1. p(z|c, ¢, $) is computed from the redshift sample subset of the deep sample, which contains
spectroscopic redshifts, deep photometry, and wide-field Balrog realisations. It tells us the
probability of getting a redshift z, given the deep cell ¢, the wide cell ¢, and the selection .

2. p(c|é, ) is computed from the Balrog injections of the entire deep sample. It tells us the
probability of ending up in the deep cell ¢, given the wide cell ¢ and the selection §. We call
this term the transfer function, because it connects the deep and wide cells. It is computed
from Balrog realisations, because it requires both wide-field and deep-field photometry to
be available.

3. p(é|8,b) is computed from the wide sample. It tells us the probability that a galaxy in
bin b is in the wide SOM cell ¢. Therefore, cells with very few galaxies in them are
down-weighted when determining the redshift distribution of the bin.

Assuming that the p(z) in the deep cells (with high quality photometry) do not depend on the
wide (noisy) photometry of those galaxies, we can remove the conditions on ¢ and b in the first
and last terms of Equation 2.10} and approximate it to

p(elb,$) = D > p(ele,§)p(elé, §)p(Els). (2.11)

eeb ¢

The transfer function, p(c|é, §), connecting the deep and wide samples, is computed from
Balrog realisations, not the full wide galaxy sample. Re-writing it as

p(c, E|s)

, 2.12
() (212

p(clé,$) =
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and replacing it in the equation above, we can write each term highlighting the sample from which
it is obtained

p(c,éls)

plb,8)~ >\ ) plale, gmmm p(ls) . (2.13)
ceb < Redshift  Deep T Wide
alrog

We would like to emphasize that solving Equation[2.13]is not the final result for the Y3 n(z)’s,
as two other pieces of information were added in: clustering redshifts and shear ratios (see Myles,
Alarcon et al. 2021). However, this is the main result to which we are interested in comparing
in this work. In what follows we will compare this fiducial Y3 n(z) to the one obtained by each
SOM modification proposed in this paper.

2.4 Testing improved SOM methodology

In this section we describe the three modifications to the standard method, and assess the impact
on the DES Y3 redshift distributions: replacing the SOM algorithm used in Year 3 (see Buchs
et al. 2019) by the one proposed in Sdnchez, Raveri, Alarcon & Bernstein (2020); including
an extra band (g-band), even though it has low SNR; including redshifts, when available, as an
additional feature to train and assign galaxies to the SOM.

2.4.1 SOM for faint galaxies - SOMF

A characteristic of the majority of machine learning methods, self-organizing maps included, is
the assumption that the training data is ideal, i.e., does not contain errors. This assumption is
not true in general, especially when working with empirical data. This point is addressed for
the case of SOMs in Sanchez, Raveri, Alarcon & Bernstein (2020), where the authors propose a
modification of the standard SOM algorithm that accounts for measurement uncertainties in the
training set, with the problem of faint galaxies in mind. The basic idea is to take the errors into
account such that, examples with larger measurement uncertainties will result in less change to
the weights than examples with smaller uncertainties. The main modifications to the standard
algorithm consist in redefining the distance measure between a training sample and a cell on the
map, and the training shift through which the weights are updated.

In addition, the sample features (x) and cell weights (wy) are converted into units of signal-
to-noise ratio (SNR), specifying a maximum for the sample SNR as a means of softening the
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Figure 2.2: Visualization of the self-organizing maps constructed using the SOMF algorithm
described in Section|2.4.1| Top: Deep field self-organizing map composed of 4096 cells. Bottom:
Wide field self-organizing map composed of 1024 cells. The left-hand panels show the total
number of galaxies assigned to each SOM, the middle panels show the mean redshift for each
cell, and the right panels show the standard deviation of the redshift distribution in each cell of
the map. The white cells found in the deep SOM are due to the lack of spectroscopic information
in those regions of the color space, i.e., there are no galaxies in the COSMOS2015 sample that
were assigned to those cells.
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specificity of the cells:

Xib
b= S, b 2.14
Sib max( b SNRmaX) (2.14)
v = Db (2.15)
Sib
Vo = ek (2.16)
Sib

Here, the quantities v;; and v, are the galaxy fluxes and cell weights (indexed by the photometric
band b).

The SOM algorithm presented in Section 2.3|uses the chi-square distance, defined in Equation
as the metric between the sample and the cell in the map. In Sanchez, Raveri, Alarcon &
Bernstein| (2020), however, the authors define:

2
d(x,X,wy) = inf [J(x,)l, e‘wy) + s_2 , (2.17)
S O-S
where
~ asinh vy, + Wi, log 2v,p . 2
dx, X2, = _ hy;
(x,Z, wy) Zb: [ T+ W, asinh v;;,
x (1+v3), (2.18)

approaches the Euclidean distance in log-flux at high SNR, and is also Euclidean in linear flux at
low SNR, while weighting each band by its SNR (up to a maximum). As a result this metric is
better suited to the wide dynamic range of galaxy fluxes. The weighting function is defined as

Wiy, = 204, (2.19)

such that it possible to transition from the high- to low-SNR regimes. Equation includes an
overall scale constant e® which allows the cells to be “fuzzy” in overall flux level. As pointed out
in Sanchez, Raveri, Alarcon & Bernstein (2020), there is no natural periodicity in the feature space
of galaxy colors and magnitudes. Therefore, the assumption of periodic boundary conditions,
usual to the standard algorithm, is not adopted here.

Application to DES Y3

We test the impact of using this modified SOM methodology with the DES Y3 data. Figure
shows a deep (top) and a wide (bottom) SOM constructed using the DES Y3 data described
in Section and this modified SOM algorithm. The left panels show the number of objects
distributed in each of the two SOMs. The smooth behavior of redshift across the SOM, as seen
in the middle panels, shows that the variation of redshift in both the 8-band and 3-band space
topology, shown in Figures 2.A.1] and 2.A.2] are reasonably well traced by the 2D SOM. The
right-most panels show the standard deviation of the redshift distribution in each SOM cell.
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We emphasize that, even though only fluxes are used as features, the smoothness present in
the middle panel of the SOMs is evidence that the redshift space is being well mapped by the
flux space. We see that the transitions between low- and high-redshifts do not happen abruptly, in
general, as we expect in a successful compression of this high dimensional space. The white cells
in the top panels represents cells that ended up without galaxies from the redshift sample and,
therefore we could not estimate the redshift distribution in those cells. Comparing Figure 2.1/and
Figure we see that, even though the fiducial Y3 Deep SOM also had white cells, there were
fewer than using the SOMF algorithm. This further emphasizes that the two SOM algorithms
group galaxies from the same catalog in a different way. In a recent paper, Sanchez et al. (2022a)
argue that the reason for this could be related to the SOMF algorithm being better at anomaly
detection, and this difference could come from strange, undetected objects in our catalog. Notice
that the map initialization when running SOM and SOMF is not the same, i.e., it is not possible
to do a cell-to-cell comparison between the SOMs in Figure and Figure

Figure compares the standard deviation of the redshift distribution in each cell of the
wide SOM o (z|¢) for the SOMF and the Y3 SOM, showing an overall improvement when using
the SOMF algorithm. The horizontal lines represent the 25 (solid), 50 (dashed) and 75 (dotted)
percentiles of o (z|¢). We can observe that for the SOMF we have about 50% of the wide cells
with o (z|¢) < 0.2, while that is true for only about 25% of the SOM Y3 wide cells.

2.4.2 Regaining blue bands for redshift estimation - griz

Although measured in wide field photometry, the g-band did not have an accurate enough point
spread function to measure the shapes of galaxies. In particular, the g-band rho statistics (see ?
Figure 13) were considered unacceptably large, which led to the exclusion of g-band data from
the Y3 weak lensing analysis. Here we perform the exercise of including g-band information, in
addition to 1, 1, z bands, to create and assign galaxies to the wide SOM. Notice that, since the
Metacal convolution and deconvolution (Gatti et al.,2021) could not be carried out, we do not
have shape measurements with g-band for Y3, therefore this exercise is purely at the photometric
redshift level.

Application to DES Y3

The samples used here are exactly the same as used in obtaining the fiducial Y3 weak lensing
redshift measurements (see Section , the only difference is the inclusion of the g-band in
training the wide SOM and, therefore, including g-band fluxes when assigning the wide and balrog
samples to the wide SOM. Our purpose is to quantify the improvement in our redshift constraints,
in the hypothetical case that the g-band measurements had been considered good enough to use
in the DES Y3. This is particularly timely because we expect that for the Y6 analysis the g-band
PSF solution will be sufficiently improved by the addition of color dependence, allowing it to be
used for the weak lensing analysis (?).

We test the impact of the addition of the g-band using the fiducial Y3 SOM algorithm (see
Section 2.3), and the modified SOM described in Section Adding the g-band impacts only
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Figure 2.3: Standard deviation o-(z|¢) of the redshift distribution in each wide SOM cell, versus
the mean redshift 7 of each cell, for the standard Y3 SOM (blue), and the SOMF (orange). The
horizontal lines represent the 25 (solid), 50 (dashed) and 75 (dotted) percentiles of o-(z|¢). We
can observe that the SOMF presents an overall reduction in the uncertainty per wide cell.
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Figure 2.4: Visualization of the self-organizing maps constructed adding the g-band to train and
assign the wide data, as described in Section[2.4.2| Top: Wide field self-organizing map obtained
using the DES Y3 SOM algorithm, but adding the g-band information. Notice that in this case,
the deep SOM is exactly the same as the Y3 one, shown in Figure Bottom: Wide field
self-organizing map obtained using the SOMF algorithm, but adding the g-band information.
Notice that in this case, the deep SOM is exactly the same as the one in Figure The left-hand
panels show the total number of galaxies assigned to each SOM, the middle panels show the mean
redshift for each cell, and the right panels show the standard deviation of the redshift distribution
in each cell of the map.

the wide SOM part of the SOMPZ method. Figure shows wide SOM constructed using the
fiducial Y3 SOM described in Section (top), and the one described in Section (bottom),
adding the g-band information to the train the wide SOM and assigning data to it. The left
panels show the number of objects distributed in each of the two SOMs. The middle panels
show the mean redshift for each cell. Notice that the inclusion of the g-band creates more cells
at higher redshifts in the wide SOM, when compared to the Y3 fiducial SOM or the SOMF. The
right-most panels show the standard deviation of the redshift distribution in each SOM cell, which
is compatible with what we see for the Y3 fiducial SOM and the SOMF.
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2.4.3 Including redshift

The original deep SOM is trained using deep field galaxies and assigned using redshift sample
galaxies and deep field galaxies. This enables us to infer the deep field galaxy p(z|c, §) distribution
from the redshift sample galaxies for each cell. The redshift itself is not used as a feature; only
the photometric fluxes in each band are in the feature vector. Here, we investigate the impact of
including redshifts of galaxies (when available) as an extra feature, such that for each sample we
have an input vector x:

x=u,g,rizJ,H K, redshift], (2.20)

containing the 8 fiducial bands plus the redshift information.

To quantify the contribution of redshift in the training and assigning process, we use a
weighting factor A to modulate how much it contributes relative to the photometric bands. When
A =1, the redshift information is normalized to have the same contribution as a luptitude. We
also consider A = 0.1 and 0.05, in which cases redshift contributes only 10% and 5% that of
a luptitude, so that the redshift information plays a smaller role in constructing the SOM and
assigning galaxies to cells.

The methodology and samples used here are exactly the same as used in obtaining the fiducial
Y3 weak lensing redshift measurements (see Sections and 2.3). The only difference is the
inclusion of the redshift of galaxies as an extra feature in training the deep SOM. We test two
possibilities (i) including redshift information both in training and assigning galaxies to the (i)
both in SOM training and assigning and (ii) in the SOM training process only.

2.5 Redshift Bins and Bin Overlap

Having well-defined redshift bins is essential for weak lensing analysis, in order to ensure accurate
and unbiased measurements of the gravitational lensing effect. Minimizing the overlap of redshift
distributions, reduces the contamination of signals between bins, which is crucial to probe the
lensing signal as a function of source redshift, control systematic errors, and enable precise
cosmological parameter constraints.

Using the DES Y3 data, described in Section we assessed the ability of the modifications
to the fiducial Y3 SOMPZ method (see Section and Myles, Alarcon et al. 2021), detailed in
Section|2.4. In particular, replacing the fiducial Y3 SOM by the SOMF and including the g-band
information improves our redshift constraining power and reduces the bin overlap. We detail our
findings regarding those modifications in what follows. The third possibility that we described in
Section adding the redshift information, when available, to train and assign galaxies to the
SOM, does not provide any improvements in comparison to the Y3 results. Therefore, we move
our findings on that to Appendix
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Bin 0 Bin 1 Bin 2 Bin 3

zPZ range 0.0—0.358 0.358—0.631 0.631—0.872 0.872—2.0
(z) Y3 SOM 0.335 0.518 0.750 0.936
(z) SOMF 0.327 0.510 0.735 0.928
(z) Y3 SOM griz 0.328 0.473 0.729 0.968
(z) SOMF griz 0.312 0.467 0.725 0.976
Uncertainty*

Shot Noise & Sample Variance 0.006 0.005 0.004 0.006
Redshift Sample Uncertainty 0.003 0.004 0.006 0.006
Balrog Uncertainty < 0.001 < 0.001 < 0.001 < 0.001
Photometric Calibration Uncertainty 0.010 0.005 0.002 0.002
Inherent SOMPZ Method Uncertainty 0.003 0.003 0.003 0.003
Combined Uncertainty: SOMPZ (from 3sDir) 0.012 0.008 0.006 0.009

* We refer to Myles, Alarcon et al.|(2021) for the definition of each uncertainty.

Table 2.2: Values of and approximate error contributions to the mean redshift of each tomographic
bin. Given that the the only difference between the redshift distributions estimated using the Y3
SOM and the SOMF comes from the SOM recipe (all the samples are the same in both cases), we
can safely assume that the uncertainties due to Shot Noise & Sample Variance, Redshift Sample,
Balrog and Photometric Calibration are exactly the same ones estimated for DES Y3 (Myles,
Alarcon et al. 2021). The only uncertainty affected by the change in our method is the inherent
SOMPZ Method uncertainty. Figure suggests that uncertainty to be even smaller for the
SOMF, therefore we decided to not re-compute the SOMPZ uncertainty, and assume its upper
bound to be the same as the Y3 SOM.
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2.5.1 N(z) distributions

In Figure we compare the result of applying the redshift schema described in Section
in particular the solution of Equation using both the Y3 SOM and the SOMF. We can see
that the two methods agree very well, both in mean redshift and shape of the n(z). In particular,
once we apply the uncertainties due to each component of the method, shown in Table all
bins agree well inside the uncertainty level, with the exception of bin 2 that is slightly off the
uncertainty bound. Notice that we can safely assume that the uncertainties due to shot noise and
sample variance, redshift sample, Balrog and photometric calibration are exactly the same ones
estimated for DES Y3 (see Myles, Alarcon et al. 2021 for details on each uncertainty and how
they were estimated). The inherent SOMPZ Method uncertainty is the only one affected by the
change of method, but given the good agreement in mean redshift and shape of the distributions,
we decided to not recompute it, and assume it is the same as for Y3 as well. Notice that the
SOMF method produces bins seem slightly better defined, with higher peaks, even though the
two distributions follow each other very closely.

Figure shows a similar comparison, but now including the g-band information, for for the
fiducial Y3 SOM and the SOMF. We can see that two SOM algorithms again agree very well,
both in mean redshift and shape of the n(z). The mean redshift in each bin agree within the
uncertainty level in Table The difference in the peak heights, is even more pronounced now
with the addition of the g-band information, showing that the SOMF algorithm leverages the g-
band information to get even better defined redshift bins. Notice that the means and shapes of the
distributions in Figure|2.5/and Figure|2.6|differ from each other, which is a expected consequence
of the addition of the g-band information.

2.5.2 Bin overlap

We aim for minimal overlap between bins, indicating distinct redshift ranges that have been well
separated. This results in a higher likelihood that a galaxy is correctly assigned to its designated
bin rather than to a neighboring one. Figure compares the amount of bin overlap obtained
with each method. The amount of bin overlap when using the Y3 SOM and the riz bands is shown
in blue, the SOMF with riz bands is shown in green, Y3 SOM with griz bands in yellow, and
the SOMF with griz bands in red. We can immediately see that the Y3 SOM riz presents the
highest overlap among all methods, and the greatest reduction in bin overlap is obtained when we
combine the SOMF recipe and the griz bands.

The numerical values corresponding to the bin overlap between bin pairs in shown in Table
where we also show the percent decrease in bin overlap relative to the Y3 SOM riz. The
SOMF riz, Y3 SOM riz, SOMF griz present decreasing amount in overlap, having a reduction
of 3%, 23%, and 25% respectively for bins 0-1; 5%, 14%, and 33% for bins 1-2; 0%, 52%, and
66Y% for bins 1-3; 6%, 14%, and 31% for bins 2-3. In the case of the overlap between bins 0-2
and 0-3, the amount of overlap is already small when compared to the other bin pairs. For those
two pairs all methods yield similar results, with the Y3 SOM riz having the best performance by
a few percent for bins 0-2, and the SOMF griz again having the best performance for bins 0-3.
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Figure 2.5: Photometric redshift distribution obtained from the riz bands, using the Y3 SOM
(dot-dashed line) and the SOMF algorithm (filled line). The two methods show good agreement
regarding the shape of each bin, and their mean redshifts. The SOMF method, however, presents
better defined bins.
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Figure 2.6: Photometric redshift distribution obtained from the griz bands, using the Y3 SOM
(dot-dashed line) and the SOMF algorithm (filled line). The two methods show good agreement
regarding the shape of each bin, and their mean redshifts, however the addition of the g-band
further emphasizes the ability of SOMF to produce better defined bins.
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Figure 2.7: Redshfit bin overlap between bins 0 —1,0-2,0-3,1 -2, 1 -3 and 2 — 3 for each
SOM recipe. The Y3 SOM riz is shown in blue, the SOMF riz in green, the Y3 SOM griz in
yellow and the SOMF griz in red. We can see that all proposed modifications reduce the bin
overlap with respect to the fiducial Y3 SOM using riz bands, with the best result obtained for
SOMF griz.

47



Method
Y3SOM SOMF Y3SOM SOMF

Bin Pairs riz riz griz griz

0-1 0.6974 0.6767 0.5399  0.5207
0-2 0.1354  0.1407 0.1634  0.1393
0-3 0.1283  0.1283 0.1306 0.1112
1-2 0.4536  0.4329 0.3880 0.3053
1-3 0.3258 0.3253 0.1574 0.1113
2-3 0.7216  0.6812 0.6210  0.4986

Overlap Reduction Relative to Y3 SOM riz

0-1 - 3% 23% 25%
0-2 - -4% -21% -3%
0-3 - 0% -2% 13%
1-2 - 5% 14% 33%
1-3 - 0% 52% 66%
2-3 - 6% 14% 31%

Table 2.3: Amount of bin overlap between each redshift bin pair, for each method, together if the
percentage overlap reduction with respect to the Y3 SOM riz (the fiducial method used in DES
Y3).

In summary, using the same data and same methodology, described in Section we can
reduce the amount of bin overlap in our wide sample just by replacing the fiducial Y3 SOM
algorithm used in the Y3 analysis (see Myles, Alarcon et al. 2021, Buchs et al. 2019), described in
Section by the SOMF algorithm (see Sanchez, Raveri, Alarcon & Bernstein 2020) described
in Section and adding the g-band information. By adding the g-band, the overlap between
redshift bins undergoes significant improvement. The fiducial Y3 SOM already shows significant
reduction in bin overlap when the g-band is added, but it is by combining the SOMF with the
g-band information that we obtain a substantial reduction in bin overlap and the best defined
redshift bins. In the next section, we show the impact of this reduction in bin overlap on the
cosmological parameters.
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2.6 Impact on cosmological parameters

In this Section we quantify how the changes in the SOMPZ method proposed in this paper impact
the final cosmological constraints. In particular, we want to see how these changes impact the
Ss — Qp, plane, i.e., the main cosmology results for DES Y3.

Changing the redshift estimation of the source catalog impacts all the following steps in
the cosmology estimation pipeline. In the SOMPZ method (see Section [2.3), the galaxy bin
assignment is based on the wide SOM assignment. Therefore, when we train a new wide SOM,
the galaxies are re-assigned and it is necessary to re-compute the two-point statistics measurements
and the covariance matrix. In the case of the SOMF method with the riz bands, it is possible to
perform all those steps using the Y3 data, and get a direct comparison between the Y3 SOM and
the SOMF in the Y3 cosmology. In the cases when we add the g-band information, both for the
Y3 SOM and the SOMF, it is not possible to carry the comparison all the way to the cosmological
parameters, given that we don’t have shape measurements for the g-band. Instead, we generated
simulated data vectors, base on the Y3 cosmology, and compare the contours obtained in this
simulated data.

Since in this paper we are exploring modifications on the method for redshift estimation for
the weak lensing source catalog, we will be focusing on the cosmic shear measurement. Notice
however, that the changes discussed here also impact galaxy-galaxy lensing and, naturally, the
3 X 2pt statistics.

2.6.1 Cosmological Constraints - Y3 Data

We tested the impact of replacing the SOM algorithm all the way from the SOM creation and
assignment, to the cosmological parameter estimation. We use the redshift estimation schema
and data described in Section but replace the SOM algorithm outline in Section (see
also Buchs et al. 2019), with the one outlined in Section 2.4.1|(see also Sénchez, Raveri, Alarcon
& Bernstein 2020).

Creating a new wide SOM and assigning the wide sample to it has a significant impact on
bin assignments, influencing which galaxies are sorted into specific redshift bins. Consequently,
to derive cosmological parameters, it becomes necessary to recalibrate various components of
the analysis. This entails the reassessment of 2-point statistics, and the subsequent re-calculation
of the covariance matrix. In essence, this process entails a complete reconstruction of the data-
vector. Details on each step can be found in Appendix Subsequently, we initiate a parameter
estimation chain using the updated data-vector, adhering to the methodology outlined in the DES
Y3 pipeline, as exhaustively expounded in Krause et al. (2021), and concisely summarized in
Appendix It’s worth emphasizing that we follow the same methodology as Amon et al. 2022
and Secco, Samuroff et al. 2022.

Figure compares the 1o and 20- contours in the €2, — o plane. The blue contour uses
the Y3 SOM algorithm, however, containing only the SOMPZ information when constraining
the redshift (as opposed to the complete redshift information used in Y3 that contains SOMPZ +
Clustering Redshifts (WZ) + Blending + Shear Ratios information, as detailed in Myles, Alarcon
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et al. 2021). The green contour shows the chain for which the data vector was constructed with
the redshift information from the SOMF algorithm.

The contours agree at the level of chain variance, and we do not observe any gain in constraining
power on the cosmological parameters, due to the small reduction in bin overlap obtained when
using the SOMF riz (see Figure[2.7). The marginalized mean Sg and Q, values in ACDM are:

Ss = 0.761%7003) (Y3 SOM)

Qn, = 0.2987004 (Y3 SOM)
and

Ss = 0.756700% (SOMF)

Qn = 03017004 (SOMF)

where uncertainties are 68% confidence intervals. We can see that the values agree well within
the uncertainty level, and the confidence intervals are also equivalent. Notice that the mean S
and Q, for the Y3 SOM are not the same as the ones quoted in Amon et al. (2022) and Secco,
Samuroff et al. (2022), given that here our chains includes redshifts estimated only with the
SOMPZ method, but again they are in perfect agreement.

The good level of agreement of the two chains, and to they Y3 fiducial results, demonstrates
the robustness of our method, one of the main results of this paper. This result, combined to the
agreement in mean redshift and shape of the distribution, demonstrates that the SOMF algorithm
is compatible with the SOMPZ pipeline, and robust against the cosmology results, validating it
and making it a viable option for DES Year 6.

We emphasize that the improvements on cosmology due to the enhanced redshift methodology
described in this paper could be more significant for a cosmic shear analysis more limited by
redshift uncertainty than DES Y3.

2.6.2 Cosmological Constraints - Simulations

To assess the potential impact of incorporating g-band information into redshift estimation on
cosmological parameters, we constructed simulated data-vectors based on the DES Y3 setup, as
detailed in Appendix[3.3.1} Subsequently, we analyzed these simulations using the Y3 pipeline.

We generated simulated data for four distinct cases, each employing different methods: the
Y3 SOM method with the riz bands, the SOMF method with the riz bands, the Y3 SOM method
with the griz bands, and the SOMF method with the griz bands.

At the level of simulated data vectors we can already see differences. Switching from using
the riz SOM n(z)s to griz SOMF, we see a roughly 5-10% increase in the lensing (k) signal in
the uppermost 4, 4 bin correlation. This is likely due to the small upwards shift in the mean, and
the reduction in the weight of the low redshift tail. Much of the signal-to-noise of cosmic shear
comes from these upper bin correlations, and so boosting the signal here is useful for optimising
our cosmological constraint.
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Figure 2.8: Cosmological constraints on the clustering amplitude, Sg with the matter density, €2,
in ACDM, using the DES Y3 data. The marginalised posterior contours (inner 68% and outer
95% confidence levels) are shown for the Y3 SOM in blue and SOMF in green.
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We also see an overall reduction of the intrinsic alignment II contribution in the cross-bin
correlations, as well as a decrease of the GI component in the auto bin pairs. This is again expected
from a reduction in the width of the source bins (we can see this by considering, for example, Eq
16-17 of Secco, Samuroff et al. 2022). The cleaner separation of IA signals is helpful as it can
break degeneracies and allow the data to constrain IAs more effectively.

In Figure we present a comparison of the 1o~ and 20~ contours in the €, — o5 plane for
each case. Importantly, the cosmological parameters have been centered to zero in these plots,
enabling us to concentrate on the gain in signal-to-noise (SN) or the reduction in errors relative
to one another. This centered approach helps highlight how the various methods improve in
comparison to their counterparts.

Upon examination, it is clear that the SOMF griz stands out as the most effective method,
showcasing superior constraining power to both Q,, and og. As such, it establishes itself as
the optimal choice. Consequently, it is highly advisable to incorporate the SOMF griz in the
upcoming DES Year 6 analysis.

2.7 Conclusions

In this paper, we explore three modifications to the SOMPZ method (Buchs et al. (2019), Myles,
Alarcon et al. 2021) employed in the DES Year 3 analysis: 1) changing the SOM algorithm; 2)
including the photometry from the g-band; 3) adding the redshift information, when available,
to train and assign galaxies to the SOM. Our goal is to optimize our redshift estimation pipeline
for the DES Year 6 data, with especial focus on the weak lensing source galaxies. This is an
important problem, given that those galaxies will be deeper and fainter compared to DES Y3, and
we want to be able to treat them properly, minimizing cuts in our catalogs. That said, the findings
of this paper are applicable to ensemble redshift estimation in general, and can be used as a guide
for the lens redshifts in DES Year 6, and the redshift analysis of other surveys.

Using the DES Y3 weak lensing data, we tested each of the three modifications, and compared
their impact relative to the Year 3 fiducial results. The main conclusions of our study are as
follows:

* We showed that the SOMF successfully compresses the high-dimensional flux space into
the redshift space in a smooth way, i.e., transitions between low- and high-redshift happen
gradually. Given that Self-Organizing Map is a unsupervised clustering algorithm, neighbor
cells should present similar properties. This property should definitely be observed in the
flux space (the features the SOM was trained on, Figures [2.A.1)and 2.A.2]), and the fact
that its also present in redshift space, Figure is evidence of the successful mapping of
redshifts.

* By using the SOMF algorithm, tailored for the problem of photometric redshifts, we were
able to reduce the standard deviation in the redshift distribution in each cell. That means
that, within each cell of the SOM, we have a better estimation of the redshift of those
galaxies.
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Figure 2.9: Cosmological constraints on the clustering amplitude, Sg with the matter density, €2,
in ACDM, using the simulated data described in Section in order to include the g-band
information. The marginalised posterior contours (inner 68% and outer 95% confidence levels)
are shown for the Y3 SOM in blue and SOMF in green, for the riz bands, and Y3 SOM in yellow
and SOMF in red for the griz bands.
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* We are able to reduce bin-overlap even further, and therefore have better defined ensemble
redshift distributions. Using the SOMF algorithm helps, however including an additional
photometric band, the g-band, plays a major role in reducing the overlap between redshift
bins.

* Two-point measurements and cosmology results are robust. Changing the galaxy assign-
ment in the wide SOM affects all the following pipeline, meaning that all measurements
need to be repeated. We tested the robustness of the 2pt cosmic shear measurements, and the
final cosmology results, verifying that they are completely consistent with our Y3 findings.

* We considered adding the redshift measurements that we had available for galaxies in our
spectroscopic sample as an additional feature to train the SOM and assign galaxies to it.
This path did not lead to improvements in the method, as shown in Appendix since the
inclusion of the redshift feature seem to dominate over the other features, and create a very
sparse SOM.

Photometric redshift estimation is an important topic in cosmology. There has been several
proposals on how to improve redshift estimation, given the limitations imposed by photometric
data. Self-Organizing Maps, in particular the SOMPZ pipeline proposed for DES Year 3 showed
promising results, constraining the redshift of the weak lensing source galaxies to the 2% level.
That was a ground-breaking work, that leverages on the deep fields high-quality photometric data
to connect the spectroscopic information available for a small group of galaxies, to the main wide
data set.

This paper sets out an recommendation for improvement of the redshift estimation pipeline,
SOMPZ, for weak leasing source galaxies in DES Year 6. Although the fiducial SOMPZ method
employed for Y3 is perfectly suitable for Y6 as well, by switching the Y3 SOM recipe to the
SOMF and including the g-band photometry (even if only at the redshifts level) we can obtain
even better redshift estimates for the Y3 wide sample. We expect these effects to be even more
accentuated for Y6, given the increased depth of the wide sample, therefore the changes proposed
here will have an even greater impact.

The implications of our results extend beyond the DES Y6 project. They provide a valuable
foundation for the improvement and refinement of redshift characterization in future Stage IV
surveys, such as those conducted by the Rubin Observatory. By reducing redshift bin overlap
and enhancing the accuracy of redshift estimates, we are poised to unlock new possibilities for
advancing our understanding of the universe’s dark components, and to achieve more precise and
robust cosmological parameter estimates in the years to come.

It is also worth emphasising that the code for the SOMPZ pipeline including the SOMF
algorithm was further revised, simplified and documented, making it easier to use. Given its
generality in the redshift estimation context, simplicity, and open source nature, we foresee the
use of this method in future analyses, as a ensemble photometric redshift estimation pipeline
option for many data sets.
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https://github.com/AndresaCampos/sompz_y6.
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Appendix

2.A Magnitude and Colors - SOMF

Figures2.A.1Jand[2.A.2|provide visual representations of the i-band magnitude and colors for each
cell within the wide and deep Self-Organizing Map (SOM), respectively. These maps were created
using the SOMF algorithm, as outlined in Section2.4.1, The SOM is designed to create a smooth
map encompassing the entire parameter space derived from the training inputs. By drawing
a comparison with Figure we can appreciate how effectively the SOMF method maps the
color-redshift relationship. This effectiveness is evident through the creation of a smooth redshift
map that corresponds with the observed color patterns. The correlation between color and redshift
in the SOM effectively illustrates its capacity to capture and represent this intricate relationship.
Any abrupt differences observed between adjacent cells can be interpreted as indirect indications
of potential degeneracies within the color-redshift relationship.

1.5
0.5
1.0 0.0
0.5 —05
= 0.0 -1.0
= |

Figure 2.A.1: Wide Self-Organizing Map constructed using the SOMF algorithm and data from
the riz bands. The visualization depicts the mean i-band magnitude (on the left), the mean r - i
color (in the middle), and the mean i - z color (on the right) for each cell within the wide SOM.
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Figure 2.A.2: Deep field Self-Organizing Map constructed using the SOMF algorithm with data
from the ugrizJHK bands. In the upper left, we have the mean i-band magnitude for each cell
within the deep SOM. Additionally, the various colors utilized in the deep SOM training are
shown.
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Figure 2.B.1: Adding redshift information in training and assigning deep SOM.
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Figure 2.B.2: Adding redshift information in training deep SOM only.
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2.B SOM-z

In this section, we delve into the details of incorporating redshift information, when available,
as an extra feature in the training and assignment of the deep SOM used in the SOMPZ method.
This is an unconventional way of applying an unsupervised learning method, such as the SOM,
however we were motivated to investigate whether this approach would maximize the use of the
available information, leading to enhancements in our ability to estimate redshifts. We applied
this strategy to the Y3 SOM, described in Section 2.3] In light of what we observed, described in
what follows, we did not try applying this strategy to the SOMF.

An interesting phenomenon arises when we include redshift information in the training and
assignment process. The redshift sample galaxies tend to cluster in a few cells, leaving most cells
sparsely occupied. This behavior can be observed in Figure[2.B|(top), where we show the number
of spectroscopic galaxies assigned to each cell in the deep SOM (top row), the mean redshift
per cell (middle row), and the standard deviation in each cell (bottom row). The first column
shows the DES Y3 SOM, without including the redshift information, and A is a scaling factor
for the contribution of redshift information relative to flux data, i.e., 4 = 0 means no redshift
contribution, while 4 = 1 means the contribution of the redshift is the same as a flux. As the
contribution of redshift information increases, the clustering effect intensifies.

This clustering of galaxies on the deep SOM negatively impacts the photometric redshift
calibration. Figure[2.B.3|presents the wide data photometric distribution for the DES Y3 method
and the variants with added redshift information. The solid line represents the DES Y3 n(z),
while the dot-dashed and dashed lines represent 4 = 0.05 and 4 = 0.1 respectively, and the dotted
line represents the most "extreme" case, where 4 = 1. As redshift information gains more weight,
the n(z) distribution in each redshift bin spreads further. This results in increased bin overlap, as
illustrated in Figure which is the opposite effect of what we are looking for.

Given that adding the redshift information the training and assigning phases of the deep SOM
seems to impact negatively our n(z) bins, we conducted a final test before abandoning the concept:
adding the redshift information only during the training phase of the deep SOM. That still has a
clustering effect upon the deep SOM, as we can see in Figure (bottom), but to a lesser degree.
In this case, we observe that the n(z) distribution in each bin, shown in Figure and the
bin overlap, shown in Figure are very similar to those of the fiducial Y3 method, but still
slightly worse given that the Y3 SOM still presents the smallest overlap.

Based on these findings, we infer that incorporating the redshift of individual galaxies as an
additional feature alongside fluxes in the estimation of the n(z) distribution using the SOMPZ
method is not a viable approach.

2.C Cosmic Shear Measurement

The small distortions in the observed shapes of galaxies due to weak gravitational lensing by the
intervening large scale structure of the Universe are called cosmic shear. Considering two redshift
bins i and j, the shear correlation function estimator can be written in terms of a galaxy measured
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Figure 2.B.3: Comparison of the n(z) bins obtained using the fiducial DES Y3 SOM (solid line),
and adding redshift in training and assigning deep SOM. The dotted line represents the most
"extreme" case, where 4 = 1 and the contribution of the redshift in training and assigning is
the same as the fluxes, while the dashed and dot-dashed lines represent 4 = 0.1 and 4 = 0.05
respectively. The vertical lines are the mean redshift in each bin, shown in the legend for the
fiducial method, or 2 = 0, and the A = 1 case.
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Figure 2.B.4: Redshfit bin overlap plot for fiducial DES Y3 (blue) and adding redshift in both
training and assigning deep SOM. The bin overlap increases as the contribution of the redshift,
represented by A, increases. The green line represents 4 = 0.05 or 5% contribution, the yellow
A = 0.1, contributing 10%, and the red line 4 = 1, contributing the same as flux.
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Figure 2.B.5: Comparison of the n(z) bins obtained using the fiducial DES Y3 SOM (solid line),
and adding redshift only in the in training phase of the deep SOM. The dotted line represents the
most "extreme" case, where 4 = 1 and the contribution of the redshift in training and assigning
is the same as the fluxes, while the dashed and dot-dashed lines represent 4 = 0.1 and 4 = 0.05
respectively. The vertical lines are the mean redshift in each bin, shown in the legend for the
fiducial method, or 2 = 0, and the A = 1 case.
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Figure 2.B.6: Redshfit bin overlap plot for fiducial DES Y3 (blue) and adding redshift in only
training the deep SOM. The bin overlap increases as the contribution of the redshift, represented
by A, increases. The green line represents 4 = 0.05 or 5% contribution, the yellow 4 = 0.1,
contributing 10%, and the red line A = 1, contributing the same as flux.
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tangential, ¢, and radial, e, ellipticities as
Y (0) = (€ = exex) (). (2.21)

We can determine the shear-shear statistics by averaging over all galaxy pairs (a, b) separated by

and angle 6

S Wawplel€ + € €l]

Zab WaWbRaRb
where w represents the the per-galaxy inverse-variance weight, which is taken over galaxy pairs
whose angular separation is within an interval A8 around 6, and R is the shear response correction
from Metacalibration.

The tomographic DES Y3 cosmic shear data vector, D, is computed using Equation and
the code TreeCorr!l It includes four auto-correlations and six cross-correlations between redshift
bins for both positive and negative angular scales, spanning 2.5 to 250.0 arcmin. The impact of
baryonic effects is mitigated by excluding small angular scales, leaving a total of 167 (60) data
points for &, (£-) correlations.

The covariance matrix, C, is a function of the redshift distributions, cosmological parameters
and nuisance parameters. We assume a multivariate Gaussian distribution to model the statistical
uncertainties in our cosmic shear data vector. The complete modelling of the disconnected 4-point
function part of the covariance matrix is described in Friedrich et al. (2021). We compute the
connected 4-point function part of the covariance matrix and the contribution from super-sample
covariance using the public code CosmoCoV?|Fang et al. (2020), which is part of the CosmoLike
framework Krause & Eifler (2017).

Following Amon et al. (2022), Secco, Samuroff et al. (2022) and previous cosmic shear
analysis, we use a iteratively fixed covariance matrix. This means that we start with a set of
fiducial input parameters, in our case we use the DES Y3 best fit parameters. Then the covariance
is recomputed at the best fit from this first iteration, and the final chains are run.This update had
negligible effects on the cosmic shear constraints that we present in this paper.

7(0) = (2.22)

2.D Modelling and Analysis Choices

We carry out our analysis in the context of the flat ACDM cosmological model. The cosmological
parameters are {Qm, Qp, ho, As, 1, thz}, where Q, is the density parameter for matter, and €2y,
the equivalent for baryons; A is the dimensionless Hubble constant; Ag and ng are the amplitude
and slope of the primordial curvature power spectrum at a scale of k = 0.05 Mpc~! respectively;
and Q, h? is the neutrino mass density parameter. We assume three degenerate massive neutrino
species, following Krause et al. (2021).

thttps://github.com/rmjarvis/TreeCorr
2https://github.com/CosmoLike/CosmoCov.
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Modelling Cosmic Shear

For two redshift bins, i and j, the two-point cosmic shear correlations ff_rj (@) can be obtained by
decomposing the convergence power spectrum C,(£), at an angular wavenumber ¢, into E- and
B-mode components (Crittenden et al., 2002; Schneider et al., 2002)

’ 2+, i 9
HOEDY 4; G¥ (cos 6) [CK{EE(5)+CK{BB(5)], (2.23)
4
y 2+ 1 y y
HOEDY ﬁ(}f (cos 6) [CK{ (0 - CK{BB(f)] : (2.24)
4

where the functions G (x) are calculated from Legendre polynomials P¢(x) and averaged over
angular bins (see Eqs. 19 and 20 in Krause et al. 2021).

The 2D convergence power spectrum C,/ (£) can be written in terms of the 3D matter power
spectrum, assuming the Limber approximation (Limber, 1953; LoVerde & Afshordi, 2008), as:

. X (Zmax) i '
ci (o) = /0 ax (X))(Vzw Wp, (f +XO'5,z(x>), (225)

where Ps(k, z) is the nonlinear matter power spectrum and the lensing weight is:

. 3H2Q X . dz v —
Wit = 2 [Pyl e g5 (2.26)
2¢2 a(y) Jy dy

with the source galaxy redshift distribution n'(z) normalised to integrate to 1, and yy the horizon
distance. We follow Krause et al. (2021), and model Ps using a combination of CAMB (Lewis
et al., 2000) for the linear part, and HaLoFiT (Takahashi et al., 2012) for nonlinear modifications.
As highlighted in Amon et al. (2022) and Secco, Samuroff et al. (2022), the impact of higher
order contributions to the observed two-point statistics is verified to be negligible for the scales
covered in this work.

Nuisance Parameters & Scale Cuts

Our setup matches the fiducial choices of the DES Y3 cosmic shear analysis. The only significant
difference is that, for the sake of simplicity, we choose not to use the additional shear ratio
likelihood included by Amon et al. (2022); Secco, Samuroft et al. (2022) (a similar decision was
made for validating the analysis choices pre-unblinding; see Krause et al. 2021). As a result, our
model space is slightly smaller, since we do not need to vary parameters for galaxy bias or lens
photo—z error. The corresponding parameters and their priors are shown in Table Note
that these are identical to the priors used in the Y3 analysis. We also adopt the fiducial DES Y3
cosmic shear scale cuts (see Krause et al. 2021 for an explanation of how these were derived).
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Table 2.D.1: A summary of the central values and priors used in our analysis. The top seven
rows are cosmological parameters, while those in the lower sections are nuisance parameters

corresponding to astrophysics and data calibration. Priors are either uniform (U) or normally-
distributed, N (u, o).

Parameter Fiducial Value Prior

Cosmological Parameters

Qn 0.29 U[0.1,0.9]

Qp 0.052 U[0.03,0.07]

h 0.75 U[0.55,0.91]

Aq 2.38%x 10  U[0.5,5.0] x 107

ng 0.99 U[0.87,1.07]
Q, h? 0.00053 U[0.6,6.44] x 1073

Calibration Parameters

mi 0.0 N(0.0,0.0059)
my 0.0 N(0.0,0.0042)
ms 0.0 N(0.0,0.0054)
my 0.0 N(0.0,0.0072)
Az 0.0 N(0.0,0.018)
Az» 0.0 N(0.0,0.015)
Az3 0.0 N(0.0,0.011)
Azy 0.0 N(0.0,0.017)

Intrinsic Alignment Parameters

A 0.7 U[-5,5]

Ay ~1.36 U[-5,5]

ni -1.7 U[-5,5]

7 -2.5 U[-5,5]
bra 1.0 U[0,2]
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Generating Mock Data

In this section, we outline the process of generating mock data, which serves as a means to assess
the impact of including the g-band in the DES Y3 setup. For a set of input parameters, we
generate four noiseless DES Y3-like cosmic shear data vectors denoted as D. These data vectors
are produced using the theoretical pipeline described in Section and are centered around the
central values outlined in Table

All four data vectors share the same input flat ACDM cosmological model, with parameters set
as follows: Qp, = 0.29, A; = 2.38 x 107, Q, = 0.052, h = 0.75, ng = 0.99, and Q, h* = 0.00053.
This configuration corresponds to og = 0.79 and Sg = 0.77, where Sg = 0g+/Q2/0.3. However,
each data vector is distinct in terms of the redshift distribution of the source galaxies, determined
using one of the methods employed in this study: 1) One data vector utilizes the redshift distribution
obtained by the Y3 SOM, using the riz bands. 2) Another data vector adopts the redshift
distribution obtained by the SOMF method, utilizing the riz bands. 3) A third data vector relies
on the redshift distribution derived from the Y3 SOM, employing the griz bands. 4) The final
data vector is constructed with the redshift distribution acquired through the SOMF method,
employing the griz bands. Our analysis framework and mock data generation follow the choices
made in the DES Y3, ensuring that our assessments are consistent with the established DES Year
3 standards.

Bayesian Inference

For the purpose of parameter estimation, the likelihood function of the data vector, D, given
the model, T, characterized by parameters, p, can be represented as L(D|p). This probability
distribution is presumed to follow a multivariate Gaussian distribution

InL(D|p) = —%Z(Di —T,-(p))[CL-;-1 (Dj —T;(p)) (2.27)
ij

D; represents the ith component within the data vector £, together with its covariance matrix,
C (see Section [2.C). Initially, this vector incorporates 20 angular data points, each spanning
across the intersections of 4 redshift bins and 2 correlation functions, leading to a total of 227
data points after constraining the angular scales. The corresponding theoretical predictions
for these statistical quantities, represented as 7;(p), are elaborated upon in this section. The
Bayesian posterior probability distributions of the cosmological parameters, denoted as P (p|D),

are derived by combining the likelihood with the prior probabilities, P(p), as outlined in Table
3.A.1} following the principles of Bayes’ theorem

P(p)L(Dlp)
D)= ————= 2.28
#(p|D) P(D) (2.28)
where P(D) is the evidence of the data.
The posterior distribution is sampled using the Polychord (Handley et al., 2015a,b). The
analysis framework is based on CosmoSIS (Zuntz et al., 2015), a modular tool for estimating
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cosmological parameters. We use the fiducial sampler settings (500 live points, tolerance 0.01)
that have been verified to showcase the precision of the posterior distributions and Bayesian
evidence estimations (as discussed in Lemos et al. 2022).
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Chapter 3

An empirical approach to model selection:
weak lensing and intrinsic alignments

Abstract

In cosmology, we routinely choose between models to describe our data, and can incur
biases due to insufficient models or lose constraining power with overly complex models.
In this paper we propose an empirical approach to model selection that explicitly balances
parameter bias against model complexity. Our method uses synthetic data to calibrate the
relation between bias and the y? difference between models. This allows us to interpret y?
values obtained from real data (even if catalogues are blinded) and choose a model accordingly.
We apply our method to the problem of intrinsic alignments — one of the most significant weak
lensing systematics, and a major contributor to the error budget in modern lensing surveys.
Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and
compare the commonly used nonlinear alignment (NLA) and tidal alignment & tidal torque
(TATT) models. The models are calibrated against bias in the Q;, — Sg plane. Once noise
is accounted for, we find that it is possible to set a threshold Ay? that guarantees an analysis
using NLA is unbiased at some specified level No and confidence level. By contrast, we
find that theoretically defined thresholds (based on, e.g., p—values for y?) tend to be overly
optimistic, and do not reliably rule out cosmological biases up to ~ 1 — 20. Considering
the real DES Y3 cosmic shear results, based on the reported difference in y? from NLA and
TATT analyses, we find a roughly 30% chance that were NLA to be the fiducial model, the
results would be biased (in the Q;, — S plane) by more than 0.30~. More broadly, the method
we propose here is simple and general, and requires a relatively low level of resources. We
foresee applications to future analyses as a model selection tool in many contexts.

methods: statistical —cosmology: observations — cosmological parameters — gravitational lensing:
weak
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3.1 Introduction

Modern cosmology is an increasingly high-dimensional problem. Although the standard cosmo-
logical model itself is relatively simple, containing only five or six free parameters, it cannot,
in general, be constrained in isolation. One must rely on measurements on real data, which can
contain any number of additional features resulting from non-cosmological processes. It is nec-
essary to include models for such systematics in any cosmological inference, and to marginalise
over their parameters. Contemporary weak lensing analyses (see, e.g., Heymans et al. 2013;
DES Collaboration 2016a; Jee et al. 2016; Hildebrandt et al. 2017; Troxel et al. 2018; Hikage
et al. 2019; Hamana et al. 2020; Asgari et al. 2021; Loureiro et al. 2022; Amon et al. 2022;
Secco, Samuroff et al. 2022; Doux et al. 2022) typically have around 15 — 30 free parameters, the
majority of which are related to measurement uncertainties. This picture is unlikely to change in
the coming years. Indeed, as we move into the era of Stage IV surveys (Ivezi¢ et al. 2019; Spergel
et al. 2015; Laureijs et al. 2011), the unprecedented statistical power of these new data sets carries
an increasing sensitivity to systematics.

Some systematic uncertainties can be modelled pretty accurately given our prior knowledge of
their nature; for instance PSF modelling error (Jarvis et al., 2021) and shear measurement biases
(Heymans et al., 2006; Bridle et al., 2010; Mandelbaum et al., 2015). In most cases, however,
there is a relative lack of prior knowledge about the magnitude and/or scale dependence of the
effects being modelled. Some examples include the impact of baryonic feedback (Osato et al.,
2015; Chen et al., 2023; Troster et al., 2022), nonlinear structure formation (and the impact of
neutrinos on it;|Saito et al. 2008; Bird et al.| 2012; Mead et al.[2021; Knabenhans et al. 2021) and
galaxy bias (Desjacques et al., 2018; Simon & Hilbert, 2018; Pandey et al., 2020). Here, there
is clearly an argument for using the most sophisticated (physically motivated) model available.
This is the safest way to avoid bias due to model insufficiency. That said, extra free parameters do
potentially carry a cost in terms of constraining power. They can also worsen projection effects,
which complicate the interpretation of projected parameter constraints (see Joachimi et al. 2021a;
Krause et al. 2021). The ideal approach, then, would be to select a model that balances the two:
complex enough to avoid bias, but not more complex than is needed to describe the data.

Model selection methods are widely used in cosmology, often seeking to answer the question
of whether introducing new parameters to cosmological models is justified by the data. Some of
the most common tools for this are )(2 tests, the Akaike Information Criterion (AIC), the Bayesian
Information Criterion (BIC), the Deviance Information Criterion (DIC) and Bayes ratios (see
e.g. Liddle et al. 2006a; Liddle 2007; Trotta 2007; Trotta 2008; Kerscher & Weller 2019). A
characteristic of how all these statistics have been used is that they are interpreted using threshold
statistical values, derived in terms of the theoretical properties of the model, e.g. the Jeffreys scale
for Bayes ratios. They have also been most commonly applied to compare how well cosmological
models fit the data post-analysis, rather than actively being used to select elements of the analysis
in the blinded stages. By contrast, the process for choosing the fiducial model for an analysis
typically does not make use of model comparison statistics at all. Rather, we tend to rely on
generating and analysing simulations (either analytic or numerical) containing various forms of
unmodelled systematics (e.g., Krause et al. 2017, 2021; Joachimi et al. 2021a). This approach
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works, but does heavily depend on the ability to create realistic mocks. It is also important to
notice that any model selection method will typically have a number of subjective choices built
into them, e.g., whether to compare data vectors or perform likelihood inference, and what cutoft
to use for decision-making. This is also true, to an extent, for the method we will present in this
paper. That said, our method has the feature that the decision-making happens in well-defined
places and has a well-defined interpretation connected to parameter biases (e.g. selecting a
tolerable bias level and a confidence interval), as we will see in the following sections.

One of the most significant sources of systematic uncertainty in weak lensing is an effect
known as intrinsic alignment (IA; Troxel & Ishak 2015; Joachimi et al. 2015; Kirk et al. 2015;
Kiessling et al. 2015). IAs are coherent galaxy shape alignments that are not purely due to lensing,
but rather to the interactions with the local and large-scale gravitational field. Although in essence
an astrophysical effect, IA correlations appear on much the same angular scales as cosmological
ones, and it can be very difficult to disentangle the two. They are not universal, in the sense that
they depend significantly on the particular galaxy sample (colour, luminosity, satellite fraction
and redshift distribution; e.g. Johnston et al. 2019), and also the details of the shape measurement
(Singh & Mandelbaum, 2016). To add to the problem, unlike, for example, photometric redshift
error or shear bias, one cannot easily derive tight priors on IAs using simulations or external
data. Some physically-motivated IA models that have been developed in the last two decades
include the linear alignment (LA) model (Catelan et al., 2001; Hirata & Seljak, 2004; Hirata &
Seljak, 2010) which, as the name suggests, assumes a linear relationship between galaxy shapes
and the local tidal field; an empirical modification of this, known as the nonlinear alignment
model (NLA; Hirata et al. 2007; Bridle & King 2007), which is now one of the most common [A
models in contemporary weak lensing; and in recent years, the tidal alignment and tidal torquing
model (TATT; Blazek et al. 2015, 2019), which has provided a slightly more complex alternative
to NLA. Based on perturbation theory, TATT includes additional terms that are quadratic in the
tidal field, intended to encapsulate the processes driving IAs in spiral galaxies, and also additional
terms that are designed to enable better [A modelling on smaller (but still 2-halo) scales.

In this paper we propose a new model selection method, which uses the real data. The general
idea is to run two competing models on the blinded data, and compare them using statistical
metrics. Here we explore two convenient metrics: the difference in the best y? per degree of
freedom, A )((zdf) = Ay?/Adf, and the Bayes ratio R. We show that, for the method we are

proposing, A X(zdf) is a very useful metric to perform model selection (R is less so, for reasons

discussed in Section 3.5.2 and Appendix 3.C). To allow us to interpret the A X(zdf), we use simulated
data to calibrate its relation to biases in parameter space due to model insufficiency. It is this
process, of running a set of simulations and measuring parameter bias as a function of observable
metrics that we refer to as “calibrating the bias-metric relation" in the following sections. The
full details on how to perform this calibration are outlined in Section This approach can,
in principle, be applied to any type of data and/or systematics. Some examples of interesting
use cases in cosmology are choosing models for galaxy bias, the nonlinear P(k) and baryonic
feedback, as well as extensions to ACDM and modified gravity. However, in what follows, we
apply the method to the specific scenario of choosing an intrinsic alignment model for a cosmic
shear analysis.
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The paper is structured as follows: we describe the theoretical modelling of the cosmic shear
two-point data vector in Section In Section we describe how the synthetic cosmic shear
data is generated, including the choice of IA scenarios. The ingredients and steps for the model
selection method are described in Section Our results when applying our method to the
problem of IAs in the Dark Energy Survey Year 3 (DES Y3) are presented in Section4.5| Finally,
in Section 4.7/ we summarise our findings and their significance in the context of the field.

3.2 Theory & Modelling

We carry out our analysis in the context of the flat ACDM cosmological model. The cosmological
parameters are {Qm, Qp, ho, As, 1, thz}, where Q, is the density parameter for matter, and €2y,
the equivalent for baryons; A is the dimensionless Hubble constant; Ag and ng are the amplitude
and slope of the primordial curvature power spectrum at a scale of k = 0.05 Mpc~! respectively;
and Q, A2 is the neutrino mass density parameter. We assume three degenerate massive neutrino
species, following Krause et al. (2021). We discuss the nuisance parameters of our analysis in the
following sections. Prior choices are further described in Appendix

3.2.1 Modelling Cosmic Shear

The impact of gravitational lensing along a particular line of sight is determined by two quantities,
known as convergence and shear. The convergence « term of the weak lensing transformation
describes how much a galaxy on a particular line of sight is distorted due to intervening large
scale structure. It is defined as the weighted mass overdensity 9, integrated along the line of sight
to the distance of the source ys:

Xs
< (6) = /0 Ay W58, x). 3.1)

where 6 is the angular position at which the source is observed. The kernel W(y), defined in
Eq. (3.5), is sensitive to the relative distances of the source and the lens. It is this geometrical
term that makes cosmic shear sensitive to the expansion history of the Universe.

The two-point cosmic shear correlations £.(6) are obtained by decomposing « into E- and
B-mode components (Crittenden et al., 2002; Schneider et al., 2002). For two redshift binsi and j,
they can be written in terms of the convergence power spectrum C,(£) at an angular wavenumber
{ as

ij 2041 ij ij
10) = Y TGt (03 ) | Clpp(0) 4 CLyy (0] (3.2)
€
’ 2041 ; .
HOESY %Gf (cos 6) [CK{EE(f) _ CK{BB(f)] , (3.3)
€

where the functions G7 (x) are calculated from Legendre polynomials P;(x) and averaged over
angular bins (see Egs. 19 and 20 in Krause et al. 2021).
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Assuming the Limber approximation (Limber, 1953; LoVerde & Afshordi, 2008), the 2D
convergence power spectrum Cy (£) is related to the 3D matter power spectrum as:

i X)W (YW €+0.5
clo= [T (X)P(s( ,zm), (3.4
0 X X
where Ps(k, z) is the nonlinear matter power spectrum and the lensing weight is:
, 3H2Q XH dz
Wiy) = o X / ' i 00 35 X-x (3.5)
2¢* a(x) X'

with the source galaxy redshift distribution n(z) normalised to integrate to 1, and yy the horizon
distance. We follow Krause et al. (2021), and model Ps using a combination of CAMB (Lewis
et al., 2000) for the linear part, and HaLoFiT (Takahashi et al., 2012) for nonlinear modifications.
Even though at very small ¢ the power spectra of convergence, Cy, and cosmological shear, C,,
differ by a factor of \/(f +2)(€—=1)/(€(€+ 1)) (see Hu 2000 and Fosalba et al. 2015), for the
scales covered in this work they are approximately the same, and can be modelled fairly simply as
described in Eq. (3.4). In practice, however, £, measurements are sensitive not only to the pure
cosmological shear, but also to additional correlations due to, e.g., intrinsic alignments. In the
presence of IAs, the convergence spectra in Egs. and are replaced by C,, the calculation
of which we come to in Section[3.2.2]

3.2.2 Modelling Intrinsic Alignments

In general terms, the impact of intrinsic alignments (IAs) can be thought of as adding a coherent
additional component to each galaxy’s shape. That is, in the limit that all terms in the equation
are < 1, the observed ellipticity can be written as y°* = yS + yI + gy, or the sum of a shear due
to cosmological lensing, an IA-induced shear, and a random shape noise component. Although
the latter is typically dominant for any single galaxy, it cancels when the ellipticity is averaged
across a large population of galaxies. At the level of angular correlation functions, one has:

Cy () =C{(0) + C’({’I(f) + Cé’l(f) + C” (£). (3.6)
The first term, Cy, is the auto-correlation of cosmological lensing, and is defined in Eq. (3.4).
The intrinsic-intrinsic contribution is referred to as the II term, and arises from galaxies that are
spatially close to one another. The intrinsic-shear cross-correlation is known as the GI term, and
emerges from the fact that galaxies at different distances along the same line of sight can either
be lensed by, or experience gravitational tidal interaction with, the same large scale structure.
Again assuming the Limber approximation, the angular power spectra can be written as

XH i /
o= [ oy W (4203 ) o
and
i X Wi J £+0.5
cho-= [ dXMPGI(k= * ,X). G3)
0 X X
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Given Egs. (3.4), (3.7) and (3.8), we have the ingredients to use Egs. (3.2) and (3.3) to predict

the observable £.. Note that the GI and II power spectra are model dependent. Indeed, how one
calculates them is a significant analysis choice in any cosmic shear analysis. In the sections below
we describe the two model choices explored in this work.

TATT Model

The tidal alignment and tidal torque model (TATT; Blazek et al. 2019) is based on nonlinear
perturbation theory, which is used to expand the field of intrinsic galaxy shapes y! in terms of the
tidal field s and the matter overdensity §. Whereas ¢ is a scalar at all points in space, y! and s are
3 X 3 matrices, defining an ellipsoid in 3D space. Although in principle the expansion could be
extended to any order, our implementation includes terms up to quadratic in the tidal field:

yz!j = Clsij +C225ikskj+bTAC155ij, (3.9)
k

where Cy, C; and bta are free parameters. This leads to the power spectra:

Pg1 = C1Ps + btaC1Pope + C2Po|£2, (3.10)

PFIE = C12P5 + 2bTAC12P0|OE + bferC%POEIOE

+ C3PEojg2 + 2C1CaPoj2 + 2b7AC1 CaPog g2, (3.11)

PI%B = b%AC%POB|OB + C%PBZ|BZ +2btaC) C2P03|Bz. (312)

The various subscripts to the power spectra indicate correlations between different order terms in
the expansion of y!. They can all be calculated to one-loop order as integrals of the linear matter
power spectrum over k (see Blazek et al. 2019 for the full definitions). As can be seen here, the
TATT model predicts both E- and B-mode II contributions. These are propagated to separate E-
and B-mode angular power spectra, which enter &, in Egs. and (3.3). The amplitudes are
defined, by convention, as:

ClpCQm 1+z2 n
C =-A 3.13
1(2) 1 D) (1+Zo) (3.13)
Clpcgm 1+z n
C =5A 3.14

The pivot redshift zo and the constant C; are fixed to values of zg = 0.62 and C; = 5 X
1074Moh~2Mpc?. Again, this is a convention, such that C;(z) and C»(z) are roughly of the
order of 1 for a typical population of source galaxies. The power law term in C;(z) and C(z)
adds some flexibility to capture possible redshift evolution beyond what is already encoded in the
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model. Our implementation of the TATT model then has five free parameters: Ay, A2, 11,72, bta,
which we allow to vary with wide flat priors Ay, Az, 71,72 € [-5,5], bta € [0,2]. This choice
of uniformative priors is motivated by the fact that [As are very sensitive to the properties of the
galaxy population, making it very difficult to derive informative priors, and resulting in a lack
of directly transferable constraints in the literature for the TATT model parameters. Although
intended to match up with different alignment mechanisms, in practice A; and A, capture any
correlations that scale linearly and quadratically with the tidal field. The third amplitude bta is
designed to capture the fact that galaxies over-sample densely populated regions (i.e., one cannot
sample the y' field uniformly throughout the Universe).

For this work we use the DES Y3 implementation of TATT, within CosmoSIS Vl. (Zuntz
et al., 2015). The power spectra in Equations (3.10)-(3.12) (with the exception of the nonlinear
matter power spectrum Py) are generated using FAST-PT v2.12(McEwen et al., 2016; Fang et al.,
2017).

NLA Model

Although chronologically older and more commonly used, the nonlinear alignment model (NLA;
Bridle & King 2007) is a subspace of TATT. Built on the assumption that galaxy shapes align
linearly with the background tidal field, it predicts:

Pci = C1(2)Ps, Pu=Ci(z)Ps, (3.15)

with the amplitude C;(z) as defined in Eq. in our implementation. The NLA model as
implemented here differs from its predecessor, the linear alignment model (Catelan et al., 2001;
Hirata & Seljak, 2004; Hirata & Seljak, 2010), by the fact that P in the above equations is the full
nonlinear matter power spectrum (in our case generated using HALoF1T), not the linear version.
Unlike the original formulation, our implementation of NLA also includes a power law redshift
dependence in Cj(z) to capture any additional evolution beyond the basic model (as in Eq. (3.13)
above). In total, our implementation of the NLA model has two free parameters, A and 171, which
we vary with the priors given in Section[3.2.2]

3.2.3 Other Nuisance Parameters & Scale Cuts

Both the TATT and NLA pipelines include free parameters for redshift error and residual shear
bias. We adopt the same modelling as Krause et al. (2021), giving us one Az and one m parameter
per redshift bin, or a total of eight nuisance parameters. Note however, that these parameters
are prior dominated for Y3 cosmic shear-only chains, and so add relatively little to the effective
dimensionality. For details about the priors see Appendix and Table 3.A.1| We also adopt
the fiducial DES Y3 cosmic shear scale cuts (see Krause et al. 2021 for an explanation of how
these were derived).

'https://bitbucket.org/joezuntz/cosmosis/wiki/Home; des-y3 branch of cosmosis-standard-library
Zhttps://github.com/JoeMcEwen/FAST-PT
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3.3 Creating and analysing the cosmic shear data vector

In this section we describe how we generate mock data. This is necessary to calibrate the relation
between bias in cosmological parameters and statistical metrics used for model comparison, which
is central to our method for model selection. Essentially we wish to create an ensemble of data
vectors that span a useful range of bias in cosmological parameters and A y? ap (or R), allowing us
to map out the relation between the two. Our analysis framework and mock data follow the DES
Y3 choices, and we use DES Y1 (the precursor data set to Y3) to define plausible IA scenarios.
In Section we focus on how to simulate the cosmological lensing terms (which depend
on cosmology, not the IA model). Then in Section we describe the IA terms (IA model-
dependent). We explain how we incorporate noise into our analyses, and why it is necessary,
in Section [3.3.3| Finally, we describe our sampler choices in Section and in particular an
approximation using importance sampling that we use to accelerate the analysis of the noisy data
vectors.

3.3.1 Generating Mock Data

For a given set of input parameters, we generate a noiseless DES Y3-like cosmic shear data
vector, D, using the theory pipeline described in Section We assume the fiducial Y3 redshift
distributions, as presented in Myles, Alarcon et al. (2021). In all data vectors, the same input
flat ACDM cosmology is used (Qn = 0.29, Ay = 2.38 X 1072, Qy = 0.052, h = 0.75, ng =
0.99, Q,h% = 0.00053). This corresponds to o5 = 0.79, Sg = 0.77, where Sg = 03+/Qm/0.3.
We choose these to match the marginalised mean values from the DES Y1 3 X 2pt chain used
to generate IA samples (see Section below). Note, however, that the exact values are not
expected to affect our results. We also fix all the redshift and shear calibration nuisance parameters
to zero when generating data vectors.

3.3.2 Choosing IA Scenarios

When constructing simulated data vectors, it is important to remember that IA model parameters
are not independent. The total GI+II intrinsic alignment component in a scenario with, e.g.,
Ay = A = 1 is very different from one with A; = 0.1, A, = 1. As a consequence, it is possible
for two sets of input IA parameters to give similar cosmological bias (when analysed with NLA),
but quite different y? values. Specific combinations of TATT parameter values may enhance or
cancel out cosmological parameter bias, and so it is useful to sample the 5D TATT parameter space
rather than scaling up individual parameters to explore the potential for cosmological parameter
bias due to model insufficiency. Therefore, instead of a single mock data vector, we generate a
set of 21 data vectors, all with the same cosmology, but with different possible IA scenarios. The
number of mock data vectors is an analysis choice. The more we generate, the better we cover the
IA parameter space, but it also increases computational costs. We verified that 21 was a sufficient
number of scenarios to have samples presenting low, medium and high bias in cosmological
parameters, while still being reasonable in terms of computational cost (i.e. the chains to run).
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Figure 3.3.1: An illustration of how we generate samples in IA model parameter space for this
work. The purple contours show the 68% and 95% confidence levels from the TATT model
analysis of the DES Y1 3 x 2pt data (Samuroff et al., 2019). Overlain (black points) are the IA
samples we derive from this posterior probability distribution after marginalizing over all other
parameters. On the diagonal, we show the Y 1 marginal posterior (purple), and also the distribution
of IA samples (black), both normalised to integrate to 1 over the prior range. As shown, the latter
is slightly broader than we would obtain by drawing from the DES posterior distribution.
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To do this, we follow the recipe set out in Section 2 of DeRose et al. (2019). Starting with
the posterior from the DES Y1 3 x 2pt TATT analysis (the purple contours in Figure [3.3.1;
Samuroff et al. 2019), we evaluate the covariance matrix of the N, = 5 TATT parameters, and
perform an eigenvalue decomposition. We then use Latin Hypercube sampling to generate Ngamp
samples, which are roughly evenly distributed in N, dimensional space. Finally, we use the
eigenvalues/vectors to rotate and normalise those samples into the parameter space. The results
are shown in Figure[3.3.1] The idea is that this provides a slightly broader coverage than could
be obtained simply by drawing points from the joint posterior, while maintaining the correlations
between parameters. In this way, we can cover a range of marginal cases, which are pessimistic,
but still consistent with the data; this is useful, since for our purposes it is more important to span
the range of plausible TATT model parameters than to preserve the statistics of the Y1 posterior
exactly. Notice that the reason for using the DES Y1 posterior here, instead of the Y3 for instance,
is that the method we are proposing involves using a precursor data set to generate the samples
and draw conclusions about the current data set being analysed. However, the important point is
to sample IA parameters in a way that approximately preserves the degeneracies seen in real data,
while also covering a wide enough range to allow the bias calibration.

3.3.3 Adding Noise

Since real measurements unavoidably include an (unknown) noise realisation, the calibration
of the bias-metric relation is inherently a probabilistic problem (we will return to this point
in Section see the discussion there for details). For this reason, it is important that our
simulations capture all sources of scatter in the data.

For each of our 21 IA scenarios, defined by a set of input TATT parameter values 614 ;, we
have a set of noisy data vectors D i,j = D(01a,)+N j, where noise realisation N is drawn from the
covariance matrix, and is assumed to be independent of €14 ;. We use the final DES Y3 covariance
matrix, which is analytic and includes a Gaussian shape noise and cosmic variance contribution,
as well as higher order non-Gaussian and super-sample terms (Friedrich et al., 2021). In total we
generate 50 noise realisations, which we apply to each data vector. This gives us a collection of
21 noiseless data vectors, and 21 x 50 = 1050 noisy ones.

For testing, however, it is convenient to arbitrarily choose a single fixed noise realisation,
which we refer to as fiducial noise. Figure shows an example DES Y3-like data vector,
generated using the setup described above, with the fiducial noise realisation added. For this
particular example, the input TATT parameters are the mean values from the Y1 posteriors in
Figure 3.3.1l For reference, we also show the noiseless version (purple solid), as well as the
separate (again, noiseless) IA contributions. Since the IA signal in the lowest bin (1, 1) seems to
dominate, one could reasonably ask whether we could simply focus on this part of the data vector
for model selection. We ultimately decide against this for a few reasons. First, although the IA
signal is strongest in bin 1, 1, we can see there is also non-negligible signal in the surrounding bins
(e.g. 2,1 and 3, 1). Indeed, during the DES Y3 analysis, a range of IA mitigation techniques were
explored, including dropping the lowest auto bin correlations. For moderate TATT scenarios, it
was found that this could not reliably eliminate cosmology biases, suggesting the IA contamination
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Figure 3.3.2: An example of a noisy simulated data vector of the type used in this paper. Each
panel shows a redshift bin combination (as labelled), and the upper and lower triangles show
&4 and &_ respectively. In each panel we show the simulated cosmic shear data vector with
fiducial noise (black points with error bars), as well as the noiseless version (smooth purple).
We also show the GI and II intrinsic alignment components separately. For reference, the input
IA parameters here correspond to the mean of the DES Y1 posterior discussed in Section [3.3.2]
(A1 =0.7,Ay = =1.36,171 = —1.7,mp = =2.5, bta = 1). The grey bands represent the fiducial
DES Y3 cosmic shear scale cuts, i.e., the scales removed from our analysis.

is not confined to the 1, 1 data vector. As we can see from Figure there is also a significant
GI signal in some of the more separated bin pairs (e.g. 4,1), which can dominate in some
IA scenarios. Additionally, the degree to which the low redshift II contribution dominates the
IA signal is somewhat dependent on the input TATT parameters, and so the strength of this
assumption varies in parameter space.
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3.3.4 Choice of Sampler
Nested Sampling

To sample the cosmic shear likelihood, we use the PoLyCHORD nested sampling algorithm (Han-
dley et al., 2015a,b), which generates estimates for the multidimensional posterior P (8|D, M)
and the evidence for a given model Z(D|M) simultaneously. This matches the DES Y3 choice,
and has been validated in terms of both evidence and the contour size compared with a long
Monte Carlo chain (Lemos, Weaverdyck et al., 2022). We briefly explored the possibility of using
MuLtiNEsT (Feroz et al., 2019), which is conceptually similar, but significantly faster. Ultimately,
however, we found that MuLTINEST underestimates the width of the posteriors in all cases we
tested (both NLA and TATT; see Appendix[3.D). It also gives inaccurate evidence values (Lemos,
Weaverdyck et al., 2022), which tend to skew towards preferring NLA. For these reasons, we did
not pursue this.

To obtain estimates for the best y?, we use oversampled chains (i.e., output with 10x the
number of points as saved in the standard chains). This approach has been tested in the Y3 cosmic
shear setup, and shown to give comparable results to running a likelihood maximiser (Secco,
Samuroff et al., 2022). All sampling, as well as the modelling steps described in Section 3.2] are
carried out using CosmoSIS.

Importance Sampling

To assess the impact of data vector noise, in addition to nested sampling we also make use of
importance sampling (IS; Neal 1998; Tokdar & Kass 2010 see also Lewis & Bridle 2002; Padilla
et al. 2019 for cosmology-specific applications). For each IA scenario 014 ;, we wish to estimate
the shape and position of the Sg — Q, posterior, as well as the best fit and evidence. Running full
chains for every combination of noise and IA scenario would be expensive, and IS provides a fast
approximation.

Say one wants to estimate the characteristics of a distribution P, over parameter 6. One can
estimate the mean of the function f(#) under P as:

f:/f(H)P(G)dH. (3.16)

This can be rewritten in terms of a second distribution Py:

. P(6)
P= [ 10 Pty (3.17)
~ ) FO)w(B), (3.18)
6;~Py

where we have redefined the ratio of distributions as a weight w = P/Py. The second line follows
as a Monte Carlo estimate for the first, and the sum runs over values of 8§ drawn from Py(6). The
equations above make no assumptions about Gaussianity, or about the nature of the distributions.
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To work well, however, it does require Py to be non-zero over the range of 6 for which we wish
to estimate P, and it works better in cases where the number of samples is large. Functionally, it
also requires (a) that one has, or can generate, samples from Py, and (b) that for any given 6, one
can evaluate both P and P.

For our application, Py = P (6|D, M) is a reference posterior obtained from running a chain on
the noiseless data vector D (61a). As before, we use the X 10 oversampled PoLyCHoORD output for
this. The target distribution P = P (6| D, M) is the posterior we are trying to estimate, conditioned
on a noisy data vector D. With this setup, we can estimate P for each noise realisation by simply
iterating through the samples from P( and assigning each a weight equal to the ratio of the two
posteriors.

In addition to the target posterior for each model, we also estimate the best y2. For this, we
create a high density pool of samples by merging all of our oversampled PoLyCHORD chains (21
IA samples), in addition to a small number of additional chains run with a Y1 like covariance
matrix. This gives us over a million points in parameter space per model. For each noisy data
vector, we re-evaluate the likelihood at each point, and select the maximum. Given an estimate
for the best y? from IS, and assuming a Gaussian likelihood, the Bayesian evidence can then be
estimated as (see Section 3 Joachimi et al. 2021b):

InZ (D;|M) = nZo(D|M) - 0.5 (X,? _Xg), (3.19)

where index i indicates a noise realisation, and Zp and Xg are the evidence and best y? obtained
from a fiducial reference chain, which in our case are our noiseless chains.

To test the performance of our IS setup, we ran five additional PoLyCHoORD chains at different
noise realisations, once in the low bias regime and again in the intermediate (~ 107) bias regime.
We verified that in all cases, our IS setup recovered the best y? as well as the shape and mean of
the posteriors with a comparable level precision to a full chain. Our implementation is a slight
modification of the code discussed in Weaverdyck, Alves et al. (2022), and will be available on
release of that paper.

3.4 Model Selection

In this section, we define the components of our model selection method. In essence, we are
proposing to calibrate the observed value of model comparison statistics against the probability of
cosmological parameter bias. These quantities can be computed using noisy simulated data, but
first they must be properly defined. To this end, we define how we quantify cosmological parameter
bias in Section [3.4.1. The metrics that we tested in search of a useful bias—metric relation are
discussed in Section 3.4.2| In Section we make considerations regarding unconverged
samples. We summarise our model selection method in Section [3.4.4|
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3.4.1 Significance Level of Cosmological Parameter Biases

Now that we have a set of noisy data vectors, the next step is to fit them with all parameters free.
We analyse each data vector twice, fitting to our full set of cosmological and nuisance parameters,
but in one case using TATT, and in the other NLA. We then define bias as the distance between the
peak of the marginalised posteriors in the S3—Qp, plane. Figure[3.4.1]illustrates this for a particular
simulated data vector. In brief, the algorithm works by evaluating the Euclidean distance between
the peaks of the two posteriors, #; and > in Sg — Qy, space. It then sequentially computes the
confidence ellipses of $; at different o levels, and finds a value of N, that minimises the distance
between the ellipse and the peak of #,. Note that this is the same recipe used in Krause et al.
(2021). The choice of Sg and €2y, as the parameters of interest comes simply from the fact that
these are the cosmological parameters best constrained by DES. One could conceivably use a
more complicated separation metric that is sensitive to the full parameter space, along the lines
of those used for assessing tensions between data sets (e.g. Lemos, Raveri, Campos et al. 2021).
Conversely, given limitations in constraining power and the potential impact of the priors on some
parameters (e.g. Qp,), one could opt to use the 1D offset in the best-constrained parameter. For
cosmic shear this would be S, but this choice would vary depending on the modelling choices, the
nature of the data being analysed, and the overall scientific goal of the analysis. For our purposes,
however, we follow Krause et al. (2021) and consider the simpler 2D metric to be sufficient.

We use noisy simulated data, as described in Section — this is an important feature
of our analysis, and it is necessary to allow us to meaningfully interpret our statistical metrics.
Therefore, the relative separation of the two posteriors is a more useful quantity than the distance
from the input values of Sg and Q,,. The 0.22¢ value shown in Figure[3.4.1]is assessed relative to
the TATT posterior. This found to be more stable than assessing it relative to the NLA posterior,
particularly in relatively extreme IA scenarios where the NLA posteriors are significantly shifted
and can be distorted by prior edge effects.

Finally, it is implicit in the above that marginalised TATT constraints represent correct results
by which to measure bias. That is, when we refer to bias, we are in fact talking about bias
in the cosmological model when assuming the NLA model, with respect to what we find when
assuming the TATT model. Although this is clearly reasonable (since our data were created
using TATT), marginal contours can be subject to projection effects. Indeed, since some of
the TATT parameters are relatively poorly constrained by shear-shear analysis alone, the two IA
models cannot be assumed to experience projection effects to the same degree. We test this in
Appendix and find projection offsets between TATT and NLA at the level of 0.1c-. This is
well below the threshold of 0.30 used for this work, and is thus unlikely to significantly affect our
results.

3.4.2 Model Comparison Statistics

We investigate two commonly used test statistics, the y? difference and the Bayes ratio. We show
in Section that the former is more robust against noise than the latter, and is therefore a more
useful metric for the method we are proposing.
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Figure 3.4.1: An example of how cosmological parameter bias is defined for a given IA scenario
and noisy data vector. The purple point and the dotted ellipsoid show the maximum likelihood
and 0.30 contour, obtained from the analysis of a noisy simulated data vector with the TATT
model. The black is the same, but with the NLA model. The vector connecting the two peaks in
the Q, — Sg plane defines our bias metric. Note that the TATT contour is slightly offset from the
input parameter values (the dashed lines) due to noise and projection effects. It is for this reason
that the relative separation, rather than the distance from the input, is the most appropriate bias
definition.
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x* Difference Tests

When dealing with nested models (i.e., where one model is a subspace of the other, as in the
case with NLA and TATT), the difference in the best y? that can be achieved by each model on
the same data is a convenient statistic for model selection (Steiger et al., 1985; Rigdon, 1999;
Schermelleh-Engel et al., 2003; Andrae et al., 2010).

The y? difference metric is defined as the difference in the best y? values of the parameter
fits when assuming the two IA models, divided by the difference in their numbers of degrees of
freedom (df):

XX

df s dfl ’
where s indicates the smaller model (the one with fewer free parameters and therefore more
degrees of freedom; NLA in our example), and / denotes the model with more parameters, larger,
and so fewer degrees of freedom (TATT in our case)3 Note that the point estimate to use for the
“best 2" here is somewhat subjective. For a given chain, we use the value closest to the peak of
the multidimensional posterior. One could also use the maximum likelihood, although in practice
this tends to be a slightly noisier quantity.

In the limit that the additional parameters in the larger model have no impact on the quality
of the fit, the metric is exactly zero: Ay? = )(f — )(12 = 0. Very small A X(de) values can therefore
be taken as evidence that the smaller model is sufficient, given the data. In practice, however,
this is an unlikely outcome, as extra parameters will typically allow the model more flexibility.
Under the null hypothesis that the two models s and / both adequately fit the data, the value of the
numerator y?2 — )(12 is y2-distributed with dfyi = df; — df; degrees of freedom, and the expectation

Axlan (3.20)

value is (Ay?) ~ 1 (Wilks, 1938). One can interpret larger Ay? using the corresponding p-values
to quantify the degree to which the data appear to favour the larger model. As we will discuss in
Section[4.5] however, for our purposes it is more useful to focus on the observed relation between
A )((2 i) and parameter bias than on formal statistical thresholds. That is, we propose to use A X(Z a)
as an empirical tool, which requires calibration using simulated likelihood analyses for any given
problem. This way, we are also free from other assumptions behind the standard use of the A )((2 af)
metric — for example, it formally requires nested models whereas an empirical calibration would
not. Note that our approach here is functionally similar, but motivated slightly differently, to the
calibration of Posterior Predictive Distribution (PPD) p—values for internal consistency testing,
as implemented in Doux, Baxter et al. (2021).

In principle, A )((de) is prior-independent. In Bayesian inference, however, the prior typically
controls the regions of parameter space that can be explored, and so restrict the values of y? that

can be attained. In practice, this is only an issue if the likelihood peaks outside the prior bounds
(which is, in any case, usually a red flag).

3Note that it is this quantity, weighted by the difference in df, that we refer to as A )(% df) throughout the paper, and

not tl?e simple y2 — X12 differer}ce?. This a.llows us to briefly compare .with theoretical.cut—oﬂ:s in Sect.ion For
practical purposes, however, this is not strictly necessary — one could just as easily calibrate the raw difference.
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One other point to remember is that, although in an ideal case with well-constrained parameters
one extra parameter constitutes one fewer degree of freedom, in practice this is often not true. In
such cases, one can calculate the effective degrees of freedom (see Raveri & Hu 2019). With the
fiducial DES Y3 cosmic shear setup (minus the shear ratios), the effective degrees of freedom for
TATT and NLA are 222 and 224 respectively, giving dfgig = 2 (compared with dfgg = 3 from
simple parameter counting; see Secco, Samuroff et al. 2022 Table III).

In Section we also briefly consider two other likelihood-based metrics: the Akaike
Information Criterion (AIC; Akaike 1973) and the Bayesian Information Criterion (BIC; Schwarz
1978). Although these statistics have very different theoretical underpinnings (see Liddle 2007),
they are similar in form, and can be conveniently reformulated as thresholds in A )((zdf). As with
p—value cut-offs, however, they are seen to be relatively under-cautious in separating high- and
low-bias scenarios (see Section 4.5|and Figure 3.5.1).

Bayes Ratio

The Bayesian evidence ratio, or Bayes ratio R (Jeftreys, 1961; Kass & Raftery, 1995), is a slightly
more complicated alternative to A y> ap- 1t1s defined as the probability of measuring a data vector
D assuming a given model M, divided by the probability of measuring the same data D for a
second model M>:

Z(D|M))
Z(D|Mr)
Here, Z(D|M) is the Bayesian evidence, which can be obtained marginalising over all the model
parameters 6:

R = (3.21)

Z(DlM):/dG L(D|6, M)P(8|M), (3.22)

where L(D|6, M) is the likelihood, and P(@|M) is the prior, both assuming a particular model.
The Bayes ratio is typically interpreted using the Jeffreys scale (Jeffreys, 1961), which defines
ranges of values that match up to labels (e.g., “strong evidence", “substantial evidence", etc.).

Note that R and A )((2 4y are not independent from one another (indeed the latter approximates
the former under certain assumptions; see Bishop 2006; Marshall et al. 2006). It is important,
then, to be careful when seeking to combine information from the two.

Evidence ratios have been widely used in cosmology, both for comparing different data sets
under the same model (i.e., as a tension metric; Marshall et al. 2006; Lemos, Raveri, Campos
etal. 2021), and for model comparison on the same data (Liddle, Mukherjee & Parkinson, 2006a;
Kilbinger et al.,, 2010; Secco, Samuroff et al., 2022). It is worth bearing in mind that the
formulation in the two contexts is slightly different. In the former case there is explicit prior
dependence, which motivates the use of statistics such as Suspiciousness (see e.g. Lemos, Raveri,
Campos et al. 2021 Section 4.2). The version commonly used for model selection, on the other
hand, should be independent of the choice of priors, at least in the limit that (a) the models are
nested and (b) the priors on the extra parameters are wide compared with the likelihood.

Since cosmological analyses involve a large number of free parameters, computing the
Bayesian evidence requires integrating a probability distribution over a high number of dimen-
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sions. A common way to calculate it is while producing the posterior distributions, using nested
sampling (Skilling, 2006). The precision required from the sampler in order to compute reliable
Bayesian evidences, however, often makes the sampling time very long. We choose to use the
PoLyCHorD nested sampling algorithm in this work (Handley et al., 2015a,b) — although see
Appendix where we consider the feasibility of using MuLTINEsT (Feroz et al., 2019) as a
slightly faster alternative.

Bias Probability

The above quantities give us the basic tools for our model comparison. There is, however, a piece
missing. As we mention in Section the calibration is inherently probabilistic. The model
comparison metrics (both A )((de) and R), as well as the offset between the NLA and TATT best
fits, are somewhat sensitive to noise, and we do not know the true noise realisation in the data.
We thus define a bias probability P for a particular bias tolerance X:

b>X
Nsamp

2 2 _
P(b > XO—lAX(df),obs < AX(df},thr) = (3.23)

Neip + Nap.
In words, P is the probability of the bias in Sg—€2y, being greater than X o, if the observed A X(zdt)

from the data is below some threshold ,\/(de) e (Which is to be determined empirically based on
the adopted X and P).
It is estimated by plotting the distribution of all of our noisy data vectors in the bias—A X(Z af)

plane, and, for a particular A )((2 df).the? evaluating the fraction of points that lie both above bias = Xo

and below A )((zdf) e (1-€-, In the lower right quadrant of Figure 3.5.1). In practice, one starts by
defining the tolerance X and the desired bias confidence P. For example, one might require the
bias to be smaller than X = 0.30 at 90% confidence. Given those numbers, we can then iteratively
evaluate Eq. (3.23) with different A )((de),thr thresholds until the required P is achieved.

3.4.3 Dealing with Unphysical A )((zdf) Values and Unconverged IA Samples

It is also worth briefly remarking that in our analysis we found about 50 (out of 1050) data points
for which )(% ATT )(I%IL A» and so A def < 0. Given that NLA and TATT are nested models,
these points are unphysical (a more flexible model should always be able to produce a better or
as-good fit). We conclude that they are an artefact of the sampling method; although we tested
the robustness of our IS setup, and found it can reproduce the best fit from chains to reasonable
precision, some level of sampling noise is still present. Given this logic, it is reasonable to
assume that if we were to find A )(I%IL A < )(% A 1D real data, there would likely be some follow-up
investigation and the chains would be rerun. This is particularly true if the y? is an integral part
of the analysis plan, as it is in our method. We thus choose to discard these points. It is worth
bearing in mind, however, that this may or may not be a reasonable decision in other setups,
depending on the models being compared and the details of the analysis.
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Also note that, although our results are based on 21 IA samples, we did initially draw 25
scenarios (see Section [3.3.2). Of these 25, we found four to be so extreme that the NLA
PoLyCHorp chains failed to converge in the noiseless case. These resulted in highly distorted and
often bimodal contours in the Sg — €2y, plane, making it difficult to obtain meaningful estimates for
the bias. Given this, and also for the reasoning discussed above, we choose to omit these samples
from our analysis. This leaves us with a total of 21 IA samples.

3.44 The Recommended Method for Model Selection

Given all the definitions set out in the sections above, we now follow the recipe outlined below,
in order to map and calibrate the bias-metric relation. These steps are, in essence, our method;
when written out in this form, it can be very easily generalised to other model selection problems
beyond our particular example of A in cosmic shear.

1. Sample IA scenarios: Draw about 10 — 30 parameter samples from either a posterior

from a previous analysis or from some reasonable priors using the method described in
Section (we used 21 drawn from DES Y1 TATT posteriors).

2. Generate data vectors: Generate a simulated noiseless data vector for each IA scenario
drawn in the previous step. Other model parameters (e.g., cosmological and nuisance
parameters) should be fixed to some fiducial values. See Section|[3.3.1}

3. Analyse noiseless data vectors: There are two chains per data vector, one corresponding to
model My, and the other to M;. Again, we compared the TATT and NLA TA models using
PoLyCHorD to compute statistics. These choices might vary under different applications.
Details on the sampling can be found in Section 3.3.4|

4. Compute parameter bias and plot out the bias-metric relation: Demonstrate that the
noiseless data vectors show a clear correlation between the test statistic (e.g., A)((de) or
Bayes factor) and parameter bias, as described in Section[3.4.1]

5. Generate noise realisations: For each data vector, generate ~ 50 noise realisations using
the covariance matrix, as explained in Section In our case, that gives a total of
21 x 50 = 1050 noisy data vectors.

6. Analyse noisy data vectors: As discussed above, we choose to use importance sampling
to give a fast approximation for the noisy posteriors. For all noise realisations (50) and 1A
scenarios (21), for both IA models (2) — 2100 total, estimate the posterior, the NLA-TATT
bias and the model test statistics. See Section 3.3.4

7. Calculate probability: Plot out the bias-metric relation. Use the quantities computed in
the previous step to calculate the probability of bias greater than some pre-defined threshold

Xo (see Section[3.4.2).
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8. Run analyses on blinded data: Run a full chain on the real data in order to obtain the
observed model statistic.

9. Select the model: Interpret the observed model statistic from the previous step in terms of
bias probability using the results of step vii. If the probability of exceeding the chosen level
of cosmological parameter bias is low enough (where both the level of cosmological bias,
and the bias probability, are analysis choices), one can safely opt for the simpler model. See
Section

Note that, to obtain an accurate calibration of the A X(zdf) value, all aspects of the modelling
should be as close to the final fiducial analysis setup as possible. For an estimate of the computa-
tional resources required to employ the proposed method, see Appendix

3.5 Results

Now we have outlined the details of our method in Section we will now consider a specific
application. As discussed earlier, we choose to focus on the problem of deciding between two
intrinsic alignment models for a cosmic shear analysis: NLA and TATT. Although these models
are nested, the method does not assume this. Indeed, the only requirement is the ability to generate
mock data to calibrate the chosen test statistics; therefore it is quite general and can be applied to
a variety of model selection problems.

In Section|3.5.1]we discuss the results from our PoLyCHoRD chains on noiseless data vectors,
and the basic trends. Section then discusses the more complete probabilistic calibration,
which properly factors in the impact of noise. We also compare our empirical results against
theoretically derived y? thresholds. Sectionlooks at how far bias can be inferred from NLA
fits alone, without explicit model comparison. Lastly, Section considers the wider outlook
for lensing cosmology.

3.5.1 The Noiseless Case

Considering first the noiseless case, Figure shows the relation between bias in the Sg — Q,
plane and the NLA-TATT A )((zdf). Each point results from running two chains on the same
noiseless simulated data vector, first using NLA, and then using TATT. As defined in Eq. (3.20),
large values of A )((zdf) indicate statistical preference for the larger model (i.e., TATT). We see a

relatively tight relation between bias and A X(2df)’ going from A )((zdf) < 1 when bias is small to

relatively large values at the high bias end: low bias — small y? difference, high bias — large y>
difference. Interestingly, the relation appears to have the form (approximately) of a double power
law, with a steep slope in the high bias regime, switching to a somewhat shallower function below
0.30. It is worth stressing, however, that this relation is empirical. We do not have a particular
expectation for its shape, and it is likely that the details depend on the analysis choices and survey
setup. Note that even without data vector noise, this relation presents some scatter. This arises
both from sampler noise, and from the fact that this is a complex high dimensional problem,
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Figure 3.5.1: A )((zdf) as a function of cosmological parameter bias for a DES Y3-like cosmic
shear analysis. The 21 points correspond to noiseless data vectors, generated with different input
IA parameters. As defined in Eq. (3.20), large values of A )((2 a) indicate that the data prefer TATT
over NLA. The vertical dotted line marks the 0.30 bias limit used in DES Y3 (Krause et al., 2021).
We see a clear correlation between the observable metric (A )((2 df)) and the underlying parameter
bias, particularly for those points for which the bias exceeds ~ 0.20.
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for which two sets of IA values that produce biases of a similar magnitude will not necessarily
produce identical A )((2 an values. The vertical dotted line marks the 0.30" bias threshold adopted
by DES (Krause et al.,2021), which we adopt as our fiducial tolerance (see Sectionbelow).
Although we cannot use this noiseless result for any empirical method because real data will
always contain noise, confirming that these quantities clearly correlate is a necessary first step
in our method, and important to check before incurring the expense of further calculations. We
will see in the next section that the correlation between A )(2 and Sg — Qp, bias holds (with some
additional scatter) when we proceed to the noisy case.

In addition to the A X(zdf)’ we also consider the Bayes Ratio as a potential model comparison
metric; while the former presents a clear relation to the bias (as seen in Figure [3.5.1), we find
the latter be a relatively weak indicator, with additional intrinsic scatter. This can be seen in
Appendix 3.C| and in particular Figure 3.C.1. We also note that R and A)((zdf) are correlated.
In principle one could seek to combine them, but naively treating them as independent metrics
is almost certainly double-counting information. Therefore, here we focus on the results using
A X(z a)° For further discussion of the Bayes ratio see Appendix 3.C

3.5.2 Noise & Probabilistic Calibration

In Figure 3.5.2 we illustrate the impact of data vector noise in the bias-A def) plane. We show
the same 21 noiseless samples discussed above, but now overlain with multiple different noise
realisations, as approximated using importance sampling. As we can see, noise introduces scatter
in the bias-A X(zdf relation. While this noise is considerably less than in the case of the Bayes
factor (for which we show in Appendix[3.C|that the scatter due to noise is so large that the relation
with bias is extremely weak), it is still non-negligible.

For comparison, we show the A)(Zd cut-offs implied by some standard model selection
metrics: BIC, AIC and a p—value significance threshold?| of p = 0.05 (see Section 3.4.2] for
definitions). Unfortunately, in the presence of noise, we see that all three cut-offs are relatively
weak indicators of bias —i.e., they still favour the simpler model even when significant amount of
bias has been introduced in the cosmological parameters. Even in the case of AIC, which is the
strictest of the three, there are a problematic fraction of noise realisations where the observable
metric favours NLA, and yet NLA is biased by > 0.30 (see the points in the lower right hand
corner of Figure 3.5.2). This illustrates a key motivation for adopting an empirical calibration.
Theoretical limits imposed using, e.g., p—values are not designed to optimise the quantities we
care most about (i.e., parameter biases). For a given analysis, it is impossible to know from first
principles what level of bias is excluded for a given statistical metric cut-off without some form
of calibration.

These observations have important consequences for our method. Since the exact noise
realisation in any real data set is unknown, one cannot simply run a single set of IA samples (as
in Figure 3.5.1), and perform a 1:1 bias—AX(zdf) mapping. Nor, as we can see from Figure 3.5.2,

4Assuming that the TATT model has 2 additional effective degrees of freedom compared with NLA. Note that
this dfgig value was calculated for the DES Y3 shear-only (no shear ratio) case in Secco, Samuroff et al. (2022). It is
thus valid for our particular case, but would not necessarily hold under changes to the data vector or analysis choices.
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Figure 3.5.2: The impact of data vector noise on A de . The larger open points show our 21 TA
samples with zero noise (identical to those in Figure. The smaller coloured dots show the
effect of adding random noise realisations, for which parameter constraints are estimated using
importance sampling. For each of the 21 colours, we have a collection of 50 realisations. The red
and blue horizontal dashed lines mark threshold A de values, defined by the points where the
BIC and AIC respectively prefer NLA and TATT equally. The orange dashed line corresponds to a
p—value p(Ax?) = 0.05 (see text, Section . The fact that these formal cut-offs are relatively
ineffective in isolating the bias < 0.30" region motivates us to adopt an empirical approach.
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can we simply fall back on theoretical cut-offs to reliably guard against model bias. Instead, we
must consider the problem as a probabilistic one, and factor in the uncertainty from noise.

Probabilistic Interpretation

To interpret our results in a quantitative way, we use Eq. (3.23) and calculate the bias probability
P(b > Xo|A )((2 df)obs < A )((de) 4)- This quantity should be interpreted as the conditional

likelihood that, if in the real data one finds a A)(( af) obs value below some limit A)(( df) thr (a
horizontal line in Figure 3.5.2), then the analysis using NLA will still in fact be biased by Xo or
more.

Figure shows three curves corresponding to chosen bias thresholds of 0.1507, 0.30-, and
0.50. Each point is calculated using Eq. and the curves are obtained by fitting a fifth order
polynomial to the points. We tested the stability of these smoothed fits, and found that they are
robust to doubling the number of noise realisations in Figure (from 50 per IA sample to
100). This result provides a powerful tool, which can be used to interpret results from real data.
For instance, say we were to run NLA and TATT chains on a blinded Y3 data vector, and find
A )((zdf) obs < 0.4. With the aid of Figure 3.5.3, we could say that the chance of the NLA run
being biased by more than 0.50 in Sg — €y, 1s about 3%. The probability of exceeding a 0.30
threshold is about 10%, and the chance of bias greater than 0.150 is about 37%. In practice,
the bias tolerance is an analysis choice. As discussed previously, DES Y3 chose a value of 0.30
by which to judge simulated chains. The exact number, however, is somewhat subjective, and
the most convenient value may depend on how well sampled the low bias end of the bias-A )((de)
relation is. As one might expect, the lower the bias threshold X, the stronger the requirement on
the A )((zdf) (i.e., the stronger the data needs to favour NLA) in order to keep the bias probability
P(b > Xo) low.

To understand how our results depend on various analysis choices, it is perhaps useful to
think of the process in Section as a series of transformations between different distributions.
The points in Figure 3.5.2, which determine the final y? threshold, can be thought of as the
convolution of two parts an initial drstrrbutlon of noiseless points P (A )(( af) b) (the open points
in Flgure 2|and the filled in Figure 3. and a second distribution conditioned on each one
Py (Ax? (df)> blA )(( af)’ b) (where the tilde denotes noisy values of A X(zdf) and bias). In the first case,
Py, we start with a distribution in IA parameter space P(614), which we choose. The samples from
P(6014) are mapped onto a distribution of noiseless data vectors, which are then transformed (via
running chains) into samples in the final bias—AX(zdf) space: P(01p) — P(D) — PS(A)((de), b).
Both mapping steps are dependent on the survey analysis choices (choice of power spectrum,
n(z), covariance matrix, etc.). This is not a problem, as long as these choices match the ones that
will be applied on real data. It is, however, likely these choices have an impact on the observed
bias-A )((de) correlation. It is clear from this that P(A )((zdf), b) also depends to an extent on the
choice of P(f1a). We can see that P(614) behaves analogously to a prior, restricting the range of
possibilities in the subsequent steps. However, given that the purple points in Figure show a
relatively tight correlation and cover a broad range of bias relatively uniformly, we do not expect
the details to change things considerably.
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Figure 3.5.3: Probability of exceeding some specified level of cosmological parameter bias, as a
function of the threshold A X(z a) value. For a DES Y3-like cosmic shear data vector with unknown

noise and IA realisation, and that is found to give an observed A X(zdf) lower than threshold the

A )((zdf) e 18 defined as the probability that the results using NLA are biased by more Xo~ in the
Ss — Qp, plane. Different values of X are represented by different colours. In each case, we show
both the direct measurement of P using importance sampling (coloured points), and the lines are
obtained by doing a polynomial fit. For illustrative purposes, we also show the A X(zd threshold
that would guarantee NLA is unbiased to within 0.3¢" at a confidence level of 90% (c?otted lines
and shading).
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Table 3.5.1: Confusion Matrix. The samples are split into quadrants, corresponding to the four
shaded regions in Figure[3.5.4. The left/right columns show the fraction of IA samples that give
a bias above and below 0.30. The rows indicate whether or not our method using the calibrated
A X(zdf) prefers NLA or TATT.

Model preferred by Bias

NLA | TATT | Total

TATT | 19.1% | 77.1% | 96.2%
NLA | 3.4% | 0.4% | 3.8%

Total 22.5% 77.5% 100%

Model preferred
2
by A X (an

The other part of the final sampling of points is the noise distribution Py (F/\/z(dﬂ, b|A X(z af)’ b).
We obtain this for a particular IA sample by sampling noise realisations, and so transforming

P(E |D) — Py(A Xz(df), b|A )((Zdﬂ, b). This process is again dependent on the covariance matrix,
but not on the choice of P(61a) (at least, not directly).

The end result of the above is that, by convolving to get to P(r/\ﬂ(df), b), we are able to map
out the relationship between a quantity we can measure (the noisy F){z(df)) and the one we are
interested in (parameter bias b).

Bias Tolerance Implications

We further illustrate our results by taking a concrete example. For our DES Y3 setup, we choose
a bias tolerance of X = 0.3¢, and a bias probability of 10% (P = 0.1). Using Figure this
gives us A )((2 df) thr = =04 (reading across where the horizontal dashed line meets the purple curve),
which is shown in Figure 4/ (the horizontal line labelled “empirical threshold"). With the
bias and A )(( df) thresholds ﬁxed, the four shaded regions in Figure|3.5.4/distinguish the following

possible scenarios: (a) NLA is sufficient (i.e., the bias is below our 0.3¢" limit) and A X(zdt) chooses
NLA (i.e., A X(de) <A )((de),thr; purple); (b) NLA is sufficient and A X(zdt) chooses TATT (grey); (¢)
NLA is insufficient and A X(zdf) chooses TATT (pink); (d) NLA is insufficient and A )((2 a) chooses
NLA (red). As we discussed previously, case (d) is the most dangerous, for obvious reasons.
Scenario (b) is not ideal (since we may end up with a model that is more complicated than strictly
necessary), but does not result in cosmological parameter biases. The different scenarios can be
better understood with the help of a confusion matrix, shown in Table m

The columns here represent the model preference according to the amount of bias, and the rows
represent the model preference according to the A )(( d)° Since we are effectively using A )(( df)
as an empirical proxy for bias, we treat the classification according to the latter (i.e., does using
NLA cause cosmological parameter biases for a particular data vector exceeding 0.30°?) as the
truth and the label according to the former (i.e., is A )((de) below A X(zdf),thr?) as the prediction (in
machine learning language).
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Figure 3.5.4: The impact of data vector noise on A )((2 an)° The points are the same as in Figure 3.5.2.

The horizontal line represents an empirical A X(z ) threshold, derived to ensure bias below 0.30
with 90% confidence. The four different shaded regions distinguish the following possible
scenarios: purple - NLA is sufficient and the calibrated A )((de) favours NLA ; grey - NLA would

be sufficient and yet A )(?df) chooses TATT ; pink - NLA is insufficient and A )((zdf) favours TATT ;
Red - NLA is insufficient and yet A )((zdf) still chooses NLA. This last case is the most dangerous,
and the A X(2df) threshold is chosen to keep the fraction of points in this quadrant acceptably small.
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We see that in our samples, the cosmological parameter bias indicates that NLA should be
preferred about 22.5% of the time, while TATT should be preferred 77.5%. In other words, NLA
introduces a bias smaller than our threshold in ~ 1/4 of the cases. Note that this fraction is
somewhat dependent on our particular choices. A different choice of posteriors in Figure
for example, could change this fraction. We do not, however, expect this to affect the validity of
the method.

When it comes to the performance of A )((Zdﬂ in identifying the correct model, we see that it
favours TATT in 96.2% of the cases, and NLA in only 3.8%. We can see that our method is quite
conservative, in the sense that there is a non-negligible false positive rate. That is, it prefers TATT
over NLA in 19.1% of cases, even though NLA would not introduce bias to the model above the
0.30 threshold. Reassuringly, however, we also see that our method is is highly effective in ruling
out real bias. The strongest feature of our approach, perhaps, is the fact that it is very unlikely to
select NLA if it is, in fact, introducing biases to the analysis. We can see this by the very small
population of points in the lower right of the matrix (and the red shaded quadrant in Figure 3.5.4):
this happens in only ~ 0.4% of cases. Put another way, if the calibrated A )((zdf) favours TATT,
there is a roughly 20% chance (19.1/96.2) that NLA would, in reality, have been fine. Conversely,
if it prefers NLA, there is ~ 10% (0.4/3.8) that NLA is insufficient. Therefore, even though the
end result is somewhat cautious (in that there is a moderate false positive rate for TATT), on the
positive side we can be confident that if NLA is in fact preferred by the data, it is very unlikely
that it will introduce biases to the analysis. As a remark, however, it is important to acknowledge
that a possible conclusion from these results is that simply using the most general model is the
cheapest alternative from the perspective of computational resources. It is not obvious that this
will always be the case, however, given the dependence on analysis setup and other factors.

It is also worth noticing that although the above discussion applied for our specific choices,
we can control the conservatism to a significant degree through our analysis choices. We chose a
specific bias tolerance and probability that we considered realistic. By changing these values (for
example, allowing a bias probability of 20%, or 25%) one can effectively shift the position of the
cross in Figure and trade off false positives for false negatives. This is another advantage
of the method: it makes the level of conservatism explicit (and indeed quantifiable), and allows
one to adjust that level as preferred. This is much less true when using alternative approaches to
model selection.

3.5.3 A Simpler Approach: How Much Can We Tell From A Single Model?

It is also worth taking a moment to consider a related question: if the true IA scenario is extreme
enough to give significant cosmological biases, would there be clear red flags from NLA alone,
assuming that no fits were carried out with TATT? If this were the case, it would provide a simpler
route — instead of performing empirical calibration using simulations, we could simply run one
model on the data, and interpret results to see if a more sophisticated model is needed. Considering
our 21 IA scenarios with a fixed noise realisation, we find that around 50% of cases with bias
> 0.30 have y? values that appear entirely consistent with being drawn from the corresponding
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X2 distributio p(x& o) > 0.05. A similar picture is seen when we consider a single high
bias A scenario with alternative noise realisations — computing p—values for each realisation,
the majority are above 0.05, even in the presence of bias > 0.30". In other words, even in cases
where NLA is significantly biased, it is not necessarily obvious from considering the uncalibrated
value of XI%IL  alone. In contrast, the method we propose, using A )((2 a)> Can correctly identify the
need to use TATT to achieve sufficiently unbiased results 77.1/77.5 ~ 99% of the time (see the
confusion matrix in Section|3.5.2).

Likewise, although extreme biases do tend to distort the shape of the posteriors, this is not
always true in more moderate (but still significantly biased) cases. Figure shows the NLA
posteriors in a few different IA scenarios, spanning the range from almost no bias (purple shaded),
to ~ 1o (pink, open contours). For reference we also show the posteriors from TATT fits to the
same data vectors in Appendix 3.B| Taken in isolation, none of these show clear signs of problems
with the model. It is also interesting that [A mismodelling bias does not always translate into
significantly non-zero values for the inferred NLA parameters. In the medium bias case, for
example, A; and 1 are both consistent with zero to < lo. Here there is a relatively strong
degeneracy between A and Sg, allowing both A; ~ 0 combined with low Sg, but also a stronger
IA amplitude (A; ~ 1) with a larger Sg. In projection, this results in broad contours on both
parameters (notice the black contours in the upper panel of Figure are slightly wider than
the others, having a longer tail to low Sg than the pink and purple ones).

3.5.4 Intrinsic alignment modelling & wider implications for weak lensing

The results discussed so far have a number of direct implications for the question of intrinsic
alignment model selection. Primarily, we have shown that it is possible to perform empirical
model selection with lensing data. There is a clear relation between cosmological parameter
bias and A def , which allows one to define a threshold that can then be applied to the real data.
That said, the failure of conventional statistical metrics (e.g., p—values) to identify scenarios
with significant cosmological parameter biases is notable, and should be kept in mind when
trying to understand statistics derived from any single run on real data. The properly calibrated
model statistics, however, provide an alternative to the model selection exercises used in previous
analyses, which have tended to rely on either simulated analyses (Secco, Samuroff et al. 2022
Section A3), or arguments based on direct-detection studies (Hikage et al. 2019; Joachimi et al.
2021a, Sections 5.4 and 2.4 respectively). The empirical method is arguably an advance on both;
first of all, it avoids questions about what constitutes an “extreme" model, which tend to arise
in the simulation-based approach. Since the current best constraints on TATT model parameters
are relatively weak, it is relatively easy to select an IA scenario that is both consistent with
observations, and which would cause significant bias in an NLA analysis (note that this is still true
in light of the most recent DES Y3 results Secco, Samuroff et al. 2022; Amon et al. 2022; DES
Collaboration 2022). Our empirical approach also avoids the uncertainties that are inherent in

5Where the NLA p—value here is calculated by assuming )(I%IL 4 1s drawn from a x” distribution with 224 degrees
of freedom (see|Secco, Samuroff et al. 2022). The null hypothesis in this case is that the NLA model is adequate to
describe the data, and so small p—values would indicate model insufficiency.
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Figure 3.5.5: Examples of the simulated NLA posteriors from three particular IA scenarios with
our fiducial noise realisation. These samples were chosen to span a range of bias levels (as defined
relative to the TATT posteriors from the same data vectors). In order of severity, the low bias
case (purple) has a bias in the Sg — Q, plane of ~ 0.10-, and A)((zdf) =0.24, R =21.9 £ 6.1; the
medium bias case (black) has 0.360 bias, A )((zdﬂ =0.49, R = 1.5 £ 0.3; the high bias case (pink,
open) has 0.82¢ bias, A X(zdf) =1.98, R = 1.1 £ 0.2. The input cosmology and IA parameters are
shown as a dashed cross in the upper panel and as coloured points in the lower panel. Notice that
the contours are not centred on the input due to the fact that these are noisy data vectors. In all
cases the posteriors are not visibly distorted (although in the medium and high bias cases, the 7,
posterior is cut off slightly by the upper prior edge at ; = 5).
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extrapolating observations based on direct IA measurements on one very specific type of galaxies
to weak lensing measurements on another population entirely.

Although the empirical approach has various strengths, is worth reiterating that data vector
noise is a significant source of scatter in the bias-A def relation. For this reason it is important
to accurately simulate the noise properties of the particular data set. While this is in principle
simple, given an accurate covariance matrix, it does mean the model selection exercise needs to
be repeated for any new data set or changes to the analysis. It also means it is crucial to have a
fast and accurate way of estimating posteriors for a large number of noise realisations, such as the
IS framework used here.

Itis also interesting, finally, to consider how our findings relate to the real Y3 results. Although
comparing with the full 3 X 2pt results is difficult, for the reasons given above, Secco, Samuroff
et al. (2022) (Section VIIB and Table III) present a comparison of IA models without shear ratios,
an analysis configuration that matches ours. Specifically, comparing the 2 parameter NLA model
with 5 parameter TATT, they find R = 1.70 + 0.36 and A X(zdf) =5.2/2 = 2.6. Interpreted with
the help of Figure this puts the risk of NLA being biased by > 0.30- at somewhere around
30%, meaning runs using NLA on Y3 were more likely than not to be unbiased to within the 0.30
threshold.

3.6 Conclusions

In this paper, we explore the idea that model selection for cosmological analyses could be
performed a posteriori, being informed by the blinded data themselves. Our goal is to select a
model that is sufficient to describe the data, resulting in unbiased parameter constraints at some
specified tolerance level. We chose to focus on a specific problem: how best to decide on an
intrinsic alignment model for a cosmic shear analysis. This is an important question, and one
that has been the subject of much discussion within the weak lensing community in recent years.
That said, the basic concept behind our method is much more general, and could be applied in a
variety of different contexts; in principle it requires only that the data (including its noise) can be
readily simulated.

Using simulated noisy DES Y3 weak lensing data, we tested the method, and identified
statistical tools with which to implement it. The main conclusions of our study are as follows:

¢ We showed a clear relation between the )(2 difference between two models, and model
insufficiency bias on cosmological parameters. This relation was seen to extend across a
wide range of biases, from low to high, allowing one to define an empirical Ay? threshold
in order to ensure bias is below an acceptable level.

* We tested a number of common y2-based metrics such as AIC, BIC and pre-defined p—value
cutoffs. These were seen to be generally under-cautious, favouring the simpler model even
in the presence of 1 — 20 parameter biases. This result motivates us to use an empirical A y>
calibration. Similarly, when trying to interpret the goodness of fit statistic from a single
model, a standard p(y?) = 0.05 cutoff is not reliable to rule out significant biases.
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* In addition to maximum likelihood-based statistics, we also consider the Bayes factor as a
model selection tool. Although useful in the extreme cases, it was seen to be only weakly
discriminating for cosmological parameter biases in the range 0.2 — 1o. We therefore
recommend it be used with caution, ideally in conjunction with other model selection
metrics.

* Noise is seen to have a potentially significant impact on both the cosmological bias, and the
A X(zdf), for any given input A scenario. At high bias, the picture is relatively stable; noise
cannot, in general, cause model selection metrics to prefer the simpler model in a case where
adopting that model induces large cosmological parameter biases. The reverse is, however,
possible. Due to noise, one can end up in scenario with small cosmological parameter bias,
but with selection metrics favouring the more complex model. In this regard, our method
tends to err on the side of caution.

Although our qualitative findings are general, it is worth bearing in mind that the details are
specific to the DES Y3 cosmic shear only setup. Factors such as choice of two-point statistics,
covariance and scale cuts could very easily have an impact, as could modelling choices (baryonic
treatment, power spectrum, cosmological model etc) and the choice of sampler. It is therefore
important that the simulated analyses used to derive a Ay? threshold are as close as possible (and
ideally identical) to the real setup that will be applied to the blinded data.

Model selection is an important topic in cosmology, and in science more generally. It is
quite common to have a set of models under consideration, with little prior knowledge about the
values of their parameters; what level of complexity is sufficient to describe the data, given its
precision, depends on the unknown true model and its unknown parameter values. Given these
circumstances, arguably the most cautious approach would be to use the most flexible model,
which is more likely to be unbiased. This paper sets out an alternative method, which allows
information in the data to inform model selection. Although applicable in similar situations to
Bayesian Model Averaging (BAM; Liddle et al., 2006b; Vardanyan et al., 2011), i.e., where there
is not enough prior information to justify choosing one model over another, our approach has
the advantage of simplicity, and maintains the idea of a fiducial model, which is often useful
for practical purposes. It also avoids the prior dependence of methods such as BAM, which is
well documented in the literature. Given its generality, simplicity, and the relatively low level
of resources required, we foresee applications of the empirical method discussed in this paper to
future analyses as a model selection tool in many contexts.

Data Availability

All simulated data vectors, PoLyCHORD chains and Importance Sampling noise samples used in
this work are publicly available athttps://github. com/AndresaCampos/empirical_model_
selection.
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Appendix

3.A Parameters & Priors

Our setup matches the fiducial choices of the DES Y3 cosmic shear analysis. The only significant
difference is that, for the sake of simplicity, we choose not to use the additional shear ratio
likelihood included by Secco, Samuroff et al. (2022); Amon et al. (2022) (a similar decision was
made for validating the analysis choices pre-unblinding; see Krause et al. 2021). As a result, our
model space is slightly smaller, since we do not need to vary parameters for galaxy bias or lens
photo—z error. The corresponding parameters and their priors are shown in Table Note
that these are almost identical to the priors used in the Y3 analysis, except for those on the shear
calibration parameters, which have been shifted to match the input to the simulated data.

In a particular setup, one should expect some level of projection effects in the marginal
parameter constraints (Krause et al., 2021). Since such offsets are artefacts of the way we choose
to visualise our results (i.e., the global best fit is still accurate) it is not, in general, useful to think
of them as a form of bias; our method does, however, rely on our ability to interpret differences
in the 2D projected Sg — Qy, plane. It is thus helpful to try to quantify such effects in our case.
In Figure we show the results of our NLA and TATT analyses on an NLA-only data vector,
with our fiducial noise realisation. That is, in this case, both the TATT and NLA models can
reproduce the data exactly (up to noise). The offset between the best-fitting parameters when
using the two models, shown in Figure is at the level of ~ 0.10. This effectively provides
a floor to the bias in our analysis. Although we can occasionally find biases below this level due
to noise (see Section [4.5for discussion), we should consider all these cases as unbiased, at least
to within the uncertainty due to projection effects. Note that this is consistent with the results of
Krause et al. (2021), who performed a similar test using noiseless data (see their Figure 4).

Note that projection effects are complicated, and may be a function of (among other things) the
choice of input parameters, noise realisation, priors and constraining power of the data. Although
it is reassuring that our result matches that of Krause et al. (2021), there may still be some residual
uncertainty in the size of the effect. This is not, however, necessarily a problem for our method.
Indeed, variable projection effects would simply add an extra source of noise in the bias-metric
relation, which would be factored into our results in the same way as, e.g., chain-to-chain sampler
noise.
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Figure 3.A.1: Projected 0.30- contours from NLA and TATT chains run on a noisy NLA data
vector (see Section [3.4.1| for definitions). The NLA input parameters are A; = 0.7, g = —1.7.
Since, by construction, both IA models are sufficient to describe the data, any residual offset is
thought to be the result of projection effects. As labelled, this is at the level of 0.10 for our
analysis setup.
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Table 3.A.1: A summary of the central values and priors used in our analysis. The top seven
rows are cosmological parameters, while those in the lower sections are nuisance parameters
corresponding to astrophysics and data calibration. Priors are either uniform (U) or normally-
distributed, N(u, o). Note the IA parameters are marked with a star because many different
values are used as input to our data vectors, as discussed in Section m The values shown here
are used for convenience, whenever it is useful to show/discuss a single data realisation (e.g., in

Figure 3.3.2).

Parameter Fiducial Value Prior

Cosmological Parameters

Qn 0.29 U[0.1,0.9]
Q 0.052 U[0.03,0.07]

h 0.75 U[0.55,0.91]

Aq 2.38x 107  U[0.5,5.0] x 107°

N 0.99 U[0.87,1.07]
Q, h? 0.00053 U[0.6,6.44] x 1073

Calibration Parameters

mi 0.0 N (0.0,0.0059)
my 0.0 N (0.0,0.0042)
ms 0.0 N (0.0,0.0054)
my 0.0 N (0.0,0.0072)
Az 0.0 N(0.0,0.018)
Azp 0.0 N(0.0,0.015)
Az3 0.0 N(0.0,0.011)
Azy 0.0 N(0.0,0.017)

Intrinsic Alignment Parameters *

Al 0.7 U[-5,5]

A -1.36 U[-5,5]

n -1.7 U[-5,5]

m -2.5 U[-5,5]
bta 1.0 u[o,2]
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3.B NLA & TATT Posteriors

For completeness, in Figure we show the TATT model posteriors for the IA scenarios
discussed in Section 4.5 and Figure In that section we discussed three sets of IA model
parameters that were selected to give a range of severity of Sg — Qp, bias in NLA. Our results there
showed that significant biases can be present in an NLA analysis without necessarily distorting the
shape of the contours or giving a “bad" y? (interpreted in the conventional way, using statistically-
motivated cut-offs). As expected, the cosmological parameter contours in Figure (upper
panel) are consistent with each other. Since the data vectors contain (the same) noise, they are
offset from the input point slightly. Depending on the input scenario, the width also varies slightly,
primarily due to the tail in A; — A, space, which correlates with Ss.

It is worth also briefly commenting here on the shapes of the TATT posteriors. It has been
observed before that the TATT model can give rise to teardrop shaped, sometimes slightly bimodal
contours in the A; — A, plane (see for example Secco, Samuroff et al. 2022 Fig. 8 and Sanchez,
Prat et al. 2022b Fig. 15). A significant tail to positive (or negative) A, tends to create a tail in Sg,
of the sort seen in grey contours in the bottom panel of Figure Note however that the shape
and asymmetry depends quite heavily on where the posteriors sit in parameter space (meaning
the noise realisation as well as the “true" TATT parameters), and on the constraining power of
the data (more constraining power tends to trim away some of the non Gaussian tails). It is not
clear that we can use any sort of qualitative assessment based on the TATT posterior shape as an
indicator for bias in simpler models.

3.C Bayes Ratio

Although we ultimately choose to use the A y? 4p s our model comparison statistic, it is also useful
to consider other commonly used alternatives. The Bayes ratio has become a popular tool in weak
lensing cosmology in recent years, in part because it in principle contains more information than
the likelihood. Itis also readily available as the by-product of running a nested sampling algorithm
to estimate posteriors.

In Figure[3.C.1|we show the same 21 IA scenarios as in Figures3.5.1/and[3.5.3| but now using
the Bayes factor as our model comparison statistic. In the top panel, the open points again show
the noiseless case, with evidence values computed using PoLyCHORD. As we can see, there is a
weak correlation, with low bias scenarios tending to give somewhere between “substantial” and
“barely worth mentioning" on the Jeffreys scale (the coloured bands). Interestingly, in none of our
IA scenarios, not even in the regime that is functionally unbiased, do we see “strong" evidence
for NLA.

The scattered points in the top panel of Figure show the impact of noise, as estimated
using importance sampling. Each colour represents an IA sample, with different points repre-
senting different noise realisations. Clearly R is significantly more sensitive to noise than A X(de),
as we can see by comparing Figures [3.C.1 and 3.5.3] We observe essentially two scenarios —
when the bias in the Sg — Qy, plane is greater than ~ 10, the Bayes Ratio can tells us that NLA is
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Figure 3.B.1: Top: 68% and 95% cosmology confidence contours from TATT model fits on
simulated noisy data vectors. Like in Figure the different colours represent samples
selected to cover a range from relatively extreme (i.e., large bias in NLA) to mild (low bias) cases.
The dotted cross represents the input cosmological parameters (which is offset from the centre of
the contours due to data vector noise). Bottom: The same, but showing the two TATT amplitude
parameters. The markers (dot, star, triangle) show the input IA parameters for each case.
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disfavoured relatively reliably. On the other hand, when the bias in the Sg — €2,, plane is smaller
than 1o, there is a considerable amount of scatter.

The bottom panel in Figure shows the bias probability, conditioned on the Bayes ratio
category. That is, given the data return R in a particular class on the Jeffreys scale, P is the
probability that NLA is biased by more than Xo . There is clearly at least some information here;
if the Bayes factor actively favours TATT (R < 1), there is a high probability that NLA will
be biased, even factoring in noise. Values within the “barely worth mentioning" category could
essentially go either way. In the “substantial” category things look better, but even here there is
~ 10—15% chance of biases more than 0.30, and almost 50% chance that NLA is biased by more
than 0.150 in the Sg — Q, plane.

We can perhaps understand the relative noisiness in R by considering Eq. (3.19). Assuming a
Gaussian likelihood, the Bayes factor scales as e 2; any small perturbation in y? due to sampling
noise will thus be magnified exponentially. We cannot say from this whether this is an inherent
issue with the Bayes ratio, or only when estimated using our method of importance sampling. In
the absence of an alternative fast method to estimate R for many noise realisations, however, we
recommend A )((de) as a more robust metric to use with our method.

3.D Sampler Comparison

In this appendix we present a brief comparison of two commonly used nested sampling codes:
PoLyCHorp and MuLTINEsT. Although a similar (albeit more extensive) exercise is discussed in
Lemos, Weaverdyck et al. (2022), their analysis choices differ significantly from ours, and so it
is worth revisiting the question. To this end, we re-analyse our 21 noise 0 IA data vectors using
MuctiNEsT (500 live points, efficiency= 0.3, tolerance= 0.01). The results are then compared
with our fiducial PoLyCHorbD run (500 live points, num_repeats= 30, tolerance= 0.01). We find:

* The two samplers give consistent results for point estimates. That is, both can reliably
locate the posterior mean, and the sampling around the peak is comparable, giving a similar
level of noise in the best fit. As a result, the /\(2 difference between NLA and TATT analyses
is relatively insensitive to the choice of sampler.

* MuLtINEST is seen to underestimate the width of the 10 posteriors on cosmological pa-
rameters significantly. This is true in both models; combined with the previous point, it
leads to a systematic overestimation of the Sg — Q, bias for any given IA scenario. This
can be seen in Figure which shows the posteriors as estimated by both samplers for
a particular IA scenario.

* The Bayesian evidence estimates from MuLTINEsT are low compared with PoLyCHORD,
as was shown in Lemos, Weaverdyck et al. (2022). Although this is true for both models,
the overall result is to increase R (i.e., push the Bayes ratio towards favouring NLA more
strongly).

Given the observations listed above, we chose to use PoLyCHORD as our fiducial sampler, despite
the runtime advantage of MULTINEST.
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Figure 3.C.1: Top: The same 21 samples as in Figure but now showing the Bayes ratio
R = Znia/Zrat rather than A )((zdf). As before, the open points show the bias/evidence ratios
estimated by running PoLyCHORD on noiseless data vectors. The points represent the scatter due
to noise (50 noise realisations for each IA scenario; see Section[3.3.3|for details). The vertical line
shows the 0.30- bound, and the shaded colours show how the different ranges of R are interpreted
according to the Jeffreys scale. Bottom:The same as Figure but showing the Bayesian
factor R (defined as the ratio of Bayesian evidence values obtained from running NLA and TATT
on the same data). The coloured bands represent categories on the Jeffreys scale, and P is the
probability of more than X o cosmological bias in the NLA model, given an observed Bayes factor
in each category.
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Figure 3.D.1: Marginalised posteriors from a single noisy data vector, with a given input IA
scenario. The shaded purple and black contours show the results of fitting that data assuming
TATT and NLA respectively, using the PoLyCHoRrD nested sampling code. The unfilled contours
are the results of the same analyses, but using the faster, but less accurate, MuLTINEST algorithm.
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3.E Computational Resources

Here we describe the computational resources used for this paper. The aim is to provide an
estimate of the computing power required to apply the method described in Section 3.4.4] to
perform model selection. The exact amount of time/resources will naturally vary depending on
the details of the analysis pipeline. In our particular case:

Generate ~ 25 IA samples: less than 1 minute in 1 core.

Generate ~ 25 TA datavectors: less than 1 minute per datavector in 1 core.
Run 25 NLA chains using PoLyCHorD: around 22h per chain in 128 cores.
Run 25 TATT chains using PoLyCHorbp: around 28h per chain on 128 cores.

Generate 50 noise realisations, to be added to each one of the 25 data vectors: less than 1
minute in 1 core.

Generate importance sampling weights and the y? pool for 25x50 noisy data vectors:
around 6-12h on 128 cores.

Apply the weights to evaluate the NLA and TATT posteriors and compute the bias and best
fit in each case: around 6-12h on 128 cores.
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Chapter 4

Assessing tension metrics with Dark
Energy Survey and Planck data

Abstract

Quantifying tensions — inconsistencies amongst measurements of cosmological param-
eters by different experiments — has emerged as a crucial part of modern cosmological data
analysis. Statistically-significant tensions between two experiments or cosmological probes
may indicate new physics extending beyond the standard cosmological model and need to
be promptly identified. We apply several tension estimators proposed in the literature to the
Dark Energy Survey (DES) large-scale structure measurement and Planck cosmic microwave
background data. We first evaluate the responsiveness of these metrics to an input tension
artificially introduced between the two, using synthetic DES data. We then apply the metrics
to the comparison of Planck and actual DES Year 1 data. We find that the parameter differ-
ences, Eigentension, and Suspiciousness metrics all yield similar results on both simulated
and real data, while the Bayes ratio is inconsistent with the rest due to its dependence on the
prior volume. Using these metrics, we calculate the tension between DES Year 1 3 X 2pt and
Planck, finding the surveys to be in ~ 2.30 tension under the ACDM paradigm. This suite of
metrics provides a toolset for robustly testing tensions in the DES Year 3 data and beyond.

cosmology: observations — cosmological parameters — methods: statistical
Note on Author Contribution

Despite the authorship order listed in the publication, I wish to clarify my central role in the
project described herein. As a co-lead of the Tensions analysis team in DES Y3 together with Pablo
Lemos and Marco Raveri, my contributions were instrumental in driving this research forward.
The work underpinning this paper relied heavily on simulated data analogous to that from the Dark
Energy Survey Year 1, into which controlled artificial tensions in cosmological parameters were
introduced — a process I was entirely responsible for. The generation of multiple data vectors and
the subsequent Markov Chain Monte Carlo (MCMC) analyses to estimate posterior distributions
were under my direct purview. These foundational elements of the project, that required extensive
computational work, formed the bedrock upon which the results stand. Upon this groundwork, my
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colleagues built further, employing the results I produced to calculate various tension metrics. My
role can be accurately regarded as akin to that of a main author, given the breadth and depth of my
contributions to the success of the project. This sentiment is shared and endorsed by my fellow
co-authors, who acknowledge and agree with the significance of my role in this collaborative
endeavor.

4.1 Introduction

Two experiments are generally expected to agree, roughly within the reported errors, on the
measured values of cosmological parameters. A disagreement between such measurements —
a tension — may be a sign of a mistake in one or both analyses, of unaccounted-for systematic
errors, or perhaps of new physics. A prominent historical example of such tensions in cosmology
is the disagreement between a variety of measurements of the matter density €y, in the 1980s and
1990s that was vigorously debated at the time (Peebles, 1984; Efstathiou et al., 1990; Ostriker
& Steinhardt, 1995; Krauss & Turner, 1995) and eventually turned out to be explained by the
discovery of the accelerating universe (Perlmutter et al., 1999; Riess et al., 1998).

Presently, the discrepancy between the measurements of the Hubble constant using the distance
ladder, Hy = (74.03 + 1.42) km/s/Mpc (Riess et al., 2019), and those from Planck, Hy = (67.4 +
0.5) km/s/Mpc (Planck Collaboration et al., 2018), is much discussed, as it may be a harbinger of
new physics. Similarly, recent measurements of the parameter combinatio Sg = 05(Qm/0.3)%
from large-scale structure by the Dark Energy Survey (DES, DES Collaboration, 2018) and the
Kilo Degree Survey (KiDS, Asgari et al., 2020; Heymans et al., 2020) differ from the cosmic
microwave background (CMB) estimates from the Planck satellite at ~ 2—30 significance. These
No quantifications of tension are generally understood to correspond to probabilities equivalent
to one-dimensional normal distribution, so that 1o~ corresponds to 68% confidence that the
measurements are discrepant, 20~ corresponds to 95%, etc.

The challenge is how to convert constraints from two data sets into such a probabilistic measure
of tension between them. There exist a variety of methods to do this, which are being actively
used in the community. While these fension metrics are expected to give consistent messages in
cases where the two data sets obviously agree or disagree, in more marginal cases the differences
amongst them — including how much they depend on an analysis’ choice of priors, assumptions
of posterior Gaussianity, and the higher-dimensional shape of the posterior —- have the potential
to alter the assessment of whether or not two data sets are in agreement.

In the lead-up to cosmological results expected from the analysis of DES year 1 to year 3 data
(henceforth simply Y3) and to inform other future cosmological analyses, we wish to provide a
comprehensive characterization of how several proposed methods compare to one another. We
also wish to confront these results with our intuition for what these metrics ought to be telling us
about the agreement or disagreement between measurements. We specifically apply the methods
to assess the consistency of DES and Planck. This paper complements two earlier analyses that

Here oy is the present-day linear theory root-mean-square amplitude of the matter fluctuations averaged in
spheres of radius 8 2~! Mpc.
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test the consistency of probes within DES (Miranda et al., 2020; Doux et al., 2021).

These metrics serve only as diagnostics for whether there is tension, and not as a solution. If
tension exists, it would indicate either unaccounted-for systematic effects in one or both experi-
ments, or that the underlying model is inadequate to explain the data.

Our basic approach is to create a suite of simulated DES data sets with a controlled level
of induced tension relative to the best-fit Planck 2018 cosmology. We then apply a number of
methods to quantify this synthetic tension and assess their performance. Finally we apply the
same tension metrics to quantify any tension between the published constraints from the first year
of DES data (DES Y1) and the Planck 2015 and 2018 data sets.

The paper is structured as follows: We discuss the difficulties of tension estimation, and
present the motivation of the present problem in Sec. We then describe our methodology in
Sec. The different tension metrics studied in this paper are presented in Sec. We show
results on simulated DES data in Sec. apply the tension metrics to DES Y1 in Sec. and
present our conclusions in Sec.

4.2 Motivation

For a tension in a single parameter with an approximately Gaussian posterior distribution, it is
easy to define a robust tension metric, as one can just report the one-dimensional difference
between the posterior means of the two measurements divided by the quadrature sum of the errors
reported by the two experiments. For example, if Planck reports that Sg = 0.832 + 0.013 (Planck
Collaboration et al., 2018) and DES reports Sg = 0.782 + 0.022 (Troxel et al., 2018), then one
simply adds the errors in quadrature and reports the two results to be different at the level of

A 832 -0.782
Sy 082-078 _,, (4.1)

Tss  V0.0132 +0.0222

standard deviations, that is, they are in tension at the 20~ level. However, as soon as we consider
a tension in two or more parameters, this simple procedure becomes inadequate because full
two-dimensional information cannot be captured by its one-dimensional projections. Fig.
gives an example showing how this intuition breaks down when the parameter space is multi-
dimensional. If one were to judge consistency between the two data sets solely through their
marginalized 1D constraints, one would conclude that the two data sets are consistent with each
other. However, as evident from the comparison of their full 2D parameter constraints, the two
data sets are in strong tension. Further complications arise when, for instance, one or more of the
posteriors are non-Gaussian, or when the two posteriors originate from different prior assumptions
on the parameters of interest.

There is no unique, universally-accepted method to quantify tension under these complicating
circumstances. A variety of methods have been proposed, reviewed and tested (Charnock et al.,
2017). Given this array of options, it is not obvious what the best choice is for a given analysis. In
order to aid in this determination, in this paper we will describe and study several of these methods
in order to compare their performance when applied to DES data. In doing so, we distinguish
between two kinds of tension:
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Figure 4.2.1: Toy model example of a set of 2D constraints, where the 1D projections hide the
discrepancy between the two data sets. The darker and lighter shade correspond to the 68% and
95% confidence regions respectively.
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1. Internal tensions, between different cosmological probes within one experiment (e.g. DES
cosmic shear vs. galaxy clustering within DES).

2. External tensions, between different experiments (e.g. DES vs. Planck).

These must be treated differently because data-related systematic effects within the same ex-
periment are often strongly correlated, necessitating use of more complex statistical tools when
studying consistency. While our methodology can be applied to either type of tension, here we
specifically apply it to the case of external tensions. In addition, we focus on quantifying the
tension between the large-scale structure measurements (via the combination of galaxy clustering,
galaxy—galaxy lensing and cosmic shear, or often referred to as the “3 X 2pt” probes) from DES,
and the CMB measurements from Planck. Internal tension will be separately and additionally
studied in Doux et al. (2021) using Posterior Predictive Distributions (PPD) (Gelman et al., 2004),
which allow us to quantify tension in the presence of correlated systematic errors in the data, and
to visualize the source of tension in the data vector. We do not consider the PPD in this work
since it is not well suited to external tensions where there are many parameters that the two data
sets do not share.

The challenge of accurately quantifying tension starts to become apparent as we investigate the
expected performance of the tension metrics. Naively, one might think that shifting one parameter
by a controlled number of marginalized N standard deviations would imply that the tension in the
full-dimensional space would also be No; or in other words, that the amount of tension in the
full, N-dimensional space is equal to the tension projected?|to the original dimension. However,
this is not the case, because of two effects:

* Marginalization can hide tension that can only be seen in higher dimensions. This is
caused by the fact that marginalisation leads to loss of information. This means that the
full-dimensional tension can be larger than that inferred by looking at 1D distributions
of the parameters. This is illustrated with the simple two-dimensional example shown in
Fig. there are two parameters 6 and 6;, and they are highly correlated as measured by
experiment 1, but largely uncorrelated as measured by experiment 2. Because experiment 1
determines both parameters separately quite poorly, one-dimensional plots of the posterior
show general agreement between measurements of the two experiments. Yet the two-
dimensional plot shows that the two contours are significantly separated. This is because
the well-measured combination of #; and 6, significantly differs between experiment 1 and
experiment 2.

* Relatedly, the number of dimensions of the problem also affects the inferred tension. The
significance of a difference in parameter estimations between two experiments depends on
the number of parameters constrained simultaneously by both experiments. Consider, for
example, two experiments that measure the same parameter 6 and obtain a one-dimensional
30 disagreement. The level of significance of this result is much higher if 6 is the only
parameter constrained by both experiments, than it is if the experiments also measure a

2In this paper the terms ‘marginalized over’ and ‘projected’ both mean ‘integrated over the other parameters’.

115



Il baseline Bl baseline

Aos = —1 % dos AQum =1 % 60
Bl Aos = -3 x dos Bl AQ, =3X60m
Ml Aocs = -5 X dos B AQnm =5 X 60m

TN oy
X \

00 00
0.7
(<) (<) 08k
0.6
0.5 0.7 \
0.3 0.4 0.6 0.8 0.3 0.4 0.5 0.7 0.8 0.9
Qm gg Qm oy

Figure 4.3.1:  Marginalized two-dimensional posteriors for some of the simulated DES chains
used in this work. The darker and lighter shades correspond to the 68% and 95% confidence
regions respectively.

hundred extra parameters, with no significant discrepancies between them. This common
problem of the dilution of true tension with multiple comparisons is well known in statistics.
For example, Heymans et al. (2020) report a ~ 30 tension with Planck in Sg alone, but a
~ 20 tension when considering the full multi-dimensional parameter space.

4.3 Setting up the problem

The aim of this work is to compare and understand the performance of different metrics for
measuring tension between DES and Planck constraints on cosmological parameters. If the two
experiments report different values for some cosmological parameters, this might be an indicator
that their results are not compatible. However, it is important to understand what this discrepancy
means when considering the entire model. To do this, we use synthetic DES and Planck data sets
that have been generated with different input cosmological parameters in order to produce varying
levels of expected tension. By applying the various tension metrics to these synthetic data, we can
study how they compare to one another and the known input parameter discrepancies. Note that
we do not attempt to explain the origin of the possible incompatibility in cosmological parameters
reported by two experiments.

We study tension in the context of the flat ACDM cosmological model. Our parameters
are {Qpn, Qy, Hy, As, ns}, where Qy, and Qy are the density parameters for matter and baryons,
respectively; Hy is the Hubble constant; and Ag and ng are respectively the amplitude and slope
of the primordial curvature power spectrum at a scale of k = 0.05 Mpc™'. We assume one
massive and two massless neutrino species with the total mass equal to the minimum allowed by
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the oscillation experiments, m, = 0.06 eV. We do not vary the neutrino mass in our analysis in
the simulated data sets, but we do in the reanalysis of tension between DES Y1 and Planck of
Sec. to be consistent with the DES Y1 3 X 2pt analysis choices (Krause et al.,, 2017). The
data and prior choices are further described in Sec.

We use the CosmoSIS framework3|(Zuntz et al., 2015) to extract the best-fitting cosmological
parameters from the Planck 2015 likelihood by sampling it using Nested Sampling (Skilling,
2006), via the PolyChord algorith (Handley et al., 2015a,b). From this chain, we infer the
best-fit values of the ACDM model parameters according to Planck data and use model predictions
from these values to generate a baseline simulated DES-like 3 X 2pt data-vector under the Planck
cosmology, henceforth referred to as the baseline cosmology. As previously mentioned, the
simulated DES data are composed of galaxy clustering, cosmic shear and galaxy—galaxy lensing
correlation functions (DES Collaboration, 2018).

4.3.1 Generating a-priori tension

A convenient starting point in our analysis would be synthetically-generated tension in two data
sets, corresponding to data vectors generated at different values of cosmological parameters.
Precisely how different these two sets of cosmological parameters are should be guided by some
preliminary measure of tension. This starting point is henceforth referred to as the "a-priori
Gaussian tension", and in this subsection we provide a recipe to define it.

Quantifying the a-priori tension at parameter level with some metrics would make our exercise
circular and unfair to other metrics, so it is not a good option. To make progress, we follow a
procedure that at least guarantees that the amount of tension we introduce is increasing with
increasing shifts, and is, by construction, sensitive to parameters of interest. Using the Planck and
DES posteriors obtained from their respective baseline data vectors, we first compute the variance
in the marginalized one-dimensional posterior distributions for Qp, and o, referred to as var(6),
where 6 € {Q,, og}. We then shift each parameter by a multiple of the quantity

660 = /var(0pgs) + var(Opjanct) 4.2)

and generate simulated DES data vectors with either Qp, or oy shifted by integer multiples of
the corresponding 66. We indicate the total shift with A@ = a6 for a given integer @. We then
use those data vectors to obtain simulated DES chains. We shift og towards lower values than
Planck’s, and Q, towards higher values, for simplicity, but we would expect to obtain similar
results if the shifts were done in the opposite directions.

A shift in og is obtained by changing the input value of As. Shifting Q,, on the other hand,
changes the history of structure growth and thereby o%; we compensate for this collateral shift in
oy by counter-shifting As. The DES constraints (shown in the Q,—0% plane) from a representative
subset of these shifted synthetic data are shown in Fig.

If we approximate the difference between the Planck and DES posteriors as a Gaussian
distribution in multiple dimensions we can now ask, a priori, what the significance of these shifts

3https://bitbucket.org/joezuntz/cosmosis/wiki/Home
4https://github.com/PolyChord/PolyChordLite

117


https://bitbucket.org/joezuntz/cosmosis/wiki/Home
https://github.com/PolyChord/PolyChordLite

is (in the Q,—A¢ plane) by computing
x* =066"(Co+Cp)~' 60 (4.3)

where Cp and Cp are the 2 X 2 covariance matrices in (y,, As) for DES and Planck respectively.
Because we are changing only two parameters, the quantity has two degrees of freedom. Note
that this is just the generalization of Eq. to multiple dimensions. While the Gaussian
approximation is not expected to be accurate, especially in the tails of the posteriors, it is expected
to be a reasonable guess of the tension that we are inputting into our synthetic examples.

Fig. shows the distribution of shifted parameter combinations we describe above, as well
as the baseline Planck + DES parameter constraints. Specifically, the contour shows the combined
baseline Planck + DES constraints, while the markers show the best-fit values of individual shifted
DES-only constraints. We can immediately see that, in multiple dimensions, the tension that we
attributed to a one-dimensional shift is higher since 2, and o are correlated.

To quantify the significance of the shifts shown in Fig. we calculate from Eq. (4.3)
the probability to exceed (PTE) our input shifts in the Gaussian case. For example, we would
like to associate a ‘one-sigma tension’ to an Q, shift that lies precisely on the edge of the 68%
confidence region. We thus adopt a simple 1D Gaussian conversion

N, = V2 Erf™ (PTE), (4.4)

where Erf~! is the inverse error function. Given a probability to exceed, N, matches that
probability with the number of standard deviations that an equivalent event from a 1D Gaussian
distribution would have. Note that the conversion in Eq. is only a convenient proxy to report
high statistical significance results, and does not assume Gaussianity per se in any of the statistics.

The resulting evaluation of the a-priori Gaussian tension is shown in Tab. |4.3.1, Here the
first column shows the parameter shift applied to DES data in the (£2,, 03) space, where each
parameter is shifted by a half-integer multiple of its reported (marginalized) error. The second
column shows the full-parameter-space tension calculated using Eq. as described above.
Note that the ‘input shifts’ in Q;, lead to higher tension than those in og. This is because
shifting Q,, while keeping oy fixed also leads to a shift in Ag, which increases the tension in the
full-dimensional space.

Finally, let us note that the a-priori tension, by its construction, does not contain stochastic
noise, as it effectively measures the distance in the space of input cosmological parameters. This
is in contrast with all of the tension metrics that we study below, which are applied to random
realizations of data that do contain noise. The fact that the effectively noiseless input tension
is being compared to tension measurements applied on noisy data is one reason why we do not
expect a perfect match between the two. We will return to this point in Sec.

4.4 Tension Metrics

This section describes the tension metrics that we will be comparing in this work. Several metrics
have been proposed for quantifying tension between cosmological data sets. In this work, we
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Figure 4.3.2: 68% and 95% confidence regions of the constraint on the differences in parameters
as measured by DES and Planck, constructed as discussed in Sec. The markers indicate the
location of the synthetic input shifts. The corresponding a-priori Gaussian tension is shown in
Tab.4.3.1
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Evaluation of a-priori Gaussian tension

(Qn,, o) shift full-par-space N-o
Aog =—-0.5 X 603 0.020
AQp = +0.5 X 0Qpy 0.09 o

Aog =—-1 X oy 040
AQp = +1 X 6Qn 1.00
Aog =-1.5 X b0y 1.1o0
AQp = +1.5 X 6Qp, 230
Aog = -2 X 60y 200
AQp =42 X 6Qn 380
Aog = -3 X o0y 370
AQ =43 X 6Q, >50
Aog = =5 X o0y >S50
AQ, =45 X 6Q, >50

Table 4.3.1: Evaluation of a-priori Gaussian tension for controlled shifts in (og and ;). The
06 by whose half-integer value we are shifting these parameters is referring to their respective
1D marginalized posterior as in Eq. (4.2). See Eq. for the explanation how we convert these
shifts into the "number of sigmas" in the full parameter space, shown in the second column.
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select a series of methods that we believe to be appropriate to our data, and which are distinct
enough to highlight the strengths and failure modes of each metric. We separate the tension
metrics into two subcategories, since while all methods aim to quantify tension between data sets,
they answer slightly different questions:

* Evidence-based methods seek to answer the question:
Given hypothesis H,: ‘The assumed model is capable of generating the data observed by
both experiments’, and hypothesis Hy: ‘The assumed model is not capable of generating
the data observed by both experiments’, which hypothesis is preferred by the data under the
assumed model’?

* Parameter-space methods seek to answer the question:
What is the statistical significance of the differences between the posteriors for experiments
A and B, within the parameter space analyzed by both experiments?

All of the tension metrics that we consider solve the problems that we have discussed in
Sec.[4.2|by considering all dimensions of parameter space. In addition, since they provide results
in terms of probabilities, they are independent of the specific parametrizations that are used.

The remainder of this section describes these tension metrics. The results for these metrics
will be shown in Sec.

4.4.1 Bayesian evidence ratio

The Bayesian evidence ratio, or Bayes ratio R, is an evidence-based method, defined for indepen-
dent data sets A and B as (Marshall et al., 2006):

ZaB
R = .
ave:

Here, Zp is the Bayesian Evidence, defined as the probability of measuring the observed data D
for a given model M, which can be obtained marginalising over all the model parameters 6:

(4.5)

Zp = P(D|M) = / do P(D|6, M)P(6|M). (4.6)

Henceforth, we adopt the following notation for Bayes’ theorem:

_LxIl
- Z

where P = P(6|D, M) is called the posterior, £ = P(D|6, M) is the likelihood, and IT = P(6|M)
is the prior. The Bayesian Evidence is a difficult quantity to calculate, as it requires integrating
a probability distribution over a large number of dimensions. One of the most frequently-used
tools to calculate Bayesian Evidences is Nested Sampling (Skilling, 2006), which also produces
posterior distributions. There exist publicly-available codes for Nested Sampling calculations,
such as MULTINEST (Feroz et al., 2009) and POLYCHORD (Handley et al., 2015a.b).

P

4.7)
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Figure 4.4.1: Example of the prior-volume dependence of R. In amber and red are two gaussians
that are at a 30 tension. The black dotted line is the prior (note that it is not normalized, to
make it easier to visualize). When we use a uniform prior in the range [—-10, 10] (left panel), R
is much smaller than one, which means the data sets are in tension. When we increase the prior
to [—200, 200] (right panel), R becomes greater than one, indicating agreement. This example,
although extreme, illustrates a possible issue of the Bayes ratio as a tension metric.
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log R Interpretation

> 2.3 Strong agreement
(1.2,2.3) | Substantial agreement
(-1.2,1.2) Inconclusive

(=2.3,-1.2) | Substantial tension

<-23 Strong tension

Table 4.4.1: Jeffreys’ scale used by (DES Collaboration, 2018) to quantify agreement or tension
between data sets (Jeftreys, 1998).

In the Bayes ratio R as written in Eq. (4.5), the numerator requires both data sets to be
simultaneously explained by the same parameter values within the model, while the denominator
allows each data set to be explained by different parameter values (still within the same assumed
underlying model). A more intuitive interpretation (Amendola et al., 2013; Raveri & Hu, 2019;
Handley & Lemos, 2019b) uses Bayes theorem to rewrite this as

_ P(A|B, M)

R = PAIM) (4.8)

(where data sets A and B can be interchanged). That is, does the existence of data set B make
the data set A more or less likely than it would be in the absence of B, all within the context of
assumed model M? Therefore, a ratio of probabilities R > 1 is interpreted as the data sets being
consistent, while R < 1 indicates that the data sets are in tension. This tension metric has several
desirable properties: it is a global statistic (that is, operates on the full parameter space), and it
is symmetric between data sets (so tension between data A and data B is the same as tension
between B and A). For these reasons, R was used in DES Collaboration (2018), to quantify tension
between the DES Y1 measurements and external data sets.

This new interpretation carries an important issue, which is R’s dependence on the prior
volume: as described by Handley & Lemos (2019b), Eq. can be rewritten as:

_ PaPp
R = do T 4.9)

For a flat and uninformative prior, R is therefore proportional to the prior volume. For example,
doubling the prior volume doubles the value of R, and increases the agreement between the data
sets independently of the shape of the posteriors. As an extreme case, one could increase the
prior range arbitrarily to make any two posteriors consistent according to R. This is illustrated by
Fig. which gives two equal-width Gaussians horizontally offset by 30~. The Bayes ratio is
close to zero when the prior encompasses relatively tightly the bulk of the two distributions, but
goes up to R > 1 if the prior is made sufficiently wide. In the latter case, the Bayes-ratio-logic
says that the two Gaussians are close to each other relative to the width of the prior, and hence
are reported to not be in any tension. This prior dependence is therefore a central feature of the
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Bayes ratio. Nevertheless, such a prominent role for the prior may be worrying in situations when
physically-motivated priors are not available.

A second concern about the Bayes ratio R is that its raw numerical value needs calibration. R
is the ratio of probabilities (see Eq. ) and one often uses the Jeffreys’ scale (Jeffreys (1998);
see Tab.|4.4.1) to convert the different outcomes to interpretations about the presence of tension
between data sets. However, the boundaries in Jeffreys’ scale are arbitrary, and they lack obvious
interpretation as a statistical significance.

Both the interpretation and the calibration problem can be circumvented if another tension
metric is used to calibrate the Bayes ratio. In this paper, we use the simulated data vectors
described in Sec. to calibrate the Bayes ratio outcomes (along with those from other tension
metrics). Note, however, that this calibration is very specific to our choice of the problem, such
as the observables, the parameter space, or the priors we employ. Our results would not be
generalizable to an arbitrary cosmological analysis.

4.4.2 Bayesian Suspiciousness

Bayesian Suspiciousness (Handley & Lemos, 2019a) is an evidence-based method, introduced
as an alternative to the Bayes ratio from Sec. for the case of priors which, instead of being
motivated by prior knowledge, are purposefully wide and uninformative. This is the case for DES,
where wide priors are chosen with the goal of obtaining DES-only constraints. The idea is the
following: We divide the Bayes ratio R in two parts, one that quantifies the probability of the data
sets matching given the prior width, and another one that quantifies their actual mismatch. The
first part is quantified by the information ratio /, defined as:

logl = Dp+Dp — Dys, (4.10)

where D is the Kullback—Leibler Divergence (Kullback & Leibler, 1951):

DE/Plog (%) deo. 4.11)

The Kullback-Leibler Divergence is particularly well suited to eliminate the prior dependence
from the Bayes ratio, as it quantifies how much information has been gained going from the prior
IT to the posterior . Therefore, it encloses the prior dependence that we want to eliminate. The
Kullback—Leibler Divergence has been extensively used in cosmology (e.g. Hosoya et al., 2004;
Verde et al., 2013} Seehars et al., 2014, 2016; Grandis et al., 2016; Nicola et al., 2019).

The part of the Bayes ratio R that is left after subtracting the dependence on prior volume
depends only on the actual mismatch between the posteriors, and it is what we call Bayesian
Suspiciousness S:

logS =1logR —logl. (4.12)

As explained in Sec. and in Handley & Lemos (2019b), the main concern regarding the
Bayes ratio R is that the tension can be ‘hidden’ by widening the priors. S can be understood as
the version of R that corresponds to the smallest priors that do not significantly alter the posterior.
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It also has two useful qualities that R lacks: It does not depend on the prior volume and, in the case
of Gaussian posteriors, it follows a )(Z, distribution, where d is the effective number of degrees
of freedom constrained by both data sets. Therefore, we can assign a tension probability pr as
the p-value of the distribution. This tension probability quantifies the probability of the observed
tension occurring by chance. While the chi-squared interpretation relies on the approximation of
Gaussian posteriors,® the rest of this section does not, so the value and sign of S can be used to
measure tension for any posterior distributions.

To obtain the value of pr, we need to calculate the effective number of dimensions constrained
by the combination of the data sets. While there are several available methods to do this, we
propose using the Bayesian Model Dimensionality (Handley & Lemos, 2019a):

2
d:Z/P(logg—D) . (4.13)

This formula is analogous to the more traditional Bayesian Model Complexity (BMC) (Spiegel-
halter et al., 2002) used in previous cosmological analyses (e.g. Kunz et al., 2006; Bridges et al.,
2009), with which it shares the property that it is formed of Bayesian quantities and recovers a
value of d = 1 for the 1D Gaussian case. But while the BMC requires the use of either the mean or
maximum-posterior parameter values and is hence subject to sampling error (i.e. numerical noise
due to a finite length of an MCMC chain), Eq. does not suffer from these issues (Handley
& Lemos, 2019a).

While the Suspiciousness is according to our definition an evidence-based method, it has
been recently shown (Heymans et al., 2020) that it can be reformulated as the difference of the
log-likelihood expectation values of joint and individual data sets, leading to a relation between
the suspiciousness and the goodness-of-fit loss introduced in Sec. (Joudaki et al., 2022)
through the Deviance Information Criterion (Spiegelhalter et al., 2001) This shows that despite
them being defined very differently, there are fundamental relations between these statistics.

All the quantities discussed in this subsection can be simply obtained from a single nested
sampling chain (in the case of the BMD, or even an MCMC chain), which means that their
computational cost is the same as that of the Bayes ratio introduced in Sec. Nested
sampling can also give us an estimate of the sampling error, by re-sampling the sample weights
(Higson et al., 2018). Joachimi et al. (2021a) noted that this method can lead to noise in the
dimensionality calculation. This noise was included in this work, and contributes to the error in
the estimate of the tension probability. All calculations are implemented in the python package
anesthetig®| (Handley, 2019); an example on how to calculate these quantities can be found at
https://github.com/Pablo-Lemos/Suspiciousness-CosmoSIS.

5As pointed out by Handley & Lemos (2019b), non-Gaussian posteriors can be ‘Gaussianized’ using Box—Cox
transformations (Box & Cox, 1964; Joachimi & Taylor, 2011; Schuhmann et al., 2016), that preserve the value of
S. Therefore, the chi-squared interpretation of S derived in the Gaussian case can be approximately valid even
for posteriors that do not look Gaussian, even if it is not guaranteed that both posteriors can be Gaussianized
simultaneously.

%https://github.com/williamjameshandley/anesthetic
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4.4.3 Parameter differences

Another estimator that we consider is the Monte Carlo estimate of the probability of a parameter
difference as described in Raveri et al. (2020). This is a parameter-space method, which relies
on the computation of the parameter difference probability density #(A68). In the case of two
uncorrelated data sets this is given by the convolution integral:

P(A) = /V PA(0)Pp(0 — A)dO (4.14)

where P4 and Pp are the two parameter posterior distributions and V), is the support of the prior,
i.e. the region of parameter space where the prior is non-vanishing. Notice that this probability
density has been marginalized over the value of the parameters and only constrains their difference.

Once the density of parameter shifts is obtained one can quantify the probability that a genuine
shift exists:

A= / P (AO) dAO (4.15)
P(A)>P(0)

which is the posterior mass above the iso-probability contour for no shift, AG = 0. Note that since
Eq. is the integral of a probability density it is invariant under reparametrizations.

Equations (4.14) and (4.15) look straightforward, but their evaluation is greatly complicated
in parameter spaces with a large number of dimensions. In such cases (which are typical in
cosmological applications), the posterior samples cannot be easily smoothed or interpolated to a
continuous function, and we are left to work exclusively with N4 samples from the posterior P4
and Np from Pp, i.e. discrete representations of the posteriors of interest. Each one of the Ny Np
pairs of samples corresponds to one term on the right-hand side of Eq. (with A0 = 64 —0p,
where 64 and 0 are the parameter values for that pair) /7|

To make progress, we perform the integral in Eq. (4.15) with a Monte Carlo algorithm. One
computes the Kernel Density Estimate (KDE) probability of A6 = 0 and then the KDE probability
of each of the samples of the parameter difference posterior. The number of samples with KDE
probability above zero divided by the total number of samples is the Monte Carlo estimate of
the integral in Eq. and the error can be estimated from the binomial distribution. This
approach largely mitigates the need for an accurate estimate of the optimal KDE smoothing scale.
In practice we use a multivariate Gaussian kernel with smoothing scale fixed by the Silverman’s
rule (Chacén & Duong, 2018).

We use the implementation of this tension estimator in the tensiometer8 code.

4.4.4 Parameter differences in update form

Another parameter-space method that we consider is the update difference-in-mean (UDM) statis-
tic, as defined in Raveri & Hu (2019). This compares the mean parameters determined from one

7In the case of weighted samples the weight of the parameter difference sample is the product of the two weights.
8https://github.com/mraveri/tensiometer
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data set, §4, with their updated value, §4+8, obtained after adding another data set. The shifts in
parameters are then weighted by their inverse covariance to give

A A _1 A A
Oupm = (6478 — §4)T (CA _ CA+B) (678 — §4) (4.16)

where C4 and CA*® are the posterior covariances of the single data set A and the joint data set
A+B. If the parameters 64 and §4+8 are Gaussian distributed then Qupw is chi-squared distributed
with rank(C# — C4*8) degrees of freedom. These degrees of freedom are the parameters that are
measured by both data sets A and B and are the only ones that can actively contribute to a tension
between the two. For both fully informative and uninformative priors the statistical significance
of a shift in §4*F — 94 is the same as the shift in §4 — 8 since both of them are weighted by their
inverse covariance. We note that in non-update form and for uninformative priors, i.e. Eq. (4.3),
parameter differences are equivalent to the Index of Inconsistency (Lin & Ishak, 2017ba, 2019),
while providing a clear assessment of statistical significance rather than interpretation on the
Jeffreys’ scale.

There are two main advantages of using Qupwm instead of non-update difference in mean
statistics: parameter-space directions that can exhibit interesting tension are identified a priori,
i.e. before explicitly measuring the tension, to aid physical interpretation; non-Gaussianities are
mitigated since we can select the most constraining and Gaussian of two data sets.

As shown in Raveri & Hu (2019), an effective method to compute Qupwm in practice consists of
breaking down the calculation as a sum over the Karhunen—Loéve (KL) modes of the covariances
involved. We indicate these modes with ¢“ and their corresponding generalized eigenvalue with
A%. The modes ¢“ are uncorrelated for both data set A and A + B. For a given KL mode 1 — 1 is
the improvement observed for the variance in the value of that mode when the second data set is
added to the first. To avoid sampling noise in the calculation of Quypm we restrict our calculation
to modes that satisfy:

02<2-1<100. 4.17)

The lower bound removes directions along which data set B is not updating A, while the upper
bound removes directions along which A is not updating B. In both cases, with perfect knowledge
of the covariances these directions would not contribute to the end result.

We notice here that the procedure of identifying the KLL. modes can be performed a priori,
before looking at the data, starting from the Fisher matrix. We also point out that the set of
KL modes is invariant under linear parameter transformations while the principal-component
decomposition is not.

The KL decomposition of parameter shifts allows to investigate the physical origin of the
reported tensions. As discussed in Wu et al. (2020) we can write the parameters’ Fisher matrix
F = (C)~! as a sum over KL components:

Fao = ) Fiy =) 040%/2°. (4.18)

The fractional Fisher information Fj,/Fo, € [0, 1] tells us how important a given KL mode is
in constraining a cosmological parameter. Low values mean that the KL mode can be removed

from the full decomposition without altering the parameter constraint.
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DES error improvement over Planck
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Figure 4.4.2:  The fractional Fisher information on cosmological parameters for Planck com-
puted using the KL modes from its update with simulated DES. Each line shows the fractional
contribution of each KL. mode to the total information on a given parameter. The sum of values
in each row is one. The numbers on top of the figure show the fractional error improvement of
DES over Planck for each KL mode.

128



In Fig. we show the fractional contribution of different KL modes to the Planck Fisher
matrix when it is updated with our simulated DES measurements. We also report in the figure
the error improvement which is given by VA4 — 1 for each mode. We have a total of five modes,
equal to the number of parameters that the data sets have in common and we have sorted them by
error improvement of DES+Planck over Planck alone. The first data set — in this case Planck —
is setting the parameter combinations that are updated for each mode, while the second data set
is setting the improvement factor. For the first two modes we can see that DES improves on the
Planck determination of og by almost a factor two (94%) and the determination of Quh? by 26%.
DES does not improve other modes significantly.

We use the implementation of Qupwm and related KL decomposition algorithms in the ten-
siometer code.

4.4.5 Goodness-of-fit loss

We next consider Goodness-of-fit loss which measures how much goodness-of-fit degrades when
joining two data sets. This is a method in between evidence- and parameter-based ones since it
relies on both likelihood values and parameters. When fitting two data sets separately, each probe
can individually invest all model parameters in improving its goodness of fit. However, when the
two measurements are joined the parameters have to compromise and the quality of the joint fit
naturally degrades. This degradation is quantified by the estimator:

Opmap =2In L4 (0p4) +2In L(6pp) —2In Ls1p(0pa4+8) 4.19)

where 0,4, 60,5 and 6,4, p are the Maximum a Posteriori (MAP) parameters measured by the first
and second probe and their combination respectively, and £ is the data likelihood for the single
and joint probes and is evaluated at the Maximum a Posteriori (MAP) point, 6,. We use the
subscript DMAP to denote the difference in MAP estimates. As discussed in Raveri & Hu (2019),
when the likelihoods and posteriors are Gaussian Qpmap 1S Xz distributed with

AN = N + N5 — NGB (4.20)

degrees of freedom where N ?ﬁ, N fff, and N g}; B are the respective numbers of the degrees of
freedom

Neg = N —tr[C7'C) ] (4.21)

is the number of parameters that a data set ends up constraining compared to the priors it began
with. The goodness-of-fit is expected to degrade by one for each measured parameter, and
indicates tension if the decrease is higher. Only the parameters that are constrained by the data
over the prior can contribute to a tension since prior-constrained parameters cannot be optimized
to improve the data fit. In the limits where the prior is uninformative or fully informative Qpmap is
the likelihood expression for parameter shifts discussed in the previous sections and its statistical
significance should match the one obtained with parameter-shift techniques.

Notice that this estimator requires Gaussianity in both data space and parameter space. This
is a stronger requirement than just approximate Gaussianity in parameter space, and limits its
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applicability in practice. Most of the likelihoods that we use here are Gaussian in data space with
the exception of the large-scale CMB likelihood. This can be thought to be a prior on the optical
depth of reionization, 7, that would not contribute to the tension budget since it is not shared with
DES and hence allows us to use Opmap.

We use the implementation of Qpwmap in the tensiometer code.

4.4.6 Eigentension

The goal of the Eigentension parameter-space method is to identify well-measured eigenmodes in
the data and compare the parameter constraints of two experiments within the subspace spanned
by the well-measured eigenmodes. Here, we briefly describe the steps taken to quantify the
tension between the fiducial Planck and DES constraints in this paper, and refer the reader to Park
& Rozo (2019) for a more detailed discussion and testing of the method.

We begin by identifying the well-measured parameter subspace by following these steps:

1. Obtain the parameter covariance matrix from a set of fiducial constraints for DES and
identify the eigenvectors of this covariance matrix.

2. For each eigenvector, take the ratio of its variance in the prior to its variance in the posterior.
If this ratio is above 107, identify the eigenvector as well-measured or robust.

3. Project the fiducial Planck constraints and the various DES constraints along the subspace
spanned by the robust eigenvector(s), and create importance sampled chains of equal length
for each constraint.

For (i), we use constraints from a fiducial DES analysis with a noiseless data vector generated
from theory under the Planck best-fit parameters and the true DES Y1 covariance matrix. This
allows the ad hoc choice of 107 as the threshold value in (ii), which we make after examining the
eigenvectors from (i), to be a priori. We identify one well-measured DES eigenvector:

epes = 05QY7 (4.22)

that has a variance ratio of 2665, and construct importance sampled chains of length 10° along
this eigenmode. With the projected chains in hand, we quantify tension between two constraints
i and j as following; we

1. construct the chain of differences Ae = e; — e; between the importance sampled chains for
iand j.

2. approximate the probability surface for Ae via KDE , and identify the iso-probability
contour that crosses the origin, i.e. Ae = 0", where N is the number of robust eigenvectors
identified.

3. integrate the probability surface within the origin-crossing contour, and convert the integral
to Gaussian sigmas.
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1D shift a-priori Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness
Tension logR Interpretation Param Diffs
Baseline O 5.7+0.6  Strong Agreement 050 020 0.3/0.3 0 0.1+£0.1) 0
Aog =-0.5%xd03 | 000 6.4+0.6 Strong Agreement 040 040 0.3/0.40 (02+0.2)0
AQL=05%x6Q, | O0.10 5.4+0.6 Strong Agreement 130 0.70 0.9/0.8 05+02)0
Aog = -1 X dog 040 5.5+0.6  Strong Agreement 1.10 0.80 1.0/0.8 03+0.2)0
AQp =1X0Qn, 1.00 3.5+0.5 Strong Agreement 230 190 1.8/1.70 (1.5+£03)0
Aog=-1.5%xb0g | 1.10 3.6+0.6  Strong Agreement 200 120 1.8/1.90 (1.5+£03)0
AQp =15%X6Qy | 230 -04x0.6 No Evidence 330 300 28270 (29+04)0
Aog = -2 X dog 200 0.3+0.6 No Evidence 2.60 210 2.7/3.00 (22+04)0
AQp =2 X 6Qn 380 -4.8+0.6 Strong Tension 410 390 34/3.60 (41+£0.6)0
Aog = -3 X dog 370 -62+0.6 Strong Tension 430 340 4.6/4.80 3.7+£05) 0
AQp =3 X0Qn >50 -162+0.6  Strong Tension >S540 6.20 5.3/530 (5.9+£07) 0
Aog = -5 X dog >50 -263+0.6  Strong Tension >S540 580 6.8/8.8 0 (6.3+£0.8)0
AQp =5%X0Qn >50 —-47.0+0.6  Strong Tension >S540 10.00 6.6/8.1c0 9.6+£12)0

Table 4.4.2: The tension between Planck and simulated DES chains for different shifts in o and
Q,,, calculated via the different tension metrics described in the main text. The first column refers
to the number of one-dimensional standard deviations by which each parameter is shifted, defined
in Eq. (4.2). The a-priori Gaussian tension is calculated as described in Sec. and serves only
as an order of magnitude approximation of expected results. The probability results of each of
the tension metrics is converted to a number of effective sigmas using Eq. (4.4).

For (ii), we use a Gaussian KDE with bandwidths determined from Silverman’s rule of thumb,
and a straightforward Monte Carlo integration with 1.28 x 107 random draws,which is sufficient
to quantify tensions up to 5.40 .

4.4.77 Other metrics

As mentioned in the introductions, a plethora of methods to quantify tension can be found in the
cosmological literature. Our work does not investigate all of these methods, as this would make
the analysis too wide in scope. For example, Hyperparameters (Hobson et al., 2002; Luis Bernal
& Peacock, 2018) are more useful to construct a posterior from data sets in tension, by factoring
in possible unknown systematic effects. The surprise (Seehars et al., 2016) is best suited for
experiments that are an update from a previous version with less data. Posterior Predictive
Distributions (Feeney et al., 2019) are similar in nature to the Evidence Ratio as shown in Lemos
etal. (2020). Other methods are not considered as they closely resemble others, such as/ Amendola
et al. (2013); Martin et al. (2014); Joudaki et al. (2017) being based on the Bayesian Evidence
ratio, and Lin & Ishak (2017a); Adhikari & Huterer (2019); Lin & Ishak (2019) being different
versions of parameter differences in update form.
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Figure 4.5.1: A graphical illustration of the main results of Tab. Different points show the
tension calculated by each tension metric as a function of the input shifts. The error bars in the
green points correspond to sampling errors, which can be calculated for evidence-based methods

by re-sampling the nested sampling weights.
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Figure 4.5.2: Tension estimates given by different metrics versus the corresponding Bayes ratio.
Shaded regions highlight Jeffreys’ scale used to interpret the Bayes ratio, with the vertical line
separating “Tension" to the left and “Agreement"” to the right.

4.5 Results using simulated DES data

In this section, we apply the tension metrics described in Sec.[4.4/to the simulated vectors obtained
as outlined in Sec. and compare the results to our a-priori expectation from Sec. Our
results are shown in Tab. and graphically illustrated in Fig.
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We first note that our estimates of a-priori Gaussian tension should be only used as an rough
indication and are generally lower than the tension evaluated by the metrics that we study. This
1s because the a-priori Gaussian tension does not have noise in the data vector while the tensions
simulations do. This noise realization is the same for all the shifts, which explains the fact that
the a-priori tension is systematically lower in all results with respect to other tension estimators.
We can see this in the baseline case, where in a noiseless case all metrics would obtain perfect
agreement (a ‘Oo tension), but instead the noise leads to small discrepancies.

When applying parameter-shift estimators in both MCMC and update form we can see, from
Tab. and Fig. that, for tensions measured up to 50, the two estimates agree very
well, to within 0.30". This overall result is reassuring since these two estimators are measuring
the same sense of tension between the two data sets. This agreement is also expected since
the distributions that we consider are roughly Gaussian in the bulk of the distribution. At high
statistical significance MCMC results are lower in both cases and this suggests that the decay
of the tails of the distribution is slower than a Gaussian distribution. For the parameter update
we observe that the two parameter combinations, discussed in Sec. that DES+Planck
significantly improves over Planck-only do not appreciably change throughout the test cases.

In case of either fully informative or uninformative priors the statistical significance of GoF
loss is expected to match the one reported by parameter-shift estimators. As we can see from
Tab.|4.4.2/that is the case at low statistical significance. Non-Gaussianities in the form of slowly-
decaying tails violate the assumptions used by the GoF loss estimator, while their impact can be
mitigated by parameter shifts in update form. As a result, as statistical significance increases, in
Tab. |4.4.2| the two estimates differ. In particular, as expected, GoF loss overestimates statistical
significance since this estimator is assuming Gaussian decay in the tails.

For Eigentension, we make use of the metric on the simulated vectors, making use of the
robust DES eigenvector and the Monte Carlo sampling procedure discussed in Sec. Note
that the Eigentension metrics are calculated only up to 5.40-, or 1 in 1.28 x 107; beyond this
probability we simply quote that the tension is greater than 5.40- and consider the tension to be
definitive. The results are in good agreement with other tension metrics, in particular the two
parameter shift estimators, with which Eigentension shares the general approach of quantifying
tensions at the parameter space level.

With Suspiciousness, as shown in Tab. and in Fig. we obtain good agreement
with the rest of tension metrics, especially when we consider the sampling error estimated from
repeated re-samplings for the weights of the chain. To assign a tension probability, we need to
calculate the Bayesian Model Dimensionality, for which we get d = 2.3 + 0.1. At high statistical
significance, Suspiciousness seems to agree particularly well with GoF loss. This is reassuring
since the two estimators coincide in the Gaussian limit with uninformative priors.

In Tab. we also show the results for the Bayes ratio, interpreted with the Jeftreys’ scale
as used by DES Collaboration (2018), and shown in Tab. 4.4.1. As we can see from the table
the interpretation of R transitions very quickly from ‘Strong Agreement’ to ‘Strong Tension’. To
further investigate the relation between R and the other metrics we plot them against each other in
Fig. This immediately highlights that the Jeffreys’ scale that we use to interpret the Bayes
ratio results lacks granularity in how it quantifies physical tensions. Coherently across different
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Figure 4.5.3: A practical ‘decision tree’ to measure tension, illustrating when each tension metric
should be used.

estimators the interpretation of R goes from one extreme case to the other in a probability interval
that covers about one standard deviation. Fig. also clearly shows the bias of the evidence
ratio toward agreement. The value of R = 1, which separates agreement and disagreement for
our choice of priors is at a probability level that roughly corresponds to 30 (i.e. a probability of
the discrepancy occurring by chance of pr ~ 0.003). We note that the offset between R = 1 and
50% probability events is set by the prior width and would hence change when changing the prior.
Fig.[4.5.2]also shows that the evidence ratio, interpreted with the Jeffreys’ scale, would still signal
a strong tension, if present, while lacking granularity in the discrimination of mildly statistically
significant tensions.

In Sec. we made a distinction between parameter-space methods and evidence-based
methods. We find that all our tension metrics agree well not only amongst themselves, but also
qualitatively with the a-priori Gaussian tension calculations described in Sec. This is a
non-trivial result, as both the calculations and the fundamental questions that the various methods
are trying to address differ.

The only exceptions to this good agreement are given by the statistically-significant o shifts
where the spread between the three parameter difference estimators is smaller than the difference
between them GoF loss and Suspiciousness; and the smaller a-priori shifts in Qy,, for which the a-
priori Gaussian tension estimate is smaller than the results from Eigentension and Suspiciousness.
Since the input calculation used a noiseless data vector and simulated DES data vectors had noise,
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these disagreements are expected. They are likely to be caused by the noise introduced in the
chains used by the tension metrics, and will have a more significant impact on the small shifts.

Based on these results, we propose a methodology to quantify tension between data sets that
exploits the strengths of all the different methods, summarized by Fig. Within the parameter-
based approach, we recommend to generate a Monte-Carlo parameter difference distribution
and observe where the zero-difference point stands provided we have enough samples of the
posterior distribution in its tail, as this method has no problem with non-Gaussianities, and has
the advantage of providing useful visualizations in the form of confidence regions generated
directly from the difference chain itself. However, if the number of samples in the tension tail is
insufficient, this parameter-difference distribution will not be reliable enough to make statements
about tension. In this case, either Eigentension or parameter differences in update form
provide reliable metrics of tension. These two methods are also useful in identifying the physics
behind the tension, as they provide characteristic parameter combinations along with the identified
tensions lie. Since it does not offer mitigation of non-Gaussianities, we do not recommend using
goodness-of-fit loss on its own, but rather as a cross-check with other metrics.

For the Evidence-based methods, if we have a well-motivated prior, such as the posterior from
a previous experiment or a physically-motivated one, we can calculate the tension using the Bayes
ratio. However, as discussed in the text, experiments such as DES and Planck often choose wide
priors in order to obtain posteriors that do not depend on previous experiments. The arbitrariness
in the choice of width of those priors means that we cannot use the Bayes ratio, as discussed in
Sec. unless we calibrated R using Fig. but that would require recalibration if any
details of the analysis changed. In the case of wide and uninformative priors, the Suspiciousness
answers the same question as the Bayes ratio but correcting for the prior volume effect. We
recommend its use over the Bayes ratio in general since it has the additional desirable property of
having a ‘tension probability’ interpretation under a Gaussian approximation, without any need
for calibration.

As pointed out in Fig. 4.5.3, different methods requires reliable calculations of different
quantities. Parameter-space methods require a good estimate of the posterior, and particularly of
its mean and covariance matrix. Evidence-based methods require a calculation of the Bayesian
Evidence. Therefore, our choice of tension metric should inform our sampling choices, as further
discussed in Lemos et al. (2022).

4.6 Application to DES Y1 and Planck

With a better understanding of the interpretation of each of the tension metrics, we now revisit
the issue of consistency between the DES Y1 cosmology results and those obtained by the Planck
collaboration (Planck Collaboration et al., 2016, 2018). This also serves as a worked example on
real data of how tension between experiments can be fully quantified.

We choose to investigate three different combinations of DES data sets: (1) weak lensing-only
constraints from Troxel et al. (2018) (2) constraints from combining the auto and cross-correlation
between weak lensing and galaxy clustering, referred to as the 3x2pt analysis: (3) constraints from
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data set Bayes ratio Eigentension GoF Loss MCMC/Update Suspiciousness
log R Interpretation Param Shifts
DES cosmic shear vs. Planck 15 2.2+0.5 Substantial Agreement 1.80 130 1.3/1.20 0.7+04)0
DES 3 x 2pt vs. Planck 15 1.0+ 0.5 No Evidence 240 270 22/220 24+£02)0
DES 5 x 2pt vs. Planck 15 1.1 +0.5 Substantial Agreement 240 280 2.1/230 (22+03)0
DES 5 x 2pt vs. Planck 15 + lensing 1.0+ 0.6 No Evidence 240 250 2.1/230 22+04)0
DES 5 x 2pt + Planck lensing vs. Planck 15 | 6.1 0.6 Strong Agreement 1.6 240 1.9/220 (1.8+0.2) 0
DES cosmic shear vs. Planck 18 33+04 Strong Agreement 1.50 1.00 1.0/1.10 (0.5+03)0
DES 3 x 2pt vs. Planck 18 2.2+0.6 Substantial Agreement 220 1.6 2.0/230 24+02)0

Table 4.6.1: The tension between Planck and different data set combinations involving DES Y1
data, calculated via the different tension metrics described in the main text. In the first column,
Planck refers to the combination of the TT, TE and EE likelihoods. In bold font we highlight
the combinations of DES 3 x 2pt and Planck, as those are the main focus of this section. The
horizontal line separates Planck 2015 and 2018 data set combinations.

(2) plus cross-correlation with CMB lensing, referred as the 5 x 2pt analysis (DES Collaboration,
2019a). We particularly focus in the second combination, as it provided the most powerful
constraints from large-scale structure measured by DES alone. For Planck 2015 we use the
small-scale (£ > 30) measurements of the CMB temperature power spectrum and the joint large-
scale temperature and polarization data. For Planck 2018 we use small-scale CMB temperature,
polarization and their cross-correlation measurements combined with large-scale temperature
and and E-mode polarization data. In doing so we follow the recommendations of the Planck
collaboration in the two data releases.

The results of parameter estimation for these data sets are shown in Fig. and the results
of different tension estimators in Tab. 4.6.1, We highlight in the table the results that we focus
our discussion on/%]

We start with MCMC parameter shifts, as it is the parameter-based method that can give the
most accurate value for the tension, thanks to its ability to go beyond the Gaussian approximation.
In Fig. we can see the posterior of differences between the determination of og and Q,
from different DES data sets and Planck that clearly shows a tension that is greater than 20-. In
Tab. we see that in full parameter space this tension is at the 2.20 level. We proceed with
Suspiciousness as our recommended evidence-based method which fully confirms the parameter-
shift results, giving a 2.4 + 0.20 tension between Planck 2015 and DES 3 x 2pt. We note that
applying both methods provides a useful cross-check of their respective results. This moderate
tension remains when Planck is updated from the 2015 to the 2018 data and for DES 5 X 2pt. This
shows that this tension is robust to the inclusion of CMB polarization data.

To understand the physics behind these discrepancies, it is useful to consider other methods.
Using Eigentension, we identify a single well-measured eigenmode for each DES analysis: oQ%:%

9The reader might notice that the values of the Bayes ratio reported in Tab. in particular for the case DES
3 X 2pt vs. Planck 15, differ from the values reported by DES Collaboration| (2018) (R = 6.6). This difference has
been identified as originating from sampling issues in the DES Y1 analysis, as will be described in more detail in
Lemos et al.|(2022).
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Figure 4.6.1: 68% and 95% confidence regions of the joint marginalized posterior probability
distributions for Dark Energy Survey Year 1 Cosmic Shear, 3 X 2pt and 5 X 2pt likelihoods, and
for the Planck 2015 TTTEEE likelihood.
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Figure 4.6.2:  Joint marginalized posterior distribution of the parameter differences between
different DES data selections and Planck 15/18. The distribution of parameter differences is
used to compute the statistical significance of a parameter shift. The darker and lighter shading
corresponds to the 68% and 95% C.L. regions respectively.
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for the 3 x 2pt analysis, and 05Q%>8 in the 5 x 2pt case. Both eigenmodes are very similar to the
widely-used definition of Sg = 05(,/0.3)%, and can be interpreted as representing the ‘lensing
strength’ arising from the large-scale structure of the late-time Universe. After measuring tension
exclusively along this direction in parameter space, we find results that are in agreement with
other methods. This shows that the moderate tension between DES and Planck is found along a
parameter space direction that we believe DES is robustly measuring. Studying parameter updates
of DES with respect to Planck gives similar conclusions. As discussed in the previous section
and shown in Fig. combining DES improves the Planck determination of two parameters,
the first mode projecting mostly onto og and the second onto Q4. The first mode drives most
of the tension while the shift in the second is compatible with a statistical fluctuation. Decrease
in Goodness of Fit agrees with other estimators.

The Bayes ratio interpreted on the Jeffreys’ scale reports no significant tension between all
data combinations that we consider. Given the results of the previous section we can understand
this as the data tension not overcoming the bias of the Bayes ratio toward agreement. We note
that the priors used for the fiducial analyses in the previous section do not coincide with the priors
used in this section; we thus cannot use the previously-derived calibration of the Bayes ratio.

The mild tension we obtain between Planck and DES, varying between 20~ and 30, should not
be overlooked. While this level of tension could still be a statistical fluke, it is significant enough
to warrant in-depth future investigations. The forthcoming DES Y3 analysis, incorporating a
larger fraction of the sky, is expected to shed light on this matter.

4.7 Conclusions

In this work, we have explored different methods to quantify consistency between two uncorrelated
data sets, focusing on the comparison between DES and Planck. The motivation is to decide on
a metric of tension between these two surveys ahead of the DES Y3 data release. This was done
by simulating a set of DES data sets with values of cosmological parameters chosen to introduce
varying levels of discrepancy with Planck. We calculate the tension for each simulated DES data
set, and compare to an a-priori Gaussian tension expected based on the known true cosmologies
for the simulated data sets. While this work has been performed for the specific case of DES
and Planck, our findings about the different metrics described in Sec. apply to any problem
of tension quantification. However, if we wanted to apply the Bayes ratio to a different problem
with uninformative priors, the exercise of calibrating the Bayes ratio would have to be repeated.

We have found that the Bayes’ ratio used in the Y1 analysis has several flaws that make it
unsuitable for the quantitative comparison of DES and Planck. In particular, it is proportional to
the width of the chosen uninformative prior; it relies on the Jeffreys’ scale to interpret the ratio
of probabilities, which needs an unknown calibration that is problem-dependent (i.e. we would
need to build a table such as Tab.[4.4.2/in every problem to calculate the overall calibration of the
Bayes ratio); and the fact that we can only calculate logarithms of the probability ratio means that
the Jeftreys’ scale used in the DES Y1 analysis (Tab. will in most cases diagnose extreme
agreement or extreme tension.
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As shown in Tab. the other four tension metrics employed in this work — Eigentension,
GoF loss, Parameter differences, and Suspiciousness — agree with the a-priori tension, as well as
amongst themselves, with the exceptions of small shifts in Q, and large shifts in og discussed in
Sec. which are likely the result of noise introduced in the simulated data vectors. We conclude
that any of the tension metrics can be used for the problem of quantifying tension between DES
and Planck, as they produce similar results.

We use these tension metrics to re-assess the tension between DES Y1 and Planck 2015, as well
as with the latest Planck 2018 results. We find, similar to our findings from the simulated analyses,
that the dependence of the Evidence ratio on calibration causes the results to be inconsistent with
what we see in the plots, and what all other tension metrics indicate. We find that thereisa ~ 2.30
between DES and Planck, which remains when the Planck 2018 likelihood is used. It remains
to be seen how this will evolve when the more powerful DES Y3 data are used. If the tension
is reduced when more data are considered, we are likely looking at a statistical fluctuation. If
the tension remains or increases, we could be looking at unexplained systematics in either of the
surveys, or evidence of physics beyond the ACDM model.

Data availability Statement

The data underlying this article are available in the Dark Energy Survey Data Management
platform, at https://des.ncsa.illinois.edu
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Appendix

4.A Dark Energy Survey data

The Dark Energy Survey (DES, DES Collaboration, 2005, 2016b) is a six-year survey that has
observed over 5000 deg? in five filters (grizY) and has probed redshifts up to z ~ 1.3. It has also
used time-domain to measure several thousand type Ia supernovae (SNe Ia). DES can constrain
cosmological parameters in several ways: It can use these SNe Ia, and treat them as standarizable
candles to constrain cosmology through their redshift-luminosity relation, usually referred to
as Hubble Diagram (Hubble, 1929; Kirshner, 2004); it can use the distribution of galaxies to
measure the Baryon Acoustic Oscillation (BAO) feature which was imprinted by sound waves at
the recombination era (z ~ 1100), and which serves as a standard ruler (Eisenstein et al., 2007);
it can use the abundance of galaxy clusters, the largest gravitationally-bound structures in the
Universe (Allen et al., 2011); it can use the distribution of galaxies to measure the dark matter
density distribution, under the assumption of some bias relating the two, called galaxy clustering;
and it can measure the distortion of light by intervening matter along the line of sight, referred
to as gravitational lensing (Mandelbaum, 2018). When the matter distribution distorting the path
of light is the large-scale structure of the Universe, the effect is called cosmic shear (Kilbinger,
2015). Because in this case distortions are too small to be detected for individual galaxies, they
are detected through correlations in the shapes and position of galaxies images.

Using data from the first year of observations (Y1), the DES collaboration has already reported
constraints on cosmology from BAO (DES Collaboration, 2019c), galaxy clustering (Elvin-Poole
et al., 2018), cosmic shear (Troxel et al., 2018), the cross-correlation of galaxy clustering and
cosmic shear, referred to as galaxy—galaxy lensing (Prat et al.,, 2018), and as a main result,
the combination of the two-point functions from cosmic shear, galaxy clustering, and galaxy—
galaxy lensing, henceforth referred to as ‘3 X 2pt’ (DES Collaboration, 2018). In addition, using
data from three years of observations (Y3), DES has also constrained cosmology from SNe Ia
(DES Collaboration, 2019d), and galaxy clusters (To et al., 2020). However, as described in
DES Collaboration (2019b), the most powerful constraints from future DES data releases will
come from combinations of the different probes, as these can break degeneracies in parameter
constraints and significantly increase accuracy.

We adopt the same priors used in the DES Y1 analysis, shown in Tab. 4.A.1
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Parameter Prior
Cosmology
Qm flat (0.1, 0.9)
Aq flat (5 x 10719,5 x 107)
ng flat (0.87, 1.07)
Qp flat (0.03, 0.07)
h flat (0.55, 0.90)
Q,h? flat(5 x 1074,1072)
Lens Galaxy Bias
bi(i =1,5) flat (0.8, 3.0)
Intrinsic Alignment
Ala flat (=5, 5)
mA flat (=5, 5)
Lens photo-z shift (red sequence)
Az Gauss (0.0,0.007)
Az} Gauss (0.0,0.007)
Az13 Gauss (0.0, 0.006)
Az} Gauss (0.0,0.01)
Az} Gauss (0.0,0.01)
Source photo-z shift
Az! Gauss (0.0,0.016)
AZ? Gauss (0.0,0.013)
AZ Gauss (0.0,0.011)
Azd Gauss (0.0,0.022)
Shear calibration
mi(i=1,4) Gauss (0.0, 0.023)

Table 4.A.1: Cosmological and nuisance parameters and their priors used in this analysis.
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Chapter 5

Conclusions

The work presented in this thesis delineates significant advancements in the domain of obser-
vational cosmology, facilitated by the integration of artificial intelligence methodologies, novel
statistical methods, and extensive galactic data sets. The methodologies developed are not only
being utilized to interpret existing data from ongoing surveys but also hold promise for advancing
the analysis of future surveys.

Chapter 2|introduces a refined Self-Organizing Map (SOM) algorithm, the SOMPZ method,
which has notably enhanced the precision of photometric redshift estimation. Its successful
application to the Dark Energy Survey’s Y3 data has dramatically minimized redshift bin overlaps,
enriching our understanding of weak lensing phenomena. Such progress not only elevates the
DES Year 6 analysis but also lays a solid groundwork for upcoming cosmic studies. The SOMPZ
Y6 pipeline I developed is now a public resource, and is being integrated into the RAIL ecosystem
(Schmidt et al., 2023), which will facilitate the characterization of redshift distributions in several
contexts, but specially for the case of LSST.

Despite these advancements, however, photometric redshift uncertainty stands as a complex
challenge for the coming decade’s wide-field imaging surveys. There is an urgent need for in-
depth research to devise strategies for comparing and synthesizing various photometric redshift
techniques against the backdrop of expansive, yet incomplete, spectroscopic redshift data sets.
As we venture into the era of observing billions of galaxies, the rich spectroscopic data from
instruments like the Dark Energy Spectroscopic Instrument and the Roman HLS prism survey
are invaluable. Such data sets are pivotal for enhancing redshift calibration, especially at higher
redshifts and fainter magnitudes, solidifying spectroscopic data’s role as the cornerstone of this
methodology.

The empirical methodology for model selection introduced in Chapter 3/ encapsulates a nu-
anced balance between parameter bias mitigation and model complexity. This approach, pred-
icated upon the calibration of synthetic data, provides a robust framework for interpreting x>
discrepancies, thereby facilitating informed model selection in the absence of uninformative pri-
ors, while maintaining the data blinded. Applied to the intrinsic alignment challenge within
weak lensing surveys, this methodology permits a more nuanced comparison of the NLA and
TATT models, contributing to a refined understanding of which model is sufficient to describe
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the data. One caveat of this method, however, is its dependency on the stability of other analysis
components. To ensure that y? differences are solely attributable to the model under test, this
method should be applied as one of the final steps in the analysis process.

Furthermore, the implementation of tension estimators in assessing the congruence between
DES and Planck measurements, in Chapter |4, shows that the existing tension metrics succeed
in capturing existing tensions in the entire multi-dimensional parameter space. This work also
offers guidance on how to compute these metrics in a reliable way, combining the information
provided by the evidence and by parameter space. It revealed a discernible tension at the level
of 2.30- within the ACDM paradigm for DES Y1 and Planck 2018, which subsequently got
reduced to 0.70 in DES Y3 (DES Collaboration, 2022). This points towards the difference being
due to statistical fluctuations. If that is the case, as the precision of future surveys increase, we
should keep seeing a increasing in agreement. If this trend is indeed statistical, the precision of
forthcoming surveys should reveal an increasing concordance. However, considering that these
tension metrics were validated using a DES Y1 setup, it is crucial to reassess their effectiveness
with future data sets from Rubin, Roman, and Euclid surveys to ensure they still reliably detect
tensions.

In conclusion, this research has expanded the horizons of cosmological data analysis, yet it
represents merely one step in a much larger journey of discovery. Standing at the threshold of
a revolutionary phase in cosmology, I am optimistic that the methodologies and insights derived
from this work will shed some light on the path forward. The influx of data from cutting-edge
facilities, particularly the Vera C. Rubin Observatory, will not only test the robustness of the
methods developed but also open avenues for their refinement. As we venture into this new era,
it is crucial that the approaches outlined here undergo rigorous further testing and refinement.
The apparent tensions between various cosmological observations call for a more exhaustive
examination. The need for adaptation of these methods to a broader range of cosmological probes
is also clear. Moving forward, the challenge will be to not only refine our current models but also
to innovate new frameworks that could provide a more holistic understanding of the universe. This
thesis lays the groundwork for some of the transformative science that awaits us in the forthcoming
epoch of next-generation surveys.
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