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Abstract

In this thesis, we study spontaneous supersymmetry (SUSY) breaking and its mediation

from various perspectives. We begin by motivating SUSY from both phenomenological

and more theoretical points of view. After undertaking a brief review of the structure and

history of SUSY, we move on to study gauge-mediated SUSY breaking.

We further develop a general formalism for describing the soft parameters generated in

theories of gauge mediation. Using this formalism we give a general proof of the finiteness of

the soft parameters. Then, specializing to weakly coupled models, we shed new light on the

UV sensitivity of the soft masses. Finally, we prove that the parameter space described by

our formalism is physical and realizable in calculable, weakly coupled models. This result

opens up the possibility of completely new soft spectra not typically associated with gauge

mediation.

Next, we make contact with string theory and realize a supersymmetric extension of the

Standard Model as the low energy theory of a D3 brane probing a del Pezzo singularity in a

gravitational decoupling limit we describe. More importantly, we formulate new topological

conditions under which the abelian gauge bosons of the D3-brane theory are rendered

massive upon UV completing the singularity into a compact manifold.

Shifting our focus to SUSY breaking in hidden sectors, we analyze how to generate

metastable SUSY breaking quantum field theories in string theory. We give a simple set of

geometrical conditions for understanding the resulting gauge theory.

In the last part of the thesis, we will introduce a novel string theoretical scheme for

mediating SUSY breaking using D-brane instantons.
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Chapter 1

Introduction

Any discussion of supersymmetry (SUSY) and the physical world must necessarily begin

with an apology, for not only is SUSY absent at the energies that govern the world as

we experience it, but our most energetic particle accelerators—magnifying glasses onto the

violent world of high-energy quantum physics—have not detected even a trace of SUSY to

date.

Therefore, the study of supersymmetry phenomenology is really the study of supersym-

metry breaking. However, before trying to understand how SUSY is broken and how this

information is encoded in the observables we hope to probe at future particle colliders, we

should mention what SUSY is. In short, supersymmetry entails a radical revision of na-

ture. Indeed, SUSY dictates that the four spacetime dimensions are accompanied by extra

quantum dimensions describing the translations of bosons into fermions, with every matter

fermion having an accompanying bosonic degree of freedom of equal mass and every bosonic

force carrier having a fermionic partner of equal mass. When SUSY is broken, the masses of

the fermions and bosons are no longer degenerate. In particular, the supersymmetry part-

ners (or superpartners) of the known matter and gauge field particles can be very massive.

Therefore, in order to study supersymmetry in collider experiments, we must have access

to energy scales of the order of the masses of these superpartners.

While the status of SUSY is in some sense analogous to the initial status of the elec-

1



2

troweak theory of Glashow, Salam, and Weinberg (GSW) before the discovery of the massive

W and Z bosons, it is worthwhile to pause and appreciate what a dramatic leap SUSY en-

tails. Perhaps, then, the situation is more analogous to the status of general relativity (GR)

before its first experimental confirmation.

Still, there are a host of reasons to believe that SUSY is a symmetry of physics at very

high energies and to hope that its low energy avatars will reveal themselves at the upcoming

Large Hadron Collider (LHC) experiment deep beneath the French and Swiss border at the

European particle physics lab CERN.

One of the main reasons to believe that SUSY exists at high energies is that it solves

the so-called “hierarchy problem,” namely, the perturbative instability of the weak scale

(∼ 103 GeV) relative to the UV scale, Λ, at which new physics enters. This instability

arises in the Higgs sector of the Standard Model (SM). The basic point is that, in the

absence of a deeper underlying symmetry, the Higgs particle is unprotected against large

quantum corrections to its mass and so

m2
H ∼ −|yy|2

∫ Λ d4p

(2π)4
1

p2 −m2
t

(1.0.1)

where we have written the leading quantum correction to the Higgs mass, namely the

contribution due to the exchange of a virtual top quark pair. If Λ ∼ 1016 GeV, then (1.0.1)

is roughly 1032 GeV2. However, for phenomenological reasons, the Higgs should have a mass

of order 100 GeV. This fact implies that one needs to introduce a bare mass parameter

for the Higgs that cancels the radiative corrections to an extremely high precision. This

incredibly unnatural tuning is the hierarchy problem.

Supersymmetry is a symmetry that can tame the divergences in (1.0.1), so long as it

is broken at the TeV scale. In particular, since the top quark has a superpartner called

the scalar top (or “stop” for short) we must include it in quantum corrections to the Higgs

mass. Virtual exchanges of the stop also give quadratic contributions to the Higgs mass,

but they enter with opposite sign because they have opposite statistics. As a result, one is
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left with a less singular logarithmic divergence in the Higgs mass

δm2
H ∼ −m̃2

t

y2
t

16π2
log

Λ2

m̃2
t

(1.0.2)

Finally, in addition to solving the hierarchy problem, SUSY has additional benefits.1

For example, if we assume SUSY is broken at the TeV scale (the scale that the LHC

will probe), then it naturally gives rise to gauge coupling unification at the GUT scale,

1016 GeV. Furthermore, if we assume a discrete symmetry called an R-parity under which

the visible matter and its superpartners have opposite charge, then SUSY furnishes a dark

matter candidate in the form of a stable lightest supersymetric particle (LSP).

The motivations we have given for SUSY so far lie purely in the realm of particle physics,

but there are more fundamental, although perhaps more indirect, reasons to believe in SUSY

as well. In the deep UV, say of order roughly the Planck scale, we expect gravitational

effects to become important. In particular, GR and the SM must coexist as part of a

larger quantum theory. Of course, the problems of quantizing gravity are well known. At

the perturbative level, the gravitational coupling has inverse mass dimensions (for d > 2),

with GN ∼M2−d in d spacetime dimensions and so the theory appears non-renormalizable.

Hence, quantized gravity seems to lack a proper perturbative definition. At a more general

non-perturbative level, one can also see that gravity is non-renormalizable (see [1] for a

more complete development of the argument we are about to give). The basic point is that

in the UV any renormalizable quantum field theory (QFT) in d dimensions is a conformal

field theory (CFT) and has an entropy that goes as

S ∼ E
d−1

d (1.0.3)

where E is the energy. On the other hand, from studying black hole entropy, it is reasonable

to estimate that the gravitational entropy should scale as

S ∼ E
d−2
d−1 (1.0.4)

1The ‘little hierarchy problem’ may still persist, however. This problem refers to the albeit much smaller
tuning of the Higgs mass still required for generic values of the parameters in (1.0.2).
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These arguments present clear contradictions and mean that gravity must be completed into

another structure that goes beyond a QFT—the leading candidate for this UV completion

is string theory,2 and string theory is rather deeply wedded to SUSY.

Therefore, SUSY seems rather well motivated both from the bottom-up and from the

top-down. There are, of course, many caveats to this statement. For example, there are

other potential solutions to the hierarchy problem, such as the extra-dimensional scenarios

of Randall and Sundrum [3] involving the appropriate localization of different SM degrees

of freedom in a warped geometry. However, these setups do not naturally include the

possibility of gauge coupling unification or a natural dark matter candidate.

In this thesis we will not have much more to say about the possible alternatives to

SUSY. This is not out of a desire to ignore other scenarios for physics beyond the Standard

Model or to condemn them to the level of implausible speculation. However, because the

idea of SUSY is so well-motivated and the intricacies of its structures are so beautiful, we

will focus exclusively on supersymmetry and its realizations in string and field theory.

Let us briefly summarize what is to follow in the rest of this thesis. In the remainder

of this section we will introduce SUSY more formally, discuss the minimal supersymmet-

ric extension of the Standard Model (MSSM), describe spontaneous and dynamical SUSY

breaking, and also sketch how SUSY breaking is transmitted or ‘mediated’ to the MSSM

fields. In the last part of the introduction, we will describe how to embed these ideas into

string theory.

In Chapter 2 we will study a particular method for mediating SUSY breaking called

“gauge mediation,” which relies purely on field theoretical degrees of freedom. We will

further develop a general formalism for describing the soft parameters generated by gauge

mediation and show that, under certain assumptions, it is possible to cover the resulting

parameter space. In particular, this result opens up the possibility of completely new soft

spectra not typically associated with gauge mediation. We will then shed new light on

2In fact, one of the deepest statements in string theory is the so-called AdS/CFT correspondence first
conjectured by Maldacena [2] that relates gravitational string theories in d dimensions to CFTs in d − 1
dimensions. This correspondance naturally relates the results in (1.0.4) and (1.0.3) upon the substitution
d → d − 1 in (1.0.3).
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various issues relating to the UV sensitivity of our observables and give a general proof of

the finiteness of the soft masses in gauge mediation.

In Chapter 3, we will make contact with string theory and realize a supersymmetric

extension of the Standard Model as the low energy theory of a D3 brane probing a del

Pezzo singularity in a limit where gravitational dynamics decouples. More importantly,

we will formulate new topological conditions under which the abelian gauge bosons of the

D3-brane theory are rendered massive upon UV completing the singularity into a compact

manifold.

In Chapter 4, we shift our focus to SUSY breaking in “hidden” sectors and analyze how

to generate metastable SUSY breaking QFTs in string theory. We will give a simple set of

geometrical conditions for understanding the resulting gauge theory.

In Chapter 5, we will introduce a novel string theoretical scheme for mediating SUSY

breaking from a hidden sector field theory, realized on a set of D-branes, to a toy super-

symmetric model of particle physics realized on a geometrically separated set of D-branes.

In this setup, the mediators will be D-brane instantons stretching between the two sectors.

This mediation scheme has no analog in field theory. In particular, it is an interesting

alternative to the scheme presented in Chapter 2.

1.0.1 Supersymmetry

In this subsection, we will give a brief introduction to SUSY and also, where possible, a

few details about its historical development. The birth of SUSY spawned an intense and

fertile period in physics that began in the early 1970s. It involved an interplay between the

development of a two-dimensional string worldsheet SUSY by Ramond, Neveu, Schwartz,

Gervais, Sakita and others [4] and the development of a four-dimensional version of SUSY

pioneered by Wess and Zumino [5]. However, we will not have much to say about worldsheet

SUSY in this section. Instead, we will specialize to the case of four dimensions since this

will be of more immediate interest in particle physics.

As we have discussed above, supersymmetry is a symmetry that rotates bosons into
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fermions and vice versa. Therefore, the generators of this symmetry must be spacetime

spinors. The SUSY algebra is given by

{Qa
α, Q

b
β} = 2

√
2ǫαβZ

ab

{Q†α̇a, Q
†
β̇b
} = 2

√
2ǫα̇β̇Z

ab

{Qa
α, Q

†
α̇b} = 2σµ

αα̇Pµδ
a
b

(1.0.5)

where Zab = −Zba is the central charge matrix and α, β are spacetime spinor indices with

α, β = 1, 2 in four dimensions. The indices a, b = 1, ...,N label the number of Q,Q†

supercharges. Note that for N = 1, the central charge is necessarily vanishing, i.e. Z = 0.

The form of the SUSY algebra (1.0.5) is quite interesting since it mixes the Poincaré

spacetime symmetries with internal quantum numbers (i.e., the spins) of physical fields. In

general, such extensions of the Poincaré symmetries of the S-matrix are tightly constrained

by the S-matrix’s analyticity properties.

Indeed, Coleman and Mandula [6] proved a no-go theorem showing that, given certain

assumptions, any symmetry algebra of the S-matrix that includes the Poincaré group must

be of the form of a direct product of the Poincaré symmetry and an internal symmetry

group.

However, in their seminal work, Golfand and Likhtman [7] were able to circumvent

the Coleman-Mandula theorem by extending the Poincaré algebra and including anti-

commutators and spinor generators as well in a graded Lie algebra. In short, they had

‘discovered’ supersymmetry. A few years later, Haag, Lopuszanski, and Sohnius [8] extended

the assumptions of the Coleman-Mandula theorem to include the possibility of graded Lie

algebras and showed that SUSY is the only possible such extension of the Poincaré algebra.

Given this algebra it is rather straightforward to construct the various allowed repre-

sentations. Since our ultimate goal is to describe supersymmetric particle physics we will

specialize not only to four dimensions but also to N = 1 SUSY. While extended SUSY (i.e.,

N > 1) is of enormous theoretical interest and will come into play in the later chapters

of this thesis when we consider string compactifications and D-branes, the fundamental

phenomenological problem with N > 1 theories of particle physics is that the matter repre-
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sentations are necessarily vector-like. Since the Standard Model is chiral, this fact presents

an insurmountable obstacle to describing the real world at low energies.

In four dimensions, the N = 1 SUSY algebra has a few basic multiplets. At the massless

level, the representations necessarily pair helicity λ and helicity λ− 1/2 states—the gauge

bosons fit into multiplets with spin 1/2 partner gauginos, the matter fermions fit into

multiplets with spin 0 bosonic partners, and the graviton fits into a multiplet with a spin

3/2 partner gravitino. At the massive level, a SUSY representation groups spin j, spin

j − 1/2, and spin j − 1 particles of equal mass into supermultiplets (if j = 1/2 there is

also a truncated massive multiplet with spin 1/2 and spin 0). Using the superspace idea

pioneered by Salam and Strathdee [9], we can package the degrees of freedom relevant to

SUSY gauge theories into the following neat set of off-shell superfield representations of the

SUSY algebra

Φ = φ+
√

2θψ + θ2F

V = θσµθVµ + iθ2θλ† − iθ
2
θλ+

1

2
θ2θ

2
D

Wα = −iλα + θαD − (σµνθ)αFµν − θ2(σµDµλ)α

J = J + iθj − iθj − θσµθjµ +
1

2
θ2θσµ∂µj −

1

2
θ
2
θσµ∂µj −

1

4
θ2θ

2
∂2J

Jµ = jµ + θα(Sµα + ...) + θα̇(S
α̇
µ + ...) + θσνθ

(
2Tνµ − 2

3
ηνµT − 1

4
ǫνµρσ∂

[ρj
σ]
R

)
+ ...

X = x+
4

3
θµ
αα̇S

α̇
µ + θ2

(2

3
T + i∂µj

µ
R

)

(1.0.6)

where θα and θα̇ are anticommuting Grassman spinors. The field Φ is a so-called chiral

superfield that contains matter fermions, ψ, complex bosonic partner φ fields, and an aux-

iliary superfield F . These superfields are called chiral because their lowest component, φ, is

annihilated by the antichiral supercharges, Q†α̇. Similarly, the gauge field strength, Fµν , is

packaged into a chiral superfield, but this time with the lowest component given by the spin

1/2 partner of the vector boson known as the gaugino, λ. The vector bosons are packaged

into a real superfield V = V †, along with a partner gaugino and an auxiliary field D. The

conserved currents, jµ, corresponding to the bosonic symmetries of the theory, are packaged
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into linear superfields, J , while the current related to the supercharge, the spin 3/2 super-

current Sµα, is packaged into a superfield with the spin 2 stress tensor Tµν and the spin 1

superconformal R-current, jµR.3 The R-current is related to a particular R-symmetry. In

general, an R-symmetry is defined as an automorphism of the SUSY algebra. In the case

of N = 1 SUSY, any R-symmetry is necessarily a U(1) symmetry with

[Qα, R] = Qα, [Q†α̇, R] = −Q†α̇ (1.0.7)

The final multiplet in (1.0.6) captures, among other things, the trace and superconformal

R-anomalies of the theory. In the case that a theory has superconformal symmetry, X = 0.

Returning to the main thrust of our section, we note that if a Lagrangian description of

a SUSY gauge theory is available, we may write the dynamics of the theory in terms of a

real Kähler potential, K, and a complex holomorphic function of the chiral superfields, W ,

called a superpotential

L =

∫
d4θK(Φ,Φ†, V ) +

( ∫
d2θW (Φ) +

1

4

∫
d2θWαWα + c.c.

)
(1.0.8)

Specializing for simplicity to the case of a U(1) gauge theory, the Lagrangian in (1.0.8) is

invariant under the complexified gauge transformations which send V → V + i(Λ−Λ†) and

Φ → e−iqΛΦ. The moduli space of supersymmetric solutions of (1.0.8) is then given by the

stationary solutions of W modulo the complexified gauge transformations. When we discuss

D-branes probing extra-dimensional singular manifolds in the later part of this thesis, the

resulting moduli spaces will prove to be very important since they furnish a description of

the geometry that the D-brane sees.

As a final note, we should stress the importance of the holomorphy of the superpotential

in (1.0.8). Indeed, this fact can be used to prove that the superpotential is not renormalized

to any order in perturbation theory [10].4 Perturbatively, the physical fields and couplings

3Let us briefly remark as an aside that since the supercurrent and stress tensors are related by SUSY
and, equivalently, since the SUSY algebra relates supercharges to the momentum operators, it should be
clear that making supersymmetry local necessarily leads to a theory of gravity. Theories of this type are
called supergravity theories and are the low-energy approximations to string theory.

4This statement is the generalization of the idea we described in the introduction, namely that SUSY
protects the Higgs mass from large corrections.
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only receive quantum corrections from the Kähler potential. The only allowed quantum cor-

rections to the superpotential itself are non-perturbative in nature. Such non-perturbative

corrections will play a starring role in the final chapters of this thesis.

1.0.2 Supersymmetry and particle physics

The sum total of our knowledge of particle physics is contained in the SM. The SM is a

gauge theory with gauge group SU(3) × SU(2) × U(1). The basic fields of the SM are

Qi = (3,2,1/6), ui = (3,1,−2/3), di = (3,1,1/3)

Li = (1,2,−1/2), ei = (1,1,1)

H = (1,2,1/2)

G = (8,1,0), W = (1,3,0), B = (1,1,0)

(1.0.9)

where i = 1, 2, 3 is a generation label, and we have written the explicit representations of

the SM gauge group under which the various fields transform on the RHS of (1.0.9). The

Qi, ui, and di are the quarks, while the Li and ei are the leptons. H is the Higgs and G,

W , and B are the gauge bosons associated with the various gauge group factors.

In addition to the various gauge interactions, the Standard Model contains Yukawa

couplings between the Higgs and the various matter fields, with a distinctive hierarchy

featuring very large couplings of the Higgs to the third generation particles and much

smaller couplings to the first and second generations. These couplings give rise to a large

mass hierarchy between the third generation and the rest of the SM matter fields.

It is rather straightforward to embed the SM into a supersymmetric theory. The minimal

completion is to promote the Q, u, d, L, and e fields to chiral superfields while promoting

the G, W , and B fields to vector superfields. The only small subtlety is in the Higgs sector.

Simply promoting the Higgs field to a chiral superfield leads to U(1)3Y and SU(2)2U(1)Y

anomalies because we have introduced a new chiral fermion, the higgsino. The resolution to

this problem is to introduce a second Higgs doublet superfield with opposite U(1)Y quantum

numbers. The full Higgs sector of our theory becomes

Hu = (1,2,1/2), Hd = (1,2,−1/2) (1.0.10)
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Finally, we promote the SM Yukawa interactions to superpotential interactions via

W = uYuQHu − dYdQHd − eYeLHd + µHuHd (1.0.11)

where the Y are matrices in generation space that describe the Yukawa interactions. The

simple renormalizable theory we have arrived at is the Minimal Supersymmetric Standard

Model (MSSM). We will refer to its generalizations as Supersymmetric Standard Models

(SSMs). These are the touchstones of supersymmetric phenomenology. In the third chapter

of this thesis, we will construct a simple semi-realistic SSM in string theory.

1.0.3 Supersymmetry breaking

From the discussion in the previous section, we have seen that it is rather trivial to construct

supersymmetric extensions of the Standard Model. Still, since SUSY is broken at the

energies that we have managed to probe in colliders thus far, we need a way of describing

SUSY breaking in the context of the MSSM.

Before describing SUSY breaking in particle physics, let us briefly review the basics of

spontaneously broken SUSY. From the SUSY algebra in (1.0.5), it is easy to see that

Qα|0〉 6= 0 ⇒ 〈0|H|0〉 6= 0 (1.0.12)

In other words, the vacuum energy is an order parameter for SUSY breaking. By integrating

out the auxiliary F and D fields in a theory of the general form described in (1.0.8), we

find the following scalar potential

Vscalar =
1

2
F

i
Fi +

g2

2
DaDa (1.0.13)

where the F i and Da are the auxiliary fields. If we find a vacuum in which at least one F i

or one Da is non-vanishing, then SUSY is broken.

Unfortunately, the SUSY breaking in the MSSM cannot be spontaneous. Indeed, a

simple theorem of Georgi and Dimopoulos [11] shows that SUSY cannot be spontaneously

broken in any renormalizable extension of the MSSM. In particular, by studying the classical

squark mass matrix, they were able to show that in any such renormalizable SSM there
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would always be a squark with mass less than or equal to the masses of either the up or the

down quarks, a clear experimental impossibility.

To circumvent this situation, we can imagine a scenario in which either loop corrections

are strong and hence invalidate the classical assumptions of the Georgi-Dimopoulos theorem

or the Kähler potential of the MSSM contains various important non-renormalizable terms.

Since such contributions are necessarily suppressed by loop factors and powers of the cutoff,

Λ, beyond which the MSSM fails as an effective theory, spontaneous SUSY breaking must

occur at high scales in a separate, so-called “hidden” sector of the theory, and then be

transmitted to the MSSM by “messenger” interactions. In Chapter 2 of this thesis, we

will develop a general language to better understand scenarios in which SUSY breaking is

mediated by the gauge interactions of the SSM. In Chapter 5 of this thesis, we will describe

a setup in which SUSY breaking is mediated by D-brane instantons in a string theory

compactification.

The dynamics of the SUSY breaking hidden sector itself are potentially quite compli-

cated. One particularly attractive way for SUSY to be broken is via dynamical effects. In

other words, we imagine the hidden sector as having supersymmetric vacua at tree level,

with SUSY breaking being introduced by non-perturbative order e−8π2/g2
effects. Such

non-perturbative effects arise naturally in hidden sectors endowed with asymptotically free

gauge symmetries.

The first concrete example of dynamical SUSY breaking (DSB) was the model of Affleck,

Dine, and Seiberg [12] where instanton effects generate a non-perturbative SUSY-breaking

correction to a tree-level supersymmetric superpotential. This model, like the other early

models of DSB, features a spontaneously broken R-symmetry. Indeed, the connection be-

tween R-symmetry breaking and SUSY breaking is well known [13]. For generic calculable

theories, it turns out that an exact R-symmetry is a necessary condition for SUSY breaking,

and that a spontaneously broken R-symmetry is a sufficient condition. On the other hand,

explicitly broken R-symmetry, if parametrically small, can lead to sufficiently long-lived

metastable SUSY breaking vacua. Such theories turn out to be quite elegant and simple.
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Indeed, this insight was exploited in the construction of the first long-lived SUSY breaking

vacua in N = 1 supersymmetric QCD (SQCD) with massive flavors [14]. The basic point

was that in the low-energy effective theory of [14], the SUSY vacua were invisible, but

since the R-symmetry was anomalous, it was broken by non-perturbative effects and SUSY

was restored far away in field space. As we will see in Chapter 4 of this thesis, such non-

perturbative R-symmetry breaking SUSY-restoring effects occur rather simply in D-brane

realizations of SUSY breaking QFTs.

1.0.4 Mediation and soft parameters

We see now that in order to introduce SUSY at high energies, we are forced into a paradigm

where the SSM is an effective theory valid below some cutoff, Λ, corresponding to the scale

of the new physics that is responsible for spontaneously breaking SUSY. Of course, treating

the SSM as an effective theory is not a big sacrifice since it is a theory that does not include

gravity and therefore cannot be the correct final description of nature.

The general picture that we have, then, is that SUSY is explicitly broken in the SSM via

the mediating interactions with the hidden sector. The resulting explicit SUSY breaking

terms are called “soft terms” because they do not reintroduce quadratic divergences into

the effective action of the SSM.5 Taking the concrete case of the MSSM, the most general

set of soft terms are collected in the following Lagrangian:

Lsoft =
∑

i=Qi,ui,...

m2
φi
|φi|2+

( ∑

a=1,...,3

Maλaλa−BµHuHd+uAuQHu+dAdQHd+eAeLHd+c.c.
)

(1.0.14)

where, through an abuse of notation, we let the Qi, ui, ... stand for the lowest components

of the corresponding chiral multiplets. The soft terms therefore correspond to scalar masses

for the squarks and sleptons, gaugino masses, SUSY-breaking mass terms for the Higgs

doublets, and SUSY breaking trilinear terms for the various scalars (so-called, “A-terms”).

With the inclusion of the general set of soft parameters for the MSSM, our theory now

has on the order of one hundred couplings. In short, by introducing soft SUSY breaking to

5We are assuming that the SSM does not contain any singlets.
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the MSSM, we have introduced a veritable plethora of new terms to the theory.

It should therefore not come as much of a surprise that most of this parameter space

corresponds to phenomenologically unviable theories. In fact, there are two main problems

with most of the parameter space. One problem is flavor changing neutral currents (FCNCs)

and the other is large CP violation.

One can immediately understand the problem of FCNCs by considering the SUSY con-

tributions to K0 − K
0

mixing. In addition to the standard 1-loop diagram containing a

box exchange of quarks and W bosons with insertions of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix at each vertex, we must also take into account diagrams with exchanges

of squarks and winos. The main problem then arises from insertions of the squark mass

matrix in the internal squark propagator lines. Since the corresponding mass matrix does

not generally commute with the CKM matrix, the usual Glashow-Iliopoulos-Maiani (GIM)

mechanism of the Standard Model is inoperative.6 Finally, generic phases in the various

soft terms lead to unacceptably large CP violation in a variety of well studied systems like

the electric dipole moment of the neutron.

The particular pattern of soft terms that one generates depends largely on the type of

messenger interactions. Indeed, while the hidden sector produces a non-vanishing vacuum

energy, it is the mediating interactions that encode how this SUSY breaking is felt by

the various visible sector fields. For example, one simple way to address the problem of

FCNCs is to allow for the mediating interactions to be gauge interactions, i.e., “gauge

mediation.” Since these interactions are flavor-blind, they do not contribute additional

sources of flavor violation. In Chapter 2 of this thesis, we will pursue this idea much

further. Note, however, that gauge mediation does not have much to say about CP violation

or about another problem that we have glossed over above, namely the fact that electroweak

symmetry breaking (EWSB) requires B ∼ µ (the so-called µ problem).

6Unless, for example, we allow for very massive gauginos among other things. Some work in this direction
is described in [15].
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1.0.5 Supersymmetric particle physics and string theory

As we have discussed above, particle physics in the form of the Standard Model is a low

energy approximation to nature. While we can tame the UV sensitivity of the SM and

avoid phenomenological pitfalls by including spontaneously broken SUSY and using its

relative quantum smoothness to control the behavior of unwieldy divergences in the Higgs

sector, it is clear that this framework cannot be the complete description of nature. In the

introduction, we briefly motivated the importance of string theory as a means of describing

the quantum gravitational effects that emerge as we probe shorter and shorter distances

down to the Planck length. To that more abstract motivation we can add this much more

concrete one—the spin 2 graviton emerges in the perturbative spectrum of the closed string.

Furthermore, the smoothness of the string world sheet means that we don’t have to worry

about regulating perturbative divergences as we do in QFT.

That said, we would like to focus in this section on how the degrees of freedom of particle

physics—the matter fields and gauge particles—can be embedded within this framework as

well. This project is an ambitious one since it seeks to unify our full understanding of high

energy physics into one edifice. Still, there have been some modest successes and new ideas.

We will formulate some of these new ideas in the later chapters of this thesis.

The first problem in confronting string theory with particle physics is that string theory

has many extra dimensions. In the supersymmetric flavors of string theory (all related by

various dualities), there are ten dimensions. This means that in order to make contact with

particle physics, we need to curl up six of those dimensions.

The first string constructions that make contact with particle physics started appearing

in the mid 1980’s and were based on compactifications of the E8 ×E8 heterotic string on a

six-dimensional compact manifold, M [16]. In order to find supersymmetric solutions, one

demands that the SUSY variations of the fermionic fields of the theory vanish. From the

vanishing of the SUSY variation of the gravitino, one finds a solution with a covariantly

constant spinor

∇mζ = 0 (1.0.15)
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where ∇m is the covariant derivative on M. The existence of such a spinor implies that

M is a manifold of SU(3) holonomy, i.e., that M is a so-called ‘Calabi-Yau’ manifold. The

resulting four-dimensional theory has an N = 1 SUSY. Although we will not get into the

details here, within the framework of E8 × E8 string theory compactified on a CY, it is

possible to find models with SM and GUT gauge groups and with the number of quark and

lepton chiral superfields controlled by the dimensions of the various non-trivial Dolbeault

cohomology classes. One important problem with these constructions is the existence of

moduli, i.e., massless scalar fields. Such excitations are clearly ruled out by experiment.

While there has been some continued interest in heterotic string phenomenology in

recent years, in particular in heterotic M-theory constructions [17], D-branes have opened

up a new perspective on particle physics and have become the preferred object of study in

string phenomenology. Discovered by Polchinski in 1995, D-branes are 1/2 BPS solitonic

objects of string theory on which open strings can end (this data is summarized by the

Chan-Paton (CP) indices of the strings). For our purposes, the important point is that the

open string perturbations of the D-branes contain the spin 0, spin 1/2, and spin 1 fields

necessary to realize models of particle physics.

To understand this point further, consider, for concreteness, the case of a stack of N

D3 branes in ten-dimensional flat space. It turns out that the low energy and small string

coupling worldvolume theory on this stack of branes is a 4 dimensional N = 4 U(N)

SYM theory (since the branes are 1/2 BPS, they break half the thirty-two supercharges

of the ten-dimensional type IIB supergravity). This theory has an SO(6) R-symmetry

that corresponds geometrically to rotations of the directions normal to the D-brane. From

the N = 1 perspective, the matter content of the effective world-volume theory contains

three chiral multiplets transforming in the adjoint in addition to a vector multiplet. The

bosonic components of the theory correspond to motion in the six transverse coordinates

and therefore transform as a 6 of the SO(6)R.

While this theory is interesting in its own right, in order to make contact with particle

physics, we need matter transforming in chiral representations. One possible way to ac-
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complish this task is to consider higher-dimensional D-branes intersecting at appropriate

angles [18]. Indeed, by choosing these angles judiciously, one can construct theories with

four-dimensional N = 1 SUSY and chiral bifundamental matter localized at the brane in-

tersections. These types of constructions have been repeatedly exploited in the literature

to construct simple toy models of particle physics (see [19] and the references therein).

Another interesting possibility is to consider D-branes probing a singular point of the

transverse space [20]. Simple examples of these general scenarios include orbifolds of man-

ifolds that are locally C3 by various discrete groups Γ ⊂ SU(3). The singular points arise

from the fact that we choose the orbifold action to have fixed points. The fact that Γ should

be a subgroup of SU(3) corresponds to the fact that we would like to preserve an N = 1

SUSY. By appropriately choosing the orbifold group action on the spacetime and on the

CP indices, it is possible to engineer chiral theories. The main consistency condition for

these orbifolds is that the twisted tadpoles cancel.7 This condition is equivalent to the

absence of gauge anomalies.

In order to engineer SM-like theories with three generations, the most direct route is to

consider orbifolds of C3 by the groups Γ = Z3 or Γ = ∆27 and simple variations thereof.

The case of Z3 is thoroughly analyzed in [21]. The basic construction we will use in Chapter

3 is conjectured to be related to the ∆27 orbifold studied in [21, 22] by a local deformation

of the geometry [23].

Now, given the technology of D-branes that we have briefly outlined above, one can ask

what we have gained over the heterotic compactifications of the old days. The main point is

that we gain the ability to localize the degrees of freedom we are interested in—the massless

open string excitations—at specific points on the compactification manifold.

This localization allows us to consider a bottom-up perspective where the particle physics

depends only on the description of the local geometry. One computes the superpotential

from various disk amplitudes and parameterizes the remaining couplings in terms of the

periods of the closed string fields on the cycles of the singularity wrapped by the D-branes.

7If we consider a compact setting, Gauss’ law implies that the total Ramond-Ramond charge associated
with the D-branes and any orientifold planes that are present must also cancel.
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From these quantities we have central charges (the phase alignment of the central charges

determines whether SUSY is preserved while the norms are proportional to the gauge cou-

plings) and other gauge invariant data. In an appropriate limit in which UV gravitational

effects are decoupled into the distant bulk, the closed string dynamics are fixed and one

imagines the periods as parameters of the field theory on the D-branes.

Once the appropriate local gauge theories have been engineered, one attacks the harder

problem of embedding the theory in a UV compactification.8 Typically, such compacti-

fications contain many moduli. These moduli are related to the size (Kähler moduli) and

shape (complex structure moduli) of the compactification. One must stabilize these moduli

with fluxes and D-brane instanton contributions. Such mechanisms have been well-studied

[24]. Interestingly, by turning on appropriate fluxes, one can also arrange for soft SUSY

breaking [25].

From this brief and heuristic introduction, we see that it is possible to engineer SM-like

gauge theories as world-volume theories of D-branes probing singularities. It is of course

also possible to use this technology to build additional, hidden sectors where SUSY is

spontaneously broken. We will construct some novel SUSY breaking D-brane sectors in

Chapter 4 of this thesis. Furthermore, using stringy objects, such as Euclidean D-branes,

we will see that it is possible to mediate SUSY breaking to the visible sector in string

compactifications.

One aspect of these constructions that we have not elucidated here is how we should

understand the dynamics of the various couplings in the engineered QFTs. In particular,

coupling constants generally acquire a quantum scale dependence described by a renormal-

ization group (RG) flow. The answer to this question is both complicated and beautiful. It

turns out that what we have neglected to describe is the back-reaction of the branes on the

geometry itself.

The simplest illustration of this fact is to imagine a stack of D3 branes sitting at a point

8It is a hope of this program that the low energy local string theory may have something to say, upon
experimental input from the LHC and future collider experiments, about the details of a UV completion.
Much work remains to be done in this direction, and its potential for success is unclear.
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in flat space. By considering the back-reaction and looking at the geometry in the ‘near

horizon’ limit (roughly speaking, in the neighborhood of the D-brane), we find the metric

of AdS5 × S5

ds2 =
R2

z2
(−dt2 + dx2 + dz2) +R2dΩ2

5 (1.0.16)

The important point is that as one runs in the radial coordinate, z, the four dimensional

space time is re-scaled. This is the geometric interpretation of the RG scale.

More significantly, the AdS/CFT duality [2] establishes a precise correspondance be-

tween the gravitational picture in (1.0.16) and the N = 4 SYM gauge theory on the stack

of D-branes. Our discussion above of the gauge invariant couplings being determined by the

closed string geometry then fits beautifully into this edifice. By now thousands of papers

have been written on AdS/CFT and the idea of gauge-gravity duality. By considering less

symmetric spaces, such as the orbifolds we have discussed above, one can get more inter-

esting and potentially more phenomenologically relevant dualities than the one in (1.0.16).

In this introduction we have only been able to give a small flavor of the interesting

structures that lie at the intersection of string theory, particle physics, and supersymmetry.

This is a complicated subject that is still, after many years of research, mysterious but full

of promise.



Chapter 2

General Aspects of Gauge

Mediation

In this chapter, we further develop and then reformulate a language (initially discussed in

[27]) for describing the soft parameters of theories with gauge-mediated SUSY breaking

in terms of hidden-sector contributions to SM gauge group current two-point functions.1

Using this reformulation, we give a general proof of the finiteness of the scalar masses

in gauge mediation and further study the UV and IR behavior of the contributing current

two-point functions.

We also shed further light on the UV sensitivity of the soft masses in the MSSM and

help clarify the role of the supertrace in messenger theories of SUSY breaking. In the last

part of the chapter, we show that, under certain assumptions, it is possible for calculable

messenger theories to cover the full gauge mediation parameter space that we describe.

In particular, this fact leads to many novel signatures not typically associated with gauge

mediation.

In the appendix, we comment on the sign of the supertrace in effective messenger theories

of gauge mediation and prove a general theorem regarding the sign of the supertrace in

theories that are UV completed by integrating out charged chiral matter at a high scale.

1This chapter is based on the paper, “Exploring General Gauge Mediation,” written in collaboration with
P. Meade, N. Seiberg, and D. Shih [26].
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We also comment on the case of heavy vector matter.

2.1 Introduction

As we discussed in Chapter 1, low-energy supersymmetry, in its minimal incarnation as the

MSSM, is probably the most attractive candidate for physics beyond the Standard Model,

since it solves the hierarchy problem and predicts gauge coupling unification. However, as

we noted, the MSSM has one major drawback, namely, its immense parameter space. Soft

SUSY-breaking introduces O(100) new parameters compared to the SM. These parameters

are highly constrained by stringent experimental limits on flavor-changing neutral currents

and CP violation. A conservative ansatz for the parameter space which is automatically

consistent with flavor and CP is known as “soft SUSY-breaking universality” (see [28] for a

nice review). Here there are five flavor-diagonal sfermion masses, three real gaugino masses,

three flavor-diagonal A-terms, and three independent real Higgs mass parameters, for a total

of 14 real parameters in all. If one accepts the hypothesis of universality, then the theoret-

ical challenge is to construct models of SUSY-breaking and mediation that automatically

produce universal patterns of soft parameters without fine tuning.

Gauge mediation [34, 35, 36, 37, 38, 39, 40, 41, 31, 32, 33], or the idea that SUSY-

breaking is communicated to the MSSM via the SM gauge interactions, is a promising

partial solution to this challenge.2 Since the gauge interactions are flavor blind, the soft

masses obtained through gauge mediation are automatically flavor universal. However,

the absence of CP phases is less automatic in gauge mediation. Also, the Higgs µ and

Bµ parameters are not generated in pure gauge mediation, so one typically assumes that

additional interactions are present to produce these (for a recent discussion of this see [58]).

Recently in [27], gauge mediation was given a general, model-independent definition: in

the limit that the MSSM gauge couplings αi → 0, the theory decouples into the MSSM and a

separate hidden sector that breaks SUSY. It follows then that the SM gauge group must be

2For a review of gauge mediation from both the model building and phenomenological point of view see
[42].
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part of a weakly-gauged global symmetry G of the hidden sector. By studying a small set

of current-current correlators of G, it was shown that all the dependence of the soft masses

on the hidden sector could be encapsulated by three real parameters that determine the

sfermion masses, and three complex parameters that determine the gaugino masses. This

framework was called “General Gauge Mediation” (GGM) in [27]; for more recent work on

GGM, see [45, 51, 52, 53, 54, 55]. In this chapter we will further develop several aspects of

GGM and explore its properties and its parameter space.

The definition of GGM must be augmented with several phenomenological and consis-

tency requirements, which we will now review. First, the fact that the gaugino masses are

complex in general gauge mediation (GGM) implies that GGM does not solve the SUSY

CP problem. So additional mechanisms (such as an R-symmetry as in [29], or having the

hidden sector be CP invariant) must be invoked to explain why the gaugino masses are

real.3 For the rest of the chapter, wherever it is relevant, we will assume that such a

mechanism is at work and only consider CP invariant theories, so that the parameter space

of GGM spans R
6. With this assumption, the GGM parameter space comprises a much

smaller, but still sizeable subspace of the full “universal” soft mass ansatz.

Additionally, as in [27], we will impose a Z2 symmetry, called “messenger parity,” on

our hidden sector. In the context of messengers this is typically defined as an interchange

symmetry of the messengers combined with V → −V [38, 44]. More generally, messenger

parity can be defined in terms of the gauge current and its supersymmetric partners, without

explicit reference to messengers [27]. This symmetry does not have to be imposed, but it is

typically a phenomenological necessity: messenger parity prevents dangerous hypercharge

D-terms (which could lead to tachyonic sleptons) from being generated in the hidden sector.

Messenger parity has various other consequences, including one on the sum rules of

GGM. The fact that the five flavor-diagonal sfermion masses (m2
Q,m

2
U ,m

2
D,m

2
L,m

2
E) are

determined in terms of three real numbers implies that they must satisfy two sum rules

3Of course, one can have non-zero phases in this framework as long as they are consistent with the
experimental bounds. For convenience though, we will only concentrate on CP invariant hidden sectors.
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[27]:

TrY m2 ∝ m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

Tr (B − L)m2 ∝ 2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0.

(2.1.1)

These sum rules are valid at the characteristic scale M of the gauge mediated model, and

they are preserved by the (one-loop) running of the soft masses in the MSSM. There could in

principle be violations to these sum rules arising at higher order in the SM gauge couplings,

coming from 3-point functions in the hidden sector. We will show in section 2 that in fact

these threshold contributions satisfy the sum rules if one imposes messenger parity on the

hidden sector. Additionally, the leading log contributions at all higher orders also satisfy

the sum rules. Therefore there are no contributions at any relevant order in the hidden

sector which would violate the sum rules and they truly are predictions of GGM.

In [27], it was shown that the GGM parameter space is the most general that can be

populated by models of gauge mediation. However, this left open the important question

of whether models existed that could actually span this space. For instance there may have

been additional relations or inequalities satisfied by the parameters that were not manifest

from the analysis of the current-current correlators. Or it could have been that for some

regions of the GGM parameter space there was simply no field theory that could populate

it. Indeed, a quick survey of existing models of gauge mediation (e.g. the original models

of “minimal gauge mediation”[31, 32]) would suggest that this could be the case, as these

models clearly do not cover the parameter space. These models are based on a set of weakly

coupled “messengers,” chiral superfields, Φi, that transform under a real representation of

the SM gauge group and couple to a field that has a SUSY breaking F-component. This

can be expressed as having a generic supersymmetric mass term for the messengers

W = MijΦ
iΦj (2.1.2)

and a SUSY-breaking mass term of the form

V ⊃ fijφ
iφj + c.c. (2.1.3)

In [45] it was shown that in the context of such models, the right number (6) of parameters
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in GGM could be realized. However, in their models the full space of GGM was not actually

spanned.

In this chapter we further explore the model building possibilities in the context of

weakly coupled messengers and show that there are models that span the GGM parameter

space. This is because there can be additional contributions to the MSSM soft masses from

gauge mediation in addition to those of the form (2.1.3), namely “diagonal-type”[47, 46]

messenger masses of the form

V ⊃ ξijφ
iφ†j (2.1.4)

Such terms typically arise from D-term breaking, but they can also arise from strong hidden

sector dynamics (such as in [43]) where the distinction between F-term and D-term breaking

is not obvious.

Using both (2.1.3) and (2.1.4), we demonstrate that there exist weakly coupled messen-

ger models which span the space of GGM. Thus there can be no additional relations for the

soft SUSY breaking parameters beyond (2.1.1).

The outline of the chapter is as follows. First, in section 2 we present a reformulation

of GGM that does not rely upon superspace and that leads to extremely compact formulas

for the gaugino and sfermion soft masses. Using this formalism we will demonstrate both

the UV and IR finiteness of the soft masses in GGM. We will then discuss in section 3

the dependence on the various mass scales that can enter the correlation functions. We

will further elaborate on the issues of UV sensitivity for SUSY breaking parameters, clear-

ing up some confusion in the existing literature regarding the interpretation of a nonzero

messenger supertrace. Finally, in section 4 we present a simple explicit model involving

weakly-coupled messengers that spans the entire six-dimensional parameter space of GGM.

This model should be viewed merely as an “existence proof” that the entire GGM param-

eter space can be realized and that there are no additional hidden relations between the

parameters that are not obvious from the general formulation. In light of this we believe

that future phenomenological studies of gauge mediation should not restrict themselves to

the parameterization of minimal gauge mediation (for example see [50]), but instead should
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explore the entire parameter space of GGM. This should in principle open up new avenues

for possible experimental/phenomenological studies that have not yet been explored (for

recent work in this direction, see [55]). We finish by collecting a few technical results in two

appendices. In Appendix A we will review the role of the supertrace in models with mes-

senger fields. We demonstrate that certain classes of models always generate a particular

sign for the supertrace in an effective field theory. In appendix B we collect some general

results for the correlation functions of models with arbitrary numbers of messengers.

2.2 General Gauge Mediation: A New and Improved For-

mulation

2.2.1 Review and reformulation

In this section we wish to review the basic features of GGM. Along the way, we will refor-

mulate and streamline various aspects of it. This will lead to various new physical insights,

including a direct proof of the finiteness of the sfermion soft masses in GGM.

To begin, let us describe the setup. Consider a renormalizable hidden sector4 which is

characterized by the scale M and where supersymmetry is broken spontaneously. Suppose

that this hidden sector has a global symmetry group G ⊃ GSM = SU(3)×SU(2)×U(1) that

is weakly gauged. Suppose further that the only coupling to the visible sector occurs through

the SM gauge interactions (so the hidden and visible sectors decouple in the gSM → 0 limit).

We will refer to this setup as general gauge mediation, and we are interested in the visible-

sector soft masses that arise. As shown in [27], all of the information in the soft masses is

encoded in two-point functions of the current superfield of the symmetry group G.

To avoid writing all the gauge theory factors, we will assume for simplicity that G = U(1)

in this subsection. Recall now the definition of of the current superfield J

D2J = 0 (2.2.1)

4We will consider non-UV-complete scenarios in later sections.
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which leads in components to

J = J + iθj − iθj − θσµθjµ +
1

2
θ2θσµ∂µj −

1

2
θ
2
θσµ∂µj −

1

4
θ2θ

2
ΛJ (2.2.2)

with ∂µjµ = 0.

The use of superspace is not essential. Without it, we can replace the definition of the

current superfield J (2.2.1) as follows. We study the hermitian operator J which satisfies

{Qα, [Qβ, J ]} = 0 (2.2.3)

where Qα are the supercharges, which satisfy the SUSY algebra

{Qα, Qα̇} = 2σµ
αα̇Pµ. (2.2.4)

Then, we can define

jα ≡ −i[Qα, J ]

jα̇ ≡ i[Qα̇, J ]

jµ ≡ −1

4
σα̇α

µ

(
{Qα̇, [Qα, J ]} − {Qα, [Qα̇, J ]}

)
,

(2.2.5)

and derive the current conservation by applying two supercharges to this definition of jµ

and using the SUSY algebra (2.2.4).

The relation between the original presentation in superspace with (2.2.1) and this one

is similar to the relation between the definition of chiral superfields in terms of DΦ = 0

and the definition of chiral operators (the first component of Φ) as [Q,φ] = 0.5 As we will

now show, (2.2.3) proves to be extremely useful when computing current-current correlation

functions.

The correlators of interest are the nonzero current-current two-point functions

〈J(x)J(0)〉 =
1

x4
C0(x

2M2)

〈jα(x)jα̇(0)〉 = −iσµ
αα̇∂µ

(
1

x4
C1/2(x

2M2)

)

〈jµ(x)jν(0)〉 = (ηµν∂
2 − ∂µ∂ν)

(
1

x4
C1(x

2M2)

)

〈jα(x)jβ(0)〉 = ǫαβ
1

x5
B(x2M2)

(2.2.6)

5We will not pursue it here, but it would be interesting to consider correlators of J ’s defined by (2.2.3)
along with any number of supercharges, in the case when SUSY is unbroken. Perhaps there could be an
interesting mathematical structure analogous to operators in the chiral ring.
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or in momentum space,

〈J(p)J(−p)〉 = C̃0(p
2/M2)

〈jα(p)jα̇(−p)〉 = −σµ
αα̇pµC̃1/2(p

2/M2)

〈jµ(p)jν(−p)〉 = −(p2ηµν − pµpν)C̃1(p
2/M2)

〈jα(p)jβ(−p)〉 = ǫαβMB̃(p2/M2)

(2.2.7)

where now a factor of (2π)4δ(4)(0) is understood.

These two-point functions encode the mediation of SUSY breaking to the MSSM gaugino

and sfermion soft-masses at leading order in the gauge coupling g. Specifically, the gaugino

masses are given by

Mgaugino = g2MB̃(0). (2.2.8)

while the sfermion soft mass-squareds are given by

m2
sfermion = g4Y 2A (2.2.9)

where Y is the U(1) charge of the sfermion and A is the following linear combination of

correlators integrated over momentum:

A ≡ −
∫

d4p

(2π)4
1

p2

(
3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)
)

= − M2

16π2

∫
dy
(
3C̃1(y) − 4C̃1/2(y) + C̃0(y)

) (2.2.10)

Using (2.2.3) and (2.2.5), one easily finds that formula for the gaugino mass can be

rewritten as

Mgaugino = −1

4
g2
∫
d4x 〈Q2(J(x)J(0))〉 (2.2.11)

where we use the notation

Q2(. . .) = QαQα(. . .) ≡ {Qα, [Qα, (. . .)]}. (2.2.12)

Indeed, according to (2.2.3)(2.2.5), Q2(J(x)J(0)) = 2[Qα, J(x)][Qα, J(0)] = −2jα(x)jα(0).

Similar reasoning shows that the action of four supercharges on J(x)J(0) yields

〈Q2
(Q2(J(x)J(0)))〉 = −8∂2(C0(x) − 4C1/2(x) + 3C1(x)) (2.2.13)
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and so the formula for the sfermion mass can be rewritten as

m2
sfermion = − 1

128π2
g4Y 2

∫
d4x log(x2M2)〈Q2

(Q2(J(x)J(0)))〉 (2.2.14)

Note that the order of the four supercharges is not essential – a different ordering of Q and Q

leads to terms that vanish after using the SUSY algebra and momentum conservation. Note

also that the scale M appearing in (2.2.14) is arbitrary (i.e. the dependence on M drops

out), since according to (2.2.13) the integrand 〈Q2
(Q2(J(x)J(0)))〉 is a total derivative.

(The short distance behavior of the correlator, to be discussed below, guarantees that there

is no surface term.)

Let us make some brief comments on the results (2.2.11), (2.2.14). In [27] it was shown

using the SUSY algebra that when SUSY is unbroken, B = 0 and C0 = C1/2 = C1. Hence

the gaugino and sfermion masses vanish in the SUSY limit, as they must. Writing the

gaugino and sfermion masses as multiple commutators, as we have done here, makes this

fact obvious.

It is well known that when supersymmetry is broken at a scale F and the dynamics

is characterized by the scale M ≫
√
F , we can effectively describe the soft terms in an

expansion in F
M2 using spurions. Then the gaugino masses arise as an F-term and the

sfermion masses as a D-term. The expressions (2.2.11) and (2.2.14) generalize this result

to the more generic situation of F ∼M2. The small F
M2 limit can be obtained by realizing

that in (2.2.11) the two Qs lead to one factor of F and in (2.2.14) the four Qs lead to |F |2.

Another interesting feature of the formula (2.2.14) is that all the information at large

momentum is contained within the OPE of J with itself. This observation has immediate

implications about the convergence of the momentum integral in (2.2.10) and (2.2.14). In

[27] an indirect proof of the convergence of these integrals was given using the fact that

otherwise there would be no supersymmetric counterterm that could cancel a divergence

in this integral. Here we can easily give a direct proof which is intrinsic to the properties

of the hidden sector. The most singular term in the OPE J(x)J(0) is associated with the

identity operator. Since this is annihilated by the action of the supercharges in (2.2.14),

to get a nonzero result we must use an operator with ∆ > 0. Its coefficient is x−4+∆ and
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therefore the integral (2.2.14) converges at small x.

Finally, let us examine the low momentum behavior of the integral in (2.2.10). We can

exclude any zero-momentum divergences in these integrals by invoking messenger parity

J → −J . On general grounds, any such zero-momentum poles in the current two point

functions in (2.2.7) must be due to massless intermediate one-particle states:

〈J (x)J (0)〉 = 〈0|J (x)|λ〉〈λ|J (0)|0〉 + ... (2.2.15)

Assuming that the only massless particles in the spectrum are due to spontaneously bro-

ken symmetries (bosonic or fermionic), and that messenger parity commutes with all the

symmetries of the theory, it follows that the one-point functions on the RHS of (2.2.15)

must vanish. Therefore massless modes can never contribute zero-momentum poles to the

current two point function, and the integral (2.2.10) must always converge at p = 0.

2.2.2 Generalization to the MSSM

Finally, let us briefly generalize the discussion from our G = U(1) toy model to the MSSM,

where G = SU(3)× SU(2)×U(1). We will label the gauge group factors U(1), SU(2) and

SU(3) by k = 1, 2, 3 respectively. Then are three complex numbers Bk ≡ B̃k(0) and three

real numbers Ak which determine the gaugino and sfermion soft masses. They are defined

as above, using the current supermultiplet of the respective gauge group. The soft masses

are given to leading order in the α by

Mk = g2
kMBk, m2

f =
3∑

k=1

g4
kc2(f, k)Ak (2.2.16)

f = Q,U,D,L,E labels the matter representations of the MSSM, and c2(f, k) is the

quadratic Casimir of f with respect to the gauge group k.

Since the five sfermion masses are determined by three real numbers, they must satisfy

two sum rules. These take the form [27]:

m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0.

(2.2.17)
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From (2.2.16), it is clear that these sum rules are valid at O(α2). However, we can further

demonstrate that they are valid at O(α3) and to leading-log order for any α, meaning that

the sum rules must be satisfied to very high accuracy.

First, it was already shown in [27] that the sum rules are preserved by the MSSM RGEs

(neglecting contributions from the Higgs sector proportional to the Yukawa interactions).

This takes care of the leading-log corrections. Second, we can consider the O(α3) corrections

coming from the hidden sector. These arise from various current three-point functions in

the hidden sector. It is easy to see that gauge invariance allows only five three-point

functions: SU(3)3, SU(2)3, U(1)3, SU(3)2U(1), SU(2)2U(1). If one imposes messenger

parity (which sends VY → −VY ), this eliminates the mixed three-point functions and the

U(1)3, leaving us with only the SU(3)3 and SU(2)3 three point functions. These represent

additional contributions to the parameters A2 and A3. Their presence does not spoil the

sum rules, which only rely on the fact that there are three A’s and not that they only receive

contributions at a given order in α.

2.3 Sensitivity to UV physics

2.3.1 General remarks

In the previous section, we restricted our analysis to renormalizable, UV-complete hidden

sectors. However, it is often the case that our understanding of the hidden sector is in-

complete, that we have only an effective description of it at low energies. In this section

we would like to make some general comments about the dependence of the MSSM soft-

breaking terms on unknown UV physics. This will have immediate applications in the next

section, when we wish to use incomplete messenger-spurion models of gauge mediation to

cover the parameter space of GGM. With our understanding of the (in)sensitivity of gauge

mediation to UV physics, we will be sure that the models we study in the next section are

indeed calculating correctly the MSSM soft masses.

We will begin with a more abstract discussion of UV sensitivity in a theory with spon-
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taneously broken SUSY. Then in the next subsection we will give an example to illustrate

some of our general comments. The reader may find it useful to reread the general discussion

after having gone through the example calculation in the next subsection.

Consider a hidden sector consisting of an effective field theory valid below a UV cutoff

scale Λ (which could be e.g. the Planck scale, or some UV scale), with SUSY spontaneously

broken at a scale
√
F . As long as

√
F ≪ Λ, all the soft terms are calculable in terms of

the effective theory. The reason is that at energies much larger than
√
F supersymmetry

is restored and all the supersymmetry breaking contributions arise at energies of order
√
F

or smaller.

Now suppose the hidden sector is a messenger model of gauge mediation. Such models

are weakly coupled truncations of a more complete theory valid above the scale Λ. They are

fully specified by the set of messenger quantum numbers and the set of messenger masses

given in (2.1.2), (2.1.3), (2.1.4). In this scheme, the soft parameters are calculable in terms

of the messenger mass matrices. Let us denote the scale of the messenger sector by M .

Clearly, when we study these models, we are implicitly taking the limit Λ → ∞ with M

fixed.

Typically one considers the messenger scale M and the SUSY-breaking scale
√
F to

be of the same order. In this case there is no problem and the soft terms are indeed

unambiguously calculable, insensitive to the physics above the UV cutoff Λ. However, it

is often the case that the messengers at the scale M receive supersymmetry breaking mass

splittings which are much smaller than F
M . Then, we might want to reconsider the Λ → ∞

limit in such a way that the messenger mass splittings are kept finite.

For example, imagine that these mass splittings are or order F
Λ . Then, the proper

decoupling limit is Λ,
√
F → ∞ with fixed F

Λ and M . In this case the soft-breaking terms

may not be calculable. A simple way to see that is to add to the theory additional messengers

with mass of order Λ and supersymmetry breaking mass splittings of order F
Λ . These

messengers contribute to gaugino masses and sfermion mass-squareds additional terms of

order F
Λ and (F

Λ )2 respectively. We can view these additional contributions as finite local
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counterterms for gaugino masses and sfermion masses which are determined by the details

of the high energy theory.

From the point of view of the effective theory, such counterterms are ambiguous, con-

trolled by the choice of UV completion above the scale Λ. It is important to note, however,

that any such ambiguity must necessarily arise only at leading order in the SUSY breaking

parameter F , since higher-order contributions from the UV states are necessarily suppressed

by additional powers of F
Λ2 (which goes to zero as Λ → ∞).

The sensitivity to the UV is particularly dramatic when the supertrace of the messenger

spectrum is nonzero [47, 48]. In this case the necessary counterterms include a logarith-

mically divergent sfermion mass. (See Appendix B for an explicit proof of this fact.) We

stress that this divergence is a symptom of the problem, but the problem might arise even

if the supertrace vanishes.

We conclude by roughly summarizing the foregoing discussion: if the messenger split-

tings are parametrically smaller than F/M , the soft-breaking terms in the MSSM are not

calculable without further UV input.

2.3.2 Example

Let us now illustrate these general points with a simple example. To that end, consider the

messenger theory with superpotential

Weff = Mφ1φ̃1 (2.3.1)

and Kähler potential

Keff = |X|2 + |φ̃1|2 +
(
1 +

∣∣∣
X

Λ

∣∣∣
2
+ ...

)
|φ1|2 (2.3.2)

where the ellipsis contains higher dimensional operators and X is a SUSY breaking field

with

〈X〉 = M ′ + θ2F (2.3.3)

It will be convenient to introduce the following notation:

x ≡ M ′

Λ
, y =

F

MΛ
(2.3.4)
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As described above, we consider the limit Λ → ∞ with x and y and the low energy mass

parameter M held fixed.

By the general arguments above, we expect that the soft parameters computed in this

effective theory are sensitive to large corrections from states at the scale Λ where the

description of the physics given by (2.3.1) and (2.3.2) breaks down. Moreover, we expect

that such corrections only enter in at leading order in the SUSY-breaking parameter F . We

will now explicitly show that this is indeed the case.

Using our messenger GGM formalism developed in Appendix B, or equivalently in this

case using the explicit formulas from [47], we find the low energy soft parameters to be

Beff =
Mx

48π2(1 + x2)2

(
6(1 + x2)y + (2 + x2)y3

)
+ O(y5) (2.3.5)

and

Aeff =
M2

64π4(1 + x2)2

((
log

(Λ2
cutoff

M2

)
− 2 + x2 + 2 log(1 + x2)

)
y2 +

x2(6 + x2)

36(1 + x2)
y4

)
+O(y6).

(2.3.6)

Note that while Beff is finite, Aeff is logarithmically divergent with the UV cutoff Λcutoff .

The appearance of this divergence which multiplies the supertrace in the low energy effective

theory

STrM2
IR = − 2M2y2

(1 + x2)2
(2.3.7)

reminds us that our theory must be UV completed. Note, however, that even though the

gaugino mass parameter is finite, it too will be sensitive to the UV physics as we will see

below.

We can regulate the divergence in (2.3.6) by embedding the IR theory in a renormalizable

UV theory with the following superpotential

W = Xφ1φ̃2 +Mφ1φ̃1 + Λφ2φ̃2 (2.3.8)

and a canonical Kähler potential.6 Integrating out the heavy fields (with mass Λ) φ2, φ̃2,

6Some authors (see e.g.[47]) regularize the theory using dimensional reduction with “ǫ-scalars.” We prefer
to replace the unphysical ǫ-scalars with physical heavy fields as in (2.3.8).
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we readily derive the effective low energy Lagrangian (2.3.1), (2.3.2).7

The contribution of the messengers in our full theory (2.3.8) to the soft SUSY breaking

masses in the MSSM is manifestly finite. Let’s compare it to the calculation in the low

energy theory (2.3.5), (2.3.6).

Again, using our messenger GGM formulas we find the following soft parameters

Bfull =
Mx

48π2(1 + x2)2
(2 + x2)y3 + O(y5) (2.3.9)

and

Afull =
M2

64π4(1 + x2)2

((
log

( Λ2

M2

)
+ 2x2 + 2 log(1 + x2)

)
y2 +

x2(6 + x2)

36(1 + x2)
y4

)
+ O(y6)

(2.3.10)

We see that Beff and Bfull differ only at leading order in y, with the counterterm given

by8

δB =
M

8π2

( x

1 + x2

)
y (2.3.11)

For the particular UV definition we have chosen, we can understand this term as arising

from the rescaling anomaly in the recanonicalization of the IR Kähler potential. Notice,

however, that if we had added messengers to the UV theory that did not couple to the light

messengers, they would have also contributed at order y to the counterterm in (2.3.11).

These contributions cannot be captured by the rescaling anomaly.

Similarly, the difference between Afull and Aeff is also only at leading order in the SUSY

breaking. However, here it includes an infinite counterterm:

δA =
M2

64π4(1 + x2)2
(log(Λ2/Λ2

cutoff ) + x2 + log(1 + x2))y2 . (2.3.12)

Again, adding messengers in the UV decoupled from the IR has the effect of generating

additional corrections at leading order in the SUSY breaking.

7In this regularization, we see that the negative sign of the supertrace in (2.3.7) corresponds precisely to
what we expect from the general results on integrating out massive chiral matter in Appendix A.

8One can check that the full expressions for both B and A in the effective and the full theories agree
at all higher orders in y and not just at the next-to-leading order we have written down in our expressions
above.
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With a sharp set of criteria for defining calculable gauge mediation models in hand, we

will now explore the covering of the GGM parameter space in the next section. In particular,

when using messenger models we will specialize to the case of vanishing supertrace and

F
Λ → 0.

2.4 Covering the General Gauge Mediation Parameter Space

2.4.1 The general setup

In this section we will demonstrate, using a general model with messengers, that the entire

parameter space of GGM can be covered by a calculable weakly coupled field theory.

Consider a theory with N chiral messengers Φi, Φ̃i, i = 1, . . . ,N transforming in some

vector-like representation R⊕R of a gauge group G (which will later be identified with the

SM gauge group). The messenger spectrum determines the GGM soft masses, so we will

focus on that. The most general messenger spectrum is of the form

Vmass terms = (ψ̃TMFψ + c.c.) +

(
φ

φ̃∗

)†
M2

B

(
φ

φ̃∗

)
(2.4.1)

with

M2
B ≡

(M†
FMF + ξ F

F † MFM†
F + ξ̃

)
(2.4.2)

Here MF , ξ, ξ̃ and F are all N × N matrices. We take MF to be diagonal with real,

positive entries without loss of generality. ξ and ξ̃ are Hermitian; and F is complex. The

off-diagonal parameters F can arise from “F-term breaking” e.g. from a superpotential

coupling to spurion field. The diagonal parameters ξ can arise from “D-term breaking” e.g.

from FI-U(1) terms. More generally, the general spectrum shown in (2.4.1) can arise from

complicated non-Abelian dynamics such as in [43].

We will impose the following restrictions on the messenger spectrum, motivated by

phenomenology and overall consistency:

• In order to avoid the SUSY CP problem, we require all the mass parameters to be



35

real

ξ = ξ∗, ξ̃ = ξ̃∗, F = F ∗ . (2.4.3)

• In order to guarantee that no dangerous FI-term for hypercharge is generated, we

impose invariance under messenger parity [1,2]9

Φi ↔ Φ̃i. (2.4.4)

This restricts the parameters to satisfy

ξ = ξ̃ , F = F T . (2.4.5)

• Since we want our theory to be calculable and insensitive to UV physics, we require

vanishing messenger mass-squared supertrace. This translates to

Tr ξ = 0 (2.4.6)

• In the case where G = SU(3) × SU(2) ×U(1), we want the gauge couplings to unify.

This restricts the messengers to be in complete SU(5) representations. Furthermore,

we limit the number of representations such that the theory remains perturbative.

• The messengers must be non-tachyonic for consistency of the model. So this puts

upper limits on the magnitudes of the entries in ξ and F .

Finally, we note that if the messengers are in a reducible representation

R =
⊕

R

(nR ×R) (2.4.7)

then the messenger mass matrices must be block-diagonal. Each block couples the messen-

gers with the same R. Consequently, all of the statements above hold for each R separately,

and the leading-order in α contributions from each R to the soft masses are additive.

9Actually, the authors of [2] considered another action for this symmetry which maps chiral superfields
to anti-chiral superfields. Such a symmetry does not commute with the Lorentz symmetry. However, if we
also impose CP symmetry, our choice is equivalent to theirs.
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2.4.2 Covering the GGM parameter space of a toy U(1) visible sector

In this subsection we will consider a simplified theory with only G = U(1) symmetry and

messengers with charges ±1. This example is instructive because the detailed representation

theory of the messengers does not play an important role in this case. It will also be useful

in the next subsection when we consider the full G = SU(3) × SU(2) × U(1) case.

Here there is only one A parameter and only one B parameter and covering the param-

eter space means finding a theory that covers the range

κ =
A

|B|2 ∈ (0,∞). (2.4.8)

Notice that κ → 0 corresponds to the limit of either a very massive gaugino or vanishing

sfermion mass, while κ → ∞ corresponds to either a very massive scalar or vanishing

gaugino mass.

Let us first ask if we can cover (2.4.8) with a single messenger pair and, at the same

time, obey the microscopic constraints on our messenger sector described in the previous

subsection. To answer this question, note that the most general single messenger model

allowed by messenger parity and vanishing supertrace is of the form

MF = M, M2
B =

(
M2 F

F M2

)
. (2.4.9)

i.e. only minimal gauge mediation is allowed. This model has two parameters, M and F ,

and spans a two-dimensional subspace of the full A and B parameter space. However, an

explicit calculation shows [56] that this subspace is not the full GGM parameter space and

that in fact

κ ∈ (.37, 1) (2.4.10)

where the upper bound for κ is obtained in the limit of small SUSY breaking and the lower

bound arises because the messengers cannot be tachyonic.

Next, we try a system with two messengers. Since we are only interested in giving

an existence proof of (2.4.8), we will not consider the most general possible two-messenger

mass matrix satisfying the conditions above. Instead, we consider the following special mass
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matrix

MF =

(
M1 0

0 M2

)
(2.4.11)

and

M2
B =




M2
1 +D 0 F1 0

0 M2
2 −D 0 F2

F1 0 M2
1 +D 0

0 F2 0 M2
2 −D



. (2.4.12)

This model could arise, e.g. from a simple MGM-like setup with the messengers charged

under an additional U(1)′ gauge group with a nonzero FI D-term.

With the added assumption

F1, F2,D ≪M2
1,2 . (2.4.13)

we can use the techniques of wavefunction renormalization [57, 29] to compute the A and

B parameters

B =
1

8π2

( F1

M1
+
F2

M2

)
+ O(F 3,DF ) (2.4.14)

and

A = AF +Aξ

AF =
1

64π4

( F 2
1

M2
1

+
F 2

2

M2
2

)
+ O(F 4,DF 2)

Aξ =
D

32π4
log(M2

1 /M
2
2 ) + O(DF 2).

(2.4.15)

From these expressions, it is straightforward to see that this example in fact covers the

range

κ ∈ (−∞,∞). (2.4.16)

First, for D = 0 we can set F1
M1

≈ − F2
M2

such that B is very small while A is finite. This

leads to arbitrarily large |κ|. However, setting D = 0 prevents us from making |κ| arbitrarily

small. For that, we use nonzero D to set

Aξ < 0 (2.4.17)

such that A = AF +Aξ is arbitrarily small with fixed B.

We conclude that this example covers the full parameter space of GGM for a U(1) visible

sector.
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2.4.3 Covering the MSSM GGM parameter space

Let us now generalize the discussion of the previous section to the physically relevant case

of G = SU(3)×SU(2)×U(1). We will see that, when properly analyzed, this case reduces

to the U(1) case considered in the previous subsection.

We would like to find weakly-coupled messenger theories that cover the full GGM pa-

rameter space of the MSSM, namely the six parameters Ak, Bk ∈ R
+, where k = 1, 2, 3

labels U(1), SU(2) and SU(3), respectively. A first analysis of this subject was presented

by Carpenter, Dine, Festuccia and Mason in [45]. We will extend their analysis, by de-

manding not only the right number of parameters, but that the entire parameter space can

be covered.

As noted above around equation (2.4.7), the messenger mass matrices are block diagonal

with respect to different irreps R, and the contribution from messengers of different irreps

are additive. It follows then that

Ak =
∑

R

Nk,RAR , Bk =
∑

R

Nk,RBR (2.4.18)

where the sum is over the different messenger irreps, and Nk,R are the total Dynkin indices

of the irrep R with respect to the gauge group k. Notice how the dependence on the gauge

group is trivial and factors out completely. The functions AR and BR are universal in the

sense that they depend only on the mass parameters of the messengers with representation

R. In fact, they are identical to what one would compute for nR U(1) messengers with

charges ±1.

Since we are interested in models that are compatible with unification, we should con-

sider messengers in complete representations of SU(5). The smallest SU(5) representations

5 and 10 can be decomposed under the usual matter representations of the MSSM as

5 = D ⊕ L , 10 = Q⊕ U ⊕E. (2.4.19)

So we will restrict our attention to R = Q,U,D,L,E. Just for reference, the Dynkin indices
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for these representations are

N1,Q =
1

10
, N1,U =

4

5
, N1,E =

3

5
, N1,D =

1

5
, N1,L =

3

10

N2,Q =
3

2
, N2,L =

1

2

N3,Q = 1, N3,U =
1

2
, N3,D =

1

2

(2.4.20)

where in the first line we have used the standard GUT normalization for the U(1)Y charge.

The expressions (2.4.18) immediately lead to a necessary condition on the messenger

content, in order for the model to cover the full parameter space: we need messengers

transforming in at least three different irreps. Otherwise, we do not have three linearly

independent functions AR and three linearly independent functions BR.

This means that any number of messengers in 5 ⊕ 5 cannot cover the parameter space

(they have only two values of R = D,L). Next we can attempt to use messengers in a single

copy of 10 ⊕ 10. Here we have three values of R = Q,U,E and therefore three linearly

independent constants. However, the result (2.4.10) in the U(1) toy example discussion

shows that these constants are bounded, .37 < κR ≡ AR
|BR|2 < 1. In particular, we cannot

make the gauginos arbitrarily heavy compared to the scalars.

As in the U(1) example, we can avoid this difficulty by having at least two copies of the

representations and then using D-type supersymmetry breaking. We are therefore led to

the following simplest possible models

2 × (10 ⊕ 10) or 2 × (5 ⊕ 5) ⊕ 10 ⊕ 10 . (2.4.21)

The latter is more “minimal” since it has slightly smaller total Dynkin index (and thus

contributes slightly less to the MSSM gauge coupling beta functions). However, the former

is easier to analyze, since we can now build a theory that is three copies of the two-messenger

models discussed in the previous section, one for each irrep in the 10. The small SUSY

breaking result (2.4.16) is then enough to show that we can in fact cover the parameter

range. This is true even if we take universal fermion mass for each 10⊕10 factor, so we can

cover the parameter space without introducing supersymmetric GUT-breaking splittings in
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the messenger sector. This shows that covering the parameter space is compatible with

unification, up to possible threshold corrections coming from the SUSY-splittings.

The analysis of a theory with messenger content 2×(5⊕ 5) ⊕ 10⊕ 10 is slightly different

since the 10 ⊕ 10 representations must have pure F-type breaking. In particular, the Q, U ,

and E type messengers must satisfy (2.4.10) and so

0.37 < κR < 1 for R = Q,U,E (2.4.22)

Substituting (2.4.22) into (2.4.18), we find six equations for seven non-compact variables

(A(D), A(L), B(D), B(L), B(Q), B(U), and B(E)) and three compact variables (κQ,U,E).

However, it is not completely obvious that a real solution exists, because the substitution is

quadratic in B(Q), B(U) and B(E). One can check that this is always possible if we take

κQ > κE , κU . Note that this takes us outside the small SUSY-breaking limit (where κ = 1)

for the E and the U messengers.

These results show that there cannot be any additional field theoretic restrictions on the

GGM parameter space. Another consequence of this result is the following. Assume that

all the soft terms are measured someday, and our two sum rules (2.1.1) are satisfied. Then,

we can derive the six numbers Ak, Bk and try to match them with a more microscopic

theory. Our result here shows that whatever these numbers are, we’ll be able to obtain

them from weakly coupled messengers. In fact, we’ll be able to do it in more than one way.

This implies that the gaugino and sfermion masses alone will not be enough to distinguish

between different gauge mediation scenarios. More input, such as the messenger scale or

the SUSY-breaking scale (equivalently, the gravitino mass), will be needed in order to break

this degeneracy.

2.5 General results on the effective supertrace

In this section we analyze the effect of integrating out massive modes at tree-level in a renor-

malizable theory. In particular, we will be interested in the supertrace over the spectrum

of the low-energy effective theory. We will assume that the low-energy theory is described
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by a non-linear sigma model without gauge interactions. Then the supertrace over the light

modes is given by the following general formula [30, 49]:

STrM2 = 2Rckg
kagbcWaW

∗
b

(2.5.1)

where the indices run over the chiral superfields Φa comprising the low-energy effective

theory; gab is the inverse Kähler metric; Rab is the Ricci tensor associated with the Kähler

metric, and W is the effective superpotential.

We will show that integrating out massive chiral matter results in a negative semi-definite

Ricci tensor, so STrM2 ≤ 0 in this case. We then show that integrating out massive vector

fields results in an indefinite Ricci tensor and correspondingly a supertrace of indefinite

sign.

2.5.1 Integrating out massive chiral matter

Consider the most general renormalizable theory of heavy chiral superfields HA coupled to

light chiral superfields ℓa. This must have the form (we take the Kähler potential to be

canonical)

W =
1

2
λAbcH

Aℓbℓc +
1

2
MABH

AHB +
1

2
mabℓ

aℓb + ... (2.5.2)

where the ellipsis contains unimportant marginal and higher dimensional couplings, and

m≪M . Integrating out the heavy fields yields the following equation of motion

HA = −1

2
(M−1)ABℓTλBℓ+ ... (2.5.3)

Substituting this into (2.5.2) we obtain the effective superpotential

Weff =
1

2
mabℓ

aℓb + O(ℓ4) (2.5.4)

We also find the following effective Kähler potential

Keff = ℓ†ℓ+
1

4

∑

A

∣∣∣(M−1)ABℓTλBℓ
∣∣∣
2
... (2.5.5)

It follows that the Ricci tensor of the effective Kähler metric

Rab = −∂a(g
cdgdb,c) (2.5.6)
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is at ℓ = 0

Rab = −δcdgab,cd = −
∑

A

(
(M−1λ)A(M−1λ)†A

)
ab

(2.5.7)

This is a sum over negative semi-definite matrices, so it is also negative semi-definite. It

then follows from (2.5.1) that the effective supertrace over the light fields is non-positive.

One application of this result is to gauge mediation models of the type discussed in section

3, where the HA fields are heavy messengers and the ℓa are light messengers and SUSY

breaking fields.

2.5.2 Integrating out massive vector superfields

Next we consider what happens when one classically integrates out massive vector super-

fields. Here it turns out that the Ricci tensor of the effective Kähler metric is indefinite and

therefore the supertrace over the light spectrum is also of indefinite sign.

The setup is as in [43]; we will review it here. Consider a gauge theory with matter

chiral superfields Φa transforming under gauge group G (not necessarily simple), where

a = 1, . . . ,N denotes the collective set of gauge and flavor indices. Suppose that the Φa

acquire supersymmetric vevs φ0 which Higgs the entire gauge group. These vevs must lie

along the D-flat moduli space M defined by the equations:

φ†0T
Iφ0 = 0 (2.5.8)

where T I are the generators of G. Now consider the fluctuations around this point in moduli

space:

Φ = φ0 + δΦ (2.5.9)

We are interested in the effective Kähler potential for these fluctuations induced by inte-

grating out the massive vector supermultiplets of G. In what follows we will work in the

unitary gauge discussed in [43]

φ†0T
IδΦ = 0 (2.5.10)

which guarantees that the fluctuations lie within M. It will be convenient to perform a

unitary transformation so that δΦa=1,...,N−dimG satisfy (2.5.10) and the other elements of
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δΦ are in the orthogonal subspace.

Now according to [43], the effective Kähler potential is given by

Keff = δΦ†δΦ − 1

2
(δΦ†T IδΦ)h−1

IJ (δΦ†T JδΦ) + O(δΦ6) (2.5.11)

where hIJ is the matrix

hIJ =
1

2
Φ†{T I , T J}Φ (2.5.12)

(Note the analogy with the previous subsection: h−1
IJ is analogous to M−1†M−1 and T I

ba
is

analogous to λAbc. The only difference is in the type of the indices, which dictates how they

are contracted.) As in the previous subsection, we can compute the Ricci tensor at leading

order in the fluctuations. However, we must be careful not to differentiate with respect to

all the fluctuations δΦa, but only those which satisfy the gauge condition (2.5.10). In our

convenient basis, these are simply the a = 1, . . . ,N − dimG entries of δΦa. So the metric

is simply

gab = δab − (δΦ†T I)ah
−1
IJ (T JδΦ)b − (T I)bah

−1
IJ (δΦ†T JδΦ) + O(δΦ4) (2.5.13)

with a, b = 1, . . . ,N − dimG. Therefore, the Ricci tensor at δΦ = 0 is:

Rab = −δcdgab,cd = (T I)cah
−1
IJ (T J)bc + (T I)bah

−1
IJ Tr ′T J (2.5.14)

Here the sum is only over indices in the range 1, . . . ,N − dimG, and Tr ′ refers to the

restricted trace over the subspace of fluctuations satisfying (2.5.10). Even though the full

trace of T J must vanish due to the anomaly condition, the restricted trace need not vanish

since the gauge symmetry is spontaneously broken. This is important, because while the first

term in (2.5.14) enjoys definiteness properties, the second term obviously does not. Thus

there is no reason to expect the Ricci tensor to have any definiteness property. Indeed, it

is straightforward to construct simple examples where Rab has both positive and negative

eigenvalues.10 Therefore we conclude in this case that the effective supertrace can have

either sign.

10For instance, consider a U(1) gauge theory with fields Φ1,2,3,4 having charges q1 = +1, q2 = −1,
q3 = +q and q4 = −q with q 6= ±1. The D-flat moduli space is characterized by φ0 = (Φ1, Φ2, Φ3, Φ4) with
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2.6 General results on multiple messenger models

In this final section we write down the GGM correlation functions for a general messenger

theory. We then explicitly show that a messenger sector with non-vanishing supertrace

generates contributions to the scalar mass-squareds that are logarithmically divergent and

proportional to the supertrace.

As in section 4, let us restrict ourselves to the case that the messengers are charged

under a U(1) gauge group with mass terms

V ⊃ ξijφiφ
∗
j + ξ̃ij φ̃iφ̃

∗
j + |Mi|2(φiφ

∗
i + φ̃iφ̃

∗
i )+ fijφiφ̃j + f∗ijφ

∗
i φ̃
∗
j +Miψiψ̃i +M∗i ψiψ̃i (2.6.1)

and i = 1, ...,N . Again, taking the φi and φ̃i to have U(1) charge +1 and −1 respectively,

we find

J(x) = φ∗iφi − φ̃∗i φ̃i

jα(x) = −
√

2i(φ∗iψiα − φ̃∗i ψ̃iα)

jα̇(x) =
√

2i(φiψiα̇ − φ̃iψ̃iα̇)

jµ(x) = i(φi∂µφ
∗
i − φ∗i ∂µφi − φ̃i∂µφ̃

∗
i + φ̃∗i ∂µφ̃i) + ψiσµψi − ψ̃iσµψ̃i

(2.6.2)

where we have implicitly summed over i.

Let us now write the various current two-point functions. To perform the calculation,

it will be convenient to change basis from the gauge eigenstates appearing in (2.6.2) to the

mass eigenstates via the following expressions

φi = Ria · ϕa, φ̃∗i = R(i+N)a · ϕa (2.6.3)

where i = 1, ...,N , a = 1, ..., 2N , and R is a 2N × 2N unitary matrix. Let us also denote

the bosonic (fermionic) mass eigenvalues by µa (Mi). Inserting (2.6.3) into (2.6.2), and

Φi satisfying the equation
|Φ1|2 − |Φ2|2 + q(|Φ3|2 − |Φ4|2) = 0 (2.5.15)

Going to a point on this moduli space, we can impose the gauge fixing condition (2.5.10) by solving for δΦ4.
Substituting back into the Kähler potential (2.5.11) gives the effective Kähler potential for δΦ1,2,3. From

this one can compute the Ricci tensor at δΦ = 0 using R
ab

= −δcdg
ab,cd

. Then by varying φ0 and q it is
easy to find places where R

ab
has both positive and negative eigenvalues.
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performing the contractions to evaluate the correlators, we find

C0(p) =
(
RiaRib −R(j+N)aR(j+N)b

)(
RkbRka −R(l+N)bR(l+N)a

)
I(p, µa, µb)

C1/2(p) =
p2 + µ2

a −M2
i

p2

(
RiaRia +R(i+N)aR(i+N)a

)
I(p, µa,Mi)

C1(p) =
1

3p2

(
(p2 + 4µ2

a)I(p, µa, µa) + (2p2 − 8M2
i )I(p,Mi,Mi) + 4J(µa) − 8J(Mi)

)

B = −4MiRiaR(i+N)aI(0,Mi, µa)

(2.6.4)

where all indices are summed, and we define

I(p,m1,m2) =

∫
d4q

(2π)4
1

((p+ q)2 +m2
1)(q

2 +m2
2)

=
1

16π2

(
log

Λ2
q

p2
+ 1

)
+

1

16π2p2

(
m2

1 log
m2

1

p2
+m2

2 log
m2

2

p2
−m2

1 −m2
2

)

+ O
( 1

p4
,
log p2

p4

)

J(m) =

∫
d4q

(2π)4
1

q2 +m2
=

Λ2
q

16π2
+

m2

16π2
log

m2

Λ2
q

(2.6.5)

where Λq is a momentum cutoff for the q integral.

Let us now show that a non-vanishing messenger supertrace necessarily generates a

logarithmically divergent scalar counterterm. Recall first the expression (2.2.10) for the A

parameter

A ≡ −
∫

d4p

(2π)4
1

p2

(
3C1(p) − 4C1/2(p) + C0(p)

)
(2.6.6)

Using (2.6.5), (2.6.4) and focussing on the O(1/p2) terms (one can check that the O(p0, log p)

terms, and hence the dependence on Λq, always vanish in (2.6.6)), we find

δA = − 1

64π4

(
Trµ2 − 2TrM2

)
log Λ2 = − 1

128π4
StrM2 · log Λ2 (2.6.7)

where Λ is the cutoff of the p integral in (2.6.6).

In this example we took the gauge group to be U(1) and took all the messengers to have

charge ±1. More generally, one obtains a charge-weighted supertrace, or to be precise

δA = − 1

128π4

∑

R

StrNRM2
R · log Λ2 (2.6.8)

where the supertrace is taken over the subset of messengers transforming in irrep R and

NR is the Dynkin index of irrep R.
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Towards the SSM in String Theory

In this chapter, we move on to string theory embeddings of particle physics and consider

a D3 brane probing a del Pezzo 8 (dP8) singularity.1 We study the gauge theory on the

corresponding exceptional collection of fractional branes in the formal decoupling limit in

which the Planck and string scales are taken to be large. We discuss the parameter space

of the resulting gauge-invariant couplings.

Then, by studying the relationship between the local homology of the dP8 singularity and

the homology of an imagined UV compactification, we propose a topological condition on the

compact space which ensures that all abelian vector bosons, except the one corresponding

to hypercharge, become massive. In so doing, we end up with a collection of branes that

realizes the symmetries and matter content of the MSSM with only a few extra Higgs

doublets. We also comment on the possible non-perturbative generation of µ terms for the

Higgs doublets in this setup.

We should note that our topological criteterion for generating massive U(1)s from UV

compactifications is of general interest because theories of D-branes at singularities rather

generically come with many surplus U(1) gauge factors.

1This chapter is based on “D-branes at Singularities, Compactification, and Hypercharge,” written in
collaboration with D. Malyshev, D. R. Morrison, H. Verlinde, and M. Wijnholt [59].

46
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3.1 Introduction

As we have hinted at in the introduction, D-branes near Calabi–Yau singularities provide

open string realizations of an increasingly rich class of gauge theories [20, 60, 61]. Given the

hierarchy between the Planck and TeV scale, it is natural to make use of this technology and

pursue a bottom-up approach to string phenomenology, that aims to find Standard Model-

like theories on D-branes near CY singularities. In this setting, the D-brane world-volume

theory can be isolated from the closed string physics in the bulk via a formal decoupling

limit, in which the string and 4-d Planck scale are taken to infinity, or very large. The

clear advantage of this bottom-up strategy is that it separates the task of finding local

realizations of SM-like models from the more difficult challenge of finding fully consistent,

realistic string compactifications.2

In scanning the space of CY singularities for candidates that lead to realistic gauge the-

ories, one is aided by the fact that all gauge invariant couplings of the world-volume theory

are controlled by the local geometry; in particular, symmetry breaking patterns can be

enforced by appropriately dialing the volumes of compact cycles of the singularity. Several

other properties of the gauge theory, however, such as the spectrum of light U(1) vector

bosons and the number of freely tunable couplings, depend on how the local singularity is

embedded inside the full compact Calabi–Yau geometry.

In this chapter we work out some concrete aspects of this program. We begin with

a brief review of the general set of ingredients that can be used to build semi-realistic

gauge theories from branes at singularities. Typically these local constructions lead to

models with extra U(1) gauge symmetries beyond hypercharge. As our first new result, we

identify the general topological conditions on the embedding of a CY singularity inside a

compact CY threefold, that determines which U(1)-symmetry factors survive as massless

gauge symmetries. The other U(1) bosons acquire a mass of order of the string scale. The

left-over global symmetries are broken by D-brane instantons.

2The general challenge of extending local brane constructions near CY singularities to full-fledged string
compactifications represents a geometric component of the “swampland program” of [62], that aims to
determine the full class of quantum field theories that admit consistent UV completions with gravity.
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In the second half of the chapter, we apply this insight to the concrete construction of

an SM-like theory given in [23], based on a single D3-brane near a suitably chosen del Pezzo

8 singularity. We specify a simple topological condition on the compact embedding of the

dP8 singularity, such that only hypercharge survives as the massless gauge symmetry. To

state this condition, recall that the 2-homology of a dP8 surface is spanned by the canonical

class K and eight 2-cycles αi with intersection form αi · αj = −Aij with Aij the Cartan

matrix of E8. With this notation, our geometric proposal is summarized as follows:

The world-volume gauge theory on a single D3-brane near a del Pezzo 8 singularity embed-

ded in a compact Calabi-Yau threefold with the following geometrical properties:

(i) the two 2-cycles α1 and α2 are degenerate and form a curve of A2 singularities

(iii) all 2-cycles except α4 are non-trivial within the full Calabi-Yau three-fold

has, for a suitable choice of Kähler moduli, the gauge group and matter content of the SSM

shown in Table 1, except for an extended Higgs sector (with 2 pairs per generation):

Qi uc
i dc

i ℓi eci νc
i Hu

i Hd
i

SU(3)C 3 3 3 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2

U(1)Y 1/6 −2/3 1/3 −1/2 1 0 1/2 −1/2

Table 3.1: The matter content of our D-brane model. i counts the 3 generations

More details of this proposal are given in section 4. In section 5, we present a concrete

geometric recipe for obtaining a compact CY manifold with all the required properties.

3.2 General Strategy

We begin with a summary our general approach to string phenomenology. In subsection

2.1, we give a quick recap of some relevant properties of D-branes at singularities. The

reader familiar with this technology may wish to skip to subsection 2.2.
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3.2.1 D-branes at a CY singularity

D-branes near Calabi–Yau singularities typically split up into so-called fractional branes.

Fractional branes can be thought of as particular bound state combinations of D-branes,

that wrap cycles of the local geometry. In terms of the world-sheet CFT, they are in

one-to-one correspondence with allowed conformally invariant open string boundary condi-

tions. Alternatively, by extrapolating to a large volume perspective, fractional branes may

be represented geometrically as particular well-chosen collections of sheaves, supported on

corresponding submanifolds within the local Calabi–Yau singularity. For most of our discus-

sion, however, we will not need this abstract mathematical description; the basic properties

that we will use have relatively simple topological specifications.

There are many types of CY-singularities, and some are, in principle, good candidates

for finding realistic D-brane gauge theories. For concreteness, however, we specialize to the

subclass of singularities which are asymptotic to a complex cone over a del Pezzo surface

X. D-brane theories on del Pezzo singularities have been studied in [23, 63, 64].

A del Pezzo surface is a manifold of complex dimension 2, with a positive first Chern

class. Each del Pezzo surface other than P1 × P1 can be represented as P2 blown up at

n ≤ 8 generic points; such a surface is denoted by dPn and sometimes called “the n-th

del Pezzo surface”.3 By placing an appropriate complex line bundle (the “anti-canonical

bundle”) over X = dPn, one obtains a smooth non-compact Calabi–Yau threefold. If we

then shrink the zero section of the line bundle to a point, we get a cone over X, which

we will call the conical del Pezzo n singularity and denote by Y0. (More general del Pezzo

singularities are asymptotic to Y0 near the singular point.) To specify the geometry of Y0,

let ds2X = habdz
adzb be a Kähler-Einstein metric over the base X with Rab = 6hab and

first Chern class ωab = 6iRab. Introduce the one-form η = 1
3dψ + σ where σ is defined by

dσ = 2ω and 0 < ψ < 2π is the angular coordinate for a circle bundle over the del Pezzo

3This terminology is unfortunately at odds with the fact that, for n ≥ 5, dPn is not unique but actually
has 2n − 8 complex moduli represented by the location of the points.
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surface. The Calabi–Yau metric can then be written as follows

ds2Y = dr2 + r2η2 + r2ds2X (3.2.1)

For the non-compact cone, the r-coordinate has infinite range. Alternatively, we can think

of the del Pezzo singularity as a localized region within a compact CY manifold, with r

being the local radial coordinate distance from the singularity. We will consider both cases.

The del Pezzo surface X forms a four-cycle within

the full three-manifold Y , and itself supports several

non-trivial two-cycles. Now, if we consider IIB string

theory on a del Pezzo singularity, we should expect to

find a basis of fractional branes that spans the com-

plete homology of X: the del Pezzo 4-cycle itself may

be wrapped by any number of D7-branes, any 2-cycle

within X may be wrapped by one or more D5 branes,

and the point-like D3-branes occupy the 0-cycle within

X. The allowed fractional branes, however, typically do

not correspond to single branes wrapped on some given

cycle, but rather

to particular bound states Fs, each characterized by a charge vector of the form

ch(Fs) = ( rs, p
a

s , qs ) (3.2.2)

Here rs = rk(Fs) is the rank of the fractional brane Fs, and is equal to the D7-brane wrapping

number around X. The number qs = ch2(Fs) is the 2nd Chern character of Fs and counts

the D3-brane charge. Finally, the integers p a

s are extracted from the first Chern class of Fs

via

pas =

∫

αa

c1(Fs) (3.2.3)

where αa denotes an integral basis of H2(X). Geometrically, p a

s counts the number of times

the D5-brane component of Fs wraps the 2-cycle αa.
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For a given geometric singularity, it is a non-trivial problem to find consistent bases of

fractional branes that satisfy all geometric stability conditions. For del Pezzo singularities,

a special class of consistent bases are known, in the form of so-called exceptional collections

[76, 63, 64]. These satisfy special properties, that in particular ensures the absence of adjoint

matter in the world-volume gauge theory, besides the gauge multiplet. The formula for the

intersection product between two fractional branes Fi and Fj of an exceptional collection

reads

#(Fi,Fj) = rk(Fi) deg(Fj) − rk(Fj) deg(Fi) ≡ χij (3.2.4)

Here the degree of Fi is given by deg(Fi)=−c1(Fi)·K with K the canonical class on X. It

equals the intersection number between the D5 component of Fi and the del Pezzo surface.

The intersection number χij governs the number of massless states of open strings that

stretch between the two fractional branes Fi and Fj.

The world-volume theory on D-branes near a CY singularity takes the form of a quiver

gauge theory. For exceptional collections, the rules for drawing the quiver diagram are: 4

(i) draw a single node for every basis element Fi of the collection, (ii) connect every pair of

nodes with χij > 0 by an oriented line with multiplicity χij. Upon assigning a multiplicity

ni to each fractional brane Fi, one associates to the quiver diagram a quiver gauge theory.

The gauge theory has a U(|ni|) gauge group factor for every node Fi, as well as χij chiral

multiplets in the bi-fundamental representation (ni, nj). The multiplicities ni can be freely

adjusted, provided the resulting world volume theory is a consistent N = 1 gauge theory,

free of any non-abelian gauge anomalies.

Absence of non-abelian gauge anomalies is ensured if at any given node, the total number

of incoming and outgoing lines (each weighted by the rank of the gauge group at the other

end of the line) are equal:
∑

j

χij nj = 0 . (3.2.5)

This condition is automatically satisfied if the configuration of fractional branes constitute

4These rules can be generalized by including orientifold planes that intersect the CY singularity. We will
elaborate on this possibility in the concluding section.
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a single D3-brane, in which case the multiplicities ni are such that
∑

i ni ch(Fi)=( 0, 0, 1 ).

In general, however, one could allow for more general configurations, for which the charge

vectors add up to some non-trivial fractional brane charge.

For a given type of singularity, the choice of exceptional collection is not unique.5

Different choices are related via simple basis transformations, known as mutations [76].

However, only a subset of all exceptional collections, that can be reached via mutations,

lead to consistent world-volume gauge theories. The special mutations that act within the

subset of physically relevant collections all take the form of Seiberg dualities [63, 64]. Which

of the Seiberg dual descriptions is appropriate is determined by the value of the geometric

moduli that determine the gauge theory couplings.

3.2.2 Symmetry breaking towards the SSM

To find string realizations of SM-like theories we now proceed in two steps. First we look

for CY singularities and brane configurations, such that the quiver gauge theory is just rich

enough to contain the SM gauge group and matter content. Then we look for a well-chosen

symmetry breaking process that reduces the gauge group and matter content to that of the

Standard Model, or at least realistically close to it. When the CY singularity is not isolated,

the moduli space of vacua for the D-brane theory has several components [61], and the

symmetry breaking we need is found on a component in which some of the fractional branes

move off of the primary singular point along a curve of singularities (and other branes are

replaced by appropriate bound states). This geometric insight into the symmetry breaking

allows us to identify an appropriate CY singularity, such that the corresponding D-brane

theory looks like the SSM.

The above procedure was used in [23] to construct a semi-realistic theory from a single

D3-brane on a partially resolved del Pezzo 8 singularity (see also section 4). The final model

of [23], however, still has several extra U(1) factors besides the hypercharge symmetry. Such

5Each collection corresponds to a particular set of stability conditions on branes, and determines a region
in Kähler moduli space where it is valid.
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extra U(1)’s are characteristic of D-brane constructions: typically, one obtains one such

factor for every fractional brane. As will be explained in what follows, whether or not these

extra U(1)’s actually survive as massless gauge symmetries depends on the topology of how

the singularity is embedded inside of a compact CY geometry.

In a string compactification, U(1) gauge bosons may acquire a non-zero mass via cou-

pling to closed string RR-form fields. We will describe this mechanism in some detail in the

next section, where we will show that the U(1) bosons that remain massless are in one-to-

one correspondence with 2-cycles, that are non-trivial within the local CY singularity but

are trivial within the full CY threefold. This insight in principle makes it possible to ensure

– via the topology of the CY compactification – that, among all U(1) factors of the D-brane

gauge theory, only the hypercharge survives as a massless gauge symmetry.

The interrelation between the 2-cohomology of the del Pezzo base of the singularity,

and the full CY threefold has other relevant consequences. Locally, all gauge invariant

couplings of the D-brane theory can be varied via corresponding deformations of the local

geometry. This local tunability is one of the central motivations for the bottom-up approach

to string phenomenology. The embedding into a full string compactification, however,

typically introduces a topological obstruction against varying all local couplings: only those

couplings that descend from moduli of the full CY survive. Their value will need to be fixed

via a dynamical moduli stabilisation mechanism.

3.2.3 Summary

Let us summarize our general strategy in terms of a systematized set of steps:

(i) Choose a non-compact CY singularity, Y0, and find a suitable basis of fractional branes Fi

on it. Assign multiplicities ni to each Fi and enumerate the resulting quiver gauge theories.

(ii) Look for quiver theories that, after symmetry breaking, produce an SM-like theory. Use

the geometric dictionary to identify the corresponding (non-isolated) CY singularity.

(iii) Identify the topological condition that isolates hypercharge as the only massless U(1).
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Look for a compact CY threefold, with the right topological properties, that contains Y0.

In principle, it should be possible to automatize all three of these steps and thus set up a

computer-aided search of SM-like gauge theories based on D-branes at CY singularities.

3.3 U(1) Masses via RR-couplings

The quiver theory of a D-brane near a CY singularity typically contains several U(1)-

factors, one for each fractional brane. Some of these U(1) vector bosons remain massless,

all others either acquire a Stückelberg mass via the coupling to the RR-form fields or get

a mass through the Higgs mechanism [20, 74, 75, 69]. We will now discuss the Stückelberg

mechanism in some detail.

3.3.1 The U(1) hypermultiplet

To set notation, we first consider the U(1) gauge sector on a single fractional brane. Let us

introduce the two complex variables

τ =
θ

2π
+ i

4π

g2
, S = ρ+ iζ . (3.3.6)

Here τ is the usual SL(2,Z) covariant complex coupling, that governs the kinetic terms of

the U(1) gauge boson via (omitting fermionic terms)

Im

∫
d2θ

τ

8π
WαW

α = − 1

4g2
F ∧ ∗F +

θ

32π2
F ∧ F (3.3.7)

The field S in (3.3.6) combines a Stückelberg field ρ and a Faillet-Iliopoulos parameter ζ.

After promoting S to a chiral superfield, we can write a supersymmetric gauge invariant

mass term for the gauge field via [20]

∫
d4θ

1

4
(Im(S−S− 2V ))2 =

1

2
(A− dρ)∧ ∗(A− dρ) − ζD. (3.3.8)

Here D denotes the auxiliary field of the vector multiplet V . Together with the mass term,

we observe a Faillet-Iliopoulos term proportional to ζ.
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The complex parametrization (3.3.6) of the D-brane couplings naturally follows from

its embedding in type IIB string theory. Without D-branes, IIB supergravity on a Calabi–

Yau threefold preserves N =2 supersymmetry. Closed string fields thus organize in N =2

multiplets [66, 67]. The four real variables in (3.3.6) all fit together as the scalar components

of a single hypermultiplet that appears after dualizing two components of the so called

double tensor multiplet [68]. Since adding a D-brane breaks half the supersymmetry, the

hypermultiplet splits into two complex N =1 superfields with scalar components τ and S.

The hypermultiplet of a single D3-brane derives directly from the 10-d fields, via

τ = C0 + ie−φ,

dS = ∗d(C2 + τB2 ) (3.3.9)

A dPn singularity Y0 supports a total of n+ 3 independent fractional branes, and a typical

D-brane theory on Y0 thus contains n + 3 separate U(1) gauge factors. In our geometric

dictionary, we need to account for a corresponding number of closed string hypermultiplets.

In spite their common descent from the hypermultiplet, from the world volume per-

spective τ and S appear to stand on somewhat different footing: τ can be chosen as a

non-dynamical coupling, whereas S must enter as a dynamical field. In a decoupling limit,

one would expect that all closed string dynamics strictly separates from the open string dy-

namics on the brane, and thus that all closed string fields freeze into fixed, non-dynamical

couplings. This decoupling can indeed be arranged, provided the U(1) symmetry is non-

anomalous and one starts from a D-brane on a non-compact CY singularity. In this setting,

τ becomes a fixed constant as expected, while S completely decouples, simply because the

U(1) gauge boson stays massless.

3.3.2 Some notation

As before, let Y0 be a non-compact CY singularity given by a complex cone over a base X. A

complete basis of IIB fractional branes on Y0 spans the space of compact, even-dimensional

homology cycles within Y0, which coincides with the even-dimensional homology of X. The
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2-homology of the n-th del Pezzo surface dPn is generated by the canonical class α0 = k,

plus n orthogonal 2-cycles αi. Using the intersection pairing within the threefold Y0, we

introduce the dual 4-cycles βb satisfying

αa · βb = δb
a

A, B = 0, . . . , n (3.3.10)

The cycle β0, dual to the canonical class α0, describes the class of the del Pezzo surface X

itself, and forms the only compact 4-cycle within Y0. The remaining β’s are all non-compact

and extend in the radial direction of the cone. The degree zero two-cycles αi, that satsify

α0 · αi = 0, have the intersection form

αi · αj = −Aij (3.3.11)

where Aij equals minus the Cartan matrix of En. The canonical class has self-intersection

9 − n. In the following we will use the intersection matrix

ηab =




9 − n 0

0 −Aij


 (3.3.12)

and its inverse ηab to raise and lower A-indices.

3.3.3 Brane action

The 10-d IIB low energy field theory contains the following bosonic fields: the dilaton φ,

the NS 2-form B, the Kähler 2-form J and the RR p-form potentials Cp, with p even from

0 to 8. (Note that the latter are an overcomplete set, since dCp = ∗10dC8−p.) From each of

these fields, we can extract a 4-d scalar fields via integration over a corresponding compact

cycles within Y0. These scalar fields parametrize the gauge invariant couplings of the D-

brane theory. Near a CY singularity, however, α′ corrections may be substantial, and this

gauge theory/geometric dictionary is only partially under control. We will not attempt

to solve this hard problem and will instead adopt a large volume perspective, in which

the local curvature is assumed to be small compared to the string scale. All expressions
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below are extracted from the leading order DBI action. Moreover, we drop all curvature

contributions, as they do not affect the main conclusions. To keep the formulas transparant,

we omit factors of order 1 and work in ℓs = 1 units. For a more precise treatment, we refer

to [69].

The D-brane world-volume theory lives on a collection of fractional branes Fs, with

properties as summarized in section 2. Since the fractional branes all carry a non-zero D7

charge rs, we can think of them as D7-branes, wrapping the base X of the CY singularity

rs times. We can thus identify the closed string couplings of Fs via its world volume action,

given by the sum of a Born-Infeld and Chern-Simons term via

S =

∫
e−i∗sφ

√
det(i∗s (G+B) − Fs) +

∫ ∑
p
i∗sCp e

Fs−i∗sB . (3.3.13)

Here i∗s denotes the pull-back of the various fields to the world-volume of Fs; it in particular

encodes the information of the D7 brane wrapping number rs. In case the D7 brane wrapping

number rs is larger than one, we need to replace the abelian field strength Fs to a non-abelian

field-strength and take a trace where appropriate. 6

The D5 charges of Fs are represented by fluxes of the field strength Fs through the

various 2-cycles within X.

pas =

∫

αa

Tr(Fs) (3.3.14)

Analogously, the D3-brane charge is identified with the instanton number charge.

qs =

∫

X

1

2
Tr(Fs ∧ Fs) (3.3.15)

The D5 charges psa are integers, whereas the D3 charge qs may take half-integer values.

The D-brane world volume action, since it depends on the field strength Fs via the

combination

Fs = Fs − i∗sB ,

6In general, there are curvature corrections to the DBI and Chern-Simons terms that would need to be

taken into account. They have the effect of replacing the Chern character by [70] Tr(eF ) → Tr(eF )

√
Â(T )

Â(N)
.

We will ignore these geometric contributions here, since they do not affect the main line of argument.
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is invariant under gauge transformations B2 → B2 +dΛ, As → As+Λ, with Λ any one-form.

If Λ is single valued, then the fluxes pas of Fs remain unchanged. But the only restriction is

that dΛ belongs to an integral cohomology class on Y . The gauge transformations thus have

an integral version, that shifts the integral periods of B into fluxes of Fs, and vice versa.

This integral gauge invariance naturally turns the periods of B2 into angular variables. The

relevant B-periods for us are those along the 2-cycles of the del Pezzo surface X

ba =

∫

αa

B. (3.3.16)

The integral gauge transformations act on these periods and the D-brane charges via

ba → ba + na

pas → pas + na rs (3.3.17)

qs → qs − na p
a

s − 1
2rsnan

a

with na an a priori arbitrary set of integers. These transformations can be used to restrict

the ba to the interval between 0 and 1.

Physical observables should be invariant under (3.3.17). This condition provides a useful

check on calculations, whenever done in a non-manifestly invariant notation. A convenient

way to preserve the invariance, is to introduce a new type of charge vector for the fractional

branes, obtained by replacing in the definitions (3.3.14) and (3.3.15) the field strength Fs

by Fs:

Q(Fs) = (rs, psa, qs) (3.3.18)

where rs = rs and
psa = psa − rsba

qs = qs + p a

s ba − 1
2 rs b

aba (3.3.19)

The new charges can take any real value, and are both invariant under (3.3.17).

The charge vector is naturally combined into the central charge Z(Fs) of the fractional

brane Fs. The central charge is an exact quantum property of the fractional brane, that can
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be defined at the level of the worldsheet CFT as the complex number that tells us which

linear combination of right- and left-moving supercharges the boundary state of the brane

preserves. It depends linearly on the charge vector:

Z(Fs) = Π · Q(Fs), (3.3.20)

with Π some vector that depends on the geometry of the CY singularity.

In the large volume regime, one can show that the central charge is given by the following

expression: [71, 82, 72]

Z(Fs) =

∫

X
e−i∗s(B+iJ) Tr(eFs) (3.3.21)

where J denotes the Kähler class on Y . Evaluating the integral gives

Z(Fs) = qs − 1
2 rs ζ

aζa − i psa ζ
a , (3.3.22)

with

ζa =

∫

αa

J . (3.3.23)

With this preparation, let us write the geometric expression for the couplings of the

fractional brane Fs. From the central charge Z(Fs), we can extract the effective gauge

coupling via

4π

g2
s

= e−φ|Z(Fs)| , (3.3.24)

which equals the brane tension of Fs. In the large volume limit, this relation directly follows

from the BI-form of the D7 world volume action. The phase of the central charge

ζs =
1

π
Im log Z(Fs) (3.3.25)

gives rise to the FI parameter of the 4-d gauge theory [82]. Two fractional branes are

mutually supersymmetric if the phases of their central charges are equal. Deviations of

the relative phase generically gives rise to D-term SUSY breaking, and such a deviation is

therefore naturally interpreted as an FI-term.



60

The couplings of the gauge fields to the RR-fields follows from expanding the CS-term

of the action. The θ-angle reads

θs = rsθX
+ psaθ

a + qsC0 , (3.3.26)

with

θa =

∫

αa

C2 , θ
X

=

∫

X
C4 . (3.3.27)

In addition, each fractional brane may support a Stückelberg field, which arises by dualizing

the RR 2-form potential Cs that couples linearly to the gauge field strength via

Cs ∧ Fs (3.3.28)

From the CS-term we read off that

Cs = rs cX + psac
a + qsC2 (3.3.29)

ca =

∫

αa

C4 . c
X

=

∫

X
C6 (3.3.30)

Note that all above formulas for the closed string couplings all respect the integral gauge

symmetry (3.3.17).

3.3.4 Some local and global considerations

On dPn there are n+3 different fractional branes, with a priori as many independent gauge

couplings and FI parameters. However, the expressions (3.3.22) for the central charges Z(Fs)

contain only 2n+4 independent continuous parameters: the dilaton, the (dualized) B-field,

and a pair of periods (ba, ζa) for every of the n+1 2-cycles in dPn. We conclude that there

must be two relations restricting the couplings. The gauge theory interpretation of these

relations is that the dPn quiver gauge theory always contains two anomalous U(1) factors.

As emphasized for instance in [73], the FI-parameters associated with anomalous U(1)’s

are not freely tunable, but dynamically adjusted so that the associated D-term equations
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are automatically satisfied. This adjustment relates the anomalous FI variables and gauge

couplings.

The non-compact cone Y0 supports two compact cycles for which the dual cycle is also

compact, namely, the canonical class and the del Pezzo surface X. Correspondingly, we

expect to find a normalizable 2-form and 4-form on Y0.
7 Their presence implies that two

closed string modes survive as dynamical 4-d fields with normalizable kinetic terms; these

are the two axions θ 0 and θ
X

associated with the two anomalous U(1) factors. The two

U(1)’s are dual to each other: a U(1) gauge rotation of one generates an additive shift in

the θ-angle of the other. This naturally identifies the respective θ-angles and Stückelberg

fields via

θ 0 = ρX , ρ 0 = θ
X
. (3.3.31)

The geometric origin of these identifications is that the corresponding branes wrap dual

intersecting cycles8 .

We obtain non-normalizable harmonic forms on the non-compact cone Y0 by extending

the other harmonic 2-forms ωi on X to r-independent forms over Y0. The corresponding 4-d

RR-modes are non-dynamical fields: any space-time variation of ca with A 6= 0 would carry

infinite kinetic energy. This obstructs the introduction of the dual scalar field, the would-

be Stückelberg variabel ρa, which would have a vanishing kinetic term. We thus conclude

that for the non-compact cone Y0, all non-anomalous U(1) factors remain massless. This

is in accord with the expectation that in the non-compact limit, all closed string dynamics

decouples.9

7Using the form of the metric of the CY singularity as given in eqn (1), the normalizable 2-form can be
found to be ωX = 1

r4

[
ω − 2 dr

r
∧ η
]
. The normalizable 4-form is its Hodge dual.

8All other D5-brane components, that wrap the degree zero cycles αi, do not intersect any other
branes within Y (see formula 3.2.4). This correlates with the absence of any other mixed U(1) gauge
anomalies.

9There is a slight subtlety, however. Whereas the non-abelian gauge dynamics of a D-brane
on a del Pezzo singularity flows to a conformal fixed point in the IR, the U(1) factors become
infrared free, while towards the UV, their couplings develop a Landau pole. Via the holographic
dictionary, this suggests that the D-brane theory with non-zero U(1) couplings needs to be defined
on a finite cone Y0, with r cut-off at some finite value Λ. This subtlety will not affect the discussion
of the compactied setting, provided the location of all Landau poles is sufficiently larger than the
compactification scale.
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As we will show in the remainder of this section, the story changes for the compactified

setting, for D-branes at a del Pezzo singularity inside of a compact CY threefold Y . In this

case, a subclass of all harmonic forms on the cone Y0 may extend to normalizable harmonic

forms on Y , and all corresponding closed string modes are dynamical 4-d fields.

3.3.5 Bulk action

The most general class of string compactifications, that may include the type of D-branes at

singularities discussed here, is F-theory. For concreteness, however, we will consider the sub-

class of F-theory compactification that can be described by IIB string theory compactified

on an orientifold CY threefold Y = Ŷ /O. The orientifold map O acts via

O = (−1)FLΩpσ

where FL is left fermion number, Ωp is world-sheet parity, and σ is the involution acting

on Y . It acts via its pullback σ∗ on the various forms present. The fixed loci of σ are

orientifold planes. We will assume that the orientifold planes do not intersect the base X

of the del Pezzo singularity.

The orientifold projection eliminates one half of the fields that were initially present

on the full Calabi–Yau space. Which fields survive the projection is determined by the

dimensions of the corresponding even and odd cohomology spaceH
(i,j)
+ andH

(i,j)
− on Calabi–

Yau manifold Ŷ . Note that the orientifold projection in particular eliminates the constant

zero-mode components of C2 , C6 and B2 , since the operator (−1)FLΩp inverts the sign of

all these fields.

The RR sector fields give rise to 4-d fields via their decomposition into harmonic forms on

Y , which we may identify as elements of the ∂ cohomology spaces H(p,q). On the orientifold,

we need to decompose this space as H
(p,q)
+ ⊕H

(p,q)
− , where ± denotes the eigenvalue under

the action of σ∗

ωα ∈ H(1,1)
+ (Ŷ ,Z) , ω̃a ∈ H

(1,1)
− (Ŷ ,Z) ,
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ωα ∈ H(2,2)
+ (Ŷ ,Z) , ω̃a ∈ H(2,2)

− (Ŷ ,Z) .

The relevant RR fields, invariant under O = (−1)FLΩpσ, decompose as:

C2 = θa(x) ω̃a

C4 = cα(x)ωα + ρα(x)ωα , (3.3.32)

C6 = ca(x) ω̃
a . (3.3.33)

Here cα and ca are two-form fields and ρα and θa are scalar fields. Similarly, we can expand

the Kähler form J and NS B-field as

J = ζα(x)ωα ,

B2 = ba(x) ω̃a . (3.3.34)

We can choose the cohomology bases such that

∫

Y
ωα ∧ ωβ = δβ

α,

∫

Y
ω̃a ∧ ω̃b = δb

a . (3.3.35)

In what follows, ω
X

and ω̃
X

will denote the Poincaré dual 2-forms to the symmetric and

anti-symmetric lift of X, respectively.

The IIB supergravity action in string frame contains the following kinetic terms for the

RR p-form fields

S =

∫
[Gab dca∧∗dcb + Gαβ dc

α∧∗dcβ ] (3.3.36)

where Gαβ and Gab denote the natural metrics on the space of harmonic 2-forms on Y

Gαβ =

∫

Y
ωα ∧ ∗ωβ , Gab =

∫

Y
ω̃a ∧ ∗ω̃b . (3.3.37)

The scalar RR fields θb and ρα are related to the above 2-form fields via the duality relations:

∗ dθ b = −Gabdca , ∗ dρα = Gαβdc
β . (3.3.38)

The 4-d fields in (3.3.32) and (3.3.34) are all period integals of 10-d fields expanded

in harmonic forms. Each of the 10-d fields may also support a non-zero field strength



64

with some quantized flux. These fluxes play an important role in stabilizing the various

geometric moduli of the compactification. In the following we will assume that a similar

type of mechanism will generate a stabilizing potential for all the above fields, that fixes

their expectation values and renders them massive at some high scale. The Stückelberg and

axion fields ρα and θ0 still play an important role in deriving the low energy effective field

theory, however.

3.3.6 Coupling brane and bulk

Let us now discuss the coupling between the brane and bulk degrees of freedom. A first

observation, that will be important in what follows, is that the harmonic forms on the

compact CY manifold Y , when restricted to base X of the singularity, in general do not

span the full cohomology of X. For instance, the 2-cohomology of Y may have fewer

generators than that of X, in which case there must be one or more 2-cycles that are

non-trivial within X but trivial within Y . Conversely, Y may have non-trivial cohomology

elements that restrict to trivial elements on X. The overlap matrices

Πa

α =

∫

αa

ωα , Πa

a =

∫

αa

ω̃a , (3.3.39)

when viewed as linear maps between cohomology spaces H(1,1)(X,Z) and H
(1,1)
± (Y,Z), thus

typically have both a non-zero kernel and cokernel.

As a geometric clarification, we note that the above linear map Π between the 2-

cohomologies of Y and X naturally leads to an exact sequence

...→ H2(Y ) → H2(X) → H3(Y/X) → H3(Y ) → H3(X) → ... (3.3.40)

where X ⊂ Y is the 4-cycle wrapped by the del Pezzo in the CY 3-fold, Y . The cohomology

space Hk(Y/X) is referred to as the ‘relative’ k-cohomology class. The map from H2(Y )

to H2(X) in the exact sequence is given by our projection matrix Π. Since in our case

H1(Y ) ∼= 0 and H1(X) ∼= 0, we have from (3.3.40):

ker[Π] ∼= H2(Y/X) (3.3.41)
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or, in words, the kernel of our projection matrix is just the relative 2-cohomology. Similarly,

using the fact that H3(X) ∼= 0, we deduce that

H3(Y/X) ∼= H3(Y ) ⊕ coker[Π] (3.3.42)

In other words, the relative 3-cohomology H3(Y/X) is dual to the space of all 3-cycles in

Y plus all 3-chains Γ for which ∂Γ ⊂ X.

This incomplete overlap between the two cohomologies has immediate repercussions for

the D-brane gauge theory, since it implies that the compact embedding typically reduces

the space of gauge invariant couplings. The couplings are all period integrals of certain

harmonic forms, and any reduction of the associated cohomology spaces reduces the number

of allowed deformations of the gauge theory. This truncation is independent from the issue

of moduli stabilization, which is a dynamical mechanism for fixing the couplings, whereas

the mismatch of cohomologies amounts to a topological obstruction.

By using the period matrices (3.3.39), we can expand the topologically available local

couplings in terms of the global periods, defined in (3.3.32) and (3.3.34), as

ba = Πa

a b
a , ca = Πa

α cα

θ a = Πa

a θ
a , ζ a = Πa

α ζ
α

By construction, the left hand-side are all elements of the subspace of H(1,1) that is common

to both Y and X. The number of independent closed string couplings of each type thus

coincides with the rank of the corresponding overlap matrix.

As a special consequence, it may be possible to form linear combinations of gauge fields

As, for which the linear RR-coupling (3.3.28) identically vanishes. These correspond to

linear combinations of U(1) generators

Q =
∑
s
ks Qs

such that
∑
s
ks rs = 0 ,

∑
s
ks psa Πa

α = 0 . (3.3.43)
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The charge vector of the linear combination of fractional branes
∑

s ks Fs adds up to that

of a D5-brane wrapping a 2-cycle within X that is trivial within the total space Y . As a

result, the corresponding U(1) vector boson A =
∑

s ksAs decouples from the normalizable

RR-modes, and remains massless. This lesson will be applied in the next section.

Let us compute the non-zero masses. Upon dualizing, or equivalently, integrating out

the 2-form potentials, we obtain the Stückelberg mass term for the vector bosons As

G
XX

∇ρX ∧ ∗∇ρX + Gαβ ∇ρα ∧ ∗∇ρβ (3.3.44)

with

∇ρX = dρX −∑
s

rsAs ,

∇ρα = dρα −∑
s

psa Πa

αAs . (3.3.45)

The vector boson mass matrix reads

m2
ss′ = GXX rsrs′ + Gαβ Π a

α Π b

β psaps′b (3.3.46)

and is of the order of the string scale (for string size compactifications). It lifts all U(1) vector

bosons from the low energy spectrum, except for the ones that correspond to fractional

branes that wrap 2-cycles that are trivial within Y . This is the central result of this

section.

Besides via Stückelberg mass terms, vector bosons can also acquire a mass from vacuum

expectation values of charged scalar fields, triggered by turning on FI-parameters. It is

worth noting that for the same U(1) factors for which the above mass term (3.3.44) vanishes,

the FI parameter cancels

∑
s
ks psaΠ

a

αζ
α = 0

These U(1) bosons thus remain massless, as long as supersymmetry remains unbroken.
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3.4 SM-like Gauge Theory from a dP8 Singularity

We now apply the lessons of the previous section to the string construction of a Standard

Model-like theory of [23], using the world volume theory of a D3-brane on a del Pezzo 8

singularity. Let us summarize the set up – more details are found in [23].

3.4.1 A Standard Model D3-brane

A del Pezzo 8 surface can be represented as P2 blown up at 8 generic points. It supports

nine independent 2-cycles: the hyperplane class H in P2 plus eight exceptional curves Ei

with intersection numbers

H ·H = 1, Ei ·Ej = −δij, H ·Ei = 0 .

The canonical class is identified as

K = −3H +
∑8

i=1Ei.

The degree zero sub-lattice of H2(X,Z), the elements with zero intersection with c1 = −K,

is isomorphic to the root lattice of E8. The 8 simple roots, all with self-intersection −2, can

be chosen as

αi = Ei − Ei+1, i = 1, . . . , 7 α8 = h− E1 − E2 − E3 . (3.4.47)

A del Pezzo 8 singularity thus accommodates 11 types of fractional branes Fi, which each are

characterized by charge vectors ch(Fi) that indicate their (D7, D5, D3) wrapping numbers.

Exceptional collections (=bases of fractional branes) on a del Pezzo 8 singularity have

been constructed in [76]. For a given collection, a D-brane configuration assigns multiplicity

ni to each fractional brane Fi, consistent with local tadpole conditions. The construction of

[23] starts from a single D3-brane; the multiplicities ni are such that the charge vectors add

up to (0, 0, 1). For the favorable basis of fractional branes described in [23] (presumably
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corresponding to a specific stability region in Kähler moduli space), this leads to an N =1

quiver gauge theory with the gauge group G0 = U(6) × U(3) × U(1)9. 10

As shown in [23], this D3-brane quiver theory allows a SUSY preserving symmetry

breaking process to a semi-realistic gauge theory with the gauge group

G = U(3) × U(2) × U(1)7.

The quiver diagram is drawn in fig 1. Each line represents three generations of bi-fundamental

fields. The D-brane model thus has the same non-abelian gauge symmetries, and the same

quark and lepton content as the Standard Model. It has an excess of Higgs fields – two pairs

per generation – and several extra U(1)-factors. We would like to apply the new insights

obtained in the previous section to move the model one step closer to reality, by eliminating

all the extra U(1) gauge symmetries except hypercharge from the low energy theory.

To effectuate the symmetry breaking to G, while preserving N =1 supersymmetry, it is

necessary turn on a suitable set of FI parameters and tune the superpotential W .11 The

D-term and F-term equations can then both be solved, while dictating expectation values

that result in the desired symmetry breaking pattern. As first discussed in [61]12 (in the

context of Z2 × Z2 orbifolds), when a Calabi–Yau singularity is not isolated, the moduli

space of D-branes on that Calabi–Yau has more than one branch. From a non-isolated

singularity, several curves Γi of singularities will emanate, each having a generic singularity

type Ri, one of the ADE singularities.

In this non-isolated case, on one of the branches of the moduli space, the branes move

freely on the Calabi–Yau or its (partial) resolution, and the FI parameters are identified

with “blowup modes” which specify how much blowing up is done. But there are additional

branches of the moduli space associated with each Γi: on such a branch, the FI parameters

which would normally be used to blow up the ADE singularity Ri are frozen to zero, and

10This particular quiver theory is related via a single Seiberg duality to the world volume theory of a
D3-brane near a C

3/∆27 orbifold singularity – the model considered earlier in [22] [21] as a possible starting
point for a string realization of a SM-like gauge theory.

11The superpotential W contains Yukawa couplings for every closed oriented triangle in the quiver diagram,
can be tuned via the complex structure moduli, in combination with suitable non-commutative deformations
[77] of the del Pezzo surface.

12See also [78, 79, 80, 81].
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new parameters arise which correspond to positions of Ri-fractional branes along Γi. That

is, on this new branch, some of the Ri fractional branes have moved out along the curve Γi

and their positions give new parameters.

The strategy for producing the gauge theory of fig 1, essentially following [23], is this: by

appropriately tuning the superpotential (i.e., varying the complex structure) we can find a

Calabi–Yau with a non-isolated singularity—a curve Γ of A2 singular points—such that the

classes α1 and α2 have been blown down to an A2 singularity on the (generalized) del Pezzo

surface where it meets the singular locus.13 Our symmetry-breaking involves moving onto

the Γ branch in the moduli space, where the α1 and α2 fractional brane classes are free to

move along the curve Γ of A2 singularities. In particular, these branes can be taken to be

very far from the primary singular point of interest, and become part of the bulk theory:

any effect which they have on the physics will occur at very high energy like the rest of the

bulk theory.

Making this choice removes the branes supported on α1 and α2 from the original brane

spectrum, and replaces other branes in the spectrum by bound states which are independent

of α1 and α2. The remaining bound state basis of the fractional branes obtained in [23] is

specified by the following set of charge vectors

ch(F1) = (3,−2K +
8∑

i=5
Ei− E4,

1
2)

ch(F2) = ( 3,
8∑

i=5
Ei,−2)

ch(F3) = (3, 3H −
4∑

i=1
Ei,−1

2)

ch(F4) = (1,H − E4, 0)

ch(Fi) = (1,−K+ Ei, 1 ) i = 5, . , 8

ch(F9) = (1, 2H −
4∑

i=1
Ei, 0) (3.4.48)

Here the first and third entry indicate the D7 and D3 charge; the second entry gives the

2-cycle around wrapped by the D5-brane component of Fi. As shown in [23], the above

collection of fractional branes is rigid, in the sense that the branes have the minimum

number of self-intersections and the corresponding gauge theory is free of adjoint matter

besides the gauge multiplet. From the collection of charge vectors, one easily obtains the

13We will give an explicit description of a del Pezzo 8 surface with the required A2 singularity in
the next section.
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Figure 3.1: The MSSM-like quiver gauge theory obtained in [23]. Each line represents three
generations of bi-fundamentals. In the text below we will identify the geometric condition
that isolates the U(1)Y hypercharge as the only surviving massless U(1) gauge symmetry.

matrix of intersection products via the fomula (3.2.4). One finds

#(Fi,Fj) =




0 −3 0 1 1 1 1 1 1

3 0 3 2 2 2 2 2 2

0 −3 0 1 1 1 1 1 1

−1 −2 −1 0 0 0 0 0 0

−1 −2 −1 0 0 0 0 0 0

−1 −2 −1 0 0 0 0 0 0

−1 −2 −1 0 0 0 0 0 0

−1 −2 −1 0 0 0 0 0 0

−1 −2 −1 0 0 0 0 0 0




(3.4.49)

which gives the quiver diagram drawn fig 1. The rank of each gauge group corresponds to

the (absolute value of the) multiplicity of the corresponding fractional brane, and has been

chosen such that weighted sum of charge vectors adds up to the charge of a single D3-brane.

In other words, the gauge theory of fig 1 arises from a single D3-brane placed at the del

Pezzo 8 singularity.

Note that, as expected, all fractional branes in the basis (3.4.48) have vanishing D5

wrapping numbers around the two 2-cycles corresponding to the first two roots α1 and α2
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of E8, since we have converted the FI parameters which were blowup modes for those cycles

into positions for A2-fractional branes.

After eliminating the two 2-cycles α1 and α2, the remaining 2-cohomology of the del

Pezzo singularity is spanned by the roots αi with i = 3, .., 8 and the canoncial class K. Note

that the total cohomology of the generalized del Pezzo surface with an A2 singularity is 9

dimensional, and that the fractional branes (3.4.48) thus form a complete basis.

3.4.2 Identification of hypercharge

Let us turn to discuss the U(1) factors in the quiver of fig 1, and identify the linear combi-

nation that defines hypercharge. We denote the node on the right by U(1)1, and the overall

U(1)-factors of the U(2) and U(3) nodes by U(1)2 and U(1)3, resp. The U(1)6 node at the

bottom divides into two nodes U(1)3u and U(1)3d, where each U(1)u and U(1)d acts on the

matter fields of the corresponding generation only. We denote the nine U(1) generators by

{Q1, Q2, Q3, Q
i
u, Q

i
d, }. The total charge

Qtot =
∑

s

Qs

decouples: none of the bi-fundamental fields is charged under Qtot. Of the remaining eight

generators, two have mixed U(1) anomalies. As discussed in section 3, these are associated

to fractional branes that intersect compact cycles within the del Pezzo singularity. In other

words, any linear combination of charges such that the corresponding fractional brane has

zero rank and zero degree is free of anomalies.

Hypercharge is identified with the non-anomalous combination

QY =
1

2
Q1 −

1

6
Q3 −

1

2

( 3∑
i=1

Qi
d −

3∑
i=1

Qi
u

)
(3.4.50)

The other non-anomalous U(1) charges are

1

3
Q3 −

1

2
Q1 = B − L, (3.4.51)
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together with four independent abelian flavor symmetries of the form

Qij
u,d = Qi

u −Qj
u, Qij

b = Qi
b −Qj

b. (3.4.52)

We would like to ensure that, among all these charges, only the hypercharge survives as a

low energy gauge symmetry. From our study of the stringy Stückelberg mechanism, we now

know that this can be achieved if we find a CY embedding of the dP8 geometry such that

only the particular 2-cycle associated with QY represents a trivial homology class within

the full CY threefold. We will compute this 2-cycle momentarily.

Let us take a short look at the physical relevance of the extra U(1) factors in the quiver

of fig 2. If unbroken, they forbid in particular all µ-terms, the supersymmetric mass terms

for the extra Higgs scalars. In the concluding section 6, we return to discuss possible string

mechanisms for breaking the extra U(1)’s. First we discuss how to make them all massive.

The linear sum (3.4.50) of U(1) charges that defines QY , selects a corresponding linear

sum of fractional branes, which we may choose as follows14

FY =
1

2

(
F3 − F1 −

∑
i=4,5,9

Fi +
∑

i=6,7,8
Fi

)
(3.4.53)

A simple calculation gives that, at the level of the charge vectors

ch(FY) = ( 0 , −α4,
1
2
) α4 = e5 − e4 (3.4.54)

We read off that the 2-cycle associated with the hypercharge generator QY is the one

represented by the simple root α4.

We consider this an encouragingly simple result. Namely, when added to the insights

obtained in the previous section, we arrive at the following attractive geometrical conclusion:

we can ensure that all extra U(1) factors except hypercharge acquire a Stückelberg mass,

provided we can find compact CY manifolds with a del Pezzo 8 singularity, such that

only α4 represents a trivial homology class. Requiring non-triviality of all other 2-cycles

except α4 not only helps with eliminating the extra U(1)’s, but also keeps a maximal

14With this equation we do not suggest any bound state formation of fractional branes. Instead, we
simply use it as an intermediate step in determining the cohomology class of the linear combination
of branes, whose U(1) generators add up to U(1)Y .
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Figure 3.2: Our proposed D3-brane realization of the MSSM involves a dP8 singularity
embedded inside a CY manifold, such that two of its 2-cycles, α1 and α2, develop an A2

singularity which forms part of a curve of A2 singularities on the CY, and all remaining
2-cycles except α4 are non-trivial within the full CY.

number of gauge invariant couplings in play as dynamically tunable moduli of the compact

geometry. In particular, to accommodate the construction of the SM quiver theory of fig 1,

the complex structure moduli of the compact CY threefold must allow for the formation of

an A2 singularity within the del Pezzo 8 geometry15 , with α4 representing a trivial cycle

and all other cycles being nontrivial. In the next section, we will present a general geometric

prescription for constructing a compact CY embedding of the dP8 singularity with all the

desired topological properties.

3.5 Constructing the Calabi–Yau Threefold

It is not difficult to find examples of compact CY threefolds that contain a dP8 singularity.

Since a dP8 surface can be constructed as a hypersurface of degree six in the weighted

projective space WP(1,1,2,3), one natural route is to look among realizations of CY threefolds

as hypersurfaces in weighted projective space, and identify coordinate regions where the

CY equation degenerates into that of a cone over dP8. Examples of this type are the

CY threefolds obtained by resolving singularities of degree 18 hypersurfaces WP(1,1,1,6,9),

considered in [83]. This class of CY manifolds, however, has only two Kähler classes, and

15This can be done without any fine-tuning, as follows. The complex structure of Y is fixed via the GVW
superpotential, which for given integer 3-form fluxes takes the form W =(nJ + τmJ)ΩJ where ΩJ denote
the periods of the 3-form Ω. Now choose the integer fluxes to be invariant under the diffeomorphisms that
act like Weyl reflections in α1 and α2. W then has an extremum for ΩJ invariant both Weyl reflections,
which is the locus where dP8 has the required A2 singularity.
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therefore can not satisfy our topological requirement that all 2-cycles of dP8 except α4 lift

to non-trivial cycles within Y . On the other hand, this example does illustrate the basic

phenomenon of interest: since the 2-cohomology of Y has only two generators, most 2-cycles

within the dP8 surface must in fact be trivial within Y .

A potentially more useful class of examples was recently considered in [84], where it was

shown how to construct a CY orientifold Y as a T 2-fibration over any del Pezzo surface.

The T 2 is represented in hyperelliptic form, that is, as a two sheeted cover of a P1. The P1

fibration takes the form P(OX ⊕ KX) with X the del Pezzo surface. The covering space

Ŷ of Y has a holomorphic involution σ, which exchanges these two sheets, and the IIB

orientifold on this CY surface is obtained by implementing the projection O = (−1)FLΩp σ.

The P1-fibration over the del Pezzo has two special sections, X0 and X∞, one of which

can be contracted to a del Pezzo singularity [84]. The total space of the fibration is the

orientifold geometry Y . This set-up looks somewhat more promising for our purpose, since

all 2-cycles within X are manifestly preserved as 2-cycles within the orientifold space Y .

So a suitable modification the construction, so that only α4 is eliminated as a generator of

H2(Y ) while all other 2-cycles are kept, would yield a concrete example of a CY orientifold

with the desired global topology. 16

Rather than following this route (of trying to find a specific compact CY manifold)

we will instead give a general local prescription for how to obtain a suitable compact em-

bedding of the dP8 singularity, based only on the geometry of the neighborhood of the

singularity. This local perspective does not rely on detailed assumptions about the spe-

cific UV completion of the dP8 model, and thus combines well with our general bottom-up

philosophy.

16A concrete proposal is as follows. Tune the complex structure so that the dP8 has an automorphism
which maps α4 → −α4, i.e. which acts as the Weyl reflection w(α4) on the homology lattice. One way
to get such an automorphism is to let X develop an A1 singularity with α4 as the (−2) curve. The Weyl
reflection then acts trivially on the Calabi-Yau Y , but acts non-trivially on the cohomology and the string
theory spectrum on Y . We may then define a new holomorphic involution ρ = w(α4) ◦ σ and consider the
orientifold O′ = (−1)FLΩp ρ. The O7-planes are at the same locus as before, but the monodromy is slightly

different. The harmonic 2-form associated to α4 on X still lifts to the cover space Ŷ , but as a generator of
odd homology H1,1

− (Ŷ ) instead of H1,1
+ (Ŷ ). Therefore, the FI-parameter and Stückelberg field associated to

α4 are projected out, leading to a massless U(1)Y .
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3.5.1 Local Picard group of a CY singularity

To begin, we discuss the local Picard group of a Calabi–Yau singularity, and the effect it

has on things such as deformations.

If X is a (local or global) algebraic variety or complex analytic space of complex dimen-

sion d, the Weil divisors on X, denoted Zd−1(X), are the Z-linear combinations of subvari-

eties of dimension d− 1; the Cartier divisors on X, denoted Div(X), are divisors which are

locally defined by a single equation {f = 0}. On a nonsingular variety, Zd−1(X) = Div(X),

so the quotient group

Zd−1(X)/Div(X)

is one measurement of how singular the variety X is.

The principal Cartier divisors on X, denoted Div0(X), are the divisors which can be

written as the difference of zeros and poles of a meromorphic function defined on all of X,

and the Picard group of X is the quotient

Pic(X) = Div(X)/Div0(X).

If X is sufficiently small, this is trivial, and one introduces a local version of the group

called the local Picard group: for a point P ∈ X,

Pic(X,P ) = lim←Zd−1(U)/Div(U),

where the limit is taken over smaller and smaller open neighborhoods U of P in X.

Local Picard groups of Calabi–Yau singularities in complex dimesion 3 were studied in

detail by Kawamata [85], who showed that Pic(X,P ) is finitely generated. In our context,

we are mainly interested in the case where X is a neighborhood of a singular point P ∈ X

which is obtained by contracting a (generalized) del Pezzo surface S in a Calabi–Yau space

X̃ to a point via a map π : X̃ → X.17 In this case, we can identify Pic(X,P ) with the

image of the natural map Pic(X̃) → Pic(S). The rank of this image is always at least one:

it follows from the adjunction formula that there is always a divisor D0 on X̃ such that

17We allow X̃ to have a curve of rational double point singularities, meeting S in a rational double point,
which is why S is called “generalized”, following the terminology of the mathematics literature.



76

D0 +S is the divisor of a meromorphic function on X, and the image of D0 in Pic(S) is the

anticanonical divisor −KS .

To take a simple, yet important example, suppose that S = CP1 ×CP1 ⊂ X̃ contracts

to a Calabi–Yau singular point P ∈ X. There are two possibilities for Pic(X,P ): it may

happen that the two homology classes [CP1×{point}] and [{point}×CP1] are the same in

H2(X̃), in which case Pic(X,P ) ∼= Z (with the generator corresponding to −KS), or it may

happen that those two homology classes are distinct, in which case Pic(X,P ) ∼= Z2. Note

that if X is simply a cone over S, the classes will be distinct; on the other hand, the case

Pic(X,P ) ∼= Z is closely related to one of the key examples from Mori’s original pathbreaking

paper [86] which started the modern classification theory of algebraic threefolds.18

The calculation of the local Picard group near a singular point depends sensitively on the

equation of the point. Mori’s example was in fact a form of the familiar conifold singularity.

It is common in the study of Calabi–Yau spaces to consider only the “small” blowups of

such a singularity (which replace it by a CP1; however, we could also choose to simply

blow up the singular point in the standard way, which would yield CP1×CP1 with normal

bundle O
CP

1×CP
1(−1,−1). The “small” blowups exist exactly when the two homology

classes [CP1 × {point}] and [{point} × CP1] are distinct; when they are the same, we are

in Mori’s situation where small blowups do not exist. How do we determine this from the

equation? If we can write the equation of the conifold singularity in the form

xy − zt = 0 (3.5.55)

then the two small blowups are obtained by blowing up the Weil divisors x = z = 0 or

x = t = 0, respectively. However, if there are higher order terms in the equation, the nicely

factored form 3.5.55 may be destroyed:19 this is Mori’s case. The case of a del Pezzo

contraction, with normal bundle O
CP

1×CP
1(−2,−2), is similar.20

18In Mori’s case, the normal bundle of S in X̃ was OS(−1,−1); on our case, the normal bundle is
OS(−2,−2).

19The factored form can always be restored by a local complex analytic change of coordinates, but that
change of coordinates may fail to extend over the entire Calabi–Yau.

20In that case, the small contractions would yield a curve of A1 singularities, as was crucial for the analysis
of [87].
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If the neighborhood of the CP1×CP1 is sufficiently large, the difference between the two

cases can be detected by the topology of the neighborhood. When the two homology classes

[CP1 ×{point}] and [{point}×CP1] are the same, there is a 3-chain Γ whose boundary is

the difference between the two. Such a 3-chain cannot exist if the two homology classes are

distinct, so an analytic change of coordinates which affects the factorizability of 3.5.55 will

have the topological effect of creating or destroying such a 3-chain Γ.21

3.5.2 Construction of the CY threefold

From this simple example, we can easily obtain more complicated ones, including examples

of the type we are interested in. Let S′ be a generalized del Pezzo surface obtained from

CP2 by (1) blowing up 5 distinct points P4, . . . , P8 to curves E4, . . . , E8, (2) blowing up

a point P1 and two points P2 and P3 infinitely near to P1, (3) blowing down two out of

the last three exceptional divisors to an A2 singularity. Note that the line ℓ45 through P4

and P5 lifts an an exceptional curve E45, and that the same del Pezzo surface S′ could be

obtained starting from CP1 × CP1: in that case, one would blow up a point P45 to the

curve E45 observing that the two original CP1’s which pass through P45 lift to exceptional

curves E4 and E5, and then blowing up P6, P7, P8, P1, P2, P3 as before.

We give an embedding into a Calabi–Yau in the following way. Start with S1 := CP1 ×

CP1 embedded in a Calabi–Yau neighborhood such that the two rulings are homologically

equivalent in the Calabi–Yau. We attach rational curves C45, C6, C7, C8 to the del Pezzo

surface S1, meeting transversally at P45, P6, P7 and P8, and consider local divisors Di

meeting Ci transversally at another point, for i = 45, 6, 7, 8. We also attach a rational

curve C1 at P1 which transversally meets the first of a pair of ruled surfaces D1 and D2

which together can be contracted to a curve of A2 singularities. We label the fiber of D1’s

ruling which passes through C1∩D1 by C2, and we label the fiber of D2’s ruling which pass

21More details about the topology of this situation can be found in [88].
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Figure 3.3: Starting point of our construction of a CY threefold with the desired topology.
The curves fi and gi are fibers in the two rulings on S1.

through C2 ∩D2 by C3. We also consider a local divisor D3 meeting C3 transversally away

from its intersection with C2. This is all illustrated in figure 3.3.

Each of the curves and surfaces we have used in this construction can be embedded

in a Calabi–Yau neighborhood, and those neighborhoods can be glued together to form a

Calabi–Yau neighborhood of the entire structure illustrated in figure 3.3.

We now pass from this structure to the one we want by a sequence of flops. First, we

flop the curves C45, C6, C7, and C8, which has the effect of blowing up S1 at the four points

P45, P6, P7 and P8 yielding a del Pezzo surface S5. The transformed surfaces D45, D6, D7,

D8 now meet S5 in the flopped curves, as indicated in figure 3.4.

Next, we flop the curve C1, yielding a del Pezzo S6 on which the point P1 has been blown

up, as indicated in figure 3.5. The transformed surface D1 meets S6 in the flopped curve,

and the transformed curve C2 meets S6 in a point P2 (“infinitely near” to the first point

P1). When C2 is now flopped, S6 is blown up at P2 to yield S7, as indicated in figure 3.6.

The transformed surface D2 meets S7 in the most recently flopped curve.
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The transformed curve C3 meets S7 in a point P3 (“infinitely near” to P2), and when C3

is now flopped, S7 is blown up at P3 to yield S8, as indicated in figure 3.7. (The transformed

surface D3 meets S8 in the most recently flopped curve.) To match the curves on S8 to the

standard basis for cohomology of a del Pezzo, we set e1 = C1 + C2 + C3, e2 = C2 + C3,

e3 = C3, e4 = f45, e5 = g45, and ej = Cj for j = 6, 7, 8 so that α1 = C1 and α2 = C2. We

can now contract the transforms of D1 and D2 to a curve of A2 singularities, yielding the

configuration illustrated in figure 3.8.

g

A 2

f
f

g

D

D

D

D

1
8

8
C7

7

6

45

45

45

6C

C45

D3

C3

1
C

Figure 3.8: The final configuration: a del Pezzo 8 surface with an A2 singularity, embedded
into a Calabi–Yau such that two of its exceptional curves are homologous.

To achieve our final desired singular point, we contract the del Pezzo surface S′ = S8 to

a point. Let us analyze the properties of this singular point.

First, it is not isolated: there is a curve of A2 singularities which eminates from our

singular point. This is one of the features we needed, because it allows the fractional branes

where were supported on α1 and α2 to move off of the singular point we are interested in,

into the bulk of the Calabi–Yau manifold.

Second, the local Picard group of this singular point has rank 6: the anticanonical divisor

D0 ≡ −KS and the transformed divisors D3, D45, D6, D7, D8 generate a subgroup of the

local Picard group of rank six; if there were a seventh generator, the map Pic(X) → Pic(S)

would be surjective and the original surface S1 would have had the same property, so that
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its local Picard group would have had rank 2. But by construction, the surface S1 had

a local Picard group of rank 1. We thus have demonstrated the presence of a 3-chain Γ,

with boundary equal to the difference of two exceptional divisors. We can identify this

difference with α4 = E5 −E4, which therefore does not exist as a homology class in the full

Calabi–Yau.

Thus, via the above geometric procedure, we have succeeded in constructing a compact

CY threefold with the properties we need for our D-brane construction. The outlined

strategy furthermore preserves the main characteristics of our bottom-up perspective, since

it only refers to the local Calabi-Yau neighborhood of the singularity and does not rely on

unnecessary assumptions about the full string compactification.

An important physical assumption is that the compact embedding preserves the exis-

tence of all constituent fractional branes listed in eqn (3.4.48). This is not entirely obvious,

since, in particular, the D5 charge around the trivial cycle α4 is no longer a conserved

quantum number: one could imagine a tunneling process, in which the linear combination

(3.4.53) of fractional branes combines into a single D5 wrapping α4, which subsequently

self-annihilates by unwrapping along the 3-chain Γ. The tunneling process, however, is sup-

pressed because it is non-supersymmetric and the probability can be made exponentially

small by ensuring that the 3-volume (measured in units of D-brane tension) of the 3-chain

Γ is large enough.

3.6 Conclusion and Outlook

In this chapter, we further developed the program advocated in [23], aimed at constructing

realistic gauge theories on the world-volume of D-branes at a Calabi–Yau singularity. We

have seen that several aspects of the world-volume gauge theory, such as the spectrum of

light U(1) vector bosons and the number of freely tunable of couplings, depend on the

compact Calabi–Yau embedding of the singularity. In section 3, we have worked out the
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stringy mechanism by which U(1) gauge symmetries get lifted. As a direct application of

this result, we have shown how to construct a supersymmetric Standard Model, however

with some extra Higgs fields, on a single D3-brane on a suitably chosen Calabi–Yau threefold

with a del Pezzo 8 singularity. The final result for the quiver gauge theory is given in fig 2,

where in addition all extra U(1) factors besides hypercharge are massive.

3.6.1 U(1) Breaking via D-instantons

At low energies, the extra U(1)’s are approximate global symmetries, which, if unbroken,

would in particular forbid µ-terms. Fortunately, the geometry supports a plethora of D-

instantons, that generically will break the U(1) symmetries. Here we make some basic

comments on the generic form of the D-instanton contributions.

The simplest type of D-instantons are the euclidean D-branes that wrap compact cycles

within the base X of the CY singularity. The ‘basic’ D-instantons of this type are in 1-1

correspondence with the space-time filling fractional branes: they are localized in R4, but

otherwise have the same Calabi-Yau boundary state and preserve the same supersymmetries

as the fractional branes Fs. Apart from the exponential factor e−8π2/g2
s + i θs , their contribu-

tion is independent of Kähler moduli and can thus be understood at large volume. In this

limit, the analysis has essentially already been done in [90, 89, 91].22 The result agrees

with the expected field theory answer [92], and sensitively depends on Nc−Nf , the number

of colors minus the number of flavors for the corresponding node. In our gauge theory we

have Nf > Nc, in which case the one-instanton contribution to the superpotential is of the

schematic form

δW = Ω(Φ) e−8π2/g2
s + i θs (3.6.56)

where Ω(Φ) is a chiral multi-fermion operator [92]. The theta angle θs in general contains an

axion field, that is shifted by the anomalous U(1) gauge rotations. Instanton contributions

to the effective action thus generally violate the anomalous U(1) symmetries.

22For more recent discussions, see [93, 94, 95].
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The story for the non-anomalous global U(1) symmetries is analogous. The relevant

D-instanton contributions are generated by euclidean D3-branes wrapping the dual 4-cycles

Σα within Y . The classical D-instanton action reads S = µ3Vol(Σα) − i
∫
Σα
C4 with µ3

the D3-brane tension. Since
∫
Σα
C4 = ρα is the Stückelberg field, we observe that the

D3-instanton contribution to the superpotential takes the form

δW = A(Φ) e−µ3Vol(Σα) + iρα (3.6.57)

Here A(Φ) denotes the perturbative pre-factor, the string analogue of the fluctuation deter-

minant, of the D-instanton.23 Since the phase factor eiρα transforms non-trivially under

the corresponding U(1) rotation, the pre-factor must be oppositely charged. After gauge

fixing, the value of ρα will get fixed at by minimizing the potential, and ρα gets lifted from

the low energy spectrum. What remains is a superpotential term that, from the low energy

perspective, breaks the global U(1) symmetry.

While we have not yet done the full analysis of these D-instanton effects, it seems

reasonable to assume that the desired µ-terms can be generated via this mechanism.24

Since the D-instanton contribution decreases exponentially with the volume of the 4-cycles

Σα, it would naturally explain why (some of) the µ-terms are small compared to the string

scale.

3.6.2 Eliminating extra Higgses

From a phenomenological perspective, the specific model based on the dP8 singularity still

has several issues that need to be addressed, before it can become fully realistic. Most

23Note that, unlike all classical couplings, the D-instanton contributions (3.6.57) are not governed by the
local geometry of the singularity, but depend on the size of dual cycles Σα that probe the full CY. In fact,
eqn (3.6.57) is a direct generalization of the famous KKLT contribution to the superpotential, that helps
stabilize all geometric moduli of the compact Calabi–Yau manifold.

24In [96] it was argued that µ-terms can not arise in oriented quiver realizations of the SSM, like ours,
because they seem forbidden by chirality at the SU(2) node, in case one would consider more than one single
brane (so that SU(2) becomes SU(2N)). It is important to note, however, that the form of the D-instanton
contributions sensitively depends on the rank of the gauge group, and thus may contain terms that at first
sight would not be allowed in a large N limit of the quiver gauge theory. The µ terms, in particular, can
be viewed as baryon-type operators for SU(2), and thus one can easily imagine that they get generated via
D-instantons.
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Figure 7: An MSSM-like quiver gauge theory, satisfying all rules for world-volume theories
in an unoriented string models.

immediately noticeable is the multitude of Higgs fields, and the fact that supersymmetry is

unbroken. Supersymmetry breaking effects may get generated via various mechanisms: via

fluxes, nearby anti-branes, non-perturbative string physics, etc. The structure of the SUSY

breaking and µ-terms are strongly restricted by phenomenological constraints, such as the

suppression of flavor changing neutral currents. However, we see no a priori obstruction to

the existence of mechanisms that would sufficiently lift the masses of all extra Higgses and

effectively eliminate them from the low energy spectrum.

The presence of the extra Higgs fields is dictated via the requirement (on all D-brane

constructions on orientable CY singularities) that each node should have an equal number

of in- and out-going lines. To eliminate this feature, it is natural to look for generalizations

among gauge theories on orientifolds of CY singularities. Near orientifold planes, D-branes

can support real gauge groups like SO(2N) or Sp(N). With this generalization, one can

draw a more minimal quiver extension of the SM, with fewer Higgs fields. An example of

such a quiver is drawn in fig 7. It should be straightforward to find an orientifolded CY

singularity and fractional brane configuration that would reproduce this quiver. The extra

U(1) factors in fig 7 can then be dealt with in a similar way as in our dP8 example.



Chapter 4

Metastable SUSY Breaking in

String Theory

In this chapter, we turn our attention to stringy embeddings of the hidden sector.1 In

particular, we provide a geometrical recipe for realizing metastable SUSY breaking. The

principal example of the section is the geometrization of the Intriligator-Seiberg-Shih (ISS)

metastable SUSY breaking model. To engineer this field theory, we consider a Calabi-Yau

geometry with a non-isolated singularity passing through an isolated one in the case that

there exists a deformation of the non-isolated singularity. By putting some number of branes

on the isolated singularity and some number on the non-isolated one, we can then deform

the non-isolated singularity in such a way as to generate an F-term that results in DSB in

a way that is analogous to the ISS setup.

Finally, we consider a D-brane realization of the Intriligator-Thomas-Izawa-Yanagida

(ITIY) model on a deformed A3 singularity with an overlapping O3 plane. By placing an

appropriate number of fractional branes at contiguous Sp and SO nodes in the correspond-

ing quiver, we find a quantum deformed moduli space that breaks SUSY. In this example

non-perturbative contributions from D-brane instantons at the remaining empty Sp node

lead to parametrically small R-symmetry breaking effects that restore SUSY far away in

1This chapter is based on the paper “On the Geometry of Metastable Supersymmetry Breaking,” written
in collaboration with D. Malyshev and H. Verlinde. [97]

86
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field space.

4.1 Introduction

As we have alluded to in the introduction, understanding the SUSY breaking hidden sector

and finding robust string realizations of gauge theory models that exhibit dynamical SUSY

breaking (DSB) is an important facet of string phenomenology. While recent studies have

uncovered a growing number of string systems with DSB, there are only a few examples

known in which the SUSY breaking mechanism is well understood from both the gauge

theory side and the geometric string perspective.

As explained in the introduction, dynamical SUSY breaking assumes that the lagrangian

is supersymmetric but that, due to non-perturbative dynamics, the vacuum configuration

breaks SUSY at an exponentially low scale [12, 98]. In general, such non-supersymmetric

vacuum states need not be the true vacuum of the theory, but may instead represent long-

lived metastable states. While controlled examples of metastable vacua in string theory

have been known for some time [99], the increased recent interest in their manifestations and

properties was sparked by the discovery by Intriligator, Seiberg, and Shih of a metastable

SUSY breaking vacuum for SQCD with Nf >Nc massive flavors [14]. Realizations of the

ISS mechanism in string theory, as well as other stringy systems with metastable SUSY

breaking, have since been found [100, 101, 102, 103]. Another recent advancement has been

to merge the calculational power of geometric transitions with insights from field theory to

engineer basic field theoretic models of SUSY breaking [104].

In this chapter, we will consider gauge theories on D-branes near a singularity inside a

Calabi-Yau manifold. Our goal is to identify a general geometric criterion for the existence

of F-type SUSY breaking, and to use this insight to construct simple examples of D-brane

systems that exhibit metastable SUSY breaking. F-type SUSY breaking corresponds to the

unsolvability of F-term equations

∂W

∂Φ
6= 0
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where W (Φ) is a superpotential depending on the chiral field Φ. The simplest example

of this type is the Polonyi model, consisting of a single chiral field with superpotential

W (Φ) = fΦ in which SUSY is broken by the non zero vacuum energy V ∼ |f |2.

We will assume that the non-perturbative dynamics manifests itself in deformations of a

theory with unbroken SUSY. The main purpose of our chapter is to study the consequences

of these deformations. In the context of D-branes in IIB string theory, deformations of the

superpotential correspond to complex deformations in the local geometry. The deformed

geometry still satisfies the Calabi-Yau condition and the D-brane lagrangian is fully super-

symmetric but the vacuum configuration of the gauge theory breaks SUSY spontaneously.

In the geometric setting, this corresponds to a D-brane configuration that, while submerged

inside a supersymmetric background, gets trapped in a non-supersymmetric ground state.

As a simple illustrative example, consider type IIB string theory on a C2/Z2 orbifold

singularity [20][60], with N fractional D5-branes wrapped on the collapsed 2-cycle. The

corresponding field theory consists of a U(N) gauge theory with a complex adjoint chiral

field Φ. Since the Z2 orbifold locus defines a non-isolated singularity inside C3, the fractional

D5-branes are free to move along a complex line. The location of the N branes along the

non-isolated singularity is parameterized by the N diagonal entries of the complex field Φ.

As we discuss in more detail in section 2, there exist a deformation of the singularity that

corresponds to adding the F-term

W = ζ TrΦ

to the superpotential. Geometrically, the parameter ζ is proportional to the period of the

holomorphic two-form over the deformed 2-cycle. The fractional D-brane gauge theory then

breaks SUSY in a similar way to the Polonyi model. This simple observation lies at the

heart of many type IIB D-brane constructions of gauge theories that exhibit F-term SUSY

breaking.2 SUSY breaking via D-terms can be described analogously.3

2F-term SUSY breaking in type IIB D-brane constructions naturally involves deformed non-isolated
singularities, that support finite size 2-cycles which D5-branes can wrap [20]. Deformations of isolated
singularities correspond to 3-cycles that in type IIB cannot by wrapped by the space-time filling D-branes.

3Turning on the FI parameters of the type IIB D-brane gauge theory amounts to blowing up the collapsed
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We wish to use this simple geometric insight to construct more interesting gauge theories

with DSB, and in particular, with ISS-type SUSY breaking and restoration. When viewed

as a quiver theory, the ISS model has two nodes, a “color” node with gauge group SU(N)

and a “flavor” node with SU(Nf ) symmetry. The “flavor” node has an adjoint field. This

suggests that the flavor node must be represented by a stack of Nf fractional branes on a

non-isolated singularity. The “color” node, on the other hand, does not have an adjoint, and

thus corresponds to branes that are bound to a fixed location. The natural representation

for the color node is via a stack of N branes placed at an isolated singularity.

Our geometric recipe for realizing an ISS model in IIB string theory is as follows:

1. Find a Calabi-Yau geometry with a non-isolated singularity passing through an isolated

singularity such that there exists a deformation of the non-isolated singularity.

2. Put some number of D-branes on the isolated singularity and some number of fractional

branes on the non-isolated singularity. By conservation of charge, the branes can not

leave the non-isolated singularity.

3. When we deform the non-isolated singularity, an F-term gets generated that results in

dynamical SUSY breaking. The fractional branes have a non-zero volume, and their

tension lifts the vacuum energy above that of the SUSY vacuum.

4. There is a classical modulus corresponding to the motion of the fractional branes along

the non-isolated singularity. This modulus can be fixed in a way similar to ISS, by the

interaction with the branes at the isolated singularity.

Following this recipe we will geometrically engineer, via an appropriate choice of the

geometry and fractional branes, gauge theories that are known to exhibit meta-stable DSB.

The eventual goal is to fully explain in geometric terms all field theoretic ingredients: the

field content and couplings, the meta-stability of the SUSY-breaking vacuum, and the pro-

cess of SUSY restoration. While in our examples we will be able identify all these ingredients,

we will not have sufficient dynamical control over the D-brane set-up to in fact prove the

two-cycles of a CY singularity. These blowup modes are Kähler deformations of the geometry, and are
somewhat harder to control in a type IIB setup than the complex structure deformations that we use in our
study.
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existence of a meta-stable state on the geometric side. Rather, by controlling the geometric

engineering dictionary, we can rely on the field theory analysis to demonstrate that the

system has the required properties.

This wish to have geometrical control over the field theory parameters also motivates

why we prefer to work with local IIB D-brane constructions. Although we will work in

a probe approximation, in principle we could extend our analysis to the case where the

number of branes becomes large. In this AdS/CFT limit, there should exist a precise

dictionary between the couplings in the field theory and the asymptotic boundary conditions

on the supergravity fields [2]. By changing these boundary conditions one can tune the UV

couplings. This in principle allows full control over the IR couplings and dynamics.

The organization of the chapter is as follows. In section 2, as a warm-up, we discuss the

F-term deformation of D-branes on C2/Z2. In section 3 we describe the realization of meta-

stable supersymmetry breaking via D-branes on the suspended pinch point singularity. We

find that supersymmetry restoration involves a geometric transition. In section 4 we give the

IIA dual description of the same system and find that it is similar to the IIA constructions

of [101, 105]. Finally, in section 5, we present a D-brane realization of the Intriligator-

Thomas-Izawa-Yanagida model [107, 108], as an example of a system in which the F-term,

that triggers SUSY breaking, is dynamically generated via a quantum deformation of the

moduli space.

When the paper that this chapter is based on was close to completion, an interesting

paper [104] appeared in which closely related results were reported.4 In agreement with our

observations, in [104] the F-term SUSY breaking takes place due to the presence of fractional

D5-branes on slightly deformed non-isolated singularities. One of the main points in [104]

was to show that the deformation can be computed exactly in the framework of geometric

transitions: this is an important step in finding calculable examples of SUSY breaking in

string theory. The main point of this chapter is to identify simple geometric criteria for the

existence of SUSY breaking vacua that can have more direct applications in model building.

4The IIB string realizations of DSB found in [104] were motivated by the earlier related work [109] in
type IIA theory, and by the idea of retrofitting simple systems with DSB, put forward in [110].
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4.2 Deformed C2/Z2

The C2/Z2 singularity, or A1 singularity, is described by the following complex equation in

C3

cd = a2, (a, b, c) ∈ C3 . (4.2.1)

A D3-brane on C2/Z2 has a single image brane. The brane and image brane recombine in

two fractional branes. Correspondingly, the quiver gauge theory for N D3-branes at the

A1 singularity has two U(N) gauge groups. It also has two adjoint matter fields Φ1 and

Φ2 (one for each gauge group), and two pairs of chiral fields Ai and Bj i, j = 1, 2 in the

bifundamental representations (N,N ) and (N,N) [20][60]. The superpotential reads

W = gTrΦ1(A1B2 −B1A2) + gTrΦ2(A2B1 −B2A1)

A D3-brane has 3 transverse complex dimensions. The transverse space C2/Z2 × C has

a non-isolated A1 singularity. It is therefore possible to separate the fractional branes.

This corresponds to giving different vevs to the two adjoint fields. In the limit of infinite

separation one can consider a theory with only one type of fractional brane. This theory

consists of a U(N) gauge field with one adjoint matter field and no fundamental matter.

Let us add an F and a D-term

WF = ζ Tr(Φ2 − Φ1), VD = ξTr(D2 −D1).

The resulting F and D-term equations read

Φ1A1−A1Φ2 = 0, A2Φ1−Φ2A2 = 0, A1B2 −B1A2 = ζ,

Φ1B1−B1Φ2 = 0, B2Φ1−Φ2B2 = 0, |A1|2 + |B1|2− |A2|2− |B2|2 = ξ.

These equations allow for a supersymmetric solution, provided we set the adjoint vevs to

be equal, Φ1 = Φ2. For generic ζ and ξ, some of the A and B fields acquire vevs and

break the U(N)×U(N) symmetry to a diagonal U(N). This corresponds to joining the 2N

fractional branes into N D3-branes. The space of solutions of the F and D-term equations
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is the space where the D3-brane moves, which turns out to be a deformed A1 singularity

described by the equation5

cd = a(a− ζ), (4.2.2)

where c = A1A2, d = B1B2 and a = A1B2 = B1A2 +ζ are the gauge invariant combinations

of the fields (in the last definition we used the F-term equation for the Φ field).

The F-term coefficient ζ deforms the singularity, the D-term coefficient, or FI param-

eter, ξ represents a resolution of the Z2 singularity. In two complex dimensions both the

resolution and the deformation correspond to inserting a two-cycle, E ∼ P1, instead of the

singular point. The parameters ξ and ζ are identified with the periods of the Kahler form

and the holomorphic two-form on the blown up 2-cycle E

ξ =

∫

E
J , ζ =

∫

E
Ω(2) .

The non-supersymmetric vacuum state arises in the regime where the vevs of the two

adjoint fields Φ1 and Φ2 are both different. Geometrically, this amounts to separating the

two stacks of fractional branes. The bifundamental fields (Ai, Bi), which arise as the ground

states of open strings that stretch between the two fractional branes, then become massive.

In the deformed theory, the F-term equations can not be satisfied and SUSY is broken. In

the extreme case, where one of the two stacks of fractional branes has been moved off to

infinity, so that e.g. 〈Φ2〉 → ∞, the system reduces to the Polonyi model: a single U(N)

gauge theory with a complex adjoint Φ1 and superpotential W = ζ TrΦ1. The vacuum

energy V = N |ζ|2 is interpreted as the tension of the N fractional branes wrapped over the

deformed two-cycle.

Strictly speaking the single stack of fractional branes on a deformed singularity is a

supersymmetric configuration (one manifestation is that the spectrum of particles in Polonyi

model is supersymmetric). In order to break SUSY we really need the second stack of

different fractional branes on a large but finite distance. In this case, the SUSY breaking

vacuum is not stable due to the attraction between the two stacks of branes.
5The general deformations of orbifold singularities of C

2 where found by Kronheimer [111] as some
hyperkahler quotients. Douglas and Moore noticed [20] that these hyperkahler quotients are described by
the F and D-term equations for D-branes at the corresponding orbifold singularities.
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Before we get to our main example of the SPP singularity, let us make a few comments:

1. The gauge theory on N fractional branes on the C2/Z2 singularity is an N = 2

U(N) theory. If we deform the singularity, then SUSY is broken, whereas in general, N = 2

theories are not assumed to have SUSY breaking vacua (see, e.g., Appendix D of [14]).

The point is that the SUSY breaking occurs in the U(1) part of U(N) that decouples from

SU(N). Moreover the N = 2 U(1) theory consists of two non-interacting N = 1 theories:

a vector boson and a chiral field. Thus the chiral field ϕ = TrΦ, responsible for SUSY

breaking, is decoupled from the rest of the fields in N = 2 U(N) and SUSY is broken in

the same way as in the Polonyi model.

2. In general, we consider N = 1 theories on isolated singularities that intersect non-

isolated singularities. With appropriate tuning of the couplings, the fractional branes wrap-

ping the non-isolated cycles provide an N = 2 subsector in the N = 1 quiver. Removing the

D-branes along the non-isolated singularity reduces the field theory on their world volume

to N = 2 SYM. For this reason the fractional branes on the non-isolated singularity can

be called N = 2 fractional branes [112][113]. Similarly to C2/Z2 example, the presence of

N = 2 fractional branes on slightly deformed non-isolated singularity breaks SUSY.

3. The use of N = 2 fractional branes is the distinguishing property of our construction

from SUSY breaking by obstructed geometry [112][114][115]. The presence of the non-

isolated singularity enables the relevant RR-fluxes escape to infinity without creating a

contradiction with the geometric deformations. In this way one can avoid the generic

runaway behavior (see, e.g., [73] [116]) of obstructed geometries (in our case we still need

to take the one loop corrections to the potential into account in order to stabilize the flat

direction along the non-isolated singularity).

4.3 ISS from the Suspended Pinch Point singularity

In this section, we will show how to engineer a gauge theory with ISS-type SUSY breaking

by placing fractional branes on the suspended pinch point (SPP) singularity. First, however,

we summarize the arguments that lead us to consider this particular system.
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As we have seen in the previous section, several aspects of the ISS model are quite similar

to the C2/Z2 = A1 quiver theory. The term linear in the adjoint in the ISS superpotential

is the ζ deformation of the A1 singularity. Both models have two gauge groups (the global

flavor symmetry SU(Nf ) in ISS can be thought of as a weakly coupled gauge symmetry).

The flavor gauge group is bigger than the color gauge group – this can be achieved in

the A1 quiver by introducing an excess of fractional branes of one type. The vevs of

bifundamental fields break SU(Nf ) × SU(N) → SU(N)diag × SU(Nf −N). The breaking

of SU(N) × SU(N) → SU(N)diag corresponds to recombination of N pairs of fractional

branes into N (supersymmetric) D3-branes. The vacuum energy is proportional to the

tension of the remaining Nf −N fractional branes.

There is however an important difference between the two systems. In ISS it is crucial

that the color node SU(N) doesn’t have an adjoint field and that all the classical moduli

are lifted by one loop corrections. In the C2/Z2 orbifold there is also an adjoint in the

“flavor” node. Giving equal vevs to the two adjoints in the C2/Z2 quiver corresponds to

the “center of mass” motion of the system of branes along the non-isolated singularity. This

mode doesn’t receive corrections and remains a flat direction.

Thus, the key distinguishing feature of ISS relative to the C2/Z2 model is that the

color gauge group SU(N) has no adjoints. For constructing a geometric set-up, we need a

mechanism that fixes the position of the N D3-branes. The gauge theories without adjoint

fields are naturally engineered by placing D-branes on isolated singularities.

Our strategy will be to find an example of a geometry that has a non-isolated A1

singularity that at some point gets enhanced by an isolated singularity. The fractional

branes on the A1 will provide the SU(Nf ) symmetry; they interact with N branes at the

isolated singularity, that carry the SU(N) color gauge group. Such systems are easy to

engineer. The most basic examples are provided by the generalized conifolds [117], the

simplest of which is the suspended pinch point singularity.6

6The relevance of generalized conifolds and, in particular, the suspended pinch point was stressed to us
by Igor Klebanov. See also [100][118][119] for the earlier constructions of the metastable SUSY breaking
vacua in the generalized conifolds.
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A similar mechanism of dynamical SUSY breaking for the SPP singularity was previously

considered in [113]: SUSY is broken by the presence of D-branes on the deformed A1

singularity. The essential difference is that in our case the A1 singularity is deformed

without the conifold transitions within the SPP geometry. In fact, we will show that the

conifold transition is responsible for SUSY restoration.

4.3.1 D-branes at a deformed SPP singularity

The suspended pinch point (SPP) singularity may be obtained via a partial resolution of a

Z2 × Z2 singularity [120]. It is described by the following complex equation in C4

cd = a2b, (a, b, c, d) ∈ C4 . (4.3.3)

There is a C2/Z2 singularity along b 6= 0. The quiver gauge theory for N D3-branes at

the SPP singularity is shown in figure 4.1. It was derived in [120] by turning on an FI

parameter ξ in the Z2 × Z2 quiver gauge theory, and working out the resulting symmetry

breaking pattern. The superpotential of the SPP quiver gauge theory reads

W = Tr
(
Φ(Ỹ Y − X̃X) + h(ZZ̃XX̃ − Z̃ZY Ỹ )

)
(4.3.4)

where h is a dimensionful parameter (related to the FI parameter via h = ξ−1/2).

As a quick consistency check that this theory corresponds to a stack of D3-branes on the

SPP singularity, consider the F-term equations for a single D3-brane. The gauge invariant

combinations of the fields are

a = X̃X = Ỹ Y c = XỸ Z̃

b = ZZ̃ d = Y X̃Z (4.3.5)

where we used the F-term equation for Φ. These quantities (a, b, c, d) satisfy the constraint

cd = a2b, which is the same as the equation for the SPP singularity.

Following our recipe as outlined in the introduction, we now deform the non-isolated A1

singularity inside the SPP as follows

cd = a(a− ζ)b. (4.3.6)
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Figure 4.1: Quiver gauge theory for N D3-branes at a suspended pinch point singularity.

This deformation removes the A1 singularity, replacing it by a finite size 2-cycle. The

deformed SPP geometry has two conifold singularities, located at a = 0 and a = ζ, with all

other coordinates equal to zero. In the field theory, the above deformation corresponds to

adding an F -term of the form

Wζ = −ζTr(Φ − hZ̃Z). (4.3.7)

This extra superpotential term is chosen such that the F-term equations for Φ and Z

X̃X − Ỹ Y − ζ = 0, Z̃(Ỹ Y − X̃X + ζ) = 0, (4.3.8)

are compatible.

The correspondence between (4.3.7) and (4.3.6) is easily verified. Again, consider the

gauge theory on a single D3-brane. In view of the deformed F-term equation, the quantity

a now needs to be defined via

a = Ỹ Y = X̃X + ζ. (4.3.9)

The constraint equation thus gets modified to cd = a(a− ζ)b, which is the equation for the

deformed SPP singularity.

As we increase ζ, the two conifold singularities at a = 0 and a = ζ become geometrically

separated and the D-branes end up on either of the two conifolds. The field theory should
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thus contain two copies of the conifold quiver gauge theory. To verify this, consider the

vacuum Y = Ỹ =
√
ζI, which solves both the F-term equations (4.3.8) and the D-term

equations |Y |2−|Ỹ |2 = 0. These vevs break the gauge group SU(N)1×SU(N)3 to SU(N)diag

and give a mass to the Higgs-Goldstone field Y− = 1√
2
(Y − Ỹ ). Substituting the remaining

fields in the superpotential, one finds that the fields Φ and Y+ = 1√
2
(Y +Ỹ ) are also massive.

The surviving massless fields with the superpotential

Wcon = h(ZZ̃XX̃ − Z̃ZX̃X) (4.3.10)

reproduce the conifold quiver gauge theory.

In general, both X and Y have vevs and the D-branes split into two stacks N1 +N2 = N

that live on the two conifolds. Note, that the Z field in (4.3.7) corresponds to strings

stretching between the two conifolds. The mass of this field is proportional to the length of

the string given by the size of the deformed two-cycle.

4.3.2 Dynamical SUSY breaking

A straightforward way to generate dynamical SUSY breaking is to reproduce the ISS model

by placing some fractional branes on the SPP singularity. Suppose that there are Nf = N+

M fractional branes corresponding to node 1 in figure 4.1, N fractional branes corresponding

to node 3, and no fractional branes at node 2. The reduced quiver diagram is shown in

figure 4.2. The superpotential for this quiver gauge theory is

W = h ζ Tr(Φ) − hTr(ΦY Ỹ ) , (4.3.11)

which is the same as the ISS superpotential in the IR limit [14], with the SU(N) identified

as the “color” group and SU(N + M) as the “flavor” symmetry. The only difference

between our gauge theory and the ISS system is that the “flavor” symmetry is gauged.

The corresponding gauge coupling is proportional to a certain period of the B-field. We

can tune it to be small and treat the gauge group as a global symmetry in the analysis of

stability of the vacuum.7

7In fact, the restriction on the coupling is not very strong, because the SUSY breaking field TrΦ couples
only to the bifundamental fields Y , Ỹ through the superpotential (4.3.11) (see also figure 4.2). Since the
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An empty node in the quiver introduces some subtleties, since there might be instabilities

or flat directions at the last step of duality cascade leading to this empty node. In the final

section of this chapter, we show that this quiver can be obtained after one Seiberg duality

from an SPP quiver without empty nodes.

Recall that in the field theory SUSY is broken since the F-term equations for Φ

Y Ỹ = ζ 1N+M (4.3.12)

cannot be satisfied by the rank condition. In the vacuum where

Y Ỹ = ζ 1N , (4.3.13)

the SU(N)1 × SU(N + M)3 gauge symmetry is broken to SU(N)diag × SU(M)3. The

superpotential for the remaining M ×M part of the adjoint field reduces to the Polonyi

form

W = h ζ TrM (Φ). (4.3.14)

The metastable ground state thus has a vacuum energy proportional to Mh2ζ2.

We can interpret the SUSY breaking vacuum on the geometric side as follows. Our

system contains N fractional branes that wrap one of the conifolds inside the deformed

SPP singularity, and (N +M) fractional branes that wrap the 2-cycle of the deformed A1.

The Φ = 0 vacuum corresponds to putting all the (N +M) fractional branes on top of the

N branes at the conifold (see fig. 4.2).

The Y modes represent the massless ground states of the open strings that connect

the two types of branes. The non-zero expectation value (4.3.13) for Y Ỹ corresponds to a

condensate of these massless strings between N branes wrapping α3 and N branes wrapping

α1 = −α2 − α3. As a result of condensation, these two stacks of N fractional branes

recombine into N fractional branes wrapping −α2 at the second conifold. The remaining

M fractional branes around the deformed A1 end up in a non-supersymmetric state. The

stabilization of the SUSY vacuum comes from the masses of these bifundamental fields it is sufficient to
require that the corrections to the masses due to the gauge interactions are small at the SUSY breaking
scale.
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Figure 4.2: A particular combination of fractional branes on the SPP singularity and the
corresponding quiver gauge theory that reproduce the ISS model. The cycle α1 is a non-
isolated two-cycle of the deformed A1 singularity inside the SPP. The cycles α2 and α3

denote the isolated two-cycles on the two conifolds that remain after the deformation of the
A1 singularity. The cycles satisfy α1+α2+α3 = 0. The N fractional branes wrapping α3 are
supersymmetric. The N+M fractional branes wrapping α1 break SUSY. This combination
of fractional branes corresponds to zero vevs of the bifundamental fields in the ISS.

diagonal entries of the M×M block in Φ parameterize the motion of the M branes along the

deformed non-isolated singularity. The corresponding configuration of branes is represented

in figure 4.3.

The stability of the SUSY breaking vacuum is a quantum effect in the field theory—

there are pseudo-moduli that acquire a stabilizing potential at one loop [14]. In the D-brane

picture this should correspond to the back reaction of the branes that makes the two-cycle

at the deformed A1 singularity grow as one moves away from the conifold. (Alternatively

one can think about a weak attraction between the branes.) It would be interesting to

derive this directly from SUGRA equations, since it would complete the geometric evidence

for the existence of the SUSY breaking vacuum.

4.3.3 SUSY restoration

Let us discuss SUSY restoration in this setup. The SUSY vacuum is found by separating

the (N + M) fractional branes on the deformed C2/Z2 singularity from the N fractional

branes at the conifold. This separation amounts to giving a vev to Φ. Initially this costs

energy. The fields Y and Ỹ become massive. Below their mass scale, the theory on the N
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Figure 4.3: In the metastable vacuum. N supersymmetric fractional branes wrap the −α2

cycle of the second conifold. The remaining M fractional branes wrap the non-isolated cycle
α1 = −α2 − α3 and are weakly bound to the N branes at the conifold. This configuration
of fractional branes is obtained from the configuration in figure 4.2 by giving vevs to the
bifundamental fields.

fractional branes at the conifold becomes strongly coupled and develops a gaugino conden-

sate. This condensate deforms the conifold singularity, and generates an extra term in the

superpotential for Φ that eventually restores SUSY.

On the gauge theory side, the SUSY restoring superpotential term arises due to the fact

that the value of the gaugino condensate depends on the masses of Y and Ỹ , and these

in turn depend on the vev of Φ. As a result [14], the gaugino condensation modifies the

superpotential for Φ to (here Nf = N +M)

Wlow = N
(
hNf Λ

−(Nf−3N)
m detΦ

)1/N
− hζ TrΦ. (4.3.15)

Due to the extra term, the F-term equations

∂Wlow

∂Φ
= 0 (4.3.16)

can be solved. In fact there are Nf −N=M SUSY vacua Φ=Φk, with k = 1, .. ,M .

On the geometric side, the SUSY vacuum is interpreted as the ground state of N +M

fractional branes in the presence of a deformed conifold singularity. Suppose that the

deformed conifold is the one located at a = ζ. One can describe the situation after the

geometric transition by the following equation

cd = a((a− ζ)b+ ǫ0) . (4.3.17)
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Figure 4.4: To reach the supersymmetric ground state, the N +M fractional branes on the
A1 2-cycle move away from the conifold. The N fractional branes on the conifold then drive
the geometric transition: the two-cycle α3 is replaced by the three sphere S3. After the
transition, the size of the A1 2-cycle reaches a zero minimum at a new conifold singularity
(indicated by the position of α1).

The original conifold singularity at a = ζ is now a smooth point in the geometry. However,

a new singularity has appeared in the form of an undeformed conifold at a = c = d = 0

and b = ǫ0/ζ. The D5-branes that were originally stretching between a = 0 and a = ζ can

thus collapse to a supersymmetric state by wrapping the zero-size 2-cycle of the undeformed

conifold. This process is the geometric manifestation of SUSY restoration in the underlying

ISS gauge theory.8

Using the geometric dual description, it is possible to rederive the field theory superpo-

tential (4.3.15) and even compute higher-order corrections. The calculation goes as follows,

[104]. Let us rewrite the geometry (4.3.17) as:

uv = (z − x)((z + x)(z − x− ζ) + ǫ0) , (4.3.18)

where z − x = a, z + x = b. Also it is useful to introduce the following notation

z1(x) = x
z̃2(x) = ζ/2 −

√
(x+ ζ/2)2 − ǫ0

z2(x) = −x (4.3.19)

8A similar mechanism of SUSY restoration in the case of SPP singularity was anticipated in [112]
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Figure 4.5: The gauge theory potential as a function of the vevs of the adjoint Φ and bi-
fundamental Y . Suppose we start at point a corresponding to the situation in fig. 4.2 with
the zero vevs of Φ and Y Ỹ . This point is unstable and there are two possibilities. If the
bifundamental fields Y Ỹ get a vev, then we end up in the metastable ISS vacuum in fig.
4.3. If the adjoint field Φ gets a vev, then we follow the path to the SUSY vacuum (an
intermediate point on the SUSY restoring path is shown in fig. 4.4).

z̃3(x) = ζ/2 +
√

(x+ ζ/2)2 − ǫ0
z3(x) = x+ ζ

The conifold singularity is at z = x = ǫ0/2ζ ≡ x∗. If initially the fractional D-branes on the

deformed A1 were stretching between z1(x) and z3(x), then after the geometric transition,

they stretch between z1(x) and z̃3(x). They can minimize their energy by moving (or

tunneling) to the conifold singularity at z = z1(x∗) = z̃3(x∗).

For the geometric derivation of the superpotential, we take the deformation parameter

ǫ0 to be dynamical, and related to the gaugino condensate via ǫ0 = 2S.9 We also identify

Φ with the location x of the D5-branes relative to the (deformed) conifold at a = ζ. The

superpotential for the gaugino condensate together with the adjoint field is [104]

W (S,Φ) = NS(log
S

Λ3
− 1) +

t

gs
S + W̃ (Φ, S) . (4.3.20)

9The constant 2 appears due to the consistency conditions between the geometric derivation of the
superpotential and the KS superpotential for the conifold.
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The first two terms comprise the familiar GVW superpotential [121]W =
∫

Ω∧G3 evaluated

for the deformed conifold supported by N units of RR 3-form flux [122][123]. The last term

W̃ (Φ, S) has a closely related, and equally beautiful, geometric characterization in terms of

the integral of holomorphic 3-form

W̃ (Φ, S) =

∫

Γ
Ω (4.3.21)

over a three chain Γ bounded by the 2-cycle wrapped by the D5 brane.10 Following [104],

we can reduce the integral (4.3.21) for our geometry (4.3.18) to an indefinite 1-d integral

W̃ (x) =

∫
(z̃3(x) − z1(x))dx (4.3.22)

with z1(x) and z̃3(x) given in (4.3.19).

Let us show that the geometric expression (4.3.22) reproduces the gauge theory super-

potential. In the appropriate limit, x >> ǫ0, ζ, we find from (4.3.22)

W̃ (S,Φ) = ζTrΦ − S log(Φ/Λm) . (4.3.23)

Here we identify (x, ǫ) with (Φ, 2S), and use the integration constant to introduce a scale

Λm. Physically, Λm sets the scale of the Landau pole for the IR free theory with 3N < Nf .

Minimizing (4.3.20) with respect to S we find

S =
(
Λ3

m det(Φ/Λm)
) 1

N (4.3.24)

If we substitute S back in (4.3.20), we get exactly (4.3.15) (up to an overall sign and after

the redefinition Φ → hΦ). By expanding the full geometric expression (4.3.22) to higher

orders, one can similarly extract the multi-instanton corrections to the superpotential.

Our system in fact has other supersymmetric vacua besides the one just exhibited.

These arise because, unlike the ISS-system, the flavor symmetry is gauged. If we move

10This contribution to the superpotential is easily understood from the perspective of the GVW super-
potential. The D5-brane is an electric source for the RR 6-form potential C6 , and a magnetic source for
the RR 3-form field strength F3 = dC2 . If the D5 would traverse some 3-cycle A, this process will induce a
jump by one unit in the F3-flux through the 3-cycle B dual to A, and thereby a corresponding jump in the
GVW superpotential. Continuity of the overall superpotential during this process dictates that the D5-brane
contribution must take the form (4.3.21).
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M fractional branes away from the conifold singularity in figure 4.3, then the N fractional

branes wrapping the conifold 2-cycle α2 may also induce a geometric transition. As in the

above discussion, this transition also restores SUSY. For a suitable choice of couplings, the

extra SUSY vacuum lies farther away than the one considered above. The ISS regime arises

when the coupling of the initial “color” SU(N) gauge group is sufficiently bigger than the

coupling of the gauged “flavor” group SU(N+M), g3 ≫ g1. (Note that after the symmetry

breaking, the coupling of SU(N)diag ⊂ SU(N)×SU(N +M) is of order g1.) In this section

we assumed that we are in this ISS regime.

4.4 Type IIA dual of the SPP singularity

In this section we present the type IIA dual of our discussion of D-branes at the SPP

singularity. In particular, we study the F-term deformations in the corresponding system

of NS-branes and D-branes and prove that the IIA dual of the SPP singularity is equivalent

to the known IIA representations of ISS [101, 105, 106].

D-branes at singularities of CY manifolds in IIB are T-dual to D-branes stretching

between NS-branes in type IIA [124][125]. Consider N D3-branes at the SPP singularity

described by the following equation in C4

uv = x2z. (4.4.25)

The resulting space has 6 real dimensions (x4, . . . , x9). Denote x = x4+ix5 and z = x8+ix9.

For v 6= 0 one can solve equation (4.4.25) for u. Let v = reiϕ and denote x6 = ϕ, x7 = r.

After T-duality in the compact dimension x6, we get the configuration of NS branes (blue)

and D4-branes (green) in type IIA (this configuration is depicted in figure 4.6 on the left).

The zeros of polynomials on the right hand side of (4.4.25) represent the intersection

of NS-branes with the circle in x6. There is one NS brane at z = 0 and two NS′ branes at

x = 0 (we use the prime to distinguish the two NS branes at x = 0 from the NS brane at

z = 0). The NS branes span the following dimensions

NS (0 1 2 3 4 5)



105

x=0

6

N1

N 2

NS’

NS’

x = ζ
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Figure 4.6: On the left there are N D4-branes on the “SPP singularity”. After the addition
of the F-term ζ, the SPP singularity is transformed to two conifolds at x = 0 and x = ζ.
The N D4-branes split into N1 +N2 = N D4-branes at the two conifolds. (The D4-branes
are green and the NS branes are blue.)

NS′ (0 1 2 3 8 9)

The D4-brane between the two NS′ branes can freely move in the z direction. This corre-

sponds to the motion of the fractional D3-branes along the line of Z2 singularities in the

z direction of (4.4.25). The length of the D4 brane in x6 is mapped, via T-duality, to the

period of the B-field on the corresponding shrunken P1:

∆x6 =

∫

P1
B ∼ 4π

g2
(4.4.26)

The corresponding field theory is the same as the type IIB quiver gauge theory (4.3.4).

As we have shown earlier the F-term deformation (4.3.7) corresponds to the deformation of

the Z2 singularity in the SPP

uv = x(x− ζ)z (4.4.27)

In the IIA dual picture this corresponds to moving one of the NS’ branes from x = 0 to

x = ζ. This theory has two conifold points: at x = 0 and at x = ζ. The corresponding

configuration of branes is shown in figure 4.6 on the right.

To get the ISS vacuum we take Nf D4-branes between the two NS′ branes and N

D4-branes between NS′2 and NS such that Nf > N . The corresponding superpotential is

W = Tr(ζΦ − Φϕϕ̃) (4.4.28)
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Figure 4.7: On the left there are Nf D4-branes stretching between NS′1 and NS′2 and N
D4-branes stretching between NS′2 and NS. After turning on the F-term, ζ, there are N
supersymmetric D4-branes (green) stretching between NS′1 andNS and (Nf−N) D4-branes
(red) that have non zero size in the x direction and violate the SUSY. The dashed lines
represent the empty cycles in the geometry (empty nodes in the corresponding quivers).

The F-term equations for the Φ fields are

ϕϕ̃ = ζINf×Nf
. (4.4.29)

The fields ϕ and ϕ̃ acquire vevs and break the gauge group as SU(Nf ) × SU(N) −→

SU(N)diag × SU(Nf − N). This corresponds to recombination of the D4-branes shown in

figure 4.7. The SUSY breaking is due to the (Nf −N) D4-branes stretching a finite distance

between x = 0 and x = ζ: the tension of these branes creates the vacuum energy. We note,

that this configuration of NS-branes and D4-branes is closely related to the constructions of

[106] where the SU(Nf ) symmetry is slightly gauged compared to the earlier constructions

[101, 105] where the SU(Nf ) is a flavor symmetry.

4.5 F-term via a Deformed Moduli Space

In the previous sections we introduced the F-terms by hand, assuming that they are gener-

ated somewhere else in the geometry and are not affected by the local field theory (see, e.g.,

the constructions in [104]). In this section we consider an example of F-term generation in

the local field theory by a quantum modified moduli space analogous to the Intriligator-
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Thomas-Izawa-Yanagida model [107, 108]. Our setup is related to the M-theory example

considered in [126].

In order to obtain an ITIY-like model we consider the deformed A3 singularity in IIB

string theory:

uv = x2z2. (4.5.30)

Recall that the C2/Z4 = A3 singularity has the equation uv = x4 in C3. The corresponding

quiver gauge theory [20] for N D3-branes at the A3 singularity has four U(N) gauge groups,

four N = 2 hypermultiplets in bifundamental representations of the gauge groups, and four

adjoint fields.

The deformation (4.5.30) corresponds to giving the masses to two adjoint fields on

opposite nodes of the C2/Z4 quiver. A general derivation of the correspondence between

the geometric deformations and the superpotential for the adjoint fields can be found in

[127]. Intuitively, an adjoint field gets a mass if the corresponding fractional brane wraps

a collapsed two-cycle that has a non-zero volume away from x = z = 0. After integrating

out the massive adjoint fields, the remaining fields are the four U(N) gauge groups with

bifundamental matter between them and two adjoint fields corresponding to the non-isolated

Z2 singularities at u = v = x = 0 and u = v = z = 0.

Next, let us add an O3 plane located at u = v = x = z = 0. We take the action of the

O3 plane to be the same as in [128]:

u→ v, v → u, x→ −x, z → −z (4.5.31)

The U(N) gauge groups become SO(2N + 2) and Sp(N).

To generate the ITIY model, we occupy two out of the four nodes in the quiver. The

corresponding quiver gauge theory is shown in figure 4.8. The N fractional branes cor-

responding to node 1 give rise to an Sp(N) gauge theory with dynamical scale Λ, while

the N + 1 fractional branes corresponding to node 2 realize an SO(2N + 2) theory with

dynamical scale Λ′. In our example, the beta function for the Sp(N) gauge group is bigger

than for SO(2N + 2), i.e. the Sp(N) gauge group confines first. We assume that Λ ≫ Λ′

and treat the weakly coupled SO(2N + 2) symmetry as global.
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Φ
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Sp(N)

SO(0) Sp(0)

SO(2N+2)

34

Figure 4.8: Quiver gauge theory that reproduces the ITIY model. It is obtained by putting
some fractional branes on an orientifold of the deformed A3 singularity. The circles represent
the occupied nodes, while the squares correspond to the empty nodes in the quiver. The
field Q is in the bifundamental representation of Sp(N)×SO(2N +2). α denotes fermionic
zero modes of the D-instantons wrapping the Sp(0) node.

The tree-level superpotential is inherited from the C2/Z4 cubic superpotential

W = hΦijQ
iQj (4.5.32)

where Φ is an adjoint of SO(2N + 2) and the quarks, Q, transform as bifundamentals of

Sp(N) × SO(2N + 2).

Denote the mesons of the Sp(N) gauge group by M ij = QiQj. After the confinement

of Sp(N), the theory has a quantum-deformed moduli space of vacua

PfM = Λ2N+2 (4.5.33)

The superpotential (4.5.32) then becomes

W̃ = hΦM + λ(PfM − Λ2N+2). (4.5.34)

where λ is the Lagrange multiplier imposing the constraint (4.5.33).

SUSY is broken since the F-term equations for the Φ field cannot be satisfied. Indeed,

the deformed moduli space guarantees that

−F †Φ = M ∼ Λ2 6= 0. (4.5.35)
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Note that we needed to introduce the O3 plane in order to (dynamically) break SUSY since

otherwise we would have to take baryonic directions B, B̃ into account in (4.5.33). In the

absence of competing effects, the baryons are tachyonic and so our potential would take us

to zero vev for M , thus allowing the system to relax to a SUSY groundstate.

In order to get a geometric interpretation of the SUSY breaking, let us solve the F-term

equations for the λ and M fields

PfM − Λ2N+2 = 0; (4.5.36)

hΦij + λPfM ·M−1
ij = 0.

Then, the superpotential for Φ reads

W̃ = 2hΛ2(N + 1)(PfΦ)
1

N+1 . (4.5.37)

Any Φ can be obtained by an SO(2N + 2) rotation from a given element Φ0, Φ = OΦ0O
T ,

where we take

Φ0 =




0 R

−R 0


 (4.5.38)

with

R = diag(r1, ..., rN+1) (4.5.39)

The anti-symmetric form of Φ is due to the orientifold projection. Now, plugging (4.5.38)

into (4.5.37) and extremizing the resulting potential, we see that

V = 4h2Λ4

(
∑

i

1

|ri|2

)
∏

j

|rj|
2

N+1 ≥ 4h2Λ4(N + 1) (4.5.40)

with the inequality saturated for r1 = ... = rN+1, i.e.

Φ0 = r




0 1N+1

−1N+1 0


 . (4.5.41)

Then PfΦ = rN+1 and

W̃ = 2hΛ2(N + 1)r. (4.5.42)
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In other words, this is a Polonyi model in the flat r direction with a set of Goldstone

bosons parameterizing the space of broken symmetries SO(2N + 2)/U(N + 1). In fact,

these goldstone bosons will get eaten at the scale Λ since

M = Λ2




0 1N+1

−1N+1 0


 . (4.5.43)

as a consequence of satisfying the F-term equations in (4.5.36) (this holds for ∀r 6= 0 and

therefore holds in the limit r → 0).

Now, by construction, r is uncharged under the U(N+1) group of remaining symmetries.

Hence, in particular, we can treat r as a center of mass coordinate of the D-brane system.

Then, in analogy with the previous sections, we interpret this superpotential as coming

from the complex deformation of the singularity

uv = (z − hΛ2)(z + hΛ2)x2 (4.5.44)

Here we take the deformation to be invariant under the O-plane action. In the case of the

ITIY model, this geometric interpretation has an important limitation. In the previous

constructions we assumed that the deformation parameter ζ is a vev of some field that has

a mass much bigger than the scale of ζ, i.e. that we can decouple its dynamics from the

D-brane dynamics. For the ITIY, the mass of the M fields is proportional to Λ, i.e. the

dynamics of M start to play a role already at the SUSY breaking scale. In other words, the

geometric formula (4.5.44) should be trusted only for x, z, u, v ≪ hΛ2.

Let us now show that SUSY is restored in this model by contributions from the D-

instantons wrapping the empty nodes in quiver 4.8. The presence of empty nodes seems

rather generic in constructions of the ITIY model from D-branes at singularities. The pres-

ence of the O3-plane then allows non trivial D-instanton contributions to the superpoten-

tial.11 In the case of the Sp(0) node, the ‘+’ orientifold projection lifts the additional zero

modes of the D-instanton and allows it to contribute to the superpotential [129, 130, 131]

(the corresponding D-instanton zero modes are represented by α in figure 4.8), while the

11Additional non-perturbative effects in the U(N + 1) ⊂ SO(2N + 2) theory are small provided we take
Λ′ sufficiently small.
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‘-’ sign of the projection on the SO(0) node does not lift the extra zero modes and so no

contribution to the superpotential is expected from that node.

Integrating out the fermionic zero modes, αi, resulting from a Euclidean D1 brane

wrapping node 3 gives rise to an exponentially suppressed deformation of the superpotential:

W = hΦM + ǫPfΦ (4.5.45)

where the suppression factor is given by:

ǫ ∼ e−t/gs (4.5.46)

with t the period of BNS+igsB
RR on the corresponding shrunken 2-cycle. Note that since Φ

has Sp(N) non-anomalous R-charge +2, the second term in (4.5.45) breaks the R-symmetry

and SUSY will be restored for Φ that satisfies:

Φ ∼ Λ2+2/N

hǫ1/N
M−1 ∼

(
Λ2

hNǫ

) 1
N

(4.5.47)

Since ǫ is parametrically small, we can take it such that the model is rendered metastable.

For Φ near the origin, however, the stringy instanton contribution will be dominated by the

F-term induced by the Sp(N) quantum deformed moduli space. Based on the form of the D-

instanton contribution, we are tempted to identify this term with a geometrical transition in

(4.5.44). Formally, we can do this and maintain compatibility with the orientifold projection

in the limit in which Λ → 0 (this reflects the fact that SUSY restoration occurs in an entirely

different regime of field space Φ ≫ Λ):

uv = xz(xz − s) (4.5.48)

The stability of the SUSY breaking vacuum can be analyzed similarly to [132]. The

field r introduced in (4.5.41) is a pseudo-modulus. This pseudo-modulus is lifted upward

by corrections to the potential leaving a metastable SUSY-breaking vacuum at the origin,

Φ = 0.

One might be worried that contributions from the gauge fields could destabilize the

vacuum. The first thing to note is that the r field is not charged under the subgroup
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U(N + 1) ⊂ SO(2N + 2) unbroken below Λ. The contributions to the potential from the

broken SO(2N + 2)/U(N + 1) gauge sector can be neglected if the corresponding coupling

is smaller than the coupling of the matter fields, g ≪ h, which can be arranged via an

appropriate geometric tuning.12

4.6 Concluding remarks

In this chapter we presented a simple geometric criterion for the existence of a meta-stable

F-term SUSY breaking vacuum in world-volume gauge theories on D-branes. We showed

that the basic ingredients of the ISS theory can be realized by placing fractional D-branes

on a slightly deformed non-isolated singularity passing through an isolated singularity. We

characterized both the meta-stable non-SUSY and stable SUSY vacuum states.

A gap in our study, and an important direction to be explored, is the detailed super-

gravity analysis of the SUSY breaking vacuum. On the field theory side, the one-loop

corrections to the potential are crucial for lifting the classical degeneracy and stabilizing

the meta-stable vacuum. In the D-brane picture this corresponds to a weak attraction be-

tween the N D-branes at the isolated singularity and the M D-branes at the non-isolated

A1 singularity. This attraction presumably arises due to some back reaction that slightly

deforms the 2-cycle of the A1 singularity, such that its area is minimized near the isolated

singularity.

Our construction may be used to introduce SUSY breaking in phenomenological models

involving D-branes at singularities of CY manifolds. For example, take the construction

of an SM-like theory in terms of D-branes on a del Pezzo 8 singularity considered in the

previous chapter [23, 59]. As we argued above, the symmetry breaking towards the SM

requires the formation of an A2 singularity on the del Pezzo 8 surface. This A2 lifts to a

non-isolated singularity on the cone over del Pezzo. The results in this chapter suggest that,

if we slightly deform this non-isolated singularity and put a suitable collection of fractional

12The couplings of the gauge fields can be tuned by changing the periods of the B-field. If we had an
accidental N = 2 supersymmetry, then the couplings g and h would be related, but in our N = 1 setup they
are not protected against independent changes.
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Figure 4.9: Quiver gauge theory of the fractional brane configuration on the SPP singularity
that reduces to ISS model after confinement of the SU(2N +M) gauge group at node 2.

branes on it, we can engineer a SUSY breaking hidden sector, with charged matter that

interacts with the SM part of the quiver. In this way we may be able to build a semi-realistic

phenomenological model.

4.7 ISS quiver via an RG cascade

In this section we show that the ISS quiver in figure 4.2 can be obtained after one Seiberg

duality from an SPP quiver in figure 4.9.

This quiver is obtained from the quiver in figure 4.1 by adding M fractional branes to

node 3, and N +M fractional branes to node 2, so that the respective ranks of the gauge

groups become N +M and 2N +M . Note, that this theory has an infinite duality cascade

that increases the ranks of the gauge groups, i.e. we can suppose that we start in the UV

with some big ranks of the gauge groups and after a number of duality steps arrive at quiver

4.9. Let us show that after one more duality at node 2 we reproduce the ISS model.

The theory has gauge group U(N)×U(2N +M)×U(N +M), one adjoint under U(N)

and three vector-like pairs of bi-fundamentals. The superpotential is given by the sum of

(4.3.4) and (4.3.7)

W = Tr
(
−ζΦ̃ + Φ̃(Ỹ Y − X̃X) + h(ZZ̃XX̃ − Z̃ZY Ỹ + ζZ̃Z)

)
. (4.7.49)
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The SU(2N +M) gauge group confines first. This gauge group has Nf = Nc and thus

the gauge group after the Seiberg duality is U(N)× U(N +M). The two U(1) factors can

be represented as the overall U(1) (that decouples) and the non-anomalous U(1)B gauge

group. Denote the meson fields as Mxx = X̃X, Mxz = X̃Z, Mzx = Z̃X, and Mzz = Z̃Z.

In addition there are two baryons A and B. After the Seiberg duality, the superpotential is

W̃ = Tr
(
−ζΦ̃ + Φ̃(Ỹ Y −Mxx) + h(MxzMzx −MzzY Ỹ + ζMzz)

)

+ λ


det



Mxx Mxz

Mzx Mzz


−AB − Λ4N+2M




Here λ is a lagrange multiplier field. Its constraint equation is the quantum deformed

relation between the baryon and meson fields, and dictates that either the baryons or

mesons acquire a non-zero vev. We assume that we are on the baryonic branch

AB = −Λ4N+2M . (4.7.50)

The vevs of the baryons break the non-anomalous U(1)B . The D-term equations for U(1)B

fix |A|2 = |B|2.

The adjoint field Φ̃, and the meson fields Mxx, Mxz, and Mzx are all massive. So we

can integrate them out. The reduced gauge theory has gauge group SU(N)×SU(N +M),

a pair of bi-fundamental fields (Y, Ỹ ), and a meson field

Φ = Mzz (4.7.51)

that transforms as an adjoint under SU(N +M). After integrating out the massive fields,

the superpotential (4.7.50) reduces to the ISS superpotential in the magnetic regime [14]

W̃ = h ζ Tr(Φ) − hTr(ΦY Ỹ ) ,

Up to relabeling the nodes 1 and 3, this quiver gauge theory coincides with the quiver in

figure 4.2.



Chapter 5

SUSY Breaking Mediation by

D-brane Instantons

Here, we formulate and study the idea that Euclidean D-branes can mediate SUSY breaking

in string compactifications.1 The basic idea is to consider the effect of Euclidean branes

stretching between two localized collections of space-filling branes that realize, respectively,

a “visible” sector and a “hidden” sector where SUSY is broken.

In this setup, it is possible to generate soft terms that are perturbatively forbidden and

hence cannot be generated by gauge mediation. Furthermore, there is a natural hierarchy

of soft terms that is parameterized by the relative volumes wrapped by the corresponding

D-branes. Using this observation, it is possible to write down examples where the geometric

conditions for SUSY breaking imply a certain hierarchy of soft terms. We then compare

the relative strength of the mediation effects of this mechanism with the effects of gauge

mediation, gravity mediation from Kaluza-Klein modes, and anomaly mediation in various

regimes.

Finally, we provide a preliminary discussion of the phenomenology of this framework

and comment on future directions that could give rise to more control over the soft spectra.

1This chapter is based on the paper “SUSY Breaking Mediation by D-brane Instantons,” written in
collaboration with S. Franco [133].
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5.1 Introduction

As we have discussed in previous sections, string theory compactifications provide a natural

and consistent laboratory in which to better understand the physics of theories with visible

and hidden sectors. In these constructions, the two sectors correspond to different sets of

(anti) D-branes separated in the extra dimensions. Various mediation mechanisms can then

communicate SUSY breaking. They can be classified according to the string sector involved.

We can have, for example: open string mediation (gauge mediation), closed string mediation

(gravity mediation) and open/closed mixed mediation (RR p-form topological mediation,

which uses RR p-forms to couple U(1) gauge fields in the visible and hidden sectors [136]).

More importantly, string theory furnishes a geometrical interpretation of the various SUSY

breaking parameters and hence could lead to additional insight into the SUSY breaking

physics that is difficult to obtain from field theoretic techniques alone.

As the above examples demonstrate, string theory comes with a whole host of unique

objects that can be used in constructing mediation mechanisms. The goal of this chapter

is to describe another such mechanism. In particular, we will find that our mechanism

has some rather unique properties that do not follow from the standard phenomenological

literature on SUSY breaking mediation.

In particular, we will study the effects of Euclidean D-branes localized at a point in

the non-compact four dimensions—so-called ‘D-brane instantons’— stretching between the

hidden and visible sectors.2 Upon integrating over the massless, charged zero mode strings

stretching between the D-instanton and the hidden and visible sectors, we generate operators

that couple the two sectors.3 Roughly speaking, if the hidden sector breaks SUSY, these

operators can then generate soft terms for the visible sector fields. In this sense, the D-

2In the last year and a half, there has been a surge in the study of D-brane instantons, mainly due to their
ability to generate superpotential couplings that are perturbatively forbidden by U(1) symmetries. Many
applications have been investigated, such as the cure of runaway directions in models that dynamically break
SUSY [95], neutrino masses and mu terms [93, 94, 131, 59, 137], R-symmetry breaking and metastability
[97], Yukawa couplings in GUT models [131] and SUSY breaking models with and without non-abelian
gauge dynamics [100, 109]. In this chapter, we take the natural step of extending these ideas to the non-
supersymmetric realm.

3It is important to notice that the strength of D-brane instantons is not related to the strength of any
MSSM instanton. Hence, they can be much less suppressed.
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brane instantons mediate SUSY breaking. Furthermore, our mediation mechanism has no

known field theoretical analog. More generally, we expect D-brane instanton mediation to

be present in a variety of string theory constructions. Hence, it deserves to be studied,

regardless of whether it is the dominant mediation mechanism or not.

In this chapter, we find the following simple characterization of D-instanton mediation:

• D-instantons can generate soft terms that are perturbatively forbidden by U(1) sym-

metries and hence cannot be generated by gauge mediation. They can also produce

couplings that do not violate any U(1) global symmetry, as in the example in section

4.2 and general models discussed in section 6.

• There is a natural hierarchy of soft terms that is parameterized by the volumes

wrapped by the corresponding D-instantons.

• One can easily write down examples where the geometric conditions for SUSY breaking

imply a particular hierarchy of soft terms from the mediating instantons.

• D-instanton mediation is sensitive to the details of the SUSY breaking sector. In

particular, if the SUSY breaking sector is a D-brane gauge theory that dynamically

breaks SUSY, then D-brane instantons generate chiral gauge invariant operators that

correspond to their orientation (or, more precisely, the homology cycle they wrap). In

particular, some SUSY breaking hidden sectors fail to generate soft terms via this form

of mediation since the mediating D-instantons project onto a subspace of vanishing

chiral gauge invariants.

From a model building perspective, the last three points are potentially quite interest-

ing. Significantly, they follow rather simply from the fact that our mediators have a clear

geometrical interpretation.

Let us briefly summarize the plan of this chapter. In the next section, we will discuss in

much greater detail the idea behind D-instanton mediation. Then we will quickly introduce

the machinery of toroidal orientifolds with D-branes and D-instantons as a warm-up for
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some specific examples we then engineer in this setup. We will conclude with a brief and

admittedly incomplete phenomenological discussion.

One of the main issues we do not address in this chapter, but should certainly be studied,

is the stabilization of compactification moduli, the dilaton and D-brane moduli after SUSY

breaking. We have chosen to focus on the question of whether SUSY breaking mediating

interactions can be generated by D-brane instantons, under the assumption that it can

be disentangled from moduli stabilization. With this as our main goal, we do not try to

engineer fully realistic or complete models of D-instanton mediation, but rather we discuss

the basics of this mechanism in a few simple and illustrative toy examples. We leave a more

detailed analysis to future work.

5.2 General idea

5.2.1 Coupling visible and hidden sectors via D-brane instantons

First, we will review the basics of how to generate chiral operators from Euclidean Dp-

branes (Ep-branes for short). Since some of the soft terms (e.g., A-terms, B-terms, etc.)

will be generated by products of chiral operators, we will be interested in this well-studied

case. However, we will also discuss the possibility of generating non-chiral operators from

instanton anti-instanton combinations (or, simply from single, non-BPS instantons [141,

142]) as well, since such operators can give rise to non-holomorphic soft masses.

We begin by imagining a space-filling D-brane sector that the various Ep-branes interact

with. This could be a set of fractional branes at a singularity or a set of intersecting D-brane

stacks. The physics of the Ep-brane interactions with the D-brane sector can be encoded

in an extended quiver diagram of the form shown in Figure 5.1.

The circles denote two of the gauge groups that are part of a larger quiver living on the

set of space-filling D-branes. Xij corresponds to a combination of chiral fields transforming

in the bifundamental representation of SU(N)(i) × SU(N)(j). The ranks of both gauge

groups must be the same in order to have a non-vanishing instanton contribution. Note
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Figure 5.1: Extended quiver diagram for the basic E-brane configuration that generates a
superpotential contribution. Dotted arrows indicate charged fermionic zero modes. The
figure presents the simplest case, in which the fermionic zero modes couple to a single
bifundamental field between a pair of nodes. In the generic situation, charged zero modes
can couple to more general operators, associated with an open path in the quiver.

that Xij can simply be a single bifundamental field or, more generally, a product of the form

Xij = Xi k1Xk1k2 . . . Xknj , where we sum over the intermediate color indices. In section 6,

we discuss this possibility in more detail. The square node in the extended quiver indicates

the Ep-brane. Charged fermionic zero modes, represented by the Grassman variables α

and β, arise at the intersections between the spacefilling D-branes and the instanton. The

instanton action then contains a term of the form

L = αiXijβj , (5.2.1)

Let us now discuss the neutral fermionic zero modes—these arise from strings that have

both ends on the instanton. We will focus on orientifolded Calabi-Yau compactifications

with D-branes, leading to N = 1 SUSY in 4d. Since the Ep-brane breaks 1/2 of the SUSY

it therefore has two fermionic zero modes, the goldstinos, living on it—these are represented

by the Grassman variables, θα. Generically, there are two additional fermionic zero modes

on the instanton due to the ‘accidental’ N = 2 SUSY seen by the Ep-Ep sector. This issue

was first discussed and clarified through explicit computations in some orbifold models

in [130, 143]. In order to saturate the superspace measure and generate a non-vanishing

contribution to the superpotential, there must be only two neutral fermionic zero modes on

the instanton. A straightforward way of getting rid of the accidental neutral zero modes is
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to project them out by placing the instanton on top of an orientifold plane with an O(1)

projection.4 Then, after a straightforward Grassman integration over the charged zero

modes, we obtain the following contribution to the 4d effective superpotential

Winst = M3−N
s e−VΣ/gs detXij . (5.2.2)

where VΣ is the volume in string units of the cycle, Σ, wrapped by the instanton. In this

expression and future ones, we omit a numerical multiplicative constant that we assume to

be of O(1).

In orientifold singularities, the SU(N)(i) and SU(N)(j) nodes might be identified by

the orientifold. In this case, depending on the charge of the corresponding O-plane, Xij

is projected into a 2-index (conjugate) symmetric or antisymmetric representation of the

resulting single SU(N) factor. Furthermore, we get a single (anti)fundamental fermionic

zero mode α. In this case, the instanton action contains the coupling

L = αaX
abαb . (5.2.3)

where X transforms in the or representations, while α transforms in the repre-

sentation (of course, we could also have the conjugate representations). We write the color

indices a and b explicitly—they should not be confused with the quiver node labels i and

j. Integrating over α we get a contribution to the effective potential that takes the form

Winst = M3−N/2
s e−VΣ/gs

√
detX . (5.2.4)

Now, the gauge groups of quiver theories that arise on D-branes are actually U(N) =

SU(N) × U(1). Any operator that does not correspond to a closed oriented path in the

quiver is charged under some of these U(1) symmetries. Thus, we conclude that the in-

stanton generated couplings (5.2.2) and (5.2.4) are perturbatively forbidden by these U(1)

4We can also consider using 3-form fluxes to lift the additional fermionic zero modes — see [129] and [139]
for a further discussion of this point. We will later comment on this scenario. Another possibility would
be to consider a two-instanton contribution where the extra neutral zero modes are lifted by interactions
between the two instantons [140, 141, 142].
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symmetries.

Finally, let us also note that it may be possible to generate instanton-induced corrections

to the holomorphic gauge kinetic functions of the various nodes in the quiver [144, 145]

e−VΣ/gsWαW
α (5.2.5)

Such corrections can arise from BPS Ep-branes that have additional neutral fermionic (non-

Goldstino) zero modes and no massless modes charged under the corresponding SU(N)

factor (or, indeed, under any of the other gauge groups present). In the specific exam-

ples considered in [144] and [145] such corrections arise in the world-volume theory of

D6-branes that interact with E2-branes wrapping cycles with a 1-dimensional 1-homology,

i.e., b1(Σ) = 1. These E2-branes then have the requisite additional pair of neutral fermionic

zero modes (after orientifolding) that allows them to generate corrections to the D6-gauge

kinetic functions.

An interesting spectrum of new possibilities arises when we generalize the class of con-

figurations we have just discussed to ones where an instanton can intersect multiple sets of

D-branes that are spatially separated. For concreteness, we will specialize our discussion

to compact type IIB orientifolds, in which we will study the effect of E3-branes wrapped

over compact 4-cycles, Σ. Figure 5.2 shows the simplest situation in which an E3-brane

intersects only an O-plane and two D-brane sectors (plus their images). Motivated by our

goal of investigating possible SUSY mediating effects in this class of setups, let us denote

the two sectors visible and hidden. The hidden sector might involve anti D-branes, although

we will not explore this possibility. It is possible for the visible or hidden sector and its

image to collapse on top of the O-plane. Our previous discussion, regarding fermionic zero

modes on the instanton and their projection via an orientifold, applies to this case without

changes.

The configuration can be more complicated than the simplest one, with the E-brane

intersecting additional sectors with (anti) D-branes. These extra intersections result in

additional insertions of 4d fields. This is an interesting direction that is worth studying.

From now on, however, we restrict our discussion to some clean models in which this
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O

H’

V’

V

H

Figure 5.2: The basic configuration for mediation. It consists of visible and hidden sectors V
and H, their orientifold images V ′ and H ′, and and O-plane O. All of them are intersected
by a Euclidean D-brane, depicted in yellow.

Hidden Visible

E3
X

(V )
ij X

(H)
kl

SU(N)i

SU(N)j SU(N ′)k

SU(N ′)l

Figure 5.3: Extended quiver diagram for the basic mediating configuration. Dotted arrows
indicate charged fermionic zero modes. The figure presents the simplest case in which these
fermionic zero modes couple to single bifundamental fields between pairs of nodes in the
visible and hiden sectors. Generically, charged zero modes can couple to more general
operators, associated with open paths in the quiver.

situation does not arise.

Once again, the configuration can be captured by an extended quiver as shown in Fig-

ure 5.3. In this case we have two pairs of nodes, representing pairs of gauge groups in the

visible and hidden sectors. In addition, we have fermionic zero modes αV , βV , αH and βH

connecting the instanton to bifundamental operators X
(V )
ij and X

(H)
kl via the couplings

L = αVX
(V )
ij βV + αHX

(H)
kl βH . (5.2.6)

Upon integrating over the E3 zero modes, we generate contributions to the superpotential
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of the form

WH/V = M3−dH−dV
s e−VΣ/gs OHOV (5.2.7)

where

OV = detX
(V )
ij , OH = detX

(H)
kl . (5.2.8)

In the previous discussion, we have implicitly assumed that gauge groups are not identified

by orientifold projections. The obvious modifications along the lines of (5.2.3) and (5.2.4)

apply if the hidden and/or the visible sectors involve orientifold identifications.

Using similar reasoning, let us also note that by taking instantons that generate the

corrections, written in (5.2.5), to the gauge kinetic functions of the space-filling D-branes

and allowing them to intersect the hidden sector, we can generate the following operators

involving the visible sector field strength superfields

WH/V = e−VΣ/gsOHWV αW
α
V (5.2.9)

Now that we have discussed the generation of chiral operators from Euclidean D-branes

stretching between the hidden and visible sectors, let us also consider the case where we

obtain a non-chiral operator. One natural way to generate such an operator in this setup

is to consider the contribution of an instanton anti-instanton pair wrapping an orientifold

invariant cycle, since we then obtain the four neutral fermionic zero modes that make up

the full N = 1 superspace measure, and we know that the opposite GSO projections in the

Ep-Dp′ and Ep-Dp′ sectors will generate factors with opposite chirality.

We then expect the following terms involving the Ep-Dp′ sector zero modes in the Ep

action5

L = αVX
(V )
βV + αHX

(H)
βH . (5.2.10)

Heuristically, we also expect the following terms involving interactions between the Ep-Ep

states

L = (x2
− − 1

2
)|ϕ|2 + ix−µχσ

µχ+ V (5.2.11)

5One can rigorously derive such couplings for E3 branes in the toroidal orientifold examples we will
consider below.
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where xµ
− = xµ

1 − xµ
2 is the distance in the non-compact four dimensional space between

the instanton and anti-instanton, χ are fermionic zero modes with one end on each the

instanton/anti-instanton, and ϕ is a bosonic mode stretching between the instanton and the

anti-instanton. V is a potential depending on ϕ,χ, θ whose precise form is not important.

Note that the terms appearing in (5.2.11) are analogous to the terms appearing in the

corresponding D(p+4)-D(p+4) action with ϕ playing the role of a ‘tachyon’ in the following

sense: about ϕ = 0, we can think of the above action as describing an instanton anti-

instanton pair, while about the minima with ϕ 6= 0 (the precise location of these minima

depends on the unspecified potential, V ), the above description breaks down since the

branes have annihilated. In particular, the zero mode content and interactions described in

(5.2.6), (5.2.10), and (5.2.11) are really only an effective description of the physics about

ϕ = 0 since these modes cease to exist about the minima with ϕ 6= 0.

Note, however, that for large x2
− we expect the configuration about ϕ = 0 to be stable

in the sense that it is a local minimum of the ϕ potential. Indeed, for large x2
−, we can

integrate out the fields ϕ and χ and so we expect to have a well-defined semi-classical

contribution by the instanton anti-instanton pair to the non-chiral operator generated by

integrating over the various Ep-Dp′ and Ep-Dp′ zero modes with the action given by the

sum of (5.2.10) and (5.2.6). Physically what is happening is that the only contributions to

the operator of interest come from configurations where the instanton and anti-instanton

are far apart and hence non-interacting. In particular, we expect to be able to generate a

contribution to the Kähler potential of the form

K = M2(1−dH−dV )
s e−2VΣ/gsOHOHOV OV (5.2.12)

Note that in writing this formula we have assumed that the instantons and anti-instantons

wrap the same cycle. Presumably we could also consider instantons and anti-instantons

that wrap different cycles. These pairs of branes would generate contributions to the Kähler

potential of the form

K = M2(1−dH−dV )
s e

−(VΣ+V
Σ̃
)/gsOHÕHOV ÕV (5.2.13)
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where in general OH,V 6= ÕH,V .

Finally, please note that the non-holomorphic operators in (5.2.13) could also be gener-

ated by single, non-BPS instantons that wrap non-holomorphic, volume minimizing cycles

since these instantons also have the requisite four Goldstino zero modes, θ, θ. In fact, this

is the generic case.

5.2.2 Instanton mediation

Let us now discuss in some more detail how this setup results in mediation of SUSY breaking

from the hidden sector to the visible sector.

The visible sector consists of D-branes on which the MSSM or another supersymmetric

extension of the SM is realized. We denote the chiral superfields in this sector as ΦV,i and

its superpotential as WV (ΦV,i). The hidden sector is a set of D-branes on which SUSY

is broken. Its fields and superpotential are denoted ΦHj and WH(ΦH,i) respectively. Let

us focus on the case in which SUSY is broken by (some) non-vanishing F-term vev(s),

FΦH,0
—note that this state may simply be metastable with a long lifetime.

The mediating instantons described above generate an exponentially suppressed per-

turbation of the superpotential, WH/V (ΦV,i,ΦH,j), coupling the two sectors. The total

superpotential reads

W = WV (ΦV,i) +WH(ΦH,j) +WH/V (ΦV,i,ΦH,j) . (5.2.14)

This superpotential can give rise to a corresponding non-zero F-term vev(s) for some field(s),

F . Note that in general F need not be equal FΦH,0
. However, if WH/V is a small pertur-

bation, we expect that F ∼ FΦH,0
, and we also expect that the (meta) stability of the

SUSY breaking state is not affected. This statement further assumes that some form of

mediation—instanton or otherwise—generates masses for the visible sector scalars and that

the SUSY breaking sector has all its moduli lifted as well. In this approximation, soft terms

arise as follows. We have
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〈
∂WH

∂ΦH0

〉
6= 0

〈
∂WH/V

∂ΦH,Vi

〉
=

〈
∂WV

∂ΦVi

〉
= 0 . (5.2.15)

Plugging the non-zero F-term into the superpotential, we see thatWH/V can give rise to vari-

ous SUSY breaking terms. Similarly, plugging the non-zero F-term into the instanton/anti-

instanton induced perturbation to the Kähler potential described in (5.2.13), will yield

additional, non-holomorphic SUSY-breaking terms.6

As a final comment, we note that the instanton induced-operators we have written down

are generally non-renormalizable. In particular, the non-renormalizable operators will be

suppressed by powers of the string scale, Ms. If the F-term vevs are of the scale F ∼M2
s , the

suppression by the instanton volume is crucial to obtaining phenomenologically reasonable

SUSY breaking scales in the range of several TeV. Of course, it turns out that in many

scenarios, including the examples we discuss below, it is possible to have F ≪ M2
s . For

example, this can happen in D-brane gauge theories that break SUSY dynamically and

that have a dynamical scale Λ ≪Ms or, for certain values of the moduli, in theories where

the SUSY breaking vev is generated by stringy instantons. The mediating instanton then

generates an additional suppression with respect to the string scale. Whether the resulting

instanton-induced soft terms are an important effect or not depends, as we will see below,

on where one sits in the moduli space of the compactification (in particular, in these latter

cases, the 4-cycles wrapped by the mediating instantons should be relatively small)

5.2.3 Possible soft terms

In this section we would like to describe more precisely which soft terms we expect to be

able to generate via instanton mediation. In order to understand this point, let us first

recall the general form of soft terms in renormalizable SUSY gauge theories, of which the

MSSM is, of course, an example. For concreteness, consider the following superpotential

W = λΦ3 +MΦ2 +
τ

4
WαW

α , (5.2.16)

6Recall that these terms could also be generated by appropriate non-BPS instantons.



127

where Φ is shorthand for the various chiral superfields of the theory and Wα is a field

strength superfield. In general, the holomorphic soft terms are those terms that can be

written as higher components of the superfield couplings. In particular, turning on F-term

components of λ and M results in scalar trilinears φ3 and scalar bilinears φ2 called ‘A-’ and

‘B-’ terms respectively. Turning on an F-term component in τ generates a gaugino mass.

From the above discussion, it should be clear that instanton mediation can generate

both A-terms and B-terms. Indeed, we expect that

• Instanton mediation generates A-terms when a mediating instanton has zero modes

that are charged under the gauge groups of two intersecting SU(3) nodes of the visible

sector quiver or when it has zero modes that transform in the 6 (6) representation of

the gauge group of a visible sector SU(6) node that has an antisymmetric (conjugate

antisymmetric) tensor representation after orientifolding.

• Similarly, instanton mediation generates B-terms when one considers the scenarios

mentioned in the A-term generation case but with SU(2) nodes instead of SU(3), or

SU(4) with an antisymmetric tensor instead of SU(6) with an antisymmetric tensor.

Now, taking into account the couplings given in (5.2.9), we expect that instanton medi-

ation also generates gaugino masses in certain cases.

The remaining soft terms are non-holomorphic. For our purposes, the only interesting

non-holomorphic soft terms arise from θ4 components of the coupling Z in the Kähler

potential

K = ZΦΦ (5.2.17)

These soft terms are non-holomorphic soft masses, φφ. It should be obvious from the above

discussion that instanton mediation also generates these terms in some cases. In particular,

we find that

• Instanton mediation generates a non-holomorphic mass term for visible sector fields

that run between two intersecting U(1) nodes or for visible sector fields that transform
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in the antisymmetric, i.e., trivial representation of an SU(2) node after orientifolding.7

Of course, instanton mediation also generically generates higher-dimension terms. How-

ever, these terms in the potential are non-renormalizable and hence the corresponding

power-law corrections to the 1-PI effective action will not ruin the softness of our mediation

mechanism.8

5.2.4 Possible hidden sectors and mediation mechanisms

Now that we have described the soft terms that we can potentially generate from our

mediation mechanism, let us turn our attention to the possible SUSY breaking sectors that

we can include in our setup. String compactifications feature a broad array of possible

hidden sectors each of which can have either stable or metastable SUSY breaking vacua.

For example, we can have:

• Sectors that realize simple SUSY breaking models without non-abelian gauge dynam-

ics (such as Polonyi, Fayet or O’Raighfertaigh models).

• Hidden sectors that realize an ordinary gauge theory on D-branes with dynamical

SUSY breaking.

• A hidden sector with anti D-branes.

Later we present explicit examples of the first two types of hidden sectors in the context of

toroidal orientifolds where D-instanton mediation generates various soft terms. We leave a

discussion involving the third type of hidden sector to future work. Also note that more

7As a brief aside, note that these instanton generated non-holomorphic mass terms could be used, for
example, to give a mass to the ‘right-handed’ scalar neutrino. Furthermore, we should also note that we
can obtain exponentially-suppressed non-holomorphic mass terms for the squarks and the other sleptons
by taking the corresponding higher-dimensional instanton-generated operators—heuristically of the form

e−2VΣ/gs F2

M2n
s

φ
n
φn— and contracting n − 1 pairs of fields or alternatively through diagrams involving A-

terms.
8One might also worry about soft terms of the form φφφ which might generate unacceptable quadratic

divergences in the effective action. Such divergences will not arise in our setups due to symmetries of our
quivers.
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than one class of hidden sector can be simultaneously present in a given compactification—

for the sake of simplicity, however, all our explicit examples below will have a single type

of SUSY breaking hidden sector.

On top of this, more than one mediation mechanisms can act at the same time. For

example, gravity and gauge mediation9 are always present in the sense that one always

has open and closed string exchange between the hidden and visible sectors (although the

exchange may be suppressed). Different mechanisms become dominant over certain regions

of the moduli space. Similarly, various soft terms might get their dominant contribution

from different mediation mechanisms. For instance, global symmetries will often prevent

perturbative generation of certain soft terms by gauge mediation. These soft terms might

instead be generated by D-instantons, and their hierarchy will then encode the relative

volumes of the corresponding D-instantons.

5.2.5 Relative dominance of mediation mechanisms

In this section we will give a heuristic sketch of when one can generally expect different me-

diation mechanisms to become important in a given compactification. From our discussion

above, we know that instanton mediation generates soft terms of the form

m2
φ ∼ F 2

M2
s

e−2V/gs , A ∼ F

Ms
e−V ′/gs , b ∼ Fe−Ṽ /gs (5.2.18)

where we have denoted the different instanton volume factors V , V ′, and Ṽ to underline

the fact that they need not be equal in general.10 In fact, if we want to avoid generating b

that is too large (a typical problem in minimal forms of gauge mediation), then we would

need Ṽ ∼ 2V, 2V ′.

Now we note that open and closed string mediation is also generically present in string

compactifications. Therefore, a natural question is how strong instanton mediation is rel-

ative to these other mechanisms and whether it is dominant in some regime. In order to

9We are really using these terms imprecisely as catch-all phrases for closed and open string mediation
respectively

10We have assumed that m2
φ is generated by an instanton-anti-instanton pair in 5.2.18.
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answer this, we first need to have a very basic understanding of the soft scales that are

generated by open and closed string mediation.

Consider closed string mediation first. On general grounds, we expect that mediation

from integrating out massive closed string modes generates soft masses at the scale

msoft
cl ∼ F

MP
(5.2.19)

where the Planck mass is given by MP =
√

VY
gs

Ms, with VY the compactification volume in

string units. In fact, (5.2.19) represents an upper bound for massive closed string media-

tion. Indeed, as argued in [158], this type of mediation can be sequestered by considering

compactifications with a hierarchy of length scales. In such cases we obtain

msoft
cl ∼ e−d/R F

MP
(5.2.20)

where d ≫ R−1 is the distance between visible and hidden sectors and R−1 is, roughly

speaking, a typical mass scale of a mediating bulk KK mode. In fact, string theory naturally

accommodates such hierarchies of scale due to the warping associated with large numbers

of D-branes—we will not, however, consider such effects in the examples we discuss below

although such a study would certainly be worthwhile. It should be clear, however, that by

considering, e.g., instantons wrapping 4-cycles that have smaller dimensions transverse to

a principle dimension of length ∼ d, we can arrange for instanton mediation to dominate

gravity mediation.11

Next, consider open string mediation. Roughly speaking, such mediation is due to open

strings that stretch between the hidden and visible sectors and is characterized by a soft

scale

msoft
op ∼ g2

16π2

F

Mg
(5.2.21)

where Mg is a supersymmetric mass associated with the tension of the string

Mg = dMs (5.2.22)

11We should also note that anomaly mediation, due to the superconformal anomaly, is also generically
present. However, its contributions are suppressed relative to (5.2.19) by various potentially small couplings.
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where d is, again, the distance between the visible and hidden sectors in string units and

g2/16π2 is a 1-loop factor of the appropriate D-brane gauge group. These soft terms arise,

at least in the simple effective field theory picture (and in a simple form of gauge mediation),

from integrating out ‘messenger’ fields (i.e., the open string modes we have described) that

have acquired non-supersymmetric masses of the form Mg ± F from their couplings to

SUSY breaking fields in the hidden sector. For small couplings, g, we can arrange for gauge

mediation to be subdominant to instanton mediation. Note that the naive effective field

theory picture of open string mediation presumably breaks down for d ≥ 1 since then string

oscillator states become important.

We should also again note that by our above discussion, various mechanisms may be

present at once. As we have emphasized above and will see in greater detail below in

our explicit examples, different mediation mechanisms—although present—may not even

generate certain terms or only generate suppressed terms of a certain type.

5.3 Toroidal orientifolds

For concreteness, in this chapter we focus on Type IIB compactifications using toroidal

orientifolds. For a comprehensive and clear explanation of D-branes and instantons at

singularities and their embeddings in toroidal orientifolds we refer the reader to [21, 146],

to whose notation we adhere. For fast reference, we collect some basic formulas needed

for our constructions and give some tips that are useful for identifying D-brane instantons

producing desired couplings.

We consider six-dimensional factorized tori of the form T 6 = T 2 × T 2 × T 2. Before

orbifolding, the theory on a stack of n D3-branes is N = 4 U(n) SYM, wich contains U(n)

gauge bosons, four adjoint fermions, and six adjoint real scalars. They transform in the 4

and 6 of the SU(4) R-symmetry group, respectively. We quotient by the ZZN orbifold12 ,

which acts on the fermions through the matrix

12ZZM × ZZN orbifolds can be studied analogously.
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R4 = diag(αa1
N , α

a2
N , α

a3
N , α

a4
N ) , (5.3.23)

with αN = ei2π/N and a1 + a2 + a3 + a4 = 0 mod(N). From the action on the 4 we can

easily derive the action on the 6, which is given by

R6 = diag(αb1
N , α

−b1
N , αb2

N , α
−b2
N , αb3

N , α
−b3
N ) , (5.3.24)

where b1 = a2 + a3, b2 = a1 + a3 and b3 = a1 + a2. We can combine the scalars into

complex coordinates zs on each T 2, with s = 1, 2, 3. In terms of these degrees of freedom,

the identification that follows from (5.3.24) is zs ∼ zsα
bs
N . In order to preserve SUSY, we

must have b1 + b2 + b3 = 0 mod(N). The ZZN must act crystalographically on the lattice

defining the torus. All possibilities have been classified in [147]. Each T 2 is defined by

zs ∼ zs + rs ∼ zs + rs αN , (5.3.25)

where rs is the corresponding radius.

In order to completely determine the ZZN action, we must also specify how its generator,

θ, acts on the Chan-Paton (CP) factors of the various (Euclidean) D-branes. This action is

encoded in a matrix that, for each kind of brane, takes the form

γθ = diag(1n0
, α1n1

, . . . , αN−11nN−1
) , (5.3.26)

where 1ni
denotes the ni-dimensional identity matrix.

Since we are interested in orientifolds, due to the possibility of then lifting unwanted ex-

tra fermionic zero modes of the instantons in our setups, we further quotient by Ω(−1)FLR1R2R3,

with Ω the orientation reversal on the worldsheet, FL the left-moving fermion number and

Rs the reflection on each plane, zs → −zs. As a result, we obtain 64 O3-planes whose

positions on each T 2 are given by

0,
1

2
rs,

1

2
rsα

1/2
N ,

1

2
rsαN (5.3.27)
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Depending on the orbifold action, some of these O-planes may also sit on top of orbifold

fixed points. Furthermore, each O-plane has two possible RR charges. In this chapter we

will only consider the case in which all O3-planes have negative RR charge (and hence lead

to SO and antisymmetric projections of vector and chiral multiplets, respectively).

In any compactification, there are global and local consistency conditions corresponding

to cancellation of untwisted and twisted RR charges, respectively. Due to the presence of

the 64 O3-planes, cancellation of untwisted or global tadpoles reads

ND3 −ND3 = 32 (5.3.28)

with the net number of other Dp-branes vanishing.13

When D3-branes sit on top of an orbifold fixed point that does not coincide with an

O-plane, twisted or local tadpole cancellation requires

[
3∏

s=1

2 sin(πkbs/N)]Trγθk,3 = 0 , (5.3.29)

for each element θk, k = 0, . . . ,N − 1, of the orbifold group.

The same expression applies for the case of an anti D3-brane. If the fixed point coincides

with an O-plane, the expression changes to

[
3∏

s=1

2 sin(πkbs/N)]Trγθk,3 = 4 . (5.3.30)

These two conditions ensure cancellation of gauge anomalies in the corresponding gauge

theories. In the discussion above, we take the convention of counting RR charges in the

covering space.

There are various possibilities for locating D-branes: they can sit at orbifold fixed points,

O-planes or in the bulk. However, they must be in configurations that are symmetric under

both the orbifold and orientifold groups.

13For simplicity, we limit our discussion to models with only D3 and anti D3-branes in this chapter. In
fact, our explicit examples do not even contain anti D3-branes.



134

5.3.1 E3-brane instantons

Consider an E3-brane in the class of geometries we have described above. The CP matrix

will have the general form

γθ,E3 = diag(1v0
, α1v1

, . . . , αN−11vN−1
) . (5.3.31)

Let us take an instanton wrapping zs = const and intersecting a stack of D3-branes at

an orbifold fixed point. In this case, the fermionic zero modes in the E3-D3 sector were

computed in [146]. The result is

as even
∑N−1

i=0 [(ni, vi− 1
2
as

) + (vi, ni− 1
2
as

)]

as odd
∑N−1

i=0 [(ni, vi− 1
2
(as+1)) + (vi, ni− 1

2
(as+1))]

(5.3.32)

Furthermore, the instanton has four additional neutral fermionic zero modes due to

the accidental N = 2 SUSY of the E3-E3 sector. As discussed above, a simple way of

projecting out the two accidental neutral zero modes is by placing the E3-brane on top of

an orientifold with an O(1) projection. Since the orientifold acts by conjugating the CP

matrix, this determines

γθ,E3 = 1 , (5.3.33)

i.e. v0 = 1 and vi = 0 for i 6= 0. Plugging this into (5.3.32), we conclude that the fermionic

zero modes connecting such an instanton to the D3-branes transform as follows under the

gauge symmetries of the quiver

as even 1
2
as − 1

2
as

as odd 1
2
(as+1) − 1

2
(as+1)

(5.3.34)

The last remaining ingredient in our description of the E3-branes is to give an explicit

embedding of their worldvolumes in our orientifolded T 6/ZN compactification. In order to

do this, let us first go to the covering space of the orbifold, the orientifold, and the torus.
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The total covering space is C3, and we will consider E3-branes wrapping divisors

t1
z1
r1

+ t2
z2
r2

+ t3
z3
r3

= v (5.3.35)

where we have normalized by the various radii rs of the T 2
s and have included arbitrary

complex coefficients ts and v. However, in order for (5.3.35) to represent a divisor wrapped

by an E3-brane, it must be compatible with the various geometric projections—let us now

run through the list and see how they restrict the complex surfaces wrapped by the E3’s.

We define compatibility with the T 6 projection given in (5.3.25) to mean that the E3-

brane wraps a non-trivial closed curve, i.e., an element of the 4-homology group, H4(T
6).

This fact requires

ts = ns, ns ∈ Z, ∀ s = {1, 2, 3} (5.3.36)

with the ns relatively prime. One easy way to see this is to note that a basis of mutually

holomorphic embeddings is given by

Σs = {z ∈ T 6| zs = 0} (5.3.37)

Hence, the integers ns give the wrapping numbers with respect to this basis. For all the

ns’s coprime, the wrapping numbers are simply

ω(Σs) = |nν |. (5.3.38)

The volume of a curve, Σ, wrapped by some E3-brane is then given by

V (Σ) =

√∑

s

ω(Σs)2V (Σs)2 (5.3.39)

Next, let us consider the action of the orbifold group on E3-branes. The geometric

action was given in the discussion immediately following (5.3.24) and is reproduced below

zs ∼ zsα
bs
N (5.3.40)

where N = 1 SUSY requires b1 + b2 + b3 = 0 mod(N). The cycle wrapped by the instanton

may or may not be invariant under the orbifold group. For generic cases in which all the
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bs’s are different, the only invariant cycles are given by the Σs. In the examples below, we

will take the orbifold action to be b = (−1,−1, 2) ∼ (2, 2, 2) for N = 3 and hence any cycle

of the form

n1
z1
r1

+ n2
z2
r2

+ n3
z3
r3

= v (5.3.41)

is orbifold invariant so long as

v = α3v (5.3.42)

up to identifications (i.e., up to the toroidal shifts in the zi). Note that for b = (−1,−1, 2)

and N 6= 3, however, the only orbifold invariant cycles are given by n1, n2 ∈ Z, n3 = 0 or

n1, n2 = 0, n3 = 1.

In general, for non-invariant cycles, we must include N − 1 additional image E3-branes.

We can further divide the orbifold non-invariant cycles into two groups. On the one hand,

we have those cycles that go through orbifold fixed points. In this case, the image E3-

branes intersect, giving rise to additional neutral fermionic zero modes that must be lifted

in order for the E3-brane to contribute to the action. This can be achieved, for example, in

compactifications with fluxes. On the other hand, we have non-invariant cycles that do not

pass through orbifold fixed points. In this case, the E3-brane images are spatially separated,

we do not get additional zero modes and a superpotential is generated.

Finally, let us consider the orientifold action. Since we want an O(1) instanton (at least

for generating holomorphic soft terms), the cycle wrapped by the E3-brane must be mapped

to itself under the geometric part of the orientifold action

zs → −zs (5.3.43)

Plugging this action into (5.3.35), we see that the cycle is invariant if and only if

v = −v (5.3.44)

up to identifications.

As an aside, note that the volumes of the orientifold and orbifold invariant cycles are
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then given in the quotient space by (5.3.39) divided by a numerical factor

V (Σ)|quot =
1

(4N)3

√∑

i

ω(Σi)2V (Σi)2 (5.3.45)

where the factor of 43 is due to the orientifold and the factor N3 is due to the orbifold.

The volume of orientifold invariant cycles that are not invariant under the orbifold group

are given by (5.3.45), but without the 1/N3 factor.

Now, given an instanton wrapping a particular cycle characterized by some coefficients,

ns, subject to the constraints just discussed, we would like to understand which operators

are generated when the instanton intersects a spacefilling D3-brane. By simple worldsheet

CFT arguments, the resulting R-sector fermionic zero modes must have Dirichlet-Dirichlet

boundary conditions and hence are in the complex dimension transverse to both the E3 and

the D3. For concreteness, then, we see that an E3-brane wrapping zs = const must couple

to the adjoint, Φs, of the D3-brane. If this D3-brane sits at an orbifold fixed point, then

the E3-D3 zero modes couple to the bifundamental Xs
ij determined by (5.3.34).

More generally, instantons with worldvolume given by a linear combination with various

coefficients, ns, non-zero generate couplings to operators made out of the corresponding

combinations of fields. In other words, the orientation of the instanton selects the type

of bifundamentals that form the operator. After performing the zero mode integral, the

orientation of the instanton then picks out a chiral gauge invariant of the same orientation.

As a final point, let us consider more specifically the possible forms of the cycles wrapped

by mediating instantons. Given a hidden and a visible sector, more than one instanton can

connect them. For simplicity, let us consider the situation in which one of the sectors is

located at the origin, as will happen in our examples below. This implies that we can set

v = 0 in (5.3.35). The position of the other sector is (h1 r1, h2 r2, h3 r3), with hs ∈ C. As

explained above, we can discard orbifold non-invariant 4-cycles that go through fixed points.

In the absence of a mechanism that lifts the additional zero modes (as is the case in our

examples), they do not generate mediating interactions.

For concreteness, let us now assume the orbifold form b = (−1,−1, 2) ∼ (2, 2, 2) for

N = 3. For setups with (h1, h2, h3) ∼ (0, 0, h0
3)—where ‘∼’ means, ‘up to identifications of
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the T 6 action’—we see that the orbifold invariant cycles going through both the visible and

hidden sectors are given by

n1h1 + n2h2 + n3h3 = 0 (5.3.46)

where we generate solutions ni by substituting h1,2 = 0, h3 = h0
3 and also substituting values

related to these by the action of the T 6. If all the hi 6= 0, then a similar discussion applies.

Any solution to this equation with n1, n2, n3 ∈ ZZ defines a cycle wrapped by a medi-

ating instanton. In general, there is more than one such solution. In practice, due to the

exponential suppression, we are only interested in the solutions with the smallest volumes.

5.3.2 The ZZ3 orientifold

A simple way to achieve three generations and generate a crude zeroth order approximation

to the Standard Model in the context of D-brane at singularities is via a ZZ3 orientifold.

Consequently, we will base our explicit examples on this case, keeping in mind that other

geometries allow for more realistic visible sectors and interesting hidden sectors (see for

example [21, 22, 23, 148]). For later reference, we devote this subsection to a more detailed

presentation of the ZZ3 case. A similar general discussion of some of the results for the ZZ3

orbifold appears in [149].

We take the (SUSY) orbifold action on the fermions to be given by (a1, a2, a3, a4) =

(1, 1,−2, 0). From this data, we determine the action on the three complex planes to be

given by (b1, b2, b3) = (−1,−1, 2) . This model contains 27 orbifold fixed points. Their

positions are (z1, z2, z3), with zs = 0, 1√
3
eiπ/6, 1√

3
e−iπ/6. In what follows, we refer to these

points as 0, +1 and −1 respectively. Out of the 64 O3-planes, only the one at the origin,

(0, 0, 0), coincides with an orbifold fixed point. Note that the orientifold action leaves zs = 0

invariant and interchanges zs = ±1.

Given this discussion, we can write down the general solutions to the twisted tadpole

cancellation equations (5.3.29) and (5.3.30) at orbifold fixed points. Since the orbifold fixed

points at (z1, z2, z3) 6= (0, 0, 0) do not coincide with an O-plane, they must satisfy (5.3.29).

The general solution reads
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γθ = diag(1N, α1N, α
21N) (5.3.47)

The resulting gauge theory has a U(N) × U(N) × U(N) gauge group and matter content

U(N) × U(N) × U(N)

Xs
01 ( , , 1)

Xs
12 (1, , )

Xs
20 ( , 1, )

(5.3.48)

with s = 1, 2, 3 and with the subindices indicating the gauge groups under which bifunda-

mental fields transform. The overall U(1) is anomaly free but decouples since all fields are

neutral under it. The other two linear combinations of U(1)’s have mixed anomalies and be-

come massive via the B∧F couplings of the Green-Schwarz mechanism. The superpotential

is

W = ǫstuX
s
01X

t
12X

u
20 , (5.3.49)

where we have suppressed color indices for simplicity.

The origin (z1, z2, z3) = (0, 0, 0) is an orientifold singularity and hence (5.3.30) holds.

The most general solution is

γθ = diag(1N, α1N+4, α
21N+4) (5.3.50)

This results in a gauge theory with an SO(N) × U(N + 4) = SO(N) × SU(N + 4) × U(1)

gauge group, with matter transforming as

SO(N) × SU(N + 4) × U(1)

Q
s

( , )−1

As (1, )2

(5.3.51)

where s = 1, 2, 3. There are mixed anomalies and the U(1) factor becomes massive due to

B ∧ F couplings. The superpotential is given by
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W = ǫstuQ
s
AtQ

u
. (5.3.52)

The gauge theory of N D3-branes sitting on an O-plane that is not at an orbifold fixed

point is N = 4 SYM with SO(N) gauge group and three antisymmetric chiral fields An.

The superpotential in this case is

W = ǫstuA
sAtAu . (5.3.53)

Let us now consider the couplings generated by an E3-brane instanton. Equation (5.3.34)

gives the fermionic zero modes between the instanton and the (fractional) D3-branes in

either the hidden or visible sectors. Specializing to the case at hand, we get fermionic zero

modes transforming in the 1 and 2 representations for instantons wrapping zs = 0, for

s = 1, 2, 3. The subindices 1 and 2 of the representations denote the quiver nodes associated

with the α and α2 blocks of the CP matrix. As a result, any instanton corresponding to a

general linear combination of the form (5.3.35), generates a coupling of the form

Winst = detX12 or Winst =
√

detA , (5.3.54)

where the second possibility corresponds to the case in which nodes 1 and 2 are identified by

the orientifold. X12 and A in the previous expressions correspond to the linear combinations

ofXs
12 and As that are determined by (5.3.35). We see that the instanton generates couplings

involving only fields connecting nodes 1 and 2 (before orientifolding) in both hidden and

visible sectors. For this reason, we are interested in hidden sectors in which operators made

out of X12 or A have a non-zero F-term.

Similar reasoning applies to the case of D3-branes on O-planes that are not orbifold

fixed points. In fact, we can simply take the general expressions for ZZN orbifolds and set

N = 0. The instanton generated superpotential is, once again,

Winst =
√

detA , (5.3.55)
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with A the linear combination of antisymmetrics associated with the specific instanton

embedding.

For D3-branes over orientifolds (either on orbifold singularities or not), the instanton

generated coupling is non-zero only when the relevant SO(n) or SU(n) gauge group has

even n,14 since the determinant of an odd order antisymmetric matrix vanishes. This is

true if the corresponding sector is either the visible or the hidden sector. For even n, detA

is a perfect square, and the following way of writing its square root is sometimes convenient

√
detA =

1

2n n!
ǫa1...anAa1a2 . . . Aan−1an := Pf(A) . (5.3.56)

5.4 Examples

In this section we present explicit models of D-instanton mediation involving different classes

of hidden sectors. Our goal is to provide illustrative examples that show how D-brane instan-

tons can communicate SUSY breaking rather than constructing models with fully realistic

visible sectors. In sections 5 and 5.6 we discuss some possible directions for constructing

more elaborate models.

5.4.1 Dynamical SUSY breaking hidden sector

In this subsection we present a model in which the hidden sector breaks SUSY via some

non-abelian gauge dynamics.

We consider the ZZ3 orientifold of section 5.3.2. We place the hidden sector on top of the

orientifold singularity at the origin, with CP matrix given by taking N = 0 in (5.3.50), i.e.

γθ,3 = diag(α14, α
214) (5.4.57)

The resulting gauge theory has an SU(4)×U(1) gauge symmetry and three fields Ai in the

2. The Q
s
’s from (5.3.51) are absent and hence there is no tree-level superpotential.

14The SO case refers to the situation in which the D3 branes are not at an orbifold fixed point, while the
SU case refers to the situation in which the D3 branes are at an orbifold fixed point, and two of the resulting
SU groups are identified by the orientifold.
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Let us forget about the U(1) factor for the moment. This model has been considered

in [149]. It can be alternatively viewed as an SO(6) gauge theory with three flavors of

quarks in the vector representation. The theory is strongly coupled in the IR.15 The low

energy theory has two physically inequivalent phase branches [157]. On one of them, a

non-perturbative superpotential is generated

WH,np = 8
Λ9

detM
, (5.4.58)

with M , the symmetric (over the SU(3) flavor indices) meson matrix. SUSY is broken on

this branch with runaway along M . The previous expression can be written in terms of the

antisymmetrics of SU(4). For diagonal M , we obtain

WH,np = 8
Λ9

∏
s Pf(As)

. (5.4.59)

Reintroducing the U(1) factor, the scalar potential contains a D-term contribution of the

form

VU(1) =
1

λ
(
∑

s

2|As|2 − ξ)2 , (5.4.60)

where ξ is a dynamical FI term, which is related by SUSY to the B∧F coupling that makes

the U(1) massive. If there is a mechanism stabilizing all Kähler moduli, ξ becomes a fixed

parameter and (5.4.60) cures the runaway, producing a non-SUSY vacuum. For the purpose

of illustration, we content ourselves with the fact that, regardless of whether the runaway is

stabilized or not, there is a non-vanishing FM on this branch.16 The second branch has no

non-perturbative superpotential and a quantum moduli space of vacua. The theory confines

without chiral symmetry breaking. Since there is no non-perturbative superpotential, SUSY

is not broken on this branch.

15The beta function for the inverse coupling, computed in both pictures, is equal to 9.
16This model has also been considered in [146] in connection with SUSY breaking, although with a

completely different approach. In that case, a mass term for the antisymmetrics is generated by a D-brane
instanton and SUSY breaking results from its interplay with a fixed non-vanishing ξ.
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Our visible sector is a trinification model, a simple extension of the SM that has been

investigated in the model building literature [150]. We place it at (1, 0, 0), with its orientifold

image at (−1, 0, 0). Its CP matrix corresponds to taking N = 3 in (5.3.47). We get

γθ,3 = diag(13, α13, α
213) (5.4.61)

This produces an SU(3) × SU(3) × SU(3) gauge theory with

SU(3) × SU(3) × SU(3)

Xs
01 ( , , 1)

Xs
12 (1, , )

Xs
20 ( , 1, )

(5.4.62)

with i = 1, 2, 3 and superpotential is

WV = ǫstuX
s
01X

t
12X

u
20 , (5.4.63)

The model is not fully realistic. For example, it does not contain the higgs fields that are

necessary to break two of the SU(3)’s down to SU(2) × U(1).

Assuming r1 ∼ r2 ∼ r3, the two smallest-volume mediating instantons wrap z2 = 0 and

z3 = 0. There are additional orbifold invariant 4-cycles connecting the hidden and visible

sectors, but contributions from instantons wrapping these cycles are highly suppressed since

they have larger volume. From (5.3.49) and (5.3.52), our leading-order mediating instantons

generate the following superpotential

WH/V = e−VΣ2
/gs

√
detA2 detX2

12 + e−VΣ3
/gs

√
detA3 detX3

12 . (5.4.64)

where the orientation of the mediating instantons projects onto gauge invariants of the

SUSY breaking hidden sector theory that acquire F-term vevs on the branch with the non-

perturbative superpotential given in (5.4.59). Therefore, (5.4.64) gives rise to the following

A-terms
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Vsoft = e−VΣ2
/gsF ∗Pf(A2) detX2

12|θ=0 + e−VΣ3
/gsF ∗Pf(A3) detX3

12|θ=0 + c.c. , (5.4.65)

where specializing for θ = 0 indicates that we take the scalar component of the visible

sector chiral superfields. For simplicity, in this section and the next one, we omit obvious

powers of Ms and the dynamical scale Λ of the hidden sector, which are necessary for

expressions to have the correct dimensionality. Note that these A-terms correspond to

couplings between the Higgs fields and the sleptons. Analogous Yukawa couplings are also

generated non-perturbatively by other D-brane instantons (see discussion below).

Our hidden sector and visible sector (plus image) involve 26 D3-branes. We can cancel

untwisted tadpoles (5.3.28) without spoiling the nice features of our model by placing the

6 additional D3-branes in sets of two over the O3-plane at (1
2r1,

1
2r2,

1
2r2) and its two ZZ3

images.

5.4.2 Polonyi hidden sector

Another exciting direction is the possibility of having a simple field theory hidden sector

that breaks SUSY without involving non-abelian gauge dynamics, along the lines of [109].17

A remarkably simple possibility is to engineer a Polonyi model. This construction is very

general and can easily be part of more complicated setups. Because of this, we consider it

deserves to be discussed first, independently of the details of the full compact model.

Engineering a Polonyi model

The configuration we want to consider consists of an O3-plane and a single D3-brane sepa-

rated from it, with an E3-brane connecting them. Without loss of generality, we can assume

that the E3-brane wraps the z1 = 0 cycle.18 The setup is sketched in Figure 5.4, where we

have also included the image D3-brane.

17In a similar spirit, another realization of a Polonyi model involving D-brane instantons appears in [138].
18It is straightforward to extend our argument to the case in which the instanton is defined by some linear

combination of the of the form (5.3.35).
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E3
z1

D3’ D3O3

Figure 5.4: The basic configuration realizing a Polonyi model. It consists of an O3-plane
and a D3-brane away from it, connected by a finite size E3-brane with O(1) CP projection.

O3

E3
z1

2 D3

Figure 5.5: A Polonyi model is also obtained when two D3-branes sit on top of an O3-plane.
A finite size E3-brane with O(1) CP projection generates the superpotential.

The gauge theory on the D3-brane is N = 4 U(1) SYM with three chiral superfields Φs.

The Φs transform in the “adjoint” representation, which is trivial for U(1) (i.e. they are

neutral fields). As a result, the beta function for the gauge coupling is zero and we can tune

the gauge coupling to be arbitrarily small. In addition, the N = 4 superpotential (5.3.53)

vanishes.

If the CP projection on the E3-brane is O(1), it induces a coupling

W = e−VΣ1
/gs Φ1 . (5.4.66)

This is precisely a Polonyi model superpotential and SUSY is broken by FΦ1 6= 0. Of course,

other instantons contribute to the superpotential. However, by considering the effect of only

the z1 instanton, we are implicitly assuming that r1 ≫ r2, r3. As usual in Polonyi models,

Φ1 is a classically flat direction. Its stability depends on the details of the full model.

The same comments apply to the construction we present below. This is a question that

certainly deserves more study in our concrete setups.

Let us now investigate what happens if we collapse the D3 and D3′ on top of the O3-

plane. To avoid a chiral theory on the D3-branes, we further assume that the O3-plane is

not at an orbifold fixed point. The configuration is shown in Figure 5.5.

The resulting gauge theory is N = 4 SO(2) SYM, with three chiral superfields As in



146

the antisymmetric representation. Once again, the beta function for the gauge coupling

vanishes and can thus be tuned to any desired value.19 As before, we exploit this fact to

make the gauge coupling small so it can be neglected. The antisymmetric representation of

SO(2) is trivial and the As have the general form

As
ab = φs ǫab . (5.4.67)

Then, the N = 4 superpotential (5.3.53) vanishes. If the E3-brane has an O(1) CP projec-

tion, it generates a coupling

W = e−VΣ1
/gs

√
detA1 = e−VΣ1

/gs φ1 (5.4.68)

A square root appears in (5.4.68) as opposed to (5.4.66) because, in this case, the E3-D3

and D3-E3 fermionic zero modes are identified by the orientifold projection. 20

In our opinion, this simple realization of a Polonyi hidden sector is interesting in its own

right, independently of which mechanism mediates SUSY breaking.

Notice that the superpotential terms generated in this section are not perturbatively

forbidden by any U(1) symmetry. The appearance of a non-perturbative superpotential

determined by the zero of the E-brane embedding is an example of Ganor’s zeros [90, 91].

In [90] the ADS superpotential of Nf = Nc − 1 SQCD was generated along these lines.

In that case, the effect is due to a gauge theory instanton since the flavor D7-branes and

the E3-brane are wrapped over the same 4-cycle. In our setup, D7-branes are not present

and the effect is purely stringy. In section 6, we discuss similar operators in more general

models.

19This can be understood as follows. The antisymmetric representation of SO(N) is the same as the
adjoint representation. C(adj) = (N − 2) for SO(N), and hence vanishes in this case. As a result, the beta
function also vanishes. An equivalent way of thinking about the beta function is that SO(2) = U(1) and
the antisymmetric representation corresponds to a neutral field.

20It is interesting to consider what happens for a single D3-brane on top of the O-plane. The coupling
(5.2.3) vanishes identically due to anti-commutativity of α which, in this case, is one dimensional.
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A full model: visible sector and mediation

We now use a hidden sector of the type just described as a part of a simple compactification.

We consider the ZZ3 toroidal orientifold of section 5.3.2. In this case, we will use D-brane

instantons not only for mediating, but also for generating SUSY breaking. This fact gives

rise to constraints on the relative sizes of the tori that are necessary for the model to work.

We engineer a Polonyi hidden sector by placing two D3-branes on top of the O3-plane

at (1
2r1,

1
2r2,

1
2r3) (plus its two ZZ3 images). A Polonyi superpotential

W = e−VΣ1
/gsφ1 (5.4.69)

is generated by the E3-brane at z1/r1 = 1/2. This term is the dominant contribution

to the superpotential involving hidden sector fields provided that r1 ≫ r2, r3 since this

condition guarantees that V (Σ1) ≪ V (Σ2,3). Notice that although the cycle wrapped by

this instanton is not invariant under the orbifold group, it does not intersect its images and

hence there are no extra zero modes. Following the discussion in section 5.3.1, it generates

a non-vanishing contribution.

Next, let us think about where to locate the visible sector. Note that in order not to

spoil the generation of the Polonyi superpotential, the instanton wrapping z1/r2 = 1/2 must

not intersect the visible sector. A particularly simple choice, then, is to locate the visible

sector on top of the orientifold singularity at the origin, (0, 0, 0). As our visible sector, we

will choose an interesting GUT-like model that can be engineered as follows [146]. We take

N = 2 in (5.3.50)

γθ,3 = diag(12, α16, α
216) . (5.4.70)

This gives rise to a theory with U(6)×O(2) gauge group and chiral multiplets transforming

as

3 (15, 0) + 3 (6,+1) + 3 (6,−1) . (5.4.71)
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Under the SU(5) subgroup of U(6), these representations decompose as 15 = 10 + 5 and

6 = 5+1, giving rise to three SM generations (10+5) and three sets of higgs fields (5+5).21

As it stands, this model is not fully realistic since it does not contain the Higgs field

necessary for breaking the GUT group.

Let us now consider the mediating instantons. In order to couple to Fφ1 , the embedding

equation of a mediating instanton must involve z1—i.e., the orientation of the instanton

must project onto the SUSY breaking part of the hidden sector. However, since the hidden

sector is located at the origin, the equation must also involve z2 and/or z3. Notice that this

geometric fact immediately implies that the mediation term will be a small perturbation

of the Polonyi superpotential, since an equation involving z2,3 requires that the instanton

wrapping numbers on the much larger cycles Σ2,3 cannot both be zero. Hence, a simple

choice for a cycle wrapped by a mediating instanton is to take

z1/r1 − z2/r2 = 0 (5.4.72)

with volume

V (Σ(1,−1,0)) =
1

123

√
V (Σ2)2 + V (Σ1)2 =

1

123

(
V (Σ2) + V (Σ1) ·

V (Σ1)

2V (Σ2)
+ ...

)
(5.4.73)

where we explicitly see that the mediating instanton will have large volume compared to

the Polonyi instanton since V (Σ2) ≫ V (Σ1).

What about additional instantons connecting the two sectors? In general, the answer is

quite complicated but can be worked out in detail. However, for simplicity, we will further

assume that

V (Σ1)ǫ2,3 ≫ 1 (5.4.74)

where

ǫ2,3 =
V (Σ1)

V (Σ2,3)
≪ 1 (5.4.75)

Note that (5.4.74) is assumed in addition to the assumption that V (Σ1) ≪ V (Σ2,3). We

can explain the motivation for (5.4.74) in a general context. Consider two instantons with

21The presence of a couple of copies of each MSSM or SUSY GUT higgs, although not unavoidable, is a
usual feature in D-brane realizations.
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comparable volumes V ∼ V ′. The relative suppression of their contributions is given by

e−V ′

/e−V . We see that small differences in the volume are exponentially enhanced. Equa-

tion (5.4.74) amounts to requesting that e−V ′

/e−V ≪ 1. Under these conditions, the four

leading-order mediating instantons in this approximation wrap

1

r1
z1 ±

1

r2
z2 = 0

1

r1
z1 ±

1

r3
z3 = 0 (5.4.76)

Thus, the superpotential from each of these mediating instantons is

W±2,±3
H/V ∼ e

−VΣ±2,±3
/gs

(
φ1

r1
± φ2,3

r2,3

)√√√√det

(
A1

r1
± A2,3

r2,3

)
(5.4.77)

where Ai are the three (15, 0) fields in the visible sector. While φ1/r1 ≪ φ2/r2 in the

hidden sector piece, it is only φ1 that gets a non-vanishing F-term and contributes to the

soft terms. We get the following A-terms from each of the instantons

Vsoft ∼ e−(VΣ1
+VΣ±2,±3

)/gs
F ∗φ1

r1
ǫabcdef ÃabÃcdÃef |θ=0 + c.c. , (5.4.78)

where the cycle wrapped by the Polonyi instanton is Σ1 and where we have defined Ã =

(A1/r1 ±A2,3/r2,3). For simplicity, we have omitted an obvious r1 and r2,3 dependent nor-

malization of (5.4.77) and (5.4.78). As an aside, note that these A-terms contain couplings

between the Higgs fields and the U-type squarks. The corresponding Yukawa couplings are

also generated by D-instantons (see discussion below).

The configuration is still missing 12 D3-branes in order to cancel untwisted tadpoles. A

simple way of completing the model without spoiling the features we have just discussed is

by placing 6 D3-branes with CP matrix

γθ,3 = diag(12, α12, α
212) (5.4.79)

at each of the (±1, 0, 0) orbifold fixed points.
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5.5 Phenomenology and instanton orientation

The visible sectors we have discussed in the models above are deliberately simple and, as a

result, unrealistic. For example, as we have mentioned, we do not even have all the Higgs

fields necessary to break to the SM gauge group. However, motivated by the fact that our

theories contain three generations of matter with various Yukawa couplings (among them

the Yukawa couplings of the MSSM) and noting that our instantons generate various A-

terms for the visible fields, we are led to ask a very simple question: are the A-term matrices,

Ai, and Yukawa coupling matrices, Yi, aligned? The main phenomenological motivation

for this question is that alignment of these matrices guarantees suppression of potentially

troublesome Flavor Changing Neutral Currents (FCNCs) contributions from the A-terms.

In particular, if Ai ∼ kiYi we say the matrices are aligned. This implies that the A-term

contributions to the FCNC processes responsible for reactions like K0 → K
0

are highly

suppressed (though not absent).

Before proceeding, we should make two clarifying points. First, even if we can align

the A-terms and Yukawas, we should emphasize that there are still other soft terms that

could generate FCNCs, like the non-holomorphic part of the squark mass matrix. Since we

have only discussed non-holomorphic mass generation by instantons in the case of squarks

and sleptons charged under abelian symmetries (note however footnote 8), we will simply

assume that the physics responsible for the non-holomorphic squark mass generation in

the examples is flavor blind. Finally, let us also point out that demanding Ai ∼ kiYi is

generally a sufficient but not necessary condition for suppressing FCNC contributions from

A-terms. Indeed, we will also consider the less restrictive condition that the A-terms and

Yukawas are simply mutually diagonalizable. This scenario also leads to suppression of

FCNC contributions under a rather broad set of conditions.

Giving a precise answer to the question of whether or not the A-terms and Yukawas

are diagonal in the same basis or, more restrictively, whether Ai ∼ kiYi in our setups

depends on stabilizing the various moduli of our compactification. However, as we will see,

we can give an interesting heuristic answer to this question with no additional assumptions
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beyond those we have already made. Furthermore, this discussion will point us to other

potentially interesting constructions. In particular, we will continue to assume that the

complex structure moduli dependence of the instanton-induced operator coefficients can be

treated as insignificant O(1) factors and that the volume (Kähler) moduli can indeed be

dynamically set to the rough values and hierarchies we take.

Let us focus our discussion on the example with the U(6) × SO(2) visible sector and

Polonyi hidden sector. Furthermore, we will focus on the same region of moduli space as in

the discussion above. Namely, we will assume a particular hierarchy r1 ≫ r2,3, so that

1 ≪ V (Σ1) ≪ V (Σ2,3) ≪ V (Σ1)
2 (5.5.80)

This corresponds to a region of moduli space where it costs a significant amount of action

to go from an instanton with a particular set of wrapping numbers to a configuration with

one of the wrapping numbers increased by one.

Now, let us discuss the Yukawa couplings of the U(6)× SO(2) visible sector. Note that

the Yukawa couplings of the visible sector are of two types. The first type are perturbative

couplings from the tree level quiver superpotential and are of the form

Wtree = YijkA
iQ

j
Q

k
(5.5.81)

The second type of terms are non-perturbative Yukawa couplings generated by D-instantons

and are of the form

Wnp ∼ e−V1/gs(A1)3 + e−V2/gs(A2)3 + e−V3/gs(A3)3 ∼ e−V1/gs(A1)3 (5.5.82)

in our approximation. We have used the shorthand (A1)3 = ǫa1b1a2b2a3b3A1
a1b1

A1
a2b2

A1
a3b3

,

etc. As mentioned in the example, these non-perturbative Yukawas give rise to the u-type

quark couplings [146].

By comparing (5.4.78) with the Yukawa couplings we have just described above, it

should be clear that the A-term and Yukawa matrices are highly non-aligned. Indeed, it is

not hard to see why this is the case. First of all, the mediating instantons do not generate

A-terms that correspond to the perturbative Yukawas since the perturbative superpotential
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comes from closed paths in the quiver, while the instanton-induced terms come from open

paths (which we define to include two-tensor field loops at the same node). Note that this

lack of A-terms corresponding to the perturbative Yukawa couplings is not a problem since

it does not affect the mutual diagonalizability of the A-terms and Yukawas. Furthermore,

if we want, we can presumably generate such terms by going to regions of the moduli

space where instanton mediation and e.g. gauge or anomaly mediation are comparable in

strength—these other mediation mechanisms will generate the ‘perturbative’ A-terms in a

flavor blind way.22

Thus it remains only to discuss the mutual diagonalizability and alignment of the

instanton-induced A-terms with the non-perturbative Yukawas. Notice that these cou-

plings, like the corresponding A-terms, cannot be generated perturbatively since they vi-

olate the anomalous U(1) factor of the U(6) node, and so they must be generated by a

non-perturbative effect like D-brane instantons. Examining our above results, it should be

obvious that though the A-terms and non-perturbative Yukawas are not aligned, they are

mutually diagonal!23

Let us press on and try to understand the lack of alignment between the A-terms and

the Yukawas. This goal is useful because a better understanding of this lack of alignment

will lead us to a slightly more interesting characterization of D-brane instantons that may

serve as a simple guide in building more complicated models.24

To that end, note that the non-perturbative Yukawas we have written above are gener-

ated by the instantons wrapping the cycles zi = 0 with the dominant contribution coming

from the instanton wrapping z1 = 0. We can then see a more general geometric reason for

the lack of alignment in the non-perturbative sector of the theory: since the orientation of

the instanton picks out the flavor of the fields it couples to, in order to have alignment of

the A-terms and the Yukawa couplings, the orientations of their generating instantons must

22We will briefly discuss the possibility of also generating such soft terms via instantons in the next section.
23A similar conclusion applies to our first model.
24Another motivation is that we could presumably have considered moving the visible sector in the first

example from (1, 0, 0) to (1, 1, 1) while keeping the hidden sector fixed at the origin. If we again assumed
r1 ∼ r2 ∼ r3, then the A-terms and Yukawas would not have been mutually diagonal.
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also align. It is rather easy to see this is not possible by the following simple argument.

Suppose we could choose a Yukawa generating instanton to align with an A-term generating

instanton. Then, the two instantons would share a common normal T 2 which we denote

T 2
N . On T 2

N , the Yukawa and mediating instanton worldvolumes are localized at points xY

and xM 6= xY respectively. Since the mediating instanton intersects both the hidden and

visible sectors, both of these sectors must also be localized at xM .25 Hence, the Yukawa

instanton cannot intersect the visible sector and no term is generated. Still, one might hope

that it is possible to approximately align the instantons and hence circumvent our previous

argument.

The situation seems better when some of the cycles are small since then one could hope

to find greater alignment by considering instantons that differ by wrappings on these small

cycles. This is not the case if one of the two instantons does not wrap the small cycle. For

example, consider r1 ≫ r2 and two instantons, wrapping z1 = 0 and z1/r1 + n z2/r2 = 0

(with n ∈ ZZ), respectively. While it is true that not only both cycles are almost aligned but

also their volumes are very similar, the generated A-terms and Yukawa couplings are very

different. This is because the first instanton generates a term involving only A1, while the

second one gives rise to a contribution which mostly depends on A2.

5.5.1 A broader definition of instanton orientation

One potentially interesting solution to the lack of alignment between the mediating and

Yukawa instantons is to realize that we have been considering particularly simple instantons—

those that are invariant under the orientifold and therefore carry an O(1) CP bundle. These

instantons are interesting since the orientifold lifts additional neutral fermionic zero modes

that would otherwise lead to a vanishing contribution to the A-terms and Yukawa couplings.

However, if we are willing to consider, for example, using fluxes to lift the extra neutral zero

modes of the E3 branes, then we are free to consider instantons with a U(1) CP bundle. In

25This last statement need not apply in cases involving D7 branes.
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particular, these instantons can have non-trivial CP orientation given by

γθ,E3 = αj (5.5.83)

Therefore, such an instanton carries two orientations: the geometrical orientation we have

discussed above and the CP orientation just described.26 We can use this richer structure

to align the instantons geometrically by noting that

• The (untwisted) geometrical orientation controls which flavors the instanton couples

to.

• The CP orientation controls which gauge nodes the instanton interacts with.

Hence a simple way to potentially align A-terms and Yukawa couplings is to take their gen-

erating instantons to wrap the same cycle but give the instantons different CP orientation.

This means that the instantons will couple to different nodes in both the hidden and visible

sector. By considering an orientifolded visible sector, it is possible to identify the differ-

ent nodes so that the operators the instantons generate are the same in the visible sector.

If, however, we take the hidden sector to be non-invariant under the orientifold, then we

could imagine the situation in Figure 5.6, where the mediating instanton couples to fields

responsible for SUSY breaking, while the Yukawa instanton couples to empty nodes and

hence generates a term without hidden sector fields (note that there are no additional zero

modes going between the Yukawa instanton and the hidden sector and so one does not have

to worry about a vanishing contribution to the effective action). This strategy may work

in higher-order orbifolds and their partial resolutions or in situations where one considers

multiple orbifolds of a given space. It would be interesting to find an explicit construction

realizing this idea.

26Strictly speaking, the CP orientation represents the cycle wrapped by the instanton in the twisted
homology of the singularity.
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Figure 5.6: The zero mode structure of a U(1) mediating instanton (E3) and a Yukawa-
generating instanton (Ẽ3) wrapping the same cycle but with different CP orientations.
Figure (a) represents the interaction structure in the visible sector where the interactions
are identified by the orientifold plane while Figure (b) represents the interaction structure
in the hidden sector.

5.6 Further possibilities

We have deliberately kept the previous examples as simple as possible, only using D3-branes

on toroidal orientifolds. There are various refinements that can be introduced in order to

obtain more interesting models. We now mention a few of them. It would certainly be

interesting to explore model building along these more general lines.

One such extension consists of considering not only orbifold but more general singular-

ities. A practical way of generating many examples of this sort consists of starting from a

large orbifold group, for example ZZM ×ZZN , and then partially resolving some of the (orien-

tifold) singularities. We can take this approach to generate more general visible and hidden

sectors. Consistency is not affected by partial resolution, since cancellation of twisted and

untwisted tadpoles is preserved in the process. The resulting turning on of background val-

ues for the twisted Kähler moduli might also have some interesting effects on the instanton

dynamics.

Another illuminating avenue might be to consider more general compact geometries

than T 6, since in the case of T 6 we have a very simple untwisted cohomology structure.
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This limited structure can be interesting in the sense that we can then see clear and rather

simple connections between completely different physics as in the second example where the

need to break SUSY required a certain hierarchy of scales that then was imprinted on the

A-terms and the u-type Yukawas.27 On the other hand, such a geometry may be unduly

restrictive when trying to generate different models of phenomenological interest that avoid

troublesome aspects like large FCNCs.

Another possibility is that the compactification might also involve some anti D-brane

sectors, which give rise to additional sources of SUSY breaking.

A further extension might be to introduce D7-branes (and anti D7-branes as needed

to cancel untwisted tadpoles). D7-branes have various useful applications. For example,

they are necessary in simple supersymmetric extensions of the SM based on D-branes at

singularities [21]. They can also give rise to simple metastable SUSY breaking hidden

sectors [113, 153].

Also, it should be rather simple to construct models that generate B-terms as well. It

might then be interesting to study the µ/Bµ problem in this context.

An direction worth pursuing is to consider more general kinds of E3-brane instantons

than those we have considered in the examples. One avenue is to turn on fluxes as a

means of both stabilizing the complex structure moduli of the geometry and of lifting the

accidental zero modes of the instantons. Also, considering E3-branes with non-trivial gauge

bundles would also potentially be interesting, and one could then make contact, via T-

duality, with the study of instanton stability and dynamics across lines of marginal stability

in the moduli space discussed in [142]. A detailed investigation of these topics may lead to a

richer set of examples of instanton-generated soft terms and also to a better understanding

of instanton-mediation in the closed string picture.

We have focused on D-brane instantons wrapping 4-cycles of the form (5.3.35), which

produce operators made out of a some linear combination of bifundamental fields connecting

a single pair of nodes in the quiver. In general compactifications, as we mentioned briefly in

27In a very limited sense, the conditions required to break SUSY in the hidden sector of this model ‘explain’
the relatively large top quark Yukawa coupling!
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(a) (b) (c)

E3 E3

E3

Figure 5.7: The three classes D-brane instantons on C3/ZZ3. Notice the opposite orientation
of the fermionic zero modes between (a) and (b). While class (a) couple to single bifunda-
mentals, class (b) couple to linear combinations of products of two of them. Class (c) are
completely non-chiral.

section 2.1, we can expect to generate operators of the form (5.2.2) (and generalizations for

cases with orientifold identifications), for Xij being an arbitrary oriented path in the quiver

Xij = Xi k1Xk1k2 . . . Xknj. These more general operators expand the range of model building

possibilities, for example relaxing the conditions for quadratic and cubic superpotential

terms listed in section 2.3. In local constructions, i.e. leaving aside the issue of how 4-

cycles are completed in a compactification, the question of which 4-cycles are wrapped by

the corresponding instantons can be understood in detail. A systematic construction of

such embeddings for toric singularities can be found in [159] (see also appendix A of [160]

for a relevant discussion in the related context of flavor D7-branes). Figure 5.7 shows the

extended quivers for general instantons in a local C3/ZZ3 singularity. In this chapter, we

have considered the first possibility.

For closed paths in the quiver, i.e. for i = j, we generate the determinant of a “mesonic”

operator Xii.
28 These operators are not perturbatively forbidden by global U(1) symme-

tries, since they are neutral under all of them. The corresponding instanton contains vector

like fermionic zero modes α and β (see e.g. Figure 5.7.c), whose mass is controlled by Xii

according the action term (5.2.1). In other words, Xii measures the distance between the

D3 and the E3. The couplings in [161] are examples of such “mesonic” operators. Our

mechanism can be regarded as the open string channel interpretation of the closed string

gravitational exchange in [161].

28Notice that we do not sum over initial and final SU(N)(i) color indices.
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5.7 Conclusions

In this chapter we have described a new way of generating soft terms in string compactifica-

tions. It is quite interesting to note that instanton mediation has aspects of both open and

closed string mediation. On the one hand, it is not sensitive to global U(1) symmetries that

constrain (low energy effective) open string mediation, but on the other it is sensitive to the

chiral gauge invariants of the various sectors in the theory—in particular, certain hidden

sector theories seemingly can never communicate their SUSY breaking to the visible sector

via instantons since in these cases instantons project onto trivial chiral gauge invariants.29

In any case, we hope to have given a flavor of instanton mediation in this chapter, and

we leave it to future work to resolve the various outstanding questions we have raised and

find more complete realizations of the ideas we have discussed. Above all, though, we simply

hope to have illustrated the point that instanton-mediated physics between various D-brane

sectors is rather generic in string compactifications and may serve as a phenomenological

constraint on string model building.

29An example of this statement is the SU(5) model considered in [151]. In this case, the simple O(1)
instantons we have focused on would project onto gauge invariants that correspond to determinants of 5× 5
anti-symmetric matrices that must trivially vanish.
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Conclusions

In this thesis we have examined various aspects of SUSY breaking and its mediation to

the visible sector. In the second chapter, we focused on a class of purely field theoretical

constructions for mediating SUSY breaking called, “gauge mediation.” These theories are

particularly attractive because they naturally solve the problem of FCNCs.

By further developing a general framework involving current correlators to describe

theories of gauge mediation, we were able to deepen our understanding of these theories.

For example, we proved the finiteness of the various soft parameters generated by gauge

mediation; we showed that by using only weakly coupled models, one could cover the

parameter space associated to these current correlators; finally, we understood how the

existence of a non-vanishing supertrace destroyed the calculability of theories of weakly

coupled messengers. The main result of our work is twofold. First, we have shown that the

soft spectrum generated by gauge mediation is much more diverse than previously thought,

while still solving the problem of FCNCs and having distinctive sum rules for the squarks

that hold even at strong coupling. Second, we have given clear criteria for understanding

when one can trust the results of computations in certain broad classes of theories of gauge

mediation.

Still, there are many outstanding questions raised by our work. For example, we only

defined the supertrace in weakly coupled theories. One natural question is whether the con-

159
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cept of the supertrace can be generalized to strongly coupled theories as well. Although we

will not describe it further in this thesis, the answer to this question seems to be yes, and it

likely involves correlation functions of the supercurrent multiplet of the hidden sector. This

quantum definition of the supertrace may then be naturally related to various anomalies of

the hidden sector.

Another outstanding question raised by our work is whether one can prove the finiteness

of the soft masses generated in gauge mediation without appealing to the existence of a

special discrete symmetry to eliminate possible infrared (IR) divergent contributions from

massless particles. It is then interesting to ask whether our results still hold in the absence

of such symmetries. Work that will soon be published with Z. Komargodski shows that the

answer to this question is a resounding yes.

Related to the issue of the IR behavior of the various current correlators is the question

of how the detailed properties of the hidden sector vacuum affect the soft observables. One

intriguing subquestion in this vein is to understand how to describe scenarios in which

the symmetry responsible for mediating the SUSY breaking is Higgsed. In particular, it

would be interesting to understand what one can say in general about such situations.

Surprisingly, the general description of theories of gauge mediation with spontaneously

broken symmetries seems to be much more powerful than the description we gave above

in the un-Higgsed case. Indeed, work soon to be published with Z. Komargodski shows

that for spontaneously broken gauge symmetries one has considerable analytic control over

the leading order in g corrections to the soft masses and A-terms even in strongly coupled

theories.

Interestingly enough, the question of Higgsed symmetries leads us naturally to our con-

struction of a stringy SSM-like theory in Chapter 3. Indeed, as we saw from our model

and the discussion surrounding it, D-brane realizations of the SSM often contain additional

U(1) symmetries, some of which will be Higgsed (as we have discussed in Chapter 3, other

symmetries will have their gauge bosons receive a mass through the Stückelberg mecha-

nism). It would then be interesting to study the effects of gauge mediation involving these
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Higgsed symmetries on the soft spectrum of the light fields. Some work in this direction

has already been done, but we would like to use our general formalism of gauge mediation

to further understand these setups.

On the purely string theoretical side, there are also many open problems. For example,

given our work in Chapters 3 and 4, we would like to study complete local constructions

involving a SUSY breaking hidden sector and an SSM. As we discussed in the conclusions

to Chapter 4, our construction in Chapter 3 could naturally accommodate just such a

possibility. Also, to get a better handle on the SUSY breaking dynamics of the hidden

sector, it would be useful to have a better understanding of the back reaction of the hidden

sector branes and the gravity side of the relevant gauge-gravity dualities.

Finally, it would be interesting to construct complete compactifications that include

our local string constructions. In principle, one could also imagine studying SUSY breaking

mediation from D-brane instantons as we studied in Chapter 5 but with more realistic visible

sectors. Perhaps by understanding how our constructions and ideas are completed into

full UV compactifications, we will actually find more detailed geometrical and topological

constraints from phenomenological inputs. We have already seen in Chapter 3 that the

requirement of having only one massless U(1) symmetry gives us some information about

the compactification topology. As we have hinted at in Chapter 5, D-brane instanton effects

may give us even more information.

In any case, much work remains to be done, and much remains to be explored. Indeed,

while SUSY stabilizes the hierarchy between the weak and Planck scales, the huge energy

expanse remains. Almost certainly, many interesting phenomena await in this vast domain.

It seems entirely plausible that SUSY will give us some of the most important tools to use

in trying to understand this brave new world of high energy quantum physics.
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