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tanto orgullo como he sentido yo al escribirlo.

Por último, quiero agradecer al instituto Carlos I de F́ısica Teórica y Computacional de
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Chapter 1

Introduction

Neutrinos are the most abundant massive particles in the universe. When atomic nuclei

are created in a star, like our sun, or break apart, like inside a nuclear reactor, neutrinos

are created. The existence of neutrinos was proposed by Pauli almost one century ago as

an alternative over the violation of energy conservation in β decay. The confirmation of its

existence (or to be more precise, the existence of its antiparticle) came almost three decades

after it was postulated [1]. Nowadays, the neutrino holds a distinguished place in the physics

landscape, both inside and beyond the Standard Model. The main topic of this thesis is

the description of a realistic theoretical model of semi-inclusive neutrino-nucleus reactions,

namely, processes where a lepton and one ejected nucleon are detected in coincidence after

the interaction of a neutrino with a nucleus. The ultimate goal of the thesis is to perform

a systematic analysis of all the semi-inclusive neutrino-nucleus experimental data published

until 2023 with a realistic, i.e. relativistic and quantum mechanical, model of the nuclear

dynamics. The analysis, proper understanding and modeling of these reactions will help

current and future neutrino oscillation experiments by reducing the systematic uncertainties

associated to the modeling of neutrino-nucleus interactions.

This thesis is structured as follows: in this Chapter, an introduction to neutrino oscillations,

accelerator-based neutrino experiments and neutrino-nucleus interactions is presented. Chapter 2

is mainly focused in the general definition of a semi-inclusive neutrino-nucleus reaction

and the analysis, from a theoretical point of view, of semi-inclusive results using different

1
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models of the nucleus, but neglecting the effects introduced by final state interactions (FSI).

Chapter 3 is entirely dedicated to the description of the one-proton knockout process, a type

of semi-inclusive reaction, using a fully relativistic and quantum mechanical model of the

nuclear dynamics and including final-state interactions, while in Chapter 4 we summarize

the current approach used by neutrino event generators to describe semi-inclusive reactions.

Different approximations for the description of semi-inclusive reactions are compared with

semi-inclusive cross section measurements performed by different international collaborations

in Chapter 5. Finally, in Chapter 6 we present a summary and the conclusions of this thesis.

1.1 Neutrino oscillations

Bruno Pontecorvo, while looking for an analogous of neutral kaon mixing [2] for neutrinos in

1957, developed the concept of neutrino-antineutrino transitions [3]. Although no matter-

antimatter oscillation has been observed to date in the leptonic sector, the concept formed

the foundation of lepton mixing, which was developed by Maki, Nakagawa, and Sakata, on

the basis of a neutrino flavour oscillation model by Pontecorvo. The observation of neutrino

oscillations [4], which are only possible if neutrinos have mass, implied new physics beyond

the Standard Model (SM).

Neutrinos, as particles that interact weakly with matter by exchangingW± and Z bosons,

have a quantum number called lepton flavour which is the same as the other lepton in

their SM doublet: (νe e
−), (νµ µ−) and (ντ τ−). Therefore, neutrinos (and equivalently

their antiparticles called antineutrinos which are distinguished from the neutrinos by having

opposite signs of chirality and lepton number) can be described by orthonormal flavour

eigenstates |να⟩ with α the flavour of a neutrino (e, µ, τ). These flavour eigenstates do not

correspond to neutrino mass eigenstates |νi⟩, i.e. neutrino states with definite massm. Then,

the neutrino flavour eigenstates can be expressed as a superposition of states with definite
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mass

|να⟩ =
3∑

i=1

U∗
αi|νi⟩, (1.1)

with U a unitary matrix (UU † = 1) denominated the leptonic mixing matrix or PMNS

(Portecorvo-Maki-Nakagawa-Sakata) matrix. Eq. (1.1) can be inverted to yield

|νi⟩ =
∑

α=e,µ,τ

Uαi|να⟩. (1.2)

The time evolution of each mass eigenstate |νi⟩ can be obtained by applying the time-

dependent Schrödinger equation to the state |νi⟩

iℏ
∂|νi⟩
∂t

= H|νi⟩. (1.3)

The general solution of Eq. (1.3) can be written as a plane wave with a phase factor that

depends on time:

|νi (t)⟩ = e−iEit|νi⟩, (1.4)

with Ei the energy of a neutrino with mass mi, that can be expressed as function of the

neutrino momentum ki as Ei =
√
k2i +m2

i . Then, using Eq. (1.2) the time evolution of each

flavour state is given by

|να (t)⟩ =
∑
β

∑
i

UβiU
∗
αie

−iEit|νβ⟩. (1.5)

Eq. (1.5) tells us that, if the PMNS matrix is not diagonal (i.e. the mass eigenstates are

different from the flavour states), then a neutrino produced initially (via a weak interaction)

with a flavour α can be detected (via a weak interaction) some time later in a different flavour
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β. This phenomenon, called neutrino oscillation, was discovered by the Super-Kamiokande

(Super-K) experiment in 1998 [5]. The probability for an ultrarelativistic neutrino α with

energy E to oscillate to a neutrino β after propagating for a distance L in vacuum is

Pνα→νβ = |⟨νβ|να⟩|2 =
∑
ij

U∗
αiUβiU

∗
βjUαje

−i
∆m2

ij
2E

L, (1.6)

where ∆m2
ij = m2

i −m2
j is the squared mass difference between the i and j neutrino masses.

This means that neutrino oscillation experiments are only sensitive to the difference between

squared masses, and not to the individual neutrino masses. The expression in Eq. (1.6) can

also be rewritten in a general form using the unitarity property of the PMNS matrix:

Pνα→νβ = δαβ − 4
∑
i > j

Re
(
U∗
αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ijL

4E

)
(1.7)

+ 2
∑
i > j

Im
(
U∗
αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

2E

)
.

Since the matrix U is unitary, the oscillation probability Pνα→νβ yields unity when the sum

over all the β flavors is performed. An equivalent oscillation probability for antineutrinos

Pν̄α→ν̄β can be obtained by applying the charge and parity conjugation operators in Eq. (1.7)

which yields a change of sign in the last term of the equation. Therefore, if the matrix U is

complex, neutrinos and antineutrinos oscillate with different probabilities and the neutrino

oscillation phenomenon is said to violate Charge-Parity (CP) symmetry. The PMNS matrix

is commonly parametrized in the following way:

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13eiδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

eiα1/2 0 0
0 eiα2/2 0
0 0 1

 ,

(1.8)

where sij = sin θij and cij = cos θij with θij the three mixing angles and δCP , α1 and
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α2 are complex phases. The parameters α1 and α2 are only non-zero if neutrinos are

Majorana particles, i.e., neutrinos coincide with their own antiparticles. At the current

time it is still not clear if neutrinos are Majorana particles, but the effects of the parameters

α1 and α2 cannot be observed in neutrino oscillation experiments. Instead, it is possible

to determine if neutrinos are their own antiparticles in processes that violate total lepton

number conservation such as neutrinoless double beta decay [6], but there is not yet experimental

evidence of such process. The first and the third matrices in Eq. (1.8) contain the atmospheric

mixing angle θ23, which is sensitive to the oscillation of neutrinos created in the atmosphere,

and the solar mixing angle θ12 which mostly controls solar neutrino oscillations. The second

matrix contains the CP-violating phase δCP and the reactor mixing angle θ13. After the

confirmation of the existence of neutrino oscillations, experiments have mainly focused in

the measurement of the oscillation parameters: the three mixing angles θ23, θ13, θ12, two

squared mass differences ∆m2
12 and ∆m2

32, and the CP-violating phase δCP . Furthermore,

the neutrino mass hierarchy, i.e., the sign of the mass splitting between m2 and m3 mass

eigenstates, is still unknown. A summary of the current value of the neutrino oscillation

parameters obtained from a global fit [7, 8] is shown in Fig 1·1.

1.2 Accelerator neutrino experiments

The dependence of the oscillation probability on the ratio of the distance between the points

where neutrinos are created and detected and the neutrino energy, L/E, can be clearly seen

in Eq. (1.7). This distance, commonly referred as baseline, varies for the different types of

neutrino oscillation experiments. For instance, in solar neutrino experiments the baseline is

naturally fixed by the distance between the Sun and the Earth’s surface. For atmospheric

neutrino experiments the detector is localized in a specific place on the Earth, but the

neutrinos produced in the entire atmosphere can be detected. In other kinds of experiments,

the ratio L/E can be carefully selected to have an optimal sensitivity to some oscillation
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Figure 1·1: 3ν oscillation parameters obtained from different global analysis of neutrino
data available in November 2022 [7, 8]. ∆m2

3l ≡ ∆m2
32 > 0 for NO (normal ordering with

m3 > m2) and ∆m2
3l ≡ ∆m2

31 < 0 for IO (inverted ordering with m1 > m3). “bfp” stands
for best fit points.

parameters. Reactor and accelerator neutrino experiments are examples of the latter case,

which can be further categorized into long- (L/E ≳ 100 km GeV−1 which make them sensible

to ∆m2 ≲ 10−2 eV2) and short- (L/E ≲ 10 km GeV−1 which explore ∆m2 ≳ 10−1 eV2)

baseline experiments. For the purpose of this thesis we will focus specifically on accelerator

neutrino oscillation experiments, which cover the intermediate range of neutrino energies
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between several hundreds of MeV up to a few GeV.

Modern accelerator-based neutrino experiments can produce muon and electron neutrinos,

as well as antineutrinos, from accelerated protons. Protons are accelerated using a particle

accelerator and do interact with a heavy target producing a beam of secondary mesons. The

target is usually located inside shaped magnetic fields, denominated horns, that are used to

select mesons of a preferred charge (for example positive pions). If the positive (negative)

mesons are selected then it is said that the accelerator is working on neutrino (antineutrino)

mode. The beam of mesons is directed into a long decay volume, where mesons decay into

a beam dominated by muon-neutrinos (neutrino mode) or muon-antineutrinos (antineutrino

mode) and a large mass of material absorbs all the particles except the neutrinos at the end.

Even with the focusing magnetic horns, the neutrino (antineutrino) beam is contaminated

with antineutrinos (neutrinos). Also, there is a small contamination of electron neutrinos

which come from the decay of kaons and muons present in the secondary beam. In addition

to maximizing the flux of neutrinos with energies close to the maximum of the oscillation

probability, neutrinos with energies far from this maximum should be avoided because they

might result in unwanted background processes. The energy of neutrino from a pion decay

is given by

Eν =
m2

π −m2
µ

2 (Eπ − pπ cos θ)
, (1.9)

where Eπ is the energy of the pion, θ is the angle between the pion and the neutrino direction,

pπ is the pion momentum andmπ andmµ are the pion and muon masses. Using this relation,

a neutrino beam with narrow energy spectrum around the energy determined by θ, which

is more convenient for oscillation analyses, can be obtained. Therefore, accelerator neutrino

experiments can also be further classified as on-axis beam experiments, that have a wider

beam energy spectrum, and off-axis beam experiments, which present a narrower spectrum.

Some accelerator experiments use two detectors to reduce the systematic uncertainties
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coming from the neutrino flux and neutrino-nuclei interactions. The near detector, i.e. the

one closer to the source of neutrinos, either uses the same technology as the far detector, i.e.

the one localized far away from the neutrino source that measures the oscillated neutrino flux,

or consists of sub-detectors with complementary functions to obtain detailed information

of the neutrino beam and neutrino interactions with complex nuclei. The near detectors

are used to characterize the neutrino flux, its energy distribution and the interaction cross

sections, which are used as an input to make predictions of observables at the far detector.

Deviations between the two energy spectra detected by both detectors may be used to infer

the presence of neutrino oscillations, which manifest themselves as the disappearance of

the νµ beam, or the appearance of a different neutrino flavor in the νµ beam. However,

one should note that the neutrino flux is inevitably different between the near and the far

detectors, even without considering neutrino oscillations, due to differences between detector

technologies and targets used. The neutrino oscillations change the flavour composition of the

neutrino beam quite significantly, as the design of a neutrino oscillation experiment requires.

For the precision measurements of neutrino oscillations with accelerator experiments, the

understanding of the neutrino-nucleus interaction becomes crucial. Because complex nuclei

are used as targets, the nuclear effects complicate the understanding of the neutrino-nucleus

interaction as it will be explained in the Section 1.3.

Current long-baseline neutrino oscillation experiments measure both the appearance (for

instance νµ → νe) and the disappearance νµ → νµ channels, each of them sensitive to some

oscillation parameters. We can consider these two specific cases that are relevant for long-

baseline experiments. The first one corresponds to the νµ → νe appearance channel with a
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probability including matter effects [9] given by [10]

P (νµ → νe) = 4c213s
2
13s

2
23 sin

2∆31

+ 8c213s12s13s23 (c12c23 cos δCP − s12s13s23) cos∆32 sin∆31 sin∆21

− 8c213c12c23s12s13s23 sin δCP sin∆32 sin∆31 sin∆21

+ 4s212c
2
13

(
c212c

2
23 + s212s

2
23s

2
13 − 2c12c23s12s23s13 cos δCP

)
sin2∆21

− 8c213s
2
13s

2
23

aL

4Eν

(
1− 2s213

)
cos∆32 sin∆31

+ 8c213s
2
13s

2
23

a

∆m2
31

(
1− 2s213

)
sin2∆31, (1.10)

with ∆ij = ∆m2
ijL/4Eν and a = 2

√
2GFneEν , where ne is the average electron density of

the medium and GF is the Fermi constant. The second case is the νµ survival probability

P (νµ → νµ) ≈ 1− sin2 2θ23 sin
2∆32. (1.11)

To obtain the corresponding antineutrino oscillation probabilities one needs to replace δCP →

−δCP and a→ −a, which only affects νµ → νe probability given in Eq. (1.10). In particular,

the third term in Eq. (1.10), which contains sin δCP , is the CP violating term that flips sign

between ν and ν̄ and thus introduces CP asymmetry if sin δCP is non-zero.

To extract oscillation parameters from neutrino oscillation experiments, experimentalists

measure the event rate of reconstructed νµ/νe events as a function of some observable,

for instance the reconstructed neutrino energy. The spectrum for the appearance and

disappearance channels is then compared to Monte-Carlo (MC) simulations, in which oscillation

parameters are varied until they are in agreement with the data. It is important to note that

no single type of neutrino oscillation experiment is sensitive to all oscillation parameters

at once, and not with the same precision, but the oscillation probability depends on all

parameters at once. Because of this, the results from reactor experiments, which are more
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sensitive to θ13, or from solar neutrino experiments, that constrain better θ12 and ∆m2
21, are

often used by accelerator experiments, and in particular by long-baseline experiments, to

improve the measurements of sin2 θ23, ∆m
2
32 and δCP .

The expected event rates at the near and far detectors can be expressed as function of

the neutrino energy Eν as follows

Nnear
να (Eν) = σnear

να (Eν)ϕ
near
να (Eν) ϵ

near (Eν)

N far
νβ

(Eν) = σfar
νβ

(Eν)ϕ
far
νβ

(Eν) ϵ
far (Eν)Pνα→νβ (Eν) . (1.12)

They depend on the neutrino flux distributions ϕνα , the neutrino interaction cross-sections

with the detector σνα (how probable it is that a neutrino interacts), the detector efficiencies

ϵ (how well the detectors will be able to reconstruct the event signaling the neutrino) and,

finally, on the oscillation probability Pνα→νβ (for instance how many of the initial νµ survived

or how many νe appeared in the far detector). Since neutrinos interact weakly, the precision

on the event rate is strongly limited by statistical errors. To give some idea about how

weak the interaction is, we can imagine a neutrino traveling through a material with density

ρ ∼ 1023 atoms/cm3. Assuming an associated interaction cross section σ ∼ 10−38 cm2 for

a 1 GeV neutrino, then it would travel ∆x ∼ ρσ ∼ 1010 km before interacting, a distance

comparable to 1.5 million Earth radii or 66 times the distance between the Earth and the

Sun. Moreover, effects related to the flux, neutrino interaction cross-sections and the detector

efficiency are sources of systematic errors.

In general, for real experiments we find that near and far detectors can have different

acceptances and use different technologies and nuclear targets. Additionally, the initial

neutrino energy distribution is unknown because of the special method of producing neutrinos

as secondary decay products of hadrons that were produced in a primary nuclear reaction

between a beam of protons and a nuclear target. Therefore, the neutrino energy must be

reconstructed on an event-by-event basis from the particles present in the final state after the
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reaction of the neutrino with a nucleus assuming a nuclear model. Under these conditions,

what is measured is an averaged oscillation probability as function of the reconstructed

neutrino energy that can be expressed as

〈
Pνα→νβ (E

reco
ν )

〉
=

∫
dEνσ

far
νβ

(Eν)ϕ
far
νβ

(Eν) ϵ
far (Eν)Pνα→νβ (Eν)S (Ereco

ν |Eν)∫
dEνσnear

να (Eν)ϕnear
να (Eν) ϵnear (Eν)S (Ereco

ν |Eν)
, (1.13)

with S (Ereco
ν |Eν) a function that encodes the probability of a specific true neutrino energy

Eν to be reconstructed as Ereco
ν .

In what follows, we briefly summarize some of the past, present and future accelerator

neutrino experiments dedicated not only to the measurement of oscillation parameters, but

also to the determination of experimental neutrino-nucleus cross sections to test theoretical

interaction models which are necessary to extract oscillation parameters.

NOMAD

The Neutrino Oscillation Magnetic Detector (NOMAD) [11], that used CERN wide-band

neutrinos produced by the 450 GeV proton synchrotron, searched for νµ → ντ oscillation by

detecting τ appearance between 1995 and 1998. Its goals were to measure the momenta of

charged particles and identify and measure electrons, photons and muons. By the detector

design, which used carbon as target, it was also possible to look for νµ → νe oscillation [12].

The analysis of the full NOMAD data sample gave no evidence for ντ appearance and set

with 90% confidence level (C.L.) that the upper limit on the two-flavour νµ → ντ oscillation

probability was P (νµ → ντ ) < 2.2 × 10−4[13]. The NOMAD experiment applied

for the first time a purely kinematical approach for the detection of ντ CC interactions.

Unfortunately, oscillations were not discovered with the NOMAD experiment.
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K2K

After the success of Super-Kamiokande, that provided the first experimental evidence of

atmospheric neutrinos oscillation in 1998, the Japanese National Laboratory for High Energy

Accelerator Research Organization (KEK) to Kamiokande (K2K) experiment [14, 15] was

created with the main difference of using a well understood muon neutrino beam pointing

at the Super-Kamiokande detector at a distance of 250 km. It was the first long-baseline

neutrino oscillation experiment to observe the oscillation of νµ into ντ and found results

of squared mass difference and mixing angle that were consistent with Super-Kamiokande

results. The experiment, that ran from 1999 to 2004, used a neutrino beam with a wide

energy spectrum ranging from 1 to 1.5 GeV and produced by a 12 GeV proton synchrotron

beam interacting with an aluminum target. Since knowing the beam composition is required

for looking at νµ disappearance, a 1-kiloton water Cherenkov near detector, a smaller

version of Super-Kamiokande, was used to measure the neutrino beam spectrum. Then

this distribution was extrapolated using Monte Carlo simulated data to predict the neutrino

spectrum at Super-Kamiokande.

MINOS

The Main Injector Neutrino Oscillation Search (MINOS) was a neutrino oscillation experiment

that used a beam from Fermilab and two detectors: one placed a few hundred meters

away from the source of the neutrinos and the other 735 km away in Soudan mine in

northern Minnesota. The neutrino beam was produced in the NuMI beamline [17] with

120 GeV protons from the Main Injector. Both MINOS detectors were iron-scintillator

tracking calorimeters with toroidal magnetic fields [18] designed to be as similar as possible

to minimize any systematic errors in comparing the observed neutrino spectra in the two

detectors. The NuMI beamline could alter the neutrino energy spectrum by changing the

relative position of target and horns. Most of MINOS data were taken with the “low energy”
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Figure 1·2: First neutrino event detected in June 1999 inside the Super-Kamiokande water
Cherenkov detector due to the KEK neutrino beam. The crosses give the reconstructed
neutrino interaction vertex and the diamond marks the neutrino beam direction from the
vertex. The probability that the event came from an atmospheric neutrino interaction,
instead of from a neutrino produced at KEK, was estimated to be 0.01%. Picture taken
from [16].

configuration with the peak energy of around 3 GeV. MINOS combined accelerator and

atmospheric neutrino data taken from 2005 to 2012 in both disappearance and appearance

modes to measure oscillation parameters [19] that were consistent with K2K and Super-

Kamiokande measurements of mixing angle and squared mass difference.
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NOvA

The NOvA experiment [20, 21] uses the NuMI beamline with an off-axis configuration. The

14 kt NOvA far detector is located near Ash River, Minnesota, 810 km away from the muon

neutrinos source, and uses mineral oil as target. The neutrino energy spectrum at the far

detector has a peak around 2 GeV, the energy at which oscillation from muon neutrinos to

electron neutrinos is expected to be at a maximum for a 810 km baseline. NOvA aims to

measure disappearance νµ → νµ and appearance νµ → νe in both νµ and ν̄µ beams to extract

θ23, ∆m
2
32 and δCP parameters. The mass ordering affects the rates of νµ → νe and ν̄µ → ν̄e

oscillations when neutrinos travel through the Earth as compared to the vacuum [9]. These

matter effects are important for NOvA due to the large baseline used by the experiment.

Depending on the value of δCP and the mass ordering itself, NOvA may be able to exploit the

resulting neutrino-antineutrino asymmetry to measure the sign of ∆m2
32 and thus determine

the mass ordering.

MINERνA

The MINERνA (Main INjector ExpeRiment ν-A) experiment [22] studies neutrino-nucleus

scattering to improve models describing the process in order to reduce systematic uncertainties

in results from oscillation experiments. It measures neutrino reactions covering an energy

range from 1 to 20 GeV. The detector, shown in Fig 1·3, is placed on-axis of the NuMI

neutrino beam and it is equipped with different targets (C, CH, Fe, H2O, Pb) in order to

achieve precise measurements of the nuclear effects [23]. The high energetic muons created in

neutrino interactions are capable of escaping the MINERνA detector and entering MINOS,

located only 2 meters away from MINERνA. MINERνA uses data collected by MINOS to

identify and measure these muons.
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Figure 1·3: Side view of the MINERνA detector showing the different nuclear targets, the
fully-active tracking region and the surrounding calorimeters [22].

T2K

After the great success of K2K, the Tōkai-To-Kamioka (T2K) experiment [24, 25] started

in 2010 using a newly constructed high-intensity proton synchrotron from the Japanese

Proton Accelerator Research Complex (J-PARC) facility at Tōkai. It is the first long-baseline

experiment to employ an off-axis neutrino beam. The off-axis angle of 2.5◦ was chosen to set

the peak of neutrino energy spectrum at 0.6 GeV, matching the first maximum of oscillation

probability at the 295 km baseline for ∆m2 ≈ 2.5 × 10−3 eV2. T2K employs a set of near

detectors at about 280 m from the production target. The on-axis detector, called INGRID,

is an array of iron-scintillator sandwich trackers to monitor the beam intensity, direction and

profile. The off-axis detector, called ND280, consists of several sub-detectors inside a magnet

and is placed in the direction of far detector to measure the neutrino beam properties and

to study neutrino interactions on hydrocarbon-based or a hybrid water-hydrocarbon targets.
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An upgrade of the ND280 is outgoing right now with the aim of reducing the flux and

cross-section systematic uncertainties to establish CP violation at 3σ level for a significant

fraction of the possible δCP values [26]. The ND280 measurements are used to predict

the number of muon neutrinos that would be seen in Super-Kamiokande if there were no

oscillations. Additionally, since it is a magnetized detector, ND280 can measure the wrong

sign background in the flux, which is not possible at the far detector. Finally, it is able to

precisely reconstruct the exclusive final states of νµ and ν̄µ interactions, therefore its data is

used as one of the main inputs in the oscillation analysis in order to constrain the neutrino

flux and neutrino interaction systematic uncertainties.

In the long term, the Tōkai-To-Hyper-Kamiokande (T2HK) experiment has been proposed

as successor [27] of the current T2K program. The Hyper-K experiment is a next-generation,

large-scale water Cherenkov neutrino detector that will receive neutrinos from J-PARC

accelerator facility like T2K. Due to the large size of the Hyper-K detector (60 m in height

and 74 m in diameter) and its improved detection techniques, the long-baseline neutrino

oscillations program with the Hyper-K detector will benefit from an improved sensitivity to

neutrino oscillation parameters, inaccessible to the current T2K experiment, most notably

enabling a 5σ sensitivity to CP violation discovery for a large number of δCP values.

MiniBooNE & MicroBooNE

The Mini Booster Neutrino Experiment (MiniBooNE) collected data from 2002 up to 2012

at Fermilab using a muon neutrino beam to search for νe and ν̄e appearance in the same

parameter region as the Liquid Scintillator Neutrino Detector (LSND) [28, 29] experiment

that ran between 1993 and 1998. The Booster Neutrino Beamline (BNB) with a magnetic

horn uses a 8 GeV proton beam from the Fermilab booster to produce a neutrino (antineutrino)

beam with energy spectrum peak of 0.6 (0.4) GeV. MiniBooNE, as well as LSND, used a

single detector setup. It consisted of a 12.2 m diameter sphere filled with 818 t of mineral
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oil (CH2) located around half kilometer from the target. The MiniBooNE collaboration

reported νe and ν̄e event excess in both neutrino and antineutrino running modes. In total,

460.5 ± 99.0 excess events were observed over the expected backgrounds, corresponding to

4.7σ significance [30]. The MicroBooNE Collaboration [31], a further step into the BooNE

experiment that began in 2015, is currently operating a large Liquid Argon Time Projection

Chamber (LArTPC) that is located on the BNB at Fermilab. MicroBooNE will measure

neutrino cross sections with reconstructed neutrino energy between 200 and 475 MeV to

investigate the low energy excess events observed by the MiniBooNE experiment. The

detector also serves as a next step in a phase program towards the construction of massive

kiloton scale LArTPC detectors for future long-baseline neutrino physics (DUNE).

DUNE

DUNE [32] is a new experiment currently under construction, with the goal of discovering

CP violation in neutrinos with more than 5σ sensitivity, determining the ordering of the

neutrino masses as well as searching for neutrinos beyond the currently known three. DUNE,

which is planned to start taking data in 2030’s, will be a 1300 km long-baseline experiment

based in US with a far detector that will consist of four modules of at least 10 kt fiducial

mass LArTPC, located 1.5 km underground at the Sanford Underground Research Facility

in South Dakota, and the near detector installed in the Long-Baseline Neutrino Facility

(LBNF) at Fermilab.

1.3 Neutrino-nucleus interactions

Neutrino interaction with matter occurs via the weak and gravitational forces, the latter

being negligible due to the very small neutrino mass. The corresponding cross sections

are very small, of the order of 10−38 cm2/GeV. The type of interaction can be identified

exclusively through the particles produced after the reaction. Neutrino weak interactions can
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be classified broadly as charged-current (CC) or neutral-current (NC) processes depending

on whether a W± or a Z boson is exchanged. In the former case there is a charge exchange

and a charged lepton is emitted after the interaction, whilst the neutrino preserves its nature

in the latter one. The experimental study of NC neutrino interactions is a very demanding

task compared with CC reactions due to the difficulties of collecting data of reactions with

cross sections even smaller than those of CC processes and in which the outgoing neutrino

is not detected, therefore the event identification depends on the detection of one or more

hadrons.

A generic scheme showing the nuclear response in a neutrino-nucleus reaction for a fixed

value of the momentum transfer q as function of the energy transfer ω is shown in Fig. 1·4.

At very small momentum and energy transfer, the only available channel is the elastic one

where the neutrino probes the entire nucleus as a single coherent object that recoils intact. At

higher energies of a few MeV the neutrino can scatter the nucleus to low-lying excited nucleus

states and excite high-frequency collective states of the nucleus called giant resonances. The

region of highest interest for our work, that covers the intermediate range of energies between

hundreds of MeV up to a few GeV, starts from and is dominated by the quasielastic (QE)

scattering where a neutrino scatters off a single bound nucleon which is ejected from the

nuclear target. In the QE scattering the boson exchanged in the process is absorbed by

a single nucleon, which is knocked out, leading to one-particle-one-hole (1p1h) excitations.

However, this is only one possibility and one must also consider the coupling of the exchanged

boson to nucleons belonging to correlated pairs, commonly known as nucleon-nucleon (NN)

correlations, and to meson-exchange currents (MEC), involving two nucleons interacting

via the exchange of a virtual pion or heavier meson. Both these processes may lead to

the excitation of two-particle-two-hole (2p2h) as well as one-particle-one-hole states. With

increasing ω, the neutrino has enough energy to excite a nucleon into a resonance like ∆ or

a heavier resonance (generically denoted by N∗) depending on the energy transfer. These
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Figure 1·4: Nuclear response as function of the energy transferred to the nucleus for some
fixed value of the transferred momentum.

resonances then decay into a variety of final states with different combinations of nucleons

and mesons. At even higher values of ω, the relevant interaction channel is the deep inelastic

scattering (DIS) where the neutrino has enough energy to probe the inner structure of

nucleons and interacts with quarks.

To help reduce the statistical uncertainty of neutrino experiments it is common to use

relatively large and complex nuclei as targets, for instance accelerator neutrino experiments

often use carbon (T2K, MINERνA, NOνA), oxygen (T2K) or argon (MicroBooNE, DUNE).

Using nuclei as targets introduces an additional complexity: the particles that are produced

in neutrino interactions, for instance a nucleon ejected from the target or a pion created in
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the decay of a nuclear resonance, can interact with the nuclear medium before exiting the

residual nucleus. These interactions, known as final-state interactions (FSI), include charge

exchange, production of new particles, elastic scattering by a nucleon or absorption by the

nuclear medium. FSI can modify the identity and kinematics of the particles created in the

primary interaction vertex and limit our ability to identify which reaction channel took place

by changing the composition of the hadronic final state. Therefore experimentalists need to

rely on theoretical models that describe FSI and other nuclear effects to know which channel

was the true interaction mode at the interaction vertex and reconstruct the unknown initial

neutrino energy. Since the primary neutrino-nucleon interaction can be determined only in

a model-dependent way, neutrino-nucleus data samples are usually presented by topologies,

i .e., a specific combination of particles detected in the final state, rather than theoretical

interaction modes. This definition used by experimentalists, while in some sense unavoidable,

requires a very accurate theoretical input. For instance, a commonly used topology like CC0π

defined by one muon, no pions and any number of protons in the final state is populated

by multiple reaction channels like QE scattering, 2p2h and pion production followed by

absorption in the nuclear medium. All these reaction channels can produce a final state

compatible with the CC0π signal definition, consequently they all need to be considered and

modeled from a theoretical point of view. Because of the special way to produce neutrinos in

accelerator-based experiments, measurements of differential neutrino-nucleus cross sections

are commonly presented as function of direct observables like muon or proton kinematics,

making necessary to integrate the theoretical cross sections over the specific neutrino flux of

the experiment and include all the relevant processes to compare with experimental results.

Previously, we have mentioned that the oscillation probability depends on the neutrino

energy. However, the initial neutrino energy is unknown, therefore it has to be reconstructed

from final-state particles that are detected. Two different reconstruction methods are typically

used in modern accelerator neutrino experiments:
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� Kinematic method: this method is extensively used by low-energy experiments like

T2K or MiniBooNE. In the case of T2K, Super-Kamiokande is a water Cherenkov

detector, hence protons with energy below ∼ 1.5 GeV and neutrons are invisible.

Because of this, the neutrino energy needs to be reconstructed using only lepton

kinematics. Since the dominant interaction channel for low-energy neutrino experiments

like T2K (the neutrino energy distribution peaks at 0.6 GeV) is charged-current quasielastic

(CCQE) scattering, the neutrino energy is usually reconstructed from the final lepton

kinematics using the following expression

Ereco
ν =

m2
p −m2

l + 2El (mn − Eb)− (mn − Eb)
2

2 (mn − Eb − El + k′ cos θl)
, (1.14)

wheremn, ml andmp are the masses of the neutron, detected lepton (electron or muon)

and proton involved in the interaction, El, k
′ and θl are the detected lepton energy,

momentum and scattering angle, and Eb is the binding or removal energy, defined as the

energy necessary to remove one bound nucleon from a nucleus. Notice that Eq. (1.14)

has been obtained under the assumptions that the initial single nucleon that interacts

with the neutrino is at rest and bound with some fixed biding energy Eb and that the

interaction is a true CCQE event. This is a crude approximation, since in fact nucleons

inside the nucleus are hardly at rest but in constant movement (known as Fermi motion)

and, as discussed above, not only the CCQE channel contributes to the CC0π topology

but non-CCQE processes, such as pion production and reabsorption and 2p2h, are

also relevant. Those effects can lead to misidentification of the number of CCQE

events registered in the detectors and introduce a bias in the reconstructed neutrino

energy if Eq. (1.14) is used [33, 34], therefore it is essential for the analysis of neutrino

oscillation data to model correctly all those effects. A historical example of why non-

CCQE channels need to be taken into account came from the first MiniBooNE CCQE-

like (CC0π with pion absorption subtracted) measurements of neutrinos interactions
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on 12C [35, 36] where a disagreement between the experimental measurements and

theoretical CCQE predictions, that underestimated the data, was found. The discrepancy

was prematurely explained by increasing the value of the nucleon axial mass, which is

a parameter that appears in the axial nucleon form factor of the nuclear current, to

∼ 1.35 GeV, in conflict with the previous established value of 1.03 GeV from bubble

chamber experiments [37, 38, 39] and NOMAD measurements [40]. This conflict was

solved first by Martini et al. [41, 42, 43] who pointed out that 2p2h excitations with

RPA corrections could explain the experimental discrepancies without increasing the

value of the axial mass. MiniBooNE overestimation of the theoretical models was also

explained by Amaro et al. [44, 45] and Nieves et al. [46] following a similar approach

of including 2p2h excitations.

� Calorimetric method: some neutrino detectors like liquid scintillator, magnetized iron

detectors, or LArTPC may be able to collect the majority of the calorimetric deposition

in a neutrino event and be sensitive to the hadronic part of the interaction [47].

Assuming the typical CC0π signal definition with one lepton and exactly one proton

detected in the final state, the calorimetric energy Ecal can be used as a measurement

of the initial neutrino energy using the conservation of the total energy

Ereco
ν ≈ Ecal = El + TN + ϵ, (1.15)

with TN the kinetic energy of the ejected proton and ϵ the average nucleon separation

energy. This reconstruction method is not free from systematic uncertainties since

multi-nucleon interactions, FSI and pion absorption take away some of the initial

energy of the neutrino. Furthermore, neutrons typically escape detection. A recent

study [48] has shown that using the calorimetric reconstruction method, which depends

on the detection of both a lepton and an ejected proton, improves the reconstructed
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energy resolution and the sensitivity to possible bias in the removal energy estimation

compared with the kinematic method, that requires only the detection of the lepton.

Note however that his analysis has been performed neglecting in the calorimetric

method the nuclear removal energy and the loss of energy due to nuclear FSI.
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Chapter 2

General semi-inclusive neutrino-nucleus

scattering formalism

As discussed in Secs. 1.2 and 1.3, accelerator neutrino experiments use large amount of

target material to increase the probability of interaction of the incoming neutrinos. The

targets commonly used by the experimental collaborations are hydrocarbons and water

hence neutrinos (or antineutrinos) typically interact with hydrogen, carbon or oxygen nuclei.

However, other heavier nuclei such as iron or argon are also used. In particular, argon

is used in many present programs, like MicroBooNE, and future experiments, including

DUNE, which employ LArTPC detectors. In order to extract the oscillation parameters it is

necessary to reconstruct the incident neutrino energy from the reaction products because the

neutrino production mechanism typically results in neutrino beams with a very broad flux

distribution (for instance see Fig. 2·4). Moreover, this reconstruction method requires basic

understanding of nuclear reactions and the nuclear structure of the target nucleus. With the

aim of increasing the number of events that are detected, experimental collaborations usually

measure inclusive CC or CC0π cross sections where only a final-state charged lepton (i.e.

an electron or a muon) is detected in presence or not of pions in the final state, respectively.

Since these inclusive cross sections are completely integrated over the hadronic degrees of

freedom, they are relatively insensitive to the model chosen for the description of the nuclear

state. This means that simple models of the nucleus can provide CC inclusive cross section

results that are not very different from those found in more elaborated models [49, 50, 51,
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52]. However, comparison with these neutrino scattering data is not sufficient to test the

validity of the different models. The wide nature of the neutrino beam makes the separation

of true QE events from contributions of other elemental processes a very complicated task

and the cross section uncertainties are usually too large to discriminate between different

nuclear models. Therefore, it is important to compare the different model predictions to

the much more accurate electron scattering data for which the incoming electron energy

is known. The connection between electron and neutrino scattering has been analyzed in

the past (see [53] and references therein) and it is commonly accepted within the neutrino

community that any nuclear model that aims to describe the neutrino-nucleus interaction for

oscillation experiments must be first validated against electron scattering data. In addition,

in the last years a number of cross section measurements have been performed by different

neutrino collaborations where not only the final charged lepton is detected but also some

hadron as well. This is driven by the goal of constraining the incident neutrino energy much

better compared with the case where only the final charged lepton is detected. One of these

reactions corresponds to the interaction of an incoming neutrino with a bound neutron of

the target nucleus and the detection in coincidence of a charged lepton and a proton in the

final state. This reaction, which will be the focus of this thesis, is not an inclusive one but a

semi-inclusive reaction [49, 50, 51, 54]. Although the theoretical description of semi-inclusive

reactions is more complicated than modeling inclusive processes, the richer structure of the

cross sections allows one to better discriminate between different nuclear models and improve

the reconstruction of the neutrino energy.

In this chapter, the focus will be in the theoretical description of the semi-inclusive CC

neutrino-nucleus reaction where a charged lepton and an ejected nucleon are detected in the

final state. We will start by describing in general the kinematics of the reaction and later

the analytic expressions of the semi-inclusive CC cross section in the plane-wave impulse

approximation for different models of the initial nuclear state will be given.
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2.1 Semi-inclusive neutrino-nucleus kinematics

The general semi-inclusive CC neutrino1-nucleus reaction [54], schematically shown in Fig. 2·1,

involves an incident neutrino Kµ = (ϵ,k) that interacts with a target nucleus P µ
A = (MA, 0),

considered at rest in the laboratory system with rest mass MA, by exchanging energy ω and

momentum q via an intermediate boson Qµ = (ω,q). We assume that the final state is

composed by a charged lepton K ′µ = (El,k
′), an ejected nucleon P µ

N = (EN ,pN) and the

residual nucleus P µ
A−1 = (EA−1,pA−1). Generally, the residual nucleus could be in its ground

state or in some discrete excited state with invariant mass WA−1. Given that the energies

involved in the typical accelerator neutrino experiments are of the order of GeV, in this

chapter the treatment of the kinematics, and later of the nuclear models, will be completely

relativistic. The energy and momentum conservation in the hadronic vertex yields

MA + ω = EN + EA−1

pA−1 = q− pN = −pm, (2.1)

1This thesis is focused in neutrino-nucleus semi inclusive cross sections. Of course the formalism is also
valid for reactions with antineutrinos. However there is not semi-inclusive antineutrino-nucleus experimental
data available at the time of writing because the additional difficulty of detecting neutrons in the final state.

Q

k

k′

PA

pN

PA−1

Figure 2·1: Schematic representation of the reaction A(ν, l N)A-1 in the Born
approximation, i .e. one boson exchange.
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where we have defined the missing momentum pm as minus the momentum of the residual

nucleus, hence the total energy of the residual nucleus can be expressed asEA−1 =
√
p2m +W 2

A−1.

It is convenient to introduce a variable that measures the degree of internal excitation of the

residual nucleus. The excitation energy of the residual nucleus E is defined as

E = EA−1 − E0
A−1 =

√
p2m +W 2

A−1 −
√
p2m +M2

A−1 ≥ 0 (2.2)

with MA−1 the rest mass of the residual nucleus. We can also define the so-called missing

energy Em as

Em = WA−1 +mN −MA (2.3)

and easily relate it with the excitation energy E in the limit pm << MA−1

Em = E + Es, (2.4)

where Es =MA−1+mN−MA is the separation energy, namely the minimum energy necessary

to remove a nucleon from a nucleus A. Using the conservation of energy and momentum in

Eq. (2.1) and the definition of E we have

E =MA−1 − Es +mN + ω −
√
m2

N + p2m + q2 + 2pmq cos θ −
√
p2m +M2

A−1, (2.5)

with θ the angle between the missing and transfer momenta. This relation, for some fixed

values of q and ω, gives a curve E (pm) for each value of θ. Since the value of θ is limited to the

range −1 ≤ cos θ ≤ 1, not all the plane (E , pm) is accessible and the maximum and minimum

values of pm that are allowed will depend on the specific state of the residual nucleus, q and

ω [55, 56]. The advantage of using (E , pm) or (Em, pm) as dynamic variables of the process,

in addition to q and ω, instead of experimental-accessible variables like the ejected proton
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momentum and polar angle respect to the neutrino beam is that these variables are more

appropriate to describe the nuclear dynamics. The most relevant contributions of the semi-

inclusive cross section are localized at relatively small values of E , where one typically finds

distributions as functions of pm that reflect the shell structure of the target nucleus. For

instance, in a simple shell model of the nucleus one sees features that reflect the knockout

of nucleons from the valence shell, the next-to-valence shell and so on. These momentum

distributions fall relatively fast with increasing pm. Nevertheless for the analysis of exclusive

(e, e′p) measurements these simple models have been proven not to be adequate and one

requires overall suppression of these momentum distributions by factors of typically 30% via

the so-called spectroscopic factors [57]. Additionally, from past (e, e′p) studies one knows

that part of this missing strength is moved to higher values of E , partially through nuclear

interactions that make both initial and final nuclear states more complex than the simple

shell model. For instance, the NN interaction has both long- and short-range contributions,

and especially the latter can promote strength to higher values of E and pm [57, 58]. Around

20%−30% of the strength is known to occupy this high E and pm region, although the actual

contributions are not very well determined.

2.2 Plane-wave impulse approximation

In the previous section we have described in a generic way the semi-inclusive CC neutrino-

nucleus reaction and its kinematics. However due to the complexity of the interaction of the

exchanged boson with a many-body system, i .e. the initial nucleus, we will make use of the

impulse approximation (IA), only valid for high values of q, to describe the hadronic vertex.

In the IA, the boson exchanged in the process is absorbed by a single bound nucleon of

the initial nucleus, therefore the hadronic current is constructed only by one-body operators

and two-body currents are not considered. If one neglects FSI, the nucleon ejected from

the nucleus and detected in the final state is the one that interacted directly with the
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Figure 2·2: Semi-inclusive neutrino-nucleus interaction in the IA.

exchanged boson, while the rest of the nucleons inside the nucleus participate in the reaction

as spectators. The semi-inclusive reaction in this approximation is schematically represented

in Fig. 2·2 and two new variables are introduced, the momentum p and energy E of the bound

nucleon, which can be related with the rest through conservation

E = EN − ω =MA − EA−1

p = pN − q = pm. (2.6)

Notice that the momentum of the bound nucleon is equal to the missing momentum and,

since a nucleon bound inside a nucleus is off-shell, in general its energy and momentum are not

related through the usual on-shell relativistic expression of the energy: E ̸= E =
√
p2m +m2

N .

Regarding the description of the ejected nucleon, to start we assume a further simplification

by considering the ejected nucleon as a plane-wave, i .e., the distortion caused by the residual

nucleus is neglected. This corresponds to the plane-wave impulse approximation (PWIA)

and allows us to greatly simplify the description of the hadronic vertex by factorizing the

nuclear hadronic tensor Hµν in the product of two objects. On of them is the single-nucleon

hadronic tensor Wµν that is constructed by considering that the neutrino interacts with a

single off-shell nucleon described by Dirac spinors with positive energy. And the other is

the so-called spectral function S (pm, Em) that depends on the specific nuclear model used
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to describe the initial nuclear state and is defined as the probability of finding a nucleon in

the initial nucleus with energy Em and momentum pm compatible with the kinematics of

the process. This exact factorization can also be found in the analysis of exclusive (e, e′p)

processes [59] under similar approximations. Although PWIA is a severe oversimplification

of the semi-inclusive neutrino-nucleus scattering and will certainly fail to describe precisely

the experimental data, this approximation allow us to get an analytic expression of the

hadronic tensor for some simple nuclear models and reduce the numerical complexity of

the calculation for more realistic nuclear models. Hence PWIA calculations will allow us

later to check the impact on the semi-inclusive cross section of the different models of the

initial nuclear state without complications introduced by FSI, that will be included in a

fully quantum and relativistic fashion in later chapters when the comparison with data from

different accelerator neutrino experiments is presented.

Since in accelerator-based neutrino experiments the direction of the neutrino is known,

we will work in a coordinate system where the neutrino direction is fixed along the z-axis

as shown in Fig. 2·3. The sixth-differential CC neutrino-nucleus cross section as function of

the neutrino energy and the detected lepton and nucleon kinematics is given by [49, 54]

dσ

dk′dΩk′dpNdΩ
L
N

=
(GF cos θck

′pN)
2mN

8kε′EN(2π)6

∞∫
0

dE
∫
d3pmυ0F2

χS
(
pm, Em(E , pm)

)
×δ(MA + k − ε′ − EN −

√
p2m +M2

A−1 − E)δ(k− k′ − pN + pm) (2.7)

with the final lepton and nucleon solid angles Ωk′ = (θl, ϕl) and ΩL
N =

(
θLN , ϕ

L
N

)
, GF and θc the

Fermi constant and the Cabibbo angle respectively, F2
χ = 2

υ0
LµνWµν the Lorentz invariant

resulting from the contraction of the leptonic tensor Lµν and the single-nucleon hadronic

tensor Wµν , υ0 = (k + El)
2 − q2 a kinematical factor and S (pm, Em) the spectral function.

The two δ−functions guarantee the energy and momentum conservation (see Eq. (2.1)).

Notice that in Eq. (2.7) an integration over unmeasured quantities related with the residual
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nucleus is done and that, as pointed out before, in the PWIA there is a clear factorization

of the cross section into a part that describes the elementary neutrino-nucleon interaction,

contained in F2
χ, and the spectral function S (pm, Em), that depends on the nuclear model

used for the description of the initial state. The single-nucleon hadronic tensor Wµν in

PWIA can be constructed supposing that the initial and final nucleons are described by free

positive-energy Dirac spinors. The detailed calculation of Wµν can be found in Appendix A.

Additionally, in Appendix B we provide the analytic expression of F2
χ and the nuclear

responses it depends on. The spectral function S (Em, pm) in Eq. (2.7) can be related to

the nuclear momentum distribution n (pm) using its definition

n (pm) =

∞∫
0

dEmS (Em, pm) , (2.8)

Scattering
plane

Reaction plane z

x

y

x

x′
k

pN

k′

θl

θLN

φL
N

Figure 2·3: Definition of the coordinate system where the direction of the incoming neutrino
k is fixed along the z-axis. The leptons are contained in the denominated scattering plane,
while the ejected nucleon with momentum pN and polar angle with respect to the neutrino
direction θLN is contained in the so-called reaction plane, which forms an angle ϕL

N with the
scattering plane.
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and taking into account that the momentum distribution is normalized as follows

N =
1

(2π)3

∞∫
0

dpmp
2
mn (pm) (2.9)

with N the number of nucleons that participate in the scattering. In our case, since we will

focus in the analysis of CCν reactions, this is the number of neutrons in the target nucleus.

The Eq. (2.7) depends on the kinematics of the final lepton and nucleon detected and

assumes that the neutrino energy k is known, hence ω and q are also known and fixed.

However, to compare theoretical semi-inclusive predictions with experimental measurements

it is necessary to take into account that in accelerator-based neutrino experiments the

neutrino beam does not have a well-defined energy. In Fig. 2·4 we show νµ flux predictions for

different neutrino experiments, which can be separated in low-energy, i .e. T2K, MiniBooNE,

or NINJA, and high-energy, i .e. MINERνA or DUNE, experiments. As a consequence of

these broad neutrino fluxes, one needs to integrate the cross section over all the possible

energies weighted by the normalized experimental neutrino flux P (k) in order to compare

with the experimental data. Using the energy and momentum conservation to integrate over

E and pm in Eq. (2.7), the flux-averaged semi-inclusive cross section can be expressed as

〈
dσ

dk′dΩk′dpNdΩ
L
N

〉
=

(GF cos θck
′pN)

2mN

8ε′EN(2π)6

∞∫
0

dk
P (k)

k
υ0F2

χS
(
pm, Em(E , pm)

)
, (2.10)

where

pm =
∣∣k′+pN − k

∣∣,
E =MA + k − El−EN −

√
p2m +MA−1

≈ k − El−EN +mN − Es, (2.11)
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Figure 2·4: νµ flux predictions of different neutrino experiments normalized to arbitrary
units. The mean neutrino energy (in GeV) for each experiment is given in brackets.

are fixed by conservation. The last ingredient necessary to fully characterize the flux-averaged

semi-inclusive neutrino-nucleus cross section in PWIA given in Eq. (2.10) is the spectral

function S (Em, pm) which incorporates all the initial nuclear state dynamics of the reaction.

In the next section, we discuss different nuclear models spanning from the most simple one,

where the nucleons do not interact, to more realistic models of nuclear structure that include

spectroscopic factors, shell structure and depletion of energy levels due to NN correlations.

2.3 Nuclear models

2.3.1 Relativistic Fermi Gas model

The Relativistic Fermi Gas (RFG) model is the simplest nuclear model, but it is fully

relativistic. In this model the nucleus is described as an infinite gas of non-interacting on-

shell nucleons. In its ground state, all the single-particle levels are occupied by the nucleons

up to the Fermi momentum kF , while all the states above kF are empty. The separation
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energy of the RFG model is given [60]

ERFG
s = −TF = −EF +mN , (2.12)

with EF =
√
k2F +m2

N the Fermi energy and TF the corresponding kinetic energy. The

separation energy defined above is nonphysical because it is negative, however one can shift

the RFG energies by a constant to move the top of the Fermi sea, i .e. the occupied Fermi

level, to coincide with a separation energy −Es [49]. This is equivalent to breaking the

on-shell condition of the RFG nucleons by modifying their energies as follows

E =
√
p2m +m2

N → E − (EF + Es) . (2.13)

Considering that the intermediate boson transfers an energy ω to an off-shell nucleon within

the Fermi sea which is knocked out of the nucleus with energy
√
p2N +m2

N , then the energy

conservation dictates

ω + E − EF − Es =
√
p2N +m2

N −mN . (2.14)

Taking the limit pm << MA−1 in Eq. (2.5) allow us to identify E = EF −
√
p2m +m2

N for

the RFG model which, since 0 ≤ pm ≤ kF , is non-negative as it should be. Within the RFG

model, it is possible to construct the full A−body, covariant, antisymmetrized wave function

that describes the ground state of the target nucleus, and the same goes for the residual

nucleus left after removing a nucleon. Hence one can evaluate the matrix elements necessary

to compute the spectral function of the RFG model that yields [49, 60]

SRFG (pm, E) =
3 (2π)3N

k3F
θ (kF − pm) δ

(
E − EF +

√
p2m +m2

N

)
, (2.15)
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where the step function θ (kF − pm) is one for zero or positive arguments and zero for negative

arguments, therefore in this case it ensures that the Fermi condition pm ≤ kF is satisfied.

Using the relation between the spectral function and the momentum distribution given in

Eq. (2.8), it is trivial to prove that the momentum distribution of the RFG model is

nRFG (pm) =
3 (2π)3N

k3F
θ (kF − pm) , (2.16)

which is a constant up to pm = kF and then drops to zero. Once known the expression of the

spectral function of the RFG model, we can insert Eq. (2.15) into Eq. (2.7), and calculate

the flux-averaged semi-inclusive cross section for the RFG model that yields

〈
dσ

dk′dΩk′dpNdΩL
N

〉
=
3N (GF cos θcmNk

′pN)
2

8(2πkF )3ε′EN

∞∫
0

dk
P (k)

k

υ0F2
χ√

p2m +m2
N

×δ
(
ω − Es − TF−

√
p2N +m2

N +
√
p2m +m2

N

)
θ(kF − pm)θ(pN − kF ) , (2.17)

where the relativistic factormN/E [49] and the θ-function θ (pN − kF ) that imposes the Pauli

principle, i .e. since all the states below kF are occupied the ejected nucleon momentum must

be necessarily bigger or equal than kF , have been included. Defining the following variables

pB = k′ + pN , (2.18)

EB = El + Es + TF + EN , (2.19)

the delta function can be recast into

δ

(
k − EB +

√
(pB − k)2 +m2

N

)
=

√
(pB − k)2 +m2

N

EB − pB cos θB
δ(k − k0) (2.20)
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with

k0 =
E2

B − p2B −m2
N

2
(
EB − pB cos θB

) , (2.21)

cos θB =
k′ cos θl + pN cos θLN

pB
. (2.22)

Then the flux-averaged semi-inclusive cross section of the RFG model is reduced to

〈
dσ

dk′dΩk′dpNdΩL
N

〉
=

3N (GF cos θcmNk
′pN)

2

8(2πkF )3ε′EN

P (k0)

k0

υ0F2
χ

EB − pB cos θB
θ(kF − pm)θ(pN − kF )

(2.23)

with the missing momentum pm fixed by momentum conservation

p2m = k20 − 2k′k0 cos θl + k′2 + p2N − 2k0pN cos θLN + 2k′pN(cos θl cos θ
L
N + sin θl sin θ

L
N cosϕL

N).

(2.24)

2.3.2 Independent-particle shell model

In the independent-particle shell model (IPSM) the nucleons inside the target nucleus occupy

discrete energy states that are eigenvalues of a spherically symmetrical potential. The

specific choice of potential could vary from a simple harmonic oscillator up to a complicated

microscopic potential with realistic NN interactions. In our case, we consider a fully relativistic

framework, and describe the bound nucleons as solutions of the Dirac equation with scalar

and vector potentials that are given by the relativistic mean field (RMF) approach [61, 62,

63]. This completely relativistic description of finite nuclei, that relies on the mean-field

approximation which is only valid for high nuclear densities, is expanded in more detail in

Appendix C. The general relativistic wave function solution of the Dirac equation with the
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scalar S (r) = gσσ (r) and vector V (r) = gωω
0(r) + gρτ3ρ

0
3(r) + eA0(r) potentials is

Ψ(r) =

 gκ(r)Φ
µ
κ(r̂)

ifκ(r)Φ
µ
−κ(r̂)

 (2.25)

with

Φµ
κ(r̂) =

∑
mm′

< lm
1

2
m′ | j µ > Y m

l (r̂)χm′ , (2.26)

j = |κ| − 1/2, l = κ if κ > 0 and l = −κ − 1 if κ < 0, m and m′ are the projections of

the angular momentum l and the spin s = 1/2, respectively, χm′ is a Pauli spinor of two

components, and the radial functions gκ(r) and fκ(r) satisfy the following coupled differential

equations

dfκ
dr

=
κ− 1

r
fκ − [E −mN − S(r)− V (r)] gκ

dgκ
dr

= −κ+ 1

r
gκ + [E +mN + S(r)− V (r)] fκ. (2.27)

The relativistic wave function of a bound nucleon in momentum space can be related using

the Fourier transform with the equivalent in coordinate space and is given by

Ψµb
κb
(p) =

1

(2π)3/2

∫
dre−ip·rΨµb

κb
(r) = (−i)lb

 gκb
(p)

Sκb
fκb

(p)σ·p
p

Φµb
κb
(p̂), (2.28)

where Sκb
= κb/|κb| and Φµb

κb
(p̂) is defined as in Eq. (2.26) and satisfies the relation

Φµb
−κb

(p̂) = −σ · p
p

Φµb
κb
(p̂) (2.29)
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with σ a row vector containing the Pauli matrices. Finally, the radial functions gκb
and fκb

in momentum space can be obtained from the respective functions in coordinate space

gκb
(p) =

√
2

π

∞∫
0

drr2gκb
(r)jlb(pr)

fκb
(p) =

√
2

π

∞∫
0

drr2fκb
(r)jlb(pr) (2.30)

with jlb the Riccati-Bessel functions and lb = κb − 1 if κb > 0 and lb = |κb| if κb < 0. The

normalization of the relativistic wave functions in either space is imposed by the condition

∫
dr r2

(
g2κb

(r) + f 2
κb
(r)

)
=

∫
dp p2

(
g2κb

(p) + f 2
κb
(p)

)
= 1. (2.31)

Since the full relativistic wave function describing the bound nucleon has components that

are coupled not only to the free positive-energy Dirac spinors u(p, s) but also to the free

negative-energy ones v(p, s), the one-body hadronic current constructed with Eq. (2.28)

describing the initial nucleon and a free positive-energy Dirac spinor u(pN , s
′) describing the

ejected nucleon will yield the corresponding hadronic tensor in the relativistic plane-wave

impulse approximation (RPWIA). To recover the PWIA, one needs to drop the contributions

coming from the negative-energy spinors by using the positive-energy projector. In this way,

it can be shown [59] that the momentum distribution associated only to the positive-energy

projection of the full relativistic wave function is

n (p) =
E +mN

8πmN

∣∣ακb
(p)

∣∣2 (2.32)

where

ακb
(p) = gκb

(p)− p

E +mN

Sκb
fκb

(p). (2.33)
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Assuming that the discrete states occupied by the nucleons, commonly known as shells, are

characterized by the usual quantum numbers n, l, j with an associated bound energy −Enlj,

the spectral function will be given simply by

SIPSM (pm, E) =
∑
n,l,j

(2j + 1)nnlj (pm) δ (E + Es − Enlj) , (2.34)

where nnlj(pm) is the positive-energy RMF momentum distribution given in Eq. (2.32),

the sum is extended to all the occupied shells (n, l, j), i.e.,
∑

j(2j + 1) = N , and the

energy conservation states E = Enlj − Es; hence the separation energy in the IPSM is the

energy of the highest shell. Lastly, one can notice that the normalization of the relativistic

wave function in Eq. (2.31) is broken when the negative-energy components are dropped to

construct the positive-energy momentum distribution in Eq. (2.32). However, the overall

contribution of the negative-energy component and its interference term with the positive-

energy component is rather small (2%− 3%) [59] and in our case a renormalization of

Eq. (2.32) is performed to compensate the lack of negative-energy contributions and also

to satisfy the normalization adopted in Eq. (2.9). Introducing Eq. (2.34) into Eq. (2.10) one

can get the flux-averaged semi-inclusive cross section for the IPSM

〈
dσ

dk′dΩk′dpNdΩL
N

〉
=

(GF cos θck
′pN)

2mN

8(2π)6ε′EN

∑
n,l,j

(2j + 1)
P (knlj)

knlj
υ0F2

χnnlj(pm), (2.35)

where the neutrino energy

knlj = El + EN −mN + Enlj (2.36)

and the missing momentum

p2m = k20nlj + k′2 + p2N − 2k0nljk
′ cos θl − 2k0nljpN cos θLN

+ 2k′pN(cos θl cos θ
L
N + sin θl sin θ

L
N cosϕL

N) (2.37)
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are fixed by energy conservation.

2.3.3 Natural orbitals shell model

The Natural orbitals (NO) shell model is presented as an extension of the IPSM specially

constructed to create a realistic spectral function that leads to a good agreement with the

scaling function extracted from the analysis of inclusive electron-nucleus scattering data [64,

65]. The model starts from the simple IPSM spectral function given in Eq. (2.34), which can

be rewrite as

SIPSM(pm, E) =
∑
i

(2ji + 1)ni(pm)δ (E − Ei) , (2.38)

where the sum i runs up to the last shell occupied with eigenvalue Ei. Then, effects beyond

the mean field approximation are included by replacing the δ-function in Eq. (2.38) by a

function with finite width in energy like a Lorentzian function

LΓi
(E − Ei) =

1

2π

Γi

(E − Ei)2 + (Γi/2)2
, (2.39)

where Γi is the width of the i single-particle state, and by using single-particle wave functions

that diagonalize the one-body density matrix [66]

ρ(r, r′) =
∑
a

Naψ
∗
a(r)ψa(r

′). (2.40)

The NO single-particle wave functions in Eq. (2.40), that include short-range NN correlations,

are used to obtain the natural occupation numbers Nα and the wave functions in momentum

space, i .e., the momentum distributions. The NO spectral function is then given by [67]

SNO(pm, E) =
1

2πA

∑
i

(2ji + 1)Ni

∣∣ψi(pm)
∣∣2LΓi

(E − Ei) , (2.41)
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where the single-particle NO momentum distributions
∣∣ψi(p)

∣∣2 are normalized according to

Eq. (2.9). The flux-averaged semi-inclusive cross section associated to this model is

〈
dσ

dk′dΩk′dpNdΩL
N

〉
=

∫
dE (GF cos θck

′pN)
2mNP (k)

8kε′EN(2π)7A

×
∑
i

(2ji + 1)Ni|ψi(pm)|2LΓi
(E − Ei)υ0F2

χ , (2.42)

where the neutrino and missing momenta are fixed by conservation

k = Es + EN + El −mN + E ,

p2m = k2 + k′2 + p2N − 2kk′ cos θl − 2kpN cos θLN2k
′pN(cos θl cos θ

L
N + sin θl sin θ

L
N cosϕL

N) .

(2.43)

Notice that in the NO model, the substitution of the δ-function by LΓi
(E − Ei) in Eq. (2.41)

does not allow us to solve the integral over E analytically, like for the previous nuclear models,

hence the integral has to be performed numerically.

2.3.4 Rome spectral function model

One of the most realistic and complete descriptions of nuclear targets commonly used in

accelerator-neutrino experiments is given by the so-called Rome spectral function model [58,

68], usually referred just as Rome or spectral function (SF) model within the neutrino

community. In the SF model, the nuclear spectral function is split in two parts

SRome (pm, Em) = SSP (pm, Em) + Scorr (pm, Em) , (2.44)

the single-particle contribution SSP (pm, Em) that gives the bulk contribution to the spectral

function for missing energies up to ∼ 40 MeV and missing momenta up to ∼ 250 −

300 MeV and the correlated contribution Scorr (pm, Em). This correlated part shows a
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widespread background extending up to large values of both Em and pm. This is in contrast

to SSP (pm, Em), which has a tail that is typically extended just above the Fermi level and

is sharply peaked in Em around the bound energy values of the single-particle states in the

nuclear shell model. The correlated part of the spectral function arises from contributions of

configurations having pairs of strongly correlated nucleons, which are mostly sensitive to the

short-range NN interaction. Since it is expected that the correlated part of the spectral is only

mildly affected by finite-size effects, this part is extracted from a calculation in nuclear matter

which is recalculated for finite nuclei employing the local-density approximation (LDA) [68].

The SF model employs (e, e′p) experimental data (e.g. Saclay [69] for 16O) to parametrize

SSP (pm, Em) in the following way

SSP (pm, Em) =
∑
n

Zn

∣∣ϕn(pm)
∣∣2Fn (Em − En) , (2.45)

where ϕn(pm) is the wave function describing the single-particle states in momentum space,

which is usually fitted to experimental data with Woods-Saxon wave functions, Fn(Em−En)

is the width of the single-particle states (e.g. Lorentzian- or Gaussian-shaped function) and

Zn is the spectroscopic factor that gives the normalization of the n shell. From the analysis

of (e, e′p) data it has been shown that Zn < 1 and that the single-particle part of the spectral

function accounts for 70− 80% of the total normalization, while the remaining 20− 30% is

associated to the correlated part. The 12C and 16O spectral functions calculated using this

approach are shown in Fig. 2·5 and the flux-averaged semi-inclusive cross section associated

to this model is obtained by simply introducing Eq. (2.44) in Eq. (2.10)

〈
dσ

dk′dΩk′dpNdΩ
L
N

〉
=

(GF cos θck
′pN)

2mN

8ε′EN(2π)6

∞∫
0

dk
P (k)

k
υ0F2

χSRome (pm, Em) . (2.46)

To see more clearly the differences between the nuclear models, Fig. 2·6 shows the

momentum distribution n(pm) of
12C for all the models described in this section. As already
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Figure 2·5: 3-D plot of the carbon (left) and oxygen (right) spectral functions calculated
using the Rome approach [58, 68], i .e. the single-particle contribution extracted from the
analysis of (e, e′p) experimental data and using the LDA for the correlated part.

mentioned above, the RFG momentum distribution is constant up to kF and then drops

to zero, whereas the other models display a more complex shape characterized by tails

that extend beyond kF . Also it can be seen that the NN correlations included in the

Rome momentum distribution significantly increase the strength of the distribution for large

values of pm. This effect is observed also for the NO model when it is compared to IPSM

distribution, although this additional contribution is smaller than in the Rome case.

2.4 Semi-inclusive neutrino-nucleus cross section in PWIA

In the previous sections the flux-averaged semi-inclusive neutrino-nucleus cross section in

PWIA for different models of the initial nuclear state was introduced. Since we are trying to

understand the differences between the models, in what follows we show semi-inclusive cross

sections for some specific kinematics where the dependence of the momentum distribution

on the missing momentum is particularly relevant.

We begin considering the CC νµ semi-inclusive cross sections for IPSM and RFG model
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Figure 2·6: Momentum distribution n(pm) calculated by integrating the spectral function
of different nuclear models of 12C. The value of the Fermi momentum for 12C is kF = 0.228
GeV and the individual shells that are included in the IPSM are shown separately. The
distributions are shown in linear (left) and semi-logarithmic (right) scales to expose the
differences between the models in the low- and high-missing momentum zones.

with muon momentum k′ = 1.5 GeV, muon scattering angle θl = 30◦ and two different

values for the final proton azimuthal angle, namely ϕL
N = 180◦ and ϕL

N = 165◦, as function

of the ejected proton momentum pN and the angle θLN . We consider 40Ar as the target and

use the neutrino flux corresponding to DUNE. Results for the RFG model are presented in

Fig. 2·7 using kF = 0.241 GeV for two different points of view, namely “side” (top panels)

and “hawk” (bottom) views. The graphs on the left correspond to ϕL
N = 180◦, while the

ones on the right to ϕL
N = 165◦. In both cases the shape of the cross section is simple being

only different from zero in a very well-defined area given by the Fermi condition pm ≤ kF .

Notably, compared to the ϕL
N = 180◦ scenario, the region where the cross section exists is

significantly reduced when ϕL
N = 165◦. In the latter kinematics, only a few points in the (pN ,

θLN) plane satisfy the condition that the corresponding missing momentum, as defined in

Eq. (2.24), is smaller than kF . Fig. 2·8 shows the semi-inclusive cross sections for the IPSM.

For ϕL
N = 180◦ (left panels), the shape is more complex compared to the RFG model. The

contour appears more diffuse, and the maximum is approximately positioned at the center
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Figure 2·7: Semi-inclusive cross section for 40Ar and DUNE flux with k′ = 1.5 GeV, θl =
30◦, ϕL

N = 180◦ (left panels) and ϕL
N = 165◦ (right panels) using the RFG model.

of the existing cross-section region. However, its distribution clearly differs from the results

observed for ϕL
N = 165◦ (right panels). Here, the cross section displays a symmetric shape

with a well-defined maximum at the center of the projected contour. As one moves away

from the center, the magnitude uniformly decreases in all directions. It is noteworthy that

the maximum value of the cross section decreases by approximately ∼ 70% when ϕL
N = 165◦,

in contrast to the corresponding value at ϕL
N = 180◦. On the contrary, note that for the RFG

model (Fig. 2·7) the reduction is only ∼ 15%. This is clearly illustrated in Table 2.1 where

the specific values, denoted by (p̃N , θ̃
L
N), for which the semi-inclusive cross section reaches its

maximum for the two ϕL
N -angles considered and both nuclear models are summarized. The

origin of these features is further investigated in the next plots.
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Figure 2·8: Semi-inclusive cross section for 40Ar and DUNE flux with k′ = 1.5 GeV, θl =
30◦, ϕL

N = 180◦ (left panels) and ϕL
N = 165◦ (right panels) using the IPSM.

ϕL
N = 180◦ ϕL

N = 165◦

p̃N θ̃LN Cross section p̃N θ̃LN Cross section

RFG 1.43 GeV 43.50◦ 4.62 × 10−37 1.24 GeV 42.89◦ 3.95 × 10−37

IPSM 1.00 GeV 49.54◦ 7.56 × 10−37 1.00 GeV 48.33◦ 2.32 × 10−37

Table 2.1: Values of pN and θLN that give the maximum cross sections in Fig. 2·7 and
Fig. 2·8, i.e., (p̃N , θ̃N). Cross sections in cm2GeV−2.

Fig. 2·9 shows the semi-inclusive cross sections for the IPSM (red dashed) and the RFG

(blue solid) models and the two values of ϕL
N . The graphs on the left present the semi-

inclusive cross section as a function of the ejected nucleon momentum pN evaluated at the

values of θ̃LN where the maximum in the cross section occurs in each model. The panels on

the right show the corresponding cross sections as function of θLN at fixed p̃N . Not only the
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shapes in the two models completely disagree but also the region in (pN , θ
L
N) where the cross

section is defined differs very significantly.
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Figure 2·9: Semi-inclusive cross sections as function of pN (θLN) for the two values considered
of the azimuthal angle ϕL

N (see text for details). In each case the cross section is evaluated at
the corresponding values θ̃LN (p̃N) that give the maximum cross section in Figs. 2·7 and 2·8.
The values of p̃N and θ̃LN are summarized in Table 2.1.

The specific contribution of the different shells in the IPSM to the semi-inclusive cross

section in the case of 40Ar is shown in Fig. 2·10, where a cut in the plane θLN = θ̃LN of

the semi-inclusive cross section shown in Fig. 2·8 is presented. The left (right) panel in

Fig. 2·10 corresponds to ϕL
N = 180◦ (ϕL

N = 165◦). In both graphs the behavior and allowed

values of the missing momentum pm (solid black line) are shown. According to the 40Ar

momentum distribution (see Fig. 2·11), the s-shell contribution is dominant for very low
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Figure 2·10: (Left axes) Contributions to the semi-inclusive cross section by each shell in
the IPSM for 40Ar. The value of θ̃LN is given in Table 2.1 and the lepton variables are fixed
to k′ = 1.5 GeV and θl = 30◦. (Right axes) Missing momentum pm defined in Eq. (2.37) for
the IPSM. Since its value is different for each shell, here is shown the average over all the
40Ar shells.

missing momentum. For the kinematics considered in the left panel of Fig. 2·10 this very

low-pm region corresponds to values of the ejected nucleon momentum in the vicinity of pN

= 1.0 GeV (pm ∼ 40− 50 MeV). The other shells give a smaller contribution, generating the

secondary peaks observed in Fig. 2·8 at ϕL
N = 180◦. These peaks disappear at ϕL

N = 165◦

being also the cross section significantly smaller. As shown in the right panel of Fig. 2·10, the

missing momentum gets also its minimum value in the region of pN close to 1 GeV. However,

here pm ∼ 200 MeV, i.e., much larger than the corresponding value in the previous case.

As clearly illustrated by the 40Ar momentum distribution (Fig. 2·11), at pm ≃ 200 MeV

the shells that contribute the most are the d and p-ones. This is consistent with the more

symmetric shape of the semi-inclusive cross section shown in Fig. 2·8 for ϕL
N = 165◦ (right

panels) with only one visible peak.

According to the general energy and momentum conservation given by Eqs. (2.1, 2.5), it

is possible to obtain an expression for E , or equivalently Em, as function of pm for a selected
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Figure 2·11: IPSM and RFG momentum distributions of 40Ar. The Fermi momentum is
set to kF = 0.241 GeV. The contributions from the different shells of the IPSM are shown
separately.

set of semi-inclusive variables: (k′, θl, pN , θ
L
N , ϕ

L
N). This relation is

E(pm) = k −
√
k′2 +m2

l − Es − EN +mN , (2.47)

where the neutrino momentum k is the solution of the equation

k2 − 2k(k′ cos θl + pN cos θLN) + k′
2
+ p2N + 2k′pN(cos θl cos θ

L
N + sin θl sin θ

L
N cosϕL

N)− p2m = 0 ,

(2.48)

and it defines trajectories in the (E , pm) plane allowed by energy conservation at each

kinematics. By plotting the trajectories E(pm), likewise Em(pm), for a set of semi-inclusive

variables, one can observe that the RFG (IPSM) CC semi-inclusive cross section is different

from zero only if the corresponding trajectory crosses the curve ERFG (Enlj), where the RFG

(IPSM) spectral function lives. This is illustrated in Fig. 2·12 where the trajectories Em(pm)

for the set of variables that gives the maximum cross sections in Figs. 2·7 and 2·8 together



51

with Em(pm) for the two models are shown. In the case of the IPSM (dashed curves) the two

trajectories corresponding to the two ϕL
N -values cross the specific missing energies for the

different shells at very different values of the missing momentum. Whereas for ϕL
N = 180◦

the crossing occurs in the region of low-pm, i.e., pm ≃ 50 MeV or below, the situation is

clearly different for ϕL
N = 165◦ where the crossing takes place at larger pm-values (pm ≃ 200

MeV), a region where the momentum distribution has dropped significantly. This explains

the large reduction observed in the maximum of the semi-inclusive cross section when going

from ϕL
N = 180◦ to ϕL

N = 165◦.
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Figure 2·12: Trajectories Em (pm) given by Eq. (2.47) evaluated at the kinematics that
give the maximum cross sections in Figs. 2·7 and 2·8 summarized in Table 2.1. For the RFG
ERFG

m = EF −
√
p2m +m2

N + Es, while for the IPSM EIPSM
m = Enlj.

The situation is clearly different for the RFG model. Here the trajectories for the two ϕL
N -

values (dot-dashed lines) closely overlap, intersecting the RFG missing energy at pm ≃ 240

MeV/c, i.e., just below the Fermi level. As known, the RFG momentum distribution is

constant and different from zero up to pm = kF . Thus the 15% reduction observed in the

maxima of the semi-inclusive cross sections for the two ϕL
N -values cannot be attributed to

the momentum distribution itself but rather to the specific kinematic factors (evaluated at
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the particular allowed values for the remaining kinematical variables) that enter in the cross

section.

Using the general expression for the trajectory Em(pm) we can also analyze the origin

of the high peak in the cross section shown in Fig. 2·8 for ϕL
N = 180◦. Since this result is

not present in the case of the RFG (Fig. 2·7), one could assume that its origin is linked

to the complex, non-constant, structure shown by the momentum distribution of the IPSM.

As already shown in Fig. 2·12, the IPSM trajectory corresponding to ϕL
N = 180◦ is consistent

with significant contribution to the semi-inclusive cross section by the momentum distribution

at low missing momentum values. This is the region where the different s-shells clearly

dominate (see Fig. 2·11), giving rise to the maximum in the cross section observed in Fig. 2·8.

Therefore if one excludes the s-shells contributions, the semi-inclusive cross section should

decrease significantly. This is illustrated in Fig. 2·13 where the contour graph of the semi-

inclusive cross section including all shells in 40Ar (left panel) and removing the contribution

of the s-shells (right panel) are shown. Note how importantly the strength in the cross

section is modified in the (pN , θ
L
N)-plane. The peak presented in the left panel located in

the vicinity of pN ≃ 1.0 GeV and θLN ≃ 50◦, due to the s-shell contributions, has completely

disappeared in the right panel leaving a hole where the cross section is very small.

All previous results were for 40Ar, the target currently used by MicroBooNE and that

will be used in the future by the DUNE collaboration. In what follows the study is extended

to the case of 12C, used in past and on-going experiments. The semi-inclusive cross sections

for muon neutrinos on 12C are calculated with kinematics fixed to k′ = 0.55 GeV, θl = 50◦

and ϕL
N = 180◦. The T2K muon neutrinos flux is used to generate the cross sections and, in

addition to the RFG and IPSM nuclear models already used in the case of DUNE (40Ar),

the predictions using the NO model will be also given. In Fig. 2·14 the semi-inclusive cross

sections for the kinematics defined above and the three nuclear models are presented. The

shapes of the semi-inclusive cross sections are, like in the 40Ar results, highly correlated with
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Figure 2·13: Semi-inclusive cross section for 40Ar and DUNE flux with k′ = 1.5 GeV, θl =
30◦ and ϕL

N = 180◦ using the IPSM including all shells (left panel) and removing the s-shells
(right). Cross sections in the same units than the one presented in the top left panel in
Fig. 2·8.

the shapes of the 12C momentum distributions (see Fig. 2·6). Notice that the cross section

for IPSM in Fig. 2·14 shows a small hole in the center of the region that is not present in

the case of the NO model. An analysis of the Em (pm) trajectories shows that this particular

region in the (pN , θ
L
N)-plane corresponds to very small values of the missing momentum.

Note that the behavior of the momentum distribution for the two models, IPSM and NO,

differs at low-pm: the former decreases as pm approaches zero whereas the latter does not.
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Figure 2·14: Semi-inclusive cross section for 12C and T2K flux with k′ = 0.55 GeV, θl = 50◦

and ϕL
N = 180◦ using the IPSM (top left panels), NO (top right panels) and RFG (bottom

panels) nuclear models.
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Chapter 3

The relativistic distorted-wave impulse

approximation

In the previous chapter we introduced the semi-inclusive CC neutrino-nucleus cross section

in PWIA, i .e., the bound neutron, after exchanging momentum and energy with the virtual

bosonW−, is turned into a proton than moves through the residual nucleus without interacting

with the remaining A− 1 nucleons. However, in a real process the proton interacts via the

strong and electromagnetic forces on its way out of the residual nucleus. These final-state

interactions (FSI) could produce, for instance, transitions to unobserved channels that cause

a reduction of the cross section or scattering where the four-momentum of the ejected proton

is modified by elastic interactions with the nuclear medium. In general FSI distort the wave

function that describes the ejected proton, breaking the relationship between the asymptotic

proton momentum (i .e. the one that is detected) and the momentum of the bound neutron

state. The approach we are adopting to describe FSI for semi-inclusive CC neutrino-nucleus

scattering in this thesis is the so-called relativistic distorted-wave impulse approximation

(RDWIA), a fully quantum and relativistic approach extensively tested against exclusive

(e, e′p) measurements for several nuclei [70, 71, 72] that has been extended to also make

predictions of semi-inclusive neutrino-nucleus cross sections [73, 74, 75, 76]. The flux-
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averaged semi-inclusive neutrino-nucleus cross section can be written as [73, 74, 75]

〈
dσ

dk′dΩk′dpNdΩL
N

〉
=
G2

F cos2 θck
′2p2N

64π5

∫
dk

WA−1

EA−1frec
LµνH

µν P (k) , (3.1)

where the recoil factor is given by

frec =

∣∣∣∣1− pm · ẑ
EA−1

∣∣∣∣ . (3.2)

Notice that the integral over the neutrino momentum k in Eq. (3.1) is equivalent to the

integral over the missing energy Em because they are related through the energy-momentum

conservation:

Em = WA−1 +mN −MA = k − El +mN − EN − TA−1 (3.3)

with TA−1 the kinetic energy of the recoiling system. The hadronic tensor, which contains

all the information about the nuclear dynamics of the process including FSI, is constructed

in a generic way as

Hµν =
∑
i

∑
f

Jµ
fiJ

ν
fi

† =
〈
A− 1, pN

∣∣∣Ĵµ
∣∣∣A〉〈

A− 1, pN

∣∣∣Ĵν
∣∣∣A〉∗

, (3.4)

where one averages over initial and sums over final states, |A⟩ is the initial nuclear state

given by the target nucleus A, |A− 1, pN⟩ is the final hadronic state composed of the ejected

proton with asymptotic momentum pN and the undetected final nucleus A − 1, and Ĵµ is

the weak current operator. Assuming that the IA is valid, then the current operator Ĵµ is

reduced to an incoherent sum of relativistic one-body current operators. Additionally, we are

assuming that the initial nucleus is described by the independent-particle shell model. As

already explained in Sec. 2.3.2, within the IPSM the initial state is made of a finite number

of nucleons characterized by the quantum numbers κ and µ, and described by a relativistic
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wave function solution of the Dirac equation using the RMF potentials. Then, taking into

account the IA and IPSM assumptions, the hadronic tensor is given by

Hµν
κ = ρκ (Em)

∑
µ,sN

Jµ
κ,µ,sN

Jν∗
κ,µ,sN

(3.5)

with ρκ (Em) the missing energy density or profile of the initial nucleus, which are Dirac

deltas δ (Em − Eκ) at the values of the bound energies if one uses a pure IPSM to describe

the initial state, and

Jµ
κ,µ,sN

=

∫
dr eir·qΨsN (r, pN) Ĵ

µ
NΦ

µ
κ (r) , (3.6)

where µ is the third component of the total angular momentum j = |κ| − 1/2 of the

bound nucleon, sN the spin projection of the final nucleon and Ĵµ
N is the CC2 one-body

current operator given in Eq. (A.4). The wave functions ΨsN and Φµ
κ are four-dimensional

spinors which describe, respectively, the scattered and bound nucleons. Within RDWIA, the

scattered proton wave function ΨsN with asymptotic momentum pN is obtained as a partial

wave expansion

ΨsN (r, pN) = 4π

√
EN +mN

2EN

∑
κ,µ,m′

e−iδ∗κil < lm′ 1

2
sN | j µ > Y ∗

lm(r̂)ψ
µ
κ (r, pN) (3.7)

with Ylm(r̂) the spherical harmonics that describe the nucleon direction and l the orbital

angular momentum. The relativistic wave function ψµ
κ (r, pN) for a certain κ can be expressed

as in Eq. (2.25) where the radial functions gκ (r) and fκ (r) are solutions of the Dirac coupled

differential equations (see Eq. (2.27)) with some scalar and vector potentials, in addition to

the Coulomb potential. However, as we will see in Sec. 3.2, the scalar and vector potentials

can be complex for some FSI models, therefore the outgoing proton will be described in that

case by the complex conjugates of the radial functions. Finally, the phase shifts δ∗κ and the
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normalization are calculated by matching the solutions of Eq. (2.27) with its asymptotic wave

function in the limit r → ∞. In the special case of the long-range Coulomb potential, the

solutions are matched with the analytic expressions of the Dirac-Coulomb wave functions [77].

The bound wave functions Φµ
κ (r) in Eq. (3.6) will be the complete bound-state solutions of

the Dirac equation with the RMF potentials (see Eq. (2.25)).

In the next two sections, we describe more in detail the specific model of the initial state

used in this thesis and the possible choices of potentials to model FSI within RDWIA.

3.1 Initial state within RDWIA: beyond the relativistic mean-field

model

In Sec. 2.3.2 we briefly introduced the independent-particle shell model within the context

of semi-inclusive neutrino-nucleus reactions in PWIA. There, the initial nuclear state was

described only by the positive-energy bound solutions of the Dirac equation using the

RMF potentials. Within the RDWIA not only the positive-energy but also negative-energy

solutions using the RMF potentials are going to be used for the initial nuclear state Φµ
κ (r)

in Eq. (3.6). Also, it is known from exclusive (e, e′p) experiments that effects beyond the

mean-field approximation, such as short- and long-range correlations, modify the missing

energy distribution predicted by a pure shell model like the RMF model. Hence the RMF

description of the initial state will be extended to include effects beyond the mean-field

approximation taking as reference the spectral function formalism (as described in Sec. 2.3.4),

that simultaneously includes the depletion of the occupation of the shell-model states and

the appearance of nucleons at higher missing-energies due to nucleon-nucleon correlations.

However since the SF formalism assumes the factorization of the semi-inclusive cross section

in to the elemental single neutrino-nucleon cross section times the spectral function, while

the RDWIA formalism is an unfactorized calculation, we follow [73, 75] to include, in an

effective way, the improvements of the SF formalism without imposing factorization in the
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distorted-wave calculation for 16O and 12C. For both nuclei, the missing energy profile ρ (Em)

that appears in Eq. (3.5) can be divided in different regions. In the low missing-energy region,

the p-shell states (both 1p3
2
and 1p1

2
for 16O and 1p3

2
for 12C) will have a Gaussian energy

dependence rather than δ-functions as in the IPSM. The same is applied to the 1s1
2
shell in

the intermediate missing-energy region. The high Em and pm region of the spectral function,

that accounts for correlations, will be reproduced in the RDWIA calculation by introducing

an additional s wave, denominated background, that is broad in momentum space and that

is fitted to reproduce the momentum distribution of the Rome spectral function [58, 68] for

both nuclei. In the intermediate missing-energy region, where the s-shell and the background

coexist, and in the high missing-energy zone, where only the background contributes, the

background is parametrized as follows [73]:

F (Em) =
Sb exp (−100 b)

exp [− (Em − c) /w] + 1
(3.8)

if 26 < Em < 100 MeV, and

F (Em) = Sb exp (−b Em) (3.9)

if Em > 100 MeV. The values of the parameters are obtained by performing a fit of the Rome

spectral function, which yields Sb = 0.0177 MeV−1, b = 0.011237 MeV−1, c = 40 MeV and

w = 5 MeV. Since we are more interested in the context of this thesis in 12C, the specific

parameterization of ρ (Em) for this nucleus is shown in Fig. 3·1. Also, the contribution of

two shells of 12C to the missing energy profile is summarized in Table 3.1.

In later chapters the comparison with semi-inclusive cross sections measurements and the

RDWIA predictions for 40Ar will be presented, however an equivalent Rome spectral function

does not exist for this nucleus. Therefore for 40Ar a missing energy profile ρ (Em) will be

proposed [76] combining RMF results, phenomenology and exclusive (e, e′p) measurements

on 40Ar by JLAB collaboration [78]. As for 12C, the wave functions of the 22 neutrons
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Figure 3·1: Parameterization of the missing energy profile ρ (Em) for 12C separated by
contributions of the individual shells and the background. The background is normalized
so there are 0.8 nucleons up to Em = 300 MeV, i.e.

∫ 300

26
dEmF (Em) = 0.8. The remaining

nucleons are associated to the shells as summarized in Table 3.1.

κ Eκ (MeV) σκ (MeV) nκ

1s1/2 37.0 10.0 1.9

1p3/2 17.8 2.0 3.3

Table 3.1: Parameterization of the missing energy distributions for the two shells of 12C.
The contribution to the missing energy density ρκ (Em) of each shell is given by ρκ (Em) =

nκ√
2πσκ

exp(−
(

Em−Eκ

2σκ

)2

), with Eκ position of the peak, σκ the width and nκ the occupation

number, i.e. the number of nucleons in each shell.

in 40Ar will be given by the bound states solutions of the Dirac equation with the RMF

potentials. However the realistic missing energy profile ρ (Em) for
40Ar will be modeled as a

Maxwell-Boltzmann distribution [78] for each shell κ

ρκ (Em) =
4Sκ√
πσκ

(
Em − Eκ + σκ

σκ

)2

exp

[
−
(
Em − Eκ − σκ

σκ

)2]
(2jκ + 1) , (3.10)

with Eκ the position of the peak, σκ the width, Sκ the occupancy of the shell, i.e. the ratio
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between the number of nucleons in a shell and the number of nucleons predicted by the IPSM,

and jκ the total angular momentum of the shell κ. A summary with the parameterization for

the seven shells in 40Ar can be found in Table 3.2. There, the position of the peaks are given

by the RMF predictions except for the valence shell (1f 7
2
) which is fixed to the experimental

neutron separation energy [79]. The widths of the shells used in this thesis to describe

neutrons in argon are inspired from (e, e′p) exclusive measurements in 40Ar by JLAB [78].

Finally, the spectroscopic factors assigned to each shell are based on phenomenology: the

internal shells (1s1
2
, 1p3

2
and 1p1

2
) are affected by short-range correlations while external

shells (1d5
2
, 2s1

2
, 1d3

2
and 1f 7

2
) do depend on both short- and long-range correlations [80,

81], therefore their spectroscopic factors are lower. In addition to the value of the parameters,

Table 3.2 also shows the uncertainty associated to each parameter. Proceeding in this way

we provide, for the first time, an uncertainty band in theoretical semi-inclusive neutrino-

nucleus predictions due to the modeling of the initial nuclear state. This uncertainty band

will be generated by randomly sampling the values of the missing energy profile parameters

within their uncertainties with an uniform probability distribution and running the RDWIA

calculation for up to one hundred different combinations of the ρ (Em) parameterization. The

only parameter missing for this model of neutrons in 40Ar is the background normalization

Sb in Eqs. (3.8) and (3.9). This parameter, related with the number of neutrons in the

background, is constrained by imposing that the total number of neutrons is fixed to 22

for each different parameterization of ρ (Em). However, using this method, some random

combinations of the parameters could give up to 40-50% of the neutrons in background for

argon which is clearly unrealistic. To avoid this, the RDWIA calculation is done only if the

background contains between 15-25% of the 22 neutrons, which is consistent with previous

studies [82, 83, 84]. The corresponding missing energy profile ρ (Em) for argon is shown in

Fig. 3·2 compared with the RMF prediction.
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α Eκ (MeV) σκ (MeV) Sκ

1s1/2 55 ± 6 30 ± 15 0.9 ± 0.15

1p3/2 39 ± 4 12 ± 6 0.9 ± 0.15

1p1/2 34 ± 3 12 ± 6 0.9 ± 0.15

1d5/2 23 ± 2 5 ± 3 0.75 ± 0.15

2s1/2 16.1 ± 1.6 5 ± 3 0.75 ± 0.15

1d3/2 16.0 ± 1.6 5 ± 3 0.75 ± 0.15

1f7/2 9.869 ± 0.005 5 ± 3 0.75 ± 0.15

Table 3.2: Parameterization of the missing energy distribution for the 22 neutrons in 40Ar
adopted in this work. The missing energy distributions are modeled as Maxwell-Boltzmann
distributions (see the text). The spectroscopic factors or occupancies of the shells Sκ give
the relative occupancy of the shell respect to the pure shell model prediction. The position
of the 1f 7

2
shell was set to the experimental neutron separation energy [79], and the others

were set to the RMF values. The widths used in this model were inspired from the proton
results obtained by JLAB (e, e′p) experimental data on 40Ar [78].
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Figure 3·2: Missing energy profile of neutrons in 40Ar described by the parameterization
given in Table 3.2. The red band corresponds to the uncertainties also summarized in
Table 3.2. The vertical blue lines show the positions of the seven RMF shells and the black
dashed line shows the mean value of the distribution.
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3.2 Final state interactions within RDWIA

In this section two approaches to FSI within RDWIA, denoted as Relativistic optical potential

(ROP) and Energy-dependent relativistic mean field (ED-RMF), are discussed. In general,

FSI models can either use complex potentials or only real potentials. Complex potentials,

given that the imaginary part of the potential produces a loss of flux to inelastic channels,

should be used when the kinematic constrains of the experiment being analyzed isolates the

elastic channel, for instance exclusive (e, e′p) experiments. This is equivalent to constrain the

values of the missing energy Em below the two nucleons knockout energy, which guarantees

that only the elastic channel is being measured. Instead, pure real potentials are more

appropriate for inclusive-like measurements where all the channels contribute to the experimental

signal, including the inelastic ones.

3.2.1 Relativistic optical potential

The ejected nucleon wave function is calculated as the scattering solution of the Dirac

equation in the presence of a complex relativistic optical potential. In this thesis, we

use phenomenological relativistic optical potentials that are not derived from a specific

microscopic theory but have been fitted to certain elastic proton-nucleus scattering observables.

Specifically, we will use global scalar-vector (S—V ) potentials that can be applied to protons

with different kinetic energies. Cooper et at [85] published different parametrizations for

nuclei of interest for accelerator neutrino experiments, such as 12C, 16O or 40Ca, for protons

kinetic energies in the range 20 ≤ TN ≤ 1040 MeV. Although 40Ca is not used as target

in accelerator neutrino experiments, its parametrized relativistic optical potential will be

employed to generate the predictions for 40Ar in later chapters. The scalar or vector global
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S—V relativistic optical potentials take the general form [85]

U (r, E,A) = V V (E,A) fV (r, E,A) + V S (E,A) fS (r, E,A) (3.11)

+ i

(
W V (E,A) gV (r, E,A) +W S (E,A) gS (r, E,A)

)
,

where E and r are the proton center of mass energy and position, A is the atomic mass

number of the target and the superscripts V and S refer to the volume and surface peaked

terms respectively. The geometric functions f i and gi, with i = V ,S, are

fV (r, E,A) =
cosh

[
R (E,A) /a (E,A)

]
− 1

cosh
[
R (E,A) /a (E,A)

]
+ cosh

[
r/a (E,A)

]
− 2

,

fS (r, E,A) =

(
cosh

[
R (E,A) /a (E,A)

]
− 1

)(
cosh

[
r/a (E,A)

]
− 1

)
(
cosh

[
R (E,A) /a (E,A)

]
+ cosh

[
r/a (E,A)

]
− 2

)2 . (3.12)

The same functional forms are used for gi. As mentioned above, the optical potential consists

of scalar and vector terms each having both real and imaginary parts. In the parametrization

the eight strength parameters, namely V i and W i for the scalar and vector terms, have the

same polynomial dependence upon E and A. For instance

V V (E,A) = v0 +
4∑

m=1

vmx
m +

3∑
n=1

vn+4y
n + v8xy + v9x

2y + v10xy
2, (3.13)

where x = 1000/E, with E in MeV, and y = A/ (A+ 20). Generally, both scalar and vector

potentials, as well as their real and imaginary parts, may have different geometry parameter

values. The functions R (E,A) and a (E,A) appearing in Eq. (3.12) are also represented by
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Figure 3·3: Energy-dependent A-independent 12C (EDAIC) relativistic optical
potential [85] evaluated at different proton kinetic energies TN = 30 MeV (dashed), 200
MeV (dotted) and 800 MeV (dash-dotted). The vector (red lines) and scalar (blue lines)
components of the potential are shown separately for both the real (left panel) and imaginary
(right panel) parts.

polynomial expansions, as follows

R (E,A) = A1/3

[
r0 +

4∑
m=1

rmx
m +

3∑
n=1

rn+4y
n + r8xy + r9x

2y + r10xy
2

]
, (3.14)

a (E,A) = a0 +
4∑

m=1

amx
m +

3∑
n=1

an+4y
n + a8xy + a9x

2y + a10xy
2. (3.15)

The optical potentials that will be used in this thesis are the ones denominated energy-

dependent A-independent (EDAI) potentials where the dependence onA of all the parameters

is dropped. Further simplifications are performed, compared with the general energy-

dependent A-dependent (EDAD) potentials, to reduce the total number of parameters for

each target nucleus to 70 [85]. The number of data points used in the fits for each target is

well over 1000. Fig. 3·3 shows the radial dependence of the EDAIC potential (the one for

12C) evaluated at different proton kinetic energies.

As it was said previously, the ROP contains a real and an imaginary term, where the
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latter accounts for losses to inelastic channels. Thus, the ROP describes scenarios where the

ejected nucleon propagates through the residual nucleus undergoing only elastic scattering

and consequently no other hadrons are created in the process. Hence, the ROP describes the

QE contribution to the situation where only one proton and no other hadrons are detected

in the final state, although additional hadrons can appear due to MEC or to initial state

correlations, if the missing energy is large enough. The ROP approach was successfully

applied in the past to describe exclusive electron scattering (e, e′p) [70, 71, 72] experiments,

for which a missing energy below the two-nucleon knock-out threshold can be determined

from the detection of the final electron and proton in coincidence, plus the knowledge of the

energy of the initial electron. In case of neutrino scattering, however, due to the fact that the

energy distribution of the neutrino beams is very wide, the mere detection in coincidence of a

muon and a proton in the final state does not guarantee control of the missing energy. Thus,

the measured events would be composed of contributions beyond the elastic one described

by the ROP. A simple way to consider in the final state the events beyond the elastic channel

is to take only the real part of the ROP (rROP), that is, removing the absorption into the

elastic-only channel. This has been shown to be quite effective in describing inclusive cross-

section measurements [86, 87] which include all hadronic final states, namely both elastic

and inelastic channels. The rROP model does not include losses to inelastic channels and

is, in principle, consistent with special relativity and quantum mechanics. However there

could be orthogonality issues [86, 88, 89] for small momenta transfer because the initial and

final states are described by solutions of different Hamiltonians (RMF for the initial nuclear

state, rROP for the final nuclear state). This problem is overcome in the ED-RMF approach

described below.
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3.2.2 Extended relativistic mean-field potential: ED-RMF

As explained in Sec 3.1 the wave function used to describe the initial nuclear state that

interacts with the neutrino corresponds to the eigenstates solution of the Dirac equation

using the RMF potentials (see Appendix C where the RMF model is described in more

details). The same RMF potentials can be used to solve the Dirac equation and find the

scattering states that describe the ejected nucleon wave function. By adopting this approach,

the preservation of orthogonality is guaranteed and the distortion of the outgoing nucleon

(FSI) is considered by propagating it using the self-energy calculated within the mean-

field approach. This methodology proves to be a suitable approximation in scenarios where

nucleon propagation can be adequately described by this model, particularly, in inclusive

electron [90, 91] and neutrino [91, 92] reactions involving moderate values of transferred

momentum. Although Pauli blocking is automatically obtained by using the same potential

for both the initial and final nuclear states, there are some disadvantages of using this

approach for certain reactions and kinematics. For instance, in exclusive experiments,

like (e, e′p), where the value of Em is selected to isolate the elastic channel, a potential

with only real components, like the RMF, would not describe them correctly. Instead an

optical potential with an imaginary part, like the one described in Sec. 3.2.1, should be

employed [70, 72]. Also, using a pure RMF approach, with an energy-independent potential

to describe the nucleon in the final state, is bound to be inadequate as the momentum

of the final nucleon increases, even in the case of inclusive experiments [91, 93]. The

RMF potentials are too strong for relatively high nucleon momenta, a region where one

expects the potentials to become weaker. A solution to this problem was presented with

the SuSAv2 model [91], which incorporates a combination of results from both the RMF

and RPWIA approaches. It employs a linear combination of the scaling functions derived

from RPWIA and RMF, with the weight of each contribution determined by a transition

function that varies with the momentum transfer q. In [94] the parameters of the SuSAv2
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model were fitted to 12C(e, e′) data, resulting in remarkable agreement with inclusive data,

particularly for ω values exceeding approximately 50 MeV. This agreement extends to (e, e′)

data from different nuclei [93] as well as to inclusive CC neutrino-nucleus reactions [95].

Exploiting the success of the SuSAv2 model, an energy-dependent relativistic mean field

potential (ED-RMF) [86, 87] can be constructed that keeps the RMF strength and proper

orthogonality for slow nucleons, but becomes weaker as nucleon momenta increase following

SuSAv2 phenomenological transition function. The ED-RMF blending function fb (TN), that

depends on the outgoing nucleon kinetic energy TN and multiplies both the vector and scalar

RMF potentials, was fitted to the SuSAv2 RMF-to-RPWIA transition function for 12C, and

is the following [87]

fb (TN) =
0.85

(TN/200)
2 + 3.5

+
0.48

exp
[
(TN − 90)/23

]
+ 1

+ 0.29, (3.16)

where TN is in the laboratory frame and in MeV. The radial dependence of both ED-RMF and

RMF potentials for 12C are compared in Fig. 3·4 for different values of TN . For small values

of TN both potentials are essentially the same, preserving orthogonality that is especially

relevant in this low-momentum region. At larger values of TN , orthogonality is no longer an

issue and the blending function fb (TN) reduces the magnitude of the strong RMF potentials

improving the agreement with inclusive electron and neutrino scattering data. Although

the blending function fb (TN) has been fitted to electron scattering data by 12C, the same

parametrization has been successfully used to describe inclusive electron data on argon and

titanium [86, 87].
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Chapter 4

Neutrino generators approach to

semi-inclusive reactions

In the previous chapter we have introduced the relativistic distorted-wave approach from

which an expression of the five-dimensional differential cross section can be obtained without

any further approach than the IA (see Eq. (3.1)). The RDWIA is one of the few microscopic

models capable of reliably provide both exclusive-like and inclusive (by integrating over all

the ejected nucleon variables) cross sections without relying on the factorized expression

obtained in the PWIA limit. The analysis of neutrino oscillation measurements requires the

usage of neutrino event generators, based on Monte Carlo simulations, to reconstruct the

unknown initial neutrino energy on an event-by-event basis by correctly modeling all the

possible reactions channels (QE, 2p2h, inelastic, coherent, etc), and also different nuclear

effects like initial state correlations, Fermi motion or FSI. The most common MC generators

used in accelerator-based and scattering neutrino experiments are GENIE [96, 97, 98],

NEUT [99, 100, 101], GiBUU [102] and NuWro [103]. Without entering into much detail, a

generic neutrino event generator typically proceeds through the following steps:

(I) The incident neutrino energy is determined from the neutrino energy distribution.

(II) The target nucleus is selected according to the cross section of the target material.

(III) The location of the target nucleon inside the nucleus is randomly chosen. The initial

four-momentum of the nucleon is taken from the momentum distribution given by the
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nuclear model implemented in the generator.

(IV) The interaction mode is selected from the probabilities for the corresponding incident

neutrino energy. For instance, if a large neutrino energy was initially sampled, it is

more probable that the selected mode is inelastic scattering rather than QE.

(V) The neutrino-nucleon interaction is simulated according to the interaction mode selected

and the differential cross section of the interaction is used to simulate the kinematics

of the outgoing lepton, nucleon(s) and other particles (for instance, pions).

(VI) The possible re-interactions of the particles within the nucleus are simulated, according

to the FSI model.

The semi-classical intranuclear cascade model (INC) is the most commonly used FSI model

in neutrino generators. It considers each particle produced individually, starting from

the interaction vertex and continuing until the particle exits the nucleus. During this

propagation, the particle is moved in small steps (around 0.1 fm, typically), and at each

step, the probability of an interaction is evaluated. This probability is based on the particle’s

mean free path, which is influenced by the density of the surrounding medium (determined

according to the nuclear model) and the probability of interacting with nucleons. Various

types of interactions with the nucleus are possible, and their individual cross sections depend

on the particles’ energies. The only quantum effect considered is Pauli blocking. Apart from

that, the model is classical in nature, treating the propagated particles as free and assuming

they travel in straight lines between consecutive scatterings. The scatterings themselves are

evaluated using free-space cross sections. Pauli blocking can be included as an average effect

by reducing the nucleon interaction cross section through a global factor or as a local effect

by ensuring that the momentum of the final-state particles is above some value of the Fermi

momentum at each interaction point.

The implementation of a specific neutrino interaction model in a neutrino event generator
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usually requires a fast method of calculating the differential cross section. However the

RDWIA calculations demand significant computational resources to generate predictions for

comparison with experimental measurements, although the computation can be accelerated

by, for instance, precalculating and storing in tables the hadronic tensor components Hµν
κ

as function of four dynamic variables (for instance q, ω, pm and Em). Until this date few

microscopic models capable of exclusive predictions are implemented in neutrino event

generators. Some work is currently being done to implement models based in RDWIA

approach in MC generators [74]. Models like SuSAv2 [91, 93, 94] and Hartree-Fock continuum

random phase approximation (HF-CRPA) [104, 105] have been implemented in some neutrino

event generators like GENIE, but these models yield inclusive predictions as function of the

outgoing lepton kinematics only. Later on, we will elaborate on the implementation of these

models [106, 107] in generators using a factorization ansatz [106]. In this approach, lepton

kinematics is directly computed from a microscopic model calculation before the hadronic

system is incorporated using approximate methods. As a result, the model accurately reflects

the microscopic model’s predictions for lepton kinematics, but it provides only a broad

estimation for outgoing hadron kinematics due to the limited information available.

Summarizing, models that are in principle inclusive can be used in combination with

neutrino event generators to provide semi-inclusive predictions by means of different approximations.

Exploiting this approach, in this thesis we will compute the semi-inclusive predictions using

the SuSAv2 implementation in GENIE [106] and directly compare them with the RDWIA

results and experimental semi-inclusive measurements by different international collaborations.

Since all the available semi-inclusive experimental data correspond to CC0π, we will also

make use of the SuSAv2 2p2h model implemented in GENIE as well as the GENIE’s pion

absorption model to generate the non-quasielastic (non-QE) contributions to semi-inclusive

cross sections. In what follows, we discuss in detail the implementation approach of the

SuSAv2 (QE and MEC) model in GENIE. Additionally, a brief description of GENIE’s
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pion absorption model is also presented before we move on to the comparison with the

experimental data in the next chapter.

4.1 SuSAv2 implementation in GENIE

At present, only a few neutrino event generators are capable of calculating exclusive predictions.

Most theoretical models implemented in the generators can predict the kinematics of the

outgoing leptons but are not directly applicable to describe hadrons in the final state.

Nevertheless, it is feasible to generate semi-inclusive predictions, involving both a lepton

and a hadron in the final state, by employing inclusive models implemented in generators

with the aid of approximations like the factorization approach [106]. However, given the

impact of these semi-inclusive reactions on oscillation analyses, it is necessary to validate

the accuracy of these approximations against experimental measurements of cross sections

and also against microscopic neutrino interaction models capable of predicting final lepton

and hadron kinematics.

Among the different nuclear models for neutrino interactions, those based on the RMF

theory are promising candidates to be implemented in event generators due to their accurate

description of the nuclear dynamics and their good agreement with both inclusive and semi-

inclusive electron- and neutrino-nucleus scattering data without relying on any factorization

approach. As a first attempt in this direction, the SuSAv2-MEC model [91, 93, 94], a

purely inclusive approach based on the RMF theory which has proven to successfully predict

inclusive cross sections for electrons and neutrinos in a wide range of kinematics, was

implemented in the neutrino event generator GENIE [106] for both 1p1h and 2p2h channels.

This implementation has been carried out via SuSAv2 1p1h and 2p2h inclusive hadron tensor

tables, Hµν(q, ω), using a binning of 5 MeV in the transferred momentum and energy which

is combined with GENIE’s interpolation methods between adjacent bins. Since the SuSAv2

is an inclusive model and all the information about hadrons in the final state has been
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integrated, a factorization between the leptonic and hadronic vertices is used to generate

semi-inclusive predictions. Under this approach the outgoing hadronic state is generated

starting with an initial nucleon state sampled from a local Fermi gas (LFG) nuclear model

for the 1p1h channel. A missing momentum pm is sampled from the LFG momentum

distribution and the outgoing nucleon energy EN is calculated as [108]

EN =
√
p2m +m2

N − ω − Eb (q) , (4.1)

where Eb (q) is a q-dependent binding energy inspired by the phenomenological energy shift

from the SuSAv2 model

Eb = max (5,−17.687 + 0.0564q) [MeV] (q < 827MeV) (4.2)

and Eb (q) = Eb (q = 827 MeV) ≃ 29 MeV for q > 827 MeV. The outgoing nucleon momentum

calculated according to Eq. (4.1) will not agree in general with momentum conservation

Eq. (2.1), i.e.
√
E2

N −m2
N ̸= |pm + q|. To partially solve this issue, the magnitude of

the outgoing nucleon momentum is taken from Eq. (4.1) but the direction is constructed

according to the momentum conservation, i.e.

pN =
√
E2

N −m2
N

(
pm + q

|pm + q|

)
. (4.3)

After the nucleon is extracted, the propagation is carried out through the nucleus using

GENIE’s semi-classical cascade FSI model. In [108] the distributions as function of the

nucleon kinetic energy and scattering angle were obtained for exclusive (e, e′p) events on

carbon using the ED-RMF model and GENIE’s factorization approach described above. The

distributions are shown in Fig. 4·1 where a shift in the nucleon kinetic energy distribution is

observed between the exact calculation (“Full”) and the GENIE implementation (“Approx”).
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Regarding the angular distribution, the differences found are larger than for the energy

distribution with a slight displacement of the maximum and significant shape differences.

As pointed out in [108] these differences could be washed out after applying the GENIE

cascade FSI model, however it was found that the effects of the factorization approach

remain visible. In the case of the SuSAv2 2p2h channel, based on the relativistic Fermi
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Figure 4·1: Proton kinetic energy (left) and scattering angle (right) distributions for the
process e+A→ e′+p+B. The electron beam energy is fixed to 1.159 GeV and the outgoing
electron phase-space is limited to 17◦ < θe′ < 40◦ and Ee′ > 0.4 GeV. The red lines show
the unfactorized RDWIA predictions obtained with ED-RMF potential for carbon (named
“Full”) while the blue lines show the equivalent distributions obtained after applying the
GENIE algorithm (Eq. (4.1) and Eq. (4.3)) and before adding GENIE cascade FSI (named
“Approx”). Results taken from [108].

gas (RFG) calculation [109, 110], the momentum and energy transfer are assigned to a

pair of nucleons drawn from a LFG nuclear model after taking into account the removal

energy, which is a constant in this case. The probability of having neutron-neutron (proton-

proton for antineutrinos) or proton-neutron pairs as initial cluster is chosen based on the

kinematics of the inclusive reaction using the SuSAv2-MEC 2p2h theoretical model [111].

The transferred momentum and energy are shared equally between the cluster components,

one neutron (proton) is turned into a proton (neutron) for neutrinos (antineutrinos) and

the cluster breaks up into two nucleons. The two nucleons are then propagated through the
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nucleus via GENIE’s semi-classical cascade model.

4.2 GENIE pion absorption model

GENIE can further be used to model the pion absorption contribution to semi-inclusive CC0π

measurements. The predominant contribution stems from GENIE’s simulation of single

pion production using an extension of the Rein-Sehgal model [112] to account for nonzero

lepton masses [113], which produces pions and nucleons which are propagated through the

nucleus via the same semi-classical cascade FSI model used for other interaction channels.

In a portion of the events, the outgoing pions are absorbed within the nuclear medium,

often leading to the ejection of additional nucleons in the process. The small additional

contributions, where all mesons are absorbed by FSI, arise from more inelastic channels.

These channels are evaluated using an effective leading-order model that incorporates the

modifications proposed by Bodek and Yang [114] to accurately describe scattering at low

momentum-transfers.
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Chapter 5

Comparison with semi-inclusive experimental

measurements

In this chapter all the available CC semi-inclusive neutrino-nucleus experimental measurements

from T2K [115], MINERνA [116, 117] and MicroBooNE [118, 119] are compared with the

theoretical RDWIA QE predictions using different FSI models described in Chapter 3: ROP,

rROP, ED-RMF and RPWIA. These unfactorized predictions will be compared to those

obtained by the SuSAv2 model implemented in GENIE neutrino event generator as explained

in Sec. 4.1. For a fair comparison with the experimental measurements, which are all CC0π,

the SuSAv2-2p2h MEC and pion absorption contributions calculated with GENIE will be

added to the QE predictions.

5.1 T2K

The T2K collaboration measured [115] νµ−12C CC0π semi-inclusive cross sections with two

different topologies: i) one muon and no protons in the final state (1µCC0π0p) with momenta

above 0.5 GeV, and ii) one muon and at least one proton in the final state (1µCC0πNp)

where the leading (i .e. the fastest) proton has momentum above 0.5 GeV.
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5.1.1 1µCC0π0p

By the definition of this topology one could think that this corresponds to the inclusive

CC0π channel, where only the final lepton is detected while no information about hadrons

in the final state does exist. However, in the definition of the inclusive cross section one

explicitly integrates over the ejected hadron variables in the entire phase-space allowed by

conservation and the kinematics of the reaction. For the 1µCC0π0p signal, the integration

over the ejected proton kinematics is performed as in the inclusive case except for the integral

over pN which is limited by the T2K experimental proton detection threshold of 0.5 GeV.

Because of this limitation in the proton momentum, no inclusive model can be compared

with these data because it would necessarily include contributions of protons with momenta

above 0.5 GeV. Therefore these cross sections are indeed semi-inclusive and only models

capable of predicting both the final muon and proton kinematics, like the RDWIA, can be

compared against them.

In Fig. 5·1 the microscopic RDWIA and the GENIE-SuSAv2 predictions are compared

with T2K 1µCC0π0p measurements as function of the muon kinematics. For backward

angles the microscopic calculation predicts a rather small difference between RPWIA and the

models with FSI (rROP, ROP and ED-RMF), all of them underestimating the experimental

measurements in contrast with the better agreement achieved with GENIE-SuSAv2. As one

moves to more forward muon angles GENIE-SuSAv2 predictions start to overestimate some

of the experimental points, an outcome probably due to scaling or factorization violations

and poor treatment of low-energy effects which are accounted for more consistently by the

ED-RMF model. The two RDWIA models that use real potentials, namely ED-RMF and

rROP, give similar predictions for backward muon angles. However, some differences appear

as one moves to more forward muon angles and the maximum discrepancy can be observed

in the peak of the 0.98 < cos θl < 1.0 distribution. In this zone, where q and ω are small, the

ED-RMF prediction is closer to the data due to the better treatment of orthogonalization
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between the initial and final nucleon wave functions. All the RDWIA models except the

ED-RMF have at some degree lack of orthogonalization in this region, but in particular the

overlap between the initial bound wave functions and the plane waves used in RPWIA is

very large yielding big spurious contributions to the cross section for this model which largely

overestimates the data at low values of k′. For all the angular bins the 2p2h contribution,

although non-negligible, is limited to a few percent of the total cross section. Interestingly,

the final state proton kinematic restriction (pN < 0.5 GeV) leaves the pion absorption

contribution negligible. No model is able to reproduce the sharp oscillation shown by the

data just after the maximum in the last two bins (0.94 < cos θl < 0.98 and 0.98 < cos θl <

1.0), but it should be noted that, once the reported correlations in the measured cross section

are accounted for, the measurement shows no significant preference for an oscillation in the

cross section.

To quantify the agreement of the different models with the data, in Appendix D a χ2

analysis using the covariance matrices provided with the cross sections measurements is

discussed in detail. All the results for T2K are summarized in Table D.1. For CC0π

measurements without protons in the final state and momenta above 0.5 GeV, the ROP

and ED-RMF models have associated a smaller χ2 compared with GENIE-SuSAv2 results,

although still much larger than the number of degrees of freedom (d.o.f.), indicating that

low momentum protons are not quantitatively described by these models.

5.1.2 1µCC0πNp: Muon and proton kinematics

In Fig. 5·2 and Fig. 5·3 the different models are compared with T2K 1µCC0πNp semi-

inclusive cross-section measurements with at least one proton with momentum above 0.5 GeV

as function of the leading proton’s kinematics and the muon scattering angle, respectively.

In general, the 2p2h channel seems to be more relevant for this case compared with the

previous analysis, especially at forward scattering angles. This is not surprising, since the
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Figure 5·1: T2K 1µCC0π0p semi-inclusive νµ−12C cross section without protons in
the final state with momenta above 0.5 GeV as function of the muon kinematics. All
curves include the 2p2h and pion absorption (denoted “other”) contributions evaluated using
GENIE (shown separately). Cross-section measurements taken from [115].
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2p2h cross section is peaked at higher ω (hence higher pN) than the QE cross section. The

pion absorption channel also appears more relevant, but only in specific regions of outgoing

muon and proton kinematics (at relatively forward muon and proton scattering angles). As

a consequence non-QE contributions do affect more to data corresponding to values pN > 0.5

GeV than at pN < 0.5 GeV. In the specific case of the distribution as function of cos θLN with

0.8 < cos θl < 1.0, the bin 0.8 < cos θLN < 1.0 is overestimated by all the RDWIA models

and GENIE-SuSAv2 due to the large non-QE (2p2h + pion absorption) contributions.

The GENIE-SuSAv2 results slightly overestimate some of the experimental points, while

the ED-RMF and rROP models tend to match or improve the agreement, especially for

proton momentum around 0.5-0.7 GeV. It is interesting to note that the ROP model in

Fig. 5·3 describes better the cross section measurements for 0.3 < cos θl < 1.0 than the rest

of the models, but the situation reverses for −1.0 < cos θl < 0.3, with ROP underestimating

the cross section measurements. ROP predicts the cross section corresponding to the case in

which the struck nucleon interacts only elastically with the residual nucleus, i.e., it does not

knock out other nucleons or create new mesons in its way out. Thus, if one does not include

the background contribution due to short-range correlations, that appears at large Em-pm

(see Fig. 3·1), and that necessarily corresponds to a process with at least two nucleons in

the final state, then the ROP model gives a lower bound estimate of the cross section for

one and only one proton, and no other hadron, in the final state. One does expect in general

that the experimental neutrino measurements are above the ROP predictions, consistently

with the fact that the experimental signal includes more channels than the one represented

in the ROP, namely, that the nucleon knocked out by the neutrino just interacts elastically

while traveling off the nucleus.

The χ2 comparison presented in Table D.1 shows good agreement of the ROP results

with the measurements with a χ2/d.o.f. close to 1. As shown in Appendix D, this strong

preference for the ROP model is driven up by bins with high proton momentum in the cross
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sections as function of pN with 0.3 < cos θLN < 0.8 and 0.8 < cos θLN < 1.0.

5.1.3 1µCC0πNp: Inferred variables

Measuring multiple particles in the final state, like a muon and the ejected proton in the

case of the semi-inclusive reactions being analyzed, opens the possibility to measure not only

cross sections as function of each particle kinematics but also as function of variables that

depend on both particles’ kinematics at the same time. One of these types of variables, that

somehow measure correlations between the muon and the proton in the final state, are the

so-called inferred variables (IV) [115]. The IV variables are defined as

∆p = |pN | −
∣∣pinf

N

∣∣ ,
∆θ = arccos

(
p̂inf
N · ẑ

)
,

|∆p| =
∣∣pN − pinf

N

∣∣ , (5.1)

where ẑ denotes the neutrino beam direction and pinf
N = kinf

ν −k′ is the final proton momentum

inferred under the hypothesis that the neutrino interacts with a neutron at rest having mass

m̃n = mn − Eb (with Eb=25 MeV for carbon), namely

kinf
ν =

m2
p −m2

µ + 2Elm̃n − m̃2
n

2 (m̃n − El + k′ cos θl)
ẑ, (5.2)

where mp and mµ are the proton and muon masses, respectively. Notice that, according

to Eq. (5.1) and Eq. (5.2), the definition of the inferred proton kinematics relies on the

same QE expression used, for example, in the estimation of neutrino energy at T2K far

detector. Consequently, the observed deviations from the expected proton inferred kinematic

imbalance could provide hints of the biases that may be caused from the mismodeling of

nuclear effects in neutrino oscillation measurements at T2K [115].

In Figs. 5·4, 5·5 and 5·6 we show the predictions of the models as function of the inferred
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Figure 5·2: T2K 1µCC0πNp semi-inclusive νµ−12C cross section with at least one proton
in the final state with momentum above 0.5 GeV as function of the leading proton and muon
kinematics. All curves include the 2p2h and pion absorption (denoted “other”) contributions
evaluated using GENIE (shown separately). Cross-section measurements taken from [115].
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Figure 5·3: T2K 1µCC0πNp semi-inclusive νµ−12C cross section with at least one proton
in the final state with momentum above 0.5 GeV as function of the muon scattering angle.
All curves include the 2p2h and pion absorption (denoted “other”) contributions evaluated
using GENIE (shown separately). Cross-section measurements taken from [115].

variables compared with T2K measurements [115] that applied certain kinematic restrictions

to the proton momentum and angle, namely pN > 0.45 GeV and cos θLN > 0.4. Based on

the results of the GENIE-SuSAv2 2p2h model and GENIE’s pion absorption predictions

there are angular bins with areas heavily dominated by non-QE channels, especially for

the cross sections as function of ∆p and |∆p| in bins with small scattering angle and low

momentum of the muon. For the |∆p| distribution there is a clear preference to require

significant non-QE contributions in the high momentum imbalance tail for the higher muon

momentum, intermediate muon scattering angle slices, where the microscopic calculation

shows small FSI effects by comparing the RPWIA results with the ED-RMF and rROP

predictions. Regarding the comparison of the different QE predictions, the biggest differences

between the GENIE-SuSAv2, the ED-RMF and rROP microscopic results can be found at

forward angles and low muon momentum, especially in the ∆p and |∆p| cross sections,

where the GENIE-SuSAv2 estimation can be up to 50% higher than the ED-RMF result.
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This might be caused by the limitations of SuSAv2 model to describe correctly low-energy

nuclear effects and scaling violations in the forward region. Even with this severe reduction

compared with the results from GENIE-SuSAv2, the ED-RMF and rROP models still

overestimate the cross-section measurements in these forward angles and/or low momentum

bins due to a large contribution coming from non-QE channels. This might be related to an

overestimation of the 2p2h contribution associated to the extrapolation performed in GENIE

to connect the inclusive 2p2h hadronic tensor evaluated microscopically to the semi-inclusive

one used to simulate these cross sections. The disagreement may eventually be resolved by

performing a fully semi-inclusive calculation where both the leptonic and hadronic variables

are consistently handled. Notice that the agreement with the cross-section measurements is

improved in the bin with forward angles and high muon momentum (k′ > 0.75 GeV) at low

|∆p|, but that the non-QE contributions at higher |∆p| seems to remain too large. It is also

interesting to note that for the ∆θ cross section in the bin with the most backward-going

muons, the GENIE-SuSAv2 prediction falls below cross-section measurements and is even

lower than the ROP estimation around zero imbalance, which might indicate too strong FSI.

Additionally, the bin with the largest non-QE contribution seems to be 0.0 < cos θl < 0.8

and k′ < 0.25 GeV according to the GENIE simulation, which is described well by all the

different models in the ∆θ case but significantly overestimated by all the models in the ∆p

and |∆p| cases as discussed earlier. The χ2-values shown in Table D.1 are large compared

with the d.o.f. for the three inferred variables, with the worst agreement obtained for the

∆θ distribution. For this specific case, as explained in Appendix D, large contributions to

χ2 come from two specific bins with very small cross section. If those bins are removed,

agreement of the models based on RDWIA with the measurements is matched (rROP and

ED-RMF) or improved (ROP) with respect to the GENIE-SuSAv2 model.
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Figure 5·4: T2K 1µCC0πNp semi-inclusive νµ−12C cross section as function of the
inferred variable ∆p for different muon kinematic bins. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].
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Figure 5·5: T2K 1µCC0πNp semi-inclusive νµ−12C cross section as function of the
inferred variable ∆θ in different muon kinematic bins. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115]. For readability, the axis range has been
reduced to [−30◦,+30◦] hiding an experimental bin above 30◦ with very low cross section
and centering the [−360◦,−5◦] experimental bin around −20◦.
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Figure 5·6: T2K 1µCC0πNp semi-inclusive νµ−12C cross section as function of the
inferred variable |∆p| in different muon kinematic bins. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].
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5.1.4 1µCC0πNp: Transverse kinematic imbalances

Another type of variables that can be used to analyze correlations between the particles

detected in the final in semi-inclusive reactions are the so-called transverse kinematic imbalances

(TKI) [120]. TKI are designed to enhance experimental sensitivity to nuclear effects, and

therefore discriminate between different models, with minimal dependence on the neutrino

energy. In particular, the use of TKI can help in disentangling effects linked to FSI, initial

state correlations and/or multi-nucleon excitations (2p2h). They are defined by projecting

the final lepton and the ejected nucleon momenta on the plane perpendicular to the neutrino

direction (transverse plane) as can be seen in Fig. 5·7. More specifically, the vector magnitude

Transverse
plane

z

x

y

k

pN

pN
T

k′

k′
T

qT

δφT

δpT

δαT

Figure 5·7: Scheme showing transverse kinematic imbalances (TKI): δpT , δαT and δϕT . The
final lepton and nucleon momenta are projected on the plane perpendicular to the neutrino
direction (xy-plane or transverse plane). The transverse component of the transferred
momentum (qT ) equals −k′

T and defines the x-axis.
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of the momentum imbalance (δpT ) and the two angles (δαT and δϕT ) are:

δpT = |δpT| = |k′
T + pN,T| , (5.3)

δαT = arccos

(
− k′

T · δpT

|k′
T| |δpT|

)
, (5.4)

δϕT = arccos

(
− k′

T · pN,T

|k′
T| |pN,T|

)
, (5.5)

where k′
T and pN,T are, respectively, the projections of the final lepton and nucleon momentum

on the transverse plane (if the neutrino direction is taken as the z-axis, then the projections

only have components in the xy-plane as it is shown in Fig. 5·7). In the absence of FSI

and assuming a pure QE event, the momentum imbalance is generated entirely by the

description of the initial nuclear state dynamics [120, 121]. In this approximation δpT

is a direct measurement of the transverse component of the bound nucleon momentum

distribution, therefore the RFG model, widely used in neutrino event generators, would be

at a disadvantage compared to more realistic nuclear models like the independent-particle

shell model or the spectral function model [115, 121]. This was explicitly shown in Ref. [51],

where the RFG was found to give a much poorer description of the δpT distribution than

the IPSM in PWIA. Also in the PWIA limit, the δαT distribution is expected to be flat due

to the isotropy property shown by the nucleon momentum distribution, although presence

of FSI and other effects beyond the impulse approximation break this behavior.

The comparison of the cross sections as function of the transverse kinematic imbalances

for the different models with T2K measurements is presented in Fig. 5·8. For these data, the

following phase-space restrictions are applied: k′ > 0.25 GeV, cos θl > −0.6, 0.45 < pN < 1.0

GeV and cos θLN > 0.4. The δpT distribution shown in Fig. 5·8 favours the ED-RMF and

rROP calculations over the GENIE-SuSAv2 predictions in the low δpT region, which is

mainly dominated by initial-state effects with negligible contribution from the 2p2h and

pion absorption channels. This could be caused by the inconsistencies of the implementation
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of the SuSAv2 model, which is based on the RMF theory, in GENIE, that generates the initial

state nucleon using a local Fermi gas model. For imbalances above the Fermi level, nucleon-

nucleon correlations become more important and the microscopic calculation predicts small

FSI effects. In this region all the microscopic models except the ROP model overestimate

the cross-section measurements after including the non-QE contributions calculated with

GENIE. Note that this comparison between theory and experiment does present some

inconsistency because the 2p2h contribution is calculated with a Fermi gas while the microscopic

calculations for the QE process use the RMF model with corrections to include nucleon-

nucleon correlations. In any case, it is clear that the QE contribution with nucleon-nucleon

correlations included is not enough to describe the region of high-momentum imbalance

and additional contributions are essential to describe the experimental results. For the

distribution as function of δpT shown in Fig. 5·8 there is an additional model called “RFG”,

which corresponds to the predictions based on the plane-wave approximation using the

RFG model for the initial state as described in Sec. 2.3.1. The RFG prediction greatly

overestimates the measurements, while RPWIA with a realistic description of the initial

state (see Sec. 3.1) yields a lower and shifted to the left cross section. Of course some kind

of FSI and non-QE contributions must be added to improve the agreement with the data,

but qualitatively one can see that, even in the plane-wave limit, this imbalance is largely

affected by the description of the initial nuclear state.

Regarding the angular TKI, δϕT is more dependent on the neutrino energy and less

sensitive to nuclear effects than δpT [120]. The variable δαT measures with good approximation

the angle between the initial nucleon momentum and the transferred momentum [120]. All

the model predictions except ROP as function of δϕT shown in Fig. 5·8 overestimate the

cross-section measurements, although the overestimation is less severe in the case of the ED-

RMF and rROP models for low values of δϕT compared with GENIE-SuSAv2. In the case

of δαT , it is expected to have a rather flat distribution due to the isotropy of the momentum
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distribution of the bound nucleon which is broken mainly by non-QE effects and FSI,

although this deviation from flatness is partially washed out by the constraint on the outgoing

proton kinematics in current experimentally accessible signal definitions. However, it is

interesting to note that all of the microscopic models, including RPWIA, predict a significant

QE-driven rise in δαT when there is no or low proton momentum threshold (although this

is not shown here), in contrast to what is often predicted by neutrino event generators. In

the results presented in Fig. 5·8 there is an overestimation of the cross-section measurements

by all the models except the ROP, which is less significant for the microscopic calculations

using the ED-RMF and rROP models compared with GENIE-SuSAv2 results specially at

high δαT values. The non-QE contributions become more relevant for higher values of δαT

where the biggest differences between the microscopic and the GENIE-SuSAv2 calculations

also appear, with the former in better agreement with the cross-section measurements. The

differences between both kinds of calculations could be explained by the different treatment of

FSI. Simulations performed with the neutrino event generator NuWro [122], which also uses a

semi-classical cascade model for FSI with tuned parameters, are in better agreement with the

microscopic calculation than with GENIE-SuSAv2. Quantitatively, χ2 values summarized

in Table D.1 correspond to values of χ2/d.o.f. close to 1 for the ROP model for the three

TKI variables, with the best agreement found for the δαT distribution.

5.2 MINERνA

The MINERνA collaboration measured [116, 117] semi-inclusive 1µCC0πNp events on 12C

and presented the differential cross section results as function of the muon and leading proton

kinematics, and also as function of TKI. The experimental constrains applied in this case

are summarized in Table 5.1.
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Figure 5·8: T2K 1µCC0πNp semi-inclusive νµ−12C cross sections as function of the
transverse kinematic imbalances δpT , δαT and |δϕT |. All curves include the 2p2h and
pion absorption (denoted “other”) contributions evaluated using GENIE (shown separately).
Cross-section measurements taken from [115].

MINERνA k′ (GeV) cos θl pN (GeV) cos θLN ϕL
N (◦)

1.5-10 > 0.939 0.45-1.2 > 0.342 -

Table 5.1: Phase-space restrictions applied to the semi-inclusive CC0π cross-section
measurements with one muon and at least one proton in the final state shown by MINERνA
collaboration in [116, 117].

5.2.1 1µCC0πNp: Muon and proton kinematics

Despite a larger contribution from non-quasielastic channels, due to the higher energy

neutrino beam compared with T2K (see Fig. 2·4), the semi-inclusive cross sections predicted

by ROP, shown in Fig. 5·9 as function of the muon and proton kinematics together with the
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other models, seem qualitatively in reasonable agreement with experimental measurements,

except for the θLN cross section where there is an overestimation in the high-θLN region.

This is partially confirmed by the χ2-values presented in the legend of Fig. 5·9, which

shows ROP as the favored model that best matches the measurements of muon and proton

kinematic variables. Whilst all models other than ROP overestimate the cross section data,

the agreement between the ED-RMF, rROP and the GENIE-SuSAv2 predictions is very

good except for the pN distribution where differences can be seen in the whole interval of

proton momentum. It should be noted that the apparent overestimation of the non-ROP

models (and the outstanding agreement with the data of the ROP model) may be due to

a mismodeling of the strength of the 2p2h or pion absorption contributions calculated with

GENIE and may therefore not suggest an issue in the modeling of the QE channel.

5.2.2 1µCC0πNp: Transverse kinematic imbalances

In Fig. 5·10 the results of the different FSI models with the MINERνA cross-section measurements

of the TKI distributions are presented. Even without adding the non-QE contributions, all

the models except ROP overestimate the data in the peak of the δpT distribution. In the

high-momentum imbalance tail the contribution from the non-QE channels are sufficient

and clearly necessary to match any prediction with the experimental cross section. A similar

situation is found for the δϕT cross section where all the models except ROP overestimate

the cross-section measurements near zero imbalance and non-QE contributions are clearly

required to describe the tail of the distribution. Regarding the δαT results, it is interesting to

point out the appearance of a clear peak at large values of the imbalance in the MINERνA

cross-section data that is not present in the T2K cross-sections shown in Fig. 5·8, which

might be caused by additional non-quasielastic contributions present in MINERνA due

to the higher energy of the neutrinos. In case of T2K results shown in Fig. 5·8, it has

been shown [123] that the T2K restriction of the proton momentum to be above 0.45
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Figure 5·9: MINERνA 1µCC0πNp semi-inclusive νµ−12C cross section as function of
the final muon momentum and scattering angle (top) and as function of the final proton
momentum and polar angle (bottom). All curves include the 2p2h and pion absorption
(denoted “other”) contributions evaluated using GENIE (shown separately). The original
paper from MINERνA was [117] but the cross-section measurements shown here were taken
from [116] which corrected a mismodelling in GENIE’s elastic FSI that affected the cross-
section measurements presented in the first paper. The χ2/d.o.f. ratio is given in brackets
in the legend of each distribution.

GeV removes most of the interactions in which FSI plays an important role eliminating

the peak at large δαT . The GENIE-SuSAv2 prediction and all the RDWIA results except

the ROP overestimate the cross-section data, although the shape of the rise in δαT seems

to be well described by the combination of FSI and non-QE contributions except the last

bin. Additional projections on the plane perpendicular to the neutrino direction of the

momentum imbalance δpT are also presented in Fig. 5·10. If the interaction occurred on a

free nucleon at rest, then we would expect a delta-function at δpT = 0 because the muon



98

and the proton in the final state would be perfectly balanced in that case. Therefore, the

width of the QE peak is mostly consequence of the Fermi motion. In PWIA δpT y is exactly

the projection on the y-axis of the initial nucleon momentum and, due to the isotropy of

the nucleon momentum distribution, the δpT y distribution is symmetrical. On the other

hand δpT x is parallel to the transferred momentum in the transverse plane (see Fig. 5·7),

which is translated into a small shift of the peaks towards positive values of δpT x. In

the δpT x distribution the GENIE-SuSAv2 prediction is very similar to the ED-RMF and

rROP models in the region of the peak, with all the results overestimating the cross-section

measurements in this region except for ROP. Furthermore, GENIE-SuSAv2 differs slightly

from the other models in the prediction of the asymmetric tail of the distribution where the

non-QE channels contribute more than the 1p1h channel. The non-QE contributions seems

to perfectly match the tails of the distribution when added to ROP, although alterations to

the uncertain contributions coming from the pion absorption (and, to some extent, 2p2h)

contribution calculated with GENIE may allow all the models other than RPWIA to match

the cross-section measurements. Note that in all comparisons there is no evidence for a need

of a significant enhancement of the 2p2h contribution, as is often suggested to be required by

MINERνA measurements [117, 124]. The χ2 comparison for each TKI variable is shown in

the legends of Fig. 5·10 and shows that the best agreement is systematically obtained with

the ROP model, although the χ2/d.o.f. values are far above 1 for all the TKI variables.

5.3 MicroBooNE

In this section the semi-inclusive cross section measurements on argon performed by MicroBooNE

collaboration [118, 119, 125] are compared with the RDWIA calculation using the ROP and

ED-RMF models and the GENIE-SuSAv2 predictions. So far we have only shown νµ semi-

inclusive cross sections, however the MicroBooNE collaboration presented for the first time

cross section measurements using a νe beam. The differential cross sections are available



99

0.0 0.2 0.4 0.6 0.8 1.0
0

3×10 -39

6×10 -39

9×10 -39

1.2×10 -38

δpT (GeV)

dσ
/d

δp
T

(c
m

2
G

eV
-1

nu
cl

eo
n-1

)

2p2h

Other

GENIE-SuSAv2 (114/24)

ED-RMF (132/24)

RPWIA (165/24)

ROP (51/24)

rROP (126/24)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

3×10 -40

6×10 -40

9×10 -40

1.2×10 -39

1.5×10 -39

1.8×10 -39

δαT (rad)

dσ
/d

δα
T

(c
m

2 ra
d-1

nu
cl

eo
n-1

)

Other

rROP (47/12)

ED-RMF (53/12)

RPWIA (60/12)

ROP (19/12) GENIE-SuSAv2 (37/12)

2p2h

-1.0 -0.5 0.0 0.5 1.0
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

δpTx (GeV)

dσ
/d

δp
T

x
(c

m
2
G

eV
-1

nu
cl

eo
n-1

)

GENIE-SuSAv2
(85/33)

2p2h

Other

RPWIA (161/33)

ROP (58/33)

ED-RMF (144/33)

rROP (128/33)

-1.0 -0.5 0.0 0.5 1.0
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

δpTy (GeV)

dσ
/d

δp
Ty

(c
m

2
G

eV
-1

nu
cl

eo
n-1

)

ED-RMF (131/32)

RPWIA (155/32)

ROP (84/32)

rROP (127/32)
GENIE-SuSAv2
(118/32)

Other

2p2h

0.0 0.5 1.0
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

|δϕT| (rad)

dσ
/d

|δ
ϕ T

|(
cm

2
ra

d-1
nu

cl
eo

n-1
)

GENIE-SuSAv2 (93/23)

ED-RMF (130/23)

RPWIA (155/23)

ROP (99/23)

rROP (126/23)

Other

2p2h

Figure 5·10: MINERνA 1µCC0πNp semi-inclusive νµ−12C cross sections as function of
the transverse kinematic imbalances δpT , δpTx, δpTy, δαT and |δϕT |. All curves include
the 2p2h and pion absorption (denoted “other”) contributions evaluated using GENIE
(shown separately). The original paper from MINERνA was [117] but the cross-section
measurements shown here were taken from [116] which corrected a mismodeling in GENIE’s
elastic FSI that affected the cross-section measurements presented in the first paper. Notice
that the convention used in [116] to define the x and y axis to project δpT on is the opposite
to the convention used in this thesis. The χ2/d.o.f. ratio is given in brackets in the legend
of each distribution.
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1µCC0πNp k′ (GeV) cos θl pN (GeV) cos θLN ϕL
N (◦) θµp (◦) δpT (GeV)

> 0.1 - 0.3-1.2 - - - -

1eCC0πNp

> 0.0305 - > 0.3105 - - - -

1µCC0π1p

0.1-1.5 -0.65-0.95 0.3-1.0 > 0.15 145-215 35-145 < 0.35

Table 5.2: Phase-space restrictions applied to νµ−40Ar 1µCC0πNp [118] and
1µCC0π1p [119] and νe−40Ar 1eCC0πNp [125] cross section measurements performed by
MicroBooNE collaboration. The opening angle θµp is defined as the angle between the muon
and the ejected proton and δpT is the transverse momentum imbalance.

for three different final-state topologies: 1µCC0πNp (one muon and at least one proton),

1eCC0πNp (one electron and at least one proton) and 1µCC0π1p (one muon, exactly one

proton above experimental threshold and any protons below threshold). As explained in

Sec. 3.1, the RDWIA results for argon are presented with colored bands that show the

uncertainty in the theoretical QE calculation due to the uncertainty on the modeling of the

40Ar missing energy profile (see Table 3.2 and Fig. 3·2). The phase-space restrictions applied

to each set of measurements divided by topologies are summarized in Table 5.2.

5.3.1 1µCC0πNp: Reconstructed muon and proton kinematics

In Fig. 5·11 we compare the ROP and ED-RMF results and the GENIE-SuSAv2 predictions

with MicroBooNE 1µCC0πNp data for 40Ar [118]. The cross sections are shown as function

of the muon and proton kinematics and also the opening angle θµp, which is defined as the

angle between the muon and the leading proton momenta. The experimental cross sections

are given as function of reconstructed variables, while our models predict the results as

function of true variables. Therefore, we have applied the smearing matrix1 [118] to all the

1Note that the matrix needs to be applied to distributions proportional to the number of events on each
bin, not to cross section distributions. Therefore, starting with a cross section distribution as function of a
true variable one needs to multiply the distribution by each bin size, apply the smearing matrix, and divide
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theoretical results shown in Fig. 5·11. Although not shown here, the cross sections as function

of k′reco and precoN are the ones most affected by the smearing. All the models presented in

the k′reco distribution in Fig. 5·11 exhibit large χ2 values compared with the d.o.f., giving

the ROP model the lowest value. Whilst the GENIE-SuSAv2 and ED-RMF models are in

poor agreement with the measured k′reco distribution in Fig. 5·11, the ROP model provides

a reasonable description of it with a χ2 of ∼10 for 6 d.o.f..

The shape of the precoN distribution is correctly reproduced by the ED-RMF and ROP

models once the non-QE contributions are taken in account, although the ED-RMF model

overestimates the measurements in the 0.65 < precoN < 0.9 GeV bins and ROP underestimates

the data for low values of pN . It is interesting to note that the GENIE-SuSAv2 model

overestimates the experimental measurement at very low precoN (although its good agreement

at large precoN actually leads to a lower χ2).

The shape and magnitude of the cos θl
reco and cos θLN

reco
angular distributions are well

described by all the models except at very forward muon scattering angles where all the

models overestimate the cross-section measurements, although it is worth noting that the

underestimation is much less severe in the case of ROP, which provides a quantitatively

good description of the distribution. Regarding the θrecoµp distribution, ED-RMF appears to

better describe the shape of the experimental measurement, but both ROP and ED-RMF

are quantitatively compatible with the measurement.

The small uncertainty bands obtained for the RDWIA results presented in Fig. 5·11

indicates that the cross sections as function of the muon and proton kinematics, and also as

function of the opening angle, are not largely affected by the modification of the parameters

that model the missing energy profile of the initial nuclear state.

the result again by the bin size in order to obtain the correct cross section distribution as function of a
reconstructed variable.



102

0.5 1.0 1.5 2.0 2.5
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

k'reco (GeV)

dσ
/d

k'
re

co
(c

m
2 G

e
V

-1
nu

cl
eo

n-1
)

Other

2p2h

ROP (10/6)

ED-RMF (28/6)

GENIE-SuSAv2 (37/6)

0.4 0.6 0.8 1.0 1.2
0

5×10 -39

1×10 -38

pN
reco (GeV)

dσ
/d

p N
re

co
(c

m
2 G

e
V

-1
nu

cl
eo

n-1
)

Other

GENIE-SuSAv2 (5/10)
2p2h

ED-RMF (11/10)
ROP (12/10)

-1.0 -0.5 0.0 0.5 1.0
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

1×10 -38

1.2×10 -38

cos(θl
reco)

dσ
/d

co
s(

θ l
re

co
)(

cm
2 nu

cl
eo

n-1
)

GENIE-SuSAv2 (61/12)

2p2h

Other

ROP (16/12)

ED-RMF (42/12)

-1.0 -0.5 0.0 0.5 1.0
0

2×10 -39

4×10 -39

6×10 -39

8×10 -39

cos(θN
L)reco

dσ
/d

co
s(

θ N
L )re

co
(c

m
2 nu

cl
eo

n-1
)

GENIE-SuSAv2 (7/9)

2p2h

Other

ED-RMF (9/9)

ROP (5/9)

0 1 2 3
0

2×10 -39

4×10 -39

6×10 -39

θμp
reco(rad)

dσ
/d

θ μ
p

re
co

(c
m

2 ra
d-1

nu
cl

eo
n-1

)

Other

2p2h

GENIE-SuSAv2 (14/6)

ED-RMF (6/6)

ROP (4/6)

Figure 5·11: MicroBooNE 1µCC0πNp semi-inclusive νµ−40Ar cross sections as function
of the reconstructed muon and proton momenta and scattering angles and the opening
angle θrecoµp . All curves include the 2p2h and pion absorption (denoted “other”) contributions
evaluated using GENIE (shown separately). Experimental results are from [118]. The bands,
drawn for the ED-RMF and ROP models, represent the uncertainties associated with the
modeling of the initial nuclear state. The χ2/d.o.f. ratio is given in brackets in the legend
of each distribution.
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5.3.2 1eCC0πNp: Electron and proton kinematics

In Fig. 5·12 the different theoretical models are compared with MicroBooNE 1eCC0πNp data

on 40Ar [125] as function of the electron energy and scattering angle and the final proton

kinetic energy (TN) and scattering angle. Additionally, for the TN distribution presented in

Fig. 5·12, MicroBooNE collaboration provides one extra data point (0 < TN < 50 MeV) that

corresponds to events with one electron, no protons above TN = 50 MeV threshold and at

least one proton below the threshold. Until now we have analyzed νµ interactions, however

νe cross sections differ only in the final lepton mass which appears in kinematic factors

in the cross-section expression. Although the experimental measurements are statistically

limited and the error bars are large, the ROP model seems to describe better all the

measurements presented in Fig. 5·12, whilst both GENIE-SuSAv2 and ED-RMF models

tend to overestimate them (nevertheless it should be noted that there is little quantitative

power to statistically separate the models). This is consistent with the analysis performed in

[125] where the results obtained with different modern neutrino event generators are shown.

In that analysis a preference for predictions with lower total cross section was found. As

it happened in our previous comparison, these results with νe are also not strongly affected

by variations in the model of the energy profile of the initial state according to the RDWIA

predictions.

5.3.3 1µCC0π1p: Muon and proton kinematics

The MicroBooNE CC0π1p νµ−40Ar measurements [119] are shown in Figs. 5·13 and 5·14 as

function of the muon and proton kinematics, together with the RDWIA and GENIE-SuSAv2

predictions.

A noticeable difference with respect to the 1µCC0πNp topology is the negligible contribution

of the 2p2h channel in all the distributions. The reason is the kinematic cuts applied to the

1µCC0π1p signal which are summarized in Table 5.2. From a theoretical point of view,
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Figure 5·12: MicroBooNE 1eCC0πNp semi-inclusive νe−40Ar cross sections as function of
the electron scattering angle and energy and proton kinetic energy and scattering angle. All
curves include the 2p2h and pion absorption (denoted “other”) contributions evaluated using
GENIE (shown separately). Experimental results are from [125]. The bands, drawn for the
ED-RMF and ROP models, represent the uncertainties associated with the modeling of the
initial nuclear state. The single white point in the TN distribution between 0 < TN < 50 MeV
corresponds to an extra 1eCC0π0p (one electron, no protons above TN = 50 MeV threshold
and at least one proton with kinetic energy below the 50 MeV threshold) measurement
performed by MicroBooNE [125]. For this single point, additional phase space restrictions
on the electron energy (El > 0.5 GeV) and the electron scattering angle (cos θl > 0.6) are
applied. The χ2/d.o.f. ratio is given in brackets in the legend of each distribution.
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the 1µCC0π1p topology, leaving aside the non-quasielastic contributions, is closer to the

picture drawn by the ROP model, in which the imaginary part of the optical potential

subtracts all the inelastic nuclear FSI, leaving only the elastic channel (i.e. the outgoing

proton interacting elastically with the residual system). The inclusion of the correlated part

of the spectral function introduces, in an effective way, states with multiple nucleons being

knocked out. Notice that this contribution is very minor in the cross sections shown in

Figs. 5·13 and 5·14, in fact, the result obtained after its subtraction is contained within

the uncertainty for both RDWIA predictions. The results presented as function of the

proton kinematics show good agreement between the ROP and data, while the predictions

by the other models overestimate the measured cross sections, especially the ED-RMF model.

Regarding the lepton kinematics, the bins around the peak of the k′ distributions are slightly

underestimated by the ROP but the ED-RMF and GENIE-SuSAv2 overestimate the data

in the rest of the bins.

Finally, the cos θl distribution is shown in Fig. 5·14. The ROP and GENIE-SuSAv2

predictions are within the experimental uncertainty except for the forward angle bin that

is overestimated by the GENIE-SuSAv2 and ED-RMF models. However, recent work by

the MicroBooNE collaboration [126] shows a cos θl distribution that is reproduced correctly

by different neutrino generators. This suggests that the discrepancy observed in Fig. 5·14

at small muon scattering angles might be due to the use of an old version of the GENIE

configuration that accounts for efficiency corrections and beam-induced backgrounds.
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Figure 5·13: MicroBooNE 1µCC0π1p semi-inclusive νµ−40Ar cross sections as function
of the muon and proton momenta and proton polar scattering angle. All curves include the
2p2h and pion absorption (denoted “other”) contributions evaluated using GENIE (shown
separately). Experimental results are from [118]. The bands, drawn for the ED-RMF and
ROP models, represent the uncertainties associated with the modeling of the initial nuclear
state. The χ2/d.o.f. ratio is given in brackets in the legend of each distribution.
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Figure 5·14: MicroBooNE 1µCC0π1p semi-inclusive νµ−40Ar cross sections as function
of the muon scattering angle. All curves include the 2p2h and pion absorption (denoted
“other”) contributions evaluated using GENIE (shown separately). Experimental results
were taken from [119]. The bands drawn for the ED-RMF and ROP models are related with
the uncertainties associated with the modeling of the initial nuclear state. The χ2/d.o.f.
ratio is given in brackets in the legend of each distribution.

5.3.4 1µCC0π1p: Reconstructed Eν and Q2

In Fig. 5·15, we also present the 1µCC0π1p predictions as function of the reconstructed

neutrino energy and Q2
CCQE, which are defined as follows [119]

Ecal
ν = El + TN + 40 MeV ,

Q2
CCQE =

(
Ecal

ν − El

)2 − (k− k′)
2
, (5.6)

where the argon binding energy is assumed to be 40 MeV. Both RDWIA calculations tend to

underestimate (ROP) or overestimate (ED-RMF) the measurements as function of Q2
CCQE,

being the ED-RMF prediction closer to data in the bin that excludes forward muon angles,

i.e. −0.65 < cos θl < 0.8. In the case of the cross section as function of Ecal
ν , all the models

overpredict the data in the tail of the distribution (large Ecal
ν -values). Given that a good
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description of Ecal
ν requires a description of the fully exclusive final state (including very low

momentum hadrons below detection threshold), the poor agreement is unsurprising.
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Figure 5·15: MicroBooNE 1µCC0π1p semi-inclusive νµ−40Ar cross sections as function
of Q2

CCQE and Ecal
ν . All curves include the 2p2h and pion absorption (denoted “other”)

contributions evaluated using GENIE (shown separately). Experimental results are
from [118]. The bands, drawn for the ED-RMF and ROP models, represent the uncertainties
associated with the modeling of the initial nuclear state. The covariance matrix is not
available for the cross section as function of these variable, therefore it is not possible to
calculate the χ2 values.
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Chapter 6

Summary and conclusions

The discovery of neutrino oscillations opened a new frontier in particle physics. Past,

ongoing, and forthcoming experiments are dedicated to unraveling the mechanisms responsible

for neutrino oscillations by measuring the physical parameters governing this phenomenon.

As for now, the neutrino mass hierarchy remains unknown, yet it is an important physical

information. Additionally, neutrino oscillations have hinted at the existence of charge-parity

violation within the lepton sector. To determine the presence of such violation, a fundamental

parameter of the PMNS paradigm needs to be measured. Presently, accelerator-based

neutrino experiments are actively gathering data, while new experiments are in development,

all geared towards quantifying the degree of CP violation present in neutrino oscillations.

One of the main limiting systematic errors in neutrino oscillation physics comes from our

limited knowledge of neutrino-nucleus interactions. To help to constrain nuclear effects

for the modeling of neutrino-nucleus interactions and improve the reconstruction of the

neutrino energy for oscillation experiments, in this thesis we have studied semi-inclusive

neutrino interactions with complex nuclei at intermediate lepton energies, i .e., neutrino

beam energies ranging from 0.5 up to 10 GeV. Due to the kinematics of the particles involved

and the complexity of the interaction, we have developed a fully relativistic and quantum

mechanical model able to describe not only inclusive but also semi-inclusive electron and

neutrino reactions with complex nuclei.

Although there are multiple neutrino-nucleus interaction mechanisms, the focus of this
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thesis has been the description of quasielastic scattering of an incoming neutrino by nuclei

and the detection in coincidence of a lepton and an ejected proton, also known as one-

proton knockout process. The study of this process can be used, with the right selection

of experimental observables, to identify relevant nuclear effects related to both the initial

state dynamics and to final-state interactions (FSI), as well as to the influence of two-

particle-two-hole excitations. After describing the general kinematics of the reaction, we

have provided the expressions of the flux-averaged sixth-differential CC neutrino-nucleus

cross sections in the plane-wave impulse approximation (PWIA) for different nuclear models,

namely the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM), the

natural orbitals (NO) shell model and the spectral function model (SF). The results in

PWIA show that RFG, the simplest approach considered, differs completely from the two

shell-based models, IPSM and NO. Not only the shape of the semi-inclusive cross section is

totally different, without any sub-shell structure, but also its magnitude and behavior with

the kinematic variables, particularly, with the azimuthal angle of the outgoing nucleon ϕL
N .

On the contrary, IPSM and NO lead to rather similar results showing only some discrepancies

in the low missing momentum region because of the different wave-functions used to construct

the momentum distributions.

Aiming to give a state-of-the-art description of the quasielastic contribution of the one-

proton knockout process, we have included FSI using the relativistic distorted-wave impulse

approximation (RDWIA) framework. Additionally, for the description of the initial nuclear

state, we have used the relativistic mean field (RMF) model extended to include effects

beyond the mean-field approximation, like the depletion of the occupation of the shell-model

states and the appearance of nucleons at higher missing-energies due to nucleon-nucleon

correlations, using the SF model as reference. Within RDWIA, two different approaches to

describe FSI were discussed: on one hand, the relativistic optical potential (ROP) model

which uses complex phenomenological potentials fitted to reproduce elastic proton-nucleus
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scattering data; and on the other hand, an extension of the RMF model called energy-

dependent relativistic mean field (ED-RMF) model that preserves orthogonality for small

values of the proton momentum and improves the agreement with inclusive electron and

neutrino scattering data.

The RDWIA approach was used to generate theoretical predictions to compare with

experimental semi-inclusive measurements performed by T2K, MINERνA and MicroBooNE

collaborations using 12C and 40Ar nuclei as targets. In the specific case of MicroBooNE,

the cross-section measurements were collected using both νµ and νe beams. Although the

quasielastic scattering is the dominant contribution in the energy range that has been studied,

additional contributions beyond the quasielastic need to be included to compare with the

cross-section measurements. These contributions, the two-particle-two-hole (2p2h) and pion

production and reabsorption, have been included based on the predictions of GENIE neutrino

event generator. Additionally, the quasielastic predictions from the inclusive model SuSAv2

implemented in GENIE were also included in the comparison with the data.

Overall, we have seen that the predictions based on the RDWIA approach match or

improve the agreement of the GENIE-SuSAv2 model with the 12C semi-inclusive data measured

by T2K and MINERνA collaborations. In particular, the microscopic calculation based on

the ED-RMF model improves the agreement with the experimental results at forward lepton

angles, i.e. low momentum and energy transfer, where scaling violations and low-energy

effects not included in the SuSAv2 model are relevant.

The detection in coincidence of two particles in the final state, a lepton and the ejected

proton, opens the possibility of extracting cross sections as function of variables that measure

correlations between both detected particles. These can help to explore better different

nuclear effects like initial-state physics, FSI or 2p2h. For instance, the transverse kinematic

imbalance (TKI) δpT is particularly sensitive to the model used for the initial nuclear state,

therefore realistic models of the nuclei, like the RMF model, are needed in order to describe



112

correctly this distribution. The tails of the distributions as function of δpT as well as

the inferred variable |∆p|, exclusively measured by T2K, can help to explore the size and

shape of the 2p2h contribution. The |∆p| distribution is especially interesting for forward

muon scattering angles because of the clear differences between the high and low muon

momentum cases, with the former enhancing the relative 2p2h contribution over the latter.

It is important to point out the limitations in the predictive power for nucleon kinematics

of the implementation of the SuSAv2 2p2h model within GENIE, as well as of the pion

absorption contribution, that are included in all the comparisons with experimental data

presented in this thesis. It is shown that different models of the 2p2h channel can yield

very different semi-inclusive cross-section predictions for this channel, therefore the impact

of the factorization approximation used to generate semi-inclusive predictions from inclusive

models implemented in GENIE, or any other neutrino event generator that uses the same

approximations, and the inconsistencies introduced by using different nuclear models need

to be studied carefully.

In addition to the 12C cross sections, we have also analyzed the semi-inclusive νµ−40Ar

and νe−40Ar cross section data measured by the MicroBooNE collaboration. We have

constructed a SF model for neutrons on argon based on RMF results, phenomenology

and exclusive (e, e′p) measurements. Also, the RDWIA calculation is performed taking

into account conservative uncertainties associated with the modeling of the SF used for the

description of the initial state. Among the two RDWIA approaches considered in this work,

the ROP model provides the best overall agreement with data for both CC0πNp and CC0π1p

topologies, although the former presents large uncertainties. It is worth mentioning in the

CC0π1p case the accordance between the ROP predictions and data as function of the muon

and proton kinematics, except for the forward muon scattering angles where the reported

very low data point appears not to be present in subsequent analyses.

Finally, there are ongoing efforts from different experimental collaborations to improve
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the measurements of more neutrino-nucleus exclusive channels, like the one-proton knockout

process. For example, the upgraded version of the T2K near detector ND280 with improved

reconstruction capabilities will be able to detect protons with much lower momentum, hence

we can expect much more precise measurements of interactions with proton production that

will require models able to predict hadrons kinematics like the RDWIA. Also, the majority

of the neutrino event generators simulate FSI using semi-classical cascade models. However,

recent studies suggest that this framework only provides reliable predictions for nucleons

with momentum above 200 MeV, while the optical potential approach produces more sensible

results. This could justify investigating in the future how to implement in neutrino event

generators more exclusive models and more sophisticated descriptions of the initial state

that go beyond a simple Fermi gas, which would improve the treatment of semi-inclusive

reactions by neutrino event generators.
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Appendix A

Single nucleon hadronic tensor in PWIA

In this appendix a detailed derivation of the single-nucleon hadronic tensor in PWIA is

presented. Since the main difference between the RPWIA and PWIA is the inclusion of

both positive- and negative-energy Dirac spinors, the positive-energy projector involving the

free Dirac spinor u (p, s) can be used in the initial and final nucleon states to obtain

4m2
NWµν = Tr

[(
/PN +mN

)
Ĵµ
N

(
/P +mN

)
Ĵν
N

]
, (A.1)

where P µ
N = (EN ,pN) and P

µ
=

(
E,p

)
are on-shell 4-momentum corresponding to the

final and initial nucleons, respectively, and Ĵµ
N is the weak nucleon current operator. As

discussed in several works[59, 127, 128], the choice of the vector part of the current operator

Ĵµ
N = Ĵµ is to some extent arbitrary because of the off-shell character of the bound nucleons.

This affects the specific form of the current operator that includes also the dependence with

the (off-shell) nucleon structure given through its form factors. In what follows we simplify

this complex problem by restricting ourselves to the two usual prescriptions for the vector

current [127],

[
Ĵµ

]
CC2

= F1γ
µ +

iF2

2mN

σµνQν[
Ĵµ

]
CC1

= (F1 + F2) γ
µ − F2

2mN

(
P + PN

)µ
, (A.2)
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with F1 and F2 the isovector nucleon form factors, 2σµν = i [γµ, γν ] and Qν the 4-momentum

transferred. The current operator CC1 can be obtained from the CC2 operator by replacing

Qν with Qν =
(
PN − P

)
ν
and using the Gordon decomposition, i .e. assuming that the initial

and final nucleons satisfy the free Dirac equation, where one fulfills the identity

u(pN)iσ
µν(PN − P )νu(p) = u(pN)

[
2mNγ

µ − (PN + P )µ
]
u(p). (A.3)

Notice that in the case of the initial nucleon being bound in the target nucleus, the two

prescriptions give different nuclear responses while in the case of plane waves they are

completely equivalent. Let us consider the case of the CC2 weak single-nucleon hadronic

current given by

Ĵµ =

(
F1γ

µ +
iF2

2mN

σµαQα +GAγ
µγ5 +

GP

2mN

γ5Qµ

)
, (A.4)

with the isovector nucleon form factors given by [129]. A dipole form with cut-off mass

MA = 1.05 GeV is assumed for the axial form factor (GA), while the pseudoscalar form

factor (GP ) can be related to the axial form factor assuming a pion-pole dominance and

using the partial conservation of the axial current [130]. Inserting the expression of the CC2

single-nucleon hadronic current in (A.1) gives the following single nucleon hadronic tensor

4m2
NWµν = Tr

[(
/PN +mN

)(
F1γ

µ +
iF2

2mN

σµαQα +GAγ
µγ5 +

GP

2mN

γ5Qµ

)
(
/P +mN

)(
F1γ

ν − iF2

2mN

σνβQβ +GAγ
νγ5 − GP

2mN

γ5Qν

)]
, (A.5)

where we have used the relations γ5 = γ0γ5
+
γ0 = −γ5, γµ = γµ and σµν = σµν . Eq. (A.5)

can be divided in three different contributions: vector-vector Wµν
V V , axial-axial W

µν
AA and

vector-axial Wµν
V A, depending on which specific components of the weak hadronic current are

used to build the tensor. In what follows the detailed calculation step by step of the full
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single hadronic tensor for the CC2 current is presented. Starting with the vector-vector part

4m2
NW

µν
V V = Tr

[(
/PN +mN

)(
F1γ

µ +
iF2

2mN

σµαQα

)(
/P +mN

)(
F1γ

ν − iF2

2mN

σνβQβ

)]

and knowing that σµν = i (γµγν − gµν), then

4m2
NW

µν
V V = Tr

[(
/PN +mN

)(
F1γ

µ − F2

2mN

(γµγαQα −Qµ)

)(
/P +mN

)
F1γ

ν

]
Aµν

+

Tr

[(
/PN +mN

)(
F1γ

µ − F2

2mN

(γµγαQα −Qµ)

)(
/P +mN

) F2

2mN

(
γνγβQβ −Qν

)]
Bµν

.

Taking into account that Tr
(
γaγb

)
= 4gab, Tr

(
γaγbγcγd

)
= 4

(
gabgcd − gacgbd + gadgbc

)
,

Tr
(
gab

)
= Tr (14) g

ab = 4gab and that the trace of an odd number of gamma matrices is

zero, then

Aµν = F 2
1Tr

((
/PN +mN

)
γµ

(
/P +mN

)
γν
)
− F1F2

2mN

Tr

((
/PN +mN

)
(γµγαQα −Qµ)(

/P +mN

)
γν
)

= 4F 2
1

([
m2

N − PN · P
]
gµν + P µ

NP
ν
+ P ν

NP
µ
)
+ 2F1F2

(
��������
Qµ

(
PN + P

)ν
−Q

µ
Qν −

��������
Qµ

(
PN + P

)ν
+Q ·Qgµν

)

and

Bµν =
F1F2

2mN

Tr
[(
/PN +mN

)
γµ

(
/P +mN

) (
γνγβQβ −Qν

)]
Bµν

1

−

F 2
2

4m2
N

Tr
[(
/PN +mN

)
(γµγαQα −Qµ)

(
/P +mN

) (
γνγβQβ −Qν

)]
Bµν

2

.
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Expanding both terms, one finds that

Bµν
1 =

F1F2

2mN

[
mNTr

(
/PNγ

µγν /Q
)
−mNTr

(
/Pγµ

)
Qν −mNTr

(
/PNγ

µ
)
Qν+

mNTr
(
γµ /Pγν /Q

)]
= 2F1F2

[
����P µ

NQ
ν −QµP ν

N + PN ·Qgµν −����
P

µ
Qν −

����P µ
NQ

ν +����
P

µ
Qν

− P ·Qgµν +QµP
ν
]
= 2F1F2

(
Q ·Qgµν −QµQ

ν)
and

Bµν
2 =

F 2
2

4m2
N

[
Tr

[ (
/PN +mN

)
(γµ /Q−Qµ)

(
/P +mN

)
γν /Q

]
Cµν

− Tr
[ (
/PN +mN

)
(γµ /Q−Qµ)

(
/P +mN

)
Qν

]]
Dµν

.

Since the trace of a 6-γ product can be expressed as 4-γ products as follows

Tr
(
γκγλγµγνγργσ

)
= gκλ ×Tr (γµγνγργσ)− gκµ ×Tr

(
γλγνγργσ

)
+ gκν ×Tr

(
γλγµγργσ

)
−

gκρ × Tr
(
γλγµγνγσ

)
+ gκσ × Tr

(
γλγµγνγρ

)
, we have

Cµν = Tr

[
/PNγ

µ /Q
(
/P +���mN

)
γν /Q

]
+m2

NTr

[
γµ /Qγν /Q

]
− Tr

[ (
/PN +mN

)
Qµ

(
/P +mN

)
γν /Q

]
= 4

[
P µ
N

(
�����
Q · PQν −�����

Q · PQν +Q2P
ν)− PN ·Q

(
P

µ
Qν − P ·Qgµν +QµP

ν)
+ PN · P

(
2QµQν

−Q2gµν
)
− P ν

N

(
QµP ·Q− P

µ
Q2 +QµP ·Q

)
+ PN ·Q

(
QµP

ν − P
µ
Qν + P ·Qgµν

)
+m2

N(
2QµQν −Q2gµν

)
−

(
PN · PQµQν −QµP ν

NP ·Q+QµP
ν
PN ·Q+m2

NQ
µQν

) ]
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and

Dµν = Tr
(
/PNγ

µ /Q/P
)
Qν − Tr

(
/PN

/P
)
QµQν +m2

NTr (γ
µ /Q)Qν −m2

NTr (14x4)Q
µQν = 4

[
− PN ·QP µ

Qν + P µ
NQ

νP ·Q+�������
PN · PQµQν −�������

PN · PQµQν +�����
m2

NQ
µQν −�����

m2
NQ

µQν

]
.

Using that Q
2
=

(
PN − P

)2
= 2m2

N −2PN ·P , then the vector-vector component of the CC2

single-nucleon hadronic tensor can be reduced to

m2
NW

µν
V V = F 2

1

(
P

µ
P ν
N + P

ν
P µ
N +

Q
2

2
gµν

)
+ F1F2

(
Q ·Qgµν − QµQ

ν
+QνQ

µ

2

)
+

F 2
2

4m2
N

[
PN ·Q(P µ

Qν + P
ν
Qµ) + P ·Q(P µ

NQ
ν + P ν

NQ
µ)−Q2(P ν

NP
µ

+ P µ
NP

ν
)−

(
2m2

N − Q
2

2

)
QµQν + gµν

(
2m2

NQ
2 − Q2Q

2

2
− 2(PN ·Q)(P ·Q)

)]
.

(A.6)

Following with the axial-axial part of the tensor we have

4m2
NW

µν
AA = Tr

[(
/PN +mN

)(
GAγ

µγ5 +
GP

2mN

γ5Qµ

)(
/P +mN

)(
GAγ

νγ5 − GP

2mN

γ5Qν

)]
.

Since γ5 anti-commutes with γµ and (γ5)2 = 14

4m2
NW

µν
AA = −G2

ATr
[(
/PN +mN

)
γµ

(
−/P +mN

)
γν
]
− GAGP

2mN

(
Tr

[ (
/PN +mN

)
γµ(

−/P +mN

)
Qν

]
+ Tr

[ (
/PN +mN

)
Qµ

(
−/P +mN

)
γν
])

− G2
P

4m2
N

Tr

[ (
/PN +mN

)
Qµ

(
−/P +mN

)
Qν

]
,
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which is reduced to

m2
NW

µν
AA = G2

A

[
P µ
NP

ν
+ P ν

NP
µ − gµν

(
2m2

N − Q
2

2

)]
− G2

PQ
2

8m2
N

QµQν − GAGP

2

(
Q

µ
Qν +Q

ν
Qµ

)
.

(A.7)

Finally, the vector-axial component of the hadronic tensor is

4m2
NW

µν
V A = Tr

[(
/PN +mN

)(
F1γ

µ +
iF2

2mN

σµαQα

)(
/P +mN

)(
GAγ

νγ5 − GP

2mN

γ5Qν

)]
Aµν

+

Tr

[(
/PN +mN

)(
GAγ

µγ5 +
GP

2mN

γ5Qµ

)(
/P +mN

)(
F1γ

ν − iF2

2mN

σνβQβ

)]
Bµν

,

with the first term further divided into

Aµν = F1 Tr

[(
/PN +mN

)
γµ

(
/P +mN

)(
GAγ

νγ5 − GP

2mN

γ5Qν

)]
Aµν

1

+

iF2

2mN

Tr

[(
/PN +mN

)
σµαQα

(
/P +mN

)(
GAγ

νγ5 − GP

2mN

γ5Qν

)]
Aµν

2

.

Knowing that Tr
(
γ5γκγλγµγν

)
= −4iϵκλµν , where ϵκλµν is the totally antisymmetric rank -

4 Levi-Civita tensor, Tr (γ5γµγν) = 0 and that the trace of γ5 multiplied by any odd

number of γµ matrices is zero, then to the Aµν
1 term defined above only contributes one

trace Tr
(
/PNγ

µ /Pγνγ5
)
proportional to GA and Aµν

2 is given by

Aµν
2 = i

[
mNGA

(
Tr

(
/PNγ

µγαγνγ5
)
+ Tr

(
γµγα /Pγνγ5

))
− GP

2mN

Tr
(
γ5 /PNγ

µγα /P
)
Qν

]
Qα,



121

where we have used that σµα = i (γµγα − gµν) to reduce the number of traces that are not

zero. Then we have that

Aµν = −4i

[
F1GAϵ

αµβνPNαP β +
F2

2mN

(
−GAmNϵ

µναβ
(
P + PN

)
β
+

GP

2mN

ϵβµασPNβP σQ
ν

)
Qα

]
.

Equivalently, the Bµν term is given by

Bµν = −4i

[
F1GAϵ

αµβνPNαP β +
F2

2mN

(
−GAmNϵ

µναβ
(
P + PN

)
β
− GP

2mN

ϵβνασPNβP σQ
µ

)
Qα

]
.

Therefore, the final expression of the vector-axial component of the CC2 hadronic tensor is

m2
NW

µν
V A = i

[
GAϵ

µναβ
(
2F1PNαP β − F2

(
PN + P

)
α

)
+
GPF2

4m2
N

(
−Qµϵναβσ +Qνϵµαβσ

)
PNαP σ

]
Qβ.

(A.8)

For completeness, we also present here the expression of the single nucleon hadronic tensor

calculated using the CC1 current. Following a similar procedure to the one used above for

CC2, for the CC1 case the vector-vector and vector-axial components of the hadronic tensor

are given by

m2
NW

µν
V V =

(
F1 + F2

)2(
P

µ
P ν
N + P

ν
P µ
N +

Q̄2

2
gµν

)
−
[
F2

(
F1 + F2

)
− F 2

2

2

(
1− Q

2

4m2
N

)](
P + PN

)µ(
P + PN

)ν
(A.9)

and

m2
NW

µν
V A = 2iGA

(
F1 + F2

)
ϵαβµνPNαP β. (A.10)
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Appendix B

Single nucleon responses in PWIA

As in the case of exclusive (e, e′p) scattering in PWIA [59, 131, 132], the semi-inclusive

neutrino-nucleus cross section in PWIA can be reduced to the neutrino-nucleon cross section

times a spectral function, describing the probability of finding a nucleon in the target nucleus

with certain energy and momentum which should be compatible with the kinematics of the

process. This factorization property is broken in general when FSI effects or other ingredients

beyond the impulse approximation are introduced. Moreover, even in RPWIA, i.e., the

plane-wave approach but the bound nucleons wave functions are the full relativistic solutions

of the Dirac equation in presence of potentials (positive and negative energy components

included), factorization is lost. In general, the elementary neutrino-nucleon cross section

is proportional to the contraction of the leptonic Lµν and the hadronic Wµν tensors. In

Appendix A we have obtained in detail the single nucleon hadronic tensor under PWIA for

both CC1 and CC2 prescriptions of the weak nucleon current. The weak leptonic current

for CC processes is defined as J l
µ = ul (k

′, s′) (γµ − χγµγ
5)uνl (k, s), where ul and uνl are

the free Dirac spinors that describe the final lepton and the initial neutrino and χ = 1(−1)

corresponds to neutrino (antineutrino) processes. The leptonic tensor constructed from this

current reads,

Lµν = KµK
′
ν +KνK

′
µ −K ·K ′gµν − iχϵµναβK

αK ′β , (B.1)
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with Kµ and K ′
µ the 4-momenta of the neutrino and the final lepton. Defining a coordinate

system where the three momentum q is along the z-axis (see Fig. B·1), then the 4-momenta

of the initial and final nucleons and leptons can be expressed as

P µ
N =(EN , pN sin θN cosϕN , pN sin θN sinϕN , pN cos θN) ,

P
µ
=
(
E, pN sin θN cosϕN , pN sin θN sinϕN , pN cos θN − q

)
,

Kµ =

(
k,

−kk′ sin θl
q

, 0,−k(k − k′ cos θl)

q

)
,

K ′
µ =

(
El,−

kk′ sin θl
q

, 0,
k′(k′ − k cos θl)

q

)
. (B.2)

Also, the transferred 4-momenta take trivial forms in this coordinate system: Qµ = (ω, 0, 0, q)

and Q
µ
= (ω, 0, 0, q), with ω = EN − E. The main advantage of using this coordinate

system with the momentum transfer fixed on the z-axis is the possibility of expressing the

contraction of the leptonic and hadronic tensors as the linear combination of 10 nuclear

response functions, defined as specific components of the hadronic tensor, and factorizing

the ϕN dependence, which is simply reduced to cosϕN or cos 2ϕN terms. The contraction of

Scattering
plane

Reaction plane z

x

y

x

x′

k

k′

θl

q

pN

θN

ϕN

Figure B·1: Definition of the coordinate system where the momentum transfer q lies on
the z-axis. Notice that the leptons are contained in the x-z plane (scattering plane) and the
plane containing the ejected nucleon with momentum pN and polar angle θN forms an angle
ϕN with the scattering plane.
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the hadronic and leptonic tensors, a Lorentz invariant that has the same value in any system

of reference, can be expressed as [49]

F2
χ =

2

v0
LµνWµν = VCC(R

CC
V V +RCC

AA) + 2VCL(R
CL
V V +RCL

AA) + VLL(R
LL
V V +RLL

AA)

+ VT (R
T
V V +RT

AA) + VTT (R
TT
V V +RTT

AA) cos 2ϕN + VTC(R
TC
V V +RTC

AA) cosϕN

+ VTL(R
TL
V V +RTL

AA) cosϕN + χ
(
VT ′RT ′

V A + VTC′RTC′

V A cosϕN + VTL′RTL′

V A cosϕN

)
, (B.3)

where υ0 = (k + El)
2 − q2. The different weak hadronic responses are given by specific

components of the single nucleon hadronic tensor Wµν

RCC = W00,

RCL = W03,

RLL = W33,

RT = W11 +W22,

RTT = W22 −W11,

RTC = 2
√
2W01,

RTL = 2
√
2W31,

RT ′
= 2iW12,

RTC′
= 2

√
2iW02,

RTL′
= 2

√
2iW32, (B.4)
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and the leptonic factors are specific components of the leptonic tensor given in Eq. (B.1)

VCC =
2

υ0
L00,

VCL =
2

υ0
L03,

VLL =
2

υ0
L33,

VT =
L11 + L22

υ0
,

VTT =
L22 − L11

υ0
,

VTC =
2√
2υ0

L01,

VTL =
2√
2υ0

L31,

VT ′ = − 2i

υ0
L12,

VTC′ = − 2i√
2υ0

L02,

VTL′ = − 2i√
2υ0

L32. (B.5)

Notice that due to momentum conservation q = pN − p the x and y components of the

3-momenta of the initial and ejected nucleon are equal because q only has z component.

Exploiting this, we can derive the ϕN dependence of the invariant F2
χ as follows: the

responses that contain both 0 and 3 indices (RCC , RCL and RLL) cannot have ϕN dependence

because they depend on the first and last components of the 4-momenta (the energy and

the projection on the z-axis) that do not have any ϕN dependence. The response that

has both 1 and 2 indices, i .e. RT ′
, is calculated only with the vector-axial component

of the hadronic tensor. As it can be seen in Eq. (A.8) and Eq. (A.10), this response is

proportional to ϵ12αβPNαP β or ϵ12αβ
(
PN + P

)
α
Qβ for both CC1 and CC2 currents, which

again involve components of the 4-momenta that are ϕN−independent. The RT response

is constructed by the sum of the 11 and 22 components of the hadronic tensor and the
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only dependence on ϕN is introduced by terms proportional to P
1
P 1
N + P

2
P 2
N , or using

Eq. (B.2), proportional to p2N sin2 θN
(
cos2 ϕN + sin2 ϕN

)
= p2N sin2 θN , hence R

T does not

present any ϕN dependence. The same argument can be used for RTT = W22 −W11, where

the difference, instead of the sum as in the previous case, leads the response to be proportional

to p2N sin2 θN
(
cos2 ϕN − sin2 ϕN

)
= p2N sin2 θN cos 2ϕN . The terms that do not contain this

angular dependence are zero or are eliminated when the subtraction is performed. The

responses RTC and RTL have ϕN dependence introduced by terms proportional to P 1
N or P

1

thus, they are proportional to pN sin θN cosϕN . Finally, for the RTC′
and RTL′

responses

only the terms proportional to pN sin θN cosϕN survive, with the cross terms that depend on

cosϕN sinϕN eliminated due to the antisymmetry properties of the Levi-Civita tensor.

Although we have used the special properties found by considering a coordinate system

with direction of q fixed in the z-axis, from the point of view of an accelerator-based neutrino

experiment it is common to have fixed the direction of the incoming neutrino k instead.

This coordinate system, presented in Fig. 2·3 and used to generate cross sections that can be

directly compared with experimental measurements, can be related with the one with fixed

direction of q, shown in Fig. B·1, by a rotation in the scattering plane of an angle

cos θq =
k − k′ cos θl

q
, (B.6)

which is the angle between q and k. The angular variables identifying the ejected nucleon

in both coordinate systems can be related using the following expressions

cos θN = cos θLN cos θq − cosϕL
N sin θLN sin θq , (B.7)

sin θN =
√

1− cos2 θN , (B.8)

cosϕN =
cosϕL

N sin θLN cos θq + cos θLN sin θq
sin θN

, (B.9)

sinϕN =
sinϕL

N sin θLN
sin θN

. (B.10)
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To conclude, since we already found out the complete expression of the single nucleon

hadronic current in Appendix A, in what follows we present the exact analytic expressions,

for the CC2 current, of all the hadronic and leptonic responses calculated as defined in

Eq. (B.4) and Eq. (B.5). Since we have already derived the entire ϕN dependence of the

invariant, the 4-momenta defined in Eq. (B.2) will be evaluated at ϕN = 0 to simplify the

calculations. Taking into account the following definitions

p⊥ = pN sin θN ,

p∥ = pN cos θN − q ,

δ = EN − E − ω , (B.11)

and that the relevant Lorentz invariants are

P ·Q = −Q
2

2
− δ2

2
− δ(E + ω) ,

PN ·Q =
Q2

2
− δ2

2
− δE ,

Q
2
= Q2 + δ2 + 2ωδ ,

(B.12)

the single nucleon hadronic responses are

8m4
NR

CC
V V = 4E

2
(4F 2

1m
2
N + F 2

2 |Q2|) + 4Eω(4F 2
1m

2
N + F 2

2 |Q2|)− 4F 2
1m

2
N |Q2|

− 8F1F2m
2
N(ω

2 + |Q2|) + F 2
2 (ω

2|Q2| − 4m2
N(ω

2 + |Q2|))

− 2δ(2E + ω)(F 2
2 (2Eω + ω2 − |Q2|)− 4F 2

1m
2
N) + δ2(−4F 2

2E
2

− 12F 2
2ωE + 4F 2

1m
2
N + F 2

2 (|Q2| − 5ω2))− 4δ3F 2
2 (E + ω)− δ4F 2

2 , (B.13)
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8m4
NR

CC
AA = 16E

2
G2

Am
2
N + 16EG2

Am
2
Nω − 8GAGPω

2m2
N

− 4G2
Am

2
N(4m

2
N + |Q2|) +G2

Pω
2|Q2|+ δ(16EG2

Am
2
N

+ 8G2
Am

2
Nω − 8GAGPm

2
Nω − 2G2

Pω
3) + δ2(4G2

Am
2
N −G2

Pω
2) , (B.14)

8m4
NR

CL
V V = 2E(2p∥ + q)(4F 2

1m
2
N + F 2

2 |Q2|) + ω(8F 2
1m

2
Np∥

− 8F1F2qm
2
N + F 2

2 (−4m2
Nq + 2p∥|Q2|+ q|Q2|))

+ δ

(
F 2
2

[
−(4E

2
q + Eω(4p∥ + 6q) + 2ω2(p∥ + q)− |Q2|(2p∥ + q))

]
+ 8F 2

1m
2
Np∥ − 4F1F2qm

2
N

)
− δ2F 2

2 (4Eq + 2ωp∥ + 3ωq)− δ3F 2
2 q , (B.15)

8m4
NR

CL
AA = 8EG2

Am
2
N(2p∥ + q) + ω(8G2

Am
2
Np∥ − 8GAGP qm

2
N +G2

P q|Q2|)

+ δ(8G2
Am

2
Np∥ − 4GAGPm

2
Nq − 2G2

Pω
2q)− δ2G2

Pωq , (B.16)

8m4
NR

LL
V V = F 2

1 (16m
2
Np∥(p∥ + q) + 4m2

N |Q2|)− 8F1F2m
2
Nω

2 + F 2
2

[
4p∥q(ω(E + ω)

− q(p∥ + q)) + |Q2|((2p∥ + q)2 + 4m2
N − |Q2|+ 2Eω)− 4m2

Nq
2
]

+ δω(−8F 2
1m

2
N − 8F1F2m

2
N + F 2

2

[
2q(2p∥ + q)− 4ω2 − 8ωE − 4E

2
]
)

− δ2(4F 2
1m

2
N + F 2

2

[
6ω(E + ω)− ω2

]
)− 2F 2

2 δ
3ω ,

(B.17)

8m4
NR

LL
AA = G2

A(16m
2
Np∥(p∥ + q) + 16m4

N + 4m2
N |Q2|) +G2

P q
2|Q2| − δ(2G2

P q
2ω

+G2
A8m

2
Nω)− δ2(4G2

Am
2
N +G2

P q
2)− 8m2

NGAGP q
2 , (B.18)



129

8m4
NR

T
V V = 16F1F2m

2
N |Q2|+ 4F 2

2 (2m
2
N + p2⊥)|Q2|+ 8F 2

1m
2
N(2p

2
⊥ + |Q2|)

− 16δF1(F1 + F2)m
2
Nω + δ2(8F 2

2E
2
+ 8F 2

2ωE

− 8F 2
1m

2
N − 2F 2

2 |Q2|) + 4δ3F 2
2 (2E + ω) + 2δ4F 2

2 , (B.19)

8m4
NR

T
AA = 8G2

Am
2
N(4m

2
N + 2p2⊥ + |Q2|)− 16δG2

Am
2
Nω − 8δ2G2

Am
2
N , (B.20)

8m4
NR

TT
V V = −4p2⊥(4F

2
1m

2
N + F 2

2 |Q2|) , (B.21)

8m4
NR

TT
AA = −16G2

Am
2
Np

2
⊥ , (B.22)

8m4
NR

TC
V V = 4

√
2p⊥(2E + ω)(4F 2

1m
2
N + F 2

2 |Q2|) + 4
√
2δp⊥(F

2
2 (−2Eω

− ω2 + |Q2|) + 4F 2
1m

2
N)− 4δ2

√
2F 2

2ωp⊥ , (B.23)

8m4
NR

TC
AA = 16

√
2G2

Am
2
Np⊥(2E + ω) + 16

√
2δG2

Am
2
Np⊥ , (B.24)

8m4
NR

TL
V V = 4

√
2p⊥(2p∥ + q)(4F 2

1m
2
N + F 2

2 |Q2|)− 4
√
2δF 2

2 p⊥q(2E + ω)− 4
√
2δ2F 2

2 p⊥q ,
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8m4
NR

TL
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√
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Am
2
Np⊥(2p∥ + q) , (B.26)
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8m4
NR

T ′

V A = −32GAm
2
N(F1 + F2)(ωp∥ − Eq)− 16δGAm

2
N(2F1p∥ − F2q) , (B.27)

8m4
NR

TC′

V A = 32
√
2GAm

2
Np⊥q(F1 + F2) + 4

√
2δF2GPωp⊥q , (B.28)

8m4
NR

TL′
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√
2GAp⊥ωm

2
N(F1 + F2) + 4

√
2p⊥δ(8GAF1m

2
N +GPF2q

2) , (B.29)

and the leptonic responses are

VCC = 1− ∆1

υ0
, (B.30)

VCL = −1

q

(
ω +

∆4κ

υ0

)
, (B.31)

VLL =
ω2

q2
+

∆1

υ0
+

∆2
4

υ0q2
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2∆4κω

q2υ0
, (B.32)
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2υ0q2

, (B.33)

VTT = −
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∆1 + |Q2|

2q2

(
1− ∆1

υ0

)
+

∆3

2q2υ0

]
, (B.34)

VTC = − 1√
2υ0

√
1 +

υ0
q2

√
∆3 + (∆1 + |Q2|)(υ0 −∆1), (B.35)
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VTL =
1√
2q2υ0

√
∆3 + (∆1 + |Q2|)(υ0 −∆1)(∆4 + ωκ), (B.36)

VT ′ =
1

υ0

(
|Q2|

√
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υ0
q2

− ∆4ω

q
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VTC′ = − 1√
2υ0

√
∆3 + (∆1 + |Q2|)(υ0 −∆1), (B.38)

VTL′ =
ω√
2qυ0

√
∆3 + (∆1 + |Q2|)(υ0 −∆1), (B.39)

with

∆1 = m2
ν +m2

l = m2
l ,

∆2 = 2kEl − 2kk′,

∆3 = 4k2k′2 − 4k2E2
l ,

∆4 = m2
l −m2

v = m2
l ,

κ = k + El,

υ0 = (k + El)
2 − q2 = ∆2 +∆1 + 4kk′ cos2

θl
2
. (B.40)
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Appendix C

Relativistic description of the nucleus: the

Relativistic Mean Field model

The relativistic mean field (RMF) model of finite nuclei [61, 62, 63] is derived from a

relativistic Lagrangian that contains mesonic and nucleonic degrees of freedom. Because

of the relatively high values of the coupling constants, the relativistic quantum field theory

of finite nuclei cannot be treated using perturbation theory. The mean field approximation,

which gives the correct solution of the field equations for high values of the nuclear density,

turns out to be a reasonable approximation for a phenomenological description of nuclei

where the parameters of the theory are adjusted to reproduce properties of the many-body

system of nuclear matter and finite nuclei rather than adjusted to nucleon-nucleon scattering

data. Compared with non-relativistic models of nuclei, for example the non-relativistic

shell model, the RMF approach starts on a more fundamental level, including explicitly the

mesonic degrees of freedom, and naturally includes relativistic effects, such as two types of

potentials (scalar and vector), a strong spin-orbit term, and saturation of nuclear matter

due to the difference between the scalar and vector densities.

Under the approximations of the RMF theory, the nucleons are considered to be point-

like particles characterized by Dirac spinors ψ. The nucleons inside a nucleus can interact by

exchanging effective point-like particles called mesons ϕm. The mesons are characterized by

their quantum numbers, their massmm, and by coupling constants gm. In a phenomenological

theory the number of these mesons, which is minimized to keep the theory simple, their
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quantum numbers, such as spin (J), isospin (T) and parity (P), the values of their masses

and coupling constants are fitted to reproduce as well as possible the experimental data.

One could use the mesons detected in free space by different experiments (π, ω, ρ, etc) to

take advantage of their known properties, however the parameters of the mesons within the

nuclear medium do not necessarily have the same values as in free space. Within the theory,

the exchange of a phenomenological scalar σ−meson with quantum numbers J = 0, T = 0

and P = +1 leads to an attractive force between nucleons, while the repulsive part of the

interaction is generated by the exchange of a vector ω−meson with quantum numbers J = 1,

T = 0 and P = −1. Additionally, the isospin dependence of the strong force is introduced by

the exchange of ρ−mesons with quantum numbers J = 1, T = 1 and P = −1. The classical

RMF Lagrangian density is given by

L = LN + Lm + LA + Lint, (C.1)

which is the sum of the free nucleons Lagrangian density

LN = ψ (iγµ∂µ −m)ψ, (C.2)

the Lagrangian for the free mesons

Lm =
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

2

(
ΩµνΩ

µν − 1

2
m2

ωωµω
µ

)
− 1

2

(
RµνR

µν − 1

2
m2

ρρµρ
µ

)
,

(C.3)

where bold indicate tensors in isospin space and the field tensors of the ω− and ρ-meson are

Ωµν = ∂µων − ∂νωµ,

Rµν = ∂µρν − ∂νρµ,
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the Lagrangian associated to the photon field A

LA = −1

2
FµνF

µν , (C.4)

with the electromagnetic field tensor Fµν = ∂µAν − ∂νAµ, and finally the part of the

Lagrangian that gives the interaction between the nucleons, the mesons and the photon

Lint = −gσψσψ − gωψγµω
µψ − gρψγµτρ

µψ − eψγµ
1+ τ3

2
Aµψ − U (σ) , (C.5)

where all the terms are linear except U(σ) = 1
3
g2σ

3 + 1
4
g3σ

4 that is necessary in order to

reproduce correctly surface properties of finite nuclei.

In the mean field approximation, i .e. in the classic limit where the mesons masses and

coupling constants are fitted to experimental data, the Euler-Lagrange equations of motion

for the Lagrangian density defined in Eq. (C.1) yield

{
γµ
(
i∂µ + gωω

µ + gρτρ
µ+e

1+ τ3
2

Aµ
)
+m+ gσσ

}
ψi = 0,

(□+mσ)σ = −gσρs − g2σ
2 − g3σ

3,

(□+mω)ω
µ = gωJ

µ,

(□+mρ)ρ
µ = gρJ

µ,

□Aµ = eJµ
e , (C.6)



135

where the index i runs up to the number of nucleons A, the currents are defined as

Jµ(x) =
A∑
i=1

ψi(x)γ
µψi(x),

Jµ(x) =
A∑
i=1

ψi(x)γ
µτψi(x),

Jµ
e (x) =

A∑
i=1

ψi

1+ τ3
2

γµψi(x), (C.7)

and the scalar density given by

ρs(x) =
A∑
i=1

ψi(x)ψi(x). (C.8)

In the static limit where the meson fields are considered time-independent and the time

dependence of the spinors ψi is given by exp(iϵit), the isotropic stationary RMF equations

are reduced to

{
− iα∇+ β(m+ S)− (ϵi − V )

}
ψi = 0,{

−∇+mσ

}
σ = −gσρs − g2σ

2 − g3σ
3,{

−∇+mω

}
ω0 = gωρv,{

−∇+mρ

}
ρ03 = gρρ3,

−∇ρ0c = eρc, (C.9)
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with the baryon, isovector and charge densities

ρv =
A∑
i=1

ψ+
i ψi

ρ3 =
A∑
i=1

ψ+
i τ3ψi,

ρc =
A∑
i=1

ψ+
i

1+ τ3
2

ψi. (C.10)

In Eq. (C.9) two radial potentials appear, one called vector potential

V (r) = gωω
0(r) + gρτ3ρ

0
3(r) + eA0(r), (C.11)

and a scalar potential

S(r) = gσσ(r), (C.12)

that behaves like a Lorentz scalar and together with the nucleon mass defines an effective

Dirac mass

m∗(r) = m+ S(r). (C.13)

The RMF equations presented in Eq. (C.9) are a set of coupled equations where the variables

are the nucleon field ψi, the mesons fields σ, ω0, ρ03 and the Coulomb field A0. These equations

are solved by iteration: starting from an initial guess for the potentials V and S, one solves

the Dirac equation for the nucleon field ψi and then this result is used to calculate the

densities ρs, ρv, ρ3 and ρc given in Eq. (C.8) and Eq. (C.10). With these results acting as

sources in Eq. (C.9), one can calculate the mesons and the Coulomb fields and a new set of

vector C.11 and scalar C.12 potentials can be obtained. The calculation starts again with
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the new values of the potentials until it converges. Different sets of the free parameters of

the model, the nucleon and mesons masses m, mσ, mω and mρ, the coupling constants of

the mesons fields, gσ, gω and gρ, and the non-linear parameters g2 and g3, are summarized in

Table C.1 together with some nuclear properties predictions like baryon density ρ0, binding

energy per particle E/A, incompressibility K which is related with the second derivative of

E/A evaluated at the saturation density, effective mass m∗/m and asymmetry parameter J

which is defined as [61]

J =
k2F

6
√
k2F +m∗2

+
1

3π2

(
gρ
mρ

)2

k3F , (C.14)

where kF is the Fermi momentum.
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Table C.1: RMF parameters [61] from different models [133, 134, 135, 136] and predictions
of different nuclear properties (see text above) for symmetric nuclear matter.

Parameter HS NL1 NL2 NLSH

m (MeV) 939 938 938 939

mσ (MeV) 520 492.25 504.89 526.059

mω (MeV) 783 795.359 780 783

mρ (MeV) 770 763 763 763

gσ 10.47 10.138 9.111 10.444

gω 13.8 13.285 11.493 12.945

gρ 4.035 4.976 5.507 4.383

g2 (fm−1) 0 -12.172 -2.304 -6.9099

g3 0 -36.265 13.783 -15.8337

ρ0 (fm−3) 0.148 0.151 0.146 0.146

E/A (MeV) -15.731 -16.426 -17.018 -16.346

K (MeV) 546.3 211.11 399.2 355.4

m∗/m 0.541 0.573 0.670 0.597

J (MeV) 34.9 43.5 45.1 36.1
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Appendix D

T2K χ2 analysis

Using the covariance matrices provided by the T2K [115] collaboration, we compute the χ2

between the predictions of the different models considered in this work and the cross section

measurements. Within this section we use the unregularised TKI measurements provided

by T2K [115], as these are more suitable for quantitative χ2 analysis. Nevertheless, it was

verified that differences in the χ2 analysis when using the regularised results are marginal.

The results are compiled in Table D.1. The large χ2 with respect to the number of degrees

of freedom for all measurements indicates a poor overall agreement, with the exception of

ROP’s good description of the 1µCC0πNp and TKI measurements. However, the low χ2

could be driven by poor agreement in a handful of outlying bins (for example, the high

muon momentum overflow bins reported by the T2K collaboration in the 1µCC0π0p results

or the muon kinematic slices with very small cross section in the IV results). To study

this, Fig. D·1 shows the evolution of the χ2 between each model and the T2K cross-section

measurements when the bins contributing the largest χ2 are progressively removed. The bin

contributing the largest χ2 is identified by re-calculating the χ2 after removing each bin (and

its corresponding rows and columns in the covariance matrix) and choosing the largest one.

The bins removed for each model are therefore different.

Fig. D·1 immediately shows that the extreme χ2-values of all the microscopic models for

the ∆θ variable are mainly caused by two bins, which indeed are associated to very small

values of the cross section (the -360 < ∆θ < -5 bin in the first two panels of Fig. 5·5 which
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are not entirely shown to improve the readability of the plot). It also shows that the ROP

and ED-RMF models are both in good agreement with the 1µCC0π0p results once ∼5 of the

worst bins are removed, many of which correspond to bins with extreme muon kinematics

for most models, and that the difference between models is reduced. Beyond some of the

extreme muon kinematic bins, it is interesting to note that large RPWIA χ2-values are driven

mostly by the forward going muon bins, which is not surprising given the strong suppressive

effect of FSI in the corresponding low momentum transfer region.

For the 1µCC0πNp and δϕT results, Fig. D·1 further shows that the preference for ROP

is not driven by only outlying bins. Conversely, the ROP preference is reduced for the other

TKI by eliminating the lowest δαT bin or the third δpT bin.

rROP ROP RPWIA ED-RMF GENIE-SuSAv2

1µCC0π0p (59) 232 127 1172 180 209

1µCC0πNp (24) 64 28 82 76 69

∆p (49) 666 373 756 773 366

∆θ (35) 1170 466 1285 1379 159

∆θ∗ (33) 129 92 152 146 123

|∆p| (49) 348 290 357 376 336

δpT (8) 38 16 60 41 36

δαT (8) 29 13 41 33 49

δϕT (8) 23 20 38 24 40

Table D.1: χ2 values for different T2K topologies and variables. The degrees of freedom
are given in brackets in the first column. ∆θ∗ means that bins 0 and 5 were eliminated (-360
< ∆θ < -5 bin in the first two panels of Fig. 5·5 which are not entirely shown to improve
the readability of the plot).
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Figure D·1: Evolution of χ2 between each model and T2K semi-inclusive cross section
measurements when the bins contributing the largest χ2 are progressively removed. For
example, the right-most points of the top left plot correspond to the total χ2 in Table D.1
(calculated using all 58 bins reported by T2K), whilst the points just to the left of them
show the χ2 value once the bin contributing the largest χ2 is removed. Points further to the
left remove more bins following the same rule.



Bibliography

[1] F. Reines and C. L. Cowan. “Detection of the Free Neutrino”. In: Phys. Rev. 92 (3
Nov. 1953), pp. 830–831. doi: 10.1103/PhysRev.92.830. url: https://link.aps.
org/doi/10.1103/PhysRev.92.830.

[2] M. Gell-Mann and A. Pais. “Behavior of Neutral Particles under Charge Conjugation”.
In: Phys. Rev. 97 (5 Mar. 1955), pp. 1387–1389. doi: 10.1103/PhysRev.97.1387.
url: https://link.aps.org/doi/10.1103/PhysRev.97.1387.

[3] B. Pontecorvo. “Neutrino Experiments and the Problem of Conservation of Leptonic
Charge”. In: Soviet Journal of Experimental and Theoretical Physics 26 (May 1968),
p. 984.

[4] Y. Fukuda et al. “Measurement of the Flux and Zenith-Angle Distribution of Upward
Throughgoing Muons by Super-Kamiokande”. In: Phys. Rev. Lett. 82 (13 Mar. 1999),
pp. 2644–2648. doi: 10.1103/PhysRevLett.82.2644. url: https://link.aps.
org/doi/10.1103/PhysRevLett.82.2644.

[5] Y. Fukuda et al. “Evidence for Oscillation of Atmospheric Neutrinos”. In: Phys. Rev.
Lett. 81 (8 Aug. 1998), pp. 1562–1567. doi: 10.1103/PhysRevLett.81.1562. url:
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562.

[6] S. Abe et al. “Search for the Majorana Nature of Neutrinos in the Inverted Mass
Ordering Region with KamLAND-Zen”. In: Phys. Rev. Lett. 130 (5 Jan. 2023),
p. 051801. doi: 10.1103/PhysRevLett.130.051801. url: https://link.aps.
org/doi/10.1103/PhysRevLett.130.051801.

[7] Ivan Esteban et al. “The fate of hints: updated global analysis of three-flavor neutrino
oscillations”. In: Journal of High Energy Physics 2020.9 (Sept. 2020). doi: 10.1007/
jhep09(2020)178. url: https://doi.org/10.1007%2Fjhep09%282020%29178.

[8] NuFIT 5.2(2022). url: http://www.nu-fit.org/.

[9] C. Giganti, S. Lavignac, and M. Zito. “Neutrino oscillations: The rise of the PMNS
paradigm”. In: Progress in Particle and Nuclear Physics 98 (2018), pp. 1–54. issn:
0146-6410. doi: https://doi.org/10.1016/j.ppnp.2017.10.001. url: https:
//www.sciencedirect.com/science/article/pii/S014664101730087X.

[10] Jiro Arafune, Masafumi Koike, and Joe Sato. “CP violation and matter effect in
long baseline neutrino oscillation experiments”. In: Phys. Rev. D 56 (5 Sept. 1997),
pp. 3093–3099. doi: 10.1103/PhysRevD.56.3093. url: https://link.aps.org/
doi/10.1103/PhysRevD.56.3093.

142

https://doi.org/10.1103/PhysRev.92.830
https://link.aps.org/doi/10.1103/PhysRev.92.830
https://link.aps.org/doi/10.1103/PhysRev.92.830
https://doi.org/10.1103/PhysRev.97.1387
https://link.aps.org/doi/10.1103/PhysRev.97.1387
https://doi.org/10.1103/PhysRevLett.82.2644
https://link.aps.org/doi/10.1103/PhysRevLett.82.2644
https://link.aps.org/doi/10.1103/PhysRevLett.82.2644
https://doi.org/10.1103/PhysRevLett.81.1562
https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.130.051801
https://link.aps.org/doi/10.1103/PhysRevLett.130.051801
https://link.aps.org/doi/10.1103/PhysRevLett.130.051801
https://doi.org/10.1007/jhep09(2020)178
https://doi.org/10.1007/jhep09(2020)178
https://doi.org/10.1007%2Fjhep09%282020%29178
http://www.nu-fit.org/
https://doi.org/https://doi.org/10.1016/j.ppnp.2017.10.001
https://www.sciencedirect.com/science/article/pii/S014664101730087X
https://www.sciencedirect.com/science/article/pii/S014664101730087X
https://doi.org/10.1103/PhysRevD.56.3093
https://link.aps.org/doi/10.1103/PhysRevD.56.3093
https://link.aps.org/doi/10.1103/PhysRevD.56.3093


143

[11] J. Altegoer et al. “The NOMAD experiment at the CERN SPS”. In:Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 404.1 (1998), pp. 96–128. issn: 0168-9002. doi: https://
doi.org/10.1016/S0168-9002(97)01079-6. url: https://www.sciencedirect.
com/science/article/pii/S0168900297010796.

[12] P. Astier et al. “Search for νµ → νe oscillations in the NOMAD experiment”. In:
Physics Letters B 570.1 (2003), pp. 19–31. issn: 0370-2693. doi: https://doi.org/
10.1016/j.physletb.2003.07.029. url: https://www.sciencedirect.com/
science/article/pii/S0370269303010505.

[13] F. Vannucci. “The NOMAD experiment at the CERN”. In: Advances in High Energy
Physics vol 2014.Article ID 129694 (2014), 20 pages. doi: https://doi.org/10.
1155/2014/129694.

[14] M. H. Ahn et al. “Indications of Neutrino Oscillation in a 250 km Long-Baseline
Experiment”. In: Phys. Rev. Lett. 90 (4 Jan. 2003), p. 041801. doi: 10 . 1103 /

PhysRevLett.90.041801. url: https://link.aps.org/doi/10.1103/PhysRevLett.
90.041801.

[15] M. H. Ahn et al. “Measurement of neutrino oscillation by the K2K experiment”. In:
Phys. Rev. D 74 (7 Oct. 2006), p. 072003. doi: 10.1103/PhysRevD.74.072003. url:
https://link.aps.org/doi/10.1103/PhysRevD.74.072003.

[16] Artificial Neutrino Beam Detected After Passing Through 250 km of Earth. url:
https://neutrino.kek.jp/news/990628.1stSK/.

[17] P. Adamson et al. “The NuMI neutrino beam”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 806 (2016), pp. 279–306. issn: 0168-9002. doi: https://doi.org/10.
1016/j.nima.2015.08.063. url: https://www.sciencedirect.com/science/
article/pii/S016890021501027X.

[18] D.G. Michael et al. “The magnetized steel and scintillator calorimeters of the MINOS
experiment”. In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 596.2 (2008), pp. 190–
228. issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2008.08.003. url:
https://www.sciencedirect.com/science/article/pii/S0168900208011613.

[19] P. Adamson et al. “Combined Analysis of νµ Disappearance and νµ → νe Appearance
in MINOS Using Accelerator and Atmospheric Neutrinos”. In: Phys. Rev. Lett. 112
(19 May 2014), p. 191801. doi: 10.1103/PhysRevLett.112.191801. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.112.191801.

[20] M. A. Acero et al. “First measurement of neutrino oscillation parameters using
neutrinos and antineutrinos by NOvA”. In: Phys. Rev. Lett. 123 (15 Oct. 2019),
p. 151803. doi: 10.1103/PhysRevLett.123.151803. url: https://link.aps.org/
doi/10.1103/PhysRevLett.123.151803.

https://doi.org/https://doi.org/10.1016/S0168-9002(97)01079-6
https://doi.org/https://doi.org/10.1016/S0168-9002(97)01079-6
https://www.sciencedirect.com/science/article/pii/S0168900297010796
https://www.sciencedirect.com/science/article/pii/S0168900297010796
https://doi.org/https://doi.org/10.1016/j.physletb.2003.07.029
https://doi.org/https://doi.org/10.1016/j.physletb.2003.07.029
https://www.sciencedirect.com/science/article/pii/S0370269303010505
https://www.sciencedirect.com/science/article/pii/S0370269303010505
https://doi.org/https://doi.org/10.1155/2014/129694
https://doi.org/https://doi.org/10.1155/2014/129694
https://doi.org/10.1103/PhysRevLett.90.041801
https://doi.org/10.1103/PhysRevLett.90.041801
https://link.aps.org/doi/10.1103/PhysRevLett.90.041801
https://link.aps.org/doi/10.1103/PhysRevLett.90.041801
https://doi.org/10.1103/PhysRevD.74.072003
https://link.aps.org/doi/10.1103/PhysRevD.74.072003
https://neutrino.kek.jp/news/990628.1stSK/
https://doi.org/https://doi.org/10.1016/j.nima.2015.08.063
https://doi.org/https://doi.org/10.1016/j.nima.2015.08.063
https://www.sciencedirect.com/science/article/pii/S016890021501027X
https://www.sciencedirect.com/science/article/pii/S016890021501027X
https://doi.org/https://doi.org/10.1016/j.nima.2008.08.003
https://www.sciencedirect.com/science/article/pii/S0168900208011613
https://doi.org/10.1103/PhysRevLett.112.191801
https://link.aps.org/doi/10.1103/PhysRevLett.112.191801
https://link.aps.org/doi/10.1103/PhysRevLett.112.191801
https://doi.org/10.1103/PhysRevLett.123.151803
https://link.aps.org/doi/10.1103/PhysRevLett.123.151803
https://link.aps.org/doi/10.1103/PhysRevLett.123.151803


144

[21] M. A. Acero et al. “Improved measurement of neutrino oscillation parameters by the
NOvA experiment”. In: Phys. Rev. D 106 (3 Aug. 2022), p. 032004. doi: 10.1103/
PhysRevD.106.032004. url: https://link.aps.org/doi/10.1103/PhysRevD.
106.032004.

[22] L. Aliaga et al. “Design, calibration, and performance of the MINERvA detector”.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 743 (2014), pp. 130–159. issn:
0168-9002. doi: https://doi.org/10.1016/j.nima.2013.12.053. url: https:
//www.sciencedirect.com/science/article/pii/S0168900214000035.

[23] J. Kleykamp et al. Simultaneous measurement of muon neutrino quasielastic-like cross
sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA.
2023. arXiv: 2301.02272 [hep-ex].

[24] K. Abe et al. “The T2K experiment”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
659.1 (2011), pp. 106–135. issn: 0168-9002. doi: https://doi.org/10.1016/j.
nima.2011.06.067. url: https://www.sciencedirect.com/science/article/
pii/S0168900211011910.

[25] K. Abe et al. “Improved constraints on neutrino mixing from the T2K experiment
with 3.13× 1021 protons on target”. In: Phys. Rev. D 103 (11 June 2021), p. 112008.
doi: 10.1103/PhysRevD.103.112008. url: https://link.aps.org/doi/10.1103/
PhysRevD.103.112008.

[26] Mathieu Lamoureux and for T2K Collaboration. Upgrade of the T2K near detector
ND280: effect on oscillation and cross-section analysis. 2018. arXiv: 1803.02645
[physics.ins-det].

[27] Hyper-Kamiokande Proto-Collaboration et al. Hyper-Kamiokande Design Report. 2018.
arXiv: 1805.04163 [physics.ins-det].

[28] C. Athanassopoulos et al. “Candidate Events in a Search for νµ → νe Oscillations”.
In: Phys. Rev. Lett. 75 (14 Oct. 1995), pp. 2650–2653. doi: 10.1103/PhysRevLett.
75.2650. url: https://link.aps.org/doi/10.1103/PhysRevLett.75.2650.

[29] A. Aguilar et al. “Evidence for neutrino oscillations from the observation of νe appearance
in a νµ beam”. In: Phys. Rev. D 64 (11 Nov. 2001), p. 112007. doi: 10.1103/
PhysRevD.64.112007. url: https://link.aps.org/doi/10.1103/PhysRevD.64.
112007.

[30] A. A. Aguilar-Arevalo et al. “Significant Excess of Electronlike Events in the MiniBooNE
Short-Baseline Neutrino Experiment”. In: Phys. Rev. Lett. 121 (22 Nov. 2018), p. 221801.
doi: 10.1103/PhysRevLett.121.221801. url: https://link.aps.org/doi/10.
1103/PhysRevLett.121.221801.

[31] R. Acciarri et al. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation
Program in the Fermilab Booster Neutrino Beam. 2015. arXiv: 1503.01520.

https://doi.org/10.1103/PhysRevD.106.032004
https://doi.org/10.1103/PhysRevD.106.032004
https://link.aps.org/doi/10.1103/PhysRevD.106.032004
https://link.aps.org/doi/10.1103/PhysRevD.106.032004
https://doi.org/https://doi.org/10.1016/j.nima.2013.12.053
https://www.sciencedirect.com/science/article/pii/S0168900214000035
https://www.sciencedirect.com/science/article/pii/S0168900214000035
https://arxiv.org/abs/2301.02272
https://doi.org/https://doi.org/10.1016/j.nima.2011.06.067
https://doi.org/https://doi.org/10.1016/j.nima.2011.06.067
https://www.sciencedirect.com/science/article/pii/S0168900211011910
https://www.sciencedirect.com/science/article/pii/S0168900211011910
https://doi.org/10.1103/PhysRevD.103.112008
https://link.aps.org/doi/10.1103/PhysRevD.103.112008
https://link.aps.org/doi/10.1103/PhysRevD.103.112008
https://arxiv.org/abs/1803.02645
https://arxiv.org/abs/1803.02645
https://arxiv.org/abs/1805.04163
https://doi.org/10.1103/PhysRevLett.75.2650
https://doi.org/10.1103/PhysRevLett.75.2650
https://link.aps.org/doi/10.1103/PhysRevLett.75.2650
https://doi.org/10.1103/PhysRevD.64.112007
https://doi.org/10.1103/PhysRevD.64.112007
https://link.aps.org/doi/10.1103/PhysRevD.64.112007
https://link.aps.org/doi/10.1103/PhysRevD.64.112007
https://doi.org/10.1103/PhysRevLett.121.221801
https://link.aps.org/doi/10.1103/PhysRevLett.121.221801
https://link.aps.org/doi/10.1103/PhysRevLett.121.221801
https://arxiv.org/abs/1503.01520


145

[32] DUNE Collaboration et al. The DUNE Far Detector Interim Design Report Volume
1: Physics, Technology and Strategies. 2018. arXiv: 1807.10334 [physics.ins-det].

[33] M. Martini, M. Ericson, and G. Chanfray. “Neutrino energy reconstruction problems
and neutrino oscillations”. In: Phys. Rev. D 85 (9 May 2012), p. 093012. doi: 10.
1103 / PhysRevD . 85 . 093012. url: https : / / link . aps . org / doi / 10 . 1103 /

PhysRevD.85.093012.

[34] J. Nieves et al. “Neutrino energy reconstruction and the shape of the charged current
quasielastic-like total cross section”. In: Phys. Rev. D 85 (11 June 2012), p. 113008.
doi: 10.1103/PhysRevD.85.113008. url: https://link.aps.org/doi/10.1103/
PhysRevD.85.113008.

[35] A. A. Aguilar-Arevalo et al. “First measurement of the muon neutrino charged current
quasielastic double differential cross section”. In: Phys. Rev. D 81 (9 May 2010),
p. 092005. doi: 10.1103/PhysRevD.81.092005. url: https://link.aps.org/doi/
10.1103/PhysRevD.81.092005.

[36] A. A. Aguilar-Arevalo et al. “First measurement of the muon antineutrino double-
differential charged-current quasielastic cross section”. In: Phys. Rev. D 88 (3 Aug.
2013), p. 032001. doi: 10.1103/PhysRevD.88.032001. url: https://link.aps.
org/doi/10.1103/PhysRevD.88.032001.

[37] G. M. Radecky et al. “Study of single-pion production by weak charged currents
in low-energy νd interactions”. In: Phys. Rev. D 25 (5 Mar. 1982), pp. 1161–1173.
doi: 10.1103/PhysRevD.25.1161. url: https://link.aps.org/doi/10.1103/
PhysRevD.25.1161.

[38] T. Kitagaki et al. “Study of νd→ µ−pps and νd→ µ−∆++(1232)ns using the BNL 7-
foot deuterium-filled bubble chamber”. In: Phys. Rev. D 42 (5 Sept. 1990), pp. 1331–
1338. doi: 10.1103/PhysRevD.42.1331. url: https://link.aps.org/doi/10.
1103/PhysRevD.42.1331.

[39] N. J. Baker et al. “Quasielastic neutrino scattering: A measurement of the weak
nucleon axial-vector form factor”. In: Phys. Rev. D 23 (11 June 1981), pp. 2499–
2505. doi: 10.1103/PhysRevD.23.2499. url: https://link.aps.org/doi/10.
1103/PhysRevD.23.2499.

[40] V. Lyubushkin et al. “A study of quasi-elastic muon neutrino and antineutrino scattering
in the NOMAD experiment”. In: Eur. Phys. J. C 63 (Aug. 2009), pp. 355–381. doi:
10.1140/epjc/s10052-009-1113-0. url: https://doi.org/10.1140/epjc/
s10052-009-1113-0.

[41] M. Martini et al. “Unified approach for nucleon knock-out and coherent and incoherent
pion production in neutrino interactions with nuclei”. In: Phys. Rev. C 80 (6 Dec.
2009), p. 065501. doi: 10.1103/PhysRevC.80.065501. url: https://link.aps.
org/doi/10.1103/PhysRevC.80.065501.

https://arxiv.org/abs/1807.10334
https://doi.org/10.1103/PhysRevD.85.093012
https://doi.org/10.1103/PhysRevD.85.093012
https://link.aps.org/doi/10.1103/PhysRevD.85.093012
https://link.aps.org/doi/10.1103/PhysRevD.85.093012
https://doi.org/10.1103/PhysRevD.85.113008
https://link.aps.org/doi/10.1103/PhysRevD.85.113008
https://link.aps.org/doi/10.1103/PhysRevD.85.113008
https://doi.org/10.1103/PhysRevD.81.092005
https://link.aps.org/doi/10.1103/PhysRevD.81.092005
https://link.aps.org/doi/10.1103/PhysRevD.81.092005
https://doi.org/10.1103/PhysRevD.88.032001
https://link.aps.org/doi/10.1103/PhysRevD.88.032001
https://link.aps.org/doi/10.1103/PhysRevD.88.032001
https://doi.org/10.1103/PhysRevD.25.1161
https://link.aps.org/doi/10.1103/PhysRevD.25.1161
https://link.aps.org/doi/10.1103/PhysRevD.25.1161
https://doi.org/10.1103/PhysRevD.42.1331
https://link.aps.org/doi/10.1103/PhysRevD.42.1331
https://link.aps.org/doi/10.1103/PhysRevD.42.1331
https://doi.org/10.1103/PhysRevD.23.2499
https://link.aps.org/doi/10.1103/PhysRevD.23.2499
https://link.aps.org/doi/10.1103/PhysRevD.23.2499
https://doi.org/10.1140/epjc/s10052-009-1113-0
https://doi.org/10.1140/epjc/s10052-009-1113-0
https://doi.org/10.1140/epjc/s10052-009-1113-0
https://doi.org/10.1103/PhysRevC.80.065501
https://link.aps.org/doi/10.1103/PhysRevC.80.065501
https://link.aps.org/doi/10.1103/PhysRevC.80.065501


146

[42] M. Martini et al. “Neutrino and antineutrino quasielastic interactions with nuclei”.
In: Phys. Rev. C 81 (4 Apr. 2010), p. 045502. doi: 10.1103/PhysRevC.81.045502.
url: https://link.aps.org/doi/10.1103/PhysRevC.81.045502.

[43] M. Martini, M. Ericson, and G. Chanfray. “Neutrino quasielastic interaction and
nuclear dynamics”. In: Phys. Rev. C 84 (5 Nov. 2011), p. 055502. doi: 10.1103/
PhysRevC.84.055502. url: https://link.aps.org/doi/10.1103/PhysRevC.84.
055502.

[44] J.E. Amaro et al. “Meson-exchange currents and quasielastic neutrino cross sections in
the superscaling approximation model”. In: Physics Letters B 696.1 (2011), pp. 151–
155. issn: 0370-2693. doi: https://doi.org/10.1016/j.physletb.2010.12.007.
url: https://www.sciencedirect.com/science/article/pii/S0370269310013547.

[45] J. E. Amaro et al. “Meson-Exchange Currents and Quasielastic Antineutrino Cross
Sections in the Superscaling Approximation”. In: Phys. Rev. Lett. 108 (15 Apr. 2012),
p. 152501. doi: 10.1103/PhysRevLett.108.152501. url: https://link.aps.org/
doi/10.1103/PhysRevLett.108.152501.

[46] J. Nieves, I. Ruiz Simo, and M.J. Vicente Vacas. “The nucleon axial mass and the
MiniBooNE quasielastic neutrino–nucleus scattering problem”. In: Physics Letters
B 707.1 (2012), pp. 72–75. issn: 0370-2693. doi: https://doi.org/10.1016/
j.physletb.2011.11.061. url: https://www.sciencedirect.com/science/
article/pii/S0370269311014407.

[47] A. M. Ankowski et al. “Comparison of the calorimetric and kinematic methods of
neutrino energy reconstruction in disappearance experiments”. In: Phys. Rev. D 92
(7 Oct. 2015), p. 073014. doi: 10.1103/PhysRevD.92.073014. url: https://link.
aps.org/doi/10.1103/PhysRevD.92.073014.

[48] S. Dolan et al. “Sensitivity of the upgraded T2K Near Detector to constrain neutrino
and antineutrino interactions with no mesons in the final state by exploiting nucleon-
lepton correlations”. In: Phys. Rev. D 105 (3 Feb. 2022), p. 032010. doi: 10.1103/
PhysRevD.105.032010. url: https://link.aps.org/doi/10.1103/PhysRevD.
105.032010.

[49] J. W. Van Orden and T. W. Donnelly. “Nuclear theory and event generators for
charge-changing neutrino reactions”. In: Phys. Rev. C 100 (4 Oct. 2019), p. 044620.
doi: 10.1103/PhysRevC.100.044620. url: https://link.aps.org/doi/10.1103/
PhysRevC.100.044620.

[50] J. M. Franco-Patino et al. “Semi-inclusive charged-current neutrino-nucleus cross
sections in the relativistic plane-wave impulse approximation”. In: Phys. Rev. C
102 (6 Dec. 2020), p. 064626. doi: 10.1103/PhysRevC.102.064626. url: https:
//link.aps.org/doi/10.1103/PhysRevC.102.064626.

https://doi.org/10.1103/PhysRevC.81.045502
https://link.aps.org/doi/10.1103/PhysRevC.81.045502
https://doi.org/10.1103/PhysRevC.84.055502
https://doi.org/10.1103/PhysRevC.84.055502
https://link.aps.org/doi/10.1103/PhysRevC.84.055502
https://link.aps.org/doi/10.1103/PhysRevC.84.055502
https://doi.org/https://doi.org/10.1016/j.physletb.2010.12.007
https://www.sciencedirect.com/science/article/pii/S0370269310013547
https://doi.org/10.1103/PhysRevLett.108.152501
https://link.aps.org/doi/10.1103/PhysRevLett.108.152501
https://link.aps.org/doi/10.1103/PhysRevLett.108.152501
https://doi.org/https://doi.org/10.1016/j.physletb.2011.11.061
https://doi.org/https://doi.org/10.1016/j.physletb.2011.11.061
https://www.sciencedirect.com/science/article/pii/S0370269311014407
https://www.sciencedirect.com/science/article/pii/S0370269311014407
https://doi.org/10.1103/PhysRevD.92.073014
https://link.aps.org/doi/10.1103/PhysRevD.92.073014
https://link.aps.org/doi/10.1103/PhysRevD.92.073014
https://doi.org/10.1103/PhysRevD.105.032010
https://doi.org/10.1103/PhysRevD.105.032010
https://link.aps.org/doi/10.1103/PhysRevD.105.032010
https://link.aps.org/doi/10.1103/PhysRevD.105.032010
https://doi.org/10.1103/PhysRevC.100.044620
https://link.aps.org/doi/10.1103/PhysRevC.100.044620
https://link.aps.org/doi/10.1103/PhysRevC.100.044620
https://doi.org/10.1103/PhysRevC.102.064626
https://link.aps.org/doi/10.1103/PhysRevC.102.064626
https://link.aps.org/doi/10.1103/PhysRevC.102.064626


147

[51] J. M. Franco-Patino et al. “Theoretical description of semi-inclusive T2K, MINERνA
andMicroBooNE neutrino-nucleus data in the relativistic plane wave impulse approximation”.
In: Phys. Rev. D 104 (7 Oct. 2021), p. 073008. doi: 10.1103/PhysRevD.104.073008.
url: https://link.aps.org/doi/10.1103/PhysRevD.104.073008.

[52] L. Alvarez-Ruso et al. “NuSTECWhite Paper: Status and challenges of neutrino–nucleus
scattering”. In: Progress in Particle and Nuclear Physics 100 (2018), pp. 1–68. issn:
0146-6410. doi: https://doi.org/10.1016/j.ppnp.2018.01.006. url: https:
//www.sciencedirect.com/science/article/pii/S0146641018300061.

[53] J E Amaro et al. “Electron- versus neutrino-nucleus scattering”. In: Journal of Physics
G: Nuclear and Particle Physics 47.12 (Nov. 2020), p. 124001. doi: 10.1088/1361-
6471/abb128. url: https://dx.doi.org/10.1088/1361-6471/abb128.

[54] O. Moreno et al. “Semi-inclusive charged-current neutrino-nucleus reactions”. In:
Phys. Rev. D 90 (1 July 2014), p. 013014. doi: 10.1103/PhysRevD.90.013014.
url: https://link.aps.org/doi/10.1103/PhysRevD.90.013014.

[55] D B Day et al. “Scaling in Inclusive Electron-Nucleus Scattering”. In: Annual Review
of Nuclear and Particle Science 40.1 (1990), pp. 357–410. doi: 10.1146/annurev.
ns.40.120190.002041. eprint: https://doi.org/10.1146/annurev.ns.40.
120190.002041. url: https://doi.org/10.1146/annurev.ns.40.120190.002041.

[56] T. W. Donnelly and Ingo Sick. “Superscaling of inclusive electron scattering from
nuclei”. In: Phys. Rev. C 60 (6 Nov. 1999), p. 065502. doi: 10.1103/PhysRevC.60.
065502. url: https://link.aps.org/doi/10.1103/PhysRevC.60.065502.

[57] Omar Benhar. “Electron- and neutrino-nucleus scattering”. In: Nuclear Physics B -
Proceedings Supplements 139 (2005). Proceedings of the Third International Workshop
on Neutrino-Nucleus Interactions in the Few-GeV Region, pp. 15–20. issn: 0920-5632.
doi: https://doi.org/10.1016/j.nuclphysbps.2004.11.173. url: https:
//www.sciencedirect.com/science/article/pii/S0920563204009272.

[58] Omar Benhar et al. “Electron- and neutrino-nucleus scattering in the impulse approximation
regime”. In: Phys. Rev. D 72 (5 Sept. 2005), p. 053005. doi: 10.1103/PhysRevD.72.
053005. url: https://link.aps.org/doi/10.1103/PhysRevD.72.053005.

[59] J.A. Caballero et al. “Analysis of factorization in (e,e’p) reactions: A survey of
the relativistic plane wave impulse approximation”. In: Nuclear Physics A 632.3
(1998), pp. 323–362. issn: 0375-9474. doi: https://doi.org/10.1016/S0375-
9474(97)00817-8. url: https://www.sciencedirect.com/science/article/
pii/S0375947497008178.

[60] R. Cenni, T. W. Donnelly, and A. Molinari. “Relativistic electromagnetic charge
response: Finite versus infinite systems, exclusive versus inclusive processes”. In: Phys.
Rev. C 56 (1 July 1997), pp. 276–291. doi: 10.1103/PhysRevC.56.276. url: https:
//link.aps.org/doi/10.1103/PhysRevC.56.276.

https://doi.org/10.1103/PhysRevD.104.073008
https://link.aps.org/doi/10.1103/PhysRevD.104.073008
https://doi.org/https://doi.org/10.1016/j.ppnp.2018.01.006
https://www.sciencedirect.com/science/article/pii/S0146641018300061
https://www.sciencedirect.com/science/article/pii/S0146641018300061
https://doi.org/10.1088/1361-6471/abb128
https://doi.org/10.1088/1361-6471/abb128
https://dx.doi.org/10.1088/1361-6471/abb128
https://doi.org/10.1103/PhysRevD.90.013014
https://link.aps.org/doi/10.1103/PhysRevD.90.013014
https://doi.org/10.1146/annurev.ns.40.120190.002041
https://doi.org/10.1146/annurev.ns.40.120190.002041
https://doi.org/10.1146/annurev.ns.40.120190.002041
https://doi.org/10.1146/annurev.ns.40.120190.002041
https://doi.org/10.1146/annurev.ns.40.120190.002041
https://doi.org/10.1103/PhysRevC.60.065502
https://doi.org/10.1103/PhysRevC.60.065502
https://link.aps.org/doi/10.1103/PhysRevC.60.065502
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2004.11.173
https://www.sciencedirect.com/science/article/pii/S0920563204009272
https://www.sciencedirect.com/science/article/pii/S0920563204009272
https://doi.org/10.1103/PhysRevD.72.053005
https://doi.org/10.1103/PhysRevD.72.053005
https://link.aps.org/doi/10.1103/PhysRevD.72.053005
https://doi.org/https://doi.org/10.1016/S0375-9474(97)00817-8
https://doi.org/https://doi.org/10.1016/S0375-9474(97)00817-8
https://www.sciencedirect.com/science/article/pii/S0375947497008178
https://www.sciencedirect.com/science/article/pii/S0375947497008178
https://doi.org/10.1103/PhysRevC.56.276
https://link.aps.org/doi/10.1103/PhysRevC.56.276
https://link.aps.org/doi/10.1103/PhysRevC.56.276


148

[61] P. Ring. “Relativistic mean field theory in finite nuclei”. In: Progress in Particle and
Nuclear Physics 37 (1996), pp. 193–263. issn: 0146-6410. doi: https://doi.org/10.
1016/0146-6410(96)00054-3. url: https://www.sciencedirect.com/science/
article/pii/0146641096000543.

[62] J.D Walecka. “A theory of highly condensed matter”. In: Annals of Physics 83.2
(1974), pp. 491–529. issn: 0003-4916. doi: https://doi.org/10.1016/0003-
4916(74)90208-5. url: https://www.sciencedirect.com/science/article/
pii/0003491674902085.

[63] Brian D. Serot and John Dirk Walecka. “Relativistic Nuclear Many-Body Theory”.
In: Recent Progress in Many-Body Theories: Volume 3. Ed. by T. L. Ainsworth et al.
Boston, MA: Springer US, 1992, pp. 49–92. isbn: 978-1-4615-3466-2. doi: 10.1007/
978-1-4615-3466-2_5. url: https://doi.org/10.1007/978-1-4615-3466-2_5.

[64] A. N. Antonov et al. “Scaling function, spectral function, and nucleon momentum
distribution in nuclei”. In: Phys. Rev. C 83 (4 Apr. 2011), p. 045504. doi: 10.1103/
PhysRevC.83.045504. url: https://link.aps.org/doi/10.1103/PhysRevC.83.
045504.

[65] J. A. Caballero et al. “Scaling function and nucleon momentum distribution”. In:
Phys. Rev. C 81 (5 May 2010), p. 055502. doi: 10.1103/PhysRevC.81.055502. url:
https://link.aps.org/doi/10.1103/PhysRevC.81.055502.
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