
Characterization of Particle Dark Matter via

Multiple Probes

Charlotte Strege
Astrophysics Group

Department of Physics
Imperial College London

Thesis submitted for the Degree of Doctor of Philosophy to
Imperial College London

· 2014 ·



Abstract

The dark matter problem is one of the most striking puzzles in physics today.

Cosmological and astrophysical observations have provided strong evidence that

over 80% of the matter in the Universe is dark. However, direct proof for the

existence of dark matter particles from laboratory experiments is still lacking, so

that the physical nature of dark matter remains unknown. Possible solutions are

found in theoretical models of new physics, which propose new particles that are

excellent dark matter candidates, thus presenting a fundamental connection between

elementary particle physics and the astrophysical dark matter.

In this thesis, I adopt a multi-messenger approach towards the identification

and characterisation of the dark matter particle. I apply advanced statistical and

numerical techniques to probe theoretical models and derive robust constraints on

the nature and properties of dark matter in light of the full range of existing ex-

perimental results. I present global fits analyses of three models of supersymmetry

(the cMSSM, the NUHM and the MSSM-15), including data from collider searches

for new physics, cosmology experiments, astro-particle dark matter searches, and

the Higgs boson discovery. A strong complementarity between the LHC and astro-

particle experiments is observed, highlighting the benefits of a combined analysis. I

find that constrained models, such as the cMSSM and the NUHM, that were appro-

priate targets for global fits prior to the start of LHC operations, have been placed

under strong pressure by recent data sets. I present the first statistically convergent

profile likelihood maps of a 15-dimensional MSSM, which is only weakly constrained

by the existing data, and is a much more suitable framework for phenomenological

studies of supersymmetry. I derive robust and statistically meaningful constraints

on the supersymmetric parameters and dark matter properties in this model.

Detection prospects for the cMSSM and the NUHM are positive, while fully

probing the rich phenomenology of the MSSM-15 is more difficult. I present the

regions of the parameter spaces that are most promising to explore with future

searches and pinpoint the signatures characteristic of supersymmetric dark matter

in these models. A very effective experimental strategy is the direct detection of

dark matter. I explore the statistical limitations of next-generation direct detection

experiments in the case of a significant detection. I find that the uncertainty and bias

in the reconstructed WIMP properties is particularly severe for heavy WIMPs, but

can also be significant for intermediate-mass WIMPs leading to several hundreds of

events. I demonstrate that the precision and accuracy of the WIMP characterisation

can be considerably improved by exploiting the complementarity between different

target materials, and by increasing the experimental exposure.
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Chapter 1

Introduction

1.1 The dark matter problem

The origin and nature of the Universe has mystified humankind since the beginning

of conscious thought. Originally a branch of metaphysics, in the last century the

study of the beginning, evolution and large-scale properties of the Universe has be-

come an active field of scientific research. With the launch of the COBE satellite

mission in 1989 [407], observational tests of cosmological models became reality, and

cosmology entered an era of precision science. Since then, satellite experiments have

revealed that the Universe originated in an infinitely hot and dense state approxi-

mately 13.8 billion years ago, and has been cooling and expanding ever since. One

of the most exciting findings of modern cosmology is that all of the planets, stars,

gas and dust in the Universe only account for 3% of the total energy budget of the

cosmos. The remaining 97% consists of dark matter and dark energy (often assumed

to be a cosmological constant Λ), two substances that seem to pervade the Universe,

but whose nature remains unknown. This observation led to the formulation of the

current concordance model of cosmology, called the Λ-Cold Dark Matter (ΛCDM)

model, which includes both dark matter and a cosmological constant.

In the last two years, the Planck satellite has confirmed the ΛCDM cosmology

with unprecedented accuracy [55]. Most recently, the BICEP2 experiment has pro-

vided direct evidence for cosmic inflation [57], thus confirming our understanding

of the evolution of the Universe a mere 10−36 s after the Big Bang. Despite the

many successes of this framework, without a description of the physical nature of

dark matter and dark energy the ΛCDM model is fundamentally incomplete. In this

thesis we concentrate on the dark matter problem: astrophysical and cosmological

observations have provided incontrovertible evidence that over 80% of all matter in

the Universe is non-luminous (“dark”), but the nature and composition of this dark
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1.1 The dark matter problem

matter component remain unknown.

The first evidence for the existence of a substantial amount of invisible mass

emerged as early as 1933, when the astronomer Fritz Zwicky measured the veloci-

ties of galaxies in the Coma cluster [438]. However, the dark matter paradigm only

became widely accepted in the 1980s, when observations of the rotation curves of

galaxies provided strong evidence for the existence of extended dark matter halos

that surround the visible contents of galaxies. Since this time, compelling evidence

has been obtained from a large range of astrophysical and cosmological observations,

and today dark matter is firmly established as one of the fundamental ingredients

of the concordance cosmology. While several groups have advocated the possibility

that the dark halos of galaxies consist of non-luminous astrophysical objects, both

observational searches for these objects and constraints on the cosmological abun-

dance of baryons strongly suggest that the bulk of the dark matter is non-baryonic.

Despite the overwhelming evidence for dark matter on astrophysical scales, direct

proof for the existence of dark matter particles from laboratory experiments is still

lacking, so that the particle nature of dark matter remains unknown. Uncovering

the nature of the cosmological dark matter and identifying its physical properties

is one of the biggest challenges in physics today. The characterisation of the dark

matter particle using a combination of different experimental probes is the central

topic of this thesis.

The quest for the nature of the dark matter in the Universe is fundamentally

connected to the search for the correct model of particle physics. The Standard

Model of particle physics is a remarkably successful description of the elementary

particles and their interactions. Since the start of operations in 2009, the Large

Hadron Collider (LHC) at CERN has re-discovered the known particles of the Stan-

dard Model and, with the discovery of a Higgs-like boson [192, 22], has celebrated

one of the greatest scientific achievements of the 21st century. For a long time, Stan-

dard Model neutrinos have been considered very attractive dark matter candidates.

However, cosmological observations have constrained the neutrino abundance to be

significantly smaller than the total abundance of dark matter, so that the particle

content of the Standard Model fails to provide an appropriate candidate for the bulk

of the dark matter in the Universe. Additionally, the Standard Model struggles with

a number of experimental observations and theoretical questions and is known to be

incomplete. Many theories of new physics beyond the Standard Model have been

developed over the years, and several of these models propose new particles that

are massive, neutral, non-baryonic and have weak-scale couplings. These Weakly

Interacting Massive Particles (WIMPs) are excellent dark matter candidates.
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1.1 The dark matter problem

Arguably the most widely studied WIMP candidate in the literature is the light-

est supersymmetric particle in theories of R-parity conserving supersymmetry. Su-

persymmetry is a theoretically well-motivated model of new physics that associates

each of the Standard Model particles with one or more supersymmetric particles.

The lightest of these new particles is an excellent dark matter candidate, and is the

focus of the majority of the research presented in this thesis. Supersymmetry was

first proposed in the 1970s, but only today experiments are finally able to probe the

energy scales at which it may become apparent. In particular, in the last few years

the LHC has probed a large range of scenarios of weak-scale supersymmetry, and

has derived strong constraints on the masses of the supersymmetric particles and

the properties of supersymmetric dark matter. At the same time, astrophysical ex-

periments are placing new limits on the dark matter properties, both from searches

for signatures of WIMP scattering interactions (direct detection), and searches for

particles produced in dark matter annihilations (indirect detection). If supersym-

metry is realised in nature, these results can be directly translated into constraints

on the lightest supersymmetric particle.

The highly interdisciplinary nature of the dark matter problem forms the cor-

nerstone for the work presented in this thesis. I take the perspective that a robust

identification and accurate characterisation of the dark matter particle requires a

combined evaluation of results from a range of experimental probes, including both

cosmological and astrophysical dark matter searches and collider experiments. I

adopt a multi-messenger approach that exploits the complementarity between dif-

ferent experimental search strategies in order to probe models of new physics, with

a special focus on supersymmetric theories. Central to this thesis is the application

of advanced statistical methods and numerical techniques to achieve a detailed ex-

ploration of theoretical models of dark matter and supersymmetry. This approach is

mandatory to derive robust and statistically meaningful constraints on the physical

properties of the supersymmetric particles and dark matter in light of the existing

experimental data sets. Future dark matter experiments and LHC searches have the

capability to probe a broad range of dark matter and supersymmetry models. How-

ever, given the vast model parameter spaces, the detection and correct identification

of a positive signal is a highly non-trivial task. In this thesis, I derive the favoured

regions of the parameter space of several theoretically well-motivated models of su-

persymmetry, determine the most suitable experimental techniques to explore these

regions and pinpoint the experimental signatures characteristic of supersymmetric

dark matter. This information is essential for the design of the optimal experimental

strategy for the discovery of supersymmetry and dark matter in the future.
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1.2 Structure of this thesis

1.2 Structure of this thesis

This thesis is organised as follows. Chapters 2–5 provide an introduction to the

theoretical and statistical background relevant to the research presented in the fol-

lowing chapters. In Chapter 2 I introduce the Standard Model of particle physics

and the ΛCDM model of cosmology, and review the evidence for dark matter in the

Universe. Chapter 3 contains an overview of the leading dark matter candidates, and

gives an introduction to supersymmetry and supersymmetric dark matter. Chap-

ter 4 describes different experimental strategies to search for WIMP dark matter

and introduces the concept of global fits analyses of supersymmetry models. In

Chapter 5 I introduce the statistical concepts and techniques that underly the work

presented in this thesis.

Chapters 6–9 contain the original research contributions of this thesis. In

Chapter 6 I present an analysis of the fundamental statistical limitations of fu-

ture dark matter direct detection experiments. Several direct detection experiments

are planned for the next decade, and the higher sensitivity of these next-generation

searches could lead to an incontrovertible discovery of dark matter. I postulate a

positive detection in one or more future experiments, and investigate the uncertainty

and bias in the reconstruction of the WIMP properties caused by the statistical fluc-

tuations that inevitably impact on direct detection data sets. Additionally, I discuss

several strategies to improve the accuracy and precision of the WIMP parameter re-

construction. In Chapters 7–9 I present global fits analyses of three different models

of supersymmetry. Global fits studies aim to achieve robust constraints on the

model parameters by including the full range of existing experimental constraints.

Chapter 7 presents a global fits analysis of the constrained Minimal Supersymmetric

Standard Model, a simplified supersymmetric extension of the Standard Model of

particle physics. I investigate the impact of LHC SUSY null searches, direct de-

tection limits on dark matter, and the LHC discovery of a Higgs-like boson on the

model parameter space. I obtain the favoured properties of the supersymmetric dark

matter in this model, and study the phenomenological consequences for future su-

persymmetry and dark matter searches. I present results from both a Bayesian and

a profile likelihood analysis. In Chapter 8 this study is repeated in the context of a

more complicated supersymmetric framework with a richer phenomenology, namely

the Non-Universal Higgs Model. Finally, in Chapter 9 I present profile likelihood

maps of a 15-dimensional phenomenological MSSM (the MSSM-15). I provide a

detailed analysis of the favoured model phenomenology in light of results from as-

trophysical and cosmological dark matter searches, LHC measurements of the Higgs
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1.2 Structure of this thesis

boson properties and constraints from LHC null searches for SUSY. Additionally, I

discuss the properties and composition of the lightest supersymmetric particle, and

the future detection prospects for dark matter in the MSSM-15. The work presented

in this chapter corresponds to the first profile likelihood analysis of the MSSM-15 in

the literature. Chapter 10 summarises the main conclusions of this thesis and gives

an outlook to future work.
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Chapter 2

Overview of cosmology and

particle physics

Dark matter is a fundamental ingredient in the current consensus model of cosmol-

ogy. At the same time, the Standard Model (SM) of particle physics is known to

be incomplete, and several theoretical models of new physics beyond the SM pre-

dict new particles that are excellent dark matter candidates. Knowledge of the key

concepts of cosmology and SM physics is essential for a full understanding of the

dark matter problem, and thus forms the basis for the research presented in the

later chapters of this thesis. In Section 2.1 we give a brief overview of the Standard

Model of particle physics, followed by an introduction to the current concordance

model of cosmology in Section 2.2. For a more complete review of SM physics see

e.g. Refs. [228, 303, 375]; a detailed treatment of modern cosmology can for example

be found in Refs. [359, 431, 333]. Finally, in Section 2.3 we review the compelling

evidence for the existence of dark matter on galactic, supergalactic and cosmological

scales.

2.1 The Standard Model of particle physics

The Standard Model of particle physics is the current most reliable description of the

building blocks of matter and the fundamental interactions between the elementary

particles. It combines Quantum ChromoDynamics (QCD) [278, 378, 293], which

describes strong interactions, with the Glashow-Weinberg-Salam electroweak the-

ory [284, 430, 391], and incorporates spontaneous electroweak symmetry breaking

via the Brout-Englert-Higgs mechanism [256, 311, 310, 312, 297, 328] to generate

masses for the SM particles. The SM has been thoroughly tested for many decades

and is in excellent agreement with experimental data. With the discovery of the
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2.1 The Standard Model of particle physics

Standard Model gauge fields
Gauge field SU(3)C , SU(2)L, U(1)Y Interaction

Ga
μ (8,1, 0) Strong

W i
μ (1,3, 0) Weak

Bμ (1,1, 0) Hypercharge

Table 2.1: Gauge fields of the Standard Model prior to electroweak symmetry breaking.

Higgs boson by the ATLAS and CMS collaborations at the Large Hadron Collider

in 2012 [192, 22], all of the SM particles have now been experimentally confirmed.

The SM is based on the gauge group SU(3)C ×SU(2)L×U(1)Y , where SU(3)C

is the gauge symmetry of QCD and the SU(2)L × U(1)Y factor constitutes the

electroweak group that describes the weak and the electromagnetic interactions. The

subscripts C, L and Y denote colour, left-handed chirality and weak hypercharge,

respectively. The interactions between the SM matter fields are mediated by spin-1

gauge fields. In particular, strong interactions are mediated by the gluon fields Ga
μ (a

= 1, .., 8), which form an octet under SU(3)C , while weak interactions (associated

with the SU(2)L group) are transmitted by the W i
μ fields, with i = 1, 2, 3. Finally,

there is an additional gauge field Bμ, associated with the U(1)Y symmetry. The SM

gauge fields, their transformation properties under the SM gauge group, and the

interactions they mediate are given in Table 2.1.

The fundamental constituents of matter are spin-1/2 chiral fermions, the quarks

and leptons. Leptons are SU(3)C singlets, while quarks are charged under SU(3)C

and form colour triplets. The fermion content of the SM is divided into three families

with identical quantum numbers and different masses. The left-handed leptons and

quarks of each family form SU(2)L doublets, while the corresponding right-handed

fields transform as singlets under SU(2)L. Each quark doublet consists of an up-

type quark field (u, c, or t), with electric charge QEM = +2/3, and a down-type

quark field (d, s, or b), with QEM = −1/3. Lepton doublets consist of a lepton

carrying electromagnetic charge QEM = −1 (the electron e−, the muon μ−, or the

tau τ−) and the corresponding neutrino (νe, νμ, or ντ ), which is neutral with respect

to the electromagnetic interaction. Here, QEM can be computed from the weak

hypercharge and the third component of the weak isospin T3, QEM = T3 + Y . Note

that the SM predicts massless left-handed neutrinos, and does not include any right-

handed neutrino species. However, the observation of neutrino oscillations [280] has

provided compelling evidence for nonzero neutrino masses, so that right-handed

neutrinos are often introduced in extensions of the SM.

The quarks and leptons of the first family constitute all stable matter, since the
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2.1 The Standard Model of particle physics

Standard Model matter fields

Particle names SU(3)C , SU(2)L, U(1)Y QEM

Leptons

(
νe,L
e−L

) (
νμ,L
μ−L

) (
ντ,L
τ−L

)
(1,2,−1/2) 0

(1,2,−1/2) −1

e−R μ−R τ−R (1,1,−1) −1

Quarks

(
uL

dL

) (
cL
sL

) (
tL
bL

)
(3,2,+1/6) +2/3

(3,2,+1/6) −1/3

uR cR tR (3,1,+2/3) +2/3

dR sR bR (3,1,−1/3) −1/3

Table 2.2: Matter content of the Standard Model.

heavier higher-generation fermions rapidly decay into the lighter quarks and leptons.

Furthermore, due to the confinement property of the strong interaction, quarks form

colourless bound states, called hadrons. Hadrons that are composed of three quarks

(such as e.g. nucleons) are called baryons, while hadrons composed of a quark and

an antiquark are called mesons. The matter fields of the SM, their transformation

properties under SU(3)C×SU(2)L×U(1)Y and their electric charge are summarised

in Table 2.2. Note that each of the SM particles also has a corresponding antiparticle

with the same mass, but opposite quantum numbers (not shown).

A major issue with the model described above is that direct inclusion of mass

terms for the SM fields into the Lagrangian would break gauge invariance. In par-

ticular, the W i
μ and Bμ gauge bosons are massless, in clear violation of experimental

measurements. This issue can be resolved by introducing ElectroWeak Symme-

try Breaking (EWSB), SU(2)L × U(1)Y → U(1)EM . In the SM the mechanism of

EWSB is the Higgs mechanism, in which mass terms for the weak gauge bosons are

generated by introducing an SU(2)L doublet of complex scalars

φ =

(
φ+

φ0

)
(2.1)

that transforms under SU(3)C × SU(2)L × U(1)Y as (1,2,+1/2). The Lagrangian

for the Higgs field φ is

Lφ = (Dμφ)† (Dμφ)− V (φ), (2.2)

where Dμφ is the covariant derivative of φ that describes interactions between the

Higgs field and the gauge fields and is given by

Dμφ = (∂μ − i
g

2
W i

μσ
i − i

g′

2
Bμ)φ. (2.3)
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2.1 The Standard Model of particle physics

Here, g, g′ are the SU(2)L and U(1)Y coupling constants, respectively, and σi (i =

1, 2, 3) are the Pauli matrices. The Higgs potential V (φ) is of the form

V (φ) = μ2|φ|2 + λ|φ|4, (2.4)

with λ > 0 in order to avoid V → −∞. For μ2 < 0, the potential has a minimum

at |φ|2 = −μ2/2λ, which leads to a non-zero vacuum expectation value (VEV),

〈0|φ|0〉 = √−μ2/2λ ≡ v/
√
2. Note that there is an infinite number of degenerate

states that satisfy φ†φ = v2/2. By choosing one specific minimum field configuration

φ0 =
1√
2

(
0

v

)
, (2.5)

the electroweak symmetry SU(2)L × U(1)Y is spontaneously broken1 into the elec-

tromagnetic symmetry U(1)EM (electromagnetism remains unbroken by choosing

the VEV solely in the neutral component of φ). By expanding the field φ about the

ground state and performing a gauge transformation, we can write

φ =
1√
2

(
0

v + h

)
, (2.6)

where h is the physical Higgs field. By inserting Eq. (2.6) into the expression for V (φ)

in Eq. (2.4) one can derive a mass term for the Higgs boson. Likewise, by entering

Eq. (2.6) into the kinetic term in Eq. (2.2), one can calculate the mass terms for the

physical charged and neutral vector boson fields W±, Z0 and γ, defined as

W± =
1√
2
(W 1

μ ∓ iW 2
μ) Z0 = cθWW 3

μ − sθWBμ γ = sθWW 3
μ + cθWBμ. (2.7)

Here, sθW ≡ sin θW = g′/
√

g2 + g′2, cθW ≡ cos θW = g/
√
g2 + g′2 and θW is the

electroweak mixing angle. Following this procedure, one finds that the gauge bosons

W± and Z0 gain masses via this mechanism, while the photon γ remains massless.

Finally, the quarks and leptons acquire masses through Yukawa interactions

between the Higgs doublet and the fermion fields. For a SM fermion field ψ the

(gauge-invariant) Yukawa Lagrangian reads

LY ukawa = −λf ψ̄LφψR − λf ψ̄Rφ̄ψL, (2.8)

1Spontaneous symmetry breaking refers to the effect that the Lagrangian Lφ is invariant under
the symmetry group SU(2)L × U(1)Y while the ground state is not.
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2.1 The Standard Model of particle physics

Figure 2.1: Interactions between the SM particles. Purple lines show interactions with
the Higgs boson, while black lines represent interactions with gluons (dotted), the photon
(solid) and the W and Z bosons (dashed).

where λf is the Yukawa coupling constant. More generally, the Yukawa couplings

for the leptons and quarks can be written as 3×3 matrices in family space, that are

not necessarily diagonal in the generations. For the charged leptons, the Yukawa

terms can be made diagonal, so that the mass and gauge eigenstates are identical.

While the Yukawa matrix of the up-type quarks can similarly be diagonalised, the

Yukawa matrix of the down-type quarks remains non-diagonal in the generations,

leading to the presence of flavour changing charged current interactions in the SM.

The mixing of the quark flavours {d, s, b} to form mass eigenstates {d′, s′, b′} can be

parameterised by the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [331] as⎛⎜⎝d′

s′

b′

⎞⎟⎠ = VCKM

⎛⎜⎝d

s

b

⎞⎟⎠ . (2.9)

The Higgs field φ, and the gauge and matter fields shown in Table 2.1 and 2.2

make up the total field content of the SM. The tree-level interactions between the

Higgs boson h, the physical gauge bosons Ga, W±, Z0 and γ and the SM fermion

fields are illustrated in Fig. 2.1. Despite the remarkable success of this framework in

describing the elementary particles and interactions, the SM is known to be incom-

plete and struggles with a number of experimental and theoretical observations. In

addition to the lack of an explanation for the observed non-zero neutrinos masses, the

SM only describes three of the four fundamental forces, and fails to self-consistently

include gravitational interactions. Furthermore, achieving a Higgs boson mass that

is of order the electroweak scale requires incredibly strong fine-tuning (the “hierar-
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chy problem”, see Section 3.3), and the SM does not include a viable explanation for

the astrophysical observation of a large amount of dark matter in the Universe (see

Section 2.3 below). Therefore, the SM is generally regarded as the low-energy limit

of a more fundamental underlying formalism. Many theories of physics beyond the

SM have been proposed over the years, and several of these theories contain excellent

dark matter candidates, as will be discussed in Chapter 3.

2.2 Cosmology

2.2.1 Notions of standard cosmology

While gravity is not included in the SM of particle physics, gravitational interactions

are of crucial importance on cosmological scales, and Einstein’s theory of general

relativity [250, 251] is a central ingredient of modern cosmology. The fundamental

equations of general relativity are the Einstein field equations2

Rμν − 1

2
gμνR = 8πTμν + Λgμν , (2.10)

where gμν is the metric tensor with signature (+,−,−,−) and μ, ν = 0, 1, 2, 3. Rμν

is the Ricci tensor, R is the Ricci scalar, Tμν is the energy-momentum tensor and

Λ is the cosmological constant. Ignoring for the moment the Λ-term, the central

implication of this equation is that the space-time geometry (left-hand side) is related

to the energy content of the Universe (right-hand side).

To solve Eq. (2.10) one has to specify the metric tensor, which describes the

local geometric structure of space-time. The Cosmological Principle states that, on

sufficiently large scales, the Universe is homogeneous and isotropic. This assump-

tion has been confirmed both by observations of the cosmic microwave background

(showing remarkable isotropy) and by galaxy surveys (suggesting a homogeneous

distribution at distance scales >∼ 100 Mpc). A homogeneous and isotropic Universe

is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = gμνdx
μdxν = dt2 − a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.11)

where ds2 is the line element, xμ = (t, �x), (r, θ, φ) are comoving spherical coordi-

nates and k describes the spatial curvature (k = −1, 0, 1 for an open, flat or closed

Universe). The quantity a(t) is the cosmic scale factor, which is a measure of the

2Here and in the following we will use Planck units, with c = G = � = kB = 1.
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overall scale of the Universe; in an expanding FLRW Universe, the scale factor is

increasing in time.

The expansion of space has an important impact on the light emitted by distant

objects. In particular, the wavelength of photons propagating in an expanding

Universe is stretched (“redshifted”). For a photon emitted by a distant source at

time tem with a wavelength λem that is observed on Earth today with a wavelength

λ0, the cosmological redshift is defined as

1 + z =
λ0

λem

=
a0

a(tem)
. (2.12)

Here, a(tem) is the scale factor at the time of emission and a0 ≡ a(t0) denotes the

scale factor today; for convenience we choose a0 ≡ 1 in the following. The redshift

is commonly used as a measure of time, with the present epoch given by z = 0 and

z > 0 in the past.

A convenient simplifying assumption when studying cosmic evolution is that

the energy contents of the Universe can adequately be described by a perfect fluid.

A perfect fluid is completely characterised by its energy density ρ and pressure p,

and the physics of the fluid is determined by its equation of state p = p(ρ). In

the rest frame, the energy-momentum tensor of a perfect fluid takes on the simple

form Tμν = diag(ρ, p, p, p). By entering this expression and the FLRW metric in

Eq. (2.11) into the Einstein equations given in Eq. (2.10) one can derive the following

two differential equations (
ȧ

a

)2

=
8πρtot

3
− k

a2
, (2.13)

ä

a
= −4π

3
(ρtot + 3ptot) . (2.14)

Here, we have defined the total energy density (pressure) of the Universe ρtot (ptot),

which includes a possible contribution from the cosmological constant ρΛ = Λ/8π.

Eq. (2.13) and (2.14) relate the time evolution of a(t) to the energy content of the

Universe and are known as the first and second Friedmann equations, respectively.

A useful quantity is the Hubble parameter H(t), which gives the expansion rate of

the Universe at time t

H(t) =
ȧ(t)

a(t)
. (2.15)

The value of the Hubble parameter at the present time t0 is called the Hubble

constant, denoted by H0 ≡ H(t0), and has been experimentally measured to high

precision, H0 = 67.80 ± 0.77 km s−1 Mpc−1 [56]. A related quantity is the dimen-

sionless Hubble parameter, defined as h ≡ H0/(100 km s−1 Mpc−1).
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As can be seen from Eq. (2.13), for a spatially flat Universe (k = 0) the total

energy density is equal to the so-called critical density ρcr, with

ρcr(a) =
3H2(a)

8π
. (2.16)

It is often convenient to express energy densities in the Universe in units of the

critical density

Ωx(a) =
ρx(a)

ρcr(a)
, (2.17)

where Ωx is the density parameter for some component x that contributes to the

total energy density of the Universe. Correspondingly, Ωtot = ρtot/ρcr, so that the

first Friedmann equation in Eq. (2.13) can be written as

Ωtot − 1 =
k

a2H2
. (2.18)

From this expression it is straightforward to see that Ωtot is related to the spatial

geometry of the Universe. In particular, Ωtot > 1, Ωtot = 1 and Ωtot < 1 corresponds

to a closed (k > 0), flat (k = 0) and open (k < 0) Universe, respectively. Today the

Universe is known to be spatially flat to very high accuracy, with Ω0
tot ≡ Ωtot(a0) =

0.9995+0.0065
−0.0066 according to recent measurements [56]. Therefore, in the following we

focus on the case of a zero-curvature Universe with k = 0.

2.2.2 Energy content and cosmic evolution

At any given time, the total energy density of the Universe receives contribu-

tions from a number of different components, namely relativistic matter (r), non-

relativistic matter (m) and vacuum energy/cosmological constant (Λ), so that

ρtot = ρr + ρm + ρΛ (neglecting the possible presence of unknown additional com-

ponents). ρr receives contributions from both photons and neutrinos, and the

matter density is given by the sum of baryonic and non-baryonic (dark) matter,

ρm = ρb + ρDM. Using Eq. (2.13) and (2.14) one can derive the energy conservation

equation

ρ̇ = −3H(ρ+ p), (2.19)

which holds separately for each of these components. Radiation, matter and vacuum

energy are assumed to behave as perfect fluids with equation of state p = wρ.

Inserting this relation in Eq. (2.19), one can derive the evolution of the energy
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Λ

Ω

Ω

ΩΛ

Figure 2.2: Evolution of the energy densities (in critical units) of the three basic cosmic
components: radiation (red), non-relativistic matter (blue) and vacuum energy (black).

density of these components with the scale factor

ρ ∝ a−3(1+w). (2.20)

For radiation, wr = 1/3, so that the radiation density evolves as ρr ∝ a−4. Similarly,

wm = 0 and wΛ = −1, so that ρm ∝ a−3 and ρΛ ∝ const, respectively. The evolution

of the density parameters for radiation, matter and Λ is shown in Fig. 2.2. As can

be seen, the very early Universe is dominated by ultra-relativistic matter (radiation

era), followed by a period in which matter dominates the energy budget of the

Universe (matter era). Using the radiation and matter equations of state, one finds

from Eq. (2.14) that both of these eras correspond to decelerating expansion, ä < 0.

More recently, the cosmological constant starts to dominate the energy density of

the Universe. During this epoch the Universe is undergoing accelerated expansion,

as for ρΛ = −pΛ, ä > 0 (from Eq. (2.14)). In fact, the cosmological constant is just

one of many theories for the nature of the “dark energy” component, which drives

the observed accelerated expansion. In the standard model of cosmology, radiation

domination is preceded by another brief period of rapid accelerated expansion, called

inflation, which occurs shortly after the Big Bang. In the following we give a brief

description of the main events constituting the history of the Universe.
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The Big Bang and the very early Universe

The Big Bang is generally identified with a cosmic singularity, corresponding to a

state of infinite density, temperature and curvature, that represents the birth of

the Universe. The first 10−43 s after the Big Bang are known as the Planck epoch.

During this period, quantum gravity effects are important, so that little is known

about this era. However, it is generally assumed that the electroweak, strong and

gravitational interactions were unified into a single force, and that gravity separates

from the other forces at the end of this epoch. The period 10−43 s ≤ t ≤ 10−36

s is called the Grand Unification epoch, as during this time the temperature was

comparable to the characteristic temperatures of Grand Unified Theories (GUTs),

TGUT ∼ 1016 GeV. At t ∼ 10−36 s, the strong force separates from the electroweak

interaction and a period of rapid accelerated expansion (inflation) begins, during

which the scale factor a(t) (and thus the Universe) grows exponentially. The expan-

sion is driven by a scalar field, called the “inflaton”, which is slowly rolling down a

potential. The inflationary scenario can explain the observed flatness and large-scale

homogeneity of the Universe, as well as the absence of topological defects, and the

origin of the primordial density perturbations that seed the formation of large-scale

structures. Recent data from the BICEP2 experiment [57] have provided strong

evidence for cosmic inflation, so that the inflationary paradigm is considered a key

component of the concordance model of cosmology today. Inflation ends ∼ 10−32 s

after the Big Bang, when the Universe enters a period of reheating, during which

the inflaton field decays into elementary particles and radiation.

The radiation era

Following reheating, the energy density of the Universe is dominated by radiation.

While the physics of the very early Universe is still subject to debate, the evolution

of the Universe after the onset of radiation domination is much better understood.

At the beginning of the radiation era, all known particles are in thermal and chem-

ical equilibrium. Similarly, any undiscovered particle species, such as for example

supersymmetric particles, would also be in equilibrium with the primordial plasma.

As the Universe expands and cools, particles with progressively lower masses fall

out of equilibrium (“freeze out”); thermal freeze-out will be discussed in detail in

Section 3.2. The period 10−32 s ≤ t ≤ 10−12 s is called the Electroweak Epoch.

At T ∼ 100 GeV, the electroweak symmetry is spontaneously broken and shortly

afterwards the Higgs, W± and Z0 bosons freeze-out and decay. This marks the

onset of the Quark Epoch, which lasts until t ∼ 10−6 s, when the quark-hadron
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transition takes place and free quarks and gluons become confined within hadrons.

The Hadron Epoch ends at t ∼ 1 s, at which time the primordial neutrinos decouple

from the other particles and the Lepton Epoch begins. Shortly afterwards, neutrons

and protons fall out of equilibrium, followed by electron-positron annihilation at

T ∼ me ∼ 0.5 MeV, which leaves a small excess of electrons. A few minutes after

the Big Bang, the temperature has decreased sufficiently to allow for Big Bang Nu-

cleosynthesis (BBN). During BBN, the free protons and neutrons combine to form

deuterium, and, subsequently, other light elements (in particular, helium-3, helium-

4 and lithium-7). BBN predictions of the primordial abundance of elements are

in remarkable agreement with astrophysical observations, providing strong evidence

for the hot big bang model, and the non-baryonic nature of dark matter (see also

Section 2.3.3 below).

The matter era

At zeq ≈ 3 × 103 the energy densities of matter and radiation are equal, ρr(zeq) =

ρm(zeq). Matter-radiation equality marks the beginning of the matter era and the

onset of appreciable structure formation. In particular, dark matter perturbations

undergo significant growth throughout the entire matter era, as will be discussed in

Section 2.3.4. Shortly after matter-radiation equality, the free protons and electrons

form hydrogen in a process known as recombination. As a result, the Universe

turns neutral and thus becomes transparent to photons. Decoupling of matter and

radiation occurs at a redshift zdec ≈ 1100, and represents the last scattering surface

of the Cosmic Microwave Background (CMB) photons. The CMB temperature

fluctuations contain information about the state of the Universe at last scattering,

and have been measured in great detail (see Section 2.3.3). Following the release of

the CMB at t ∼ 400000 years, both baryonic and dark matter perturbations undergo

significant growth, eventually leading to the formation of the large-scale structures

observed today.

The dark energy era

At zeq,2 ∼ 0.4, approximately 9.5 billion years after the Big Bang, the dark energy

density becomes equal to the energy density of matter, ρm(zeq,2) = ρΛ(zeq,2), and

the expansion of the Universe starts to accelerate. Evidence for this late time ac-

celeration has been obtained from observations of supernovae Type Ia in the late

1990s [385, 374], so that the dark energy era is a relatively recent addition to the

standard model of cosmology. Dark energy remains the dynamically dominant com-
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ponent of the Universe to the present day, t0 ∼ 13.8 billion years, with Ω0
Λ ≈ 0.69

and Ω0
m ≈ 0.31 according to recent experimental measurements [56].

The theoretical framework described in this section constitutes the Λ-Cold Dark

Matter (ΛCDM) model, which is the standard model of modern cosmology. As out-

lined above, this model predicts a spatially flat, expanding Universe that is currently

dominated by dark energy in form of a cosmological constant (Λ), and whose matter

component is dominantly dark (CDM). The ΛCDM model has been extraordinarily

successful in describing cosmic evolution and is in excellent agreement with a wealth

of different observations (including CMB, BBN and SNIa, see Section 2.3.3); we will

assume that ΛCDM is the correct model of cosmology for the remainder of this

thesis. Despite its successes, the ΛCDM model is far from complete, and several

open issues remain to be resolved. Until the development of a consistent theory

of quantum gravity the dynamics of the very early Universe will remain uncertain.

The origin of the observed matter-antimatter asymmetry is another open issue. Ad-

ditionally, the nature of the inflaton field is unknown, and no explanation is offered

why the Universe would start out in an inflating state. Similarly, the cosmological

constant is just one of many possible explanations for the current cosmic accelera-

tion, and the nature of dark energy, which constitutes almost 70% of the total energy

budget of the Universe, is presently unclear. The remaining ∼ 30% of the energy

density, which is in the form of non-relativistic matter, is also poorly understood,

as baryons only constitute ∼ 15% of the total matter component. The remaining

85% correspond to non-luminous dark matter, which is required by a large range of

observations, but which finds no explanation within the SM of particle physics. The

dark matter problem is the focus of this thesis. In the following section we review

the evidence for dark matter, and discuss the dark matter properties required to

explain astrophysical observations.

2.3 Evidence for dark matter

The dark matter paradigm is supported by a large range of observations, spanning

the scale of galaxies, galaxy clusters and cosmology. We point out that intriguing

alternative explanations for several of these measurements exist in terms of mod-

ified gravity theories, in particular the MOdified Newtonian Dynamics (MOND)

formalism [354] and the relativistic Tensor-Vector-Scalar theory (TeVeS) [136]. How-

ever, these theories struggle to simultaneously explain observations on both cosmo-

logical and galactic scales, and many open issues remain to be resolved (see e.g.
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Figure 2.3: Rotation curve of the galaxy NGC 6503. Also shown are the individual
rotation curves of the gas (dotted line), the stellar disk (dashed line) and the dark matter
halo (dot-dashed line). The galactic rotation curve remains flat far beyond the radius at
which the gas and disk rotation curves start to fall off, pointing towards the existence of
a large dark matter halo. From Ref. [134].

Refs. [259, 404]). Therefore, today it is widely accepted that the majority of the

matter in the Universe consists of non-baryonic dark matter. In this section we

present a brief overview of the observational evidence for the existence of dark mat-

ter; further details can be found in one of the many excellent reviews on this topic,

e.g. Refs. [144, 361, 152].

2.3.1 Galaxies

Compelling evidence for dark matter on galactic scales comes from the rotation

curves of galaxies, i.e. the radial profile of the circular velocity vc(r) of gas and

stars in the galaxies, that can be obtained by combining observations of the 21 cm

line of neutral atomic hydrogen (HI) with optical surface photometry. Assuming

Newtonian dynamics, this profile is given by

vc(r) =

√
GM(< r)

r
, (2.21)

where M(< r) ∝ ∫
drρ(r)r2 is the mass contained within the radius r, and ρ(r) is

the mass density. If luminous matter was an accurate tracer of the total mass, one

would expect to observe a decrease vc ∝ r−1/2 beyond the optical disk. However,

measurements reveal flat galactic rotation curves that extend to radii of several tens

of kpc, far beyond the bulk of the observed stars and gas. An example for a rotation

curve exhibiting this characteristic flat behaviour is shown in Fig. 2.3. According
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to Eq. (2.21), a flat rotation curve vc(r) ∼ const implies that M(< r) ∝ r and thus

ρ(r) ∝ r−2. Therefore, the observation of rotation curves that remain flat out to

large radii indicates the presence of a dark matter halo that extends far beyond the

edge of the stellar disk.

2.3.2 Galaxy clusters

Historically, galaxy clusters provided the first evidence for the existence of a substan-

tial amount of invisible mass. In 1933, Fritz Zwicky measured the velocity dispersion

of galaxies in the Coma cluster [438] and applied the virial theorem to calculate the

total cluster mass. He inferred a mass-to-light ratio of approximately 400M
/L
,

suggesting that the Coma cluster contained a large non-luminous mass component.3

In addition to the application of the virial theorem to dynamical data, the

mass of a galaxy cluster can be determined using X-ray observations. In clusters

of galaxies, the dominant form of baryonic matter is hot gas. This gas emits X-

ray radiation, mainly due to thermal bremsstrahlung, so that the gas temperature

T can be inferred from X-ray observations of galaxy clusters. For an ideal gas

with an average molecular weight μ ≈ 0.6, and assuming hydrostatic equilibrium

and spherical symmetry, one can derive the following relation between T and the

total cluster mass M(< r) enclosed within a distance r from its centre (writing kB

explicitly) [156]

kBT ≈ (1.3− 1.8)keV

(
M(< r)

1014M


)(
Mpc

r

)
. (2.22)

Here, it was assumed that the cluster temperature profile is roughly flat and that

the gas density profile at large radii follows ρ(r) ∝ r−a, with a � [−2.0,−1.5]. The

temperature obtained when identifying M(< r) with the mass of baryonic matter is

strongly discrepant from the observed temperature T ≈ 10 keV, which implies large

mass-to-light ratios and thus suggests the presence of a substantial amount of dark

matter in galaxy clusters.

This observation is further confirmed by estimates of cluster masses from grav-

itational lensing. According to Einstein’s theory of General Relativity, light travels

along geodesics, which follow the curvature of space-time. The presence of a massive

object, such as a galaxy cluster, distorts the geometry of space-time, and thus per-

turbs the path of photons emitted by distant background objects. The bending and

3Note that in his calculation Zwicky assumed H0 = 558 km s−1 Mpc−1. Using today’s more
accurate value, H0 ≈ 70 km s−1 Mpc−1, the mass-to-light ratio is reduced to ∼ 50M
/L
.
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Figure 2.4: X-ray and gravitational lensing observations of the Bullet cluster. The
colour map shows the X-ray image of the cluster from the Chandra X-ray observatory,
while the green contours indicate the mass map obtained from weak lensing. The white
bar indicates a distance of 200 kpc. The clear offset between the lensing contours and the
hot gas distribution demonstrates that the majority of the matter in the clusters consists
of collisionless dark matter. From Ref. [202].

refocussing of light rays passing through the gravitational field of a massive object

is called gravitational lensing. The extent of the distortion of background objects

depends strongly on the mass of the foreground object acting as the gravitational

lens; it can range from very weak distortion amplitudes that are undetectable for

individual galaxies (weak lensing) to multiple images of background objects, rings

and arcs (strong lensing). By measuring the distortions resulting from lensing by

a galaxy cluster, one can reconstruct the shape of the deflecting gravitational po-

tential and determine the total cluster mass (see e.g. Ref. [426] for an example of a

high resolution mass map of a galaxy cluster obtained from a gravitational lensing

study). Gravitational lensing estimates of cluster masses significantly exceed pre-

dictions based on the observed distribution of luminous matter, providing further

evidence for the existence of a large amount of dark matter.

One of the most famous pieces of evidence for dark matter comes from grav-

itational lensing and X-ray observations of a merger of two galaxy clusters, called

the “Bullet cluster” [202], shown in Fig. 2.4. As can be seen, there is a significant

spatial segregation between the lensing map (green) and the X-ray gas map (colour

map) of this object. The hot X-ray gas self-interacts strongly during the collision,

leading to the characteristic ballistic shape of the cluster to the right. Instead, the

gravitational potential (probed by gravitational lensing), and thus the bulk of the

mass, appears essentially undisturbed after the collision. This strongly suggests that

the majority of the matter in the system is non-baryonic, and does not track the

dominant baryonic mass component (the hot gas) in any way. In addition to provid-

ing a convincing argument for the presence of a significant amount of dark matter
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in galaxy clusters, the clear offset between the dark matter and the hot baryonic

plasma implies that the unseen matter is effectively collisionless, and places strong

constraints on the self-interaction of dark matter particles.

2.3.3 Cosmology

Further evidence for the existence of dark matter can be extracted from observations

on cosmological scales. In particular, in contrast to measurements on the scale of

galaxies and galaxy clusters, cosmology experiments are able to determine the total

abundance of dark matter in the Universe.

The cosmic microwave background arguably provides the strongest evidence

for the ΛCDM model. As outlined in the previous section, detection of the CMB

photons that were released following recombination allows us to investigate the char-

acteristics of the Universe at a redshift zdec ≈ 1100. The measurement of the CMB

temperature map by the COBE satellite in the early 1990s revealed impressive large-

scale isotropy and an almost perfect blackbody spectrum with T ≈ 2.73 K [407].

Additionally, small angular temperature anisotropies at the 10−5 level were detected,

which are directly related to the primordial density perturbations that are thought

to be the origin of the large scale structures observed in the Universe today. The

angular power spectrum of the CMB is sensitive to a large range of cosmological

parameters, so that CMB measurements can be used to constrain these parame-

ters and test cosmological models. Following the COBE results, the WMAP satel-

lite measured the CMB anisotropies with unprecedented precision [140], and, in

early 2013, the Planck satellite presented the highest-resolution all-sky CMB map

to date [139, 55]. In the context of the ΛCDM model, the CMB angular power

spectrum is sensitive to both the total matter density Ωm and the baryon density

Ωb, and thus can lead to stringent constraints on the abundance of dark matter

in the Universe. The constraints derived from Planck measurements of the CMB

temperature anisotropies on the baryon, dark matter and dark energy densities in

the context of the ΛCDM model are [56]

Ω0
bh

2 = 0.02207± 0.00033, Ω0
DMh

2 = 0.1196± 0.0031, Ω0
Λ = 0.686± 0.020. (2.23)

More generally, measurements of the CMB anisotropies are mostly sensitive to the

baryon fraction and the total energy density of the Universe, Ω0
tot � Ω0

m+Ω0
Λ, leading

to a strong degeneracy in the (Ω0
m,Ω

0
Λ) plane. However, this degeneracy can be bro-

ken by complementary data sets, that are sensitive to other directions in this plane,

in particular Baryon Acoustic Oscillations (BAO) measurements and observations
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Figure 2.5: The current concordance model of cosmology. Red/filled contours show
68% and 95% confidence regions for the cosmological parameters Ω0

m and Ω0
Λ derived from

CMB and BAO data; blue/filled contours show constraints derived from SNIa observa-
tions. Results are shown for the one-parameter extension of the ΛCDM model allowing
for non-zero spatial curvature (the black/dashed line corresponds to a flat Universe).
Constraints from the different cosmological probes are consistent, and provide strong ev-
idence for a flat Universe that is dominated by dark energy and dark matter, in excellent
agreement with a ΛCDM cosmology. From Ref. [158].

of Supernovae Type Ia (SNIa). The impact of (Planck and WMAP) CMB observa-

tions and BAO and SNIa measurements on the (Ω0
m,Ω

0
Λ) plane is shown in Fig. 2.5.

As can be seen, results are consistent across the three different cosmological probes

and provide strong evidence for the concordance ΛCDM model. Additionally, the

combined CMB+BAO+SNIa data set leads to a powerful constraint on the total

(baryonic + dark) matter abundance in the Universe, Ω0
m = 0.305± 0.010 [158].

As shown in Eq. (2.23), Planck CMB measurements also place tight constraints

on the cosmological abundance of baryonic matter, Ω0
bh

2 = 0.02207 ± 0.00033. A

powerful independent probe of this quantity is the primordial abundance of light

elements. By comparing predictions from BBN with the primordial abundance of

elements inferred from astrophysical observations one can place tight constraints

on the baryon cosmological abundance. In particular, recent estimates include

Ω0
bh

2 = 0.021±0.001 [320] (using deuterium) and Ω0
bh

2 = 0.0229±0.0012 [412] (us-

ing deuterium and helium-4), which is in excellent agreement with the value inferred

from Planck data. The baryon abundance derived from BBN and CMB measure-

ments is clearly discrepant with the value of Ω0
m favoured by BAO, SNIa and CMB

data, and thus provides incontrovertible evidence for the existence of a dominant

non-baryonic dark matter component.
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2.3.4 Structure formation

Despite the Cosmological Principle and the observed large-scale homogeneity, on

small scales the Universe is manifestly inhomogeneous. Significant overdensities

exist in the form of galaxies and galaxy clusters, that exceed the average cosmolog-

ical density by several orders of magnitude. The large-scale structure of the Uni-

verse has been revealed in great detail by galaxy surveys such as the 2-degree Field

Galaxy Redshift Survey (2dFGRS) [225], the Sloan Digital Sky Survey (SDSS) [419]

and, most recently, the Baryon Oscillation Spectroscopic Survey (BOSS) [92]. In

particular, the resulting galaxy samples can be used to reconstruct the matter

power spectrum P (k), which contains information about the evolution of struc-

ture. Here, P (k) is the Fourier transform of the two-point correlation function

ξ( �x1, �x2) = 〈δ( �x1)δ( �x2)〉, with δ(�x) ≡ (ρ(�x) − ρ̄)/ρ̄ the density contrast and ρ̄ the

mean density.

The matter power spectrum observed today is the evolved result of the primor-

dial power spectrum Pi(k) generated during inflation. The evolution of the initial

perturbations depends strongly on the matter content of the Universe. In the early

Universe, the baryons are coupled to the photons, and are subject to large radiation

pressure which prevents the growth of density perturbations in the baryonic compo-

nent.4 Therefore, baryonic inhomogeneities can only begin to grow after decoupling

from the photons at zdec ≈ 1100. Given the observed small amplitude of the CMB

anisotropies ∼ O(10−5), the growth of baryonic perturbations since decoupling is

insufficient to explain the large-scale structures observed today. In contrast, dark

inhomogeneities can grow prior to recombination, as dark matter does not couple to

radiation. In fact, dark matter perturbations undergo significant growth throughout

the entire matter era, starting at matter-radiation equality at zeq ≈ 3×103. Follow-

ing decoupling, the baryons simply fall into the existing dark matter potential wells.

Therefore, dark matter causes enhanced gravitational clustering, and a significant

dark matter component is required to explain the observed large-scale structure.

While structure formation in the linear regime |δ| � 1 can be treated analyti-

cally, the evolution of the non-linear regime |δ| ≥ 1 (which holds e.g. for galaxies and

galaxy clusters) is typically studied using numerical N-body simulations. By follow-

ing the non-linear growth of dark matter perturbations, large-scale cosmological N-

body simulations have confirmed that the formation of the observed large-scale struc-

tures requires a substantial amount of dark matter (see e.g. Refs. [365, 410, 329, 97]).

4In fact, the interplay between gravity and radiation pressure causes the baryon-photon fluid
to oscillate. Measurements of the remnants of these oscillations can place stringent constraints on
the cosmological parameters (see the impact of BAO data in Fig. 2.5).
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We point out that predictions from these simulations show discrepancies with sev-

eral observations on galactic and sub-galactic scales. A discussion of these issues is

beyond the scope of this thesis; for further details see e.g. Ref. [429].

Comparison of analytical calculations and N-body simulations with observa-

tions from galaxy surveys can place important constraints on the properties of dark

matter. In particular, one generically distinguishes between hot, warm and cold dark

matter. Hot Dark Matter (HDM) particles move at relativistic velocities (v � c)

at the time of matter-radiation equality, while Cold Dark Matter (CDM) particles

are non-relativistic (v � c) at this time. Warm Dark Matter (WDM) is an inter-

mediate case, corresponding to semi-relativistic velocities. The details of structure

formation differ strongly for hot, warm and cold dark matter. In particular, due to

their high velocities, HDM particles would free-stream out of overdense regions and

thus prevent the early formation of small structures. HDM thus essentially wipes

out structures at small scales, resulting in an exponential cutoff in the matter power

spectrum at large k. Measurements of the CMB anisotropies and the galaxy power

spectrum show no evidence for such a cutoff [419], and thus rule out pure HDM

models. In recent years, WDM has received much attention as a potential solution

to the discrepancies between the CDM scenario and observations on small scales.

However, WDM models face a number of serious observational challenges and do

not necessarily alleviate the small-scale problems of CDM [395]. Therefore, given

its remarkable success in explaining the large-scale features of the matter distribu-

tion in the Universe, CDM remains the leading contender for the non-baryonic dark

matter, and we will focus on CDM models throughout this thesis.
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Chapter 3

Dark matter candidates and

supersymmetry

3.1 Overview of dark matter candidates

As we have seen in the previous chapter, a good dark matter candidate must fulfil

a number of requirements. It must be massive and collisionless (to explain obser-

vations on galactic scales), it must be cold (to satisfy structure formation require-

ments) and stable on cosmological timescales, and, finally, it must be non-baryonic

and electrically neutral (to have escaped detection so far). A large number of suit-

able candidates have been proposed over the years. In this chapter we present a

brief overview of the leading dark matter candidates, followed by a more detailed

discussion of the candidates that are the focus of the work presented in the following

chapters. For further details see e.g. Refs. [156, 152, 361, 263].

A popular theory during the 1990s was that dark matter consists of low-

luminosity astrophysical objects, such as brown dwarfs, white dwarfs, neutron stars

and black holes, commonly referred to as MACHOs (MAssive Compact Halo Ob-

jects). While there is no doubt that some fraction of the baryonic matter in the

Universe is too faint to have been detected so far, MACHOs have been excluded as

a major dark matter component by microlensing searches in the Magellanic clouds

(see e.g. Ref. [420]). Additionally, the baryonic nature of MACHO dark matter would

violate the BBN limit on the baryon abundance in the Universe, see Section 2.3.3.

For a long time, Standard Model (SM) neutrinos have been considered very

attractive dark matter candidates, since they are massive, neutral, stable, non-

baryonic and (perhaps most importantly) known to exist. However, in recent years

both particle physics and cosmology experiments have placed strong constraints
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on the neutrino masses, which in turn lead to constraints on their relic density

Ων . In particular, the Planck collaboration reported a 95% upper bound
∑

mν =

0.23 eV [56], corresponding to Ωνh
2 ≈ ∑

mν/93 eV <∼ 0.002, which is significantly

smaller than the total dark matter abundance ΩDMh
2 = 0.1199± 0.0027 [56]. Addi-

tionally, SM neutrinos travel at relativistic speeds (hot dark matter), and thus are

unable to explain the observed large-scale structure, as discussed in Section 2.3.4.

Given the lack of appropriate candidates in the SM, the most popular dark

matter candidates today are embedded in various particle physics theories of Beyond

the Standard Model (BSM) physics. The development of such theories is a very

active field, and a large number of different candidates have been proposed. In the

following, we introduce some of the most notable of these dark matter candidates.

Axions

Axions were first introduced as a solution to the strong CP problem, which arises

from the presence of a non-perturbative CP-violating term in the QCD Lagrangian.

This term induces effects such as a non-zero electric dipole moment for the neutron.

Such a dipole moment has not been observed, and experimental limits on this quan-

tity imply that the Lagrangian term must be strongly suppressed. Understanding the

origin of this strong (fine-tuned) suppression is the strong CP problem. This problem

can be solved by introducing an additional spontaneously broken global U(1) sym-

metry of the SM Lagrangian, as first proposed by Peccei and Quinn [373]; the Gold-

stone boson of this broken symmetry is the axion. The axion has a non-zero mass

ma ∝ f−1a , where fa is the axion decay constant, i.e. the energy scale of the Peccei-

Quinn symmetry breaking. Laboratory searches, supernova 1987A data and stellar

cooling arguments place limits on this quantity, 109 GeV <∼ fa <∼ 1012 GeV [361],

so that axions are expected to be very light ma ∼ O(μeV) − O(meV). Despite

their low mass, axions are still cold, as they were not in thermal equilibrium in the

early Universe, but instead were produced non-thermally and thus had relatively

low velocities.1 Axions are also stable on cosmological time scales, and can achieve

the correct relic density, making them a promising dark matter candidate. Addi-

tionally, axions possess a vertex with two photons, which opens up the possibility

to detect axion conversion to photons in the presence of a strong magnetic field.

Several experiments are currently attempting to detect relic axions by searching for

this phenomenon, most notably the Axion Dark Matter eXperiment (ADMX) [428].

1Thermal production of axions in the early Universe is also a possibility, but in this case axions
act as hot dark matter, and their relic density does not match the observed dark matter relic
abundance.
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Sterile neutrinos

In the SM neutrinos are exactly massless. Therefore, the measurement of non-zero

neutrino masses and neutrino mixing provides evidence for new physics beyond the

Standard Model. While SM neutrinos have been ruled out as the main component

of dark matter (see above), their non-zero masses suggest the existence of additional

SU(3)C × SU(2)L × U(1)Y singlet fermions, called sterile neutrinos, denoted by νs.

In that case, the mass matrix of neutrinos can be found from the seesaw mechanism.

While the traditional seesaw mechanism predicts extremely heavy right-handed neu-

trinos, mνs ∼ MGUT , in principle mνs can take on almost any value. If the lightest

sterile neutrino has a mass ∼ O(keV), it is a viable dark matter candidate [243].

Sterile neutrinos are generally categorised as warm dark matter, but theoretical mod-

els in which they act as cold dark matter have also been proposed [400]. Evidence

for sterile neutrino dark matter could be obtained with X-ray telescopes searching

for X-ray lines produced in the loop decay νs → γν in dark matter dominated, X-ray

quiet systems, such as dwarf spheroid galaxies.

WIMPs

Weakly Interacting Massive Particles (WIMPs) are the most widely studied dark

matter candidates. WIMPs have weak-scale masses mWIMP ∼ 10 GeV – TeV, and

only interact via gravity and the weak nuclear force. They are theoretically very

appealing, because thermal freeze-out of WIMPs in the early Universe naturally

leads to a relic density of the same order as the measured dark matter abundance (see

Section 3.2). Additionally, due to their weak interactions with ordinary matter, they

may produce interesting signatures in direct detection, indirect detection and collider

experiments, as will be discussed in detail in Chapter 4. Many theories of BSM

physics predict WIMPs that are stable on cosmological time scales. Arguably the

most popular WIMP dark matter candidate is the lightest supersymmetric particle

in theories of R-parity conserving SUperSYmmetry (SUSY), a theory of BSM physics

in which each SM particle is associated with one or more supersymmetric particles

(“superpartners”). By far the most popular supersymmetric dark matter candidate

is the lightest neutralino. Deriving constraints on SUSY and the lightest neutralino

is one of the central aims of this thesis, and a more detailed discussion of these

topics will be provided in Sections 3.3 and 3.4. Other examples of viable WIMP

candidates include the lightest Kaluza-Klein particle in models with universal extra

dimensions [398], and the lightest T-odd particle in little Higgs theories [196].
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Gravitinos

The gravitino G̃3/2 is another viable supersymmetric dark matter candidate. It is

the superpartner of the graviton, and as such only interacts gravitationally. If G̃3/2

is the lightest supersymmetric particle and R-parity is conserved, the gravitino has

the right properties to be the dark matter. In fact, the gravitino may even be a

viable candidate if R-parity is violated, as, due to its weak interactions, it can have

an extremely long lifetime. Depending on the SUSY-breaking mechanism, the grav-

itino either acquires a weak-scale mass, or is very lightm3/2 ∼ O(keV). In the former

case, G̃3/2 is an example of a superWIMP [267], a particle whose interactions are

much weaker than those of WIMPs that can naturally lead to the desired relic den-

sity. A second example of a superWIMP is the axino, the superpartner of the axion.

For keV-scale gravitinos, achieving the correct relic density is much more difficult,

but they nevertheless remain a noteworthy warm dark matter candidate. Given

that the gravitino only interacts via gravity, detection prospects for this particle are

slim, although its properties could be constrained indirectly from measurements of

heavier supersymmetric particles at collider experiments.

Many other interesting dark matter candidates exist, including for example

WIMPzillas [332], WIMPless dark matter [264] and inelastic dark matter [425]. The

most important candidates in the context of this thesis are WIMPs, in particular

the lightest neutralino in theories of R-parity conserving SUSY. In Section 3.2 we

provide further details on the theoretical motivation for WIMPs, followed by an

introduction to supersymmetry in Section 3.3, and a detailed description of the

Minimal Supersymmetric Standard Model in Section 3.4.

3.2 Thermal freeze-out of WIMPs

As outlined in Chapter 2, in the early Universe the temperature and density is

incredibly high, so that all particles are in thermal and chemical equilibrium. As the

Universe cools, particle species with progressively lower masses fall out of equilibrium

(“freeze out”) and their number densities become constant. In this section, we

present a calculation of the thermal freeze-out of a dark matter candidate X that is

non-relativistic at the time of freeze-out (i.e. X is a cold relic), derive the expression

for the relic density ofX today, and illustrate what is meant by the “WIMP miracle”.

We assume that X is a Majorana particle, so that X = X.

We begin by giving a qualitative overview of the process of thermal freeze-out.
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At very early times, T � mX , the particle X is in thermal and chemical equilibrium

with the Standard Model particles. The equilibrium abundance is maintained by

constant annihilation (XX → SM SM) and inverse annihilation (SM SM → XX)

interactions. As the Universe cools, the temperature eventually falls below the mass

of the dark matter candidate, T < mX . At this point, XX pairs can no longer

be produced in particle-antiparticle collisions, and the equilibrium abundance of X

becomes Boltzmann suppressed, so that the number of dark matter particles drops

exponentially. However, in addition to cooling, the Universe is also undergoing ex-

pansion at a rate H, which dilutes the dark matter particles and thus reduces the

frequency of annihilation interactions. As the annihilation rate for the particle X

falls below the Hubble expansion rate, ΓX < H, the annihilation reactions maintain-

ing equilibrium “freeze out” and the cosmological abundance of X asymptotically

approaches a constant, its relic abundance ΩX . Note that, while the number of X

particles per comoving volume remains constant after freeze-out, the number density

nX continues to decrease due to the expansion of the Universe.

Dark matter freeze-out is assumed to have taken place while the energy density

of the Universe was radiation-dominated. In a flat, radiation-dominated Universe

the energy density is given by

ρ(T ) =
π2

30
g∗(T )T 4, (3.1)

where T is the temperature of the Universe (which, in the early Universe, is equiv-

alent to the photon temperature) and g∗(T ) is the effective number of degrees of

freedom. Recall that in a radiation-dominated Universe ρ ∝ a−4, so that the scale

factor dependence of the temperature is approximately given by T ∝ a−1 (neglect-

ing the temperature dependence of g∗). Using Eq. (3.1) and the first Friedmann

equation given in Eq. (2.13), one can find an expression for the Hubble parameter

H2 =
8π3

90
g∗(T )T 4. (3.2)

Another quantity that will be useful in the following is the entropy density

s(T ) =
2π2

45
h∗(T )T 3, (3.3)

with h∗(T ) the effective number of degrees of freedom contributing to s(T ). Note

that the total entropy in a co-moving volume a3 is conserved, i.e. S ≡ sa3 = const.

The relic abundance of a thermally produced dark matter particle species X can
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be calculated by solving the Boltzmann equation, which describes the time evolution

of the number density nX of dark matter particles

dnX

dt
= −3HnX − 〈σv〉 (n2

X − n2
X,eq

)
. (3.4)

Here, 〈σv〉 is the thermally averaged product of the total XX annihilation cross-

section and the relative velocity of the annihilating particles, and nX,eq is the dark

matter number density in thermal equilibrium. The first term on the right-hand side

of Eq. (3.4) accounts for the expansion of the Universe, leading to a dilution of the

number density ofX; the second term encapsulates the change in the number density

resulting from annihilations (n2
X term) and inverse annihilations (n2

X,eq term).

The Boltzmann equation can be rewritten in terms of the quantity YX ≡ nX/s

(and, correspondingly, YX,eq ≡ nX,eq/s). Using entropy conservation, s ∝ a−3,

Eq. (3.4) yields
dYX

dt
= −〈σv〉s (Y 2

X − Y 2
X,eq

)
. (3.5)

Furthermore, replacing the time variable with x ≡ mX/T , and making use of the

fact that in a radiation-dominated Universe T ∝ a−1, one finds

dYX

dx
= −〈σv〉s

Hx

(
Y 2
X − Y 2

X,eq

)
. (3.6)

We want to solve this equation for a cold relic, for which the freeze-out happens

when the particle is non-relativistic, xF > 1, to derive an approximate expression for

YX today. For xF > 1, the equilibrium number density is Boltzmann suppressed, and

the x-dependence of YX,eq is given by YX,eq(x) ∝ x3/2 exp(−x). For particles of mass

mX ∼ O(100) GeV, the value of x at freeze-out is xF ∼ 25− 30, so that YX,eq � YX

at this time, and we can approximate Y 2
X − Y 2

X,eq ≈ Y 2
X in Eq. (3.6). In general,

one must also consider the velocity dependence of 〈σv〉. Since we know from the

Boltzmann velocity distribution that 〈v〉 ∝ √
T , we can write that to leading order

〈σv〉 = 〈σv〉0x−n (n ≥ 0). Using this and the expressions for the Hubble parameter

and the entropy density in the early Universe given in Eqs. (3.2) and (3.3) we can

rewrite Eq. (3.6) as
1

Y 2
X

dYX

dx
= −λ(x)x−n−2, (3.7)

with λ(x) = 〈σv〉0(π/45)1/2h∗(x)(g∗(x))−1/2mX . Integrating from x = xF to x = ∞,

and assuming that g∗(x) and h∗(x) vary slowly with temperature (i.e. λ(x) ≈ const),

we obtain

Y 0
X ≈ n+ 1

λ(xF )
xn+1
F , (3.8)
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where Y 0
X ∼ YX(x → ∞) is the value of YX today, and we have made use of the fact

that YX(xF ) � Y 0
X .

Using ρ0X ≈ mXn
0
X , the relic density of the particle X is given by

Ω0
X =

mXY
0
Xs0

ρ0cr
=

mXs0
ρ0cr

n+ 1

λ(xF )
xn+1
F , (3.9)

where s0 ≡ s(T0) is the entropy density today, to be evaluated at T0 = 2.726 K.

To obtain an order of magnitude estimate of Ω0
X we focus on the case n = 0 and

approximate h∗(xF ) � g∗(xF ). Using the expression for ρcr in Eq. (2.16) and s0 ≈
2890 cm−3, we find

Ω0
Xh

2 ∼ 3× 10−27cm3/s

〈σv〉0

(
100

g∗(xF )

)1/2 (xF

30

)
. (3.10)

For new physics at the weak scale mweak, a natural value for the annihilation cross-

section is 〈σv〉 ∼ α2
weak/m

2
weak ∼ O(10−26) cm3/s. The fact that a thermal relic

with a weak-scale annihilation cross-section and a mass mX ∼ O(100) GeV gives

approximately the correct dark matter abundance Ω0
Xh

2 ∼ O(0.1) is called the

WIMP miracle, and is considered a strong hint that WIMPs might be the dominant

component of dark matter.

The standard relic density calculation presented above relies on a number of as-

sumptions, that may or may not be satisfied in the early Universe. For example, the

predicted dark matter relic abundance may be altered by late entropy production, or

by non-thermal production of dark matter particles (e.g. by out of equilibrium decays

of heavier particles). For further information on some non-standard scenarios for the

production of dark matter, see e.g. Chapter 7 in Ref. [152] and references therein.

Two physical processes that can have a significant impact on the relic density of

the dark matter particle are coannihilations and resonant annihilations [160, 292].

Coannihilations can occur if a particle Y exists that shares a quantum number with

X and has a mass that is almost degenerate with mX . In that case, XY interactions

(coannihilations) in the early Universe can significantly reduce the relic abundance

of X. Likewise, resonant annihilations through a particle with mY ≈ 2mX can lead

to a dramatic reduction of Ω0
X . These two processes are of particular importance

for supersymmetric dark matter, as we will see explicitly in Chapters 7, 8 and 9.

In addition to the strong theoretical motivation for WIMP dark matter provided

by the WIMP miracle, the energy scale O(100) GeV – O(1) TeV is in fact precisely

where many particle physics models predict new physics. Arguably the most popular

such theory is supersymmetry, which will be described in detail in the following
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Figure 3.1: Fermionic (left) and scalar (right) one-loop quantum corrections to the
square of the Higgs mass m2

h. The amplitude of these diagrams is quadratically divergent,
so that m2

h depends quadratically on the energy scale Λ at which the effects of new physics
become important.

section.

3.3 Supersymmetry: motivation and theoretical

foundations

While the Standard Model of particle physics is a remarkably successful description

of the experimental phenomena observed at collider experiments to date, is fails to

provide an explanation for a number of open issues (see Chapter 2). One of the most

significant challenges facing the SM is to provide an explanation why the mass of the

Higgs boson mh ∼ 125 GeV is so much smaller than the GUT scale. In particular,

the Higgs mass receives enormous corrections from the fermionic (f) and scalar (S)

loop diagrams shown in Fig. 3.1. If the Higgs-fermion coupling (left) arises from a

Lagrangian term −λfhf̄f , then the resulting correction to m2
h is given by

Δm2
h = −|λf |2

8π2
Λ2 + ..., (3.11)

where Λ approximately corresponds to the energy scale of new physics. Likewise, if

the Higgs field couples to a scalar particle S (right-hand diagram in Fig. 3.1) with a

Lagrangian term −λS|h|2|S|2, the resulting mass correction is

Δm2
h = +

λ2
S

16π2
Λ2 + .... (3.12)

The quadratic sensitivity to the scale of new physics found in Eq. (3.11) and

Eq. (3.12) leads to the “hierarchy problem”. If new physics enters, for example,

at the GUT scale Λ ∼ 1016 GeV, the Higgs-top quark coupling alone will lead to

a mass correction Δm2
h ∼ 1030 GeV2, so that an enormous (and unjustifiable) fine-

tuning is required to achieve mh ∼ 125 GeV. Moreover, even if a consistent theory
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of new physics can be constructed that leads to a Λ that is not too large, there are

additional corrections involving the mass of the particle the Higgs couples to, so

that mh will obtain unacceptably large contributions from any heavy particles that

might exist at higher energy scales.

An elegant solution to the hierarchy problem is presented by the existence

of a symmetry that relates fermions and bosons, called a supersymmetry. The

supersymmetry generator Q transforms fermionic states into bosonic states, and

vice versa

Q|Fermion〉 = |Boson〉, Q|Boson〉 = |Fermion〉. (3.13)

The supersymmetry generators obey the anti-commutation relation

{Qα, Qα̇} = 2σμ
αα̇Pμ, (3.14)

with Pμ the four-momentum generator of space-time translations and σμ = (I2, σ
i),

where σi(i = 1, 2, 3) are the Pauli matrices. All other commutators and anti-

commutators ({Qα, Qα}, {Qα̇, Qα̇}, [Pμ, Qα], [Pμ, Qα̇]) vanish. Note that, according

to Eq. (3.14), the combination of two SUSY transformations gives a space-time

translation. One can then extend the Poincaré algebra (the algebra of space-time

translations, rotations and boosts) to incorporate SUSY to form the so-called the

super-Poincaré algebra, which is the maximal possible extension of the Poincaré

algebra [298]. In principle, it is possible to construct theories with multiple distinct

SUSY generators Qi. However, models with N > 1 SUSY generators do not allow

for chiral fermions, so that we focus on N = 1 supersymmetry in the following.

The basic building blocks of supersymmetric theories are chiral and gauge su-

permultiplets. Supermultiplets are irreducible representations of the SUSY algebra,

and contain an equal number of fermonic and bosonic degrees of freedom. The

fermion and boson states inhabiting the same supermultiplet are related by the op-

erators Q,Q and have a spin that differs by 1/2; they are called superpartners of

each other. Since Q,Q commute with both the squared-mass operator −P 2 and the

generators of gauge transformations, it follows that a pair of superpartners must

have the same mass and the same SU(3)C × SU(2)L × U(1)Y quantum numbers.

Chiral (or matter) supermultiplets contain a spin-1/2 fermion and a complex scalar;

gauge (or vector) supermultiplets consist of a spin-1 vector boson and a spin-1/2

fermion. In supersymmetric theories, each of the known SM particles resides in

either a chiral or a gauge supermultiplet, that it shares with a so far undetected

supersymmetric partner.

Let us now return to the hierarchy problem discussed in the beginning of this
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section. Because in SUSY each of the Standard Model Dirac fermions f is accompa-

nied by two complex scalar fields f̃ , with λf̃ = λf , one can see from Eq. (3.11) and

Eq. (3.12) that the contributions of the fermonic loop diagram and the two copies

of the scalar loop diagram to m2
h exactly cancel. In fact, this cancellation persists

to all orders in perturbation theory, so that SUSY stabilises the Higgs mass at the

weak scale and, by extension, also stabilises the entire SM mass spectrum.

An obvious problem with the above argument is that, to this date, none of

the supersymmetric particles have been observed. Therefore, SUSY must be a bro-

ken symmetry, so that the masses of the SM particles differ from the superpartner

masses. In order for broken SUSY to still provide a solution to the hierarchy prob-

lem, the relation λf̃ = λf must be maintained by supersymmetry breaking (leading

to the requirement of “soft” SUSY breaking, to be discussed in more detail in Sec-

tion 3.4.2). Due to differences in the SM particle and superpartner masses following

SUSY breaking, the cancellation of divergences will not be exact, and there will

be non-vanishing corrections Δm2
h ∝ m2

softln(Λ/msoft), where msoft is the typical

mass scale of soft SUSY breaking terms. If msoft is very large, the corrections to

m2
h will again be huge, leading back to the familiar hierarchy problem. However, if

msoft ∼ O(TeV), the corrections to m2
h are reasonably small, so that a Higgs mass

mh ∼ 125 GeV can be achieved without any miraculous cancellations. The super-

symmetric partners are expected to have masses of the same order as msoft, so that

SUSY predicts a large number of new particles with TeV-scale masses.

In addition to providing a solution to the hierarchy problem, supersymmetric

theories are motivated by a range of other reasons. Weak-scale SUSY can lead to the

unification of gauge couplings at high mass scales ∼ 1016 GeV. Additionally, SUSY

can provide a link between gravity and the other fundamental interactions, and is a

crucial ingredient of many theories of quantum gravity, including string theory and

supergravity. The most important motivation for SUSY in the context of this thesis

is that some of the supersymmetric particles are excellent dark matter candidates.

While a large range of different SUSY models exist, in this thesis we focus on

the minimal supersymmetric extension of the SM, called the Minimal Supersym-

metric Standard Model (MSSM). In the following section we provide an overview

of the MSSM field content, discuss SUSY breaking and the MSSM mass spectrum,

and identify candidates for supersymmetric dark matter in the MSSM. For further

information on SUSY and supersymmetric dark matter we refer the reader to one

of the many great textbooks on these topics, see e.g. Refs. [121, 324]. Two excellent

supersymmetry reviews that are available online are Refs. [348, 76]. In particular,

most of the treatment in the following sections is based on Ref. [348].
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Chiral supermultiplets

Particle names Spin 1/2 Spin 0 SU(3)C , SU(2)L, U(1)Y

leptons, sleptons La (νa eaL) (ν̃a ẽaL) (1,2,−1/2)

(a = 1, 2, 3) Ea e†aR ẽ∗aR (1,1,+1)

quarks, squarks Qa (ua
L daL)

(
ũa
L d̃aL

)
(3,2,+1/6)

(a = 1, 2, 3) Ua u†aR ũ∗aR (3,1,−2/3)

Da d†aR d̃∗aR (3,1,+1/3)

Higgsinos, Higgs Hu

(
H̃+

u H̃0
u

)
(H+

u H0
u) (1,2,+1/2)

Hd

(
H̃0

d H̃−
d

) (
H0

d H−
d

)
(1,2,−1/2)

Gauge supermultiplets

Particle names Spin 1/2 Spin 1 SU(3)C , SU(2)L, U(1)Y

Winos, W bosons W̃ 0 W̃+ W̃− W 0 W+ W− (1,3, 0)

Bino, B boson B̃0 B0 (1,1, 0)

gluino, gluon G̃ G (8,1, 0)

Table 3.1: Chiral and gauge supermultiplet fields in the Minimal Supersymmetric
Standard Model. We show the Standard Model particles and their superpartners, as well
as their transformation properties under the Standard Model gauge group.

3.4 The Minimal Supersymmetric Standard Model

3.4.1 Field content of the MSSM

The MSSM is the minimal supersymmetric extension of the SM that is phenomeno-

logically viable, and as such is the most widely studied model of supersymme-

try. In the MSSM, each of the known SM particles is a member of either a

chiral or a gauge supermultiplet, and is assigned a superpartner with the same

SU(3)C × SU(2)L × U(1)Y quantum numbers, but a spin differing by 1/2. While

it is tempting to identify some of the superpartners with known SM states, such

attempts result in a large range of phenomenological problems, so that it is widely

accepted that all of the supersymmetric partners must be new particles. The parti-

cle content of the MSSM is shown in Table 3.1, with superpartners of SM particles

denoted by a tilde. All of the SM fermions (i.e. the leptons and quarks) reside in

chiral supermultiplets. Their spin-0 superpartners are referred to as “sleptons” and

“squarks”, respectively, or, more generally, “sfermions” (“s” is short for “scalar”).
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3.4 The Minimal Supersymmetric Standard Model

We adopt the convention to define all chiral supermultiplets in terms of left-handed

Weyl spinors, so that Table 3.1 shows the conjugates of the right-handed fermions

and sfermions. Additionally, we assign a symbol to each of the chiral supermulti-

plets, displayed in the second column of Table 3.1. The spin-1 SM gauge bosons

are members of gauge supermultiplets, each of which also contains a spin-1/2 gaug-

ino. Specifically, the superpartners of the B and W bosons are called “Bino” and

“Winos”, respectively, and the SUSY partner of the gluon is the “gluino”. Assign-

ing a superpartner to the spin-0 Higgs boson is more complicated. The existence of

a single Higgs chiral supermultiplet would cause the electroweak gauge symmetry

to suffer a gauge anomaly; additionally, a Higgs chiral supermultiplet with a weak

hypercharge Y = +1/2 (Y = −1/2) is required to give masses to the up-type quarks

(down-type quarks and charged leptons). Therefore, two Higgs SU(2)-doublets are

present in the MSSM, one with Y = 1/2 (denoted by Hu) and one with Y = −1/2

(denoted byHd). The two Higgs doublets are associated with spin-1/2 superpartners

called “Higgsinos”.

In the absence of SUSY breaking, the MSSM Lagrangian can be obtained by

taking the supersymmetric generalisation of the SM Lagrangian. The full MSSM

Lagrangian can for example be found in Ref. [386]; in this section we merely highlight

the form of the superpotential

W = ŨyuQ̃Hu − D̃ydQ̃Hd − ẼyeL̃Hd + μHuHd, (3.15)

that enters in the SUSY-preserving part of the MSSM Lagrangian. Here, Ũ , D̃,

Ẽ, Q̃, L̃, Hu and Hd are the scalar components of the chiral supermultiplets given

in Table 3.1 and yu, yd and ye are the Yukawa couplings. yu, yd and ye are

3×3 matrices in family space, and, to reduce clutter, gauge and family indices were

suppressed in Eq. (3.15). If we were to write these indices explicitly, the first term

in Eq. (3.15), for example, would read ŨyuQ̃Hu ≡ Ũ
Ic

(yu)
J
I εαβQ̃Jcα(Hu)β, where

I, J are family indices, c is a colour index, and α, β are weak isospin indices.

In principle, the superpotential W could contain additional terms. We have

omitted these terms as they violate baryon number (B) conservation and/or lepton

number (L) conservation. Violation of B and L conservation would for example

allow for proton decay, which has not been observed experimentally. The absence

of these terms can be explained by the presence of a new discrete Z2 symmetry in

the MSSM. This symmetry, called R-parity, is defined for each particle as

PR = (−1)3(B−L)+2s, (3.16)
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where s is the spin of the particle. It is easy to verify that all SM particles and the

Higgs bosons have PR = +1, while all of their superpartners have PR = −1. The

conservation of the multiplicative quantum number PR is a fundamental ingredient

of the MSSM, with important phenomenological consequences (see Section 3.4.4).

Note that the superpotential W , and in fact the entire SUSY-preserving part

of the Lagrangian, only contain a single new parameter, the Higgs mass parameter

μ. However, as discussed above, SUSY must be a broken symmetry, and in fact

the SUSY breaking terms in the MSSM Lagrangian introduce a large number of

additional parameters.

3.4.2 Supersymmetry breaking

While it is evident that, if supersymmetry is realised in nature, it must be a broken

symmetry, the exact mechanism of SUSY breaking is unknown. It is however clear

that SUSY is not broken spontaneously within the MSSM, but that spontaneous

supersymmetry breaking instead occurs in a “hidden sector”, that has only very

weak or indirect interactions with the MSSM particles (that reside in the “visible

sector”). However, some common interactions between the two sectors do exist, and

these interactions can communicate SUSY breaking to the MSSM. The nature of

the mediating interactions remains unknown, and many different scenarios of SUSY

breaking have been proposed (see e.g. Ref. [341] for an introduction). The two most

popular scenarios are gravity mediation [188] and gauge mediation [283].2

In gravity-mediated SUSY breaking scenarios, the mediating interactions are as-

sociated with new physics (including gravity) at an energy scale close to the Planck

scale MP . This leads to a hidden sector SUSY-breaking scale of ∼ 1011 GeV. SUSY-

breaking in the gravitational sector is an important ingredient of SUperGRAvity

(SUGRA) theories, which unify the principles of supersymmetry and general rela-

tivity. In supergravity, SUSY is promoted to a local symmetry, and the field content

given in Table 3.1 is extended by the gravity supermultiplet, which consists of the

spin-2 graviton and its spin-3/2 superpartner, the gravitino.

In gauge-mediated scenarios, SUSY breaking is communicated by “messenger”

particles that couple to the hidden sector, but also have SU(3)C × SU(2)L ×U(1)Y

interactions. Note that gravitational communication between the MSSM and the

hidden sector is still present, but is subdominant compared to the gauge interaction

effects. The SUSY breaking terms in the MSSM Lagrangian result from loop-level

2A third scenario that is frequently mentioned in the literature is anomaly mediated SUSY-
breaking [381].
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interactions of the messenger particles with the MSSM and, depending on the mass

scale of the messenger fields, Mmess, the SUSY breaking scale can be much lower than

in gravity-mediated scenarios. An important phenomenological feature of gauge-

mediated SUSY breaking is that, if Mmess � MP , the gravitino is the lightest SUSY

particle, making it an excellent dark matter candidate (see Section 3.4.4).

Even though there is presently no consensus on the mechanism underlying spon-

taneous SUSY breaking, it is still possible to add terms to the MSSM Lagrangian

that explicitly break supersymmetry. As mentioned in Section 3.3, for SUSY to still

provide a solution to the hierarchy problem, the new SUSY breaking terms have

to be “soft” (of positive mass dimension). The set of additional Lagrangian terms

parameterising soft supersymmetry breaking can be written as

Lsoft =− 1

2

(
M1B̃B̃ +M2W̃W̃ +M3G̃G̃+ h.c.

)
−

(
ŨauQ̃Hu − D̃adQ̃Hd − ẼaeL̃Hd + h.c.

)
−

(
Q̃†m2

QQ̃+ L̃†m2
LL̃+ Ũ

†
m2

U
Ũ + D̃

†
m2

D
D̃ + Ẽ

†
m2

E
Ẽ

)
− (

m2
Hu

H∗
uHu +m2

Hd
H∗

dHd + (bHuHd + h.c.)
)
.

(3.17)

Lsoft consists of gaugino mass terms (first line), trilinear couplings between the Higgs

and the sfermions (second line), sfermion mass terms (third line) and Higgs mass

terms (fourth line). M1,M2,M3 are the Bino, Wino and gluino masses, respectively,

au, ad, ae are complex 3 × 3 matrices in family space and m2
Q,m

2
L,m

2
U
,m2

D
,m2

E

are hermitian 3 × 3 matrices in family space. The quantities m2
Hu

,m2
Hd

are real

squared-mass terms for Hu, Hd, while b is a complex bilinear coupling parameter.

As before, gauge and family indices are suppressed in Eq. (3.17). The sum of the

SUSY-preserving and the SUSY-breaking parts of the Lagrangian gives the full

Lagrangian for the MSSM.

The terms in Lsoft give masses to the sparticles that differ from the masses

of their SM partners, and thus explicitly break supersymmetry. The soft SUSY-

breaking part of the MSSM Lagrangian introduces a large number of additional

parameters that are not present in the SM. Specifically, there is a total of 105 free

parameters in the MSSM [239]. As a result, this model is extremely unattractive for

phenomenological studies. A large number of simplified MSSM scenarios, that lead

to a much smaller number of free parameters, have been proposed and are frequently

used to study SUSY phenomenology. Three of the most noteworthy models are:

• The constrained MSSM (cMSSM). This model, also known as minimal

SUGRA (mSUGRA), is the most widely studied model of supersymmetry. In
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the cMSSM, a drastic reduction of the number of free parameters is achieved

by making several strong theoretical assumptions. Namely, universality of

gaugino masses, scalar masses and trilinear couplings is imposed at the GUT

scale (or, less commonly, at MP )

M1 = M2 = M3 = m1/2,

m2
Q = m2

L = m2
U
= m2

D
= m2

E
= m2

0I3, m2
Hu

= m2
Hd

= m2
0,

au = A0yu, ad = A0yd, ae = A0ye.

(3.18)

In addition to m0, m1/2 and A0, one must specify the GUT-scale values of

the b and μ parameters. In fact, using conditions from electroweak symmetry

breaking (see Eq. (3.22) below), these two parameters can be exchanged for

the mass of the Z boson, mZ , and tan β (the ratio of the two Higgs vacuum

expectation values, see Section 3.4.3 below), that are defined at the electroweak

scale; note that this procedure leaves the sign of μ undetermined. Therefore,

the cMSSM can be described in terms of only five free parameters:

m0,m1/2, A0, tan β, sgn(μ). (3.19)

The low-energy (electroweak scale) values of the SUSY quantities of inter-

est can be obtained from the high-energy parameters m0, m1/2, A0 using the

Renormalisation Group Equations (RGEs), that describe the evolution of cou-

plings and masses with the energy scale. While the cMSSM is certainly not the

most realistic SUSY scenario, its low dimensionality has made this model an

extremely popular framework for exploring SUSY phenomenology. However,

the cMSSM has been placed under strong pressure by recent null searches by

the Large Hadron Collider (LHC) and dark matter experiments, as we will

demonstrate in Chapter 7.

• The Non-Universal Higgs Model (NUHM). The NUHM is based on the

same universality conditions as the cMSSM (see Eq. (3.18)), with the exception

that the universality of scalar masses is relaxed by decoupling the Higgs sector

masses mHu ,mHd
from the squark and slepton masses. As a result, the NUHM

is described by seven free parameters:3

m0,m1/2, A0, tan β,mHu ,mHd
, sgn(μ). (3.20)

3In the literature this is sometimes referred to as the NUHM2. This is usually in comparison
with the NUHM1, where mHu = mHd

is assumed.
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Using the conditions of electroweak symmetry breaking, the parameters mHu

and mHd
can be replaced by μ and the mass of the pseudoscalar Higgs mA0

(see Section 3.4.3 below), which are more directly related to the model phe-

nomenology. The larger number of free parameters in the NUHM compared to

the cMSSM leads to a richer phenomenology, so that this model has become

a popular alternative (or addition) to studies of the cMSSM.

• The phenomenological MSSM (pMSSM). The caveat of studying models

such as the cMSSM and the NUHM is that the applied high-energy boundary

conditions could be incorrect, so that conclusions from phenomenological stud-

ies of these models may not be applicable. The MSSM phenomenology can be

explored in a more model-independent fashion by studying the pMSSM. The

pMSSM is a subspace of the general MSSM that is defined at low energies,

and therefore does not include any assumptions about GUT-scale physics. The

pMSSM is not a single model, but rather a class of models that are designed to

capture some or most of the phenomenology of the general MSSM. The number

of free parameters can vary from several tens of parameters to as little as five

parameters, although in the literature the term “pMSSM” sometimes refers to

a particular 19-dimensional model [242]. The reduction of the parameter num-

ber is achieved by imposing a range of reasonable constraints on the MSSM.

In particular, the 19-dimensional pMSSM is defined by the assumptions of CP

conservation, minimal flavour violation, universality of the first and second

generation sfermion masses and negligible first and second generation trilinear

couplings. As a result, this model is completely described by a set of 19 TeV-

scale parameters, namely ten sfermion mass parameters, three gaugino mass

parameters, three trilinear couplings and three Higgs-sector parameters:

mQ1 ,mQ3 ,mŪ1
,mŪ3

,mD̄1
,mD̄3

,mL1 ,mL3 ,mĒ1
,mĒ3

;

M1,M2,M3; Ab, Aτ , At; μ,mA0 , tan β.
(3.21)

This set of parameters captures most of the phenomenological features of the

general R-parity conserving MSSM.

Studying the phenomenology of SUSY and supersymmetric dark matter in the

cMSSM, the NUHM and a 15-dimensional pMSSM is the subject of Chapters 7, 8

and 9, respectively.
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3.4.3 Electroweak symmetry breaking and the MSSM mass

spectrum

ElectroWeak Symmetry Breaking (EWSB) in the MSSM differs somewhat from the

SM mechanism described in Section 2.1, due to the presence of two Higgs doublets.

However, as in the SM, the minimum of the scalar potential V for the MSSM

Higgs fields breaks electroweak symmetry down to electromagnetism, SU(2)L ×
U(1)Y → U(1)EM . The sum of the vacuum expectation values vu ≡ 〈H0

u〉 and

vd ≡ 〈H0
d〉 is fixed by the Z boson mass and the electroweak gauge couplings, while

the ratio tan β ≡ vu/vd remains a free parameter. The two minimisation conditions

∂V/∂H0
u = ∂V/∂H0

d = 0 impose conditions on the model parameters μ, b,m2
Hu

and

m2
Hd

μ2 =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2

Z ,

2b

sin(2β)
= m2

Hd
+m2

Hu
+ 2μ2.

(3.22)

As mentioned above, using the EWSB conditions the parameters b and |μ| can be

eliminated in favour of tan β and mZ , which has been determined experimentally to

high precision; the sign of μ remains undetermined. A more detailed description of

EWSB in the MSSM is beyond the scope of this thesis; for further details see e.g.

Chapter 8 in Ref. [348].

Following EWSB, mixing between MSSM particles with the same electric

charge, colour, R-parity and spin can occur. As a result, the physical mass eigen-

states generally differ from the gauge eigenstates. The MSSM mass eigenstates

(excluding the SM particles) are given in Table 3.2. In the following we provide

further details on the physical particles of the MSSM.

The Higgs sector

EWSB has important consequences for the MSSM Higgs sector. The Higgs sector

consists of two complex SU(2)L doublets, corresponding to eight degrees of freedom.

After H0
u and H0

d acquire vacuum expectation values, three of these degrees of free-

dom become the longitudinal modes of the W± and Z bosons, in analogy to the SM

Higgs mechanism described in Section 2.1. The remaining degrees of freedom lead to

two charged scalar particles H±, two CP-even neutral Higgs bosons h0, H0 and one

CP-odd neutral Higgs boson A0. In particular, the mass of the pseudoscalar Higgs

A0 is given by m2
A0 = 2b/ sin(2β). Therefore, as pointed out above, the high-energy

input parameters mHu and mHd
can be replaced by μ and mA0 using the EWSB
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Names Spin Gauge Eigenstates Mass Eigenstates

sleptons 0

ẽL ẽR ν̃e same

μ̃L μ̃R ν̃μ same

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

squarks 0

ũL ũR d̃L d̃R same

c̃L c̃R s̃L s̃R same

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

Higgs bosons 0 H0
u H0

d H+
u H−

d h0 H0 A0 H±

neutralinos 1/2 B̃0 W̃ 0 H̃0
u H̃0

d χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4

charginos 1/2 W̃± H̃+
u H̃−

d χ̃±1 χ̃±2
gluino 1/2 G̃ same

Table 3.2: Gauge and mass eigenstates of the undiscovered particles in the MSSM.

conditions given in Eq. (3.22).

By convention, mh0 < mH0 , so that h0 is the lightest Higgs boson in the MSSM.

This particle is of particular interest, because, in contrast to mH0 ,mA0 ,mH± , the

mass of h0 is bounded from above. At tree level

mh0 ≤ mZ |cos(2β)|. (3.23)

Of course, mh0 ∼ mZ is in gross violation of the LHC measurement of the Higgs

mass, mh ≈ 126 GeV [208, 216]. However, mh0 can obtain sizeable contributions

from quantum corrections, typically involving top-quark and top-squark one-loop

diagrams, that can lead to values of mh0 in agreement with the experimental mea-

surement. In particular, in the decoupling limit, mA0 � mZ , the particles H0,

A0 and H± are significantly heavier than h0 and almost completely decouple from

low-energy physics. In this limit, the lightest Higgs mass reaches its upper bound

mh0 � mZ |cos(2β)| and the properties of h0 are almost identical to the proper-

ties of the SM Higgs boson. In this case, for reasonably large tanβ, the one-loop

contribution to mh0 is given by [300]

Δm2
h0 ∝ ln

(
M2

S

m2
t

)
+ x2

t

(
1− x2

t

12

)
, (3.24)

with MS ≡
√
(m2

t̃1
+m2

t̃2
)/2 and xt ≡ Xt/MS, where Xt = At − μ cot β is the stop

mixing parameter and At is the trilinear coupling in the stop sector.
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The neutralino and chargino sector

Following EWSB, the neutral Higgsinos and gauginos (B̃0, W̃ 0, H̃0
u, H̃

0
d) mix to form

four mass eigenstates called neutralinos χ̃0
i (i = 1, 2, 3, 4). Likewise, the charged

Higgsinos and gauginos (W̃±, H̃+
u , H̃

−
d ) can mix to form two mass eigenstates with

charge ±1, known as charginos χ̃±i (i = 1, 2). We adopt the convention that

mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
and mχ̃±

1
< mχ̃±

2
, so that mχ̃0

1
(mχ̃±

1
) always is the

lightest neutralino (chargino). The lightest neutralino is of particular interest in the

context of this thesis, since it is a popular supersymmetric dark matter candidate

(see Section 3.4.4 below). In the basis Ψ0 = (B̃0, W̃ 0, H̃0
u, H̃

0
d) the neutralino mass

matrix is given by

Mχ̃0 =

⎛⎜⎜⎜⎜⎜⎝
M1 0 −mZcβsθW mZsβsθW

0 M2 mZcβcθW −mZsβcθW
−mZcβsθW mZcβcθW 0 μ

mZsβsθW −mZsβcθW μ 0

⎞⎟⎟⎟⎟⎟⎠ , (3.25)

where θW is the weak mixing angle and we have used the abbreviations sα ≡ sinα,

cα ≡ cosα (for α = β, θW ). The matrixMχ̃0 can be diagonalised by a unitary matrix

N, so that N∗Mχ̃0N−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
), leading to mass eigenstates

χ̃0
i = NijΨ

0
j . In particular,

χ̃0
1 = N11B̃

0 +N12W̃
0 +N13H̃

0
u +N14H̃

0
d , (3.26)

where N1j primarily depend on the parameters M1,M2, μ and, to a lesser extent,

tan β. The values of these parameters have a strong impact on the properties of

the lightest neutralino: for M1 < M2, μ, χ̃0
1 is Bino-like, for M2 < M1, μ, χ̃0

1 is

Wino-like, and for μ < M1,M2, χ̃
0
1 is Higgsino-like. Therefore, the relative values of

M1,M2, μ can have important phenomenological consequences. A Bino- or Wino-like

lightest neutralino corresponds to a large gaugino fraction gf ≡ |N11|2 + |N12|2 ∼ 1.

In contrast, if χ̃0
1 is Higgsino-like, gf is small, and instead the Higgsino fraction

hf ≡ |N13|2 + |N14|2 = 1− gf is close to unity.

The physical chargino states can be determined using a similar procedure. The

properties of the chargino mass eigenstates χ̃±1,2 depend on the values of M2, μ

and tan β, and, in most supersymmetric scenarios, χ̃±1,2 are nearly pure Winos and

Higgsinos, with χ̃±1 Wino-like (Higgsino-like) for M2 < μ (M2 > μ). We omit a

detailed analysis of the chargino spectrum, which is of limited importance for the

work presented in this thesis.
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The sfermion sector and the gluino

In principle, all of the charged sleptons (ẽL, ẽR, μ̃L, μ̃R, τ̃L, τ̃R), up-type squarks

(ũL, ũR, c̃L, c̃R, t̃L, t̃R) and down-type squarks (d̃L, d̃R, s̃L, s̃R, b̃L, b̃R) could mix with

each other, since they share the same electric charge and colour quantum numbers.

The same is true for the three sneutrinos (ν̃e, ν̃μ, ν̃τ ). However, significant inter-

family mixing for the squarks and sleptons is forbidden in the MSSM, since such

mixing would lead to large flavour-changing neutral currents that are experimen-

tally excluded. Left-right mixing is allowed, but is typically negligible for the first

two sfermion families. In contrast, mixing of b̃ squarks, t̃ squarks and τ̃ sleptons

can be appreciable, leading to mass eigenstates (b̃1, b̃2), (t̃1, t̃2) and (τ̃1, τ̃2). As a

result of stop and sbottom mixing effects, the lighter stop and sbottom, t̃1 and b̃1,

are expected to be the lightest squarks. Likewise, in most models τ̃1 is the lightest

charged slepton. The particle τ̃1 (and, to a lesser extent, t̃1) is of particular interest,

since it frequently acts as the next-to-lightest supersymmetric particle, and as such

can play an important role in co-annihilation interactions in the early Universe.

The gluino is unique in the sense that, as a colour octet fermion, it can not mix

with any other MSSM particles. In many MSSM scenarios, including mSUGRA-

type models, the gluino mass is related to M1 and M2, and is generally expected to

be considerably heavier than the the neutralinos and charginos.

The squarks and the gluino are primary targets of LHC searches for SUSY, as

will be discussed in more detail in Chapter 4. The lack of direct evidence for SUSY

at the LHC places strong constraints on their allowed masses, which in turn can

have important (model-dependent) consequences for the phenomenology of super-

symmetric dark matter (see Chapters 7–9).

3.4.4 Supersymmetric dark matter

Now that we have introduced the mass spectrum of the MSSM, we can evaluate the

suitability of the new supersymmetric particles as dark matter candidates. Of central

importance for the viability of supersymmetric dark matter is the conservation of

R-parity, see Eq. (3.16). Since all SUSY particles have PR = −1, sparticle decays

must always lead to an odd number of lighter sparticles. In particular, this implies

that the Lightest Supersymmetric Particle (LSP) has no allowed decay channels, and

thus is absolutely stable. Therefore, if the LSP is neutral and weakly interacting it

is an excellent dark matter candidate.

Given these requirements, three obvious supersymmetric dark matter candi-

dates are the lightest sneutrino, the gravitino and the lightest neutralino. While
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3.4 The Minimal Supersymmetric Standard Model

sneutrinos are weakly-interacting and electrically neutral, they also have large scat-

tering cross-sections with nucleons, so that the possibility of sneutrinos making up

the dominant component of dark matter has been ruled out by dark matter direct

detection experiments [258]. Gravitino dark matter (see Section 4.1) remains a vi-

able possibility, and almost certainly is the LSP in gauge-mediated SUSY breaking

models. However, as the gravitino only interacts via gravity, detection prospects for

this particle are slim, so that gravitino dark matter is of limited interest from the

phenomenological point of view. The lightest neutralino χ̃0
1 is the most popular dark

matter candidate in the MSSM (as well as more general models of R-parity conserv-

ing supersymmetry). It is the LSP in a large portion of the MSSM parameter space,

and has roughly the right mass and interaction strength to be the dark matter. In

the studies of supersymmetric dark matter presented in the following chapters, we

focus on the case where the lightest neutralino is the LSP. In particular, studying

the properties and composition of neutralino dark matter in the context of specific

supersymmetry models is one of the main aims of Chapters 7–9.
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Chapter 4

Experimental search methods

4.1 Overview

Despite the compelling evidence for dark matter from observations on astrophysical

and cosmological scales (see Section 2.3), ultimate proof of the cold dark matter

paradigm requires a clear signature of the dark matter particle in one or more

(astro-)particle physics experiments. In this chapter we give an overview of the

main techniques used to search for dark matter and present current constraints on

the dark matter properties from different experimental probes. In particular, we

concentrate on the search for Weakly Interacting Massive Particles (WIMPs, see

Chapter 3), which are the main focus of the research presented in this thesis.

Strategies to search for WIMP dark matter can be split into three broad cate-

gories. If the dark matter particle interacts with Standard Model (SM) particles by

the weak force, the WIMP-nucleon scattering cross-section should be of order the

weak scale. Direct detection experiments aim to detect WIMPs by observing nuclear

recoils triggered by WIMP-nucleus scattering events in large-volume low-background

terrestrial detectors. Similarly, if WIMPs were produced thermally in the early uni-

verse, they should possess a weak-scale annihilation cross-section. Indirect detection

experiments search for the SM products of dark matter self-annihilation interactions.

Finally, WIMPs of mass mχ ∼ O(100) GeV can in principle be produced and stud-

ied in high-energy collider experiments. In particular, if weak-scale SUperSYmmetry

(SUSY) is realised in nature, the Large Hadron Collider (LHC) at CERN should be

able to detect signatures of supersymmetric particles, and study the properties of

the Lightest Supersymmetric Particle (LSP) (and equivalently for WIMP candidates

predicted by other theories of physics beyond the Standard Model).

Several other competitive dark matter probes exist, such as for example mod-

ifications of the CMB anisotropies by particle injection from dark matter annihi-
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lations [368, 342], or “dark stars”, giant stars that are supported by dark matter

annihilation instead of nuclear fusion (e.g. Refs. [409, 319]). However, in this chapter

we focus on direct detection, indirect detection and collider searches, which are of

greatest relevance for the work presented in this thesis. We review the theoretical

framework for each of these search strategies, give an overview of the most relevant

experimental efforts and present current constraints on the dark matter properties.

We also discuss anomalies observed by both direct and indirect detection experi-

ments that have been interpreted as possible dark matter signatures (meanwhile,

most results from collider experiments are in frustratingly good agreement with the

SM predictions). For further information on these topics we refer the reader to

one of the many great reviews of particle dark matter, see e.g. Refs. [152, 324];

additionally, a detailed overview of dark matter detection methods can be found

in Refs. [144, 361, 263]. We describe direct and indirect detection methods in Sec-

tions 4.2 and 4.3, respectively, followed by a discussion of collider searches for dark

matter and SUSY in Section 4.4. Finally, Section 4.5 addresses the complementarity

of different dark matter searches and introduces the concept of global fits analyses

of SUSY models.

4.2 Direct detection

According to the dark matter paradigm introduced in Section 2.3, the halo of the

Milky Way is filled with dark matter particles. As our Solar System moves through

the galactic halo, there is a constant flux φ ∼ n〈v〉 of dark matter particles streaming

through the Earth, where 〈v〉 is the average speed of dark matter particles relative

to the Earth and n = ρ0/mχ is the dark matter number density, with ρ0 the local

density of dark matter and mχ the dark matter mass. As we will see in Section 4.2.3,

a reasonable estimate for the local density is ρ0 ∼ 0.3 GeV cm−3. Assuming a dark

matter mass mχ = 100 GeV and approximating 〈v〉 ∼ 230 km s−1 (the local circular

speed, see Section 4.2.3 below), we obtain a flux φ ∼ 7 × 104 cm−2 s−1. Therefore,

a large number of dark matter particles are passing through the Earth each second

and, provided that the dark matter is weakly interacting, some of these particles

will occasionally interact with atomic matter via elastic scattering.1 Direct detection

experiments aim to detect WIMPs in the galactic halo by observing nuclear recoils

resulting from these WIMP-nucleus elastic scattering events.

In the following, we provide details about the the event rate of WIMP-nucleus

1Although inelastic scattering of WIMPs is also a viable possibility, we only consider elastic
scattering on nuclei in this chapter.
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4.2 Direct detection

elastic scattering, followed by a description of the fundamental interactions between

WIMPs and atomic nuclei, and a discussion of the local astrophysics of WIMPs. We

conclude the section with an overview of current experimental efforts.

4.2.1 Elastic scattering event rate

The recoil energy ER transferred from the WIMP to the target nucleus in an elastic

scattering interaction can be found using energy-momentum conservation and the

fact that WIMPs travel at non-relativistic speeds v � c. It is given by

ER =
μ2
Nv

2(1− cos(θ))

mN

, (4.1)

where mN is the mass of the target nucleus, v is the WIMP speed in the detec-

tor rest frame, θ is the scattering angle in the centre-of-mass frame and μN =

mχmN/(mχ +mN) is the WIMP-nucleus reduced mass. The WIMP-induced recoil

energies are small, ER
<∼ 100 keV, and, due to the weak-scale scattering cross-section

of WIMPs with atomic matter, these interactions are rare, which makes their de-

tection a challenging task. Reliable background rejection is crucial, and in order to

eliminate as many backgrounds as possible direct detection experiments are placed

deep underground.

The differential event rate for WIMP-nucleus elastic scattering, usually given

in units of events per unit energy per unit time per unit target material mass, has

the form
dR

dER

(ER) =
ρ0

mχmN

∫
v>vmin

d3�v
dσ

dER

vf (�v + �vE), (4.2)

where σ is the WIMP-nucleus scattering cross-section, f(�u) is the normalized local

WIMP velocity distribution function in the rest frame of the galaxy, �vE is the velocity

of the Earth in this frame and �v is the WIMP velocity in the rest frame of the Earth.

The quantity vmin is the minimum velocity required for a WIMP of mass mχ to be

able to induce a nuclear recoil of energy ER, which can be found from Eq. (4.1)

vmin =

√
mNER

2μ2
N

. (4.3)

In addition to the WIMP particle physics properties (mχ, σ) and the local dark

matter astrophysics (ρ0, f (�v + �vE)), the differential event rate in Eq. (4.2) depends

on the target material viamN , vmin and the form factor F(q) which enters in dσ/dER

(see below). As a result, the capability of a direct detection experiment to observe

62



4.2 Direct detection

scattering of a WIMP with certain properties can vary strongly with the choice of

target nucleus.

The total number of recoil events NR observed by a direct detection experiment

is obtained by multiplying the nuclear recoil rate in Eq. (4.2) by the effective expo-

sure εeff(ER), and integrating from the threshold energy Ethr of the experiment to

some maximum energy Emax

NR =

∫ Emax

Ethr

dER εeff(ER)
dR

dER

(ER). (4.4)

The effective exposure includes both the event acceptance and the experimental

exposure (the product of the detector mass and the operation time). The number of

events NR and the energy spectrum of these events are the key observables in direct

detection searches, from which the fundamental WIMP properties (mχ and σ) can

be reconstructed.

4.2.2 WIMP-nucleus interaction

The interactions between WIMPs and atomic nuclei are included in the differential

WIMP-nucleus elastic scattering cross-section dσ/dER. This quantity depends fun-

damentally on the interaction strength of WIMPs with quarks and gluons. Given

an underlying particle physics model, the coefficients in an effective Lagrangian for

the WIMP-quark and WIMP-gluon interactions can be obtained by evaluating the

corresponding Feynman diagrams. From these microscopic interactions, the WIMP-

nucleon cross-section can be determined. This requires knowledge of the matrix el-

ements of the quark and gluon operators in a nucleon state. These hadronic matrix

elements have been extracted from experimental measurements, but remain subject

to significant uncertainties (see below). Finally, the total differential WIMP-nucleus

cross-section can be calculated by evaluating the matrix elements of the obtained

nucleon operators in the nuclear state. This step leads to a form-factor suppression,

encoded in the nuclear form factor F(q), where q =
√
2mNER is the momentum

transferred in the nuclear recoil. F(q) accounts for the finite extent and composite

nature of the atomic nucleus. Specifically, it reduces the cross-section for heavy

WIMPs and heavy target nuclei that lead to a large momentum transfer, corre-

sponding to a wavelength h/q that is no longer large compared to the radius of the

nucleus.

In general, dσ/dER includes several different types of WIMP-nucleon interac-
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tions. It is often convenient to separately discuss spin-independent (scalar2) interac-

tions, for which the WIMP couples to the mass of the nucleus, and spin-dependent

(axial-vector) interactions, for which the WIMP couples to the spin of the nucleus.

The differential WIMP-nucleus cross-section can then be written as

dσ

dER

=
mN

2v2μ2
N

(
σSD
N F2

SD(ER) + σSI
N F2

SI(ER)
)
, (4.5)

where σSD
N and σSI

N are the spin-dependent and spin-independent WIMP-nucleus

cross-sections at zero momentum transfer, respectively, and F2
SD,SI are the cor-

responding nuclear form factors. Therefore, the first (second) term in brackets

corresponds to the spin-dependent (spin-independent) contribution to the total dif-

ferential cross-section.

Spin-dependent interaction

The spin-dependent interaction for a fermonic WIMP χ, such as the lightest neu-

tralino in SUSY theories, is given by the Lagangian term LSD = λSD
q χ̄γμγ5χq̄γμγ5q.

Following the procedure outlined above, the cross-section at zero momentum transfer

is found to be

σSD
N =

32G2
Fμ

2
N

π

J + 1

J
(ap〈Sp〉+ an〈Sn〉)2 , (4.6)

where J is the total angular momentum of the target nucleus N , 〈Sp(n)〉 =

〈N |Sp(n)|N〉 is the expectation value of the total spin of protons (neutrons) in N

and

ap(n) =
∑

q=u,d,s

λSD
q√
2GF

Δp(n)
q . (4.7)

Here, the quantities Δ
p(n)
q are related to the matrix elements of the quark axial-vector

current in a nucleon, 〈p|q̄γμγ5q|p〉 = 2spμΔ
p
q and 〈n|q̄γμγ5q|n〉 = 2snμΔ

n
q , with s

p(n)
μ

the spin of the proton (neutron). Δ
p(n)
q contain information about the quark spin

content of the nucleons, and are only significant for q = u, d, s. Given the quark

composition of protons and neutrons, one can see that Δp
u = Δn

d , Δ
p
d = Δn

u and

Δp
s = Δn

s , so that there are three independent quantities encoding the spin content

of nucleons. A recent lattice QCD estimation of the axial-vector matrix elements

gave Δp
u = 0.787± 0.158, Δp

d = −0.319± 0.066 and Δp
s = 0.020± 0.011 [123]. While

some residual uncertainties remain (in particular on Δp
s), these values are broadly

2ForWIMPs that are not Majorana particles, an additional contribution to the spin-independent
WIMP-nucleus cross-section may arise from vector interactions with the target nuclei. We do not
further discuss this type of interaction, as such WIMP candidates are not the focus of this thesis.

64



4.2 Direct detection

compatible with results from experimental collaborations investigating the internal

spin structure of nucleons, see e.g. Ref. [75] for a detailed overview.

At nonzero momentum transfer, the form factor suppression has to be taken

into account. The nuclear form factor for spin-dependent interactions is given by

F2
SD(q) = S(q)/S(0). (4.8)

Here,

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q), (4.9)

with a0 = ap+an and a1 = ap−an the isoscalar and isovector couplings, respectively.

The quantities Sij(q) are three independent form factors that can be calculated from

detailed nuclear models.

Theoretical uncertainties enter in the calculation of the spin-dependent contri-

bution to the total WIMP-nucleus cross-section both via the spin content parameters

Δp
u,d,s (see above), and from nuclear physics. In particular, depending on the target

nucleus, sizeable uncertainties can arise in the calculation of both S(q) and 〈Sp(n)〉.

Spin-independent interaction

The spin-independent interaction arises from Lagrangian terms such as LSI =

λSI
q χ̄χq̄q. The corresponding spin-independent cross-section at zero momentum

transfer can be written in terms of the mass number of the nucleus A, its atomic

number Z, and the effective coupling of the WIMP to the proton (neutron) fp(n)

σSI
N =

4μ2
N

π
(Zfp + (A− Z)fn)

2, (4.10)

with
fp
mp

=
∑

q=u,d,s

λSI
q

mq

f p
Tq

+
2

27
f p
TG

∑
q=c,b,t

λSI
q

mq

, (4.11)

and equivalently for fn. Here, f p
Tq

are related to the matrix elements of the quark

operators in the proton state 〈p|mq q̄q|p〉 = mpf
p
Tq

(for q = u, d, s), and thus param-

eterise the contributions of the light quarks to the proton mass. The second term in

Eq. (4.11) comes from the interaction of the WIMP with the gluon scalar density in

the proton, with 〈p|mq q̄q|p〉 = 2
27
mpf

p
TG (for q = c, b, t), and f p

TG = 1−∑
q=u,d,s f

p
Tq
.

The quantities f p
Tu
, f p

Td
and f p

Ts
are associated with sizeable uncertainties. The

hadronic matrix elements can not be measured directly, and there are two main

approaches towards calculating f p
Tu,d,s

. One possibility is to derive their values from

experimental determinations of the pion-nucleon sigma term σπN , which can be ob-
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tained from partial wave and dispersion relation analyses of pion-nucleon scattering

data. Alternatively, f p
Tu,d,s

can be obtained from lattice QCD computations. The

values of σπN extracted from pion-nucleon data can differ strongly, and range from

very large values σπN = (64 ± 8) MeV [372, 254] (George Washington University

(GWU)/TRIUMF group) to relatively small values σπN = (44 ± 12) MeV [411]

(CHAOS group). In contrast, results from different lattice QCD computations tend

to be in good agreement, and lead to a relatively small pion-nucleon sigma term. For

example, Ref. [384] obtained σπN = (43± 6) MeV from a simultaneous fit of lattice

QCD data from several collaborations, leading to f p
Tu

= f p
Td

= 0.0457± 0.0065 [384];

a recent average of different lattice QCD calculations of the strange quark ma-

trix element is f p
Ts

= 0.043 ± 0.011 [325]. This can be compared to the values

of f p
Tu,d,s

computed from the GWU/TRIUMF group σπN determination, fTu =

0.02698±0.00395 [254], fTd
= 0.03906±0.00513 [254] and fTs = 0.363±0.119 [254].

As can be seen, for fTu and fTd
, estimates from the two approaches are in rea-

sonably good agreement, while results for f p
Ts

differ strongly. The uncertainties on

fTu , fTd
and, in particular, f p

Ts
enter in the computation of the spin-independent

WIMP-proton elastic scattering cross-section via Eqs. (4.10) and (4.11), and, for

example, can significantly affect the constraints derived on the parameters of super-

symmetry models from direct detection data sets [254, 389], as will be investigated

in Chapter 7.

For most WIMP candidates the coupling to protons and neutrons is very similar,

so that in the literature it is commonly assumed that fp ≈ fn. The expression for

the spin-independent WIMP-nucleus cross-section in Eq. (4.10) then simplifies to

σSI
N =

4

π
μ2
NA

2f 2
p . (4.12)

In analogy to this expression, one can define the spin-independent WIMP-proton

cross-section

σSI
p =

4

π
μ2
pf

2
p , (4.13)

where μp = mχmp/(mχ +mp) is the WIMP-proton reduced mass.

Finally, a common choice for the spin-independent nuclear form factor FSI(q)

is the Helm form factor [337]

FSI(q) = 3
sin(qr)− (qr)cos(qr)

(qr)3
exp

(
−(qs)2

2

)
, (4.14)

where s = 0.9 fm, r =
√
c2 + 7π2a2/3− 5s2, a = 0.52 fm and c = (1.23A1/3−0.6) fm.

We adopt this expression for FSI(q) throughout this thesis.
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As can be seen from Eq. (4.12), σSI
N scales as the square of the nucleon number.

In contrast, the spin-dependent cross-section, given in Eq. (4.6), does not directly

depend on A, and instead is proportional to (J + 1)/J . Therefore, in general, the

spin-independent interaction provides the main contribution to dσ/dER for heavy

targets A >∼ 20, while the spin-dependent interaction dominates for low-mass targets

with unpaired protons or neutrons. In particular, for target nuclei such as xenon and

(to a lesser extent) germanium, for which A � 20, the spin-dependent contribution

can often be neglected. In this case, assuming fp ≈ fn, the differential event rate in

Eq. (4.2) is given by

dR

dER

(ER) =
ρ0σ

SI
p A2F2

SI(ER)

2μ2
pmχ

∫
v>vmin

d3�v
f (�v + �vE)

v
, (4.15)

where we have used Eqs. (4.5), (4.12) and (4.13). This expression for the event rate

is adopted in Chapters 6, 7 and 8.

4.2.3 Dark matter distribution

The direct detection event rate, given in Eq. (4.2), depends on the local astrophysics

of dark matter via the WIMP velocity distribution f(�u) and the local WIMP density

ρ0 ≡ ρ(r = R0), where R0 = 8.0 ± 0.5 kpc is the solar radius [383]. The local

density of WIMPs can be constrained using measurements of the spatial distribution

and kinematics of stars near the Sun, which provide information about the local

gravitational potential, see e.g. Refs. [165, 437] for recent results. An alternative

approach is to construct a mass model of the Milky Way Galaxy, which describes

the density distribution of the different galactic components, namely the bulge, the

disc and the dark matter halo. Using a range of dynamical observables that probe

the galactic rotation curve, the parameters of this model can be constrained, and an

estimate of the value of ρ0 can be derived (e.g. Refs. [185, 350]). For further details

on the different efforts to measure ρ0, see the review in Ref. [382].

Direct detection exclusion limits on the WIMP parameters have traditionally

been derived using a local density ρ0 = 0.3 GeV cm−3. However, the calculated

values of ρ0 can differ strongly depending on the assumptions made about the Milky

Way mass model, the dynamical observables and/or the stellar kinematics (see e.g.

Table 4 in Ref. [382]), and in recent years several studies have favoured larger values

ρ0 >∼ 0.4 GeV cm−3 [185, 369, 350]. Since the nuclear recoil event rate is directly pro-

portional to ρ0, this uncertainty in the local WIMP density translates directly into

an uncertainty in the WIMP constraints derived from direct detection experiments.
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The second astrophysical component that enters in the event rate is the WIMP

velocity distribution function in the rest frame of the Galaxy f(�u). The Standard

Halo Model (SHM) predicts an isothermal, spherically symmetric galactic WIMP

distribution, with WIMP velocities that follow a non-rotating isotropic Maxwellian

distribution

f(�u) ∝ exp

(
−|�u|2
2σ2

)
, (4.16)

where σ is the one-dimensional velocity dispersion, which, in the SHM, is related

to the local circular speed v0, σ
2 = v20/2. In practice, WIMPs travelling at very

high velocities will escape the gravitational attraction of the galaxy and will not be

present in the halo, so that the WIMP velocity distribution should be truncated at

the local escape speed vesc. Therefore, a popular choice for the velocity distribution

is a Maxwell-Boltzmann distribution with a one-dimensional velocity dispersion σ =

v0/
√
2, truncated at the escape velocity

f(u) =

{
N−1

1

v30π
3/2 exp

(
−u2

v20

)
, for u < vesc

0 otherwise,
(4.17)

with N1 a normalization factor given by

N1 = erf

(
vesc
v0

)
− 2vesc√

πv0
exp

(
−v2esc

v20

)
. (4.18)

Both vesc and v0 are not precisely known, and estimates of these quantities can

differ by several tens of km/s. Unless stated otherwise, in the following we use

vesc = 544 km/s [406] and v0 = 230 km/s [370].

An alternative expression for the WIMP velocity distribution function, intro-

duced in Ref. [339] as an Ansatz that manages to reproduce the phase space structure

of dark matter halos in N-body simulations, is given by

f(u) =

⎧⎨⎩ N−1
2

v30π
3/2

[
exp

(
v2esc−u2

kv20
− 1

)]k
, for u < vesc

0 otherwise.
(4.19)

Here, N2 is a normalisation constant that depends on the value of the shape param-

eter k. For example,

N2(k = 1) = exp

(
v2esc
v20

)(
erf

(
vesc
v0

)
− 4√

π

(
vesc
2v0

+
v3esc
3v30

)
exp

(
−v2esc

v20

))
. (4.20)

This choice of f(u) predicts a smaller number of high-velocity WIMPs than the
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Maxwellian distribution in Eq. (4.17), and thus leads to a lower direct detection

event rate. Note that, for the Maxwellian distribution, the velocity integral in

Eq. (4.2) can be evaluated analytically; see e.g. Ref. [349] for the full analytical

expression. In contrast, for the expression in Eq. (4.19), the integral must in general

be computed numerically. In practice, while both Eq. (4.17) and Eq. (4.19) are

reasonable approximations, the true WIMP velocity distribution function remains

unknown, and likely differs from these expressions.

For direct detection experiments, the velocity of interest is the WIMP-nucleon

relative velocity, which is equivalent to the WIMP velocity in the rest frame of the

Earth �v = �u−�vE, as to a good approximation the nucleons are at rest in this frame.

The Earth’s velocity with respect to the galactic rest frame is given by the sum of

the velocity of the local standard of rest �vlsr (with �vlsr = (0, v0, 0)), the peculiar

velocity of the Sun �vpec and the Earth’s velocity relative to the Sun �vorb

�vE = �vlsr + �vpec + �vorb. (4.21)

The motion of the Earth around the Sun is time-dependent �vorb = �vorb(t), which

in turn causes �vE to change in time, as the Earth’s motion comes in and out of

alignment with the motion of the Sun. When �vorb is most closely aligned with the

Sun’s motion �vlsr+�vpec, the velocities of WIMPs in the Earth’s rest frame are shifted

towards larger values; likewise, when �vorb and �vlsr + �vpec are minimally aligned, the

WIMP velocities are reduced. Therefore, the Earth’s motion around the Sun leads

to an annual modulation of the differential event rate [248, 277], resulting in a larger

(smaller) number of high-energy events in the summer (winter).

A second characteristic WIMP signature that is of interest for direct detection

searches is the forward-backward asymmetry. The large speed at which the Solar

System moves through the galactic halo implies that the majority of the WIMP-

induced nuclear recoil events have a velocity vector pointing in the direction opposite

to this motion [408]. Due to the Earth’s rotation, the observed preferred recoil

direction is expected to oscillate over a sidereal day. The directional dependence of

the event rate can be searched for by measuring the direction of recoil events [227].

Both the annual modulation, and the forward-backward asymmetry can in prin-

ciple be observed in direct detection experiments, and several detectors are currently

searching for these signals (see Section 4.2.4); a convincing detection of one or both

of these signatures would provide powerful evidence for WIMPs in the galactic halo.

In the following chapters we focus on direct detection strategies that are based on

sophisticated background rejection techniques, and do not consider searches for the
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annual modulation or directional signatures on top of the background. In this case,

since the Earth’s orbital speed |�vorb| ∼ 30 km/s and the peculiar velocity of the Sun

|�vpec| ∼ 10 km/s are significantly smaller than |�vlsr| = v0 ∼ 230 km/s, the latter

two terms in Eq. (4.21) can be neglected, so that, to a reasonable approximation,

�vE � �vlsr. We adopt this approximation for the remainder of this thesis.

4.2.4 Experimental efforts

Direct detection is one of the most promising approaches towards the identification

of dark matter particles, and a considerable experimental effort is currently de-

voted to the direct search for WIMPs. Experiments differ in their search strategies

(background rejection, annual modulation, forward-backward asymmetry), detec-

tion techniques and target materials, which in turn lead to differences in threshold

energies, energy resolution and background rejection capabilities. These differences

across experiments are of vital importance, since they ensure that direct detection

searches are sensitive to a broad range of WIMP candidates. Most direct detection

experiments fall into one of three classes of detectors:

• Noble liquid experiments use target elements such as xenon, neon and ar-

gon. These elements are excellent targets for dark matter searches, allowing for

very massive detectors and good position reconstruction capabilities. Exam-

ples of noble liquid experiments include XENON10 [93, 103], ZEPLIN-III [79],

XENON100 [101, 102] and LUX [77]. These experiments currently place the

strongest limits on the spin-independent WIMP-proton cross-section.

• Cryogenic detectors operating at very low temperatures typically use target

materials such as germanium or silicon. These experiments have played a

major role in the direct search for WIMPs for several decades, largely due

to their low threshold energies and excellent energy resolution. Successful

implementations of this technique include CDMS-II [72], SuperCDMS [65],

EDELWEISS-II [114] and CRESST-II [95].

• Superheated liquid experiments currently provide some of the best direct

detection limits on the spin-dependent WIMP-proton cross-section. Energy

deposited in these detectors will lead to the formation of “bubbles” in the

material, that can be detected both visually and acoustically. Examples of

superheated liquid experiments include COUPP [135], PICASSO [110] and

SIMPLE [262]. The main target of these detectors is fluorine, due to its high

sensitivity to spin-dependent interactions.
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Additionally, scintillating crystals have been used in a small number of experiments;

an important example is DAMA/LIBRA [150], which uses a sodium iodide target.

Finally, several experiments for the directional detection of WIMPs, using different

target gases, are currently under development, see e.g. Ref. [68].

When a WIMP-nucleus scattering interaction takes place in one of these de-

tectors, the resulting nuclear recoil gives rise to a measurable light (scintillation),

charge (ionisation) and/or phonon (heat) signal. Complications arise due to the

presence of several different backgrounds, such as β- and γ-rays from radioactive

decays, and muon-induced neutrons. Therefore, the majority of direct detection ex-

periments measures two of these signal types, which allows for a powerful discrimina-

tion against background events. For example, the XENON100 and LUX experiments

detect scintillation and ionisation signals, CDMS-II and SuperCDMS measure heat

and ionisation charge, and CRESST-II measures scintillation and heat signals. Ex-

amples of experiments that only detect one type of signal include DAMA/LIBRA,

which is a scintillation experiment, and CoGeNT [30], a germanium experiment that

only measures ionisation charge.

In the last few years, several experiments have claimed the observation of a

potential WIMP signal. Both the DAMA/LIBRA and the CoGeNT collaborations

have reported an annual modulation of the measured event rate, compatible with

the modulation expected for WIMP scattering events. While the significance for the

CoGeNT annual modulation is relatively low, ∼ 2.8σ [31], DAMA/LIBRA observes

an annual modulation with an incredibly high significance of 9.3σ [150]. Further-

more, both CoGeNT [30, 32] and CRESST-II [95] reported an excess of events at low

energy, consistent with the signal expected for a light WIMP. In addition, an excess

of three events was found in CDMS-II Si data, that could be a signature of light dark

matter [64]. However, these signals are incompatible with null results from several

other experiments, including XENON10 [94], XENON100 [105], CDMS-II Ge [73],

SuperCDMS [63, 65] and LUX [77], as well as limits on the annual modulation of

the event rate from CDMS-II Ge [74]. These experiments remain in conflict with a

light WIMP interpretation of the excess events even when considering non-standard

interactions (momentum-dependent, isospin-violating, etc.) and changes in the halo

model [291, 236], raising doubt about the dark matter origin of these signals.

Therefore, despite many exciting hints, as of today no uncontroversial WIMP

signal has been observed. In Fig. 4.1 we show current upper limits in the WIMP mass

vs. cross-section plane for both spin-independent [77] (left) and spin-dependent [106]

(right) WIMP-proton interactions. The inset of the left-hand plot presents the sit-

uation for low-mass WIMPs; it displays the regions favoured when interpreting the
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Figure 4.1: Direct detection constraints on dark matter. The left-hand panel shows
90% CL upper limits for the spin-independent WIMP-proton scattering cross-section
(from Ref. [77]); the right-hand panel shows 90% CL exclusion limits on the spin-
dependent interaction (from Ref. [106]). The left-hand plot shows results from Edelweiss-
II (dark yellow line), CDMS-II (green line), ZEPLIN-III (magenta line), 100 live-days
of XENON100 data (orange line), 225 live-days of XENON100 data (red line) and LUX
(blue line). The inset additionally shows the regions favoured by CoGeNT (light red
shaded), CRESST-II (yellow shaded), DAMA/LIBRA (grey shaded) and CDMS-II Si
(green shaded, centroid marked by the green x), as well as the exclusion limit from a
low-threshold analysis of CDMS-II Ge data (upper green line).

excess signals described above in terms of light WIMPs, as well as some of the exclu-

sion limits constraining this portion of parameter space. As can be seen, the most

stringent limits on the spin-independent cross-section are set by the LUX collabora-

tion [77], followed by the upper limits from the XENON100 experiment [102, 105].

The tightest direct detection constraints on the spin-dependent WIMP-proton cross-

section are set by COUPP [135], PICASSO [110] and SIMPLE [262], depending on

the mass of the WIMP. Notice that for larger WIMP masses, the IceCube neutrino

observatory (an indirect detection experiment, see Section 4.3.2) places the tightest

constraints on the spin-dependent interaction.

Dark matter direct detection experiments are already sufficiently sensitive to

place constraints on SUSY parameter spaces. In particular, studying the impact of

limits from the XENON100 experiment (see left-hand panel of Fig. 4.1) on SUSY

models is one of the main topics of Chapters 7–9. The current controversy between

the excess of events reported by some collaborations and the lack of a signal in

other experiments will hopefully be resolved by future direct detection searches, such

as XENON1T [100], or SuperCDMS SNOLAB [392] (see Ref. [127] for a detailed

overview of future experimental efforts towards the direct detection of WIMPs). The

reconstruction of the WIMP properties using data sets from future direct detection

experiments is the main topic of Chapter 6.
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4.3 Indirect detection

In Section 3.2 we demonstrated that, if WIMPs are thermal relics, they should

possess a weak-scale annihilation cross-section, 〈σannv〉 ∼ O(10−26) cm3/s. While

WIMP pair-annihilation is strongly suppressed after freeze-out, WIMPs continue

to annihilate at a non-vanishing rate. The allowed annihilation channels are deter-

mined by the WIMP properties, but most WIMP candidates can annihilate into a

large range of SM particles, including leptons, quarks and bosons. Detecting the pri-

mary products (created directly in pair-annihilations χχ → SM SM) and secondary

products (produced in the decays of primary annihilation products) of WIMP self-

annihilation interactions is the aim of indirect detection experiments.3

Indirect detection of dark matter is complicated by large astrophysical uncer-

tainties. The WIMP annihilation rate is proportional to the square of the dark

matter density (see Eq. (4.22) below), so that the most promising targets for in-

direct searches are regions where the density of WIMPs is high. Typical examples

are the Sun, where the WIMP density is enhanced by gravitational capture, and

the Galactic Centre (GC). However, despite the WIMP density enhancement and

its relative proximity, the GC features large astrophysical backgrounds, which are

often poorly understood, and uncertainties in the the dark matter profile (see e.g.

Chapter 5 in Ref. [152]) can lead to differences of several orders of magnitude in

the expected annihilation flux [170]. Dwarf galaxies, which correspond to large

mass-to-light ratios, and regions just outside the GC, where backgrounds are better

understood [397], are promising alternative targets.

Indirect detection experiments observe the flux of SM particles from these re-

gions and search for signatures of dark matter annihilation that may be detectable

above the background. Among the WIMP annihilation products, neutral particles,

such as photons and neutrinos, are of particular interest, as they propagate freely

throughout the Galaxy, and thus point back to their astrophysical sources. Due to

their small astrophysical backgrounds, antimatter particles are another promising

target for dark matter searches. In the following, we discuss indirect detection of

dark matter via gamma-ray, neutrino and antimatter searches. Indirect detection

methods are somewhat less central to the work presented in this thesis than di-

rect detection and collider experiments, so that we only give a brief overview of

each of these search strategies. For a more complete review of dark matter indirect

3Indirect detection searches can also observe signatures of decaying dark matter, such as e.g.
the gravitino LSP in SUSY models where R-parity is (weakly) violated [177]. In this thesis we
focus on WIMP candidates that are absolutely stable, and do not further discuss decaying dark
matter.
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detection, see e.g. Refs. [200, 336].

4.3.1 Gamma-rays

The differential gamma-ray flux from dark matter annihilations in the galactic halo

is given by (e.g. Ref. [148])

dΦγ

dEγ

=
〈σannv〉
8πm2

χ

∑
f

Bf

dN f
γ

dEγ

×
∫
ΔΩ

dΩ

∫
l.o.s.

ρ2(l)dl(ψ) (4.22)

The WIMP particle physics enters into this equation via the velocity-averaged

WIMP annihilation cross-section 〈σannv〉, the dark matter mass mχ and the sum

of the photon yield dN f
γ /dEγ for annihilation channel f multiplied by the branch-

ing ratio into that final state Bf over all channels. Indirect detection experiments

generally present results in the (mχ, 〈σannv〉) plane, for a fixed annihilation channel

(i.e. Bi=k = 1, Bi �=k = 0). The gamma-ray flux depends on the astrophysics via the

integral of the square of the dark matter density ρ(l) over the line of sight l, with

ψ the angle between the direction of observation and the GC, and ΔΩ the solid

angle of observation. As mentioned above, the integral over ρ2(l) is associated with

sizeable uncertainties, due to both the unknown shape of the dark matter profile

and the possible presence of substructure.

WIMP annihilation to gamma-rays can lead to several different spectral fea-

tures, depending on the stage of the annihilation process at which the gamma-rays

are produced (see e.g. Refs. [281, 170]). Hadronization and subsequent fragmen-

tation of primary WIMP annihilation products, in particular through the decay

π0 → γγ, bremsstrahlung of charged annihilation products, and inverse Compton

scattering of electrons and positrons onto galactic starlight and the CMB (for a

sizeable branching fraction Be+e−) gives rise to a continuum of gamma-rays. Inter-

nal bremsstrahlung [143, 168], i.e. the emission of a photon from a virtual particle

participating in the annihilation, yields a hard gamma-ray spectrum with a char-

acteristic sharp drop off at E = mχ. Finally, WIMPs can annihilate directly to

mono-energetic gamma-rays via χχ → γγ [146, 147] and χχ → γZ [427]. Due

to the lack of known background processes that produce gamma-ray lines, the ob-

servation of a line spectrum would be a “smoking gun” signature of dark matter

annihilation. However, since the WIMP does not couple directly to the photon, the

line flux is typically loop suppressed, and for most WIMP models (including SUSY)

is expected to be subdominant compared to the continuum emission.

Experimental efforts searching for gamma-rays from dark matter annihilation
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include the Large Area Telescope (LAT) on the Fermi satellite [116], and ground-

based imaging air Cherenkov telescopes, such as the Very Energetic Radiation Imag-

ing Telescope Array System (VERITAS) [314], the Major Atmospheric Gamma

Imaging Cherenkov (MAGIC) telescopes [83] and the High Energy Stereoscopic

System (H.E.S.S.) [67]. While the space-based Fermi-LAT can observe gamma-

rays from WIMP annihilations directly, ground-based telescopes instead detect the

Cherenkov light emitted by the showers of secondary particles produced by gamma-

rays entering the Earth’s atmosphere. The Fermi-LAT collaboration has placed

constraints on the dark matter properties from a range of different observations

and targets, including Milky Way dwarf spheroidal satellite galaxies [52], galaxy

clusters [49], the diffuse gamma-ray emission [50] and a search for gamma-ray spec-

tral lines [53]. The constraints in the (mχ, 〈σannv〉) plane derived from Fermi-LAT

observations of dwarf galaxies [52], assuming Bbb̄ = 1, are shown in the left-hand

panel of Fig. 4.2 (black/solid line). As can be seen, the Fermi-LAT already probes

thermal annihilation cross-sections 〈σannv〉 ∼ 3 × 10−26 cm3 s−1 for WIMP masses

mχ ≈ 10 GeV. We will comment on the impact of this limit on supersymmet-

ric parameter spaces in Chapters 7 and 8. Fig. 4.2 also shows constraints from

ground-based gamma-ray experiments, namely VERITAS [85] (blue/dashed line)

and H.E.S.S. [44] (red/dashed line). Cherenkov telescopes are mainly sensitive to

very-high-energy gamma-rays, and thus place the most stringent limits at large

WIMP masses; in particular, for mχ ∼ 1 TeV the H.E.S.S. telescope excludes an-

nihilation cross-sections >∼ 3 × 10−25 cm3 s−1 at 95% CL [44]. Similarly to the

Fermi-LAT, Cherenkov telescopes have performed dark matter searches in a large

number of target regions, see e.g. Refs. [82, 44, 113, 45, 85].

Several groups have reported exciting hints of dark matter signatures in Fermi-

LAT data. A number of claims have been made of a spatially extended excess

gamma-ray signal from the GC region, that could be due to the annihilation of

dark matter particles [286, 315, 317, 38, 288, 232]. However, various alternative

explanations for the origin of this signal exist, including emission from millisecond

pulsars4 and cosmic-rays (e.g. Refs. [37, 38, 197]). A second potential dark matter

signature is the observation of a gamma-ray line at ∼ 130 GeV in an extended

region around the GC, with a global significance of 3.2σ [169, 432]. While an

astrophysical explanations for this signal is highly implausible, the observation of

line signals in several other regions, including weak evidence for a ∼ 130 GeV line

in Earth limb data (which is free of dark matter interactions) for certain detector

4On the other hand, a recent study claims that the explanation of the observed gamma-ray
excess in terms of pulsars is strongly disfavoured, due to the large spatial extent of the signal [232].
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Figure 4.2: Indirect detection constraints on dark matter. Left-hand panel: 95%
CL exclusion limits on the dark matter self-annihilation cross-section for the bb̄ chan-
nel from Fermi-LAT observations of 15 dwarf spheroidal galaxies [52] (black/solid), the
H.E.S.S. search for a very-high energy gamma-ray signal in 112 hours of GC halo ob-
servations [44] (red/dashed), 48-hour observations of the dwarf galaxy Segue 1 by VER-
ITAS [85] (blue/dashed) and Fermi-LAT observations of Segue 1 [52] (black/dashed).
Right-hand panel: 90% CL upper limits on the spin-dependent WIMP-proton cross-
section for the bb̄ (green), W+W− (blue) and τ+τ− (red) annihilation channels. Results
from several different experiments are shown, including ANTARES [58] (solid lines),
IceCube-79 [36] (dashed lines), Super-Kamiokande [418] (dotted lines), Baksan [163]
(dash-dotted lines) and the SIMPLE [262] (black/short dot-dashed) and COUPP [135]
(black/long dot-dashed) direct detection experiments. Dark and light grey shaded areas
show results of a grid scan of the cMSSM and the MSSM-7. Figures were taken from
Ref. [52] and Ref. [58].

incidence angles [273], points towards an instrumental effect. In an updated search

for spectral lines the Fermi-LAT collaboration did not find any globally significant

line signals [53], and the evolution of the original signal from Ref. [432] over time

may be more compatible with a background fluctuation [433]. The possible dark

matter origin of these excess signals will be clarified by future Fermi-LAT data,

and by upcoming experiments, such as H.E.S.S.-II and the Cherenkov Telescope

Array [54].

4.3.2 High-energy neutrinos

As the Solar System travels through the Milky Way halo, dark matter particles

may lose momentum by elastically scattering off nuclei in celestial bodies such as

the Sun or the Earth, and become gravitationally bound to the encountered object.

Gravitational capture causes the accumulation of a large number of WIMPs at the

centre of these object, leading to greatly enhanced WIMP self-annihilation rates.

The number of WIMPs N(t) captured at time t is determined by both the capture

rate C and the annihilation rate ΓA = AN2(t)/2, with A the annihilation cross-

section times the relative WIMP velocity per volume. Neglecting evaporation, one

finds that Ṅ(t) = C−AN(t)2. For most WIMP models, capture and annihilation in
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the Sun are in equilibrium today, so that ΓA ≈ C/2. In contrast, the Earth hat not

yet reached equilibrium, so that predictions of the neutrino flux from dark matter

annihilations in the centre of the Earth are associated with sizeable uncertainties.

Therefore, most experimental efforts focus on the search for neutrinos from the Sun.

While most WIMP annihilation products are immediately absorbed by the

dense solar medium, neutrinos can escape from the Sun due to their weak inter-

actions with normal matter. While several WIMP candidates, e.g. Kaluza-Klein

dark matter [316], can directly annihilate to νν̄, supersymmetric neutralinos gen-

erate neutrinos only as secondary annihilation products, produced in the decays of

other SM particles created in neutralino annihilations [323]. Some of the neutrinos

produced in WIMP annihilations in the Sun can be detected by Earth-based large

volume neutrino telescopes. The flux of neutrinos is highly dependent on the dark

matter scattering cross-section, which enters in the computation of the WIMP cap-

ture rate. Because of the high abundance of light elements (in particular hydrogen)

in the solar core, neutrino telescopes can place tight limits on the spin-dependent

interaction of WIMPs, competing directly with some of the direct detection experi-

ments discussed in Section 4.2.4. Null searches from neutrino observatories such as

IceCube [48], ANTARES [62], Super-Kamiokande [237] and Baksan [84] have placed

stringent constraints on the WIMP properties. Limits on the spin-dependent WIMP-

proton interaction from the ANTARES collaboration for the bb̄ (green), W+W−

(blue) and τ+τ− (red) annihilation channels are shown in the right-hand panel of

Fig. 4.2 [58]. Also shown are constraints from IceCube operating in its 79-string con-

figuration (including the DeepCore subarray) [36], Super-Kamiokande [418], Bak-

san [163], SIMPLE [262] and COUPP [135] (see caption of Fig. 4.2). As can be seen,

the ANTARES and IceCube limits are significantly more stringent than constraints

from direct detection searches, which only become important at low WIMP masses

mχ ≤ 50 GeV, and only for certain annihilation channels.

Due to their weak interactions and low masses, detecting neutrinos from dark

matter annihilations is a challenging task. However, compared to the gamma-ray

searches discussed in Section 4.3.1, the backgrounds for high-energy neutrinos from

the Sun are much better understood. Neutrinos from WIMP annihilations can easily

be distinguished from solar neutrinos produced in nuclear reactions, which are much

less energetic (e.g. Ref. [69]). The main background consists of atmospheric neu-

trinos and muons; the latter can be mostly avoided by only selecting upward-going

events collected when the Sun is below the horizon. Additionally, the astrophysical

uncertainties are reduced compared to other detection techniques, as the neutrino

flux is independent of the dark matter profile, and, unlike direct detection searches, is
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unaffected by variations in the local WIMP density, e.g. due to subhalos or streams.

However, the WIMP velocity distribution and local density do enter in the compu-

tation of the capture rate, and, for example, the presence of a dark disk can have a

significant impact on the solar neutrino flux from WIMP annihilations [171].

In addition to the WIMP spin-dependent interaction, neutrino observatories

have also placed constraints on the dark matter self-annihilation cross-section by ob-

serving different regions in our Galaxy. For example, the IceCube collaboration has

derived limits in the (mχ, 〈σannv〉) plane from observations of the GC [35], the Galac-

tic halo [35], dwarf spheroidal galaxies [39] and galaxy clusters [34]. The derived

constraints are however somewhat weaker than limits from gamma-ray searches.

4.3.3 Cosmic antimatter

Experimental efforts for the indirect detection of dark matter with antimatter mainly

focus on the search for positrons, antiprotons and antideuterons. Positrons have re-

ceived a lot of attention from the dark matter community, due to the positron

fraction (the ratio of the e+ flux to the combined (e+ + e−) flux) anomaly observed

by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

(PAMELA) satellite [60, 59], the Fermi-LAT [51] and, most recently, the Alpha

Magnetic Spectrometer (AMS-02) [66]. In particular, a rise in the positron fraction

of the cosmic-ray e± spectrum was observed in the energy range 10 – 350 GeV,

with the slope of the positron fraction flattening at high energies. This feature is

difficult to explain in terms of secondary positrons produced in collisions of primary

cosmic-rays on the interstellar medium, and instead implies the existence of a source

of primary positrons, such as for example annihilations of dark matter particles into

leptonic final states (e.g. Refs. [201, 308, 234]). However, the relevant dark mat-

ter models require annihilation cross-sections that significantly exceed the thermal

value, in conflict with the absence of a bright gamma-ray signal in Fermi-LAT data

(see Section 4.3.1). PAMELA measurements of the cosmic-ray antiproton flux show

no excess above the expected astrophysical background [61], which places further

constraints on the dark matter models invoked to explain the positron excess, re-

quiring a particle species that preferentially annihilates into charged leptons, while

channels leading to antiproton production must be suppressed [201, 245]. Several

alternative explanations in terms of astrophysical sources, such as local pulsars [338]

and supernova remnants [352], have been proposed, which are arguably more natural

(simpler) than the dark matter interpretation.

Finally, the detection of cosmic antideuterons, that can form via fusion of an
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antiproton-antineutron pair, would provide a strong hint for the presence of dark

matter particles in the Milky Way halo [244]. While the flux of antideuterons from

WIMP annihilations is much lower than for other charged cosmic-rays, the astro-

physical background in the energy region of interest is very small, so that even the

detection of a single sub-GeV antideuteron would be strong evidence for an exotic

contribution. Future data from AMS-02 [199] and the General AntiParticle Spec-

trometer (GAPS) experiment [356, 302] will lead to exciting insights into this field.

Indirect detection of dark matter with cosmic antimatter is complicated by

the large uncertainties in the modelling of charged cosmic-ray propagation and our

limited understanding of the astrophysical production of cosmic-rays (see e.g. Chap-

ter 26 of Ref. [152]). Without a precise determination of these backgrounds, the clear

identification of a dark matter signature in cosmic-ray data sets is difficult.

4.4 Collider experiments

High-energy collider experiments can directly produce the dark matter particle and

study its physical properties in a highly controlled laboratory environment. Since

WIMPs are very weakly interacting, they escape the detector without depositing

any energy, and thus “appear” as missing energy signals. In particular, at hadron

accelerators, which collide composite particles, the longitudinal momentum of the

colliding quarks and gluons is unknown. Therefore, only transverse missing energy

Emiss
T , i.e. an energy imbalance in the plane transverse to the collider beam, is a reli-

able WIMP signature. One approach towards studying the properties of dark matter

at particle colliders is to search for missing energy signals from the direct production

of WIMP pairs. However, collider experiments also provide valuable information on

extensions of the SM, several of which propose excellent dark matter candidates (see

Chapter 3). Therefore, an alternative (and perhaps more promising) strategy is to

reconstruct the underlying theory of Beyond the Standard Model (BSM) physics,

and infer the properties of the dark matter particle in this theory without measuring

them directly. For example, at hadron colliders the pair-production of particles that

are charged under QCD, such as the squarks and gluinos of supersymmetric theories

(see Sections 3.3 and 3.4), has a much larger cross-section than the direct produc-

tion of WIMPs, and cascade decays of squarks and gluinos result in final states with

stable neutralino LSPs. Following the identification of such decay chains one can

extract the masses and couplings of the sparticles produced in the decay, and infer

the properties of the lightest neutralino.

The most stringent accelerator limits on SUSY and dark matter to date were
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obtained by the Large Hadron Collider (LHC), a proton-proton collider with a design

centre of mass energy of
√
s = 14 TeV. Four main experiments are installed at

the LHC. ATLAS (A Toroidal LHC ApparatuS [205]) and CMS (Compact Muon

Solenoid [212]) are large general-purpose experiments, designed to search for a wide

range of new phenomena, including the Higgs boson and signatures of BSM physics,

in particular SUSY. Results from ATLAS and CMS searches for SUSY and the

Higgs boson are included in Chapters 7, 8 and 9. The ALICE (A Large Ion Collider

Experiment [204]) and LHCb (LHC beauty [223]) experiments are more specialised,

and focus on the physics of the quark-gluon plasma created in heavy-ion collisions,

and the study of charge-parity violation and rare decays of B hadrons, respectively.

The main competitor of the LHC is the Tevatron, a proton-antiproton collider

with two main detector complexes (CDF and D0) that was operating at Fermilab be-

tween 1987 and 2011, with a peak collision centre-of-mass energy of
√
s = 1.96 TeV.

As the LHC and the Tevatron are both hadron colliders, they are sensitive to simi-

lar sparticle production mechanisms, and ATLAS and CMS null searches for SUSY

signatures have significantly extended the Tevatron limits on the sparticle masses.

However, the CDF and D0 experiments have also performed precise measurements

of the top quark mass Mt [295, 296, 358], which remain competitive even in light

of LHC measurements of this quantity;5 Tevatron constraints on Mt are applied in

Chapters 7–9. Another relevant experiment is the Large Electron-Positron (LEP)

collider, a particle accelerator with four detector systems (ALEPH, DELPHI, L3,

OPAL) that was operational at CERN between 1989 and 2000, reaching e+e− col-

lision energies of up to
√
s = 209 GeV. The LEP experiments have performed

the most precise measurements of the electroweak sector to date [1], and have

placed fairly model-independent lower limits of <∼ 100 GeV on the masses of sev-

eral supersymmetric particles, including sleptons, neutralinos and charginos (see e.g.

Refs. [2, 393, 307, 47, 40]). Results from lepton colliders are highly complementary

to searches for SUSY in hadron-hadron collisions and, while the LHC has greatly

improved on many of the LEP limits, LEP still constrains regions of SUSY param-

eter space that have not (yet) been explored by the LHC, despite its significantly

higher centre-of-mass energy and luminosity.

The LHC started its research program in 2010, and delivered a total integrated

luminosity of > 5 fb−1 at
√
s = 7 TeV collision energy during 2010 - 2011, and

∼ 23 fb−1 at
√
s = 8 TeV collision energy during 2012. No significant excess of

events above the SM predictions has been observed in these data sets, so that new

5See Ref. [211] for the first combination of measurements of Mt performed by the ATLAS, CMS,
CDF and D0 experiments.
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constraints could be derived on a large range of BSM physics scenarios, including

a variety of SUSY models. A recent review of ATLAS and CMS searches for dark

matter signatures, both in the context of SUSY and in a model-independent scheme,

can be found in Ref. [355]. Arguably the greatest success of these experiments to

date is the discovery of a Higgs-like boson with a mass of ∼ 126 GeV [192, 22]. In

early 2013, the LHC stopped operations for a planned two-year shutdown. In 2015,

the LHC will start operating at a centre of mass energy of
√
s = 13− 14 TeV, and

is expected to collect a total of ∼ 300 fb−1 of data by 2021. An exciting prospect is

the planned High-Luminosity LHC (HL-LHC) program, which is expected to deliver

an integrated luminosity of 3000 fb−1 by around 2030 [209].

As WIMP pair-production of the type qq̄ → χχ is completely invisible, the main

approach to detect direct WIMP production at the LHC is to search for initial (or

final) state radiation, e.g. of a photon or gluon, associated with this process [287,

122, 138]. These searches focus on events with high Emiss
T and a single high-ET

jet or photon, and have placed upper limits on the pair-production cross-section of

WIMPs, which can be translated into constraints on the spin-dependent and spin-

independent WIMP-nucleon scattering cross-section and the WIMP self-annihilation

rate (e.g. Refs. [220, 193, 24]). While the derivation of these constraints is based on

a number of assumptions,6 the LHC limits on the WIMP properties can in principle

be directly compared to results from direct and indirect detection experiments.

As outlined above, the properties of the dark matter particle in the context

of a specific model of BSM physics can be inferred by measuring the masses and

couplings of other new particles predicted by this theory. In the following we focus

on the search for SUSY. The ATLAS and CMS collaborations have searched for

SUSY signals in an impressive range of signatures, including events with multiple

jets and/or b-quark jets, leptons, third-generation fermions, photons, and weak

gauge bosons [3, 4]. Selected events are generally required to have large Emiss
T , as in

R-parity conserving SUSY each sparticle produced in the collisions must eventually

decay into a final state with at least one LSP. Additionally, kinematic variables,

such as the transverse mass mT or the effective mass meff (see below) are often used

to discriminate between SUSY and SM background events. A discussion of the full

range of LHC SUSY searches is beyond the scope of this thesis. As an example, in

the following we briefly describe two searches by the ATLAS collaboration, based

on 4.7 fb−1 of data collected at a collision energy of
√
s = 7 TeV. Results from these

6It is typically assumed that the WIMP interactions can be described by an effective field theory,
and that particles mediating the WIMP-SM interactions are too heavy to be produced directly at
the LHC.
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searches are included in the analysis of the MSSM-15 presented in Chapter 9.

In Ref. [26] the ATLAS collaboration reported results for a search for gluinos

and squarks in final states containing large missing transverse momentum, high-pT

jets, and no high-pT electrons or muons. In this context, “squarks” refers only to

the superpartners of the u, d, c and s quark flavours. The search strategy was

designed to achieve a maximum discovery reach in the (mg̃,mq̃) plane, where mq̃ is

the average of the squark masses in the first two generations, i.e.

mq̃ ≡
mũL

+mũR
+md̃L

+md̃R
+mc̃L +mc̃R +ms̃L +ms̃R

8
. (4.23)

Six analysis channels (A,A′, B, C,D,E) were defined, constructed for different spar-

ticle production mechanisms (q̃q̃, q̃g̃, g̃g̃) and characterised by increasing minimum

jet multiplicity (from two to six), requirements on Emiss
T and meff (given by the scalar

sum of the jet transverse momenta and Emiss
T ), and several other selection criteria

(see Ref. [26] for full details). Each channel was used to construct between one and

three signal regions based on criteria on meff , leading to a total of 11 signals regions.

The data are in good agreement with the SM predictions, leading to new limits

on SUSY. In particular, the ATLAS collaboration presented 95% exclusion regions

in the (mg̃,mq̃) plane for a simplified Minimal Supersymmetric Standard Model

(MSSM, see Section 3.4) scenario in which all sparticles except for the squarks, the

gluino and the neutralino LSP have masses beyond the LHC reach. The limit de-

rived for the set of simplified models with mχ̃0
1
= 0 is shown in the left-hand panel

of Fig. 4.3; up to mχ̃0
1
∼ 400 GeV this limit is relatively insensitive to the LSP

mass [26]. The right-hand panel of Fig. 4.3 shows the constraints derived on the

mass parameters of the cMSSM (see Section 3.4.2), for fixed values of tan β = 0,

A0 = 0 and sgn(μ) > 0. The limits were derived using the channel with the best

expected sensitivity at each point in parameter space.

Secondly, we mention the ATLAS search for the direct production of neutralinos

and charginos in final states with three electrons or muons and Emiss
T [25]. This search

strategy is sensitive to models in which direct production of gauginos is the leading

SUSY process at the LHC (i.e. squarks and gluinos are heavy), and is designed to

place limits on the chargino and neutralino masses. Selected events are required to

contain three leptons, with at least one same-flavour opposite-sign (SFOS) lepton

pair (as expected from leptonic decays of χ̃0
j). Additional selection criteria are based

on Emiss
T and the mT variable, which is calculated using Emiss

T and the third lepton

not included in the lepton pair. Three signal regions were defined for the analysis.

SR1a and SR1b target neutralino decays via sleptons and off-shell Z bosons, with
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Figure 4.3: Constraints on SUSY from an ATLAS search for gluinos and squarks
containing large Emiss

T , jets and zero electrons or muons. 95% exclusion limits derived from
the 4.7 fb−1 data set recorded at

√
s = 7 TeV collision energy are shown in the (mg̃,mq̃)

plane for a simplified model in which gluinos and squarks decay directly to jets and
neutralino LSPs and all other sparticles are decoupled (left), and in the cMSSMmass plane
for tanβ = 0, A0 = 0 and sgn(μ) > 0 (right). Solid/maroon curves show the observed
limits, while dotted/maroon lines indicate the variation in these limit due to a number of
uncertainties (see Ref. [26] for details). Black/dashed curves indicate the expected limits
and yellow bands show the 1σ excursions resulting from experimental uncertainties. The
blue, green and red regions are excluded by previous ATLAS searches [23], electroweak
symmetry breaking conditions and LEP searches [40], respectively. From Ref. [26].

SR1a (SR1b) most sensitive to models with small (large) mass splittings between

the heavy gauginos and the neutralino LSP; SR2 targets decays via an on-shell Z

boson. The observations are in good agreement with the SM expectations, so that

new constraints were derived on the values of M1, M2 and μ in the pMSSM (for

fixed values of the other parameters), and on simplified models in which the masses

of χ̃±1 , χ̃
0
1, χ̃

0
2, ν̃ and L̃ are the only free parameters.

As can be seen from these two examples, there are two main approaches that are

commonly adopted by the ATLAS and CMS collaborations to present results from

SUSY searches. One approach is to report constraints in the context of a specific

supersymmetric framework, most commonly the cMSSM. Results are presented in

one or more planes of interest, typically obtained by fixing the values of all other

parameters. A second strategy that has become increasingly popular in recent years

is to derive the implications of LHC searches in so-called simplified models, which

are specifically designed to involve only a handful of relevant SUSY particles and

decay modes. Both of these approaches have limitations. Interpreting results in

the context of a specific SUSY model by fixing all but two of the parameters is

highly restrictive, and does not allow to draw general conclusions about the impact
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of LHC data on the MSSM. In contrast, interpretations in terms of simplified models

are significantly less dependent on fundamental assumptions. However, simplified

models are incomplete by construction, and the derived constraints are difficult

to generalise to more complex SUSY spectra. An attractive alternative to assess

the impact of LHC searches on minimal SUSY is the application of a full LHC

likelihood function to phenomenological MSSM scenarios with a large number of

free parameters. This is the approach adopted in Chapter 9, in which we present an

analysis of a 15-dimensional phenomenological MSSM.

In addition to searching directly for signatures of SUSY particles, collider ex-

periments and other laboratory searches can probe SUSY models by performing

precision tests of the SM. If SUSY (or any other new physics) exists close to the

electroweak scale, loop contributions from the new (s)particles will effect the values

of precision observables at this energy. High-precision experimental measurements of

these quantities can place limits on (or detect) deviations from the SM predictions

and constrain possible supersymmetric contributions. LEP measurements of the

electroweak sector, LHCb searches for rare decays of B hadrons, the E821 measure-

ment of the anomalous magnetic moment of the muon at the Brookhaven National

Laboratory [141], and constraints on B, D and K physics observables from a num-

ber of experimental collaborations are particularly relevant probes of SUSY. Further

information on these quantities can be found in Chapters 7 and 9. Additionally, pre-

cise measurements of the mass and properties of the Higgs boson can place strong

constraints on SUSY models, as will be shown explicitly in Chapters 7–9.

4.5 Complementarity and SUSY global fits

As discussed in Sections 4.2 and 4.3, several exciting hints of dark matter signatures

have been observed by both direct and indirect detection experiments. However, in

light of sizeable astrophysical uncertainties and the possible presence of unknown

backgrounds the dark matter interpretation of these signals remains questionable,

and it is becoming increasingly clear that an unequivocal identification of the dark

matter particle will require a consistent signal in several different experiments.

Accelerator searches for dark matter are highly complementary to direct and in-

direct detection methods. Collider experiments offer a clean environment in which to

study the dark matter properties, and, unlike direct and indirect detection searches,

are independent of assumptions about astrophysical quantities. However, while the

LHC is a powerful tool to discover heavy particles predicted by models of BSM

physics, it is unable to determine the stability of these particles on cosmological
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timescales. Therefore, should a WIMP candidate be detected at the LHC, an ad-

ditional signal in an astrophysics or astro-particle physics experiment is required to

confirm the stability of this particle and determine its approximate relic abundance.

If R-parity conserving SUSY is realised in nature, constraints on the properties

of dark matter from astro-particle physics and cosmology experiments can be directly

translated into constraints on the neutralino LSP. As shown in Refs. [153, 154],

given a strong LHC SUSY signature, the detection of an additional signal by a

direct or indirect detection experiment can break degeneracies in SUSY parameter

space and lead to a considerably better reconstruction of the supersymmetric dark

matter properties. As we will see explicitly in Chapters 7– 9, even in the absence

of a detection, data from the LHC and from astro-particle dark matter searches

are highly complementary, and the combination of results from SUSY and dark

matter searches can have a powerful impact on supersymmetric theories. Constraints

from direct and indirect detection experiments and cosmological measurements of

the dark matter relic abundance can be united with limits on SUSY from collider

experiments and precision tests of the SM to perform a global fit of the parameters

of a specific SUSY framework. Global fits analyses of SUSY models aim to derive

the favoured values of the model parameters and, in particular, the properties of

the neutralino LSP, in light of the full range of available experimental constraints.

Sophisticated scanning algorithms are applied to explore the model parameter space,

and parameter constrains are derived by interpreting the results within a specific

statistical framework.

In Chapters 7, 8 and 9 we will present global fits analyses of the cMSSM,

the NUHM and a 15-dimensional pMSSM (see Section 3.4.2) using an evolution

of the publicly available SuperBayeS code [5], a numerical global-fits package de-

signed for the exploration of SUSY parameter spaces. Several other global fits pack-

ages exist, including Fittino [129], SFitter [335], GFitter [274, 6], BayesFITS [275]

and MasterCode [7]. These collaborations (and many others) have explored a

large range of SUSY models (and other scenarios of BSM physics), including

the cMSSM [176, 275, 414, 131, 309, 81], the cNMSSM (constrained Next-to-

Minimal Supersymmetric Standard Model) [334], the NUHM1 [176, 130], the

NUHM2 [388, 414], the NUGHM (Non-Universal Gaugino and Higgs Model) [179],

and the 13-, 15- and 25-dimensional pMSSM [309, 42, 41, 43, 415]. In addition

to the applied experimental constraints and the treatment of uncertainties, global

fits analyses by different groups mainly differ in the adopted statistical perspective

(Bayesian or Frequentist), the employed scanning algorithm and the scanning reso-

lution. The differences between the Bayesian and the Frequentist approach towards
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statistical inference, and the numerical methods that are applied in the global fits

analyses presented in Chapters 7–9 will be described in the following chapter.
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Chapter 5

Statistical techniques

The application of statistical techniques is of fundamental importance for the correct

interpretation of experimental data sets and the derivation of robust physical con-

clusions from the observations. The development of new numerical algorithms, the

growing availability of computational power and the collection of large quantities of

data has led to a strong increase in the application of advanced statistical methods

to problems in astrophysics, cosmology and particle physics in recent years. While

the importance of statistical techniques for data analysis in the physical sciences

is indisputable, a debate persists about the best approach towards statistical infer-

ence. Perspectives on inference can broadly be classified into two different schools

of thought about the nature of probability:

• In Bayesian statistics, probability represents the degree of belief

in a proposition. The probability of a certain hypothesis is derived by

combining one’s state of knowledge (belief) prior to the experiment with the

information in the data. As a result, one’s state of belief is updated in light

of the experimental measurements.

• In Frequentist statistics, probability is defined as the frequency of

outcomes. The probability of a certain experimental outcome is defined as

the frequency with which this outcome occurs as the number of identical and

equiprobable repetitions of the experiment approaches infinity.

Both Bayesian and Frequentist inference is widely used in physics. Due to

the differing definitions of probability, the Bayesian and the Frequentist approach

generally lead to different conclusions about the problem of interest. Each of these

two approaches has advantages and weaknesses, and the optimal method to apply

is strongly dependent on the problem at hand, and the information one wants to

obtain. In the following chapters we adopt both Bayesian and Frequentist methods.
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The aim of this chapter is to introduce the statistical concepts and techniques

that underly the work presented in Chapters 6– 9. We start by providing an in-

troduction to the elements of Bayesian statistics, followed by a description of the

Frequentist approach. Finally, we will discuss numerical methods for statistical

analysis. For simplicity, several of the following explanations are limited to simple

scenarios with a single parameter of interest θ. Whenever no additional informa-

tion is provided, the extension of these concepts to the higher-dimensional case is

straightforward.

5.1 Aspects of Bayesian statistics

The cornerstone of Bayesian statistics is Bayes’ Theorem. This theorem can be

derived from one of the fundamental rules of probability theory, namely the product

rule:

p(A,B) = p(A|B)p(B). (5.1)

This rule states that the joint probability p(A,B) of both events A and B occurring

is equal to the probability p(A|B) of A occurring given that B has already occurred

multiplied by the probability p(B) for event B to occur. Obviously, p(A,B) =

p(B,A), so that one can derive Bayes’ Theorem:

p(A|B) =
p(B|A)p(A)

p(B)
. (5.2)

In the following sections we describe how Bayes’ Theorem can be applied to problems

in physics to perform parameter inference and estimate parameter uncertainty. Fur-

ther details about Bayesian statistics can be found in the wealth of literature that

exists on this topic. For an introductory overview of the application of Bayesian

statistics in physics, see Ref. [229]. Further information can be found in one of the

many great textbooks on Bayesian statistics, including Refs. [401, 290, 151]. In

particular, a detailed overview of Bayesian statistics in cosmology is provided in

Ref. [313]. Two excellent works focussing on Bayesian analysis in astrophysics and

cosmology that are available online are Refs. [421, 340].

5.1.1 Bayesian parameter inference

The aim of parameter inference is to infer the values of a set of unknown parameters

of interest θ = (θ1, . . . , θN) of a given theoretical model M from an experimental

data set D. By replacing A with θ and B with D in Eq. (5.2) one can obtain the
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form of Bayes’ Theorem that is commonly used in data analysis

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
, (5.3)

where we have added the model M on the right side of the conditioning symbol to

highlight that this particular model is assumed to be true. Here, p(θ|D,M) is the

posterior probability density function (pdf), which is the main quantity of interest in

Bayesian parameter inference, L(θ) ≡ p(D|θ,M) is the likelihood function, which

contains the probability of obtaining the observed data D given θ and M, and

p(θ|M) is the prior pdf on the parameters θ, which represents our knowledge or

belief about the values of (θ1, . . . , θN) before taking into account the data. The

quantity Z ≡ p(D|M) is called the Bayesian evidence, and is given by:

Z =

∫
L(θ)p(θ|M)dθ. (5.4)

As can be seen from Eqs. (5.3) and (5.4), the evidence acts as a constant normal-

izing the posterior pdf over θ. Therefore, in the context of parameter inference the

evidence can be ignored, and parameter constraints can be derived using the relation

p(θ|D,M) ∝ L(θ)p(θ|M). (5.5)

In contrast, in Bayesian model comparison, which has the aim of assessing which of

a number of different theoretical models M1,M2, . . . is most compatible with the

data, the evidence is of central importance. Model comparison is not performed in

this thesis, so that we omit a further discussion of this branch of Bayesian statistics.

The relation in Eq. (5.5) provides a means to combine our initial state of knowl-

edge about the parameters θ (encoded in the prior pdf) with the information pro-

vided about θ by a data set D (through the likelihood function) to determine our

state of knowledge of the value of θ in light of these data (given by the posterior pdf).

This approach to parameter inference is widely used in astrophysics and cosmology,

and provides the basis for most of the work presented in this thesis.

5.1.2 On the impact of the choice of prior

As can be seen from Eqs. (5.3) and (5.5), in order to find the posterior distribution

on the parameters of interest θ, one has to specify their prior pdf p(θ).1 If the

1For simplicity, in the remainder of this chapter we omit the model M on the right side of the
conditioning symbol.
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parameters θ = (θ1, . . . , θN) are independent, the joint prior distribution is simply

given by the product of the individual prior distributions, p(θ) =
∏N

i=1 p(θi).

The prior includes the a priori (theoretical or other) prejudices about the prob-

lem at hand that exist previous to taking into account the data, and is a fundamental

ingredient of Bayesian parameter inference. In general, the selection of the prior is

subjective, so that different scientists may make different choices for the prior distri-

bution. Note however that several so-called “objective” (or non-informative) priors,

designed to reflect a lack of subjective information, have been suggested, and are

commonly used in the literature (see below). In the ideal case, the experimental

data are constraining enough to overcome the effect of the prior, and the posterior

pdf will be dominated by the likelihood function for any reasonable choice of p(θ).

However, in many real-life problems the available data are only weakly constraining,

so that p(θ|D) may exhibit a residual prior dependence.

As an illustrative example, consider the distributions shown in Fig. 5.1. As-

sume that two physicists are running an experiment searching for a new particle of

unknown mass m. Physicist A has no reason to prefer a certain mass value, there-

fore (s)he choses a flat prior on m (blue; left-hand panels). In contrast, physicist B

has constructed a theory of new physics beyond the Standard Model that predicts

m ∼ 900 GeV, and thus has a strong theoretical prejudice; (s)he choses a Gaussian

prior centred on 900 GeV with a standard deviation of 100 GeV (red; left-hand

panels). The first measurement reveals a small excess signal at m ∼ 500 GeV. The

corresponding likelihood function is shown in black in the top left-hand panel; the

resulting posterior distributions are shown on the top right. The posterior pdf of

physicist A has the same shape as the likelihood function, favouring m ∼ 500 GeV,

while the theoretical prejudice of physicist B overcomes the effect of the data, lead-

ing to a prior-dominated posterior pdf that peaks at 900 GeV. The next data release

contains a significant excess at m = 500 GeV (black; bottom left-hand panel). This

signal is strong enough to overcome the prior of physicist B, whose posterior pdf

now agrees very well with posterior A (bottom right-hand panel). Therefore, if a

significant signal is observed, the same (objective) inference results are obtained

even for very different prior distributions.

Unfortunately, the scenario shown in the top panels of Fig. 5.1 is much more

common in scientific research. Prior-dependent posterior inferences are especially

common in studies of high-dimensional parameter spaces that are only weakly con-

strained by the available data. In particular, in the absence of positive measure-

ments of the sparticle masses, supersymmetric parameter spaces are notorious for

displaying this behaviour, as we will see explicitly in Chapters 7 and 8.
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Figure 5.1: Impact of the choice of prior on Bayesian inference results. The prior
distributions and likelihood functions (left-hand panels), and the resulting posterior dis-
tributions (right-hand panels) for two physicists trying to infer the mass m of a new
particle are shown for two different data sets (top: data set 1, weak signal; bottom: data
set 2, strong signal). The prior and posterior pdf for physicist A (B) are shown in blue
(red); the likelihood function is displayed in black. For weak data, the prior distribution
dominates the inference results, while for a strong signal both physicist A and physicist
B converge to the same posterior pdf, that is independent of their initial prior choices.

Frequently used prior distributions may be categorised into two groups: infor-

mative and non-informative priors. An informative prior distribution on a parameter

of interest θ favours certain parameter values. Therefore, it either encapsulates some

theoretical prejudice (such as the prior chosen by physicist B), or is based on past

experimental measurements. For example, in many cases the posterior pdf resulting

from a previous inference is an excellent choice of prior for a future analysis. In

contrast, if there is no a priori reason to prefer one value of the parameter over

another, one should choose a non-informative prior distribution. We point out that

this terminology is somewhat misleading: every prior distribution represents some

information, and priors that appear to be non-informative on the parameter θ can

be highly informative on a non-linear function f(θ) of that parameter.

A popular example for a non-informative prior distribution is the “flat prior”,
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which assigns equal prior probability to all parameter values within a certain range

[θa, θb]

p(θ) =
H(θ − θa)H(θb − θ)

θb − θa
, (5.6)

where H is the Heaviside step function. This is the prior chosen by physicist A

in the above example. If even the scale of θ is unknown, the flat prior may be a

poor choice, as it gives more statistical weight to larger values of the parameter and,

especially in problems of large dimensionality, can be highly informative. Instead,

in this case, a useful prior choice is the “log prior”, also known as “Jeffreys’ prior”

p(θ) ∝ 1

θ
. (5.7)

This prior is flat in the log of θ, and thus reflects ignorance about the order of

magnitude of this parameter. When non-informative priors are used, the prior range

[θa, θb] is generally chosen to extend over all physically allowed values of θ. In

principle, the inference results are independent of the exact values of θa and θb, as

long as they encompass all regions of parameter space in which the likelihood has

support.

5.1.3 Nuisance parameters and the marginalised posterior

pdf

In addition to the primary parameters of interest θ, most real-life problems will

include parameters which are not of direct interest to the experimenter, but whose

value can have an influence on the data and thus can modify the inferences on

θ. Such parameters are called nuisance parameters. An example for a nuisance

parameter is the background event rate in the search for signal events. This could

for instance be background photons in an astrophysical measurement of the flux

of photons from a specific source, or Standard Model background rates in collider

searches for candidate events for the decay of a new particle. In both cases, the

uncertainty in the background rate must be accounted for to correctly identify the

signal rate and derive robust inferences on the physical parameters of interest.

Consider the simple scenario with a single parameter of interest θ and a single

nuisance parameter ψ. The Bayesian approach towards accounting for the presence

of the nuisance parameter is to include ψ in the analysis and obtain the joint poste-

rior pdf p(θ, ψ|D). Inferences on θ can then be derived by integrating (marginalising)
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p(θ, ψ|D) over the unwanted nuisance parameter direction

p(θ|D) =

∫
p(θ, ψ|D)dψ. (5.8)

The resulting pdf p(θ|D) is independent of ψ and is called the one-dimensional

marginalised posterior pdf for the parameter θ.

In problems with N > 2 free parameters we are frequently interested in de-

riving constraints on a one- or two-dimensional subspace of the full N -dimensional

parameter space. In that case, the one-dimensional (two-dimensional) marginalised

posterior pdf can be obtained from Eq. (5.8) by replacing the integral over the

nuisance parameter direction with an integral over the N − 1 (N − 2) remaining

free parameters. For example, given a set of N unknown parameters of interest

θ = (θ1, . . . , θN) with a joint posterior distribution p(θ|D), the one-dimensional

marginalised posterior pdf for the parameter θi can be found from

p(θi|D) =

∫
p(θ|D)dθ1 . . . dθi−1dθi+1dθN , (5.9)

and equivalently for the two-dimensional case.

5.1.4 Credible intervals

Once the (marginalised) posterior pdf p(θ|D) has been obtained, it is often useful to

report a range of parameter values that has a high probability of including the true

value of θ. In Bayesian statistics such an interval is called a “credible interval”. A

credible interval for a parameter θ expresses the posterior degree of belief about the

value of θ after the data and any prior information have been taken into account.

A 100α% credible interval is defined as an interval [θa, θb] that encloses a fraction α

of the posterior probability, such that∫ θb

θa

p(θ|D)dθ = α. (5.10)

Therefore, the probability2 that a 100α% Bayesian credible interval constructed us-

ing Eq. (5.10) includes the true value of θ is 100α%. The generalisation of Eq. (5.10)

to the two-dimensional case (credible regions) is straightforward. Clearly, for every

α there are infinitely many intervals that fulfil Eq. (5.10). In the following chapters

we present so-called highest posterior density (HPD) credible intervals (or regions),

2Recall that we are adopting the Bayesian definition of probability throughout this section.
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which are constructed such that all values of the parameter included in the interval

correspond to posterior densities equal to or larger than the posterior density of

any point outside the interval. A 100α% HPD credible interval corresponds to the

shortest possible interval enclosing a fraction α of the posterior probability.

The credible intervals that are most commonly reported in the literature contain

a fraction α = 0.683, α = 0.954 and α = 0.997 of the posterior mass; they are

generally referred to as 1σ, 2σ and 3σ credible intervals, respectively.

5.2 Aspects of Frequentist statistics

In the previous section we have introduced the Bayesian interpretation of probability,

and outlined the Bayesian approach towards parameter inference and the estimation

of parameter uncertainty. In this section we present an alternative approach to

statistics, called classical, or Frequentist, statistics.

The differences between Bayesian and Frequentist statistics originate in their

differing definitions of probability. While in Bayesian statistics probability expresses

the degree of belief in propositions, Frequentist statistics defines probability as the

relative frequency of outcomes in the limit on an infinite series of equiprobable

repeated trials. Probability is associated with the data, and the probability for a

given hypothesis, or the value of a parameter of interest, is not defined. As a result,

the central quantity of interest is the likelihood function L(θ) = p(D|θ).
In general, previous to the performance of an experiment, its outcome will

be unknown, and thus can be considered a random variable. If an experiment is

performed M times under exactly the same conditions (equiprobable repetitions),

and a specific outcome Y is observed in X of these experiments, the Frequentist

probability p(Y ) of outcome Y occurring is given by

p(Y ) ≡ lim
M→∞

X

M
. (5.11)

In the remainder of this section we adopt the Frequentist definition of proba-

bility and introduce some of the main aspects of classical statistics, focussing on the

methods that are applied in this thesis. Specifically, we discuss Frequentist param-

eter estimation, confidence intervals and hypothesis testing. Where appropriate, we

comment on the differences between the Frequentist and the Bayesian approach. For

further details about the methods discussed in the following we refer the reader to

one of the many great textbooks on classical statistics. A very detailed presentation

of this topic can be found in the book of Kendall and Stuart [327]. A more recent
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text that includes information about modern developments in statistical theory is

Ref. [436]. A good overview of Frequentist statistics in the context of physics and

data analysis is provided in Refs. [166, 279]; an excellent text focussing on statistical

methods that are used in particle physics is Ref. [162].

5.2.1 Frequentist parameter estimation

Given a parameter of interest θ and a data sample D, a point estimate of θ can be

computed from D using an estimator. An estimator is a function of the data that,

given a particular data realisation, returns a numerical value θ̂, called the point

estimate of θ. For example, in the case of m independent, unbiased measurements

yobsi of an unknown quantity μ that are subject to Gaussian noise with variance σ2,

useful estimates for μ and σ2 would be the sample mean μ̂ = m−1 ∑m
i=1 y

obs
i and the

sample variance σ̂2 = (m− 1)−1
∑m

i=1(y
obs
i − μ̂)2, respectively. If the measurements

yobsi have different, known variances σ2
i , a good estimate of μ is the weighted average

μ̂ =
1

w

m∑
i=1

wiy
obs
i , (5.12)

where wi = 1/σ2
i and w =

∑m
i=1 wi; in this case, the standard deviation of μ̂ is equal

to 1/
√
w. This estimator is commonly used in physics to combine measurements by

different experimental collaborations.

More generally, arguably the most widely used estimator in physics is the max-

imum likelihood estimator. For a given data set D, the Maximum Likelihood Esti-

mate (MLE) θ̂MLE of a parameter of interest θ is obtained by identifying the param-

eter value at which the likelihood function is maximal, such that L(θ̂MLE) ≥ L(θ)
for all values of θ. In other words, θ̂MLE is the value of the parameter θ that gives

the maximum probability of observing the measured experimental data.

Given a set of m independent measurements D = (yobs1 , . . . , yobsm ) that are each

subject to Gaussian noise with variances (σ1, . . . , σm), the combined likelihood func-

tion is equal to the product of the likelihood functions for each individual measure-

ment

L(θ) =
m∏
i=1

Li(θ) =
1

(2π)
m
2

∏m
i=1 σi

exp

(
−1

2

m∑
i=1

(yobsi − y(θ))2

σ2
i

)
, (5.13)

where y(θ) is the theoretical value of the observable y for a given value of the
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parameter of interest θ. It is often convenient to define the chi-square statistic

χ2(θ) ≡
m∑
i=1

(yobsi − y(θ))2

σ2
i

=
m∑
i=1

χ2
i (θ). (5.14)

The value of θ that minimises χ2(θ) is called the least-squares estimate θ̂LS. The

corresponding minimum chi-square value χ2
min ≡ χ2(θ̂LS) is called the “best-fit” chi-

square. It is clear by comparison of Eq. (5.13) and Eq. (5.14) that, for a Gaussian

likelihood function (ignoring the pre-factor),

χ2 = −2 lnL. (5.15)

In this case, minimising the χ2 statistic with respect to θ is equivalent to maximis-

ing the likelihood function, so that θ̂LS coincides with the MLE. While Eq. (5.15)

in general does not hold for more complicated likelihood functions, it is common

practice in the literature to refer to −2 lnL as the χ2.

5.2.2 The profile likelihood function

As discussed in Section 5.1.3, nuisance parameters can have an important impact on

the results of parameter estimation. In Frequentist statistics, uncertainties resulting

from the presence of a nuisance parameter ψ are accounted for by maximising (pro-

filing) the joint likelihood function for the parameter of interest θ and the nuisance

parameter ψ over the nuisance parameter direction

L(θ) = max
ψ

L(θ, ψ). (5.16)

The resulting quantity L(θ) is called the one-dimensional profile likelihood function

for θ. In problems with N > 2 free parameters we are commonly interested in ob-

taining inferences for only one or two of the parameters. Given a set of N unknown

parameters θ = (θ1, . . . , θN) and a likelihood function L(θ), the one-dimensional

profile likelihood function for a parameter of interest θi can be obtained by max-

imising L(θ) over the N − 1 remaining free parameter directions

L(θi) = max
θ1,...,θi−1,θi+1,...,θN

L(θ). (5.17)

The extension of this concept to the two-dimensional case is straightforward.

The profile likelihood method can be compared to the Bayesian approach pre-

sented in Section 5.1.3. The profile likelihood function in Eqs. (5.16), (5.17) and
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Figure 5.2: Schematic illustration of the difference between the profile likelihood
function and the marginalised posterior pdf. The top panel shows iso-likelihood contours
for the full likelihood function L(x, y); for flat priors on x and y these are equivalent to
contours of constant posterior probability p(x, y|D). The bottom panel shows the one-
dimensional profile likelihood function (red) and marginalised posterior pdf (blue) for x.
The peak position and shape of the two distributions differ strongly, so that the Bayesian
and the Frequentist approach lead to very different inference results for x.

the marginalised posterior pdf defined by Eqs. (5.8) and (5.9) have, in general, a

different meaning, and present two fundamentally different approaches towards ac-

counting for the impact of nuisance parameters and obtaining inferences for a subset

of parameters. The marginalised posterior pdf is obtained by integrating over hidden

parameter directions. It peaks at the region of highest posterior mass and correctly

accounts for volume effects. In contrast, the profile likelihood function is oblivious

to volume effects and peaks at the region of highest likelihood. This makes it an

excellent quantity to discover small regions of high likelihood in parameter space.

The optimal quantity to study depends on the specific problem at hand and the

information one wants to infer about the parameter space of interest. For a normally

distributed likelihood function and flat priors, the shape of the marginalised poste-

rior pdf and the profile likelihood function will be identical. However, in more com-

plicated scenarios these two quantities may lead to very different inference results.
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An illustrative example is displayed in Fig. 5.2. The top panel shows iso-likelihood

contours in a two-dimensional parameter space, θ = (x, y); the bottom panel dis-

plays the one-dimensional profile likelihood function (red) and the marginalised pos-

terior pdf (blue) for the parameter x. As can be seen, the point of highest likelihood

is offset from the region of highest posterior mass, so that the profile likelihood

function (obtained by maximising over the y direction) and the marginal posterior

(obtained by integrating over y) peak at different values of x. Additionally, the

shape of the two distributions differs due to the asymmetry of the iso-likelihood

contours in the x direction. Therefore, the Frequentist and the Bayesian approach

lead to very different conclusions about the most favoured values of x.

Differences in the conclusions derived from the marginal posterior pdf and the

profile likelihood function are especially common when studying high-dimensional

parameter spaces with complicated, multi-modal likelihood surfaces; a typical ex-

ample are supersymmetric parameter spaces. In this case, the numerical evaluation

of the profile likelihood function is a challenging task, as finely tuned regions of

high likelihood and low volume can easily be missed in the analysis. However, the

profile likelihood has the advantage of being independent of the choice of prior,

while the marginalised posterior pdf is prone to prior-induced biases and volume

effects. In studies of supersymmetric parameter spaces the marginalised posterior

and the profile likelihood function will generally not lead to the same conclusions,

and the largest amount of information about the structure of the parameter space

is obtained by comparison of the two quantities. Therefore, in Chapters 7 and 8,

where we present global fits analyses of two constrained models of supersymmetry,

both the profile likelihood function and the marginalised posterior pdf for the model

parameters and observables of interest will be discussed.

5.2.3 Confidence intervals

Instead of reporting a single point estimate θ̂, it is often necessary to identify a range

of possible values that is likely to include the true value of the parameter of interest.

A 100α% confidence interval for a parameter θ has the defining property that, in

the limit of an infinite number of experiments repeated under exactly the same

conditions, the true parameter value θtrue will be contained inside the constructed

intervals for a fraction α of the experiments. In other words, given N identical

experiments, with N → ∞, the resulting set of confidence intervals [θa, θb] has

the property that p(θtrue ∈ [θa, θb]) = α.3 Note that this is entirely different from

3Recall that we are adopting the Frequentist definition of probability throughout this section.
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the definition of Bayesian credible intervals (see Section 5.1.4), which express the

posterior degree of belief about the value of θ.

While several different methods of confidence interval construction exist, in

this thesis we focus on profile likelihood-based confidence intervals, also known

as likelihood ratio-based confidence intervals. Given an N -dimensional param-

eter space (θ,ψ), where θ = (θ1, . . . , θM) are the parameters of interest and

ψ = (ψ1, . . . , ψN−M) are nuisance parameters, the profile likelihood ratio test statis-

tic for a point θ0 = (θ01, . . . , θ
0
M) is given by

λ(θ0) = −2 ln

(L(θ0,ψ‡)
Lmax

)
, (5.18)

where Lmax is the global maximum likelihood value across the entire N -dimensional

parameter space. The quantity L(θ0,ψ‡) is the M -dimensional profile likelihood

function (see Eq. (5.17)). In other words, L(θ0,ψ‡) is the conditional maximum

likelihood value for the point θ0, where ψ‡ is the conditional maximum likelihood

estimate of the values of the parameters ψ = (ψ1, . . . , ψN−M) for the given θ0, i.e.

ψ‡ is the specific combination of the other N −M parameters that maximises the

likelihood for the point θ0.

Wilks’ theorem states that, under certain regularity conditions, the test statistic

in Eq. (5.18) converges asymptotically to a chi-square distribution with M degrees

of freedom [434]. Assuming that Wilks’ theorem holds, it is straightforward to

construct confidence regions using the profile likelihood function. A 100α% Wilks-

based confidence region for the parameters in the subspace spanned by θ will contain

all points θ0 that fulfil

−2 ln

(L(θ0,ψ‡)
Lmax

)
≤ QM

α , (5.19)

where QM
α represents the (1 − α) quantile of the chi-square distribution with M

degrees of freedom ∫ QM
α

0

f (M)(u)du = α, (5.20)

with

f (M)(u) =
u

M
2
−1e−

u
2

Γ
(
M
2

)
2

M
2

. (5.21)

The values of QM
α for some common choices of α, that are frequently reported in

the literature as 1σ, 2σ and 3σ intervals/regions, are given in Table 5.1, for both

the case M = 1 and M = 2.

According to the definition given at the beginning of this section, in the limit of
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100α% Q1
α Q2

α

68.3% (1σ) 1.00 2.30
95.4% (2σ) 4.00 6.17
99.7% (3σ) 9.00 11.80

Table 5.1: Values of QM
α required to construct 100α% confidence intervals (M = 1,

central column) and 100α% confidence regions (M = 2, right-hand column) using the
procedure described in the text.

an infinite number of experiments repeated under exactly the same conditions, the

constructed 100α% confidence intervals ought to contain (“cover”) the true value

of the parameter in a fraction α of the experiments. This requirement leads to the

concept of coverage. If the coverage is 100α%, one says that the confidence interval

has exact coverage. The concept of coverage is of central importance in Chapter 6,

where the coverage properties of confidence intervals for the dark matter mass and

spin-independent cross-section are investigated.

Assuming that Wilks’ theorem holds, and given a large enough data sample,

the procedure outlined above can be applied to generate confidence intervals with

the desired coverage properties. However, the interval construction is based on an

asymptotic approximation, and thus in general only leads to approximate confi-

dence intervals. For small sample sizes the exact distribution of the test statistic λ

in Eq. (5.18) is unknown, and the asymptotic distribution may be a poor approxi-

mation. Additionally, strongly non-Gaussian likelihood functions can lead to a lack

of convergence of λ to its asymptotic behaviour. As a result, there is no guaran-

tee that the confidence intervals (or regions) constructed using Eq. (5.19) and the

QM
α values given in Table 5.1 will have exact coverage; instead, the intervals may

“over-cover” or “under-cover”. Over-coverage of a confidence interval means that

the interval is too long, so that it is unnecessarily conservative. Under-coverage, i.e.

the confidence interval is too short, can be a much more severe problem, as the true

parameter value will lie outside the interval a larger fraction of the time than its

stated confidence level implies. Following Ref. [261], confidence intervals with exact

coverage can always be constructed by Monte Carlo evaluation of the distribution of

λ. In practice, however, this may be a complicated and time-consuming procedure,

so that the approximate method of constructing confidence intervals based on Wilks’

theorem is commonly used for Frequentist data analysis in the literature.
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5.2.4 Hypothesis testing

The aim of hypothesis testing is to assess the truth of some model or hypothesis.

The two main approaches to hypothesis testing in Frequestist statistics are the

Neyman-Pearson test and the Fisherian test. The Neyman-Pearson hypothesis test

involves two hypotheses, a null hypothesis H0 and an alternative hypothesis H1.

In contrast, in Fisherian significance testing the validity of a single hypothesis, the

null hypothesis H0, is tested, and no alternative hypothesis H1 is defined. In the

following we focus on Fisher’s approach to hypothesis testing, which is applied in

Chapters 7 and 8.

The goal of Fisherian hypothesis testing is to evaluate if the measured data are

in agreement with the null hypothesis, or if H0 can be rejected in light of the data.

Such a test is also known as a goodness-of-fit test. In order to test H0, one has

to define a test statistic T (D), which reflects the level of agreement between the

measured data and the null hypothesis, and whose sampling distribution f(T |H0)

is known (or can be estimated from Monte Carlo simulations). The test statistic

is then evaluated for the given data sample, and its value T̂ is compared to the

reference distribution f(T |H0). If T̂ takes on an unlikely value that falls in the tail

of f(T |H0), the validity of H0 should be questioned.

In practice, the question of whether to reject H0 is assessed by computing the

so-called p-value, which measures the probability of obtaining a value of the test

statistic T greater than the value calculated from the measured data T̂ , assuming

that the null hypothesis is true

p-value = p(T > T̂ |H0). (5.22)

This is equivalent to computing the area in the tail of the distribution f(T |H0) for

values T > T̂

p-value = 1−
∫ T̂

0

f(T |H0)dT. (5.23)

Therefore, the p-value is a continuous parameter that measures the compatibility of

f(T |H0) with the computed test statistic T̂ , and thus quantifies the compatibility

of H0 with the data. Large p-values indicate good agreement, while small p-values

suggest that the measured data may not be compatible with H0.

A test statistic that is commonly used in hypothesis testing is the minimum

chi-square, i.e., for a given data sample, T̂ = χ2
min, where χ2

min was introduced in

Section 5.2.1. In this case, for Gaussian variables, f(T |H0) is given by a chi-square

distribution with M degrees of freedom, where M is given by the difference between
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the number of data points and the number of free parameters. If χ2
min is large, the

p-value computed from Eq. (5.23) will be small, casting doubts on the validity of

H0. In Chapters 7 and 8 we will calculate the p-value for two constrained models of

supersymmetry (the cMSSM and the NUHM, see Section 3.4.2) based on this test

statistic.

In order to decide whether H0 should be rejected, it is common to define a cutoff

value α, such that H0 is rejected for p-value < α. A cutoff p-value α means that

the probability to reject H0, given that H0 is true, is 100α%, i.e. our confidence

in rejecting H0 is 100(1 − α)%. α is generally chosen to be very small; common

choices include a threshold p-value = 0.05 (confidence of 95%), and p-value = 0.01

(confidence of 99%). We emphasise that the p-value does not give the probability

that H0 is true. Instead, it measures how probable it is to obtain a value of the

test statistic T ≥ T̂ , assuming that H0 is true. Even if H0 is correct, a very small

p-value may be found. Conversely, a p-value larger than the threshold α does not

prove the validity of H0, it merely indicates that H0 can not be rejected based on

the current data.

A related measure of the validity of H0 that is commonly found in the literature

is the difference between T̂ and its expectation value, given in units of the standard

deviation σ of f(T |H0). In astrophysics and cosmology, at least a 3σ deviation is

generally required to claim a significant excess; in the particle physics community

it is custom to require a 5σ deviation from the background expectation to claim a

discovery. A recent example is the Higgs boson discovery that was based on an excess

of events above the expected background with a significance of 5.9σ [22] (ATLAS)

and 5.0σ [192] (CMS).

5.3 Numerical methods

The last decade has seen a significant increase in the application of advanced numeri-

cal methods to inference problems, driven by the exponential growth in the available

computational resources, the rapid development of powerful numerical techniques,

and the production of increasingly large and complex data sets. In this section we

present an overview of practical numerical methods that are widely used through-

out physics, with a focus on the techniques that were applied to generate the results

presented in this thesis. While the majority of the methods described below were

designed for Bayesian inference, they are widely used also in Frequentist analyses.

Arguably the most simple approach towards numerically exploring a parame-

ter space of interest are random scans. This type of scan randomly selects points
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across the parameter space, and evaluates their compatibility with the available

data. Samples that are consistent with the experimental constraints at a pre-defined

confidence (e.g. 2σ) are accepted; all other points are discarded. The resulting sam-

ples can provide an insight into some of the main features of the studied parameter

space. However, without the explicit use of a likelihood function, a probabilistic

interpretation of the results is not possible. Additionally, random scans of high-

dimensional models only explore a small sub-volume of the full parameter space

(the “concentration of measure” phenomenon).

A straightforward method to map out the likelihood function L(θ) in a pa-

rameter space of interest is presented by grid-based algorithms, which evaluate

the likelihood function on a grid in parameter space. The resulting array of val-

ues can be used to study the properties of L(θ). Grid-based parameter extraction

techniques provide a simple and efficient approach to study the likelihood function

in low-dimensional problems where a reasonable estimate of the parameter ranges

that lead to a significant likelihood is available. However, in problems of higher

dimensionality N > 3, the grid-scanning approach becomes unfeasible, since the

computational effort scales exponentially with the number of parameters.

A very efficient approach to numerically estimate the posterior distribution

(and other distributions of interest) in parameter spaces with more than a handful

of free parameters is to generate a set of samples from p(θ|D). Given n samples

{θ1, . . . ,θn}, the posterior pdf can be approximated by

p(θ|D) ≈
∑n

i=1 wiδ(θ − θi)∑n
i=1 wi

, (5.24)

where {w1, . . . , wn} are the weights associated with the samples. In the limit of an

infinite number of draws, n → ∞, Eq. (5.24) becomes an exact equality, so that a

sufficiently large number of samples drawn from the posterior pdf can be used to

estimate the properties of p(θ|D), allowing for Bayesian parameter inference.

A popular approach to generate posterior samples are Markov Chain Monte

Carlo (MCMC) methods. MCMC methods generate a sequence of elements from

the posterior pdf, with a computational effort scaling roughly linearly with the

dimensionality of the problem. As a result, MCMC algorithms are much more

efficient than grid scanning methods in exploring high-dimensional parameter spaces

and today are an extremely popular tool to perform Bayesian parameter inference. A

large range of different MCMC algorithms exist, including Metropolis-Hastings [353,

304], Gibbs Sampling (see e.g. Ref. [405]), Slice Sampling [362] and Hamiltonian

Monte Carlo [249] methods. Further details on MCMC methods will be provided
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in Section 5.3.1, with a focus on the Metropolis-Hastings algorithm, which is the

sampling algorithm used in Chapter 6.

A second numerical technique that will be discussed in more detail in this

section is nested sampling [403]. Nested sampling is a Monte Carlo strategy that

can be used both for the numerical exploration of the posterior distribution, and for

the computation of the Bayesian evidence. An efficient implementation of nested

sampling, that is applied in Chapters 7–9, is the MultiNest algorithm [270, 271].

We will discuss nested sampling and the MultiNest code in Section 5.3.2.

While both MCMC and nested sampling are Bayesian algorithms, designed to

sample the posterior pdf and/or compute the evidence, they are powerful tools also

for Frequentist analyses. For example, in Chapter 6 we use posterior samples gen-

erated with MCMC methods to map out the likelihood function and to construct

confidence intervals. Similarly, in Chapters 7, 8 and 9 we apply the MultiNest

algorithm to obtain profile likelihood maps of high-dimensional supersymmetric pa-

rameter spaces.

5.3.1 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods are numerical techniques in which a Markov

chain is constructed by generating a set of samples from a target distribution, here

the posterior distribution p(θ|D) of Eq. (5.3), in a probabilistic manner. A Markov

chain is an ordered sequence of samples {θ1, . . . ,θn}, in which the probability of

the i-th point θi is dependent only on the value of the previous point θi−1 (but

independent of the elements θi−2, θi−3, etc.). Given a large enough number of

samples, the generated Markov chain will converge to an equilibrium distribution

that corresponds to the sampled target distribution p(θ|D).

The Metropolis-Hastings algorithm is one of the simplest and most popular

varieties of MCMC. This sampling algorithm is widely used in the fields of astro-

physics, cosmology and particle physics, and is applied in Chapter 6 to explore the

posterior pdf for the dark matter parameters. We focus on the Metropolis-Hastings

MCMC algorithm for the remainder of this section.

Underlying each MCMC algorithm is the process of obtaining new samples

from the posterior distribution and assessing if these samples should be added to

the MCMC chain. At the start of the MCMC a random point θ0 is drawn from the

prior distribution p(θ). Given this point, a trial point θtrial is generated from the

so-called proposal distribution p(θtrial|θ0), which depends only on the current point

θ0. The trial point is then either accepted or rejected, depending on its acceptance
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Figure 5.3: Example of a chain of MCMC samples. The samples (blue) were generated
using a Metropolis-Hastings algorithm, that was applied to reconstruct the true values
of the dark matter parameters mχ, σ

SI
p (red cross) from simulated direct detection data.

Log priors were used for both mχ and σSI
p . The density of the samples is proportional to

the posterior probability p(mχ, σ
SI
p |D). The first 500 steps in the chain were discarded

to account for the burn-in period, and the chain was thinned by a factor of 100.

probability. In the case of Metropolis-Hastings MCMC, the acceptance probability

is given by

p(θ1 = θtrial|θ0) = min

{
1,

p(θtrial|D)

p(θ0|D)

}
. (5.25)

As can be seen, the trial point is always accepted into the chain if it improves on

the posterior probability of the current point. Otherwise, the acceptance probability

depends on the ratio of the posterior probabilities of θtrial and θ0. By allowing for the

acceptance of points with p(θtrial|D) < p(θ0|D) the MCMC algorithm can explore

the tails of the target distribution. If the trial point is accepted, it becomes the latest

member of the MCMC chain, θ1 = θtrial, and a new trial point will be drawn from

the updated proposal distribution p(θtrial|θ1). If the trial point is rejected, θ1 = θ0,

and a new trial point will be drawn from p(θtrial|θ0). By repeating this process a

large (user-defined) number of times, a list of samples from the target distribution

p(θ|D) is obtained that, assuming that the Markov chain has converged, can be

used to evaluate the statistical quantities of interest.

An example for a set of samples generated using the MCMC methodology is

shown in Fig. 5.3. The displayed chain was produced by the Metropolis-Hastings

algorithm that is applied in Chapter 6 to explore the posterior distribution for the

dark matter mass and spin-independent cross-section, p(mχ, σ
SI
p |D). The obtained
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Figure 5.4: Illustration of the burn-in period. The evolution of the logarithm of the
sample posterior probability ln(p(mχ, σ

SI
p |D)) (left-hand panel), and of the dark matter

parameters (log(mχ) and log(σSI
p ), central and right-hand panels) is shown for the first

300 steps of the MCMC chain. After the first ∼ 50 steps (the burn-in period) the curve
for ln(p(mχ, σ

SI
p |D)) approaches a flat shape, and the parameters of interest converge to

their true values, shown by the red line.

samples can be used to reconstruct the benchmark values of mχ and σSI
p (shown by

the red cross).

There are several caveats when working with MCMC methods that need to be

considered in order to achieve a reliable mapping of p(θ|D). A crucial ingredient of

an efficient MCMC algorithm is the proposal distribution p(θtrial|θi−1) from which

the trial point is drawn at step i. A popular choice is a Gaussian distribution

that is centred on θi−1. However, great care must be taken when choosing the

width (step size) of this distribution along the different parameter directions: if

the step size is too large, almost all proposed points will be rejected, leading to a

low efficiency; a step size that is too small will result in a random walk, that can

cause an under-exploration of the tails of the posterior pdf. In general, the proposal

distribution should be chosen to lead to an acceptance probability of ∼ 20%− 40%.

If multiple MCMC chains are run, a useful proposal distribution can be found from

the covariance matrix of a previous chain.

Special attention has to be paid to the first few points that are accepted into

the chain. In most real-life problems the regions of high posterior probability are

unknown previous to the MCMC analysis, and θ0 is chosen randomly from the prior

distribution. After a number of steps, the MCMC chain will propagate towards re-

gions in which the posterior probability is large, independent of the starting position.

However, the first points that are accepted can correspond to very small posterior

probabilities, and do not accurately represent the target distribution. The period

before the chain has located a region of high posterior probability is known as the

“burn-in” period, and samples collected during this period should be discarded from

the final MCMC chain. The end of the burn-in period can generally be assessed by
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tracking the sample probability as a function of the step number. As an example,

Fig. 5.4 shows the initial evolution of the sample posterior probability, log(mχ) and

log(σSI) for the chain displayed in Fig. 5.3. When the sample probability first be-

comes appreciable compared to the maximum probability, the MCMC algorithm

starts sampling directly from the posterior distribution, and the parameters of in-

terest approach their true values. All points collected prior to this step should be

discarded from the analysis.

In principle, after discarding of the burn-in points, the MCMC chain should

accurately reflect the target distribution (given a sufficiently large number of sam-

ples). However, complications can arise if p(θ|D) is multimodal. In complicated

multimodal parameter spaces the MCMC algorithm can get trapped in a local max-

imum, so that it does not explore the full posterior pdf. In this case, the analysis

results can vary strongly with the starting position of the chain. A possible solution

is to run multiple chains in parallel, each starting at a different θ0. Comparison

of these chains can be used to investigate chain convergence (e.g. using the Gel-

man & Rubin convergence test [282]), and to assess if an adequate exploration of

the parameter space has been achieved. By combining all chains, a high-resolution

mapping of the posterior pdf is obtained.

5.3.2 Nested sampling and the MultiNest code

While MCMC methods have proven to be a powerful tool for Bayesian inference in

a wide range of scenarios, more challenging target distributions can pose significant

problems for MCMC algorithms. Sampling efficiently from distributions with multi-

ple peaks, sharp edges, or large degeneracies between parameters is a difficult task,

and correctly exploring such distributions with MCMC can be very computationally

expensive. The evaluation of the Bayesian evidence with MCMC-based methods,

such as thermodynamic integration (see e.g. [367]), can come at an even greater

computational cost.

Nested sampling is an efficient alternative to the MCMC approach that signifi-

cantly reduces the computational expense involved in the evidence calculation and

allows for the robust exploration of posterior distributions that pose challenges for

traditional MCMC methods. The nested sampling approach was first proposed by

John Skilling in 2004 [403], with the target of achieving an efficient numerical evalu-

ation of the multidimensional evidence integral in Eq. (5.4). In nested sampling, the

evidence computation is significantly simplified by rewriting this integral in terms
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of the cumulant prior mass

ξ(λ) =

∫
L(θ)>λ

p(θ)dθ, (5.26)

which gives the proportion of the prior volume corresponding to a likelihood value

L(θ) greater than λ. The cumulant prior mass is a decreasing function of λ, with

ξ(λ = 0) = 1 and ξ(λ = Lmax) = 0. Using the inverse function L(ξ) (with L(ξ(λ)) ≡
λ), the multidimensional integral over the parameters in Eq. (5.4) can be replaced

by a one-dimensional integral over the prior mass

Z =

∫ 1

0

L(ξ(λ))dξ, (5.27)

with dξ = p(θ)dθ. In other words, the evidence is simply the area enclosed by

the curve L(ξ(λ)) when plotted against ξ(λ). Thus, if we can obtain the likelihood

values L(ξi) for a sequence of n points 0 < ξn < · · · < ξ2 < ξ1 < 1, the evidence can

be approximated by a weighed sum of these values

Z ≈
n∑

j=1

L(ξj)wj. (5.28)

Different choices for the weights wj ∼ Δξj are possible; in the MultiNest algorithm

(see below) the simple trapezium rule is used, so that wj = (ξj−1 − ξj+1)/2.

In practice, the nested sampling method uses a set of m objects {θ1, . . . ,θm}
that are drawn randomly from the prior p(θ), subject to a constraint L(θ) > λ.

At the beginning of the nested sampling process, λ = 0 (ξ = 1), so that samples

are drawn from the entire region allowed by the prior. From this initial set of m

objects, the point of lowest likelihood L = Lmin (i.e. largest ξ = ξmax) is selected,

and λ = Lmin is applied as the new lower limit on the likelihood values of the

members of the set. The remaining m − 1 samples are still allowed under the new

constraint L(θ) > Lmin, but the object with likelihood Lmin does no longer fulfil

this requirement and is discarded. It is replaced by a new object that is sampled

uniformly over the prior, subject to the constraint that its likelihood value exceeds

Lmin. Once such a point is found, it is added to the set, which now again consists

of m samples. The point of lowest likelihood in this updated set is identified and

the iteration described above is repeated. Successive iterations generate sets of

objects that are “nested” within their previous sets as the algorithm travels towards

the regions of highest likelihood; this procedure continues until the algorithm is

terminated by some stopping criterion.
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The sequence of points discarded during the nested sampling process is saved,

and can be used to evaluate the Bayesian evidence, following Eq. (5.28). Addition-

ally, the discarded objects {θ1,θ2, . . . ,θn} give a set of representative samples from

the posterior distribution, provided that each object is assigned a weight

pi =
L(ξi)wi

Z
. (5.29)

These samples can be used to map out p(θ|D), so that nested sampling presents a

powerful alternative to MCMC methods for parameter inference.

Several nested sampling codes have been developed in recent years [360, 270,

271]. Of particular importance in the context of this thesis is the MultiNest

code [270, 271], a multi-modal nested sampling algorithm that employs an ellip-

soidal rejection sampling scheme in order to efficiently draw samples with L > λ

from the prior. Specifically, the key feature of MultiNest is that, at each iteration,

the set of m − 1 active points is enclosed within a set of ellipsoids, and the new

object is drawn from within their union. In addition to calculating the Bayesian

evidence at a reduced computational cost, the MultiNest code has proven to be a

powerful tool for Bayesian parameter inference. Because of the ellipsoidal decompo-

sition, MultiNest can efficiently sample high-dimensional, multimodal distributions

with a complex structure, which pose a challenge for traditional MCMC methods.

In particular, MultiNest was found to reduce the computational cost of sampling

the posterior pdf for the parameters of a simple supersymmetric model by a fac-

tor of ∼ 200 with respect to conventional MCMC techniques [422]. Additionally,

given appropriate settings, this Bayesian algorithm is able to reliably evaluate the

profile likelihood function, as demonstrated in Ref. [268]. In Chapters 7, 8 and 9

we use the MultiNest-SuperBayeS configuration to efficiently explore the parame-

ter spaces of supersymmetric models, and map out both the posterior pdf and the

profile likelihood function.
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Chapter 6

Fundamental statistical limitations

of future direct detection searches

6.1 Introduction

Many of the existing efforts to detect dark matter focus on the search for Weakly

Interacting Massive Particles (WIMPs). As discussed in Section 3.2, WIMPs are

a theoretically extremely appealing class of dark matter candidates, since they can

naturally achieve the appropriate cosmological relic density through thermal freeze-

out in the early Universe. As a result, WIMPs are the most widely studied dark

matter candidate today. Among the many different experiments that are currently

searching for these particles, a particularly promising approach is the direct detec-

tion of WIMPs. Direct detection experiments are looking for signals of WIMPs

scattering on atomic nuclei in large underground detectors; for a detailed descrip-

tion of dark matter direct detection see Section 4.2. A large number of direct

detection experiments are currently operating, and several collaborations (namely,

DAMA/LIBRA [150], CoGeNT [30], CRESST-II [95] and CDMS-II silicon [64])

have reported an excess of events that has been tentatively interpreted in terms of

a WIMP signal. However, these results are difficult to reconcile with null searches

from experiments such as LUX [77], XENON100 [102, 105], SuperCDMS [63, 65],

CDMS-II germanium [73], EDELWEISS-II [114] and ZEPLIN-III [79], and addi-

tionally are not in full agreement with each other. Several future direct detection

experiments, that will achieve larger scattering event rates and better statistics, are

planned for the next decade [127]. These next-generation searches will hopefully

resolve the current controversy, and could lead to an incontrovertible discovery of

dark matter.
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If a convincing WIMP-nucleon scattering signal is detected, the number of

events and the shape of the measured spectrum of recoil energies can be used to

reconstruct the physical properties of the dark matter particle, most importantly

its mass and scattering cross-section. As discussed in Section 4.2, this task is com-

plicated by sizeable uncertainties in the local astrophysics and the nuclear physics

of elastic scattering, as well as non-negligible backgrounds; the impact of these un-

certainties on the parameter reconstruction has been investigated in a number of

studies, see e.g. Refs. [289, 376, 417, 371]. In this chapter, we focus on an alto-

gether different source of uncertainty, namely the irreducible limitations on WIMP

parameter reconstructions from future direct detection data sets, that arise from

unavoidable statistical fluctuations driven by the Poisson nature of the event rate.

In order to assess the sole impact of these fundamental statistical fluctuations we as-

sume an ideal case, fixing all of the astrophysical parameters to their fiducial values

and neglecting the presence of (uncertain) backgrounds.

We determine the irreducible statistical limitations of future dark matter direct

detection experiments by performing parameter reconstructions on thousands of

simulated data sets for 36 different WIMP benchmark models, focussing on the case

of a significant detection in one or more future detectors. We concentrate on two dif-

ferent issues: first, we explore the concept of coverage of confidence intervals, which

quantifies the reliability of the statistical method adopted to reconstruct the WIMP

parameters. Specifically, we study the coverage properties of one-dimensional con-

fidence intervals, constructed using an asymptotic method that is commonly used

for Frequentist data analysis in the literature, and that relies on the assumption

that profile likelihood ratios are chi-square distributed, based on Wilks’ theorem

[434]. Second, we investigate how well one can expect to reconstruct the WIMP

properties from future direct detection data, given the statistical fluctuations that

will inevitably impact on the energy spectrum of the observed events. We estimate

the average uncertainty and bias in the parameter reconstructions for each of the

studied WIMP benchmark models. Additionally, we estimate the number of out-

liers in the parameter reconstructions, that lead to a parameter uncertainty that

significantly exceeds the average uncertainty. Considering the percentage of outliers

is of crucial importance, since in practice there will be a unique realisation of each

experiment, and the constraints derived from a particular data realisation can differ

strongly from the outcome for the “average experiment”, as demonstrated below.

We study different approaches to reduce the uncertainty in the parameter

reconstructions. The possibility of obtaining tighter constraints on the WIMP

properties by combining data sets from direct detection experiments that use dif-
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ferent target materials has been emphasised by several different groups, see e.g.

Refs. [370, 377, 186]. Therefore, we repeat the analysis of the coverage properties,

uncertainty and bias of the reconstructed WIMP parameters for two different exper-

imental set-ups. Namely, we compare the results obtained for a detection in a future

xenon experiment, and for two independent WIMP signals in a xenon and a germa-

nium experiment, and evaluate the improvement in the reconstruction capabilities

that is achieved by a combined analysis of the data sets from the two experiments.

Finally, we investigate the extent to which the average uncertainty in the WIMP

mass can be reduced by increasing the exposure of direct detection experiments.

The study presented in this chapter was carried out in 2011, and a number of

the investigated benchmark points have since been disfavoured by data from the

XENON100 [105] and LUX [77] experiments. However, the results of this study are

relevant for a much larger range of benchmark models than explicitly discussed in

the following sections, as will be explained in detail at the end of this chapter.

In the following sections we recall the theoretical formalism of direct dark mat-

ter detection, give an overview of upcoming experimental efforts and describe the

statistical methodology used in the analysis. We then present results for the cov-

erage properties, uncertainty and bias of the reconstructed WIMP parameters for

the full range of investigated WIMP benchmark models. Finally, we present our

conclusions. This chapter closely follows the work published in Ref. [416].

6.2 Direct detection of dark matter

6.2.1 Theoretical formalism

Direct detection experiments aim to detect signals of WIMPs scattering on atomic

nuclei. A detailed description of the theoretical formalism for the direct detection of

dark matter particles has been provided in Section 4.2. Here, we recall the concepts

that are of particular relevance for the work presented in this chapter, and refer the

reader to Section 4.2 for further details.

In the following, we adopt two assumptions that are commonly found in the

literature, namely that WIMP-nucleon scattering is elastic and that the WIMP-

proton and WIMP-neutron couplings are similar. Additionally, we focus on spin-

independent WIMP-nucleus scattering and neglect all other types of interactions.

The resulting direct detection nuclear recoil spectrum dR/dER for a WIMP of

mass mχ and spin-independent WIMP-proton cross-section σSI
p has been given in

Eq. (4.15).
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The local dark matter distribution enters in the recoil rate via the local dark

matter density ρ0, and the WIMP velocity distribution function in the rest frame

of the Galaxy f(�v + �vE), with �vE the Earth’s velocity in this frame, and �v the

WIMP velocity in the rest frame of the Earth. Since this study considers neither

directional signatures nor the annual modulation of the nuclear recoil spectrum, we

use the approximation �vE � �vlsr = (0, v0, 0), with v0 the local circular speed (see

Section 4.2.3). As outlined in Section 6.1, we neglect the astrophysical uncertainties

in the local dark matter distribution, in order to highlight the impact of unavoidable

statistical effects on the reconstruction of the WIMP parameters. In light of this

analysis goal, we can adequately model the local astrophysics using the standard halo

model (see Section 4.2.3), even though in general this model can only be considered a

first approximation to a much more complicated halo profile. In this case, f(�v+�vE) is

given by the Maxwell-Boltzmann distribution in Eq. (4.17). The dark matter density

and the velocity parameters are fixed to their fiducial values ρ0 = 0.4 GeV/cm3,

v0 = 230 km/s and vesc = 544 km/s. Finally, the recoil rate in Eq. (4.15) also

depends on the spin-independent nuclear form factor FSI(ER), for which we use the

expression given in Eq. (4.14).

The total number of detected recoil events NR can be calculated using Eq. (4.4).

Making the simplifying assumption that the effective (post-cuts) exposure is energy

independent, εeff falls out of the integral, and NR is given by

NR = εeff

∫ Emax

Ethr

dER
dR

dER

. (6.1)

The parameters of interest that enter in the direct detection recoil rate are

the WIMP mass mχ and the spin-independent WIMP-proton cross-section σSI
p . In

the following analysis we will reconstruct these parameters from simulated future

direct detection data sets. Specifically, we select 36 different WIMP benchmark

models, with masses and cross-sections inside the ranges mχ = [25, 250] GeV and

σSI
p = [10−10, 10−8] pb, and systematically investigate their coverage properties, and

the uncertainty and bias in the parameter reconstructions. For each benchmark

point the analysis is based on 103 mock data sets.

6.2.2 Future direct detection experiments

The most stringent constraints on the WIMP properties are currently provided

by the LUX collaboration [77]. The recently published 90% exclusion limit has

a minimum at a cross-section of σSI
p = 7.6 × 10−10 pb for a WIMP mass of
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mχ = 33 GeV [77]. Previous to the LUX results, the tightest limits were set by

another detector using a xenon target, namely the XENON100 experiment [102].

These constraints will be improved further once data from the XENON1T experi-

ment becomes available, which is currently under construction and will start oper-

ations in 2015 [100]. In the absence of a positive signal, XENON1T is expected to

exclude cross-sections σSI
p

>∼ 2×10−11 pb at 90% confidence level (formχ = 50 GeV).

Additionally, the LUX-ZEPLIN (LZ) collaboration is aiming for a detector with 6

tons fiducial mass of liquid xenon that will probe spin-independent WIMP-nucleon

cross-sections down to ∼ 10−12 pb [8]. Construction of the LZ detector is expected

to begin in 2015. Finally, the DARWIN project [9] is working towards a multi-ton

scale noble liquid experiment which is expected to start running in 2022 and should

probe spin-independent cross-sections >∼ 10−13 pb for mχ ∼ 100 GeV [10]. In a

sense, DARWIN is the ultimate WIMP detector, as it is limited by the irreducible

neutrino background (see e.g. Ref. [159]).

A second promising WIMP detection technology is based on cryogenic detectors

operating at very low temperatures, most notably the CDMS-II [72], and the Su-

perCDMS [65] germanium experiments. The SuperCDMS collaboration is currently

designing an experiment at SNOLAB, aiming for a total mass of 200 kg by 2016,

with an expected sensitivity of ∼ 10−10 pb [392]. Additionally, several ton-scale

experiments using cryogenic detectors operating at mK temperatures are planned,

most notably the GEODM project [272] and the EURECA experiment, which has

a projected sensitivity of 2.0× 10−11 pb [96].

In this work we simulate ton-scale, low-background versions of both a noble

liquid and a cryogenic experiment, in order to assess the performance of the recon-

struction of WIMP properties from data collected by the next generation of direct

detection experiments. Specifically, we focus on an experiment with a liquid natural

Xe target with average atomic mass 131 g/mol, and a Ge experiment with atomic

mass 73 g/mol. The characteristics of these detectors are chosen to reflect projects

that can realistically be built within the next 5 - 10 years; they are given in Table 6.1.

While liquid Ar is also sometimes used as target material in direct detection exper-

iments (e.g. the DarkSide-50 experiment [164] and the ArDM experiment [119]),

previous studies have shown that germanium and xenon provide tighter constraints

on the WIMP parameters and halo velocity distribution [370]. Therefore, we choose

not to include simulated argon data in this study.

For both the xenon and the germanium experiment we assume a threshold

energy of Ethr = 10 keV and only consider events with recoil energies below 100 keV.

This is a reasonable cut-off, given the exponential decay of the WIMP-nucleus recoil
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Target Ethr [keV] ε [ton×yr] ANR εeff [ton×yr] # Background events
Xe 10.0 5.00 0.5 2.00 < 1
Ge 10.0 3.00 0.9 2.16 < 1

Table 6.1: Primary characteristics of the simulated xenon- and germanium-based future
ton-scale dark matter direct detection experiments. See text for further details.

spectrum with energy. For both of the experiments, we assume that a percentage

ηcut = 80% of all events survive the selection cuts. For simplicity, this cut efficiency

is considered to be energy-independent. Following Ref. [370], we take a fiducial

detector mass of five tons and one year of operation for the xenon experiment. We

assume that a percentage ANR = 50% of all nuclear recoils in the fiducial region are

accepted, so that, after inclusion of the overall cut efficiency, the effective exposure

is εeff = 2.00 ton×year. For the germanium experiment, we adopt a fiducial detector

mass of one ton and an exposure of three years. Taking into account the total cut

efficiency ηcut and the nuclear recoil acceptance for germanium, ANR = 90%, the

effective exposure is εeff = 2.16 ton×year.

Several backgrounds (cosmic rays, radioactive contaminations, etc.) can induce

additional recoil events in direct detection experiments. Future detectors will apply

a variety of advanced techniques to achieve extreme radio-purity and self-shielding

of the detector, minimisation of cosmic ray events and a precise determination of

charge-to-light and charge-to-phonon ratios, in order to limit the background to

< 1 event per effective exposure. In light of these prospects, we assume that the

background rates for the simulated xenon and germanium experiments are negli-

gible. Finally, the finite energy resolution of the detectors is neglected for both

experiments, as the inclusion of energy resolution smearing has a negligible impact

on the recoil rate, except possibly near threshold. The scenario considered here is

somewhat idealised, which means that the statistical uncertainties we identify are

unavoidable, inherent to the WIMP benchmark point and target exposure, rather

than a reflection of systematic uncertainties in the detector response, backgrounds

or modelling of the dark matter halo.

6.3 Statistical methodology

6.3.1 Generation of mock data sets

The data set for a dark matter direct detection experiment consists of the total

number of observed events N̂R and the recoil energy spectrum of these events {Êi
R},

with i = 1, .., N̂R. The likelihood function L(θ) for the WIMP parameters θ =
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(mχ, σ
SI
p ) is given by the product of the Poisson probability of observing N̂R events

and the probabilities of each event of energy Êi
R originating from the predicted

probability distribution of event energies p(ÊR|θ)

L(θ) = NR(θ)
N̂R

N̂R!
exp [−NR(θ)]

N̂R∏
i=1

p(Êi
R|θ). (6.2)

In this case the (latent, unobserved) true recoil energy is identical to the observed

recoil energy, Ei
R = Êi

R, since, as outlined in the previous section, the energy resolu-

tion of the detectors is assumed to be negligible. The total number of recoil events

NR(θ) for a given WIMP benchmark point θ can be computed from Eq. (6.1), using

the experimental characteristics in Table 6.1. The distribution p(ÊR|θ) is given by

the normalized recoil energy spectrum

p(ÊR|θ) = dR/dER(ÊR,θ)∫ Emax

Emin
dE ′RdR/dE ′R(E

′
R,θ)

, (6.3)

where the event rate dR/dER(ER,θ) can be found from Eq. (4.15). The effective

exposure drops out in this one-event likelihood, because εeff is assumed to be indepen-

dent of the recoil energy. As explained in the previous section, the considered energy

range for both the Xe and the Ge target is Emin = 10 keV and Emax = 100 keV,

and no background events are included in N̂R, as we assume the background to be

negligible. The likelihood function in Eq. (6.2) is called the unbinned likelihood

function, and has been employed by both the XENON100 and the CDMS collabo-

rations [104, 71]. The likelihood function for the combined data set of the two toy

experiments is given by the product of the likelihood functions for the individual

experiments, so that LXe+Ge(θ) = LXe(θ) × LGe(θ), where LXe(θ) and LGe(θ) can

each be computed from Eq. (6.2).

6.3.2 Parameter reconstruction

The parameter reconstruction technique employed in this chapter is based on

Bayesian methods, which have been introduced in Section 5.1. Bayes’ Theorem

(see Eqs. (5.3), (5.5)) for this problem can be written as

p(mχ, σ
SI
p |N̂R, {Êi

R}i=1,..,N̂R
) ∝ L(mχ, σ

SI
p )× p(mχ)× p(σSI

p ), (6.4)

where we have neglected the Bayesian evidence in the denominator of Eq. (5.3),

which acts as a normalisation constant in parameter inference problems. The quan-
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tity p(mχ, σ
SI
p |N̂R, {Êi

R}i=1,..,N̂R
) is the posterior pdf for the parameters of inter-

est, here the WIMP mass and the WIMP-proton spin-independent cross-section,

which can be found from the product of the likelihood function L(mχ, σ
SI
p ), given in

Eq. (6.2), and the prior distributions for mχ and σSI
p (which are independent param-

eters, so that p(mχ, σ
SI
p )) = p(mχ) × p(σSI

p )). Since no specific underlying WIMP

model is assumed in this study, there are no a priori constraints on the WIMP

mass and cross-section. Therefore, the priors are chosen to be uniform in the log

of both mχ and σSI
p , reflecting ignorance on their order of magnitude. The range

of the prior on the WIMP mass is fixed to 1 ≤ log10(mχ/GeV) ≤ 3. The prior on

the cross-section is chosen to span two orders of magnitude around the benchmark

value of σSI
p . If required, this range is further extended to prevent that regions of

high posterior probability touch the prior boundary.

Because the likelihood function is unimodal and well-behaved, we can employ

Markov Chain Monte Carlo (MCMC) methods to scan over the parameter space and

reconstruct the WIMP properties of interest. A Metropolis Hastings algorithm [353,

304] is employed to efficiently sample the posterior pdf in Eq. (6.4). The obtained

posterior samples are used to map out the likelihood function in this parameter

space in a quasi-Frequentist sense. For further details on MCMC methods and the

Metropolis Hastings algorithm, see Section 5.3.1.

The proposal distribution implemented in the MCMC algorithm is given by

a two-dimensional Gaussian centred on the location of the previous point in the

MCMC chain; its covariance matrix is taken from earlier test runs. For some of

the WIMP benchmark points considered in this study, the shape of the posterior

pdf can vary strongly with the data realisation, due to the statistical fluctuations

that impact on the mock data sets. In these cases, the proposal distribution is

altered to be a mixture of two different two-dimensional Gaussians. The covariance

matrices of these Gaussians are taken from test runs and are selected to match the

two very different shapes of the posterior distribution that can arise from the same

benchmark model (“good” reconstructions and “bad” reconstructions, to be defined

more precisely below). In order to ensure that the tails of the posterior distribution

are well explored, every third MCMC step is taken in a random direction, with

a step size tuned to achieve an acceptable efficiency. Using this mixture strategy

MCMC, an efficient and complete sampling of the posterior pdf is achieved.

Each MCMC chain is required to contain a minimum number of 3×105 samples,

in order to ensure high enough statistics for a successful coverage investigation.

For a number of benchmark points this number is not sufficient, as the posterior

distribution can be very spread-out; in these cases a larger number of samples is
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requested, up to a maximum of 5 × 105 points per chain. To account for the burn

in period (see Section 5.3.1), the initial 104 samples of each chain are discarded. It

was checked that the resulting distribution of samples is independent of the starting

position of the MCMC chain, and that the analysis results are stable when doubling

the chain length. Finally, the suitability and numerical stability of the MCMC

algorithm was verified by testing it on Gaussian toy models.

6.3.3 Coverage

Two widely used methods to report experimental findings are (Bayesian) credible

intervals and (Frequentist) confidence intervals, that have been introduced in Sec-

tions 5.1.4 and 5.2.3, respectively. A 100α% credible interval is designed to contain

a fraction α of the posterior probability and expresses the posterior degree of belief

that the true parameter value is contained inside the interval for a single measure-

ment. In contrast, a 100α% confidence interval (CI) is built from the likelihood

function alone and, ideally, should contain (“cover”) the true value of the parameter

in a fraction α of repeated measurements. This requirement leads to the concept

of coverage, see also Section 5.2.3. Coverage is an inherently Frequentist concept,

and Bayesian credible intervals are not generally designed to achieve exact coverage,

although reliable behaviour of credible intervals under repetition of the experiment

is arguably a desirable property. The main focus of this chapter is the study of the

coverage and other statistical properties of confidence intervals. We will briefly com-

ment also on the coverage results for credible intervals, but, for the reasons outlined

below, a detailed study of this topic is omitted.

In this analysis we construct confidence intervals for the dark matter param-

eters using the profile likelihood ratio test statistic λ, defined in Eq. (5.18). As

discussed in Section 5.2.3, confidence intervals with exact coverage can always be

constructed by Monte Carlo evaluation of the distribution of λ, following Feldman

and Cousins [261]. However, a simpler and less time-consuming interval construction

methodology is often desirable. According to Wilks’ theorem [434], under certain

regularity conditions Eq. (5.18) converges asymptotically to a chi-square distribu-

tion with M degrees of freedom (where M is the number of parameters of interest,

e.g. M = 1 for the construction of one-dimensional confidence intervals). In this

case, once the profile likelihood function has been obtained it is straightforward to

construct confidence intervals using Eq. (5.19) and the threshold values QM
α given in

Table 5.1 (see Section 5.2.3 for full details). This approximate method of construct-

ing confidence intervals is commonly used in the literature in lieu of more complex
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methods, such as the method of Feldman and Cousins. In practice, however, there

is no guarantee that the intervals constructed using this procedure will have the de-

sired coverage properties. In particular, small samples sizes, or a likelihood function

that deviates strongly from a normal distribution, may lead to a lack of convergence

of the test statistic λ to its asymptotic behaviour. As discussed in Section 5.2.3, this

can result in both over-coverage and under-coverage of the constructed confidence

intervals.

In the following, we construct Wilks-based 1D confidence intervals for the

WIMP mass and spin-independent cross-section and discuss the coverage proper-

ties of these intervals. The 1D profile likelihood function is constructed from the

collected MCMC samples (see above) by binning the parameter space; we then deter-

mine the test statistic in Eq. (5.18) in each of the bins, and apply Wilks’ theorem to

find the confidence levels of interest. By repeating this procedure for many different

mock data sets, one can count how often the true values of the WIMP parameters

are found within the stated confidence level and thus investigate the coverage prop-

erties of the constructed intervals. The analysis procedure was tested on Gaussian

toy models (for which the coverage is exact) to determine the number of bins to use

in each direction of parameter space. For a large number of bins ≥ 1000, the analysis

suffers from significant numerical noise; a much smaller number of bins ≤ 500 leads

to a coarse likelihood mapping, resulting in artificial over-coverage. Therefore, in

this study we chose to use 750 bins in both the mχ and the σSI
p direction, with a

bin size selected to encompass the entire range of parameter values spanned by the

MCMC samples.

6.3.4 Performance of the parameter reconstruction

In addition to providing an analysis of the coverage properties of 1D Wilks-based

confidence intervals, we also study how well one can expect to reconstruct the true

dark matter properties using data sets from future direct detection experiments

that include realisation noise. A useful quantity to consider is the uncertainty in

the reconstructed parameters, which can be quantified by investigating the expected

fractional uncertainty (e.f.u.) for the WIMP parameters. The fractional uncertainty

(f.u.) in a parameter θ that is reconstructed from an experimental data set is defined

as the fractional length of the 68% confidence interval for θ relative to the benchmark

value θtrue

f.u. =
θ68%max − θ68%min

θtrue
. (6.5)
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The e.f.u. is computed by averaging the f.u. over 100 different data sets, and pro-

vides a measure of the precision of the parameter reconstruction. Note however

that a small average f.u. does not necessarily guarantee that the uncertainty in the

reconstructed parameter will be small for every single experiment; a non-negligible

number of reconstructions for the considered benchmark point may lead to a much

larger uncertainty in θ. Therefore, in addition to studying the e.f.u., we also count

the number of “bad” reconstructions in 100 different data realisations, where a re-

construction is defined as bad if it results in an f.u. > 0.75, corresponding to a data

set from which only very limited constraints can be placed on the WIMP parameter

in question.

The f.u. defined in Eq. (6.5) is somewhat similar to the effect size d [203, 128].

For the case of σSI
p , the effect size is given by

d ≡ (σ̄SI
p − σSI

p,null)

SD
. (6.6)

Here, the quantity σ̄SI
p refers to the mean value of a series of repeated measurements

of σSI
p ; SD is the corresponding standard deviation. σSI

p,null is the value of σ
SI
p under

the null hypothesis. In this case, the null hypothesis corresponds to the absence of

a WIMP signal, so that σSI
p,null = 0. Furthermore, note that the best-fit value for σSI

p

and half the width of the constructed 68% CI play an equivalent role to σ̄SI
p and

SD, respectively, since these quantities are good estimators for the true value of the

parameter σSI
p and the standard deviation of σ̄SI

p . Therefore, in the limit of zero bias

(i.e. the best-fit value of σSI
p is equal to the true value), the e.f.u. is approximately

equivalent to 2d−1. The relation between the e.f.u. and d for the case of the WIMP

mass is less straightforward, since mχ is undefined under the null hypothesis.

We further investigate the performance of the statistical reconstruction by

studying the statistical bias for the WIMP parameters. The bias for a parame-

ter θ is a measure of the accuracy of the parameter reconstruction; it is given by the

expectation value of the difference between the true parameter value θtrue and the

best-fit value θ̂bf resulting from the reconstruction

bias =
〈
θ̂bf − θtrue

〉
. (6.7)

As for the e.f.u., the expectation value is computed by averaging over 100 different

data sets. The performance of the reconstruction is expected to typically be poorer

in mχ than in σSI
p . Therefore, in the following we focus on the e.f.u. and bias of the

WIMP mass.

120



6.4 Results
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Figure 6.1: Examples for a “good” and a “bad” WIMP parameter reconstruction. The
left-hand (right-hand) panels show a good (bad) reconstruction for a WIMP benchmark
model with mass mχ = 50 GeV and spin-independent cross-section σSI

p = 2.51 × 10−10

pb. Top panels: 68.3% and 95.4% confidence regions in the mχ − σSI
p plane; the true

parameter values are indicated by the red cross. Bottom panels: recoil energy spectrum
of the mock data (yellow histogram - recall that the analysis is based on an unbinned
likelihood function, the counts are binned for a better visualization), true benchmark
rate dR/dE(E) (black) and, for the bad reconstruction, an example of an alternative rate
(red) that achieves a higher likelihood than the true rate. The difference between the two
reconstructions is exclusively due to statistical fluctuations in the simulated data sets.

6.4 Results

6.4.1 Impact of statistical fluctuations on the reconstruction

We study the performance of the reconstruction of WIMP properties for six bench-

mark masses mχ = {25, 35, 50, 70, 100, 250} GeV, and six spin-independent WIMP-

proton cross-sections σSI
p = {1.00×10−8, 3.98×10−9, 1.58×10−9, 6.31×10−10, 2.51×

10−10, 1.00 × 10−10} pb, i.e. 36 benchmark models in total. The expected number

of dark matter recoil events for these benchmark models in the simulated Xe ex-
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periment described in Section 6.2.2 is 10 <∼ NR
<∼ 4000. The study presented in this

chapter focusses on the case of a significant detection in a future direct detection ex-

periment, so that benchmark points in the very low counts regime, where NR < 10,

are not investigated, as with such a low number of events almost no constraints can

be derived on the WIMP parameters.

In this section we show examples of good and poor reconstructions of the WIMP

parameters based on two mock data sets for a specific benchmark model. These

examples illustrate points that will be important for the interpretation of the results

of the coverage study and the study of the performance of the parameter estimation

that are presented in the following sections.

In Fig. 6.1 we show two examples for the reconstruction of a WIMP benchmark

model with mass mχ = 50 GeV and spin-independent WIMP-proton cross-section

σSI
p = 2.51 × 10−10 pb, based on simulated Xe data. This WIMP model is an

example of a benchmark point for which the performance of the reconstruction can

vary strongly with the mock data set. The left-hand panels of Fig. 6.1 show a “good”

reconstruction, for which the likelihood function is well constrained in the mχ−σSI
p

plane. The right-hand side of Fig. 6.1 shows a “bad” reconstruction, which leads

to an essentially unconstrained likelihood. For both cases, the 68.3% and 95.4%

confidence regions (top), and the energy spectrum of the simulated dark matter

events (bottom) are shown.

For the example of a good reconstruction (left) both the 68.3% and the 95.4%

confidence regions span a small range of mass and cross-section values, and the true

WIMP properties are well reconstructed. The observed spectrum of recoil energies

agrees well with the true benchmark rate (shown in black). In contrast, for the

example of a bad reconstruction (right) the confidence regions spread over a large

range of masses and cross-sections. In particular, the 95.4% contour does not close,

but is cut off at the upper mass prior limit mχ = 1000 GeV, so that at 95.4% con-

fidence only a lower limit can be placed on mχ. This behaviour can be understood

from the spectrum of recoil energies. The simulated data set for this example con-

tains a relatively large number of events at high recoil energies E > 40 keV. While

such high-energy events are an unlikely realisation of the benchmark spectrum, they

can appear in the data set due to realisation noise. Statistical fluctuations have led

to an observed energy spectrum that is flatter than the predicted spectrum, and the

observation of a flat energy spectrum is indicative of high WIMP masses. As can be

seen from the definition of the minimum velocity vmin in Eq. (4.3), for mχ � mN ,

vmin → √
ER/2mN . Therefore, for very massive WIMPs vmin becomes independent

of mχ, so that the WIMP parameters only enter in the nuclear recoil spectrum in
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Eq. (4.15) via the degenerate combination σSI
p /mχ. As a result, for large masses

mχ � mN , the energy spectra for WIMP models that lead to the same ratio σSI
p /mχ

are nearly identical, which explains the “runaway” behaviour towards high masses

that is observed for the contours shown in the top right-hand panel of Fig. 6.1. For

illustration, the theoretical energy spectrum for a WIMP with mχ = 250 GeV and

σSI
p = 6.31× 10−10 pb is shown in red in the bottom right-hand panel. Clearly, this

model is a better fit to the simulated spectrum of events than the true benchmark

model (shown in black).

The considered benchmark model leads to a large number of events, NR ∼ 100,

so that one would naively expect statistical fluctuations in the observed energy

spectrum to have a minor impact on the parameter reconstruction. However, the

example shown on the right-hand side of Fig. 6.1 demonstrates that even in the case

of a significant detection with NR ∼100 events the parameter reconstruction can be

poor. Even though we show in the following that this benchmark model is relatively

well-behaved (it leads to exact coverage for most confidence intervals, low values

for the e.f.u. and bias, and a small fraction of large-f.u. outliers), there is a non-

negligible probability that the fundamental statistical fluctuation that impact on

each individual data set lead to a data realisation that results in a catastrophically

poor WIMP parameter reconstruction.

6.4.2 Results from the coverage study

The coverage results for the 1D 68.3% and 95.4% confidence intervals for mχ and

σSI
p , for both Xe data and the combined Xe+Ge data set, are obtained by simulating

1000 data sets for each of the 36 benchmark points, following the procedure outlined

in Section 6.3. For each data realisation, we construct the 68.3% (1σ) and 95.4% (2σ)

confidence intervals using Wilks’ theorem, and count how often the true benchmark

values of mχ and σSI
p are found within the stated confidence level. In order to

estimate the statistical error on the coverage (encompassing the uncertainty resulting

from the finite number of reconstructions and the finite numerical samples of the

likelihood function), we subdivide the 1000 reconstructions into 10 subsets, of 100

reconstructions each. We compute the coverage for each subset, and calculate the

standard error of the resulting ten coverage values; the average of this error over all

benchmark models is used as the statistical error on the coverage. This results in an

estimated 1σ error of 4.5% (1.9%) for the 68.3% (95.4%) CI. While this procedure

neglects mild variations of the error on the coverage across benchmark points, it is

a sufficiently accurate estimate for the purposes of this study.
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Figure 6.2: Coverage results for the 1D 68.3% (top) and 95.4% (bottom) confidence
intervals for the WIMP mass in the mχ − σSI

p plane, for both Xe data (left) and for a
combination of Xe+Ge data (right). Green (red) regions correspond to exact coverage
(over-coverage), as defined in the text; black regions indicate a transition from exact
coverage to over-coverage. The blue crosses in the upper left panel show the investigated
benchmark points. Isocontours of the expected number of events in the Xe experiment
are indicated in black. The “flares” pattern that shows up for some of the points is an
artefact of the interpolation scheme used to create the plots. The investigated benchmark
models lead to either exact coverage or over-coverage; no under-coverage is observed.

The coverage results for the 1D 68.3% and 95.4% CI for mχ are presented in the

top and bottom panels of Fig. 6.2, respectively. We show both the results obtained

for the Xe target (left), and for a combination of Xe+Ge data (right). Based on

the estimate of the statistical error on the coverage given above, coverage values

in the range (63.8, 72.8)% (for the 68.3% contour) and (93.5, 97.3)% (for the 95.4%

contour) correspond to “exact” coverage. Coverage values > 72.8% (> 97.3%) for

the 68.3% (95.4%) CI correspond to over-coverage, while coverage values < 63.8% (<

93.5%) correspond to under-coverage. Benchmark models that show exact coverage

within errors are displayed in green; models that lead to over-coverage are shown

in red. Benchmark points leading to coverage values at the upper boundary of
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λ χ

χ σ

χ σ

Figure 6.3: Difference between the histogram of the profile likelihood ratio test statistic
λ(mχ) computed from the simulated data sets and the chi-square distribution with 1
degree of freedom (as predicted by Wilks’ theorem), as a function of λ(mχ), for two
different benchmark points. This difference quantifies the deviation from Wilks’ theorem
for these two WIMP models. The histogram was constructed based on 103 realisations of
mock data sets for each benchmark point; errorbars assume Poisson count statistics.

exact coverage or the lower boundary of over-coverage are shown in black. None

of the investigated WIMP models lead to under-coverage of any of the considered

confidence intervals. For reference, isocontours of the expected number of events in

the Xe experiment are shown in black.

We start by discussing the results from Xe data only. For this case, most of

the investigated benchmark models lead to exact coverage of the 1D 68.3% and

95.4% CI. For both intervals, two regions that lead to significant over-coverage can

be identified. One region is found at small mχ = 25, 35 GeV, the other region

corresponds to high masses mχ = 250 GeV; both regions correspond to relatively

small cross-section values. For the 68.3% CI we additionally observed a small region

at large σSI
p and intermediate WIMP masses that borders on over-coverage; this is

most likely the result of a statistically non-significant fluctuation. The region of

over-coverage observed at large mχ is a result of the degeneracy along the σSI
p /mχ

direction that occurs for high WIMP masses mχ � mN (see Section 6.4.1). Due to

this degeneracy the 1D profile likelihood function can no longer be well approximated

by a normal distribution, so that the test statistic λ(mχ) defined in Eq. (5.18) starts

to deviate from a chi-square distribution. The difference between the histogram of

λ(mχ) values computed from 103 mock data sets and the chi-square distribution
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with 1 degree of of freedom (as predicted by Wilks’ theorem) for the benchmark

point mχ = 250 GeV, σSI
p = 2.51 · 10−10 pb is shown in Fig. 6.3. As can be seen

from Fig. 6.2, this is an example of a benchmark point suffering from significant over-

coverage. For comparison, the same quantity is shown for a second benchmark model

(mχ = 50 GeV, σSI
p = 10−8 pb), for which we observe exact coverage within errors.

As can be seen, this model leads to a good agreement with the predicted chi-square

distribution. In contrast, for the high-mass WIMP model the histogram of λ(mχ)

values deviates strongly from a chi-square distribution for values λ(mχ) <∼ 4, which

explains why over-coverage is observed for this benchmark point. The importance of

the high-mass degeneracy decreases with increasing cross-section, because the larger

number of events leads to a better resolution of the slope of the energy spectrum,

and thus an increased sensitivity to small changes in vmin. This explains why exact

coverage is observed at large values of σSI
p , even for mχ = 250 GeV.

The over-coverage found at small mχ and σSI
p is related to the relatively low

number of events observed for these benchmark points. Due to the low statistics the

1D profile likelihood function starts to deviate from a Gaussian, so that the asymp-

totic behaviour of Wilks’ theorem is less accurate, and over-coverage is observed.

The difference between the distribution of the test statistic λ(mχ) and a chi-square

distribution for these benchmark models is qualitatively similar to the red curve in

Fig. 6.3, albeit less extreme.

The coverage improves with the addition of data from the Ge target (right-

hand panels of Fig. 6.2). Both of the over-covered regions identified in the Xe-only

case shrink significantly, and exact coverage is observed throughout most of the

parameter space. For the 95.4% CI a region of slight over-coverage can be identified

at mχ = 70 GeV and σSI
p = 6.31× 10−10 pb; as all neighbouring benchmark points

show exact coverage, we interpret this as a statistical fluctuation. The region of over-

coverage observed at large mχ for the Xe-only case is almost completely eliminated

for both the 68.3% and the 95.4% CI. For the 68.3% interval, a single benchmark

point, corresponding to a small cross-section σSI
p = 1.00× 10−10 pb, and thus a very

small number of expected events NR ∼ O(10), continues to show over-coverage.

High-mass WIMP models at larger cross-sections are now exactly covered, since the

likelihood is tighter for a combined analysis of Xe+Ge compared to the Xe-only

analysis. For the 95.4% CI exact coverage is obtained for almost all benchmark

points at mχ = 250 GeV. An exception is the model with σSI
p = 1.58 × 10−9 pb,

which leads to a coverage value of 97.5%, just above the border of exact coverage

at 97.3%. In contrast, the reduction of the over-coverage found at small mχ is less

pronounced, and we continue to observe significant over-coverage especially at low
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Figure 6.4: As in Fig. 6.2, but for the 1D confidence intervals for the WIMP-proton
spin-independent cross-section σSI

p . The coverage improves significantly when combining
data from a Xe and a Ge experiment.

cross-sections σSI
p ≈ 10−10 pb.

In general, we find that the possibility of over-coverage remains as long as

the WIMP parameters are poorly constrained, which occurs most frequently for

benchmark models that lead to a low expected number of counts. Adding data from

a second experiment resolves this problem to some extent, but does not completely

eliminate the observed over-coverage, especially for WIMP models corresponding to

a small σSI
p .

The results of the coverage analysis for the 1D 68.3% and 95.4% confidence

intervals for σSI
p are displayed in Fig. 6.4. As in Fig. 6.2, top (bottom) panels show

the coverage results for the 68.3% (95.4%) CI and left-hand (right-hand) panels show

results for Xe (Xe+Ge) data. For the Xe-only case, most benchmark points lead to

exact coverage. However, for both the 68.3% and the 95.4% CI, a large region of

significant over-coverage can be identified at high WIMP masses mχ = 250 GeV. In

particular, for the 95.4% CI this region spans almost the entire cross-section range,
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mχ [GeV] σSI
p [pb] NR

Coverage [%]
1D 68.3% mχ 1D 95.4% mχ 1D 68.3% σSI

p 1D 95.4% σSI
p

35 10−10 29 73.3 (75.4) 96.1 (96.3) 69.2 (68.7) 96.9 (95.5)
50 10−10 38 68.3 (73.5) 95.7 (96.3) 73.3 (71.2) 96.9 (96.8)
100 1.58× 10−9 527 70.3 (69.2) 96.0 (95.3) 68.9 (68.4) 94.9 (95.6)
250 10−8 1671 68.0 (66.7) 95.9 (94.9) 69.2 (67.6) 95.7 (95.2)

Table 6.2: Coverage results for the 1D confidence intervals for mχ and σSI
p for four

selected WIMP benchmark models. Results are given both for the Xe-only case, and for
the combined analysis of Xe+Ge (in parentheses).

and extends to mχ = 100 GeV at low values of σSI
p . The observed over-coverage is a

result of the high-mass degeneracy, analogously to the explanation given above for

the 1D CI formχ. A second region of over-coverage is observed at intermediatemχ =

50, 70 GeV and low σSI
p for the 68.3% CI. While the 95.4% CI for these benchmark

models leads to exact coverage within errors, the coverage values of these intervals

are systematically≥ 96.4%. The origin of this over-coverage can be understood using

Fig. 6.1. Due to the low number of expected events (i.e. low statistics), the over-

covered benchmark points can lead to both good and bad parameter reconstructions.

For good reconstructions the 1D profile likelihood is approximately Gaussian, so

that the Wilks-based 1D confidence intervals achieve exact coverage. In contrast,

for bad reconstructions the profile likelihood function spreads over a large range of

parameter values and can no longer be well approximated by a Gaussian, so that

Wilks’ theorem becomes less accurate. Therefore, the over-coverage observed for

intermediate WIMP masses can be interpreted as a statement about the ratio of

good to bad parameter reconstructions.

As for the 1D CI for the WIMP mass, the coverage for the 1D CI for σSI
p im-

proves with the addition of Ge data to the analysis (right-hand panels of Fig. 6.4).

For the 68.3% CI, the over-covered region at intermediate WIMP masses observed

for the Xe-only case vanishes completely and is now exactly covered (with the ex-

ception of a single benchmark point at mχ = 70 GeV, which appears as a ‘flare’

pattern in the figure, and can again be interpreted as a statistical fluctuation). The

coverage for high-mass WIMP models with mχ = 250 GeV improves significantly,

although the over-coverage observed at low cross-sections σSI
p = 10−10 pb is difficult

to eliminate. For the 95.4% CI, adding data from a Ge experiment leads to an even

greater improvement in the coverage. The regions of over-coverage found for the

Xe-only case completely vanish and the entire parameter space is exactly covered.

For reference, the coverage results for a selected subset of benchmark models are

given in Table 6.2.

Overall, we conclude that the Wilks-based 1D confidence intervals for the bench-

mark models investigated in this study either exactly cover or over-cover the true
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parameter values, and thus are conservative. We have identified two dominant effects

that can lead to a deviation from exact coverage, namely the high-mass degener-

acy and strong statistical fluctuations, that can play a role even for WIMP models

leading to a relatively large number of expected events, NR ∼ 100. We have demon-

strated that combining data from two experiments using different target materials

can significantly reduce the over-coverage resulting from both of these effects. We

point out that the observed over-coverage can in principle be remedied by using

more sophisticated methods, such as the Feldman-Cousins technique, to construct

confidence intervals with guaranteed exact coverage.

In addition to the coverage of confidence intervals, we have also investigated

the coverage properties of Bayesian credible intervals. We find that the coverage

results for the 68.3% and 95.4% credible intervals exhibit broadly the same trends as

discussed above for the corresponding confidence intervals, although under-coverage

of credible intervals is observed for a small number of benchmark points. For well-

reconstructed benchmark models, the constructed credible intervals are very similar

to the corresponding CI, and thus lead to approximately the same coverage results.

However, for benchmark models that are badly reconstructed (i.e. are lying on the

high-mass degeneracy line) the region of high posterior probability is spread over a

large range of masses and cross-sections, and is cut off by the upper prior boundary

for the parameters. Therefore, the 1D marginal posterior pdf and thus also the

1D credible intervals become a function of the prior ranges adopted for the WIMP

parameters and, as a consequence, the coverage values obtained for the credible

intervals are sensitive to the choice of prior ranges. This is clearly unsatisfactory, so

that we do not present coverage results for Bayesian credible intervals in this chapter

– a thorough exploration of this topic would require a study of how the coverage

properties change as a function of the prior ranges chosen for the parameters. We

emphasise that the coverage results presented above for the Frequentist confidence

intervals are independent of the chosen prior ranges.

6.4.3 Accuracy and precision of the parameter reconstruc-

tion

We now turn to the discussion of the accuracy and precision of the parameter re-

construction. We begin by presenting results for the expected fractional uncertainty

(e.f.u.) for the WIMP mass. As explained in Section 6.3.4, the e.f.u. measures the

average fractional standard deviation of the reconstructed mχ value and thus quan-

tifies the precision of the WIMP mass reconstruction. Fig. 6.5 shows the e.f.u. in the
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Figure 6.5: Expected fractional uncertainty for the WIMP mass in the mχ − σSI
p

plane. The e.f.u. quantifies the precision of the reconstruction of mχ, with small e.f.u.
values corresponding to good precision and vice versa. The left-hand (right-hand) panel
shows results for the Xe (Xe+Ge) experiment. Isocontours of the expected number of
events for the Xe target are shown in black; isocontours of the number of “bad” cases
(f.u. > 0.75) in 100 reconstructions are displayed in white. The e.f.u. and the number
bad cases can be significant even for intermediate-mass WIMP models leading to several
hundreds of events.

mχ − σSI
p plane, both for Xe data only (left) and for a combination of Xe+Ge data

(right). For display purposes, the upper limit of the colorbar is fixed to e.f.u.= 1.5

(note however that several of the considered benchmark models lead to an e.f.u.

> 1.5). We show both isocontours of the expected number of events in the Xe ex-

periment (black) and isocontours of the number of “bad” reconstructions, leading to

an f.u. > 0.75, in 100 reconstructions (white). The number of bad cases is of great

interest, since it quantifies the probability that the considered WIMP benchmark

model (that may show a small average uncertainty on mχ) leads to a data set that

leaves the WIMP mass essentially unconstrained.

We start by discussing the e.f.u. results for the Xe-only case (left-hand panel of

Fig. 6.5). As a general pattern, the larger mχ and the smaller σSI
p , the larger the

e.f.u. value for the benchmark model. High-mass WIMPs are expected to lead to very

large e.f.u. values, since the confidence intervals for these benchmark points stretch

along the degeneracy direction in themχ−σSI
p plane. Instead, we are most interested

in the region where the transition from good to poor performance takes place. In

the following, we present a discussion of the e.f.u. results at high (σSI
p ∼ 10−8 pb),

intermediate (σSI
p ∼ 10−9 pb) and low (σSI

p ∼ 10−10 pb) cross-sections.

For large cross-section values, σSI
p ∼ 10−8 pb, most benchmark masses lead

to a low e.f.u., so that the uncertainty in the reconstructed WIMP mass is small.

Low-mass WIMPs (mχ = 25, 35 GeV) lead to an extremely small e.f.u. = 0.03 and a
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fraction of bad reconstructions that is < 1%. Even for larger masses mχ ≤ 100 GeV

the e.f.u. remains below 0.15. However, for the WIMP model with mχ = 250 GeV

we find an e.f.u. > 1.00, so that even for this large cross-section and the resulting

large number of events, NR = 1671, only very limited constraints can be placed on

the WIMP mass. As described above, this large e.f.u. value is a consequence of the

shape of the likelihood function for this benchmark model, which inhabits the region

of degeneracy in the mχ − σSI
p plane.

For benchmark points with intermediate cross-sections, σSI
p ∼ 10−9 pb, the

overall precision is quite good. The e.f.u. is < 0.30 for WIMP masses mχ ≤ 70 GeV,

so that, for the average reconstruction, mχ is well-constrained. Likewise, for mχ =

70 GeV only a couple of bad cases are found in 100 reconstructions, and for mχ ≤
50 GeV the number of bad reconstructions is always < 1%. At higher benchmark

masses, the precision of the reconstruction of mχ is significantly reduced. While for

the benchmark point at mχ = 100 GeV and σSI
p = 1.58 × 10−9 pb (corresponding

to NR = 527 events) an intermediate e.f.u. = 0.41 is observed, a smaller benchmark

cross-section σSI
p = 6.31 × 10−10 pb (corresponding to NR = 210 events) leads to a

much larger value, e.f.u. = 1.21, so that for this benchmark point the WIMP mass

is left essentially unconstrained by the data. Therefore, for σSI
p ∼ 10−9 pb, the

WIMP model with mχ = 100 GeV lies on the border between a good and a bad

performance of the reconstruction. For benchmark points with σSI
p ≤ 10−9 pb and

mχ ≥ 100 GeV, the e.f.u. is systematically >0.75 (and sometimes �0.75), and the

WIMP mass is essentially unconstrained in 30% or more of the reconstructions. The

significant uncertainties observed at large masses mχ = 250 GeV are expected, due

to the high-mass degeneracy. However, it is interesting to see that this effect is very

pronounced even for smaller benchmark masses mχ ≈ 100 GeV, that lead to several

hundreds of events.

At small cross-sections, σSI
p ∼ 10−10 pb, the e.f.u. is significantly higher across

all benchmark masses. The performance of the reconstruction deteriorates as a result

of the small number of expected events NR ∼ O(10) for these benchmark points.

Even light WIMPs with mχ = 25, 35 GeV lead to an e.f.u. ∼0.50, so that only weak

constraints can be placed on the WIMP mass; the fraction of bad reconstructions

for these benchmark models is >∼ 5%. For mχ ≥ 50 GeV the average uncertainty

is > 100%, and even for intermediate mass WIMPs (mχ = 50 GeV) ∼30% of

reconstructions are bad. We emphasise once more that these uncertainties arise

purely from statistical fluctuations in the data realisation, which are unavoidable.

The addition of data from the Ge experiment (right-hand panel in Fig. 6.5)

leads to a significant reduction of both the e.f.u. and the percentage of bad recon-
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χ

χ

χ

Figure 6.6: Expected fractional uncertainty on the WIMP mass as a function of the
exposure for the Xe experiment (bottom axis) and the Ge experiment (top axis) for a fixed
cross-section σSI

p = 10−9 pb, for three different benchmark masses mχ = 25 GeV (red),
mχ = 50 GeV (black) and mχ = 250 GeV (blue). Solid lines correspond to the e.f.u.
for the Xe-only case, dashed lines show the e.f.u. results when combining Xe + Ge data.
Increased experimental exposures can lead to a significantly more precise reconstruction
of the WIMP mass.

structions across the parameter space. The 30% isocontour of the number of bad

cases is shifted to higher mass values by ∼ 50% compared to the Xe-only case,

and the e.f.u. decreases dramatically at fixed WIMP parameters, often by > 50%.

Note however that for benchmark points with intermediate WIMP masses and spin-

independent cross-sections, a non-negligible percentage ∼ 2− 10% of the parameter

reconstructions leads to an f.u. > 0.75, despite the small average uncertainty for

these benchmark points. Additionally, we continue to observe an e.f.u. > 1.0 for

several benchmark models, especially at large mχ and small σSI
p . For these models

the WIMP mass is left essentially unconstrained by the data, even when combining

data sets from two ton-scale experiments.

In Fig. 6.6 we show the e.f.u. as a function of the exposure for a WIMP with

cross-section σSI
p = 10−9 pb, for three different benchmark masses. Solid lines show

the e.f.u. results for a Xe target only, dashed lines show the e.f.u. for a combined

analysis of Xe+Ge. For the Xe-only case, for high-mass WIMPs (mχ = 250 GeV)

the e.f.u. is always > 1.00, as a result of the degeneracy along the σSI
p /mχ direction.

In contrast, for WIMPs of both intermediate (mχ = 50 GeV) and small (mχ =

25 GeV) masses, the e.f.u. is strongly reduced when increasing the exposure of the
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Figure 6.7: As in Fig. 6.5, but with the colour scale showing the fractional bias of the
WIMP mass.

Xe experiment. For example, by increasing the exposure from 1 ton×year to 10

ton×year, the e.f.u. for these benchmark models is reduced from ∼ 30− 40% to less

than 10%. When combining data from a Xe and a Ge target the situation improves

for all of the considered benchmark masses. For a Xe experiment with exposure

∼ 20 ton×year and a Ge experiment with exposure ∼ 10 ton×year, even the high-

mass WIMP model with mχ = 250 GeV leads to an e.f.u. below unity; by further

increasing the exposure of the experiments an even smaller e.f.u. can be achieved.

For both intermediate and small WIMP masses mχ = 25, 50 GeV we observe a

significant reduction in the e.f.u. with respect to the values found for Xe data alone.

For both models, increasing the exposure of the Xe and Ge experiments leads to a

strong decrease in the e.f.u., so that for an intermediate (low) mass WIMP an e.f.u.

< 0.1 can be achieved for a 5 (3) ton×year exposure for the Xe experiment and a 3

(1.5) ton×year exposure for the Ge experiment.

The fractional bias of the WIMP mass, i.e. the bias (see Eq. (6.7)) of the

WIMP mass relative to the benchmark mass, in the mχ − σSI
p plane is shown in

Fig. 6.7, both for the Xe experiment alone (left), and for a combination of Xe+Ge

data (right). This quantity provides a measure of the accuracy of the WIMP mass

reconstruction. We find that the bias is either very small, or the WIMP mass is

biased towards larger values than the benchmark mass; almost no negative bias is

observed. When comparing Fig. 6.5 and Fig. 6.7, one can see that the behaviour

of the bias throughout the parameter space is similar to the e.f.u. results: the bias

is small at low masses and high cross-sections, and increases with increasing mχ

and decreasing σSI
p . The features in Fig. 6.7 are closely related to the high-mass

degeneracy. When the degeneracy line in the mχ − σSI
p plane becomes populated
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mχ [GeV] σSI
p [pb] NR e.f.u. # bad cases fractional bias

35 10−10 29 0.51 (0.29) 7 (0) 0.042 (0.023)
50 10−10 38 1.24 (0.40) 32 (4) 0.272 (0.017)
100 1.58× 10−9 527 0.41 (0.22) 9 (0) 0.014 (-0.020)
250 10−8 1671 1.20 (0.48) 51 (13) 0.205 (0.052)

Table 6.3: Summary of the performance of the statistical reconstruction for four se-
lected WIMP benchmark models. Results are given both for the Xe-only case, and for
the combined analysis of Xe+Ge (in parentheses).

with high-likelihood fits, the extension of the confidence intervals to this region of

parameter space leads to a best-fit mass that is typically higher than the true mass.

As a result, the bias of the WIMP mass is large and positive for these benchmark

points. As for the e.f.u., the fractional bias is reduced considerably for a combined

analysis of data from a Xe and a Ge experiment.

In Table 6.3 we summarise the performance of the statistical reconstruction for

four selected benchmark points. Notice that, in reality, the e.f.u., the fractional

bias, and the percentage of bad cases will be larger than reported above, due to

the impact of astrophysical uncertainties and the possible presence of non-negligible

backgrounds that were neglected in this analysis, and that are expected to further

reduce the accuracy and precision of the parameter reconstruction.

6.5 Discussion and conclusions

We have presented a study of the statistical properties of approximate 1D confidence

intervals for the phenomenological WIMP parameters mχ and σSI
p , using simulated

data sets from future ton-scale direct detection experiments. We have focused in

particular on the effect of unavoidable statistical fluctuations in the data realisations.

We found that, in general, the coverage properties of the Wilks-based confidence

intervals for mχ and σSI
p are quite good. The intervals either exactly cover or over-

cover the true parameter values, and thus are conservative. The small amount of

over-coverage observed for some benchmark points was found to be a consequence of

either the degeneracy along the σSI
p /mχ direction that occurs for high WIMP masses,

or statistical fluctuations, which become important for benchmark models leading

to a low number of expected events. In both cases, the 1D profile likelihood function

starts to deviate from a normal distribution, so that the asymptotic behaviour of

Wilks’ theorem is less accurate. We point out that coverage issues can in principle

be resolved altogether by constructing confidence intervals with guaranteed exact

coverage, for example by using the method of Feldman and Cousins [261].

Our results can be compared to the coverage properties of the 1D confidence
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intervals for mχ and σSI
p in the context of a specific supersymmetric model, as in-

vestigated in Ref. [80], where the coverage properties of these intervals were studied

for two benchmark points reconstructed using mock ton-scale direct detection data.

While we find exact coverage in a large portion of the parameter space, in Ref. [80]

both over-coverage and severe under-coverage was observed. The under-coverage was

claimed to be due to sampling effects, resulting from the implicit priors imposed on

the WIMP parameters and the complex structure of the parameter space, that af-

fect the mapping of the likelihood function in the mχ − σSI
p plane. The structure of

the parameter space studied here is much simpler, and the relationship between the

parameters of interest (mχ and σSI
p ) and the observables (N̂R and {Êi

R}i=1,..,N̂R
) is

significantly more straightforward than for supersymmetric theories, for which the

model parameters are connected to the observables via highly non-linear transfor-

mations. As a result, our analysis does not suffer from the same sampling issues that

plague supersymmetric parameter spaces, explaining why overall better coverage is

observed. In general, one may conclude that the less complicated and nonlinear

the relationship between the observables and the underlying parameter space, the

better the coverage properties. The implication for dark matter searches is that sim-

ple model-independent analyses aiming to constrain the phenomenological WIMP

properties can generally be expected to have good coverage, while the mapping onto

specific theoretical model spaces will typically not retain this property.1

In addition to the coverage properties, we have investigated the precision and

accuracy of the parameter reconstruction. We found that the expected fractional

uncertainty and the statistical bias of the reconstructed WIMPmass are more serious

problems, which can not be remedied by employing more sophisticated methods of

constructing confidence intervals. Statistical fluctuations can flatten the observed

energy recoil spectrum relative to the theoretical spectrum for the given benchmark

model, resulting in an essentially unconstrained likelihood function, from which

only a lower limit can be placed on the WIMP parameters. We found this effect

to be of importance even for intermediate benchmark masses and cross-sections,

so that statistical fluctuations can result in a low precision and accuracy of the

reconstruction even for WIMP models that lead to a large number of expected

events, NR � O(100). Additionally, we observed that for several benchmark points

that lead to a small average uncertainty and bias in the parameter reconstruction,

a non-negligible fraction of all reconstructions results in a much larger uncertainty,

as a result of the statistical fluctuations that impact on each individual data set.

1See also Ref. [167] for a study of the coverage properties of confidence intervals in the context
of a specific supersymmetric framework.
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We have demonstrated that the coverage properties, and the accuracy and pre-

cision of the WIMP parameter reconstruction can be significantly improved by com-

bining data sets from two independent experiments with different target materials.

Additionally, we found that the precision of the reconstruction can be improved

considerably by increasing the exposure of the experiment(s).

As mentioned in Section 6.1, several of the WIMP benchmark models that

were studied in this chapter have been disfavoured by recent data from the

XENON100 [105] and LUX [77] experiments. We point out, however, that the

above results for a specific benchmark point can have more general implications for

a range of different WIMP models. Since the total number of recoil events is directly

proportional to σSI
p , and the value of σSI

p does not affect the energy spectrum of the

events, the results for a given benchmark point hold for all scenarios that correspond

to the same value of the product εeff × σSI
p . A recent study of the scientific reach

of the future DARWIN detector has assumed experimental exposures of up to 20

ton × years [366], which exceeds the exposure of the Xe experiment simulated in

this study by an order of magnitude. For an effective exposure εeff = 20 ton×year

(instead of εeff = 2 ton×year), the conclusions presented in this chapter apply to

cross-sections in the range σSI
p = [10−11, 10−9] pb, which are almost unconstrained

by current direct detection results.

Throughout this analysis, we have assumed negligible backgrounds and fixed

important sources of uncertainties, especially in the local astrophysics of dark mat-

ter. The modelling of the direct detection experimental likelihood was correspond-

ingly simplified. Given this optimistic set-up, the low precision and accuracy of the

parameter reconstruction observed for certain benchmark models is a fundamen-

tal consequence of statistical fluctuations in the realisation of the energy spectrum,

inherent to the WIMP benchmark point and target exposure. We expect that includ-

ing non-negligible backgrounds, systematic uncertainties in the detector response,

and non-negligible astrophysical and nuclear physics uncertainties in the analysis

would further degrade the performance of the reconstruction.
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Chapter 7

Global fits of the cMSSM

7.1 Introduction

In recent years, null searches for new physics at the Large Hadron Collider (LHC)

have provided increasingly strong constraints on a large range of scenarios of be-

yond the Standard Model (SM) physics. Particular attention has been given to the

Minimal Supersymmetric Standard Model (MSSM) and other models of weak-scale

Supersymmetry (SUSY); see Sections 3.3 and 3.4 for an introduction to SUSY and

the MSSM. In addition to several other compelling arguments, an important the-

oretical motivation for SUSY is that the Lightest Supersymmetric Particle (LSP),

which is generally assumed to be the lightest neutralino χ̃0
1, is an excellent dark mat-

ter candidate (assuming R-parity is conserved). In the last few years, the lack of a

convincing signal in direct and indirect detection searches for dark matter has led

to stringent constraints on the properties of the dark matter particle. On the same

timescales, the WMAP [321] and Planck [56] experiments have performed precise

measurements of the cosmological abundance of dark matter. Assuming that SUSY

is realised in nature, these results can be directly translated into constraints on the

neutralino LSP. In this case, data from dark matter and cosmology experiments

can be combined with constraints on SUSY from accelerator searches to perform a

global fit of the parameters of SUSY models (see Section 4.5).

The most widely studied supersymmetric extension of the SM is the constrained

MSSM (cMSSM) [188, 326]. As discussed in Section 3.4.2, the cMSSM has only a

handful of free model parameters, but still captures several key phenomenological

features of SUSY, and makes definite predictions for the properties of the neutralino

LSP. As a result, the cMSSM is an extremely popular target for phenomenological

studies and in the past few years has acted as the de facto default model to study

the impact of different experimental searches on SUSY and supersymmetric dark
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matter.

In this chapter we present a global fits analysis of the cMSSM including con-

straints on SUSY and the Higgs boson from accelerator searches, precision tests

of the SM, direct detection limits on dark matter and cosmological constraints on

the dark matter relic density. The results are obtained with an evolution of the

SuperBayeS v1.5.1 package [5], that has been used in a number of earlier studies

of the cMSSM, see e.g. Refs. [390, 387, 422, 268]. Here, we build on these works

by including new experimental results in the analysis, and evaluating their impact

on global fits of the cMSSM. In particular, we present results from two different

analyses. In Analysis I we investigate the impact of LHC SUSY null searches and

direct detection data from the XENON100 experiment [102, 105] on the cMSSM

parameter space, using data sets available in late 2011 (based on Ref. [413] and, to a

lesser extent, Ref. [155]). In Analysis II we provide a detailed study of the impact of

the LHC discovery of the Higgs boson [192, 22] on the cMSSM (based on Ref. [414]).

We investigate the implications for future SUSY and dark matter searches, and also

qualitatively comment on the impact of more recently released data sets on our re-

sults. As explained in Chapter 5, due to the complicated likelihood surface and high

dimensionality of supersymmetric parameter spaces, Bayesian and Frequentist anal-

yses can lead to very different physical conclusions. Therefore, in the following we

derive both the regions of highest posterior probability (Bayesian) and the best-fit

regions (Frequentist) of the cMSSM.

The translation of direct detection limits on the neutralino-nucleon scattering

interaction to constraints on the cMSSM parameters is complicated by the pres-

ence of sizeable uncertainties (see Sections 4.2.2 and 4.2.3). The calculation of the

scattering amplitude depends on the hadronic matrix elements, which parameterise

the quark composition of the proton. Similarly, direct detection constraints depend

strongly on the dark matter halo model. Neither the relevant astrophysical quan-

tities, nor the hadronic matrix elements are precisely known, and neglecting these

uncertainties can lead to incorrect inference results. We account for these uncer-

tainties by including the quantities defining the dark matter distribution and the

proton composition as nuisance parameters in the scans. We compare inference re-

sults obtained with fixed and varying nuisance parameters to assess the importance

of including these uncertainties in the analysis.

Prior to the start of LHC operations, the experimental measurement of the

anomalous magnetic moment of the muon aμ ≡ (gμ−2)/2 [322] has been considered

a strong hint for low-energy SUSY. The SM prediction of this quantity displays a

3.6σ discrepancy with the measured value [231], which could be due to a sizeable
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cMSSM Parameters
Flat priors Log priors

m0 [GeV] (50.0, 4000.0) (101.7, 103.6)
m1/2 [GeV] (50.0, 4000.0) (101.7, 103.6)
A0 [GeV] (-4000.0, 4000.0)
tan β (2.0, 65.0)

Table 7.1: cMSSM parameters and their ranges covered by the scans. Flat priors are
uniform in the mass parameters, while log priors are uniform in the logarithm of the mass
parameters. The displayed prior ranges were adopted for both Analysis I and II.

SUSY contribution. However, the significant theoretical uncertainties that enter in

the calculation of aSMμ and the lack of a SUSY signal at the LHC challenge this

interpretation, and cast doubts on the robustness of this constraint. Therefore, we

present results for both an analysis including and excluding the gμ − 2 constraint,

to evaluate the dependence of our inferences on the cMSSM parameters on this

quantity.

In the next section we describe the theoretical and statistical framework for

the analysis, followed by the presentation of our results. In Section 7.3 we present

results from Analysis I; results from Analysis II are discussed in Section 7.4. We

present our conclusions in Section 7.5. This chapter is based on the work presented

in Refs. [413, 414] and, to a lesser extent, Ref. [155].

7.2 Theoretical and statistical framework

7.2.1 Model and nuisance parameters

The cMSSM has been introduced in Section 3.4.2 and is defined by the GUT-scale

universality conditions given in Eq. (3.18). It is described by only five free param-

eters: the universal scalar and gaugino masses, m0 and m1/2, the universal scalar

trilinear coupling A0, the ratio of the Higgs vacuum expectation values tan β and the

sign of the Higgsino mass parameter sgn(μ). We fix the μ parameter to be positive,

sgn(μ) = +1, as favoured by measurements of the anomalous magnetic moment of

the muon [269], and thus consider a total of four model parameters in our scans.

The scanned ranges of the cMSSM parameters are given in Table 7.1.

Residual uncertainties on the values of certain SM quantities can have an impor-

tant impact on the constraints derived on the cMSSM parameters and the observ-

ables [89, 424]. To correctly account for this effect, we include four SM parameters

as nuisance parameters in the scans, namely the pole top quark massMt, the bottom
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SM nuisance parameters
Gaussian prior Range scanned Ref.

Mt (I) [GeV] 173.1± 1.3 (167.0, 178.2) [295]
Mt (II) [GeV] 173.2± 0.9 (170.5, 175.9) [296]

mb(mb)
MS [GeV] 4.20± 0.07 (3.92, 4.48) [435]

[αem(MZ)
MS]−1 127.955± 0.030 (127.835, 128.075) [435]

αs(MZ)
MS 0.1176± 0.0020 (0.1096, 0.1256) [435]

Astrophysical nuisance parameters
ρ0 [GeV/cm3] 0.4± 0.1 (0.001, 0.900) [370]
v0 [km/s] 230.0± 30.0 (80.0, 380.0) [370]
vesc [km/s] 544.0± 33.0 (379.0, 709.0) [370]
vd [km/s] 282.0± 37.0 (98.0, 465.0) [370]

Hadronic nuisance parameters
f p
Tu

0.02698± 0.00395 (0.010, 0.045) [254]
f p
Td

0.03906± 0.00513 (0.015, 0.060) [254]
f p
Ts

0.363± 0.119 (0.000, 0.85) [254]

Table 7.2: Nuisance parameters included in the scans of the cMSSM parameter space.
Both the mean and standard deviation adopted for the Gaussian priors on the parame-
ters and the range of values explored by the scans is shown. Nuisance parameter prior
distributions marked by “(I)” (“(II)”) were applied only in Analysis I (II); for unmarked
quantities, the same prior distribution was applied in both analyses. For scans in which
the astrophysical and hadronic nuisance parameters are not varied they are fixed to their
central values.

quark mass evaluated atmb,mb(mb)
MS, and the electromagnetic and strong coupling

constants evaluated at the Z pole mass MZ , [αem(MZ)
MS]−1 and αs(MZ)

MS. As

indicated by the superscript MS, the parameters are computed in the MS scheme.

The SM nuisance parameters are included in the scans using Gaussian priors, with

mean and standard deviation chosen to reflect up-to-date experimental constraints,

and displayed in Table 7.2. As can be seen, in Analysis II we update the prior on

Mt to include the more recent Tevatron measurement of this quantity [296]. Addi-

tionally, for this analysis we reduce the scanned ranges of all nuisance parameters to

±3σ around the mean value, in order to increase the efficiency of our scans (updated

ranges not shown).

Additional sizeable uncertainties enter in the analysis when including con-

straints from direct dark matter searches; see Section 4.2 for a detailed overview

of direct detection of dark matter. In this chapter we focus on spin-independent

neutralino-nucleon scattering interactions, and assume that the neutralino couplings

to the proton and the neutron are identical. The corresponding expression for the

dark matter recoil rate has been given in Eq. (4.15). As discussed in Section 4.2.3,
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astrophysical uncertainties enter in the recoil rate via the local dark matter density

ρ0 and the dark matter velocity distribution f(�v+�vE), with �v the WIMP velocity in

the rest frame of the Earth and �vE the Earth’s velocity with respect to the galactic

rest frame. In the following, we approximate �vE � �vlsr = (0, v0, 0), with v0 the local

circular velocity (see Section 4.2.3). For the velocity distribution function we use

the parameterisation given in Eq. (4.19), replacing v0 with
√

2/3vd, where vd is the

three-dimensional velocity dispersion (in order to separately take into account the

uncertainty in v0 and in vd); additionally, for simplicity, we fix the power-law index

to k = 1. Therefore, the dark matter astrophysics enters into our computation of the

recoil rate via ρ0 and the three velocities v0, vesc, vd. We include these four quanti-

ties as nuisance parameters in the analysis using an informative Gaussian prior with

mean and standard deviation chosen as motivated in Ref. [370], and shown in the

central part of Table 7.2. Note in particular that we use the relation vd =
√
3/2v0

to derive a prior on vd, but vary the two velocities v0, vd independently in our scans.

Finally, nuclear physics uncertainties enter when translating constraints on

the cMSSM parameters into constraints on the neutralino-proton spin-independent

cross-section σSI
χ̃0
1−p (and vice versa). The computation of σSI

χ̃0
1−p depends on the

hadronic matrix elements mpf
p
Tq

= 〈p|mq q̄q|p〉, that parameterise the contributions

of the light quarks to the proton composition (see Eqs. (4.10) and (4.11)). The quan-

tities f p
Tq

(q = u, d, s) are associated with sizeable uncertainties, that directly impact

on the computed value of σSI
χ̃0
1−p; a detailed discussion of these uncertainties has been

provided in Section 4.2.2. The uncertainties on f p
Tu,d,s

can significantly affect the con-

straints derived on the cMSSM parameters from direct detection data sets, see e.g.

Ref. [254]. Therefore, we include these quantities as nuisance parameters in our

global fits analysis and constrain them with a Gaussian prior with mean and stan-

dard deviation as indicated at the bottom of Table 7.2, taken from Ref. [254] (based

on the σπN result from the George Washington University/TRIUMF group [372]).

7.2.2 Statistical and scanning methodology

We employ Bayesian methods to explore the cMSSM parameter space and map out

both the Bayesian posterior probability density function (pdf) and the Frequentist

profile likelihood function for the model parameters and observables of interest. A

detailed introduction to Bayesian statistics has been provided in Section 5.1, and

we refer the reader to this section for further details. As discussed in Section 5.1.2,

posterior inferences on SUSY parameter spaces commonly exhibit a residual depen-

dence on the choice of priors. Therefore, following Refs. [422, 268], we repeat each
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of our scans for two sets of (non-informative) prior distributions and compare the

results to assess the robustness of our posterior inferences. One prior set is uniform

on the cMSSM mass parameters (“flat” priors, see Eq. (5.6)), while the other set is

uniform in the log of m0 and m1/2 (“log” priors, see Eq. (5.7)); both sets of priors

are uniform on A0 and tan β. The prior ranges on the cMSSM parameters for both

log and flat priors are shown in Table 7.1. For the SM, astrophysical and hadronic

nuisance parameters we adopt informative Gaussian priors, with mean and standard

deviation chosen according to experimental measurements (see above), and shown

in Table 7.2. For scans that do not include astrophysical and hadronic uncertain-

ties the corresponding nuisance parameters were fixed to the mean values given in

Table 7.2

To present results for a subset of one or two parameters one can consider either

the Bayesian marginalised posterior pdf or the Frequentist profile likelihood function,

defined in Eqs. (5.9) and (5.17), respectively (see also Sections 5.1.3, 5.2.2). As

discussed in Section 5.2.2, inferences resulting from the Bayesian and the Frequentist

approach have, in general, a different meaning and may lead to different physical

conclusions (see in particular the example in Fig. 5.2). Generally, the maximum

of information about the structure of the parameter space of interest is obtained

by comparing the inferences derived from the two approaches [396, 268], so that in

the following we present results for both the marginalised posterior and the profile

likelihood function. The profile likelihood, which in principle is prior independent,

is derived from combined chains of the log and flat prior scans, as advocated in

Ref. [268].

For our analysis we use an evolution of the publicly available SuperBayeS

v1.5.1 package [5]. In particular, for Analysis II (I) the latest version of SuperBayeS

was modified to interface with SoftSUSY 3.1.7 (SoftSUSY 2.0.18) [11, 86] as SUSY

spectrum calculator, MicrOMEGAs 2.4 (MicrOMEGAs 2.0) [12, 137] for the com-

putation of the neutralino abundance, DarkSUSY 5.0.5 (same) [13, 285] to compute

σSI
χ̃0
1−p and σSD

χ̃0
1−p, SuperIso 3.0 (SuperIso 2.4) [14, 344] to calculate δaSUSY

μ and the

B, D and K physics observables, SusyBSG 1.5 (SusyBSG 1.4) [15, 235] to compute

BR(B̄ → Xsγ) and FeynHiggs 1.9 (not included) [16, 306] for the computation of the

Higgs production cross-sections. As a scanning algorithm we use MultiNest v2.18

(MultiNest v2.8) [270, 271], with running parameters tuned to obtain an accurate

evaluation of the profile likelihood function, nlive = 20, 000 and tol = 10−4 [268].

For Analysis I, the chains from which we obtain our inferences were generated

from approximately 43M (7M) likelihood evaluations for the scans including (ex-

cluding) the XENON100 results (and thus the astrophysical and hadronic nuisance
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parameters), corresponding to a total computational effort of 4 (< 1) CPU years.

For Analysis II, we further increased our scanning resolution by running ten scans

in parallel, for both log and flat priors. The combined log (flat) prior chains were

based on ∼ 220M (∼ 128M) likelihood evaluations; the corresponding chains for

the analysis excluding the constraint on δaSUSY
μ required ∼ 10% (∼ 3%) fewer like-

lihood evaluations. In order to achieve a higher resolution in the tail of the profile

likelihood function, we saved the value and coordinates of all likelihood evaluations,

including samples that would normally not have been saved in the posterior chains

(as they belong to rejected steps in the sampling). As a result, the profile likelihood

results from Analysis II are based on a combined total of 348M (323M) samples

for the scans including (excluding) the δaSUSY
μ constraint. By comparing the profile

likelihood and best-fit points across the ten different scans, we confirmed that our

results are consistent across all the scans, validating the robustness of our scanning

procedure. The total computational effort was approximately 22 (13) CPU years

for the scans including (excluding) the δaSUSY
μ constraint.

7.2.3 Experimental constraints and the likelihood function

The full likelihood function consists of several different components, corresponding

to the different experimental constraints that we apply in our global fits analysis:

lnL(θ) = lnLSUSY + lnLHiggs + lnLg−2 + lnLEW + lnLB(D,K) + lnLDM + lnLDD (7.1)

The full list of constraints included in L(θ) is shown in Table 7.3. Observables for

which a positive measurement exists (upper part) are implemented as a Gaussian

likelihood function with a standard deviation s =
√
σ2 + τ 2. Here, σ is the ex-

perimental uncertainty and τ is our estimate of the theoretical uncertainty, which

accounts for the limited numerical precision and the effect of approximations, such

as neglecting higher order loop corrections. For Gaussian distributed data points

the likelihood function is normalised such that lnLi = 0 when the theoretical value

matches the mean value in Table 7.3. Unless specified otherwise, for observables for

which only limits are available we use a smoothed-out version of the reported upper

or lower bound that accounts for the theoretical uncertainty in the computed value

of the observable (see Fig. 1 and the associated discussion in Ref. [390]). In that

case, the likelihood function is normalised so that lnLi = 0 asymptotically above

(below) the lower (upper) exclusion limit. Finally, we assign a zero likelihood to

unphysical points in the parameter space that lead to tachyonic masses or do not

achieve ElectroWeak Symmetry Breaking (EWSB), as well as to points for which
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Observable Mean value Uncertainties Ref.
μ σ (exper.) τ (theor.)

mW (I) [GeV] 80.398 0.025 0.015 [1]
mW (II) [GeV] 80.399 0.023 0.015 [1]
sin2 θeff 0.23153 0.00016 0.00015 [394]
δaSUSY

μ × 1010 (I) 29.6 8.1 2.0 [230]
δaSUSY

μ × 1010 (II) 28.7 8.0 2.0 [231]
BR(B̄ → Xsγ)× 104 3.55 0.26 0.30 [115]
ΔMBs (I) [ps−1] 17.77 0.12 2.40 [46]
RΔMBs

(II) 1.04 0.11 - [46, 27, 294]
BR(Bu→τν)

BR(Bu→τν)SM
(I) 1.28 0.38 - [115]

BR(Bu→τν)
BR(Bu→τν)SM

(II) 1.63 0.54 - [91]

Δ0− × 102 (I) 3.6 2.65 - [257]
Δ0− × 102 (II) 3.1 2.3 - [117, 364, 363]
BR(B→Dτν)
BR(B→Deν)

× 102 41.6 12.8 3.5 [118]

Rl23 (I) 1.004 0.007 - [99]
Rl23 (II) 0.999 0.007 - [98]
BR(Ds → τν)× 102 5.38 0.32 0.20 [115]
BR(Ds → μν)× 103 5.81 0.43 0.20 [115]
BR(D → μν)× 104 3.82 0.33 0.20 [115]
Ωχh

2 0.1123 0.0035 10% [321]
BR(Bs → μ+μ−) (II) 3.2× 10−9 1.5× 10−9 10% [28]
mh (II) [GeV] 125.8 0.6 2.0 [330]

Limit (95% C.L.) τ (theor.) Ref.

BR(Bs → μ+μ−) (I) < 5.8× 10−8 14% [33]
mh (I) (SM-like) > 115.5 GeV 3 GeV [21]
Sparticle masses See Refs. [2, 393, 307, 47, 40, 399]. 5%
m0 −m1/2 (I) CMS 1.1 fb−1 exclusion limit [184]
m0 −m1/2 (II) ATLAS 5.8 fb−1 exclusion limit [207]
mχ − σSI

χ̃0
1−p (I) XENON100 101-days exclusion limit [102]

mχ − σSI
χ̃0
1−p (II) XENON100 225-days exclusion limit [105]

Table 7.3: Summary of experimental constraints included in the likelihood function.
The upper part lists mean values μ, experimental errors σ and theoretical uncertainties
τ for the observables for which a positive measurement exists, including in particular the
CMS constraint on the mass of the lightest Higgs boson [330]. The lower part shows
observables for which only upper or lower bounds exist, including limits from LHC SUSY
searches [184] and constraints on the dark matter properties from the XENON100 direct
detection experiment [102, 105]. Constraints marked by “(I)” (“(II)”) are only included
in Analysis I (II); unmarked constraints are included in both analyses. See text for further
information on the observables and the form of the likelihood function.

the neutralino is not the LSP.

As discussed above, in the following we present results for two different analyses.

While the set of observables included in L(θ) is identical for Analysis I and Analysis
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II, the values of μ and σ differ for several of the observables, as Analysis II was

carried out at a later date and thus includes updates from more recent experimental

measurements. For these observables, Table 7.3 shows both the constraint included

in Analysis I and in Analysis II. In particular, the most important updates are

the inclusion of the CMS constraint on the mass of the Higgs boson, the LHCb

measurement of BR(Bs → μ+μ−), and more recent LHC SUSY and XENON100

exclusions limits. In the following we provide a brief description of each of the

components that enter in L(θ) (cf. Eq. (7.1)).

LSUSY: constraints from SUSY searches

In recent years, LHC null searches for SUSY have placed tight constraints on super-

symmetric parameter spaces (see Section 4.4), in particular the cMSSM. We include

constraints from LHC SUSY searches in our global fits analyses and study their

impact on the most favoured regions of the cMSSM parameter space. In Analysis I

we include constraints derived from proton-proton collisions with a center-of-mass

energy
√
s = 7 TeV, and a data sample corresponding to an integrated luminosity

of 1 fb−1, presented by the CMS collaboration in 2011 [191]. The results were based

on the search for a SUSY signal in hadronic events with two or more jets and miss-

ing transverse energy using the kinematic variable αT . No significant excess signal

beyond the SM predictions was observed, so that a lower limit in the plane of the

cMSSM mass parameters (m0,m1/2) could be derived. We apply the 95% cMSSM

exclusion limit shown as a solid red line in Fig. 5 of Ref. [184] in our global fits

Analysis I. Analysis II includes more recent results, based on an ATLAS search for

squarks and gluinos in final states that contain missing ET , jets and 0 leptons in

5.8 fb −1 integrated luminosity of data at
√
s = 8 TeV collision energy, recorded in

2012 [207]. Specifically, we apply the 95% exclusion limit in the (m0,m1/2) plane

shown as a solid brown line in the left-hand panel of Fig. 6 in Ref. [207]. The LHC

exclusion limits are included in the likelihood function by defining L(θ) = LSUSY = 0

for samples corresponding to values of m0 and m1/2 below the limit, and LSUSY = 1

otherwise. While the limits in Refs. [184, 207] were computed for fixed values of

tan β = 10 and A0 = 0, they are obtained from decay channels that are relatively

insensitive to the values of these parameters, so that we can treat the CMS and

ATLAS exclusion limits as approximately independent of tan β and A0 [87].

In both Analysis I and II we additionally include experimental constraints from

SUSY searches at LEP and the Tevatron on the sparticle masses mχ̃0
1
, mχ̃±

1
, mẽR ,

mμ̃R
, mτ̃1 , mν̃ , mt̃1 , mb̃1

, mq̃, mg̃ [2, 393, 307, 47, 40, 399], where mq̃ denotes

the masses of the first and second generation squarks. We adopt a conservative
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theoretical error of τ = 5% for the computed superpartner masses.

LHiggs: constraints on the SM Higgs boson

An important component of our global fits analysis is the inclusion of results from

LHC Higgs boson searches. In late 2011, the ATLAS collaboration reported new

exclusion limits on the Higgs boson mass, derived from searches with up to 4.9 fb−1

integrated luminosity, based on
√
s = 7 TeV proton-proton collisions, ruling out

values < 115.5 GeV and > 131.0 GeV at 95% confidence level [21]. While this bound

was derived for the SM Higgs boson, the lightest Higgs in the cMSSM is almost

invariably SM-like, as LHC null searches for SUSY push the the pseudoscalar Higgs

mass to large values mA � mZ (the decoupling limit, see Section 3.4.3). Therefore,

we apply the ATLAS 4.9 fb−1 limit to mh in Analysis I.1 We assume a theoretical

error in the Higgs mass computation of τ = 3 GeV [88].

The central aim of Analysis II is to study the impact of the LHC discovery of

the Higgs boson [192, 22] on the favoured regions in the cMSSM parameter space.

Therefore, in this analysis we include the experimental constraint from the CMS

collaboration on the mass of the Higgs boson, mh = 125.8± 0.6 GeV, derived from

data corresponding to integrated luminosities of up to 5.1 fb−1 at
√
s = 7 TeV and

up to 12.2 fb−1 at
√
s = 8 TeV collision energy [330]. The search was performed

in five different decay modes (h → γγ, Z0Z0,W+W−, τ+τ−, bb̄), and the statistical

significance of the signal is 6.9σ. We do not impose the experimental constraint

on the Higgs production cross-section in this analysis, since all of our samples fall

within a very narrow range σh/σ
SM
h = [0.95, 1.00], which is in good agreement with

the CMS constraint, σh/σ
SM
h = 0.88± 0.21, reported in Ref. [330]. In Analysis II we

adopt a theoretical error of τ = 2 GeV.

Lg−2: the constraint on the anomalous magnetic moment of the muon

The anomalous magnetic moment of the muon aμ ≡ (gμ−2)/2 [322] is one of the most

precisely measured quantities in particle physics and thus provides an interesting

window to new physics. The experimentally measured value of this quantity, aExpμ =

(11659208.0± 5.4± 3.3)× 10−10 [141], remains in disagreement with the theoretical

evaluations of the SM prediction, which differ from the observed value by > 3σ [230,

231, 301]. In the past, this discrepancy has widely been interpreted as a signal of

new physics. In particular, the discrepancy could be due to loop contributions from

1Here and in the following chapters, the symbol h denotes the lightest Higgs boson in the
MSSM.
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supersymmetric particles, δaSUSY
μ = aExpμ − aSMμ . In Analysis I we use δaSUSY

μ =

(29.6 ± 8.1) × 10−10 [230], while Analysis II includes an updated value δaSUSY
μ =

(28.7± 8.0)× 10−10 [231].

The significance of this discrepancy has to be interpreted with care, since the

calculation of aSMμ is subject to important theoretical uncertainties, in particular in

the computation of the hadronic loop contributions. Additionally, the discrepancy

between the experimental result and the theoretical SM value is reduced to 2.4σ

when τ data are used instead of e+e− data [231]. A large contribution δaSUSY
μ gener-

ally requires relatively small sparticle masses, that are accessible at the LHC, so that

the lack of a positive signal at the LHC strongly challenges the interpretation of the

measurement of the anomalous magnetic moment as a signal of low-energy SUSY.

Due to its large value, the gμ − 2 constraint can be expected to play a dominant

role in driving the global fits analyses of the cMSSM. Therefore, in the following we

present results both including and excluding the experimental constraint on gμ − 2,

in order to evaluate the dependence of our conclusions on this observable.

LEW: precision tests of the electroweak sector

We include constraints on several electroweak precision observables in our global

fits analyses. Specifically, we include the constraint on the effective electroweak

mixing angle for leptons sin2 θeff obtained from Z-pole measurements at LEP [394].

Additionally, we include the constraint on the mass of the W boson [1] (obtained

from a combination of experimental results). These observables receive contributions

from both SM physics and SUSY, so that precise measurements of these quantities

can put strong constraints on SUSY models.

LB(D,K): precision tests of B, D and K physics observables

The list of constraints from B, D and K physics included in our likelihood function is

summarised in Table 7.3. We include several results obtained by the Heavy Flavor

Averaging Group [115], including the constraint on the decay branching fraction

BR(B̄ → Xsγ), the ratio of the measured decay branching fraction BR(Bu → τν)

to the SM expectation, and constraints on the branching fractions of Ds → τν,

Ds → μν and D → μν. Most of these quantities agree rather well with the SM

predictions and thus impose constraints on additional contributions from SUSY. An

exception are the measured values of BR(Ds → τν) and BR(Ds → μν), which are

slightly larger than expected in the SM.

Additionally, we include the constraint on the B0
s − B̄0

s oscillation frequency.
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Specifically, in Analysis I we apply the measurement by the CDF collaboration,

ΔMBs(I) = 17.77± 0.12 ps−1 [46], while Analysis II instead includes the constraint

on the ratio of the measured ΔMBs to the SM value, RΔMBs
(II) = 1.04 ± 0.11,

obtained from a combination of CDF and LHCb results [46, 27, 294]. We also

implement the constraint on the ratio of the branching fractions BR(B → Dτν)

and BR(B → Deν) from the Babar collaboration [118], which is consistent with the

SM expectation.

Analysis I also includes the CDF upper limit on the decay branching fraction

BR(Bs → μ+μ−) [33]. In late 2012, the LHCb experiment reported the first evidence

for the decay Bs → μ+μ−, derived from a combined analysis of 1.0 fb−1 of data

at
√
s = 7 TeV collision energy and 1.1 fb−1 of data at

√
s = 8 TeV collision

energy [28]. We include the resulting constraint on the branching fraction for this

decay, BR(Bs → μ+μ−)(II) = (3.2+1.5
−1.2)×10−9 [28], in our global fits Analysis II. We

adopt a conservative experimental error of σ = 1.5×10−9 and a 10% theoretical error.

The measured value of BR(Bs → μ+μ−) is consistent with the SM expectations.

Furthermore, we include the measurement of the isospin asymmetry Δ0− be-

tween B0 and B− decay widths from the radiative decay B → K∗γ. In Analysis

I, we implement the constraint Δ0−(I) = (3.6 ± 2.65) × 10−2, obtained from a

combination of the experimental results from the BaBar [117] and the Belle [364]

collaborations, following Ref. [257]. In Analysis II, we use a slightly different value,

Δ0−(II) = (3.1 ± 2.3) × 10−2, obtained from a combination of the results from

Refs. [117, 364, 363]. For both Δ0−(I) and Δ0−(II), the central value is smaller

than the SM prediction at ∼ 2σ level. It thus rules out a significant positive SUSY

contribution to this quantity, and in fact favours a negative SUSY contribution.

Finally, the helicity suppressed decay K → μν can place important con-

straints on the MSSM Higgs sector. Specifically, we include the constraint on

the quantity Rl23, which is given by the ratio of the CKM matrix element Vus

extracted from helicity-suppressed and helicity-allowed kaon modes. Both the mea-

surement Rl23(I) = 1.004± 0.007 [99], included in Analysis I, and the updated value

Rl23(II) = 0.999± 0.007 [98], applied in Analysis II, are in good agreement with the

SM (in which Rl23 is equal to unity), which leads to constraints on the mass of the

charged Higgs boson and tan β.

LDM: cosmological constraints on the dark matter density

We include the WMAP 7-year measurement of the dark matter relic density, Ωχh
2 =

0.1123 ± 0.0035 [321], in the likelihood function. The theoretical uncertainty in

the computed value of Ωχh
2 can vary strongly across the parameter space; in this

148



7.2 Theoretical and statistical framework

analysis we use an estimate τ(Ωχh
2) = 10%.2 We assume that stable neutralinos

are the sole constituent of the dark matter in the universe. We emphasise that the

constraint on Ωχh
2 is based on the assumption of a vanilla ΛCDM cosmology, and

does not hold when considering non-standard scenarios.

LDD: constraints from direct detection experiments

Direct detection experiments place limits on the dark matter mass and scattering

cross-section, which can be translated into constraints on SUSY parameter spaces.

In this chapter we study the impact of results from the XENON100 experiment at

the Laboratori Nazionali del Gran Sasso on global fits of the cMSSM. XENON100

searches for signals of dark matter scattering interactions using a dual-phase (liq-

uid/gas) time projection chamber with a xenon target in an environment of ex-

tremely low background. By fiducialization of the target volume the self-shielding

capabilities of liquid xenon are exploited, and radioactive backgrounds are min-

imised. Backgrounds are further reduced by making use of the different ionisation

densities of nuclear recoil events (from neutron or candidate WIMP interactions) and

electronic recoil events (from γ and β background). A particle interacting with the

detector produces a primary scintillation signal S1 in the liquid xenon; subsequently,

ionization electrons drift towards the region with gaseous xenon and produce a sec-

ondary scintillation signal S2. The number of photoelectrons resulting from each

of these signals are detected, and the ratio S2/S1 can be determined. For a given

recoil energy, electronic recoil events have a much larger S2/S1 ratio than nuclear

recoil events, so that this ratio can be used as a discrimination parameter.

In early 2011 the XENON100 collaboration reported results from their dark

matter search based on an effective volume of 48 kg and 100.9 live days of data [102].

The signal region was defined using a series of blindly determined quality cuts, and

the energy window of the analysis was 4−30 photoelectron events (PE), correspond-

ing to recoil energies in the range 8.4−44.6 keV. Three candidate WIMP events with

energies of 12.1 keV, 30.2 keV and 34.6 keV were detected in the signal region, which

is compatible with the background expectation, b = 1.8 ± 0.6 events, so that new

exclusion limits were derived in the (mχ̃0
1
, σSI

χ̃0
1−p) plane. An update to these results

was presented in Ref. [105], obtained from 224.6 live days of data and 34 kg fiducial

volume, collected between February 2011 and March 2012. The XENON100 collab-

oration reported the detection of two candidate WIMP events with energies 7.1 keV

2Note that the WMAP 7-year constraint is compatible with the Planck measurement Ωχh
2 =

0.1186 ± 0.0031 [56], that became available after completion of this study, within the theoretical
error.
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and 7.8 keV, which is compatible with the expected background of b = 1.0 ± 0.2

events. This data set led to the tightest XENON100 constraints on the WIMP mass

and scattering cross-section to date.

Since we assume that neutralino LSPs are the sole constituent of the cosmo-

logical dark matter, the XENON100 limit can be used to place constraints on the

cMSSM parameter space. In particular, we apply the XENON100 101-days re-

sults [102] in our global fits Analysis I, while Analysis II includes the most recent

XENON100 constraints, based on 225 days of data [105]. In general, the background

should be included as an additional nuisance parameter in the analysis. However,

we checked that marginalising/maximising over b has a negligible impact on our

results, so that we adopt a fixed value for this quantity (b(I) = 1.8, b(II) = 1.0).

In the implementation of the XENON100 results we rely solely on the total

number of detected events, and neglect their energy distribution. Therefore, the

likelihood function LDD is given by a Poisson distribution

LDD(θ) ∝ p(N̂ |λ) = L0
λN̂

N̂ !
e−λ, (7.2)

with N̂ the observed number of events, λ = s(θ) + b and s(θ) the expected signal

(see below). The normalization constant L0 is chosen such that lnLDD = 0 for

λ = N̂ , i.e., when the predicted signal plus background match the observed number

of events. The measured quantity of interest is the number of PE n produced by

each WIMP-nucleus scattering. The probability distribution of n is obtained by

convolving the differential event rate with a Poisson distribution centred on S1(E)

dR

dn
=

∫ ∞

0

dR

dE
ζ(E)P (n|S1(E))dE, (7.3)

where the function ζ(E) is accounting for the acceptance of the data quality cuts,

P (n|S1(E)) is a Poisson distribution for n with mean S1(E) and

S1(E) = Ly
Snr

See

ELeff(E) (7.4)

is the number of PE resulting from an event with recoil energy E. Here, Ly is the

light yield of 122 keVee γ-rays (Ly(I) = 2.20± 0.09 PE/keVee, Ly(II) = 2.28± 0.04

PE/keVee; we neglect the uncertainty, as it is small), Snr = 0.95 and See = 0.58

are the electric field scintillation quenching factors for nuclear and electronic recoils,

respectively, and Leff(E) is the scintillation efficiency of nuclear recoils relative to

122 keVee (for which we use the best-fit line in Fig. 1 of Ref. [102]). We neglect
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the uncertainty in Leff(E), since it only is of importance for very light WIMPs,

mχ̃0
1
< 10 GeV [111], that are not realised in the cMSSM. Additionally, we neglect

the small uncertainty resulting from the finite single-electron resolution of the pho-

tomultipliers, σPMT = 0.5 PE. The expected total number of events is found from

the sum over all possible numbers of PE in the considered energy window spanned

by PEmin(I) = 4, PEmin(II) = 3 and PEmax = 30

s =
PEmax∑

n=PEmin

ε
dR

dn
, (7.5)

where ε is the exposure. We make the further simplification of assuming that ζ is

independent of energy, and take the effective (post-cuts) exposure for the combined

value of ζε. For Analysis I, we use an effective exposure of 1481 kg×days [102].

The resulting likelihood function fairly accurately reproduces the upper limit in the

(mχ, σ
SI
χ̃0
1−p) plane presented in Ref. [102]. As we do not make use of the detected

event energies our limit is slightly more conservative, with σSI
χ̃0
1−p = 0.85 × 10−8

pb excluded at 90% confidence for a WIMP mass of mχ = 50 GeV (compared

to σSI
χ̃0
1−p = 0.70 × 10−8 pb in Ref. [102]). Due to the small event energies, the

difference between the limit obtained in Analysis II and the exclusion limit reported

in Ref. [105] is more significant, so that we adjust the acceptance-corrected exposure

to accurately reproduce the XENON100 225-days limit in the mass range of interest.

After completion of this study, the LUX collaboration reported results from a

search for WIMPs in 85.3 live-days of data with a fiducial volume of 118 kg [77].

No significant excess above the background expectation was observed, so that new

exclusion limits on the WIMP properties were derived. With a minimum of 7.6 ×
10−10 pb at a WIMP mass of 33 GeV [77], this limit places the most stringent

constraints on the spin-independent WIMP-nucleon interaction today (improving

on the XENON100 limits applied in this chapter). The impact of this constraint on

our global fits results is very limited, as we will show explicitly in Section 7.4.

7.3 Results from Analysis I

7.3.1 Impact of LHC null searches for SUSY

In Fig. 7.1 we show results for global fits of the cMSSM derived from Analysis I

in the (m1/2,m0) plane (left), the (tan β,A0) plane (centre) and the (mχ̃0
1
, σSI

χ̃0
1−p)

plane (right). In the upper panels we show the marginalised posterior pdfs for both

flat (top) and log (centre) priors, while the bottom panels show the profile likeli-
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Figure 7.1: Impact of the LHC 1 fb−1 exclusion limit on global fits of the cMSSM
(Analysis I). Black/filled contours show the marginalised posterior pdf (top panels: flat
priors; central panels: log priors) and the profile likelihood function (bottom panels) for
the cMSSM parameters, including all Analysis I constraints listed in Table 7.3, except
the XENON100 results. Contours show 68%, 95% and 99% credible/confidence regions.
The circled black cross represents the best-fit point, the black dot is the posterior mean.
Parameters describing astrophysical and hadronic uncertainties have been fixed to their
fiducial values. Blue/empty contours represent the results obtained without inclusion
of LHC data. In the left-hand panels, the dashed/green line represents the 95% LHC
exclusion limit, while in the right-hand panels the red/dashed line is the 90% XENON100
exclusion limit, from Ref. [102], rescaled to our fiducial local dark matter density of
ρ0 = 0.4 GeV/cm3. The LHC 1 fb−1 exclusion limit has a strong impact on the cMSSM
parameter space, ruling out the bulk region and a large fraction of the SC region at high
confidence/credibility.

hood results. Black/filled contours show the results obtained from scans including

all Analysis I experimental constraints (see Table 7.3), except for the XENON100

results, that will be discussed separately in Section 7.3.3. In particular, the CMS
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1 fb−1 exclusion limit is included in the likelihood function. For comparison, con-

straints on the parameters obtained when excluding LHC results from the analysis

are shown as blue/empty contours.

For the pre-LHC contours we observe several regions in the (m1/2,m0) plane

that are of particular interest. In the cMSSM, the gaugino mass parameters are

related as M1 � M2/2 � 0.4m1/2, while |μ| is fixed by the condition of EWSB and,

for m1/2,m0
<∼ 1 TeV, is typically much larger than M1 and M2. As a result, the

neutralino LSP is Bino-like throughout most of the cMSSM parameter space, and,

due to small LSP couplings and/or heavy sparticle masses, generally leads to a relic

density much larger than the value measured by WMAP. Therefore, the different

regions in the cMSSM are typically classified according to the dominant process

which leads to a relic density compatible with cosmological constraints:

• The bulk region. In this region the correct relic density is achieved by

χ̃0
1χ̃

0
1 → ff̄ annihilations of Bino-like neutralinos. While this mechanism is

relatively straightforward and natural, precise measurements of the dark mat-

ter relic density have constrained this region to a narrow ribbon at small

m0 ∼ 100 GeV, m1/2 ∼ 200 GeV.

• The focus point (FP) region [265, 266]. In the FP region (also know

as hyperbolic branch [189]) the SUSY breaking Higgs mass parameter m2
Hu

has a focus point at ∼ O(100) GeV, so that the weak-scale value of m2
Hu

is

almost independent of m0. Therefore, along the FP branch, |μ| is of order

the electroweak scale, while scalar particle masses can be as large as several

TeV. As a result, the neutralino LSP has a significant Higgsino component

which facilitates annihilations to W+W− and can lead to a dark matter relic

abundance compatible with the cosmological constraint even for very heavy

squarks and sleptons, as long as gaugino masses are not too large [266]. In the

(m1/2,m0) plane the FP region shows up as a large area at sizable m0 > 1 TeV

and relatively small m1/2. As can be seen in the left-hand panels of Fig. 7.1,

this region is particularly prominent in the case of flat priors, due to the

“volume effects” associated with this prior.

• The stau-coannihilation (SC) region. In this region the lightest stau is the

next-to-lightest supersymmetric particle and is only slightly heavier than the

neutralino LSP, so that the neutralino relic density is reduced by neutralino-

stau coannihilations in the early universe. In the (m1/2,m0) plane in Fig. 7.1

the SC region appears as a narrow band at small scalar masses m0 ∼ 100−400

GeV that spans a range of gaugino masses at m1/2
<∼ 1000 GeV. In principle,
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the correct relic density can also be achieved by coannihilations of the neu-

tralino with the lightest stop, in particular for large values of A0 [252]. How-

ever, in this study we found the stop-coannihilation region to be subdominant

compared to the SC region, even prior to inclusion of the Higgs mass con-

straint, which strongly disfavours small stop masses and thus essentially rules

out the neutralino-stop coannihilation region.

• The A-funnel (AF) region. A fourth possibility for neutralinos to reproduce

the measured relic density value is obtained if 2mχ̃0
1
≈ mA. In this case,

neutralinos can undergo resonant annihilations mediated by a relatively light

pseudoscalar Higgs, making it easier to satisfy the relic density constraint.

The AF region is generally found at large values of tan β >∼ 40 and relatively

large m0 and m1/2, although the exact position of this region in the (m1/2,m0)

plane strongly depends on tan β and the trilinear term.

• The h-pole region [241]. In this region the mass of the lightest neutralino

is approximately half of the lightest Higgs mass, mχ̃0
1
≈ 60 GeV, so that the

neutralino annihilation cross-section is increased by near-resonant s-channel

h exchange (in analogy to the A-mediated resonant annihilations that occur

in the AF region). This region shows up in Fig. 7.1 as a narrow area at

m1/2 ≈ 150 GeV, spanning several orders of magnitude in m0.

The CMS 1 fb−1 exclusion limit has a strong impact on the 2D posterior dis-

tributions in the cMSSM. As shown in the left-hand upper and central panels in

Fig. 7.1, this limit excludes a region that was previosuly favoured at the 68% level

and pushes the posterior contours towards larger values of m0 and m1/2. In particu-

lar, the exclusion limit rules out the bulk region, and cuts deep into the SC region.

The impact of the LHC 1 fb−1 limit is much stronger than for the 35 pb−1 data set,

which had a fairly modest impact on the cMSSM parameter space (see Ref. [155]).

Note that the h-pole region at m1/2 ≈ 150 GeV remains viable.

LHC 1 fb−1 SUSY null searches have a minimal impact on the posterior pdf

in the (tan β, A0) plane. This is not surprising, since, as discussed in the previous

section, the CMS exclusion limit is fairly independent of the precise values of tan β

and A0. In contrast, the impact of the LHC in the (mχ̃0
1
, σSI

χ̃0
1−p) plane is more

pronounced. The exclusion of small gaugino masses has important consequences

for direct detection of the cMSSM, disfavouring a sizeable region at small mχ̃0
1
<

250 GeV and low and intermediate values of σSI
χ̃0
1−p (corresponding to the bulk region

and the SC region) at 99% level. The FP region appears in this plane as a large

island above the projected XENON100 90% exclusion limit shown in red (not applied
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here). Due to the significant Higgsino fraction of the neutralino LSP in this region,

t-channel Higgs exchange, which is suppressed for almost pure Bino neutralinos,

becomes more efficient, leading to a large spin-independent neutralino-nucleon cross-

section σSI
χ̃0
1−p ∼ 10−8 − 10−7 pb. While the FP region is unaffected by the LHC

constraints, it is clear that adding direct detection data has the capability of ruling

out a significant portion of this region (see Section 7.3.3).

The posterior distributions obtained for the log and the flat prior scans quali-

tatively agree well in all three planes. Due to volume effects the flat prior contours

extend to larger values of m0 and m1/2, so that the relative posterior weight of the

FP region (and, to a lesser extent, the AF region) with respect to other parts of

the parameter space is larger than for the log prior scan. Otherwise, the displayed

dependence of the inference results on the choice of prior is relatively weak.

The 2D profile likelihood results are shown in the bottom row of Fig. 7.1. As

already observed for the posterior distributions, the LHC exclusion limit strongly

disfavours regions at low scalar and gaugino masses. In contrast to the Bayesian

analysis, both the 68% and the 95% contours are located at small values of m0,

m1/2; regions at m0 > 1 TeV and m1/2 > 1.4 TeV (in particular the FP region) are

viable only at 99% confidence level (outer-most black contours). As a result, the

profile likelihood favours small neutralino masses mχ̃0
1

<∼ 500 GeV at 95% level (see

bottom right-hand panel), and the cMSSM parameter space above the XENON100

limit is only allowed with 99% confidence. In general, the 99% profile likelihood

contours are very similar to the 99% credible regions shown in the top and central

rows. Additionally, the 99% confidence region is much larger than than would be

inferred by assuming an approximately Gaussian distribution for the 68% and 95%

contours, which demonstrates that the tails of the profile likelihood function are

highly non-Gaussian and highlights the need for a high-resolution scan, as used in

this study, to accurately map out this quantity.

We now turn to the discussion of the best-fit point identified by the scans.

The best-fit point is found in the SC region at relatively small scalar and gaugino

masses (m0 = 282.19 GeV, m1/2 = 691.76 GeV), small A0 = 685.35 GeV and an

intermediate value of tan β = 33.74; it corresponds to a dark matter mass mχ̃0
1
=

287.2 GeV and an intermediate spin-independent cross-section, σSI
χ̃0
1−p = 2.6 × 10−9

pb. The breakdown of the total χ2 by observable is shown in red in Fig. 7.2, with

the total χ2 given by

χ2 ≡ −2
∑
i

lnLi, (7.6)

with Li the likelihood for the individual observables included in the scans (see Ta-
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Figure 7.2: Breakdown of the total χ2 by observable for the best-fit points from
Analysis I. The contributions of the different observables to the best-fit χ2 are shown for
the analysis including all Analysis I constraints except XENON100 data (red), including
all Analysis I constraints except XENON100 data and the δaSUSY

μ constraint (purple), and
including all Analysis I constraints, in particular the XENON100 101-days limit (blue).

ble 7.3); in this analysis we find a total χ2 = 16.74. The largest contributions to this

value arise from the isospin asymmetry Δ0− and the branching ratios BR(Ds → τν)

and BR(Ds → μν). For Δ0− new physics contributions mainly become important

at small m1/2 ∼ 100 − 200 GeV and large tan β; additionally, the asymmetry is

enhanced by a negative value of A0 [70]. Since our best-fit point corresponds to

a positive A0 and intermediate values of m1/2 = 691.76 and tan β = 33.74, con-

tributions to Δ0− are small, and the best-fit value of this quantity is close to the

SM prediction. The quantities BR(Ds → τν) and BR(Ds → μν) are sensitive

to new physics mainly through the mass of the charged Higgs bosons H± and to

some extent through tan β [78]. Since the best-fit point corresponds to a relatively

large mH± and an intermediate tan β value, the best-fit values of BR(Ds → τν)

and BR(Ds → μν) are also SM-like. As mentioned in Section 7.2.3, the measured
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values of both these branching fractions and Δ0− are somewhat discrepant with the

SM expectation, differing from the theoretical values by 1.5 − 2.0σ. Therefore, the

SM-like best-fit values of these quantities lead to a sizeable increase in the total χ2.

When evaluating the number of degrees of freedom (dof), we only count as

“active” Gaussian data points. This allows us to compute the (approximate) p-

value analytically from the corresponding chi-square distribution with the number

of degrees of freedom (dof) given by the number of Gaussian data points (13, from

Table 7.3) minus the number of free parameters (4 cMSSM model parameters; we

do not count nuisance parameters as free parameters, as each one of them is in-

dependently constrained), leading to dof = 9. When only considering contribu-

tions from Gaussian-distributed observables in the likelihood, we obtain a best-fit

χ2(Gaussian)= 15.67, so that χ2(Gaussian)/dof = 1.74, leading to a p-value= 0.07.

We emphasise that this p-value is only approximate, as we neglect contributions

from upper and lower limits in its computation. However, most of these limits are

easily satisfied in the cMSSM, so that the computed p-value provides a reasonably

good indication of the viability of this model.

7.3.2 Impact of the δaSUSY
μ constraint

As discussed in Section 7.2.3, the experimental measurement of the muon anomalous

magnetic moment show a > 3σ discrepancy with the SM prediction [230, 231, 301],

which could point towards a sizeable supersymmetric contribution, δaSUSY
μ , to this

observable. However, residual theoretical uncertainties and the lack of a SUSY signal

at the LHC cast doubts on the robustness of this constraint (see Section 7.2.3 for

further details). In Ref. [422] it was found that the preference for small m0 and m1/2

in global fits of the cMSSM is strongly driven by the gμ − 2 constraint, which is

in tension with several other observables, most importantly BR(B̄ → Xsγ), which

favours larger scalar masses. Given the residual uncertainties on the value of aSMμ and

the observed strong impact of this constraint on previous global fits of the cMSSM,

we repeat the analysis presented in Section 7.3.1 after excluding the constraint on

gμ−2 from the likelihood function, in order to evaluate the dependence of our results

on this observable. The resulting constraints on the cMSSM parameter space are

given by the black/filled contours in Fig. 7.3, while blue/empty contours show the

results obtained from global fits including the gμ − 2 constraint (from Fig. 7.1).

As can be seen in the top row of Fig. 7.3, the posterior contours for the flat prior

scan are very similar to the corresponding contours for the analysis including the

gμ − 2 constraint. In contrast, the log prior credible regions (central row) expanded
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Figure 7.3: Impact of the δaSUSY
μ constraint on global fits of the cMSSM (Analysis I).

As in Fig. 7.1, but with black/filled contours derived from scans that do not include the
experimental constraint on the anomalous magnetic moment of the muon (nor XENON100
results). Blue/empty contours show the results obtained when including the δaSUSY

μ
constraint, and thus are identical to the black contours in Fig. 7.1. After exclusion of the
gμ−2 constraint the contours extend towards much larger values of the mass parameters,
in particular for the profile likelihood analysis.

significantly and now extend to much larger values of m1/2 and, in particular, m0;

the FP region is allowed at 68% level. Since large supersymmetric contributions

to gμ − 2 require low gaugino and scalar masses, removing the gμ − 2 constraint

from the analysis leads to a shift in probability towards the high-mass regions. Note

however that the posterior probability for small values of m0 and m1/2, in particular

in the SC region, remains high, as this region is favoured by a number of constraints

other than gμ−2. Results for the Bayesian analysis in the (tan β,A0) plane (centre)
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and the (mχ̃0
1
, σSI

χ̃0
1−p) plane (right) are qualitatively similar to results for the analysis

including the gμ − 2 constraint, although for the log prior scan contours are more

spread out, and, as expected from the results in the (m1/2,m0) plane, a larger fraction

of the posterior mass is found in the FP region, above the XENON100 exclusion

limit (see central right-hand panel).

The impact of the gμ − 2 constraint is much more pronounced for the profile

likelihood analysis (bottom panels in Fig. 7.3). The extent of the 68%, 95% and

99% confidence regions increased significantly, very high scalar and gaugino masses

are now allowed at 68% confidence level and the contours are cut off by the prior

boundary at m0 = 4 TeV. The gμ − 2 constraint clearly plays a dominant role

in the exclusion of large scalar masses m0
>∼ 1 TeV at high confidence that was

observed in the previous section (see bottom left-hand panel of Fig. 7.1); no other

constraint strongly disfavours these regions. The extent of the black contours at

low m0, m1/2 is reduced with respect to the blue contours, but the SC region is

still allowed at 68% level, and the best-fit point remains in this region (although it

is shifted to a larger value of m1/2). Upon exclusion of the gμ − 2 constraint from

the profile likelihood analysis both tan β and A0 remain essentially unconstrained

within the ranges explored by the scans. The extent of the confidence regions in

the (mχ̃0
1
, σSI

χ̃0
1−p) plane also increased significantly with respect to the analysis in the

previous section and, in particular, the FP region is now favoured at 68% level, so

that a sizeable region of high likelihood is found above the XENON100 limit.

The best-fit point is found in the SC region (m0 = 188.80 GeV, m1/2 =

908.06 GeV, A0 = −630.62 GeV, tan β = 8.54), and corresponds to a total

χ2 = 12.00; the breakdown of the χ2 by observable is shown in purple in Fig. 7.2.

Following the procedure described in the previous section, we find χ2(Gaussian)

= 11.71, χ2(Gaussian)/dof = 1.46 and p-value = 0.16. As can be seen, the best-fit

χ2 is strongly reduced compared to the analysis including the gμ− 2 constraint, and

a significantly larger p-value is found, highlighting that the measurement of gμ − 2

is in conflict with several other constraints. The additional freedom obtained by

dropping this constraint allows to find best-fit values for other observables that are

in better agreement with the experimental measurements. This is true in particular

for BR(B̄ → Xsγ), mh and, to a lesser extent, Δ0− and the SM nuisance parameters.
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Figure 7.4: Impact of XENON100 data on global fits of the cMSSM (Analysis I).
As in Fig. 7.1, but with black/filled contours including all Analysis I constraints listed
in Table 7.3, in particular XENON100 data. Astrophysical and hadronic uncertainties
are marginalised/maximised over. For comparison, blue/empty contours show results
from the analysis excluding direct detection constraints (black contours in Fig. 7.1). The
XENON100 90% limit from Ref. [102], rescaled to our fiducial local dark matter density
of ρ0 = 0.4 GeV/cm3 (thick red/dashed line), has been included to guide the eye; we
remind the reader that our implementation of the XENON100 results leads to a slightly
more conservative limit. The reach of the future ton-scale XENON1T experiment [100] is
indicated in the bottom right-hand panel (thin red/dashed line). Inclusion of XENON100
data in the analysis leads to a strong suppression of the viability of the FP region.

7.3.3 Impact of XENON100 data, including astrophysical

and hadronic uncertainties

The effect of including XENON100 data in the global fits analysis presented in Sec-

tion 7.3.1 is shown by the black/filled contours in Fig. 7.4; astrophysical and hadronic
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nuisance parameters were included in the scans and then marginalised/profiled over

to obtain the displayed results. For comparison, contours resulting from the anal-

ysis excluding the XENON100 constraint are shown in blue (black/filled contours

in Fig. 7.1). The XENON100 101-days results [102] have a strong impact on the

Bayesian posterior distributions in the cMSSM (top and central row in Fig. 7.4), for

both log and flat priors. The FP region, which was previously included in the 68%

(flat prior) and 95% (log prior) credible regions, is now excluded at the 99% level.

This clearly demonstrates the potential of direct detection experiments to constrain

supersymmetric parameter spaces. Aside from residual volume effects, the contours

in the (m1/2,m0) plane for the two different choices of priors are in reasonably good

agreement. Note however that for the posterior pdf obtained from the flat prior

scan the SC region appears strongly disfavoured. In contrast, in Fig. 2 of Ref. [155],

which was obtained using the same constraints (except for the LHC data set) and

scanning algorithm as in this analysis, the flat prior posterior pdf favours the SC

region at 68% level. Therefore, we conclude that the exclusion of this region at high

credibility, as observed in the top left-hand panel of Fig. 7.4, is not a physical effect,

but instead is due to an underexploration of this area of the cMSSM parameter

space by the flat prior scan. Due to the high dimensionality (4 model + 11 nuisance

parameters), small regions in parameter space that lead to a high posterior proba-

bility may not be sufficiently explored. For low-mass regions, such as the SC region,

the flat prior scan is particularly vulnerable to this, since it explores these regions

in much less detail than the log prior scan. In order to reduce the risk of underex-

ploration (and to achieve a higher resolution profile likelihood mapping), inferences

from Analysis II (presented in Section 7.4 below) are based on a much larger number

of samples, as was discussed in Section 7.2.2. The impact of the XENON100 data

on the Bayesian results is also apparent in the (mχ̃0
1
, σSI

χ̃0
1−p) plane (right), where the

XENON100 exclusion limit strongly disfavours the FP region that shows up at large

σSI
χ̃0
1−p and, for the log prior scan, constrains part of the h-pole region.

The XENON100 results also have an important impact on the profile likelihood

results in the cMSSM. As can be seen in the bottom panels of Fig. 7.4, the parame-

ter space included in the 99% confidence region shrinks significantly upon inclusion

of this constraint; additionally, the 68% and 95% contours are somewhat tighter.

The reduction of the 99% region is partly due to the impact of the XENON100

limit on the FP region, which can be seen explicitly in the bottom right-hand

panel. However, the overall smaller extent of the black contours compared to the

blue contours is related to the slightly higher likelihood value of the best-fit point

(χ2 = 16.29) compared to the analysis excluding the XENON100 data. The best-fit
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Figure 7.5: Impact of marginalising/profiling over astrophysical and hadronic uncer-
tainties (Analysis I with a slightly modified set of experimental constraints, see text).
Black/filled contours show the posterior pdf (left, centre) and the profile likelihood func-
tion (right) obtained when including astrophysical and hadronic nuisance parameters in
the scans. For comparison, results obtained with fixed astrophysical and hadronic nui-
sance parameters are shown as blue/empty contours. Results obtained with varying and
fixed astrophysical and hadronic nuisance parameters are qualitatively very similar, al-
though inclusion of the uncertainties leads to a slight broadening of the contours.

point is again found in the SC region, and corresponds to cMSSM parameter values

m0 = 267.54 GeV, m1/2 = 635.56 GeV, A0 = 935.04 GeV and tan β = 29.75. The

breakdown of the best-fit χ2 by observable is shown in blue in Fig. 7.2. Compared to

the best-fit points found in the previous sections, a sizeable contribution to the total

χ2 results from the best-fit value of the lightest Higgs mass, mh = 115.6 GeV, which

is in some tension with the ATLAS 5 fb−1 95% exclusion limit on this quantity. An

additional contribution of Δχ2 ≈ 1 arises from the astrophysical nuisance param-

eters, that were fixed in the previous analyses. We find χ2(Gaussian)/dof = 1.57,

and a p-value of 0.12.

The impact of including astrophysical and hadronic nuisance parameters in the

analysis is shown explicitly in Fig. 7.5. Specifically, we display the posterior pdf

(flat priors: left, log priors: centre) and the profile likelihood function (right) in the

(mχ̃0
1
, σSI

χ̃0
1−p) plane, obtained from scans including XENON100 data, for both the

case where astrophysical and hadronic nuisance parameters are varied (black/filled

contours) and fixed (blue/empty contours) in the scans. These results are based on

Ref. [155] and thus were obtained with a sightly modified set of experimental data.

In particular, the constraints included in the likelihood function are the same as

given in Table 7.3 for Analysis I, with the exception of the LHC results. Instead of

the CMS 1 fb−1 limit, the earlier ATLAS 95% exclusion limit presented in Ref. [20]

was applied, resulting from the search for a SUSY signal in events with an isolated

electron or muon, at least three hadronic jets, and significant missing transverse

momentum in a data sample corresponding to an integrated luminosity of 35 pb−1.

Additionally, at the time this study was carried out the 5 fb−1 ATLAS limit on
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mh was not yet available, so that instead the 95% LEP exclusion limit, mh >

114.4 GeV [125], was applied. However, the qualitative impact of the inclusion

of astrophysical and hadronic uncertainties is expected to be independent of the

applied LHC data set.

The inclusion of astrophysical and hadronic nuisance parameters in the scans

increases slightly the extent of both the Bayesian and the profile likelihood contours

(black/filled) and thus leads to more conservative results. However, the results

obtained with fixed astrophysical and hadronic nuisance parameters (blue/empty

contours) are qualitatively very similar, so that fairly accurate conclusions can be

drawn on the impact of the XENON100 data on the neutralino properties and, by

extension, the cMSSM parameters from the simplified analysis in which astrophysical

and hadronic nuisance parameters are fixed to their fiducial values.3

7.3.4 Implications for direct and indirect dark matter searches

Fig. 7.6 shows the 1D marginal posterior distributions for both log (solid/red) and

flat (solid/blue) priors and the 1D profile likelihood functions (dashed/black) for

several derived quantities of interest, namely the lightest Higgs mass mh, the gluino

mass mgluino, the lightest neutralino mass mχ̃0
1
, and the spin-independent and spin-

dependent neutralino-proton scattering cross-sections, σSI
χ̃0
1−p and σSD

χ̃0
1−p. We show

results for global fits including all data except XENON100 (cf. Section 7.3.1) in

the top panels, while central panels were obtained from scans excluding both the

XENON100 and the gμ−2 constraint (cf. Section 7.3.2). The impact of XENON100

data (cf. Section 7.3.3) is shown in the bottom panels.

A robust result from our analyses is that the lightest Higgs mass is relatively

small, and mh
>∼ 125 GeV is strongly disfavoured. In contrast, gluino masses can

be very large, and high mgluino are especially favoured by the flat prior posterior

pdf. This is largely a result of volume effects associated with this prior, that also

manifest themselves in the concentration of the bulk of the probability density at

large neutralino masses. In contrast, a large portion of the posterior mass for the log

prior scan is found in the h-pole region at mgluino ∼ 450 GeV and mχ̃0
1
∼ 60 GeV,

although this region is somewhat disfavoured by the inclusion of XENON100 data.

The profile likelihood function displays a preference for 1 TeV <∼ mgluino
<∼ 2.5 TeV,

with the exception of the analysis excluding the δaSUSY
μ constraint, which leads to

3We caution, however, that this conclusion may not hold when adopting more conservative
errors on the nuisance parameters. In particular, in Ref. [389] it was demonstrated that the large
differences in the experimental determinations and the lattice QCD computations of fp

Tu,d,s
can

have a significant impact on the sensitivity of direct detection experiments to the cMSSM.
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Figure 7.6: 1D marginal pdf for flat priors (blue) and log priors (red), and 1D profile
likelihood function (black) for the lightest Higgs mass, the gluino mass, the neutralino
mass and the spin-independent and spin-dependent neutralino-proton scattering cross
sections (from left to right). Top panels include all Analysis I constraints listed in Ta-
ble 7.3 except for XENON100 data, panels in the central row additionally exclude the
gμ − 2 constraint, and bottom panels include all Analysis I constraints (in particular
XENON100 101-days results) and marginalise/maximise over astrophysical and hadronic
uncertainties. The best-fit point is indicated by the encircled black cross.

a profile likelihood that is very spread out in all panels.

As can be seen in the top and central panels, prior to the inclusion of the

XENON100 data a large range of neutralino masses 50 GeV <∼ mχ̃0
1

<∼ 1000 GeV is

allowed by all three statistical quantities. Following the inclusion of the XENON100

results, mχ ∼ 100− 200 GeV (corresponding to part of the FP region, see Fig. 7.4)

is excluded at high confidence/credibility. Additionally, this data set strongly dis-

favours spin-independent cross-sections σSI
χ̃0
1−p

>∼ 10−8 pb. Prospects for detection

of dark matter in the cMSSM by the next generation of direct detection searches

remain good. Namely, the future XENON1T experiment is expected to probe cross-

sections above σSI
χ̃0
1−p ∼ 2 × 10−11 pb by 2017 [100]; the expected 90% XENON1T

exclusion limit is indicated in the bottom right-hand panel in Fig. 7.4. XENON1T

will probe the vast majority of the parameter space favoured at 99% level, from

both the Bayesian and the profile likelihood statistical perspective (see right-hand

panels in Fig. 7.4), and our best-fit point is easily in reach of this experiment.

Inclusion of XENON100 results also tightens the constraints on σSD
χ̃0
1−p (bottom

right-hand panel in Fig. 7.6). This is to be expected, since the FP region corresponds
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to relatively large values of σSD
χ̃0
1−p and thus presents promising prospects for indirect

dark matter searches, especially neutrino telescopes such as IceCube that search for

high-energy neutrinos from dark matter annihilations in the Sun (see e.g. Refs. [120,

423]). The exclusion of the FP branch at high confidence by XENON100 data shifts

the region with the highest posterior and profile likelihood values below the IceCube

sensitivity, and thus diminishes the possibility to probe dark matter in the cMSSM

with neutrino telescopes.

7.4 Results from Analysis II

7.4.1 Impact of the discovery of the Higgs boson

We now turn to the discussion of results from Analysis II, obtained from an updated

set of experimental constraints (see Table 7.3), and a higher scanning resolution, as

discussed in Section 7.2.2. In Fig. 7.7 we show the impact of the new constraints ap-

plied in Analysis II on global fits of the cMSSM, including in particular the 5.8 fb−1

integrated luminosity exclusion limit from ATLAS SUSY searches, XENON100 con-

straints from 225 live days of data, and, most importantly, the CMS measurement

of the mass of the lightest Higgs boson, derived from a combination of 5.1 fb−1√
s = 7 TeV data and 12.2 fb−1

√
s = 8 TeV data. As above, results are shown in

the (m1/2,m0) plane (left), the (tan β,A0) plane (centre) and the (mχ̃0
1
, σSI

χ̃0
1−p) plane

(right), with the top (central, bottom) row depicting the posterior pdf for flat priors

(posterior pdf for log priors, profile likelihood function). In order to distinguish re-

sults derived from Analysis I and Analysis II, we use a different colour scheme than

in the previous sections. The blue/empty contours in Fig. 7.7 are identical to the

black contours in Fig. 7.4, derived from experimental constraints available in late

2011 (Analysis I).

The LHC measurement of the Higgs mass has a strong impact on the cMSSM

parameter space. For both choices of priors, large regions of the parameter space

that were previously favoured at 68% credibility are ruled out by this constraint.

In the (m1/2,m0) plane, the posterior pdf for the log prior (central left-hand panel)

exhibits a bimodal shape, with two connected favoured regions, corresponding to

the AF region (at high masses), and the SC region (at low masses). In contrast,

the SC region is disfavoured at 99% level for the posterior pdf with flat priors (top

left-hand panel). The flat prior gives a much larger statistical a priori weight to

regions at large values of the mass parameters, so that the corresponding posterior

pdf is strongly affected by volume effects and therefore shows a strong preference for
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Figure 7.7: Impact of the LHC Higgs discovery on global fits of the cMSSM (Analysis
II). As in Fig. 7.4, but with black/filled contours including several new experimental
constraints, including ATLAS 5.8 fb−1 SUSY null searches, XENON100 225-days direct
detection limits, the CMS Higgs mass measurement, and others — see Table 7.3. The
profile likelihood results (bottom) were obtained from ∼ 350M likelihood evaluations. For
comparison, blue/empty contours show results from Analysis I, including all constraints
available in Dec 2011, previous to the LHC Higgs discovery (black/filled contours in
Fig. 7.4). In the left-hand panels, the dashed/green line shows the LHC 5.8 fb−1 95%
exclusion limit [207], while in the plots on the right the red/solid line represents the
90% XENON100 225-days limit [105], rescaled to our fiducial astrophysical dark matter
distribution. We also show the expected reach of XENON1T as a red/dashed line. The
LHC Higgs mass measurement has a strong impact on the cMSSM, ruling out large regions
of parameter space that were previously favoured at high confidence/credibility.

large gaugino and scalar masses. The log prior scan explores the low mass regions in

much more detail, so that the posterior distribution for log priors also favours the SC

region at small values of m0 and m1/2. As a result, the ATLAS 5.8 fb−1 exclusion

limit has a significant impact on the log prior posterior pdf, cutting further into
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the low-mass regions of the cMSSM and pushing contours towards larger values

of m1/2. In particular, this limit rules out the h-pole region, which was previously

viable at 95% credibility. In contrast, the favoured regions for the posterior pdf with

flat priors are located at larger values of m1/2, far beyond the reach of the ATLAS

limit; this preference for m1/2 > 1 TeV at 99% level is driven by the Higgs mass

constraint (see below). Both posterior distributions now favour much larger values

of m0 compared to the blue contours, with the 68% (95%) credible region touching

the prior boundary for flat (log) priors.

The profile likelihood function in the (m1/2,m0) plane (bottom left-hand panel)

is much more localised than the posterior distributions, and displays a strong pref-

erence for the SC region, which also contains the overall best-fit point (see below

for further discussion). Small scalar and gaugino masses are strongly favoured, with

values m0 > 1 TeV excluded at 99% confidence level. As a result, the updated

LHC exclusion limit has a significant impact on the profile likelihood results, ruling

out a large portion of the SC region. Compared to the results prior to inclusion

of the Higgs mass constraint (blue/empty contours), the profile likelihood contours

are confined to a much smaller region. The preference for this narrow region at

low m0, m1/2 is largely driven by two constraints: the Higgs mass constraint (see

below) and the constraint on the anomalous magnetic moment of the muon. The

latter constraint can only be satisfied in the low-mass SC region, while in the AF

region δaSUSY
μ → 0, leading to a ∼ 3σ discrepancy with the data. The strong im-

pact of the δaSUSY
μ constraint on global fits of the cMSSM, and in particular the

profile likelihood results, has been demonstrated in Section 7.3.2. The importance

of this constraint following the discovery of the Higgs boson will be analysed in

Section 7.4.3.

A similar pattern as in the (m1/2,m0) plane is observed in the (tan β,A0) plane

(central panels in Fig. 7.7). Previously favoured regions shrink significantly due

to the inclusion of the constraint on mh. The posterior pdf with flat priors spans

a large range of A0 values, with a preference for positive A0, and favours large

values of tan β, as required for the AF region. The posterior pdf with log priors

shows the familiar bimodal shape, with the mode at low tan β corresponding to

the SC region. Compared to the profile likelihood results excluding the Higgs mass

constraint (blue/empty contours), we observe a strong shift of the favoured region

towards negative A0. This is a consequence of the Higgs mass constraint, which

forces the best-fit point to a region of maximal mixing (see below).

The strong impact of the LHC Higgs mass constraint on the cMSSM parameter

space is expected from the results presented in Section 7.3.4. As can be seen in

167



7.4 Results from Analysis II

Figure 7.8: Importance of the maximal mixing scenario in the cMSSM (Analysis II).
The favoured regions in the plane of Xt/MS vs. the lightest Higgs mass are shown for the
posterior pdf with flat and log priors, and the profile likelihood (from left to right). The
maximal mixing scenario (|Xt/MS | ≈ 2.44) is realised in the SC region, but can not be
achieved in the AF region, where MS is larger and |Xt/MS | is reduced.

the left-hand panels of Fig. 7.6, prior to the inclusion of this constraint relatively

small values of mh are favoured in the cMSSM. Both the posterior distributions

and the profile likelihood function peak at mh
<∼ 120 GeV, and Higgs masses mh ∼

125−126 GeV are excluded at high confidence/credibility. However, as discussed in

Section 3.4.3, larger values of mh can be achieved by radiative corrections. The one-

loop contribution to mh has been given in Eq. (3.24). As can be seen from the first

term in this expression, at one-loop level mh is sensitive to the stop masses mt̃1,2 .

These masses are mainly determined by the value of m1/2, so that a significant one-

loop contribution to mh can be achieved in regions of parameter space corresponding

to large gaugino masses. The value ofm0 is less important formt̃1,2 , so that relatively

low values of m0 are still allowed by the Higgs mass constraint. A second possibility

to achieve mh ≈ 125 GeV is the so-called maximal mixing scenario. If the stop

mixing parameter |Xt| approaches a value
√
6MS, the second term in Eq. (3.24) is

maximised, leading to a sizeable increase in mh.

The two possibilities to achieve a large mh ∼ 125 GeV are illustrated in Fig. 7.8,

where we plot the ratio Xt/MS vs.mh. As can be seen, the highest Higgs mass values

are indeed found in the maximal mixing region, where |Xt/MS| ≈
√
6 ≈ 2.44. In the

cMSSM, maximal mixing is very difficult to achieve for large m1/2 [172], so that this

effect is only realised in the low-mass SC region, which shows up in Fig. 7.8 as an

island at relatively large values of |Xt/MS|. As can be seen in the right-hand panel of

Fig. 7.8, the profile likelihood function strongly favours the maximal mixing region.

The possibility to achieve a Higgs mass mh
>∼ 125 GeV via maximal stop mixing,

while also satisfying the constraint on δaSUSY
μ is the reason why the SC region is

strongly favoured from the profile likelihood statistical perspective. However, we
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caution that, without an additional contribution from large stop masses, achieving

the measured value of the Higgs mass via maximal mixing is very difficult, so that

only a small number of fine-tuned points leading to mh
>∼ 125 GeV exist in the SC

region. In particular, our best-fit value is mh = 123.8 GeV, which is compatible

with the experimental constraint (mh = 125.8 ± 0.6 GeV) at the ∼ 1σ level only

due to the inclusion of a theoretical error of 2 GeV in the likelihood function.

For the posterior pdf with log priors (central panel), the SC region is visible

as a mode stretching from Xt/MS ∼ −1 to Xt/MS ∼ −2, 5, and leading to Higgs

masses mh ∼ 118−125 GeV. In contrast, in the AF region, which is located at larger

values of m1/2, maximal mixing can not be achieved, so that this region shows up

at moderate values of Xt/MS ∼ −1 (see also the flat prior posterior pdf in the

left-hand panel of Fig. 7.8). Large loop contributions from heavy stops can still lead

to relatively large Higgs masses mh
<∼ 123 GeV in this region. However, the AF

region is found at intermediate values of m1/2 that are not large enough to lead to

the very high stop masses required to achieve mh ≈ 126 GeV, so that this region is

only marginally consistent with the experimental constraint on mh.

We point out that values of mh ∼ 126 GeV can in principle be achieved in the

FP region. However, inside our prior range for m0 this region is strongly disfavoured

by the XENON100 constraint. Gaugino and scalar masses of several TeV (or even

several tens of TeV) are required to find the part of the FP region compatible with

both direct detection data and the Higgs mass constraint [180].

We now turn to the discussion of the best-fit point identified by the scans.

As in Analysis I, the best-fit point is found in the SC region. Compared to our

previous best-fit points, it corresponds to slightly larger masses m0 = 389.51 GeV,

m1/2 = 853.03 GeV, as the previous best-fit points have been ruled out by the

updated LHC exclusion limit (with the exception of the best-fit point for the scans

excluding the gμ − 2 constraint, which is still viable). Additionally, we observe a

strong shift towards negative A0 = −2664.79 GeV, as required for maximal stop

mixing, while low tan β = 14.50 remain favoured.

The best-fit point corresponds to a total χ2 = 15.11, which is slightly smaller

than the best-fit χ2 found in Analysis I (for the scans including gμ − 2). This is not

a physical effect, but instead is a consequence of the significantly higher resolution

of the profile likelihood mapping in Analysis II, which makes it easier to find a best-

fit point that is fine-tuned to satisfy the experimental constraints included in the

scans. The breakdown of the total χ2 by observable is shown in red in Fig. 7.9. As

can be seen, by far the largest contribution to the total χ2 arises from the isospin

asymmetry, with Δχ2(Δ0−) = 5.22. As in the previous section, the best-fit value of
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Figure 7.9: Breakdown of the total χ2 by observable for the best-fit points from
Analysis II. The contributions of the different observables to the best-fit χ2 are shown for
the analysis including all Analysis II experimental constraints (red), and for the analysis
excluding the constraint on δaSUSY

μ (purple).

Δ0− is SM-like, and the large contribution to the total χ2 is a result of the tension

between the experimental measurement of this quantity and the SM prediction. The

increase in Δχ2(Δ0−) compared to Analysis I (see Fig. 7.2) is due to the update

of the likelihood function for this quantity applied in Analysis II, that leads to a

slightly smaller central value and experimental error for Δ0− (cf. Δ0− (I) and Δ0−
(II) in Table 7.3). Aside from the isospin asymmetry, the main contributions to the

overall best-fit χ2 result from the constraints on BR(Ds → μν), BR(B̄ → Xsγ),

BR(Bu → τν) and mW . The best-fit point simultaneously satisfies the constraint

on the Higgs mass, the XENON100 exclusion limit, the relic density constraint and

the constraint on the anomalous magnetic moment of the muon.

As before, when evaluating the p-value for the best-fit point, we only consider

contributions to the χ2 from Gaussian-distributed observables in the likelihood. In

Analysis II we find dof = 11, since mh and BR(Bs → μ+μ−) are now included
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as Gaussian data points. Following the procedure in the previous section, this

leads to χ2(Gaussian)/dof = 1.32 and a p-value of 0.21. Therefore, even a strongly

constrained model such as the cMSSM is not ruled out at any meaningful significance

level by 6 fb−1 LHC SUSY null searches, the discovery of a Higgs boson with mh ≈
126 GeV, XENON100 direct detection constraints, and other recent experimental

results.

7.4.2 Detection prospect at the LHC and dark matter ex-

periments

The implications of the Higgs mass measurement (and other experimental con-

straints included in Analysis II) for direct dark matter searches are shown in the

right-most column of Fig. 7.7. The favoured region in the (mχ̃0
1
, σSI

χ̃0
1−p) plane is

shifted towards larger neutralino masses and lower spin-independent scattering cross-

sections. Larger neutralino masses are favoured due to the shift of contours towards

higher gaugino masses, which is a result of both the updated LHC exclusion limit (for

the posterior pdf with log priors and the profile likelihood) and the Higgs mass con-

straint (for the posterior pdf with flat priors). The constraint on mh also causes the

shift towards lower σSI
χ̃0
1−p, as a heavy Higgs sector reduces the Higgs-exchange con-

tribution to the spin-independent cross-section. This shift is especially pronounced

from the profile likelihood statistical perspective, and the best-fit point corresponds

to a very small spin-independent cross-section of σSI
χ̃0
1−p = 7 × 10−11 pb. There-

fore, the discovery of a Higgs boson with mh ≈ 126 GeV renders direct detection

of the cMSSM more difficult. As a result, the updated XENON100 exclusion limit

(red/solid) has essentially no impact on the favoured regions in the cMSSM.

After completion of this study, the LUX collaboration reported results from

their first dark matter search, and presented a new 90% exclusion limit in the

(mχ̃0
1
, σSI

χ̃0
1−p) plane [77], which places the most stringent constraints on the spin-

independent WIMP-nucleon interaction today. Given the preference for large neu-

tralino masses and low σSI
χ̃0
1−p, the impact of the LUX data on our posterior results

is very limited. Similarly, the regions favoured from the profile likelihood statistical

perspective remain almost an order of magnitude in σSI
χ̃0
1−p below the LUX limit,

so that our conclusions remain qualitatively and quantitatively valid in light of the

LUX results.

Detection prospects at future direct detection experiments are mixed. The

posterior distributions for both choices of priors display a large island of probability

density at mχ̃0
1
∼ 500 − 800 GeV and σSI

χ̃0
1−p ∼ 10−10 − 10−8 pb, corresponding to
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the AF region. As can be seen by comparison with the expected 90% exclusion

limit (red/dashed), the AF region can fully be probed by the future XENON1T

experiment. Therefore, from the Bayesian statistical perspective, sizeable regions of

the cMSSM parameter space currently favoured at the 68% level are within reach of

the next generation of direct detection searches. However, the small values of σSI
χ̃0
1−p

favoured by the profile likelihood function are challenging to explore even with ton-

scale direct detection experiments, and the best-fit point is outside the XENON1T

reach.

The favoured values of the spin-dependent neutralino-proton scattering cross-

section in the cMSSM are confined to the range σSD
χ̃0
1−p ∈ [10−9, 10−6] pb, with the

best-fit point located at σSD
χ̃0
1−p ≈ 10−9 pb, and hence outside the reach of even fu-

ture multiton-scale direct detection experiments such as DARWIN [126]. Detection

prospects for neutrino telescopes are similarly pessimistic.

Indirect detection experiments looking for gamma-rays from dark matter anni-

hilations – most notably, the Fermi Large Area Telescope (LAT) (see Section 4.3)

– currently have a very limited impact on the cMSSM parameter space. Current

constraints on annihilating dark matter from observations of dwarf spheroidal galax-

ies only constrain thermal cross-sections 〈σv〉 ∼ 3× 10−26 cm3/s for low-mass dark

matter, in the region mχ̃0
1
< 15 GeV [52], which is not realised in the cMSSM.

This situation may change as more data become available in the future: with 10

years of Fermi observations, and an increased number of dwarf spheroidals, WIMPs

with masses mχ̃0
1
< 700 GeV and a thermal annihilation cross-section could be

ruled out (assuming 30 dwarf spheroidals are detected [17]). The favoured regions

in the cMSSM in the (mχ̃0
1
, 〈σv〉) plane are given by the blue/empty contours in

Fig. 7.12, and we will comment further on the potential impact of future Fermi

dwarf spheroidal limits in Section 7.4.3.

Fig. 7.10 shows the 1D marginal posterior pdf for both flat (dash-dot/blue) and

log (solid/red) priors and the 1D profile likelihood functions (dashed/black) for some

derived quantities of interest. In the top row we show the 1D distributions for several

of the sparticle masses that are of interest for future SUSY searches. As can be seen

by comparison with Fig. 7.6, the sparticle masses are pushed towards larger values by

the more recent experimental constraints included in Analysis II. This is due to both

the Higgs mass constraint, that pushes the posterior contours towards larger masses,

and the updated LHC exclusion limit, which directly constrains small values of m0

and m1/2. The significant differences in the regions of parameter space favoured by

the profile likelihood and the posterior distributions with log and, in particular, flat

priors are clearly visible for all of the sparticle masses. Due to its confinement to
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Figure 7.10: 1D marginal pdf for flat priors (blue) and log priors (red), and 1D
profile likelihood function (black) for several quantities of interest, derived from global fits
including all Analysis II experimental constraints listed in Table 7.3. Top row, from left
to right: lightest stop and sbottom masses, average squark mass, gluino mass and lightest
chargino mass. Bottom row: lightest Higgs boson mass, BR(Bs → μ+μ−) branching
ratio, neutralino relic abundance, isospin asymmetry and anomalous magnetic moment
of the muon. The best-fit point is indicated by the encircled black cross.

small m1/2, the profile likelihood function shows a strong preference for the smallest

allowed values of the squark and gluino masses, with mstop1,msbottom1 ∼ 1− 2 TeV

and msquark,mgluino ∼ 2 TeV. In contrast, the posterior distributions extend to much

larger values of these quantities, mstop1,msbottom1,mgluino ∼ 4 TeV, and msquark
<∼ 6

TeV. Similarly, the 1D profile likelihood function for the lightest chargino mass

favours relatively small values of mχ̃±
1

<∼ 900 GeV, while the posterior distributions

reach larger values, up to mχ̃±
1
≈ 1.5 TeV.

After this study was finalised, the ATLAS and CMS collaborations released

new results from SUSY searches based on ∼ 20 fb−1 integrated luminosity of data at√
s = 8 TeV collision energy [3, 4]. No excess above the SM predictions was observed,

and new constraints on the cMSSM mass parameters were derived. In particular,

for m0 < 1 TeV, the strongest limit today was obtained by the ATLAS collaboration

and excludes values of m1/2
<∼ 800 GeV at 95% confidence level [210].4 Our best-fit

point is located just above this limit, and thus remains viable. However, the ATLAS

20 fb−1 limit further cuts into the SC region, and thus impacts on both the posterior

pdf with log priors and, in particular, the profile likelihood function, which strongly

favours this region (see above). The updated limit disfavours a sizeable fraction

of the parameter space included in the 68% profile likelihood contour in Fig. 7.7

and excludes the lowest favoured squark and gluino masses (cf. Fig. 7.10) at high

4As for the LHC limits included in our global fits analyses, this limit was derived for fixed tanβ
and A0, but is relatively insensitive to the values of these parameters.
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confidence. However, a sizeable fraction of the SC region is still allowed by the

updated ATLAS limit, so that we expect our conclusions to remain qualitatively

valid. Additonally, the posterior pdf with flat priors, which strongly favours large

sparticle masses (the AF region), is unaffected by the latest LHC SUSY results.

With the upgrade of the LHC to
√
s =14 TeV collision energy, the sensitivity

to heavy SUSY particles will be increased significantly. With a total of 300 fb−1

integrated luminosity of data at the end of the
√
s =14 TeV run in 2021, the 5σ

discovery reach for gluinos and squarks of the first two generations will extend to

≈ 2 TeV [218]. Similarly, the discovery region for stops and sbottoms will reach

up to 950 GeV and 700 GeV, respectively, and the chargino mass sensitivity will

be increased to 600 GeV [218]. With the increase in the integrated luminosity to

3000 fb−1, as planned with the HL-LHC, the discovery reach for these sparticles will

further improve by a few hundred GeV [209]. Note that much larger sparticle masses

will be accessible at lower statistical significance < 5σ, so that in particular the

cMSSM regions favoured by the profile likelihood function would lead to a significant

excess of events at the LHC operating at
√
s =14 TeV collision energy, and are within

the discovery reach of the HL-LHC.

In the bottom row of Fig. 7.10 we show the 1D distributions for several observ-

ables of interest. As can be seen in the left-hand panel, the 1D posterior distribution

for mh for both choices of priors peaks at relatively low mh ∼ 121− 122 GeV, while

the profile likelihood favours slightly larger values mh ∼ 124 GeV. This discrep-

ancy illustrates the difficulty of satisfying the experimental constraint on mh in the

cMSSM. The posterior pdf takes into account volume effects, and therefore peaks at

lowermh, that are much easier to achieve, even though they are somewhat discrepant

with the experimental constraint. The profile likelihood is instead dominated by a

relatively small number of (fine-tuned) points of high likelihood that achieve a value

of mh closer to the experimental constraint due to maximal stop mixing. Both dis-

tributions are offset from the measured value mh = 125.8 GeV; within our prior

ranges this value is basically not achieved.

The peaks of the 1D posterior distributions and the profile likelihood function

for BR(Bs → μ+μ−) are in good agreement with the LHCb constraint imposed

on this quantity, BR(Bs → μ+μ−) = (3.2± 1.5)× 10−9 [28]. The profile likelihood

strongly favours values around BR(Bs → μ+μ−) ∼ 3.0×10−9. The posterior pdf for

both choices of priors spreads over a much larger range of BR(Bs → μ+μ−) >∼ 3.0×
10−9, but also peaks at relatively small values and falls of at larger BR(Bs →
μ+μ−). Values of BR(Bs → μ+μ−) � 3.0 × 10−9, that would be discrepant with

the experimental measurement, are not realised in the cMSSM. Significantly larger
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values of BR(Bs → μ+μ−) can be achieved, and are disfavoured by this constraint,

but the current measurement is associated with a sizeable experimental error, and

in fact the previous upper limit was slightly more constraining at large BR(Bs →
μ+μ−) than the current constraint. Therefore, the LHCb constraint on BR(Bs →
μ+μ−) has a fairly limited impact on our results, and a more precise measurement

of this quantity is needed for this constraint to have a strong impact on the cMSSM.

The 1D distributions for the neutralino relic density are in good agreement with

the experimentally favoured value. In contrast, the distributions for the isospin

asymmetry Δ0− are discrepant with the experimental measurement Δ0− = (3.1 ±
2.3) × 10−2 at > 2σ. In particular, the best-fit point corresponds to a large value

Δ0− = 8.35 × 10−2, which explains the large contribution to the best-fit χ2 from

the Δ0− constraint, observed in Fig. 7.9. As explained above, smaller values of Δ0−
are difficult to achieve in the cMSSM, since the SM-like value is already strongly

discrepant with the experimental measurement, and the vast majority of points in

cMSSM parameter space lead to a positive contribution to Δ0−. As can be seen

from the 1D profile likelihood function for this quantity, several points leading to a

smaller Δ0− are found, but are in conflict with other constraints, and thus lead to

a low likelihood value.

Finally, the 1D profile likelihood and posterior pdfs for δaSUSY
μ are shown in the

bottom right-hand panel of Fig. 7.10. Results for the Bayesian and the Frequentist

perspectives differ strongly. The profile likelihood function peaks at relatively large

values of δaSUSY
μ , in good agreement with the experimental constraint. In contrast,

the posterior pdf for both choices of priors favours a SM-like value of the anomalous

magnetic moment of the muon, and therefore peaks at significantly smaller values

of δaSUSY
μ . While such values are in strong disagreement with the experimental

constraint, they are much easier to achieve in the cMSSM, especially for large values

of m0 and m1/2. The posterior pdf takes into account these volume effects, while the

profile likelihood function, which peaks at the region of highest likelihood, favours

values that reproduce the experimental measurement. In Section 7.3.2 we found

that the δaSUSY
μ constraint has a strong impact on the physical conclusions derived

from Analysis I. The discrepancy between the 1D posterior distributions and the

profile likelihood for this quantity observed in Fig. 7.10 suggests that the δaSUSY
μ

constraint continues to play a dominant role in driving global fits of the cMSSM,

in particular from the profile likelihood statistical perspective. In the following we

discuss the impact of this constraint in light of the more recent data sets included

in Analysis II.
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Figure 7.11: Impact of the δaSUSY
μ constraint on global fits of the cMSSM (Analysis

II). As in Fig. 7.7, but with black/filled contours derived from scans excluding the experi-
mental constraint on the anomalous magnetic moment of the muon. Blue/empty contours
show results obtained when including the δaSUSY

μ constraint, and thus are identical to the

black contours in Fig. 7.7. Exclusion of the δaSUSY
μ constraint has a limited impact on

the posterior distributions, but opens up the AF region in the profile likelihood analysis.

7.4.3 Global fits excluding the δaSUSY
μ constraint

In Section 7.3.2 we found that the constraint on the anomalous magnetic moment of

the muon can have a strong impact on global fits of the cMSSM and, in particular,

is the single most important datum disfavouring large values of m0 and m1/2 in

the profile likelihood analysis. Therefore, we repeat the analysis presented in the

previous section excluding the constraint on gμ−2, in order to assess the robustness

of our conclusions from Analysis II with respect to omission of this constraint. The
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results are shown in Fig. 7.11 (black/filled contours), and are compared with the

results including the gμ − 2 constraint, which are shown as blue/empty contours

(corresponding to the black/filled contours in Fig. 7.7). The posterior distributions

in the (m1/2,m0) plane are very similar to the results for the Bayesian analysis

including the gμ − 2 constraint. Since a large value of gμ − 2 requires low SUSY

masses, removing this constraint from the analysis leads to a slight shift of the

favoured regions towards larger values of m0. Nevertheless, the posterior pdf with

log priors still favours the SC region at the 68% level, although the probability mass

associated with this mode is now reduced with respect to Fig. 7.7 (the smaller size

of this mode is also clearly visible in the (tan β, A0) plane). Results for the posterior

pdf with flat priors are almost identical to the results including the gμ−2 constraint.

The impact of dropping the gμ − 2 constraint on the profile likelihood function

(bottom row in Fig. 7.11) is more significant. The AF region, which was excluded at

99% confidence level for the analysis including the gμ−2 constraint, is now favoured

at 95% level. Large values of m0 remain viable, and the 95% confidence region

extends all the way to the 4 TeV prior boundary. Note however that, while the profile

likelihood function found in Analysis I upon exclusion of the gμ−2 constraint allowed

almost the entire parameter space in the (m0,m1/2) plane at 68% level (see Fig. 7.3),

in the bottom left-hand panel of Fig. 7.11 the 68% confidence region remains confined

to the SC region. In addition to the δaSUSY
μ constraint, this region is favoured by

both the Higgs mass measurement and the isospin asymmetry Δ0− (see below), so

that regions at higher masses remain somewhat disfavoured compared to the SC

region even upon exclusion of gμ − 2 from the analysis. Indeed, the coordinates of

the best-fit point, m0 = 321.08 GeV, m1/2 = 839.84 GeV, A0 = −2163.28 GeV,

tan β = 13.48, are only slightly different from the best-fit coordinates found in the

previous section.

The best-fit point corresponds to a total χ2 = 11.71, which is significantly lower

than the best-fit χ2 value found in the Section 7.4.1. The breakdown of the total χ2

by observable is shown in purple in Fig. 7.9. As can be seen, the χ2 contributions

of the different observables are generally very similar to the analysis including the

constraint on δaSUSY
μ . The strong reduction in the total χ2 value is almost entirely

due to the best-fit value of the isospin asymmetry, Δ0− = 5.34, which now is in

much better agreement with the experimental constraint (to be discussed in more

detail below). From the hypothesis testing perspective, the best-fit point has a

χ2/dof = 1.11, corresponding to a p-value of 0.35.

The implications of excluding the gμ − 2 constraint from Analysis II for direct

dark matter searches are shown in the right-most column of Fig. 7.11. The bimodal

177



7.4 Results from Analysis II

χ

σ

χ

σ

χ

σ

Figure 7.12: Indirect detection prospects of the cMSSM (Analysis II). Black/filled
contours show the favoured regions in the 〈σv〉 vs. mχ̃0

1
plane derived from global fits

including all Analysis II constraints except gμ − 2 (from left to right: posterior pdf
with flat and log priors, and profile likelihood). For comparison, results including the
gμ − 2 constraint are shown as blue/empty contours. The best-fit point is given by the
encircled black cross. Both the current 95% limit from Fermi-LAT searches for dark
matter annihilation signals from dwarf spheroidal satellite galaxies (red/solid line, from
Ref. [52]), and the expected future reach with 10 years of data (blue/dashed line, from
Ref. [17]) are indicated on the plots. Future Fermi data will probe a sizeable fraction of
the AF region, but the SC region and the best-fit point will remain out of reach.

behaviour of the profile likelihood function observed above is also visible in the

(mχ̃0
1
, σSI

χ̃0
1−p) plane. A sizeable region at large neutralino masses mχ̃0

1
> 500 GeV

and high cross-sections σSI
χ̃0
1−p

<∼ 10−8 pb, corresponding to the AF region, is allowed

at 95% confidence level. XENON100 data actively constrain this region, which is

bounded from above by the direct detection limit, and the entire AF region will be

explored by the XENON1T experiment.5 In contrast, even upon exclusion of the

gμ−2 constraint from the analysis, the favoured spin-dependent cross-section values

remain outside the reach of proposed future experiments.

The favoured regions in the plane of the neutralino self-annihilation cross-section

〈σv〉 vs. mχ̃0
1
are shown in Fig. 7.12. As above, results including the gμ − 2 con-

straint are shown as blue/empty contours. In this plane, the SC region shows up as

an island at very low 〈σv〉 ∼ 10−28 cm3/s. In this region the relic density is reduced

by co-annihilations in the early universe, so that the neutralino self-annihilation

cross-section can be much lower than the thermal value. In contrast, the AF re-

gion corresponds to much larger 〈σv〉 ∼ 10−26 cm3/s. The current 95% exclusion

limit derived from a search for dark matter annihilation signals from 25 Milky Way

dwarf spheroidal galaxies with 48 months of Fermi-LAT data is shown as a red/solid

line [52]. The expected future limit from 10 years of Fermi observations of 30 dwarf

5In fact, the largest spin-independent cross-sections included in the 95% and 99% confidence re-
gions have already been strongly disfavoured by results from the LUX direct detection experiment,
which became available after completion of this study [77].
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Figure 7.13: As in Fig. 7.10, but with 1D distributions derived from scans including
all Analysis II constraints except the constraint on the anomalous magnetic moment of
the muon.

spheroidals is shown as a blue/dashed line [17]. While the favoured regions in

the cMSSM are unaffected by the current Fermi-LAT limit, future Fermi data will

explore a large fraction of the AF region, leading to improved indirect detection

prospects of the cMSSM. However, the SC region, and thus also the best-fit point,

will remain out of reach even for the 2018 Fermi data set.

The 1D marginalised pdfs and profile likelihood functions for the same derived

quantities as in Fig. 7.10 are shown in Fig. 7.13. In agreement with the above

observations, the 1D posterior pdf with flat priors is qualitatively very similar for

the analyses including and excluding the gμ − 2 constraint, for all quantities shown

in Fig. 7.13. Results for the posterior pdf with log priors also qualitatively agree

well with the results in the previous section, although a significant shift of posterior

probability from the low-mass (SC region) to the high-mass (AF region) mode can

be observed for all sparticle masses. In contrast, the 1D profile likelihood functions

are very different from the corresponding distributions including the gμ−2 constraint

(see Fig. 7.10). While the constraint on gμ − 2 confined the profile likelihood for

the sparticle masses to narrow regions at small mass values, in the absence of this

constraint the profile likelihood function is significantly more spread out, and extends

to the same masses as the posterior distributions (albeit at relatively low confidence).

While the increased preference for heavy sparticles from both the Bayesian and the

profile likelihood statistical perspective slightly worsens detection prospects of the

cMSSM at the LHC, the region most favoured by the profile likelihood function and

a significant fraction of the region favoured by the posterior distributions remain

accessible at the LHC operating at
√
s =14 TeV collision energy, and the HL-LHC.

Note that the lowest favoured squark and gluino masses in Fig. 7.13 have already
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been strongly disfavoured by LHC SUSY searches based on ∼ 20 fb−1 integrated

luminosity of data at
√
s = 8 TeV collision energy, that became available after this

study was completed (see the discussion in Section 7.4.2).

The flat and log prior posterior distributions for the observables (mh, BR(Bs →
μ+μ−), Ωχh

2, Δ0− and δaSUSY
μ ) are qualitatively very similar to the distributions

shown in Fig. 7.10 (up to numerical noise). In contrast, the 1D profile likelihood

results differ strongly from the findings in the previous section. The profile likelihood

function for mh is shifted towards slightly larger masses, favouring values of mh =

123−126 GeV; excluding the gμ−2 constraint leads to a larger freedom to fine-tune

Xt andMS to achieve values ofmh that are in good agreement with the experimental

measurement. The profile likelihood function for BR(Bs → μ+μ−) now extends

to much larger values and closely resembles the shape of the posterior pdf with

log priors. Similarly, the 1D profile likelihood for Ωχh
2 differs somewhat from the

corresponding distribution displayed in Fig. 7.10. In particular, the distribution

appears less Gaussian, due to the presence of a handful of fine-tuned points that

lead to a very high likelihood value and show up as “spikes” of high likelihood in all

panels of Fig. 7.13. The origin of these spikes can be understood from the 1D profile

likelihood function for the isospin asymmetry, which shows a very different behaviour

than observed in the previous section. This distribution is dominated by a small

number of strongly fine-tuned points that achieve a negative SUSY contribution

to Δ0− and thus lead to a better agreement with the experimental constraint on

Δ0−, while also reproducing other measurements. In the cMSSM, a large amount of

fine-tuning is required to satisfy the gμ − 2 constraint. Therefore, after exclusion of

this constraint from the analysis there is significantly more freedom to find points in

parameter space that are fine-tuned to satisfy other experimental constraints, such

as Δ0− (or mh, see above). The presence of a small number of fine-tuned points

that achieve a very high likelihood value also explains the small size of the 2D 68%

confidence regions in Fig. 7.11 and Fig. 7.12. The 95% and 99% regions also receive

contributions from points leading to higher Δ0− values, that are much easier to

achieve, and are therefore significantly more spread out. Finally, upon exclusion of

the experimental constraint on δaSUSY
μ from the analysis the 1D profile likelihood

function for this quantity is no longer pushed towards large δaSUSY
μ , but instead is

spread over a sizeable range of δaSUSY
μ values. Even though the peak of the profile

likelihood is still found at slightly larger values of δaSUSY
μ , it is now in much better

agreement with the posterior distributions.
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7.5 Discussion and conclusions

In this chapter we have presented the impact of LHC SUSY null searches, direct

detection limits on dark matter, and the measurement of the mass of the lightest

Higgs boson on global fits of the cMSSM.

In Analysis I we have demonstrated that the combination of LHC limits on

the cMSSM mass parameters and dark matter constraints from the XENON100 di-

rect detection experiment rules out a significant portion of the previously favoured

cMSSM parameter space. In particular, the LHC 1 fb−1 exclusion limit strongly

disfavours both the bulk region and a significant portion of the SC region. The

XENON100 limit rules out the FP branch of the cMSSM at 99% level, even when

uncertainties in the local astrophysics and the hadronic matrix elements are taken

into account. We have found that when fixing the astrophysical and hadronic nui-

sance parameters the results are qualitatively very similar, albeit somewhat less

conservative. Our study highlights the complementarity of collider experiments and

direct detection searches, which can rule out regions at high SUSY masses that are

less accessible at the LHC.

The strong impact of the XENON100 experiment on the FP region disfavours

large spin-dependent neutralino-proton interactions and thus reduces prospects for

detection of dark matter in the cMSSM by neutrino telescopes. Although our results

are specific to the cMSSM, we point out that the conditions for the occurrence of the

FP region can in principle be extended to more general supersymmetric scenarios.

The general feature of the smallness of the μ parameter in the FP region is preserved

even in the absence of universality assumptions on the soft mass parameters, as are

the main implications for dark matter searches [120].

Our conclusions are qualitatively similar to the findings of other global fits anal-

yses that studied the impact of LHC 2010/2011 results and XENON100 data on the

cMSSM, see e.g. Refs. [173, 260, 174, 276]. In particular, Refs. [173, 260, 174] found

that XENON100 data have a significant impact of on the the viability of the FP

region, in good agreement with our results. In contrast, Ref. [276] claimed that the

FP region can not be excluded at 95% level, most likely as a consequence of the very

conservative estimation of the XENON100 limit in this study. Our work differs from

other studies in that we investigated the impact of both hadronic and astrophysi-

cal uncertainties, while astrophysical (nuclear physics) uncertainties were neglected

in Refs. [173, 174] (Ref. [260]). Ref. [276] takes into account the uncertainties by

smearing out the XENON100 exclusion limit, instead of marginalising/maximising

over the corresponding nuisance parameters (which is arguably a more consistent
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statistical treatment of uncertainties). Furthermore, we adopt a more sophisticated

statistical framework than Ref. [260] (where the parameter space was explored us-

ing random scans), and performed a detailed quantitative comparison between the

Bayesian and the profile likelihood results (absent in Refs. [173, 174, 276]).

In Analysis II we found that the LHC constraint on the mass of the lightest

Higgs boson has a very strong impact on the cMSSM parameter space, as achieving

a Higgs mass of mh ≈ 126 GeV is difficult, and requires a significant amount of

fine-tuning, either in the form of very heavy stops (and thus very heavy squarks in

general), or maximal stop mixing. This leads to a strong preference of the profile

likelihood function for the SC region, in which the maximal mixing scenario can be

realised. In contrast, the Bayesian posterior pdf shows a varying degree of preference

for the AF region, depending on the choice of priors. Similarly, conclusions about the

detection prospects of the cMSSM depend strongly on the statistical perspective: the

posterior distributions suggest encouraging discovery prospects at future ton-scale

direct detection experiments, while prospects for detection at the LHC operating at√
s =14 TeV collision energy and the HL-LHC are mixed. In contrast, the profile

likelihood favours a region that will be challenging to explore with future direct

detection experiments, but corresponds to small sparticle masses, that would lead

to a significant excess of events at the LHC operating at
√
s =14 TeV collision energy.

Therefore, our study reveals excellent prospects for either detecting or conclusively

ruling out the cMSSM in the next few years.

Our findings are in good agreement with other global fits analyses studying the

impact of the measurement of the Higgs mass on the cMSSM, see e.g. Refs. [175,

275]. In the Frequentist analysis in Ref. [175], the best-fit point is found in the SC

region, in accordance with our results. However, the AF region is favoured at high

confidence, perhaps as a consequence of the somewhat lower scanning resolution in

Ref. [175]. The Bayesian analysis presented in Ref. [275] qualitatively agrees with

our results, although there are important quantitative differences due to the larger

range of experimental constraints included in our analysis (in particular, Ref. [275]

does not include XENON100 data). A global fits analysis of the cMSSM including

LHC ∼ 20 fb−1 data and results from the LUX and Planck experiments can be found

in Ref. [176]. The conclusions are in good agreement with our qualitative discussion

of the impact of these data sets. In particular, the overall impact of the new data

sets on the cMSSM is small, and the SC region remains viable.

Finally, we have investigated the impact of the experimental constraint on the

anomalous magnetic moment of the muon on global fits of the cMSSM. We found

that this constraint plays a dominant role in disfavouring large scalar and gaugino
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masses, in particular from the profile likelihood statistical perspective. The signifi-

cant reduction of the best-fit χ2 upon exclusion of this constraint, observed for both

Analysis I and Analysis II, suggests that the gμ − 2 measurement is in conflict with

several other experimental constraints. Given the significant uncertainties in aSMμ ,

global fits of the cMSSM including this constraint should therefore be interpreted

with care. We conclude that the most robust physical conclusions are obtained by

comparing results from global fits including and excluding the gμ − 2 constraint.

A goodness-of-fit test does not allow to exclude the cMSSM at any meaningful

significance level. Although the calculated p-values are only approximate, as upper

and lower limits were neglected in the computation, it appears that the cMSSM re-

mains viable in light of the applied experimental constraints. Despite our null results

for the significance tests, we found that several experiments are placing increasingly

tight constraints on the cMSSM parameter space and previously strongly favoured

regions have been ruled out. The difficulty to simultaneously satisfy all experimental

constraints in these models is becoming increasingly apparent, and strong degrees

of fine-tuning are required to achieve satisfactory likelihood values. This motivates

the study of more general SUSY models, such as the Non-Universal Higgs Model,

or the phenomenological MSSM, which are expected to be more weakly constrained

in light of recent experimental data sets. Global fits studies of these models will be

presented in the following two chapters.
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Chapter 8

Global fits of the NUHM

8.1 Introduction

In Chapter 7 we have presented a global fits analysis of the constrained Minimal

Supersymmetric Standard Model (cMSSM), and have found that several highly com-

plementary data sets are placing increasingly tight constraints on the cMSSM pa-

rameter space. This motivates the study of more general models of SUperSYmmetry

(SUSY), that may be able to simultaneously satisfy the full range of existing ex-

perimental constraints. A popular example for a more general SUSY framework is

the Non-Universal Higgs Model (NUHM, see Section 3.4.2), a simple SUSY scenario

that achieves a richer phenomenology than the cMSSM by relaxing some of the

GUT-scale boundary conditions.

In this chapter we apply the global fits framework presented in Chapter 7 to

obtain global fits of the NUHM. We evaluate the combined impact of constraints

on SUSY from accelerator searches, the measurement of the Higgs mass, direct

detection data, constraints on the dark matter relic abundance and precision tests

of the Standard Model (SM) on the NUHM parameter space. In particular, our

analysis includes the same experimental constraints and nuisance parameters as

implemented in Analysis II of Chapter 7. We present the most favoured regions of

the parameter space from both the Bayesian and the profile likelihood statistical

perspective, and assess the overall viability of this model in light of the applied

experimental constraints using a goodness-of-fit test.

In the previous chapter we have found that the constraint on the anomalous

magnetic moment of the muon (gμ− 2) [322] plays a dominant role in driving global

fits of the cMSSM, in particular from the profile likelihood statistical perspective.

As discussed in detail in Section 7.2.3, the SM prediction of this quantity displays

a 3.6σ discrepancy with the experimental measurement [231], but the presence of
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significant theoretical uncertainties and the lack of a significant SUSY signal at the

LHC challenge the robustness of this constraint. Therefore, we present results for

both a global fits analysis including and excluding the gμ−2 constraint, and evaluate

the dependence of our physical conclusions on this observable.

This chapter is organised as follows. In the next section we outline the the-

oretical and statistical framework for the analysis, focussing on the differences to

the procedure described in Section 7.2. We then present the results for our global

fits analysis of the NUHM. We study the impact of several different experimental

constraints on the NUHM parameter space and discuss prospects for the detection

of this model by future SUSY and dark matter searches. Finally, we present our

conclusions. This chapter closely follows the work published in Ref. [414].

8.2 Theoretical and statistical framework

The NUHM is a simple model of minimal supersymmetry that has been introduced in

Section 3.4.2. The NUHM is defined by the same GUT-scale universality conditions

as the cMSSM (see Eq. (3.18)), with the exception that the soft SUSY breaking

masses of the two Higgs doublets, mHu and mHd
, are decoupled from the squark

and slepton masses, and are treated as independent free parameters. This is a

reasonable assumption to make, since the Higgs and matter fields are described by

different supermultiplets, so that there is no strong motivation to assume unification

of the Higgs and sfermion masses. As explained in Section 3.4.2, the parameters

mHu and mHd
can be replaced by the Higgs/Higgsino mass parameter μ and the

pseudoscalar Higgs mass mA using the electroweak symmetry breaking conditions

in Eq. (3.22) (recall that m2
A = 2b/ sin(2β)). As a result, the NUHM is described

by six free parameters, namely mA, μ, and the four continuous cMSSM parameters

m0, m1/2, A0 and tan β. As we will see below, due to the larger number of free

parameters compared to the cMSSM, the NUHM exhibits new phenomenological

features, that can lead to very different detection prospects in future SUSY and

dark matter searches.

As observed in the previous chapter, the inferences derived from global fits of

SUSY models can differ strongly with the statistical perspective. Therefore, in the

following we present results for both the marginalised Bayesian posterior pdf and

the Frequentist profile likelihood function on the model parameters and observables

of interest, in order to obtain the maximum of information about the structure of

the NUHM parameter space. Additionally, in the previous chapter we have found

that the choice of prior distributions can have a significant impact on the posterior
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NUHM Parameters
Flat priors Log priors

m0 [GeV] (50.0, 4000.0) (101.7, 103.6)
m1/2 [GeV] (50.0, 4000.0) (101.7, 103.6)
mA [GeV] (50.0, 4000.0) (101.7, 103.6)
μ [GeV] (-2000.0, 2000.0)
A0 [GeV] (-4000.0, 4000.0)
tan β (2.0, 65.0)

Table 8.1: NUHM parameters and their ranges covered by the scans. Flat priors are
uniform in the mass parameters; log priors are uniform in the logarithm of the mass
parameters.

results derived from global fits of the cMSSM. Therefore, we repeat each of our

NUHM scans for both “flat” priors (uniform on the NUHM mass parameters m0,

m1/2 and mA) and “log” priors (uniform in the log of m0, m1/2 and mA), following

the procedure described in Section 7.2.2. Both sets of priors are uniform on μ,

A0 and tan β. By comparing the posterior pdfs for the two sets of priors we will

be able to evaluate the prior dependence of our posterior inferences and assess the

robustness of the resulting physical conclusions. The NUHM parameters and the

range of their values explored by the scans for both log and flat priors are given in

Table 8.1.

In addition to the six NUHM model parameters, we include several nuisance pa-

rameters in the scans, in order to account for residual uncertainties on the measured

values of certain SM parameters, as well as uncertainties in several astrophysics

and nuclear physics quantities that enter in the analysis when including constraints

from direct detection searches. Here, we adopt the same strategy as described in

Section 7.2.1 of the previous chapter. In particular, we include four SM nuisance pa-

rameters (Mt, mb(mb)
MS, [αem(MZ)

MS]−1, αs(MZ)
MS), four astrophysical nuisance

parameters (the local dark matter density ρ0, and three quantities parameterising

the WIMP velocity distribution v0, vesc, vd) and three hadronic nuisance parameters

(the hadronic matrix elements f p
Tu
, f p

Td
and f p

Ts
) in the scans; see Section 7.2.1 for

full details. We adopt informative Gaussian priors on these quantities. The mean

and standard deviation of the Gaussian priors are the same as in Analysis II of the

previous chapter, see Table 7.2.

The structure of the likelihood function for our NUHM global fits analysis is the

same as given in Eq. (7.1). The applied experimental constraints are identical to the

data sets included in the likelihood function for Analysis II of the previous chapter,

listed in Table 7.3. In the following we will particularly focus on the impact of the
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ATLAS exclusion limit in the (m0,m1/2) plane, based on a search for squarks and

gluinos in final states that contain missing ET , jets and 0 leptons in 5.8 fb−1 inte-

grated luminosity of data at
√
s = 8 TeV collision energy [207], the CMS constraint

on the mass of the lightest Higgs boson, mh = 125.8± 0.6 GeV, derived from data

corresponding to integrated luminosities of up to 5.1 fb−1 at
√
s = 7 TeV and up to

12.2 fb−1 at
√
s = 8 TeV collision energy [330], and the XENON100 exclusion limit

in the (mχ̃0
1
, σSI

χ̃0
1−p) plane, obtained from 224.6 live days of data and 34 kg fiducial

volume [105]. A detailed description of the form of the likelihood function and the

included observables has been provided in Section 7.2.3, and we refer the reader to

this section for further information. The single modification made with respect to

the treatment in Section 7.2.3 is that, in addition to the ATLAS limit on m0 and

m1/2, we also apply the CMS exclusion limit in the (mA, tan β) plane, derived from

a search for the decay of neutral Higgs bosons into tau lepton pairs with subsequent

decays into final states containing two muons and missing ET , based on 4.5 fb−1

integrated luminosity of data collected at
√
s = 7 TeV collision energy [214]. As for

the limit in the (m0,m1/2) plane, the exclusion limit on mA and tan β is included in

the likelihood function by defining L(θ) = 0 for samples falling below the limit.

We use an evolution of the publicly available SuperBayeS v1.5.1 package [5]

to obtain samples of the NUHM parameter space. The codes used for the com-

putation of the SUSY spectrum and the observables are as specified for Analysis

II in Chapter 7. In particular, we continue to use MultiNest v2.18 [270, 271] as a

scanning algorithm, with running parameters nlive = 20, 000 and tol = 10−4. Fol-

lowing the procedure described in Section 7.2.2, we run ten scans in parallel for

both log and flat prior scans. The resulting NUHM posterior inferences are based

on approximately 132M (73M) likelihood evaluations for log (flat) priors; the corre-

sponding posterior results excluding the gμ − 2 constraint were generated from 95M

(52M) likelihood evaluations. The (prior-independent) profile likelihood function is

obtained from combined chains of the log and the flat prior scans, as advocated in

Ref. [268]. As in the previous chapter, we save the values and coordinates of all like-

lihood evaluations, including points that belong to rejected steps in the sampling,

to further increase the resolution of our profile likelihood analysis. The resulting

profile likelihood mapping is based on a combined total of 205M (147M) samples

for the analysis including (excluding) the constraint on gμ − 2. We have checked

that, while each scan is more noisy than the combined samples of all ten scans (as

expected), our results are consistent across all the scans. The total computational

effort for the analysis including (excluding) the gμ−2 constraint was approximately

72 (61) CPU years.
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β
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Figure 8.1: Constraints on the NUHM parameters resulting from all data sets listed
in Table 7.3 for Analysis II (including ATLAS 5.8 fb −1 SUSY null searches, CMS con-
straints on mh, XENON100 225-days direct detection limits and WMAP 7-year data).
Black/filled contours show the 68%, 95% and 99% credible/confidence regions for the
marginalised posterior pdf (top panels: flat priors; central panels: log priors) and the
profile likelihood function (bottom panels). The encircled black cross represents the best-
fit point, obtained from over 200M likelihood evaluations. For comparison, blue/empty
contours show results for global fits excluding the latest XENON100 constraints (but
including earlier XENON100 results, based on 100.9 live days of data [102]). In the left-
hand panels, the dashed/green line shows the LHC 5.8 fb−1 95% exclusion limit [207].
Large values of m1/2 are strongly favoured, leading to a preference for Higgsino-like dark
matter with μ ∼ 1 TeV; the LHC exclusion limit has essentially no impact on global fits
of the NUHM.

8.3 Results

8.3.1 Combined impact of all experimental constraints

In Fig. 8.1 we show results for global fits of the NUHM in the (m1/2,m0) plane (left),

the (tan β,A0) plane (centre) and the (mA, μ) plane (right). In the upper (central)
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panels we show the marginalised posterior distributions for flat (log) priors, while

the bottom panels show the profile likelihood results. Black/filled contours show the

results obtained from scans including all experimental constraints (see Table 7.3,

Analysis II), in particular the LHC 5.8 fb−1 exclusion limit, the constraint on the

mass of the lightest Higgs boson, and the latest XENON100 results (based on 225

days of data). For comparison, blue/empty contours show the results obtained

prior to the inclusion of the latest XENON100 data; note, however, that the earlier

XENON100 results, based on 101 days of data, are included.

As can be seen in the top and central left-hand panels, the posterior distributions

for both log and flat priors strongly favour large values of the mass parameters,

especially m1/2. As a result, the LHC 5.8 fb−1 exclusion limit has essentially no

impact on our global fits, as the favoured regions of parameter space correspond

to scalar and gaugino masses far beyond the reach of this limit.1 The preference

for large m1/2 is mainly a result of the LHC constraint on the mass of the lightest

Higgs boson. In the NUHM (as in the cMSSM), mh scales with m1/2, so that values

mh ∼ 126 GeV can easily be achieved in the favoured region (see below). Since mh

is not very sensitive to m0, almost the entire prior range of m0 is allowed at high

credibility (with the exception of very small values). The posterior distributions for

the two different choices of priors agree quite well, although, as already observed

for the cMSSM in the previous chapter, the posterior pdf with flat priors is shifted

towards larger values of m0, due to volume effects.

In the (tan β,A0) plane (centre) only very limited constraints are placed on the

parameters. The 68% credible region spans essentially the entire prior range of A0,

for both the posterior pdf with flat and log priors. Similarly, a very large range of

values 5 <∼ tan β <∼ 50 is included in the 99% credible region, although tan β <∼ 40

is somewhat favoured.

In contrast, the posterior distributions in the (mA, μ) plane (right) are confined

to a narrow region at μ ∼ 1 TeV, for both log and flat priors. This is a consequence

of the Higgsino-like nature of the lightest neutralino, which we require to be the

Lightest Supersymmetric Particle (LSP); the composition of the neutralino LSP will

be discussed below. The pseudoscalar Higgs mass is almost unconstrained within

the prior range, and only very small valuesmA
<∼ 400 GeV are excluded at 99% level.

This is mainly a consequence of the BR(Bs → μ+μ−) constraint, which disfavours

small mA, in particular for large values of tan β [253]. For the posterior pdf with flat

priors, the 68% credible region extends to larger values of mA, as expected, since

1Similarly, the LHC 20 fb−1 SUSY limits [3, 4], that were presented following the completion
of this study (see Section 7.4.2), have no impact on the favoured regions of the NUHM.
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this prior gives a large a priori statistical weight to large masses. The posterior pdf

with log priors shows a slight preference for mA
<∼ 3 TeV, but the 95% region still

touches the upper prior boundary at mA = 4 TeV.

The 2D profile likelihood results (bottom row of Fig. 8.1) are qualitatively

similar to the posterior pdfs, in particular in the (tan β,A0) and the (mA, μ) planes.

While, as for the posterior distributions, large values of m1/2
>∼ 3 TeV are strongly

favoured, the profile likelihood in the (m1/2,m0) plane is much more localised, and

the contours are confined to a diagonal region at relatively smallm0 ∼ 1−2 TeV (and

a small island at larger m0). The shape of the profile likelihood function is strongly

driven by the constraint on the anomalous magnetic moment of the muon. A large

SUSY contribution δaSUSY
μ , as needed to reproduce the experimentally measured

value, generally requires relatively small sparticle masses, and thus small values ofm0

and m1/2. However, in the NUHM large values of the mass parameters are favoured

by several other constraints, and a significant degree of fine-tuning is required to

satisfy the constraint on δaSUSY
μ in this region. In particular, there is a strong mass

degeneracy between the heaviest chargino and the muon sneutrino, mχ̃±
2
∼ mν̃μ , and

the heaviest neutralino and one of the smuons, mχ̃0
4
∼ mμ̃R

, in the region favoured by

the profile likelihood function. These degeneracies lead to a significant enhancement

of δaSUSY
μ (see e.g. Ref. [357]), so that the experimental constraint on gμ − 2 can be

satisfied. The chargino and neutralino masses scale with m1/2, while mν̃μ and mμ̃R

are mainly determined by m0, so that the required degeneracy between these masses

explains the diagonal shape of the profile likelihood contours in the (m1/2,m0) plane

observed in Fig. 8.1.

The main impact of the updated XENON100 limit (shown by the difference

between the black/filled contours and the blue/empty contours in Fig. 8.1) is to

push the favoured regions towards larger values of m1/2, while the other parameters

are relatively insensitive to this limit. We defer the discussion of the origin of this

effect to the following section, where we will comment on direct detection of the

NUHM in more detail.

The LHC measurement of the lightest Higgs mass has a strong impact on the

NUHM parameter space. As discussed in Section 7.4.1, in the MSSM a large Higgs

mass mh ∼ 126 GeV can be achieved via two mechanisms: very large stop masses

mt̃1,2 , or maximal stop mixing, which is realised for |Xt/MS| ≈ 2.44. The favoured

regions in the (mh, Xt/MS) plane are shown in Fig. 8.2. As can be seen, a Higgs

mass compatible with the LHC measurement can easily be realised in the NUHM,

and both the Bayesian pdfs and the profile likelihood function are centred on mh ∼
126 GeV. Moderate values of |Xt/MS| are favoured independent of the statistical
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Figure 8.2: The lightest Higgs mass in the NUHM. The favoured regions in the
(mh, Xt/MS) plane are shown for the posterior pdf with flat and with log priors, and
the profile likelihood function (from left to right). Black/filled contours show 68%, 95%
and 99% credible/confidence regions obtained from global fits including all data (see Ta-
ble 7.3, Analysis II), while blue/empty contours show results from scans excluding the
latest XENON100 limit. The best-fit point is indicated by the encircled black cross. The
maximal mixing scenario (|Xt/MS | ≈ 2.44) is not realised in the NUHM, and instead
a lightest Higgs mass compatible with the experimental measurement is achieved by a
combination of large stop masses and moderate stop mixing.

perspective, and the maximal mixing scenario is not realised. Instead, the constraint

on mh is satisfied by a combination of large stop masses and moderate stop mixing.

This is in sharp contrast to our findings for the cMSSM, presented in Sec-

tion 7.4.1, where the maximal mixing scenario was strongly favoured, especially

from the profile likelihood statistical perspective (see Fig. 7.8). In both the NUHM

and the cMSSM the mass of the lightest Higgs boson scales with m1/2, as large

values of m1/2 lead to large stop masses, which contribute to mh at one-loop level.

However, while in the cMSSM m1/2
>∼ 2 TeV is incompatible with the relic density

constraint, in the NUHM much larger values of m1/2 (and thus mt̃1,2) are allowed,

leading to a large mass for the lightest Higgs boson. In principle, the maximal

mixing scenario could be realised in the NUHM at low values of m1/2. However,

this scenario requires large fine-tuning and, due to the small stop masses in this

region, can only achieve mh values that are slightly smaller than required by the

experimental constraint. Therefore, this region is disfavoured with respect to the

high-mass region, in which mh ∼ 126 GeV can easily be achieved.

The constraint on Ωχ̃0
1
h2 can be satisfied at large values of m1/2 ∼ 3−4 TeV due

to the additional freedom obtained by treating the Higgs sector masses as free pa-

rameters, independent of m0. This leads to an important phenomenological feature:

the possibility of a neutralino LSP with a large Higgsino fraction. For Higgsino-

like dark matter mχ̃0
1
∼ |μ| and, since μ is a free parameter, it can be adjusted

to give the correct dark matter relic density. Specifically, the WMAP constraint is

satisfied for mχ̃0
1
≈ μ ∼ 1 TeV. A neutralino LSP with a large Higgsino fraction is
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Figure 8.3: Breakdown of the total χ2 by observable for the NUHM best-fit points.
The contributions of the different observables to the best-fit χ2 are shown for the analysis
including all data (red) and the analysis excluding the δaSUSY

μ constraint (purple).

achieved for |μ| < M1 (as in models with unified gaugino masses M1 < M2 ≈ 2M1).

Since M1 ≈ 0.4m1/2, this leads to the requirement that m1/2
>∼ 2.5 TeV. Therefore,

Higgsino-like dark matter compatible with the Ωχ̃0
1
h2 constraint is found at large

m1/2 ∼ 3 − 4 TeV. In this mass range, stops are heavy enough to lead to a Higgs

mass mh ∼ 126 GeV. As both the relic density constraint and the Higgs mass mea-

surement can be fulfilled in this region, Higgsino-like dark matter with mχ̃0
1
∼ 1 TeV

is strongly favoured in the NUHM. This is clearly visible in the (mA, μ) plane in

Fig. 8.1, where both the posterior distributions and the profile likelihood function

display a strong preference for μ ∼ 1 TeV.

We now turn to the discussion of the best-fit point identified by the scans. The

best-fit point is found at a large gaugino mass and an intermediate scalar mass,

m1/2 = 3836.97 GeV and m0 = 1524.76 GeV. It corresponds to a slightly negative

A0 = −478.54 GeV and a small value of tan β = 15.37. As expected from the above

discussion, the best-fit value of the Higgsino mass parameter, μ = 1149.27 GeV,
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is close to 1 TeV and the best-fit point corresponds to a Higgsino-like neutralino

LSP with mχ̃0
1
= 1169.1 GeV. The best-fit value of the pseudoscalar Higgs mass is

mA = 773.47 GeV. We find a total best-fit χ2 = 11.31; the breakdown of the total

χ2 by observable is shown in red in Fig. 8.3. As can be seen, the largest contribution

to the best-fit χ2 results from the isospin asymmetry Δ0−. As discussed in detail in

the previous chapter, the experimentally measured value of this quantity is smaller

than the SM prediction at ∼ 2σ level, so that even a SM-like value of Δ0− leads

to a sizeable χ2 contribution. Other observables contributing significantly to the

best-fit χ2 are BR(Ds → μν), BR(Bu → τν) and mW . The remaining experimental

constraints are in good agreement with the best-fit point. In particular, the best-

fit values of the relic density, the lightest Higgs mass and δaSUSY
μ are in excellent

agreement with the experimental measurements of these quantities.

Following the procedure described in Section 7.3.1, we only consider χ2 contri-

butions from Gaussian-distributed observables when evaluating the p-value of the

best-fit point. Only counting Gaussian data points, we find a number of degrees

of freedom dof = 9, leading to a χ2(Gaussian)/dof = 1.25 and an (approximate)

p-value of 0.26. Therefore, the goodness-of-fit test does not allow to rule out the

NUHM at any meaningful significance level.

8.3.2 Implications for direct detection and future SUSY and

dark matter searches

The favoured regions in the (mχ̃0
1
, σSI

χ̃0
1−p) plane and the (mχ̃0

1
, σSD

χ̃0
1−p) plane are shown

in the top and bottom panels of Fig. 8.4, respectively. Prior to the inclusion of

the latest XENON100 results (blue/empty contours), the posterior distributions

favour spin-independent cross-sections in the range σSI
χ̃0
1−p = 10−9 − 10−7 pb, and a

relatively small range of neutralino masses around mχ̃0
1
∼ 1 TeV, as a consequence

of the Higgsino-like character of the neutralino LSP. As can be seen by comparing

the blue and the black contours, the XENON100 225-days limit (red/solid line)

rules out part of this otherwise unconstrained region at 99% level. Similarly, the

XENON100 results strongly disfavour a sizeable fraction of the region favoured from

the profile likelihood statistical perspective. After completion of this study, the

LUX collaboration reported a new exclusion limit in the (mχ̃0
1
, σSI

χ̃0
1−p) plane, placing

the most stringent constraints on the spin-independent WIMP-nucleon interaction

today [77]. The LUX limit disfavours a region at large values of σSI
χ̃0
1−p that is

included in the 95% and 99% contours in Fig. 8.4. However, the overall impact

of this limit is relatively small, so that the conclusions from this study remain
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Figure 8.4: Direct and indirect detection prospects of the NUHM. The favoured regions
in the (mχ̃0

1
, σSI

χ̃0
1−p

) plane (top) and the (mχ̃0
1
, σSD

χ̃0
1−p

) plane (bottom) are shown for the

posterior pdf with flat and log priors and the profile likelihood function (from left to
right). Black/filled contours were derived from global fits including all data (see Table 7.3,
Analysis II), while blue/empty contours show results from scans excluding the latest
XENON100 limit. The encircled black cross indicates the best-fit point. The solid/red
line shows the 90% XENON100 225-days exclusion limit [105]. Ref. [105] only shows
the limit for mχ̃0

1
< 1000 GeV; we display the extension of this limit to higher WIMP

masses as a red/dashed line. We also show the expected reach of the future XENON1T
experiment [100] as a red/dashed line. The XENON100 limit has a significant impact on
the NUHM parameter space, disfavouring a sizeable range of spin-dependent and spin-
independent cross-sections.

qualitatively valid. The future ton-scale XENON1T direct detection experiment is

expected to probe cross-sections above σSI
χ̃0
1−p ∼ 2 × 10−11 pb by 2017 [100]. The

expected 90% XENON1T exclusion limit is displayed as a red/dashed line in the

top panels of Fig. 8.4. As can be seen, XENON1T will probe the entire currently

favoured NUHM parameter space, from both the Bayesian and the profile likelihood

statistical perspective, and the best-fit point is easily in reach of this experiment.

This leads to excellent direct detection prospects for the NUHM.

While the XENON100 limit does not directly impact on the favoured regions

in the (mχ̃0
1
, σSD

χ̃0
1−p) plane (bottom panels of Fig. 8.4), the exclusion of large values

of σSI
χ̃0
1−p at high confidence/credibility has important consequences for the favoured

values of σSD
χ̃0
1−p. For Higgsino-like dark matter, points in parameter space that

correspond to a large σSI
χ̃0
1−p (namely, points with an appreciable gaugino fraction,
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Figure 8.5: 1D marginal pdf for flat priors (dash-dot/blue) and log priors (thick
solid/red), and 1D profile likelihood (dashed/black) in the NUHM, including all experi-
mental constraints (see Table 7.3, Analysis II). Top row, from left to right: lightest stop
and sbottom masses, average squark mass, gluino mass and lightest chargino mass. Bot-
tom row: gaugino fraction, lightest Higgs boson mass, BR(Bs → μ+μ−) branching ratio,
isospin asymmetry and anomalous magnetic moment of the muon. The best-fit point is
indicated by the encircled black cross.

see below) will also lead to a large spin-dependent scattering cross-section. As a

result, a sizeable region at large σSD
χ̃0
1−p is strongly disfavoured by the inclusion of

the latest XENON100 data in the analysis, from both the Bayesian and the profile

likelihood statistical perspective, and contours are shifted to significantly smaller

values of σSD
χ̃0
1−p. The favoured region corresponds to σSD

χ̃0
1−p ∈ [10−6.5, 10−5.5] pb, with

the best-fit point found at the bottom end of this range, so that prospects for the

detection of the NUHM with neutrino telescopes are dim.

The favoured values of the self-annihilation cross-section are close to the thermal

value 〈σv〉 ∼ 10−26 cm3/s. Indirect detection experiments looking for gamma-rays

from dark matter annihilations – most notably, the Fermi Large Area Telescope

(LAT) (see Section 4.3) – place constraints on 〈σv〉 as a function of mχ̃0
1
, that can

be translated into constraints on the NUHM parameters. The expected future limit

from a search for dark matter annihilation signals in 30 dwarf spheroidal galaxies

with 10 years of Fermi-LAT data has been given in the previous chapter (blue/dashed

line in Fig. 7.12). As can be seen, for neutralino masses mχ̃0
1
∼ 1 TeV values of the

self-annihilation cross-section 〈σv〉 ∼ 10−26 cm3/s will remain out of reach even for

the 10-years Fermi-LAT data set, so that dark matter in the NUHM can not be

probed with gamma-ray experiments in the foreseeable future.

In Fig. 8.5, we show the 1D marginal posterior pdf for both flat (dash-dot/blue)

and log (thick solid/red) priors and the 1D profile likelihood function (dashed/black)

for some derived quantities of interest. The top panels show the 1D distributions for
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several sparticle masses that are of importance for future LHC searches for SUSY. As

expected from the preference for large values of m1/2 observed in Fig. 8.1, very large

squark and gluino masses are favoured. The 1D distributions for the lightest stop and

sbottom masses peak at mstop1 ≈ 5000 GeV and msbottom1 ≈ 6000 GeV, respectively,

while the most favoured gluino and average squark masses are mgluino,msquark ≈
7000 GeV. This is true for both the 1D posterior pdfs and the 1D profile likelihood

function, which are in excellent agreement. Similarly, the 1D distributions for the

lightest chargino mass are highly concentrated around mχ̃±
1

∼ 1.1 TeV, which is

a consequence of the preference for μ ∼ 1 TeV and the Higgsino-like character of

χ̃±1 . The favoured sparticle masses will remain inaccessible to the LHC operating

at
√
s =14 TeV collision energy [218], and are far beyond the predicted reach of

even the HL-LHC [209]. Therefore, detection prospects of the NUHM at collider

experiments are dim, and one needs to rely on alternative search strategies, such as

the direct detection of neutralinos, in order to probe this model.

In the bottom row of Fig. 8.5 we show the 1D distributions for several ob-

servables of interest, namely the gaugino fraction, the mass of the lightest Higgs

boson, the branching ratio BR(Bs → μ+μ−), the isospin asymmetry Δ0− and the

anomalous magnetic moment of the muon. As can be seen in the bottom left-hand

panel, recent experimental constraints rule out the possibility of gaugino-like dark

matter (gf � 0.5), and favour regions of parameter space that correspond to a

strongly Higgsino-like neutralino LSP, with gf ≤ 0.1 at 99% level. As explained

above, this is largely due to the constraint on the mass of the lightest Higgs boson,

which can easily be satisfied in the region of parameter space where the dark matter

is Higgsino-like and Ωχ̃0
1
h2 ∼ 0.1. Additionally, the latest XENON100 limit dis-

favours Higgsino-like neutralino LSPs with an appreciable gaugino component and

thus shifts the 1D distributions for gf to even lower values. More specifically, the

(dominant) Higgs-exchange contribution to the spin-independent neutralino-proton

cross-section scales with both the Higgsino and the Bino content of the neutralino

LSP, and thus decreases as gf → 0 and the neutralino becomes very nearly a pure

Higgsino state. This explains why the inclusion of the XENON100 225-days limit in

the analysis leads to a shift of contours towards larger m1/2, as observed in Fig. 8.1:

for μ ∼ 1 TeV fixed by the relic density constraint, an increase in m1/2 leads to a de-

crease in the gaugino content of the neutralino LSP, resulting in lower values of σSI
χ̃0
1−p

that are still allowed by the XENON100 limit. Similarly, the dominant contribution

to the spin-dependent neutralino-proton interaction comes from Z-exchange, and

scales with the Higgsino asymmetry of the neutralino LSP, σSD
Z ∝ (|N13|2−|N14|2)2.

This asymmetry is suppressed for a pure Higgsino state, so that the reduction in gf
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resulting from the exclusion of large values of σSI
χ̃0
1−p by the latest XENON100 limit

also leads to a reduction in the favoured values of the spin-dependent neutralino-

proton cross-section (as observed in Fig. 8.4).

As discussed in detail in the previous section, in the NUHM a lightest Higgs mass

mh ∼ 126 GeV can easily be realised, and both the 1D posterior pdfs and the profile

likelihood function for mh peak at the experimentally measured value. Similarly,

the 1D distributions for BR(Bs → μ+μ−) are confined to a relatively small range

of values BR(Bs → μ+μ−) ∼ (2.5 − 4.0) × 10−9, which is comfortably within the

1σ error range of the LHCb measurement of this quantity [28].2 In contrast, the 1D

distributions for the isospin asymmetry Δ0− are discrepant with the experimental

measurement, Δ0− = (3.1± 2.3)× 10−2 [117, 364, 363], at > 2σ level. As discussed

in the previous chapter, the SM prediction for Δ0− is significantly larger than the

experimental value, and, similarly to the cMSSM, negative contributions to this

quantity are difficult to achieve in the NUHM. Therefore, SM-like values Δ0− ∼
8× 10−2 are strongly favoured, which explains the large contribution from the Δ0−
constraint to the best-fit χ2 (see Fig. 8.3). Notice that a small number of fine-tuned

points leading to slightly smaller values Δ0− ∼ 7.5 × 10−2 are found by the scans,

including the best-fit value, Δ0− = 7.45 × 10−2, so that the 1D profile likelihood

function for Δ0− is slightly shifted with respect to the posterior distributions.

While, for the quantities discussed above, the 1D profile likelihood function

is generally in good agreement with the marginalised posterior pdfs, the favoured

values of the anomalous magnetic moment of the muon differ strongly from the

Bayesian and the profile likelihood statistical perspective (bottom right-hand panel

in Fig. 8.5). The 1D profile likelihood peaks at large values of δaSUSY
μ , in agreement

with the experimental constraint. In contrast, the posterior pdf for both log and

flat priors favours SM-like values of gμ − 2 and thus peaks at much smaller δaSUSY
μ .

While the gμ − 2 constraint is easiest to satisfy at small scalar and gaugino masses,

the Higgs mass measurement (and other constraints) favours large values of m0 and,

in particular, m1/2, for which SM-like values of gμ − 2 are much easier to achieve.

The posterior pdf takes into account these volume effects, while the profile likelihood

function peaks in a region of parameter space where the gμ− 2 constraint and other

constraints are simultaneously satisfied. As discussed in Section 8.3.1, this requires

strong fine-tuning of mχ̃±
2
, mχ̃0

4
, mν̃μ and mμ̃R

, and only a small number of such

2Note that this range of values is also in good agreement with the more recent CMS measurement
of this quantity, BR(Bs → μ+μ−) = (3.0+1.0

−0.9) × 10−9 [194], and with the updated LHCb value

BR(Bs → μ+μ−) = (2.9+1.1
−1.0)× 10−9 [29], which became available following the completion of this

study.
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Figure 8.6: Impact of the δaSUSY
μ constraint on global fits of the NUHM. As in Fig. 8.1,

but with black/filled contours derived from scans that do not include the experimental
constraint on the anomalous magnetic moment of the muon. Blue/empty contours show
the results obtained when including the gμ − 2 constraint, and thus are identical to the
black contours in Fig. 8.1. The constraint on gμ − 2 has a strong impact on the profile
likelihood function, while the Bayesian results are robust with respect to exclusion of this
constraint.

points are found by the scans. This explains the apparent lower resolution of the

profile likelihood function compared to the posterior distributions in Fig. 8.1.

8.3.3 Impact of the δaSUSY
μ constraint

The experimental measurement of the anomalous magnetic moment of the muon

shows a > 3σ discrepancy with the theoretical SM prediction [230, 231, 301], which

could be due to a sizeable supersymmetric contribution, δaSUSY
μ , to this observ-

198



8.3 Results

able. However, as discussed in detail in the previous chapter, this interpretation

is challenged by the lack of a signal of low-energy SUSY at the LHC, and residual

theoretical uncertainties in the computation of aSMμ , as well as the notably smaller

discrepancy (2.4σ) found when τ data are used instead of e+e− data [231] cast doubts

on the robustness of this constraint (see Section 7.2.3 for further details). In the

previous chapter we have observed that the gμ − 2 constraint has a strong impact

on global fits of the cMSSM, and is in tension with several other experimental mea-

surements; see in particular Sections 7.3.2 and 7.4.3. Furthermore, in the previous

two sections we have found that this constraint plays a dominant role in driving the

profile likelihood results in the NUHM. Therefore, we repeat the analysis presented

above after excluding the constraint on gμ− 2 from the likelihood function, in order

to evaluate the dependence of our inferences on the NUHM parameters and the

observables on this somewhat controversial constraint.

The results of this analysis are shown in Fig. 8.6. Black/filled contours show

the 2D posterior pdfs (top panels: flat priors, central panels: log priors) and the

2D profile likelihood function (bottom panels) derived from a second set of scans

including exactly the same constraints as in Section 8.3.1, except for the gμ − 2

constraint. For comparison, blue/empty contours show the results including gμ − 2

(from Fig. 8.1). As before, we show the results in the (m1/2,m0) plane (left), the

(tan β,A0) plane (centre) and the (mA, μ) plane (right).

The posterior distributions are identical for the analysis including and exclud-

ing the δaSUSY
μ constraint, up to numerical noise. This is to be expected, since, from

the Bayesian statistical perspective, SM-like values of gμ − 2 were already strongly

favoured in the analysis including the constraint on gμ−2 (see Fig. 8.5). In contrast,

excluding gμ − 2 from the analysis has a significant impact on the profile likelihood

function, which now agrees much better with the posterior distributions, in partic-

ular in the (m1/2,m0) plane. Gaugino masses m1/2 > 2 TeV are strongly favoured,

and m0 is now almost unconstrained within its prior range, with a small preference

for m0 > 1 TeV at low m1/2. The profile likelihood function in the (tan β,A0)

and the (mA, μ) plane is qualitatively similar to the results including the gμ − 2

constraint, but the contours are significantly more spread out, stretching to larger

values of tan β, and spanning a larger range of both mA and, to a lesser extent, μ. A

large SUSY contribution δaSUSY
μ , in agreement with the experimental measurement,

generally requires small values of m0 and m1/2. In the NUHM light sparticles are

strongly disfavoured by several different experimental constraints, and a significant

degree of fine-tuning is required to satisfy the gμ − 2 constraint in the favoured

regions (see the discussion in Section 8.3.1). The exclusion of this constraint from
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the analysis leads to significantly more freedom to satisfy other experimental con-

straints, which require a much lower degree of fine-tuning, as is reflected in both the

larger range of values allowed for the NUHM parameters, and the apparent higher

resolution of the profile likelihood function compared to Fig. 8.1.

A noteworthy feature of Fig. 8.6 is that μ < 0 is excluded at 99% level from

both the Bayesian and the profile likelihood statistical perspective. It is well-known

that μ > 0 is required to get a positive SUSY contribution δaSUSY
μ [357], so that

negative values of μ are strongly disfavoured by the gμ − 2 constraint. However,

we find that even in the absence of this constraint μ < 0 remains excluded at 99%

confidence/credibility. This is a consequence of the constraint on the mass of the

lightest Higgs boson, which, in addition to large stop masses, requires a moder-

ate contribution from stop mixing, and thus values of the stop mixing parameter

|Xt| = |At − μ cot β| >∼ MS (cf. Fig. 8.2). For sizeable gluino masses, as favoured in

the NUHM, renormalisation group running drives the At parameter towards large

negative values at the electroweak scale (see e.g. Ref. [172]). Therefore, μ < 0 would

cancel the At contribution to Xt, leading to small stop mixing and values of mh

that are in conflict with the experimental measurement. In contrast, stop mixing is

enhanced for μ > 0, which can easily lead to |Xt/MS| >∼ 1 and thus mh ∼ 126 GeV,

so that positive values of μ remain strongly favoured even after exclusion of the

gμ − 2 constraint from the analysis.

The best-fit point corresponds to a total χ2 = 10.24 and is found at large scalar

and gaugino masses, m0 = 3411.36 GeV and m1/2 = 3911.16 GeV, large negative

A0 = −3519.45 GeV, small mA = 681.35 GeV, μ = 1132.91 GeV and tan β = 9.38.

Note however that, given the large extent of the 68% confidence regions in Fig. 8.6,

there are many other parameter combinations that deliver a comparably good quality

of fit. The breakdown of the total χ2 by observable is shown in purple in Fig. 8.3.

The contributions of the different observables are generally very similar to before;

in particular, the constraint on the isospin asymmetry still leads to the largest

contribution to the best-fit χ2. Following the procedure in Section 8.3.1, we find a

χ2/dof = 1.28 and a p-value of 0.25, which is almost identical to the p-value found

for the analysis including the gμ − 2 constraint. Therefore, while the constraint on

the muon anomalous magnetic moment has a strong impact on the shape and extent

of the profile likelihood contours in the NUHM (see Fig. 8.6), the overall viability of

this model from the hypothesis testing perspective is independent of this observable.

In Fig. 8.7 we show the profile likelihood results in the (mχ̃0
1
, σSI

χ̃0
1−p) plane (left)

and the (mχ̃0
1
, σSD

χ̃0
1−p) plane (right). Since we found that the Bayesian results for

global fits of the NUHM including and excluding the constraint on δaSUSY
μ are

200



8.3 Results

χ

σ

χ

σ

Figure 8.7: Impact of the δaSUSY
μ constraint on direct and indirect detection prospects

of the NUHM. Black/filled contours show the profile likelihood function (68%, 95% and
99% confidence regions) in the (mχ̃0

1
, σSI

χ̃0
1−p

) plane (left) and the (mχ̃0
1
, σSD

χ̃0
1−p

) plane

(right), derived from global fits of the NUHM including all data (see Table 7.3, Anal-
ysis II) except the δaSUSY

μ constraint. Blue/empty contours show results including the
constraint on gμ − 2 (from Fig. 8.4), for comparison. The posterior pdfs are omitted,
as they are identical to the distributions shown in Fig. 8.4, up to numerical noise. The
best-fit point is indicated by the encircled black cross. The solid/red line shows the 90%
XENON100 exclusion limit [105], while the red/dashed line shows the expected reach of
the future XENON1T experiment. The profile likelihood contours encompass a much
larger range of mass and cross-section values than for the analysis including the gμ − 2
constraint, but detection prospects of the NUHM by future direct detection experiments
remain promising.

identical (up to numerical noise), we do not display the posterior pdfs in Fig. 8.7,

and instead refer the reader to the discussion in Section 8.3.2. As observed above,

the profile likelihood function is significantly more spread out than for the analysis

including the gμ − 2 constraint. The contours extend over a larger range of spin-

independent and spin-dependent cross-section values, with smaller σSI
χ̃0
1−p < 10−9 pb

and larger σSD
χ̃0
1−p

<∼ 10−5 pb now included in the 99% confidence region. Similarly,

the range of favoured neutralino masses increased significantly, and is now spanning

800 GeV <∼ mχ̃0
1

<∼ 1600 GeV at 99% confidence level. Even though lower values

of σSI
χ̃0
1−p are now favoured, the future XENON1T experiment will still probe the

entire currently favoured parameter space. Similarly, the extension of the contours

towards larger σSD
χ̃0
1−p does not qualitatively change indirect detection prospects of

the NUHM by neutrino telescopes, which remain negative.

The 1D marginalised posterior pdfs and profile likelihood functions for the same

derived quantities as in Fig. 8.5 are shown in Fig. 8.8. As mentioned above, the

Bayesian results for the analyses including and excluding the gμ − 2 constraint are

very similar, so that we omit the discussion of the 1D posterior pdfs, and instead

refer the reader to Section 8.3.2. The 1D profile likelihood functions for the spar-

ticle masses (top panels) are more spread out than for the analysis including the

gμ − 2 constraint, which is a consequence of the larger range of m1/2 and m0 values
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χ

Δ δ

Figure 8.8: As in Fig. 8.5, but with the 1D distributions derived from scans including
all experimental constraints except the measurement of the anomalous magnetic moment
of the muon. After exclusion of the δaSUSY

μ constraint Bino-like dark matter is allowed
at 95% confidence level.

included in the confidence regions (see Fig. 8.6). Nevertheless, our conclusions re-

main qualitatively similar to the conclusions derived in Section 8.3.2. In particular,

the favoured regions of the NUHM are out of reach both for the LHC operating at√
s =14 TeV collision energy and the HL-LHC.

As for the sparticle masses, the 1D profile likelihood functions for the observ-

ables (bottom panels) are significantly more spread out than in Fig. 8.5. Of partic-

ular interest is the 1D profile likelihood function for the gaugino fraction (bottom

left-hand panel), which now allows for Higgsino-like dark matter with a sizeable

gaugino component gf <∼ 0.2. While a gaugino fraction gf <∼ 0.1 (corresponding to

an almost pure Higgsino neutralino LSP) remains strongly favoured, a second, less

prominent peak in the profile likelihood is observed at gf >∼ 0.9, so that Bino-like

dark matter is now allowed at 95% confidence level. In particular, this peak corre-

sponds to the A-funnel (AF) region, where 2mχ̃0
1
≈ mA and the WMAP relic density

is achieved by A-mediated resonant annihilations. The possibility of gaugino-like

dark matter is a consequence of the larger range of μ and m1/2 values allowed from

the profile likelihood statistical perspective compared to the analysis including the

constraint on gμ − 2 (see Fig. 8.6). In particular, we find a small region favoured

at 95% confidence level in which m1/2 ∼ 2 TeV (i.e. M1 ≈ 0.4m1/2 = 800 GeV)

and μ >∼ 1 TeV, leading to a Bino-like neutralino LSP. However, in the AF region

the Higgs mass constraint is difficult to satisfy, so that this area of parameter space

remains disfavoured with respect to Higgsino-like dark matter. The increased pref-

erence for both Higgsino-like dark matter with a sizeable gaugino component and

Bino-like dark matter explains the significant broadening of the contours in the mχ̃0
1
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direction, observed in Fig. 8.7. Additionally, Higgsino-like neutralino LSPs with an

appreciable gaugino fraction correspond to a relatively large Higgsino asymmetry

and thus lead to larger values of the spin-dependent neutralino-proton cross-section,

see the right-hand panel of Fig. 8.7.

The 1D profile likelihood function for mh is significantly more spread out than

for the analysis including the gμ−2 constraint; similarly, the profile likelihood func-

tion for BR(Bs → μ+μ−) now extends to much larger values (cf. Fig. 8.5). In

contrast, the 1D profile likelihood function for Δ0− is very similar to the corre-

sponding distribution in Fig. 8.5, and the best-fit value remains in conflict with the

experimental measurement of this quantity. Finally, after exclusion of the constraint

on δaSUSY
μ the 1D profile likelihood function for this quantity spans a very broad

range of values. Even though this range encompasses the experimentally measured

value, it is favoured at low confidence, and the best-fit point is found at a much

smaller value of δaSUSY
μ , that is in good agreement with the SM prediction.

8.4 Discussion and conclusions

In this chapter we have presented global fits of the NUHM, including 5.8 fb−1 in-

tegrated luminosity LHC null searches for SUSY, the discovery of the Higgs boson

and the latest results from the XENON100 direct detection experiment. We have

demonstrated that the constraint on the mass of the lightest Higgs boson has a strong

impact on the NUHM parameter space, as achieving a Higgs mass mh ≈ 126 GeV

requires considerable fine-tuning in the form of very heavy stops and moderate stop

mixing. As a result, large values of m1/2 are strongly preferred, so that LHC SUSY

searches have essentially no impact on the favoured regions of the NUHM.

An important phenomenological consequence is a strong preference for large

dark matter masses mχ̃0
1
∼ 1 TeV. Additionally, very heavy sparticles are favoured,

leading to negative detection prospects of the NUHM at the LHC operating at√
s = 14 TeV collision energy. In contrast, the latest XENON100 data were found to

have a significant impact, and the entire currently favoured model parameter space

will be probed by next-generation direct detection experiments. This highlights

the importance of including results from astro-particle searches in studies of SUSY

models, as these experiments can explore regions of the parameter space that are

inaccessible to the LHC. While direct detection prospects of the NUHM are promis-

ing, the favoured values of the spin-dependent and the self-annihilation cross-section

will remain outside the reach of current and future searches, so that prospects for

the detection of dark matter in the NUHM by astrophysical experiments, such as
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the IceCube neutrino observatory and the Fermi-LAT, are dim.

The posterior distributions for both choices of priors are in reasonably good

agreement with the profile likelihood results, and our physical conclusions are qual-

itatively independent of the statistical perspective. However, while the Bayesian

results are robust with respect to the exclusion of the experimental constraint on

the anomalous magnetic moment of the muon from the analysis, this constraint has

a strong impact on the profile likelihood function in the NUHM. In particular, upon

exclusion of the gμ − 2 constraint, both Higgsino-like and Bino-like dark matter

are allowed at 95% confidence level. Despite the significant overall broadening of

the confidence regions, our conclusions regarding detection prospects of the NUHM

remain valid upon exclusion of the constraint on gμ − 2.

Our results can be compared to the global fits analysis of the cMSSM presented

in Chapter 7. While in the NUHM large values of m1/2 are strongly favoured, in the

cMSSM the stau-coannihilation region at low scalar and gaugino masses is preferred.

Regions of the cMSSM at large values of m1/2 are disfavoured by the relic density

constraint, but are allowed in the NUHM as a result of the greater freedom achieved

by relaxing the universality of the scalar masses. This leads to very different model

phenomenologies. In the NUHM, a Higgsino-like neutralino LSP with mχ̃0
1
∼ 1

TeV is strongly favoured, while the regions preferred in the cMSSM correspond

to Bino-like dark matter with a mass of a few hundred GeV. Detection prospects

of the NUHM by direct detection experiments are more promising than for the

cMSSM, while the cMSSM is much more accessible to the upcoming LHC run at√
s = 14 TeV collision energy. These differences make it possible to distinguish

experimentally between the NUHM and the cMSSM, given a future detection at the

LHC or in an upcoming direct detection experiment.

A goodness-of-fit test does not allow to rule out the NUHM at any meaningful

significance level. While the calculated p-values should be interpreted with care,

as upper and lower limits were neglected in the computation, the significance test

strongly suggests that the NUHM remains viable in light of the included experimen-

tal data. However, previously strongly favoured regions of the NUHM parameter

space (see e.g. Ref. [388]) have been excluded at high confidence/credibility, and

significant fine-tuning is required to satisfy the full range of existing experimental

constraints in this model. This motivates the study of more general SUSY models

with a larger number of free parameters. In the following chapter we present a global

fits analysis of a 15-dimensional phenomenological MSSM, which has a much richer

phenomenology than the NUHM.
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Chapter 9

Global fits of the MSSM-15

9.1 Introduction

By the end of Run I, the Large Hadron Collider (LHC) has delivered 20 fb−1 of

proton-proton collision data at
√
s = 8 TeV centre-of-mass energy, and, with the

discovery of a Higgs-like boson, has celebrated an extraordinary scientific achieve-

ment. At the same time, no clear signature of new physics beyond the Standard

Model (SM) has been observed. Based on the absence of a direct signal of SUper-

SYmmetry (SUSY) at the LHC, the ATLAS and CMS collaborations have derived

tight constraints on the properties of SUSY particles, placing strong bounds on

squark and gluino masses <∼ 1 TeV. Meanwhile, astro-particle physics and cosmol-

ogy experiments are providing increasingly tight limits on the properties of dark

matter, which, if R-parity conserving SUSY is realised in nature, can be directly

translated into constraints on the Lightest Supersymmetric Particle (LSP), gener-

ally assumed to be the lightest neutralino χ̃0
1. By incorporating the full range of

results from SUSY and dark matter searches in a global fit (see Section 4.5), the

combined impact of these experimental data sets on SUSY models can be derived.

The minimal supersymmetric extension of the SM is called the Minimal Super-

symmetric Standard Model (MSSM). As discussed in Section 3.4, even this minimal

scenario has more than 100 free parameters, so that phenomenological studies of

the MSSM are impractical. A popular approach towards reducing the number of

parameters is to adopt a concrete mechanism that mediates the effects of SUSY

breaking to the visible sector and, based on some simplifying assumptions, impose

high-energy boundary conditions on the parameters of the MSSM. In Chapters 7

and 8 we have presented global fits analyses of two simple SUSY scenarios that are

defined according to this procedure, namely the constrained MSSM (cMSSM) and

the Non-Universal Higgs Model (NUHM). We have studied the impact of differ-
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ent experimental constraints on the cMSSM and the NUHM, and have found that

both the LHC and astro-particle physics experiments have severely constrained the

parameter spaces of these models; this conclusion qualitatively holds also for non-

universal gaugino mass models [187] and SUSY models with non-universal gaugino

and Higgs masses [179].

A more model-independent approach towards assessing the impact of the ex-

isting experimental data sets on the MSSM parameter space is to study the phe-

nomenological MSSM (pMSSM) [242]. The pMSSM is a 19-dimensional realisa-

tion of the full MSSM, that is defined at low-energy scales and makes no assump-

tions about GUT-scale physics. The reduction of the number of free parameters is

achieved by imposing several reasonable constraints on the MSSM parameters (see

Section 3.4.2), designed to retain the most phenomenologically relevant features of

the general MSSM. As a result, the pMSSM has a much richer phenomenology than

any of the above constrained scenarios.

The pMSSM (and higher-dimensional phenomenological MSSM scenarios) has

been explored both with random scans [142, 107, 108, 182, 109, 183, 181] and with

Bayesian methods [124, 42, 41, 43, 161]. Both of these approaches have limitations.

Despite appearing uniformly distributed in 1D and 2D projections of the full pa-

rameter space, the samples generated by random scans of high-dimensional models

are actually highly concentrated in a thin shell of the hypersphere inscribed in the

hypercube defined by the scanned parameter ranges (the “concentration of mea-

sure” phenomenon). As a result, random scans only explore a negligible fraction

of the full pMSSM parameter space. Furthermore, these scans typically only re-

tain samples that correspond to values of the observables within a pre-defined range

(usually 2σ) around the experimental central values. Without the explicit use of a

likelihood function, the scans can not be directed towards the (interesting) regions

of parameter space in which the likelihood function becomes appreciable compared

to its maximum value, and a probabilistic interpretation of results is not possible.

In contrast, Bayesian analyses employ more sophisticated statistical methods (e.g.

Markov Chain Monte Carlo techniques or nested sampling, see Section 5.3), which

direct the exploration towards the regions of highest posterior probability. How-

ever, as demonstrated in Chapters 7 and 8, Bayesian analyses of supersymmetric

parameter spaces can suffer from a significant dependence on the choice of prior dis-

tributions. In the pMSSM, the degree of prior dependence is expected to be much

more severe than observed in these analyses, due to the larger dimensionality of the

model parameter space, and the relatively weak constraints imposed on the SUSY

parameters by current experimental data sets.
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In this analysis, we employ Bayesian methods to explore the model parame-

ter space, but present the results in terms of profile likelihood maps — which are

in principle prior-independent — for a more robust statistical interpretation. Ad-

ditionally, we adopt a number of reasonable simplifying assumptions to reduce the

dimensionality of the parameter space, while retaining the phenomenological aspects

of the pMSSM that are most relevant for collider and dark matter searches. This is

motivated by the lack of experimental evidence for SUSY: while highly constrained

models are placed under strong pressure by LHC searches, there is currently no

experimental indication that one requires the full freedom of the 19-dimensional

pMSSM. Instead, we focus on a 15-dimensional realisation of this model, which we

call the MSSM-15.

In this chapter, we perform a global fits analysis of the MSSM-15, including

the Planck measurement of the dark matter relic density, limits on the dark matter

properties from direct detection experiments, precision tests of the SM, LHC mea-

surements of the Higgs boson properties and constraints from ATLAS null searches

for SUSY in two different channels. As this work presents the first high-resolution

profile likelihood analysis of the MSSM-15 in the literature, our main aim is to

provide a thorough analysis of the favoured model phenomenology, focussing in par-

ticular on the properties and composition of the neutralino LSP, and the detection

prospects for dark matter in the MSSM-15. In light of this analysis goal, we provide

a detailed discussion of MSSM-15 profile likelihood maps derived from global fits

excluding the LHC constraints on SUSY and the Higgs couplings, followed by an

assessment of the impact of these constraints. We perform three different studies

of the MSSM-15. As demonstrated in the previous two chapters, the (somewhat

controversial) constraint on the anomalous magnetic moment of the muon can have

a strong impact on global fits of SUSY models, especially from the profile likelihood

statistical perspective. Therefore, we present results for both an analysis including

and excluding this constraint. In a third analysis we relax the assumption that the

neutralino LSP is the only component of the cosmological dark matter, and study

multi-component dark matter scenarios.

This chapter is organised as follows. In Section 9.2 we introduce the theoretical

model and describe the statistical framework for the analysis. In Section 9.3 we

present and discuss the results for our global fits of the MSSM-15. The conclusions

are given in Section 9.4. This chapter is based on the work presented in Ref. [415].
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9.2 Theoretical and statistical framework

9.2.1 The MSSM-15

In this chapter we study a phenomenological version of the MSSM that is described

by 15 free parameters. For a description of the general R-parity conserving MSSM,

see Section 3.4. Instead of the full MSSM, studies of SUSY phenomenology com-

monly focus on the 19-dimensional pMSSM, which is a subspace of the MSSM that

is defined at low energies and captures most of the MSSM phenomenology (see Sec-

tion 3.4.2). The set of parameters defining this model has been given in Eq. (3.21).

Here, we adopt a number of reasonable simplifying assumptions in order to further

reduce the number of model parameters. In particular, we assume that the masses

of all first and second generation sleptons can be described by a single parameter

mL ≡ mL1 = mĒ1
, where mL1 (mĒ1

) is the mass of the superpartners of the left-

handed (right-handed) first and second generation leptons. Similarly, we define the

squark mass parameter mQ ≡ mQ1 = mŪ1
= mD̄1

, with mQ1 (mŪ1
and mD̄1

) the

mass of the superpartners of the left-handed (right-handed) first and second gen-

eration quarks. Finally, due to the large top Yukawa coupling, the top trilinear

coupling At is often more relevant for SUSY phenomenology than the bottom and

tau trilinear couplings. Therefore, we take the bottom and tau trilinear couplings

to be equal at the GUT scale, so that A0 ≡ Ab = Aτ .
1

Under these assumptions, we are left with 15 free parameters:

• Seven sfermion mass parameters: the first and second generation slepton mass

mL, the third generation slepton masses mL3 and mĒ3
, the first and second

generation squark mass mQ, and the third generation squark masses mQ3 , mŪ3

and mD̄3
.

• Three gaugino mass parameters: the Bino massM1, the Wino massM2 and the

gluino mass M3. By performing a U(1)R rotation on the gaugino fields, we can

remove one of the phases of Mi; for consistency with the literature we choose

the phase of M2 to be zero, so that M2 > 0, without loss of generality. In

contrast, the phases of M1 and M3 remain important, so that these quantities

can take on both positive and negative values.

• Two trilinear couplings: the top trilinear coupling At and the bottom/tau

trilinear coupling A0.

1This is equivalent to the assumption of bottom-tau Yukawa unification at the GUT scale, as
motivated for example by SU(5) models [178, 190].
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• Three Higgs sector parameters: the Higgs/Higgsino mass parameter μ, the

mass of the pseudoscalar Higgs mA and the ratio of the Higgs vacuum expec-

tation values tan β.

This set of parameters describes a 15-dimensional realisation of the pMSSM which

encapsulates the most phenomenologically relevant features of the full MSSM, that

are of interest for collider experiments and dark matter searches. We refer to this

model as the MSSM-15. The MSSM-15 parameters are defined at the SUSY scale

MSUSY ≡ √
mt̃1mt̃2 , with the exception of A0, which is defined at MGUT ∼ 1016 GeV,

and evolved to the SUSY scale using the renormalisation group equations. The

model parameters are shown in Table 9.1, along with their prior ranges (see below).

9.2.2 Statistical methodology, priors and nuisance parame-

ters

In our global fits analyses of the cMSSM (Chapter 7) and the NUHM (Chapter 8)

we have presented results for both the Frequentist profile likelihood function (see

Section 5.2.2) and the Bayesian marginalised posterior pdf (see Section 5.1.3). For

the Bayesian analyses, we have found that the posterior inferences can exhibit a

significant dependence on the choice of prior distributions on the model parameters.

In the MSSM-15, the degree of prior dependence is much more severe than observed

in these simpler SUSY scenarios, due to the larger dimensionality of the parame-

ter space, and the relatively weak constraints imposed on the model parameters by

the existing experimental results. In light of this strong prior dependence, deriving

robust physical conclusions from the posterior distribution on the MSSM-15 param-

eters is problematic. Therefore, in this chapter we do not present results for the

Bayesian posterior pdf, but instead focus on the profile likelihood function, which in

principle is a prior independent quantity; for the definition of the profile likelihood

function, see Eq. (5.17).

We use the MultiNest algorithm (see Section 5.3.2) to explore the MSSM-15

parameter space. While MultiNest is a Bayesian algorithm, it is also able to reli-

ably map out the profile likelihood function, given appropriate running parameters,

namely nlive = 20, 000 and tol = 10−4 [268]. In this case, the prior distribution on the

model parameters becomes a device to concentrate the scan in certain regions of the

parameter space. In accordance with the global fits analyses presented in the previ-

ous chapters, we adopt two different sets of (non-informative) priors. “Flat priors”

(see Eq. (5.6)) are uniform in the model parameters, while “log priors” (see Eq. (5.7))

are uniform in the log of the parameters, with the exception of tan β, on which a
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MSSM-15 parameters
Flat priors Log priors

M1 [TeV] (-5.0, 5.0) sgn(M1) log(|M1| [GeV]) (-3.7, 3.7)
M2 [TeV] (0.1, 5.0) log(M2 [GeV]) (2.0, 3.7)
M3 [TeV] (-5.0, 5.0) sgn(M3) log(|M3| [GeV]) (-3.7, 3.7)
mL [TeV] (0.1, 10.0) log(mL [GeV]) (2.0, 4.0)
mL3 [TeV] (0.1, 10.0) log(mL3 [GeV]) (2.0, 4.0)
mĒ3

[TeV] (0.1, 10.0) log(mĒ3
[GeV]) (2.0, 4.0)

mQ [TeV] (0.1, 10.0) log(mQ [GeV]) (2.0, 4.0)
mQ3 [TeV] (0.1, 10.0) log(mQ3 [GeV]) (2.0, 4.0)
mŪ3

[TeV] (0.1, 10.0) log(mŪ3
[GeV]) (2.0, 4.0)

mD̄3
[TeV] (0.1, 10.0) log(mD̄3

[GeV]) (2.0, 4.0)
At [TeV] (-10.0, 10.0) sgn(At) log(|At| [GeV]) (-4.0, 4.0)
A0 [TeV] (-10.0, 10.0) sgn(A0) log(|A0| [GeV]) (-4.0, 4.0)
μ [TeV] (-5.0, 5.0) sgn(μ) log(|μ| [GeV]) (-3.7, 3.7)
mA [TeV] (0.01, 5.0) log(mA [GeV]) (1.0, 3.7)
tan β (2.0, 62.0) tan β (2.0, 62.0)

Range scanned Gaussian constraint Ref.
Mt [GeV] (170.6, 175.8) 173.2± 0.87 [358]

Table 9.1: MSSM-15 parameters and the range of their values explored by the scans.
Flat priors are uniform in the model parameters, while log priors are uniform in the
logarithm of the parameters. At the bottom we show the prior range and experimental
constraint imposed on the top mass, which we include as a nuisance parameter in our
scans.

uniform prior is chosen in both cases. The profile likelihood mapping is derived by

merging the samples resulting from the log and the flat prior scans, as advocated

in Ref. [268]. In Chapters 7 and 8 we have applied this methodology to obtain

high-resolution profile likelihood mappings of the 15-dimensional cMSSM and the

17-dimensional NUHM parameter spaces (including nuisance parameters). There-

fore, we expect to be able to achieve a reliable exploration of the 16-dimensional

MSSM-15 parameter space (15 model parameters, 1 nuisance parameter, see below).

The prior ranges on the MSSM-15 parameters for both choices of priors are

displayed in Table 9.1. As can be seen, we adopt an upper prior limit of 5 TeV

for the gaugino masses, as well as μ and mA. For the squark masses we extend

this limit to 10 TeV, in order to allow for large stop masses, as favoured by the

LHC Higgs mass measurement. For consistency, we adopt the same upper limit

for the slepton masses and the trilinear couplings. Finally, for tan β we choose a

prior range tan β = (2.0, 62.0). The 1D profile likelihood functions for the input

parameters approach a flat shape at large parameter values (see Fig. 9.2 below), so

that we expect that a further increase of the prior ranges would leave our results
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χ Ωχ
σ

Figure 9.1: 1D prior distributions (marginalised) for several quantities of interest. The
effective prior distributions resulting from a log (flat) prior scan after imposing several
physicality conditions are shown in blue (green). The top row shows the prior pdf for the
three gaugino mass parameters and the squark mass; the bottom row depicts the implied
distributions for a selection of observables, namely the gluino mass, the mass of the
lightest neutralino, the neutralino relic abundance and the spin-independent neutralino-
proton scattering cross-section. By combining the samples from log and flat prior scans,
a detailed exploration of the model parameter space is achieved.

qualitatively unchanged.

For the purpose of illustration, in Fig. 9.1 we show the (marginalised) 1D prior

distributions for several representative input parameters and observables (which, in

general, are a strongly non-linear function of the model parameters). The distribu-

tions were obtained after discarding all unphysical points, that e.g. lead to tachyonic

masses, do not achieve electroweak symmetry breaking, or for which the neutralino

is not the LSP. As can be seen, for flat priors, the bulk of the prior volume is located

at high values of the parameters, so that the sampling is concentrated in regions in

which the masses and couplings are large. In contrast, the log prior gives a large

a priori statistical weight to small parameter values, and explores the low-mass re-

gions in much greater detail than the flat prior scan. Therefore, by combining chains

from log and flat prior scans a detailed exploration of both the high-mass and the

low-mass regions of the MSSM-15 parameter space is achieved, allowing for a robust

profile likelihood mapping.

In the global fits analyses of the cMSSM and the NUHM, presented in Chap-

ters 7 and 8, we have included a number of nuisance parameters in the scans, in

order to account for residual uncertainties on the measured values of certain SM
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quantities, as well as uncertainties in the astrophysical distribution of dark matter

and the physics of WIMP-nucleus elastic scattering (see Section 7.2.1 for details).

However, for higher-dimensional models, such as the MSSM-15, the inclusion of

even a handful of nuisance parameters boosts significantly the computational ex-

pense of the analysis and may lead to difficulties with convergence. Therefore, in

order to keep the dimensionality of the scanned parameter space as small as pos-

sible, we only include a single nuisance parameter in the analysis, namely the top

quark mass Mt. The results of SUSY analyses are highly sensitive even to small

variations in the value of this quantity [387], so that the residual uncertainty in the

measurement of Mt is expected have a strong impact on global fits of the MSSM-15.

We adopt a flat prior for this quantity and include a Gaussian likelihood function

on Mt, with mean and standard deviation chosen according to the Tevatron re-

sult Mt = 173.2 ± 0.87 GeV [358] (see Table 9.1). While uncertainties in other

SM parameters, namely the bottom mass mb(mb)
MS and the electromagnetic and

strong coupling constants [αem(MZ)
MS]−1 and αs(MZ)

MS, can also have an impact

on global fits of SUSY models [89, 424], this effect is subdominant compared to

the impact of the top mass. Since the uncertainty in their experimentally mea-

sured values, mb(mb)
MS = 4.18 ± 0.03, [αem(MZ)

MS]−1 = 127.944 ± 0.014 and

αs(MZ)
MS = 0.1184 ± 0.0007 [149], is small, we fix these three quantities to their

measured central values.

In Section 7.3.3 we have investigated the impact of including astrophysical and

hadronic nuisance parameters in global fits of the cMSSM. We have found that

the effect of marginalising or maximising over these parameters is small, and that

qualitatively very similar results are obtained when fixing these quantities to their

central values (see also Fig. 7.5). Therefore, in order to further limit the dimension-

ality of the scanned parameter space, we adopt fixed values for all astrophysical and

hadronic quantities in our MSSM-15 scans. For the local WIMP astrophysics we use

the same parameterisation as described in Section 7.2.1. The relevant astrophysical

quantities are the local dark matter density ρ0, and three velocities parameterising

the WIMP velocity distribution v0, vesc, vd. We fix these quantities to the central

values given in Table 7.2, i.e. ρ0 = 0.4 GeV/cm3, v0 = 230.0 km/s, vesc = 544.0

km/s and vd = 282.0 km/s.

The most important hadronic uncertainties arise in the computation of the

WIMP-proton scattering cross-sections from the SUSY input parameters, see Sec-

tion 4.2.2. In particular, the computation of σSI
χ̃0
1−p and σSD

χ̃0
1−p,n depends on the

hadronic matrix elements f p
Tu
, f p

Td
and f p

Ts
, which parameterise the contributions of

the light quarks to the proton mass (see Eqs. (4.10) and (4.11)), and the quantities
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Δp
u, Δ

p
d and Δp

s, which encode the quark spin content of nucleons (see Eq. (4.6)

and (4.7)), respectively. These matrix elements are associated with sizeable un-

certainties, that directly impact on the rate of neutralino-nucleon scattering. As

discussed in detail in Section 4.2.2, the values of these quantities can either be ex-

tracted from experimental measurements of the pion-nucleon sigma term, or can

be calculated directly using lattice QCD computations. For the spin content pa-

rameters we adopt results from the lattice QCD calculation presented in Ref. [123],

Δp
u = 0.787±0.158, Δp

d = −0.319±0.066 and Δp
s = −0.020±0.011; these values are

broadly compatible with experimental determinations of Δp
u,d,s [75]. Similarly, the

values of f p
Tu

and f p
Td

computed from pion-nucleon scattering data and lattice QCD

are in reasonably good agreement, so that we use f p
Tu

= f p
Td

= 0.0457± 0.0065 [384],

as determined in a recent lattice QCD computation. The strange quark matrix

element f p
Ts

is much more uncertain, and results from the two approaches can dif-

fer strongly. However, results from lattice QCD computations of f p
Ts

are in good

agreement both with each other and with a recent analysis of pion-nucleon scat-

tering data measured by the CHAOS detector at TRIUMF [411]. Therefore, we

adopt a recently determined average of several different lattice QCD calculations,

f p
Ts

= 0.043±0.011 [325]. As for the astrophysical quantities, we fix Δp
u,d,s and f p

Tu,d,s

to their central values.

9.2.3 Scanning algorithm

We use an evolution of the publicly available SuperBayeS v1.5.1 package [5] to ex-

plore the MSSM-15 parameter space. The list of numerical codes interfaced with this

latest version of SuperBayeS for the computation of the observables is as specified

for Analysis II of Chapter 7; the only difference is that we use an updated version

of SoftSUSY, namely SoftSUSY 3.3.10 [11, 86], as SUSY spectrum calculator. The

signal strengths for the different Higgs boson decay channels, which have not been

discussed in the previous chapters, are computed with FeynHiggs 1.9 [16, 306]. As

a scanning algorithm we continue to use MultiNest v2.18 [270, 271].

To further increase the resolution of our profile likelihood maps we run ten scans

in parallel for the analysis including all experimental constraints. For both the anal-

ysis excluding the constraint on δaSUSY
μ and the analysis in which the assumption

that the neutralino LSP is the only component of dark matter is relaxed, we run

five scans in parallel. We have checked that the profile likelihood function and best-

fit points are consistent across all scans, and that the results for each individual

scan qualitatively agree well with the merged profile likelihood results (within nu-
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merical noise). This verifies that a reliable exploration of the MSSM-15 parameter

space is achieved, and confirms the robustness of our profile likelihood maps. As

in the previous two chapters, we save the values and coordinates of all likelihood

evaluations, including points that belong to rejected steps in the sampling. This

further increases the number of samples in the chains by a factor >∼ 20, and allows

for a higher-resolution profile likelihood mapping, at no additional computational

cost. The profile likelihood maps presented in Section 9.3 are obtained from a com-

bined total of 261M (124M, 91M) samples for the analysis including all experimental

constraints (excluding the constraint on δaSUSY
μ , relaxing the requirement that the

neutralino LSP is the only dark matter component); the total computational effort

was approximately 73 (19, 11) CPU years.

9.2.4 Experimental constraints

The structure of the likelihood function L(θ) for the MSSM-15 global fits analysis is

the same as for the global fits analyses of the cMSSM and the NUHM presented in

the previous two chapters, and has been given in Eq. (7.1). In accordance with these

analyses, we apply a Gaussian likelihood function for observables for which a positive

measurement exists, with mean μ and standard deviation s =
√
σ2 + τ 2. Here, σ and

τ are the experimental and theoretical uncertainties, respectively. Unless specified

otherwise, for observables for which only limits are available we use a smoothed-out

version of the reported upper or lower bound. A detailed description of the form of

the likelihood function has been provided in Section 7.2.3, and we refer the reader

to this section for further information.

We make several important modifications to the set of experimental constraints

included in the global fits analyses in Chapters 7 and 8 (cf. Table 7.3). In particular,

we exclude the observables BR(Ds → μν), BR(D → μν), BR(B → Dτν)/BR(B →
Deν) and Rl23 from the likelihood function. These quantities are constrained to a

narrow range of values upon variation of the model parameters within their prior

ranges, and thus lead to an approximately constant contribution to the total likeli-

hood value, as verified in test scans. Additionally, we add a number of constraints

that were not included in our studies of the cMSSM and the NUHM, but may have

an important impact on a more general SUSY model such as the MSSM-15, namely

AFB(B → K∗μ+μ−) and several electroweak precision observables, see below. Fi-

nally, as this study was carried out at a later date, we have updated the mean values

and errors for several of the observables with respect to Table 7.3, to reflect more

recent experimental measurements. The full list of constraints included in the like-
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Observable Mean value Uncertainties Ref.
μ σ (exper.) τ (theor.)

mW [GeV] 80.385 0.015 0.01 [1]
sin2 θeff 0.23153 0.00016 0.00010 [394]
ΓZ [GeV] 2.4952 0.0023 0.001 [394]
σ0
had [nb] 41.540 0.037 - [394]

R0
l 20.767 0.025 - [394]

R0
b 0.21629 0.00066 - [394]

R0
c 0.1721 0.003 - [394]

δaSUSY
μ × 1010 28.7 8.0 2.0 [231]

BR(B̄ → Xsγ)× 104 3.55 0.26 0.30 [115]
RΔMBs

1.04 0.11 - [46, 27, 294]
BR(Bu→τν)

BR(Bu→τν)SM
1.63 0.54 - [91]

Δ0− × 102 3.1 2.3 1.75 [117, 364, 363]
AFB(B → K∗μ+μ−) -0.18 0.063 0.05 [224]
BR(Ds → τν)× 102 5.44 0.22 0.1 [91]
Ωχh

2 0.1186 0.0031 0.012 [56]
BR(Bs → μ+μ−)× 109 3.2 1.5 0.38 [28]
mh [GeV] 125.66 0.41 2.0 [226, 213]
†μγγ 0.78 0.27 15% [222]
†μW+W− 0.76 0.21 15% [217]
†μZZ 0.91 0.27 15% [219]
†μbb̄ 1.3 0.65 15% [215]
†μτ+τ− 1.1 0.4 15% [221]

Limit (95% CL) τ (theor.) Ref.
Sparticle masses LEP, Tevatron, as in Table 7.3 5%
†0-lepton SUSY search ATLAS,

√
s = 7 TeV, 4.7 fb−1 [26]

†3-lepton SUSY search ATLAS,
√
s = 7 TeV, 4.7 fb−1 [25]

mχ − σSI
χ̃0
1−p XENON100 225-days exclusion limit [105]

mχ − σSD
χ̃0
1−p,n XENON100 225-days exclusion limit [106]

Table 9.2: Summary of experimental constraints included in the likelihood function.
Upper part: observables for which a positive measurement exists. For each quantity, the
mean value μ, the experimental uncertainty σ and the theoretical uncertainty τ is given.
These observables are implemented as a Gaussian likelihood function with a standard
deviation s =

√
σ2 + τ2. Lower part: observables for which only upper or lower limits

exist. Experimental constraints tagged with † are applied via post-processing of the
samples; the impact of these constraints is discussed in Section 9.3.5. See text for further
information on the observables and the form of the likelihood function.

lihood function for the MSSM-15 analysis is shown in Table 9.2. In the following,

we provide further details on each of the components entering in L(θ), focussing on

modifications with respect to the setup described in Section 7.2.3.
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LEW: precision tests of the electroweak sector

As in previous chapters, we incorporate both the LEP measurement of the effec-

tive electroweak mixing angle for leptons sin2 θeff [394], and the most up-to-date

constraint on the mass of the W boson [1] (obtained from a combination of ex-

perimental results) in the likelihood function. In addition, we include constraints

on several ElectroWeak Precision Observables (EWPOs) obtained from Z-pole mea-

surements at the LEP and SLC accelerators that have not been included in the

analysis in Chapters 7 and 8, namely the total decay width of the Z-boson ΓZ , the

hadronic pole cross-section σ0
had, and the decay width ratios R0

l , R
0
b and R0

c [394].

We do not apply the LEP constraints on the asymmetry parameters Al, Ab, Ac

and A0,l
FB, A

0,b
FB, A

0,c
FB (see Ref. [394]), as these observables were found to lead to an

approximately constant contribution to the χ2 throughout the MSSM-15 parameter

space. For the computation of the electroweak observables we have implemented

the complete one-loop corrections, the available MSSM two-loop corrections, and

the full SM results [305]. We updated the theoretical uncertainties on the EWPOs

accordingly.

LB(D): precision tests of B and D physics observables

As in Chapters 7 and 8, we include in the likelihood function the Heavy Flavor

Averaging Group (HFAG) constraints on BR(B̄ → Xsγ) and on the ratio of the

measured decay branching fraction BR(Bu → τν) to the SM expectation [115]

(see Section 7.2.3). Additionally, we implement the updated HFAG constraint on

the branching fraction of the decay Ds → τν [91]. The measured values of both

BR(Bu → τν) and BR(Ds → τν) are somewhat larger than the SM expectation.

We also include the constraint on the ratio of the measured B0
s − B̄0

s oscillation

frequency to its SM value, RΔMBs
= 1.04 ± 0.11, obtained from a combination of

CDF and LHCb results [46, 27, 294]. Additionally, we apply the LHCb constraint on

the branching fraction of the decay Bs → μ+μ−, derived from a combined analysis of

1.0 fb−1 of data at
√
s = 7 TeV collision energy and 1.1 fb−1 of data at

√
s = 8 TeV

collision energy [28]. The measured value, BR(Bs → μ+μ−) = (3.2+1.5
−1.2) × 10−9,

is in excellent agreement with the SM expectations.2 We adopt a conservative

experimental error of σ = 1.5× 10−9, and a theoretical error τ = 0.38× 10−9 [345].

In addition, we include the measurement of the isospin asymmetry Δ0− between

2Note that this constraint is in good agreement both with the CMS measurement of this
quantity, BR(Bs → μ+μ−) = (3.0+1.0

−0.9) × 10−9 [194], and with the updated LHCb value

BR(Bs → μ+μ−) = (2.9+1.1
−1.0)× 10−9 [29], which became available at a later date and are thus not

included in the analysis.
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B0 and B+ decay widths from the decay B → K∗γ, Δ0− = (3.1± 2.3)× 10−2 [117,

364, 363] (see Section 7.2.3). Following Ref. [344], we adopt a theoretical error of

τ = 1.75 × 10−2. In Chapters 7 and 8 we have found that this constraint can have

an important impact on global fits of simple SUSY models, as the measured value

of Δ0− is smaller than the SM prediction at ∼ 2σ level. Finally, we include the

LHCb constraint on the forward-backward asymmetry in the decay B → K∗μ+μ−,

AFB(B → K∗μ+μ−) = −0.18+0.06+0.01
−0.06−0.02 [224]. The measured central value of this

quantity is smaller than the SM prediction at ∼ 1σ level, and this constraint has

been shown to have a powerful impact on simple SUSY models [345].

Lg−2: the constraint on the anomalous magnetic moment of the muon

The experimentally measured value of the anomalous magnetic moment of the

muon aExpμ is discrepant with the SM value aSMμ at > 3σ level [230, 231, 301];

see Section 7.2.3 for further details. This discrepancy could be due to a sizeable

supersymmetric contribution δaSUSY
μ ≡ aExpμ − aSMμ . In this analysis we apply

δaSUSY
μ = (28.7 ± 8.2) × 10−10 [231], and add in quadrature a theoretical error

of 2.0× 10−10 to the experimental error (as in previous chapters, cf. Table 7.3).

In our global fits analyses of the cMSSM and the NUHM we have found that the

profile likelihood results are strongly driven by the constraint on δaSUSY
μ (see in par-

ticular Sections 7.4.3 and 8.3.3). Additionally, as discussed in detail in Section 7.2.3,

the calculation of aSMμ is subject to important theoretical uncertainties, so that the

significance of the discrepancy between aSMμ and aExpμ should be interpreted with

care. Therefore, in the following we present results for both an analysis including

and excluding the experimental constraint on δaSUSY
μ in the likelihood function, in

order to evaluate the dependence of global fits of the MSSM-15 on this somewhat

controversial observable.

LDM: cosmological constraints on the dark matter density

We include the Planck measurement of the dark matter relic density in our global

fits analysis. For the analyses in which we assume that stable neutralinos are the

sole constituent of dark matter, we implement the constraint derived from Planck

temperature and lensing data, Ωχh
2 = 0.1186 ± 0.0031 [56]. We adopt a Gaussian

likelihood function on this quantity, and add in quadrature a theoretical error of τ =

0.012 to the experimental error, in order to account for the numerical uncertainties

in the calculation of the relic density. As in the previous two chapters, we assign a

zero likelihood to points for which the lightest neutralino is not the LSP.
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For the analysis in which we relax the requirement that the neutralino LSP

is the only dark matter component, the Planck measurement of the dark matter

density is instead taken to be an upper limit on Ωχh
2. The effective likelihood

function for this case is given by [157]

LDM(Ωχh
2) = L0

∫ ∞

Ωχh2/(σ2+τ2)1/2
exp

(
−1

2
(x− r�)

2

)
x−1dx, (9.1)

where r� ≡ μ/(σ2 + τ 2)1/2 and L0 is an (irrelevant) normalisation constant.

Since the rate of neutralino-nucleus scattering events in a direct detection exper-

iment is proportional to the local density of neutralinos ρχ, the direct detection event

rate is reduced when neutralinos are a subdominant component of dark matter, as

in that case ρχ can be smaller than the local dark matter density ρDM. In particular,

the event rate is suppressed by the factor ξ ≡ ρχ/ρDM. Following Ref. [153], we make

the reasonable assumption that the distribution of neutralinos in large structures,

such as the Milky Way Galaxy, traces the cosmic dark matter distribution, so that

we can adopt the scaling Ansatz

ξ ≡ ρχ/ρDM = Ωχ/ΩDM. (9.2)

For the cosmic dark matter abundance we adopt the Planck central value, ΩDM =

0.1186; for the local dark matter density we use ρDM = 0.4 GeV/cm3 (see above).

LDD: constraints from direct detection experiments

We include constraints from the XENON100 direct detection experiment, obtained

from 224.6 live days of data and 34 kg fiducial volume [105]. For a detailed de-

scription of the approximate likelihood function used to incorporate these results

in the analysis, see Section 7.2.3. Based on this data set, the XENON100 collab-

oration reported constraints on both the spin-dependent and the spin-independent

WIMP-nucleon interaction [105, 106]. In our studies of the cMSSM and the NUHM

(Chapters 7 and 8), we have neglected the contribution of spin-dependent neutralino-

nucleon scattering to the total number of events, since this contribution was sub-

dominant compared to the number of events from spin-independent scattering. In

contrast, in the MSSM-15 the spin-dependent scattering event rate can exceed the

spin-independent contribution in several regions of the parameter space. Therefore,

in this study we include both the spin-dependent and the spin-independent contribu-

tion to the total number of events fromWIMP-nucleus scattering, N tot
R = NSI

R +NSD
R .

When taking into account the spin-dependent interaction, one has to specify the
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axial-vector structure function S(q), that enters in the spin-dependent differential

WIMP-nucleus cross section (see Section 4.2.2). Here, we use the structure functions

from Ref. [351], as advocated by the XENON100 collaboration [106].

While this work was under completion, the LUX collaboration reported re-

sults from a search for WIMPs in 85.3 live days of data with a fiducial volume of

118 kg [77]. No significant excess above the background expectation was observed,

and the derived limit on the spin-independent WIMP-proton interaction improved

on the XENON100 limit applied in this analysis. While the LUX results are not

included in our likelihood function, we point out that their impact on the currently

favoured MSSM-15 parameter space is comparatively small, given the many orders

of magnitude spanned by the profile likelihood function in the spin-independent

cross-section direction (see Fig. 9.7, left-hand panels).

LHiggs: constraints on the Higgs boson

We include the measurements of the mass of the Higgs boson by the CMS and

ATLAS experiments in the likelihood function. The CMS collaboration reported a

value mh = 125.8± 0.4± 0.4 GeV, where the first error is statistical and the second

error is systematic, derived from data sets corresponding to integrated luminosities

of 5.1 fb−1 at
√
s = 7 TeV collision energy, and 12.2 fb−1 at

√
s = 8 TeV collision

energy [213]. The ATLAS collaboration derived a value mh = 125.5± 0.2+0.5
−0.6 GeV,

based on a combination of 4.8 fb−1 integrated luminosity of data at
√
s = 7 TeV colli-

sion energy and 20.7 fb−1 integrated luminosity at
√
s = 8 TeV collision energy [226].

We combine these two results using Eq. (5.12), leading to mh = 125.66± 0.41 GeV.

We take this to be the mass of the lightest Higgs boson in the MSSM. As in previous

chapters, we assume a theoretical error in the Higgs mass computation of τ = 2 GeV.

While in the cMSSM and the NUHM the lightest Higgs boson is almost in-

variably SM-like, the properties of the lightest Higgs boson in the MSSM-15 can

differ significantly from the SM predictions. The ATLAS and CMS experiments

have observed the Higgs boson in several different decay channels, and have probed

the coupling of the Higgs field to the corresponding SM particles. For a given chan-

nel h → XX, the tension between the experimental findings and the expectation

for the SM Higgs boson is generally parameterised by the signal strength parameter

μXX . The signal strength is defined as the product of the observed Higgs production

cross-section and the branching fraction to XX in units of the corresponding SM

values, i.e.

μXX ≡ σ(pp → h)×BR(h → XX)

σ(pp → h)SM ×BR(h → XX)SM
. (9.3)
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LHC measurements of this quantity can be directly compared to the theoretical

value computed from the SUSY input parameters. In this analysis we include con-

straints on the signal strengths for five different decay channels, listed in Table 9.2,

based on measurements by the CMS collaboration. The constraints for the γγ [222],

W+W− [217], ZZ [219] and τ+τ− [221] decay modes were derived from data sets

corresponding to an integrated luminosity of ∼ 5 fb−1 at
√
s = 7 TeV collision

energy and ∼ 19 fb−1 at
√
s = 8 TeV collision energy. The constraint on μbb̄ is

based on ∼ 5 fb−1 integrated luminosity of data at
√
s = 7 TeV and ∼ 12 fb−1

integrated luminosity of data at
√
s = 8 TeV collision energy [215]. The measured

signal strengths in these channels are compatible with the SM predictions at ∼ 1σ

level.

LSUSY: constraints from SUSY searches

As in Chapters 7 and 8 , we include sparticle mass constraints from LEP and the

Tevatron in our global fits analysis (see Section 7.2.3 for details). Additionally, our

likelihood function includes constraints from two different ATLAS searches for SUSY

signatures, based on 4.7 fb−1 of proton-proton collisions at a centre-of-mass energy of√
s = 7 TeV, namely a search for gluinos and squarks in final states containing large

missing transverse momentum, high-pT jets, and no high-pT electrons or muons [26],

and a search for the direct production of neutralinos and charginos in final states with

three electrons or muons and Emiss
T [25]. A description of these ATLAS searches has

been given in Section 4.4. By considering two different search channels, we ensure

that the included LHC constraints cover a broad spectrum of SUSY signals.

Constraints from the ATLAS 0-lepton and 3-lepton analyses are incorporated

in the likelihood function using a newly developed technique to approximate joint

constraints from inclusive searches at the LHC. Here, we give a very brief description

of the ATLAS likelihood function, and refer the reader to Appendix A of Ref. [415]

for full details.

For each likelihood evaluation we simulate the kinematic distributions of 104

events, and compare the expected signal to the observations. We consider a total

of 14 signal regions (11 from the 0-lepton analysis and 3 from the 3-lepton analysis,

see Section 4.4). The likelihood function for signal region i is given by

Li(ni|si, bi,ψ) = Poiss(ni|λs(si, bi,ψ))× LC(ψ), (9.4)

where the first factor on the right corresponds to the Poisson probability of ob-

serving a number of events ni, given the expected number of signal (background)
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events si (bi), with λs the Poisson expectation value. The quantities ψ are nuisance

parameters that parameterise systematic uncertainties. They are constrained via

the likelihood term LC(ψ) and can be eliminated by marginalisation (see Eq. (5.8)).

For details on the parameterisation of the different uncertainties that enter in the

likelihood calculation see Appendix A.2 of Ref. [415].

For analyses with statistically overlapping data samples or signal regions that

are not exclusive (i.e. “inclusive” analyses), the likelihood functions Li (i =

1, . . . , 14) can not be treated as statistically independent, and the construction of a

joint likelihood is non-trivial. In this case, for each considered point in parameter

space, we select the signal region j with the best expected sensitivity (by comparing

the expected likelihood values E[Li] ≡ Li(si+ bi|bi) for the different signal regions),
and evaluate the likelihood Lobs

j in this optimal signal region using Eq. (9.4). In

order to avoid discontinuities in the likelihood function when crossing regions in

parameter space corresponding to different optimal signal regions we define the full

likelihood as

L = Lobs
j

∏
i �=j

E[Li]. (9.5)

The likelihood implementation was done in the ROOT analysis framework using

the RooFit and RooStats packages. The kinematic event distributions are simulated

with PYTHIA 6.4 [402], using the ATLAS MC09 tune [206]. We use the CTEQ6L1

set of parton distribution functions [380]. The cross-sections for the production

of gluinos and squarks are computed with NLL-fast 1.2 [18, 132] and, outside the

mass ranges covered by NLL-fast 1.2, with PROSPINO2 [19, 133], at next-to-leading

order (NLO). We also use PROSPINO2 for the computation of NLO cross-sections

for the production of electroweakinos. The simulation of the detector response is

performed with DELPHES 3 [233]. Details about the validation of the ATLAS

likelihood function can be found in Appendix B of Ref.[415].

9.3 Results

In the following sections we present profile likelihood maps derived from a global fits

analysis of the MSSM-15 including all constraints listed in Table 9.2. As outlined

in Section 9.1, the main aim of this study is to provide a detailed analysis of the

favoured model phenomenology, focussing in particular on the properties and com-

position of the neutralino LSP that are favoured in different regions of the parameter

space, and the detection prospects for dark matter in the MSSM-15. In light of this

analysis goal, we provide an in-depth discussion of the 1D and 2D profile likelihood
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results derived from global fits excluding the LHC constraints on SUSY and the

Higgs signal strengths (note however that the LHC Higgs mass measurement is in-

cluded in all results presented in this section). The impact of the LHC constraints

on the MSSM-15 parameter space is discussed separately at the end of this section.

We present results for three different studies. First, we discuss profile likelihood

maps derived from global fits of the MSSM-15 that include the full list of experimen-

tal constraints in Table 9.2, with the exception of the constraints from LHC SUSY

searches and Higgs signal strength measurements (the “All data” case). Secondly,

we repeat this analysis after excluding the constraint on the anomalous magnetic

moment of the muon from the likelihood function (the “w/o g - 2” case), in order

to investigate the impact of the δaSUSY
μ constraint on global fits of the MSSM-15.

Finally, in a third analysis we apply the Planck measurement of the dark matter

relic density as an upper limit (instead of as a constraint) on the relic abundance

of the neutralino LSP, thus relaxing the requirement that stable neutralinos are

the sole constituent of dark matter (the “Planck upper limit” case). The profile

likelihood maps for the “All data” and the “w/o g - 2” analyses are presented in

Section 9.3.1; results for the “Planck upper limit” case are discussed in Section 9.3.2.

In Section 9.3.3 we present the MSSM-15 best-fit points. In Section 9.3.4 we provide

an overview of the compositions of the neutralino LSP that are achieved in different

regions of the MSSM-15 parameter space and discuss the phenomenological conse-

quences, in particular the prospects for direct detection of this model. Finally, in

Section 9.3.5 we present the impact of constraints from ATLAS SUSY searches and

CMS measurements of the Higgs signal strengths on our results, obtained with a

simplified statistical treatment. A full profile likelihood analysis of the MSSM-15

including all LHC constraints is beyond the scope of this work, and is the focus of

a dedicated analysis, that is currently in preparation by the authors of Ref. [415].

9.3.1 Global fits including all data, and impact of the δaSUSY
μ

constraint

We begin by discussing the combined impact of all experimental constraints listed in

Table 9.2, with the exception of the LHC constraints on SUSY and the Higgs signal

strengths, on the MSSM-15. In Figs. 9.2–9.4 we show the 1D Profile Likelihood

(PL) results for the “All data” analysis (red) and the “w/o g - 2” analysis (purple);

the red and purple encircled crosses show the corresponding best-fit points. For the

observable quantities, the applied likelihood function is shown in black. The 1D

profile likelihood functions for the MSSM-15 input parameters and the top mass are
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displayed in Fig. 9.2, while Fig. 9.3 and Fig. 9.4 show the 1D PL for the observables

and several SUSY quantities of interest, respectively. The shape of the 1D PL is

generally a result of the interplay of several different SUSY and SM physics effects,

that are determined by a range of different SUSY parameters and/or observables.

In the following, we discuss and explain the features that are of greatest relevance

for the MSSM-15 phenomenology.

Profile likelihood results for the MSSM-15 parameters

We start by discussing the profile likelihood results for the parameters that are of

greatest relevance for the dark matter phenomenology in the MSSM-15. As can

be seen in the top left-hand panel of Fig. 9.2, the 1D PL for the Bino mass M1

shows a strong preference for small values of |M1|, up to a few hundred GeV. In

this region of parameter space, the neutralino is Bino-like. Pure Bino dark matter

tends to overclose the Universe, but its relic density can be decreased via a number

of processes. In particular, |M1| < 100 GeV corresponds to almost pure Bino states,

that annihilate efficiently through Z and h funnels. For |M1| ∼ a few hundred GeV

the neutralino LSP is Bino-like, but has a significant Higgsino admixture hf
<∼ 0.3,

so that the relic density is reduced to the experimentally measured value by co-

annihilations with the second lightest neutralino and the lightest chargino. The

requirement of a non-negligible Higgsino fraction leads to a preference for small |μ|,
as observed in the bottom left-hand panel of Fig. 9.2. Additionally, for Bino-like dark

matter in this mass range, the relic density can be reduced by efficient annihilation

to a pair of fermions via the exchange of relatively light sleptons and squarks (the

bulk region), and co-annihilations with sleptons of the first and second generation.

Note that the A-funnel region is suppressed in this mass range due to the preference

for mA > 1 TeV (see below). For |M1| >∼ a few hundred GeV, the 1D PL for this

quantity steeply decreases, as a heavy Bino-like LSP is in strong conflict with the

Planck constraint on Ωχh
2.

The 1D PL for μ favours values of |μ| <∼ 1 TeV. It falls off at very small values

due to the LEP constraint on the mass of the lightest chargino [2]. For a Higgsino-

like neutralino LSP, |μ| ∼ 1 TeV leads to a relic density in agreement with the

Planck measurement. Beyond this the 1D PL decreases steeply, as for |μ| � 1 TeV

a Higgsino-like neutralino LSP overcloses the Universe. Additionally, large values of

|μ| >∼ 1 TeV are disfavoured by the constraints on gμ − 2 and several of the flavour

observables, as will be discussed below in more detail.

Similarly to the 1D PL for μ, the 1D PL for M2 is constrained from below by the

LEP constraint on the chargino mass [2]. The distribution peaks at M2 ∼ 150 GeV,
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β

Figure 9.2: 1D profile likelihood for the MSSM-15 input parameters. Results for
global fits including all experimental measurements listed in Table 9.2, except the LHC
constraints on SUSY and the Higgs couplings, are shown in red; purple distributions show
results for the analysis excluding the gμ−2 constraint. The encircled crosses represent the
best-fit points. The black curve in the bottom right-hand panel indicates the likelihood
function imposed on the top mass. The MSSM-15 parameters are relatively weakly con-
strained, with the exception of the parameters related to the dark matter phenomenology,
which show a preference for the sub-TeV regime.

and falls off at larger values of M2, albeit less steeply than the 1D PL for M1 and

μ. Wino-like dark matter typically leads to a relic density significantly below the

value measured by Planck, and Ωχh
2 ≈ 0.1 can only be achieved for very large Wino

masses M2 ∼ 2 TeV. The large values of |M1|, M2 and |μ| required to achieve Wino-
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like dark matter in agreement with the Planck measurement are in conflict with

several other experimental constraints (e.g. gμ − 2, see below), so that neutralino

LSPs with a large Wino fraction are strongly disfavoured. Note, however, that the

relic density constraint still has a strong indirect impact on the 1D PL for M2.

In particular, this constraint pushes M2 towards larger values, as for Bino- and

Higgsino-like dark matter one requires M2 � |M1| and M2 � |μ|, respectively.
It is clear from the above discussion that the relic density constraint plays a

dominant role in determining the composition of the neutralino LSP, and thus has a

strong impact on the phenomenology of dark matter in the MSSM-15. A dedicated

analysis of the neutralino composition throughout the MSSM-15 parameter space

will be provided in Section 9.3.4.

In addition to the relic density constraint, the experimental measurement of

the anomalous magnetic moment of the muon has a significant impact on the 1D

PL for M1, M2 and μ, as can be seen by comparing the 1D PL for these quantities

for the “All data” and the “w/o g - 2” analysis in Fig. 9.2. The main SUSY

contributions to gμ − 2 arise from the chargino-sneutrino and the neutralino-smuon

loop diagrams [357]. The chargino-sneutrino contribution can be written as [255]

δaχ̃
±−ν̃

μ (W̃ , H̃, ν̃μ) ∼ 15× 10−9
(
tan β

10

)(
(100 GeV)2

M2μ

)(
fC
1/2

)
, (9.6)

where fC is a loop function that satisfies 0 ≤ fC ≤ 1, and takes a value fC = 1/2

in the limit of degenerate masses. The argument (W̃ , H̃, ν̃μ) indicates the sparticles

that propagate in this loop diagram. For small |μ|, and reasonably small M2, the

chargino-sneutrino contribution dominates the SUSY corrections. As |μ| increases,
the neutralino-smuon contribution becomes more relevant. In general, this contri-

bution is given by four different diagrams (see e.g. Refs. [357, 255]). However, for

large |μ| ∼ O(TeV), the pure-Bino contribution dominates, so that

δaχ̃
0−μ̃

μ (μ̃L, μ̃R, B̃) ∼ 1.5× 10−9
(
tan β

10

)(
(100 GeV)2

m2
μ̃L
m2

μ̃R
/(M1μ)

)(
fN
1/6

)
, (9.7)

where fN is a loop function with fN = 1/6 in the limit of degenerate masses and

0 ≤ fN ≤ 1 otherwise.

The chargino-sneutrino contribution in Eq. (9.6) is enhanced for small values

of M2, explaining the stronger preference for small M2 displayed by the 1D PL for

the “All data” case compared to the 1D PL for the “w/o g - 2” analysis. Addi-

tionally, a sizeable positive contribution from Eq. (9.6) requires |μ| ∼ O(100) GeV

and sgn(μ) = sgn(M2) = +1, so that small positive values of μ are favoured and
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μ >∼ 1 TeV is suppressed with respect to the “w/o g - 2” case. For the same reason,

small negative μ are somewhat disfavoured, as they would lead to a large negative

contribution to gμ−2 from Eq. (9.6), in conflict with the experimental measurement.

In contrast, for large negative μ, the neutralino-smuon contribution in Eq. (9.7) is

enhanced, and can lead to a sizeable positive contribution to gμ − 2, provided that

sgn(μ) = sgn(M1). Note that, in agreement with the above interpretation, for the

“w/o g - 2” analysis, positive values of μ are no longer strongly favoured, and the

1D PL peaks at small negative μ ∼ −200 GeV. Additionally, large Bino masses are

less disfavoured than for the “All data” case, as larger values of M2 are now allowed

(recall that, for mχ̃0
1
∼ a few hundred GeV, |M1| � M2 is required by the relic

density constraint.)

Both the contribution in Eq. (9.6) and in Eq. (9.7) scales with tan β. Therefore,

the experimental measurement of the muon anomalous magnetic moment is difficult

to reproduce for small values of this quantity, so that the 1D PL is suppressed for

tan β <∼ 10, as can be seen in Fig. 9.2. Note, however, that small values of tan β

remain disfavoured even upon exclusion of the gμ − 2 constraint from the analysis.

Values of tan β < 10 are in conflict with several other observables, most importantly

the measurement of the lightest Higgs mass mh. As discussed in Section 3.4.3,

mh � mZ |cos(2β)| at tree level, so that large tan β values are required to fulfil the

experimental constraint on this quantity. Additionally, the experimental constraint

on the isospin asymmetry Δ0− can lead to a suppression of the 1D PL for tan β at

low values. As discussed in Section 9.2.4 (see also Section 7.2.3), the measured value

of the isospin asymmetry is discrepant with the SM prediction at ∼ 2σ level. As a

result, this constraint can have an important impact on global fits of SUSY models,

as observed for the cMSSM and the NUHM in Chapters 7 and 8. Supersymmetric

loop corrections to Δ0− scale with tan β [343, 70], so that in general relatively large

tan β values are required to achieve a sizeable (negative) SUSY contribution to this

quantity. Note that, at very large tan β, the bottom Yukawa coupling can become

non-perturbative, so that the 1D PL for tan β slightly falls off close to the upper

prior boundary.

The 1D PL for the pseudoscalar Higgs mass is strongly suppressed for small val-

uesmA
<∼ 1 TeV. This is a result of both the constraint onmh, and the measurements

of the decay branching fractions BR(B̄ → Xsγ) and BR(Bs → μ+μ−). Both of these

quantities receive sizeable SUSY contributions at small values of mA [246, 253], in

conflict with the experimentally measured values, which are in good agreement with

the SM expectations. The 1D PL for the gluino mass M3 is almost flat within its

prior range, with the exception of very small values, that are disfavoured by SUSY
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null searches at the Tevatron [399].

We now turn to the 1D PL for the sfermion masses. The 1D PL for the first

and second generation slepton mass is strongly confined to relatively small values

mL
<∼ 2 TeV. This preference is almost entirely due to the experimental constraint

on gμ−2, as can be seen by comparison with the corresponding 1D PL for the “w/o g

- 2” analysis. This can be understood from the expressions for the neutralino-smuon

contribution in Eq. (9.7), which scales as m−2
μ̃L
m−2

μ̃R
∼ m−4

L , and, to a lesser extent,

the chargino-sneutrino contribution in Eq. (9.6), which increases with decreasing

ν̃μ ∼ mL (which enters in fC).

For the “All data” analysis, the 1D PL for the squark masses (all generations)

and the third-generation slepton masses are almost flat within their prior ranges,

so that these parameters remain essentially unconstrained by the included exper-

imental results. A mild preference for small mass values can be observed, with

the PL decreasing monotonically as the parameter values increase. This is a con-

sequence of the electroweak and flavour physics precision observables included in

the analysis. Light squarks and sleptons can cause sizeable SUSY contributions to

these quantities, while large squark and slepton masses lead to SM-like values for

the observables. Small values of the mass parameters lead to a greater freedom

to fine-tune the sparticle masses to satisfy the applied experimental constraints, in

particular for observables that are in some tension with the SM predictions, such

as Δ0−, AFB(B → K∗μ+μ−) and some of the EWPOs. The decrease of the 1D PL

is less pronounced for the third-generation squark mass mQ3 , which is essentially

flat in the range 1 TeV <∼ mQ3
<∼ 6 TeV. This is a result of the LHC constraint on

the lightest Higgs mass, mh ∼ 126 GeV, which requires large stop masses and/or

significant stop mixing (see below).

In general, the 1D PL for the squark and the third-generation slepton masses

are relatively similar for the “All data” and the “w/o g - 2” analysis. A notable

difference is that, for the “w/o g - 2” analysis, the 1D PL for mQ3 and mŪ3
display

a pronounced peak at relatively small values, while large masses are suppressed

compared to the “All data” case. Similarly to what we have observed for lower

dimensional SUSY models (see Sections 7.4.3 and 8.3.3), the exclusion of the gμ − 2

constraint from the analysis leads to a greater freedom to tune the parameters to

satisfy other experimental constraints. In particular, the preference for small values

ofmQ3 andmŪ3
is mainly driven by the constraint on the isospin asymmetry Δ0−: as

can be seen in Fig. 9.3 below, the 1D PL for Δ0− for the “w/o g - 2” analysis peaks

significantly closer to the experimentally measured value than the corresponding 1D

PL for the “All data” case.
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As mentioned above, the measurement of Δ0− is somewhat discrepant with the

SM prediction, and reproducing the experimental value requires a negative SUSY

contribution, which is difficult to achieve. The value of Δ0− depends strongly on

the Wilson coefficients Ci, which encode short-distance physics and are sensitive

to SUSY effects. In particular, the Wilson coefficient C7 plays a dominant role in

determining the value of Δ0− (as well as the values of other observables related to

B decays) [238]. The value of C7 can receive sizeable SUSY contributions for light

charginos, light stops and/or light charged Higgs bosons, as well as large values of

tan β (see above); full expressions for the different SUSY contributions to C7 can be

found e.g. in Ref. [70]. In the context of the “w/o g - 2” analysis, a sizeable SUSY

contribution to C7 arises from Higgsino-stop loops [90]

δC7 ∝ M2
t μAt

2m4
Q3

tan βf7

(
μ2

m2
Q3

,
μ2

m2
U3

)
, (9.8)

where f7 is a loop function. For small mQ3 , small or medium mU3 and sizeable

tan β, δC7 becomes large. Furthermore, for sgn(μAt) < 0, the sign of this loop

contribution is opposite to the SM contribution [90], so that values of Δ0− in good

agreement with the experimental constraint can be achieved. The requirement that

sgn(μAt) < 0 also explains the preference for the positive branch of At, which is

clearly favoured with respect to negative values for the “w/o g - 2” analysis (cf.

Fig. 9.2). Additionally, in order to satisfy the experimental constraint on Δ0−,

opposite sign contributions to C7 from Wino-down squark loops (see e.g. Ref. [90])

must be small, which leads to a suppression of the 1D PL for mQ at small values. We

point out that C7 also enters in a range of other flavour observables, in particular

BR(B̄ → Xsγ). In contrast to the isospin asymmetry, the measurement of this

quantity is in excellent agreement with the SM predictions, so that large SUSY

contributions to C7 are generally disfavoured by this constraint, barring fine-tuned

cancellations. Note also that we use the SusyBSG code for the computation of

BR(B̄ → Xsγ), while SuperIso is used to computed Δ0−. We caution that, for some

fine-tuned points, the simultaneous achievement of a good fit to BR(B̄ → Xsγ) and

Δ0− (and other flavour observables) can be a numerical effect, related to differences

in the numerical implementation of the C7 calculation in these codes.

Finally, we turn to the discussion of the 1D PL for the trilinear couplings.

While the distribution for A0 is almost flat within its prior range, the 1D PL for

the top trilinear coupling is approximately symmetric with respect to zero, and

peaks at At ∼ ±(2 − 4) TeV. These two peaks correspond to the maximal mixing
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scenario, for which |Xt/MS| ≈
√
6, with MS ≡

√
(m2

t̃1
+m2

t̃2
)/2 the average stop

mass and Xt = At − μ cot β the stop mixing parameter (see Section 7.4.1). In

regions of maximal mixing, a sizeable increase in the value of mh is achieved, so

that the experimental constraint mh ∼ 126 GeV can be fulfilled even for relatively

light stops, which are generally preferred by the constraints on the SM precision

observables (see above). For the “w/o g - 2” analysis the peak at positive At is visibly

more pronounced. As explained above, this preference is driven by the constraint

on Δ0−.

Profile likelihood results for the observables

The 1D PL for the observables, shown in Fig. 9.3, are generally in good agreement

with the likelihood functions imposed on these quantities (black), for both the “All

data” analysis (red) and the “w/o g - 2” analysis (purple). In particular, in con-

trast to the tension observed in lower dimensional SUSY models (e.g. Ref. [422]),

the experimental constraints on δaSUSY
μ and BR(B̄ → Xsγ) can simultaneously be

satisfied. Similarly, the 1D PL for the neutralino relic density, which plays a domi-

nant role in driving the fit (see above), is in excellent agreement with the likelihood

function for this observable. Note that, as expected, for the “w/o g - 2” analysis

the 1D PL for δaSUSY
μ displays an almost flat shape within the range shown.

The EWPOs are most sensitive to SUSY effects via t̃/b̃, and the chargino and

neutralino sector parameters; additionally, the EWPOs depend on the value of the

top mass [305]. In agreement with Ref. [305], we find that variations in the SUSY

parameters have the strongest impact on mW , sin2 θeff and ΓZ , while the other

EWPOs included in our analysis, namely σ0
had, R

0
l , R

0
b and R0

c , are much less sensitive

to SUSY effects. Assuming the current central value of Mt, the SM prediction for

mW and ΓZ is marginally (at 1σ level) smaller than the experimental value. SUSY

contributions to these two quantities are constructive, so that light third-generation

squarks and/or light electroweakinos are required to reproduce the experimental

values of mW and ΓZ . In particular, in this study, the electroweakino sector has a

strong impact on the EWPOs, due to the preference for relatively small |M1|, M2

and |μ| (see Fig. 9.2). As a result, the 1D PL and the likelihood function for mW and

ΓZ are in good agreement. In contrast, the 1D PL for sin2 θeff is slightly shifted with

respect to the peak of the likelihood function for this quantity. The SM prediction

for sin2 θeff is compatible with the measured value at 1σ level, and SUSY effects lead

to a negative contribution. Therefore, the small values of |M1|, M2 and |μ| favoured
by other experimental constraints push the peak of the 1D PL for this quantity

below the experimentally measured value. The SUSY contributions to σ0
had, R

0
l , R

0
b

229



9.3 Results

θ Γ σ

γ

Δ → τ ν → τ ν τ ν

→ Δ δ Ωχ

Figure 9.3: 1D profile likelihood for the observables. As in Fig. 9.2. Black curves show
the likelihood functions imposed on the displayed quantities. In general, good fits to the
observables are achieved.

and R0
c are significantly smaller, and the 1D PL for these observables are much more

narrow than their likelihood functions.

The flavour observables are generally well fit. An exception are the 1D PL for

BR(Bu → τν)/BR(Bu → τν)SM and BR(Ds → τν), which peak close to the values

predicted in the SM, that are somewhat smaller than the experimental measurement.

Additionally, for the “All data” analysis, the 1D PL for the isospin asymmetry Δ0−
favours relatively large values Δ0− ∼ 6 × 10−2, in conflict with the experimental
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χ χ

Figure 9.4: 1D profile likelihood for several SUSY quantities of interest. As in Fig. 9.2.

constraint. In contrast, for the reasons given above, in the “w/o g - 2” analysis a

good fit to this quantity is achieved.

Profile likelihood results for the sparticle masses

Fig. 9.4 shows the 1D PL for several SUSY quantities of interest, namely the mass

of the neutralino LSP mχ̃0
1
, the lightest chargino mass mχ̃±

1
, the mass of the lightest

Higgs boson mh, the average squark mass msquark, the lightest stop mass mstop1 and

the gluino mass mgluino. As can be seen, for the “All data” analysis, a lightest neu-

tralino mass of mχ̃0
1
< 1.5 TeV is favoured at 99% confidence level. In particular,

the 1D PL for mχ̃0
1
exhibits a strong preference for a Bino-like neutralino LSP with

mχ̃0
1

<∼ 500 GeV. The bumps at larger values of mχ̃0
1
correspond to Higgsino-like dark

matter. The corresponding 1D PL for the “w/o g - 2” analysis extends to signifi-

cantly larger values mχ̃0
1

<∼ 3.0 TeV. As discussed above, the gμ − 2 constraint leads

to a strong preference for small values of the gaugino mass parameters |M1| and M2

(cf. Fig. 9.2). After exclusion of this constraint from the likelihood function larger

values of |M1| and M2 are allowed, leading to a heavier neutralino LSP (on average).

Higgsino-like dark matter is significantly more favoured than in the “All data” case,

and Wino-like dark matter with mχ̃0
1
∼ 2 TeV is allowed at low confidence. Never-
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theless, a Bino-like neutralino LSP with mχ̃0
1

<∼ a few hundred GeV remains strongly

favoured, and the 1D PL for both the “w/o g - 2” and the “All data” analysis peak

at mχ̃0
1
≈ 60 GeV (see Table 9.3 below). Further details regarding the composition

of the neutralino LSP in different regions of the MSSM-15 parameter space will be

provided in Section 9.3.4.

Similarly to the results for mχ̃0
1
, small values of the lightest chargino mass

are strongly favoured. However, the 1D PL for mχ̃±
1
extends to very large values

<∼ 5 TeV, which corresponds to the effective upper limit on this quantity imposed

by the prior boundary on the input parameters. The corresponding 1D PL for the

“w/o g - 2” analysis is qualitatively similar, although very large values of mχ̃±
1
are

somewhat less favoured.

As can be seen in the top right-hand panel of Fig. 9.4, the LHC constraint on

the mass of the lightest Higgs boson can easily be satisfied in the MSSM-15. This is

a consequence of the large number of degrees of freedom in this model, which allows

to combine a sizeable tree-level contribution to mh (large tan β), with a significant

1-loop contribution via heavy stops (large mQ3 , mŪ3
) and/or maximal stop mixing

(via tuning of At), see Eq. (3.24) and the discussion in Section 7.4.1. The 1D PL

for the average squark mass, the lightest stop mass and the gluino mass are almost

flat within the ranges considered. Their distributions are closely related to the 1D

PL for the input parameters mQ, mQ3 , mŪ3
and M3, and we refer the reader to the

above discussion of these quantities for further information.

9.3.2 Impact of applying the Planck relic density as an up-

per bound

In this section we present results for the “Planck upper limit” global fits analysis, in

which the Planck measurement of the dark matter relic density is applied as an upper

bound on the relic abundance of the neutralino LSP, thus relaxing the requirement

that stable neutralinos are the sole constituent of the dark matter in the Universe.

Otherwise, the experimental constraints included in the likelihood function are the

same as for the “All data” analysis (i.e. all data sets listed in Table 9.2, except

the LHC constraints on SUSY and the Higgs couplings). In general, the results

for the “All data” and the “Planck upper limit” case are qualitatively very similar,

although the 1D PL for the observables tend to be slightly broader for the latter

analysis, due to the extra freedom obtained by relaxing the constraint on Ωχh
2.

Therefore, we focus the discussion on a few selected quantities that illustrate the

phenomenological differences between the “Planck upper limit” and the “All data”
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χ χ Ωχ

Figure 9.5: Comparison of the profile likelihood results for multi-component and single-
component dark matter scenarios. The 1D PL for several quantities of interest are shown
for both the “Planck upper limit” analysis (blue) and the “All data” analysis (red). The
encircled crosses represent the best-fit points. The black curve in the bottom right-hand
panel indicates the likelihood function for the neutralino relic density when relaxing the
requirement that Ωχ = ΩDM. Giving up the assumption that neutralino LSPs are the
sole constituent of the dark matter has a strong impact on the electroweakino sector in
the MSSM-15.

case, and refer the reader to Section 9.3.1 for a detailed analysis of the omitted

quantities. In particular, we find that the main differences occur for the parameters

related to the electroweakino sector. In Fig. 9.5 we show the 1D PL for the Bino,

Wino and Higgsino mass parameters (top row), the relic density of the neutralino

LSP, and the lightest neutralino and chargino masses (bottom row), for both for the

“Planck upper limit” (blue) and the “All data” (red) analysis.

For the “Planck upper limit” analysis, the 1D PL for the Bino mass M1 is es-

sentially flat within the parameter range explored by the scans. This is in sharp

contrast to the corresponding 1D PL for the “All data” analysis, which displays a

strong preference for small |M1|. As discussed in Section 9.3.1, the relic density con-

straint plays a dominant role in disfavouring values of |M1| larger than a few hundred

GeV, as Bino-like dark matter in this mass range tends to overclose the Universe,

and Higgsino- or Wino-like dark matter with mχ̃0
1
∼ O(100) GeV annihilates very

efficiently via coannihilations, leading to Ωχ � ΩDM. In contrast, when allowing for
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multi-component dark matter scenarios, light Wino-like and Higgsino-like neutralino

LSPs are no longer disfavoured. In fact, as we will show explicitly in Section 9.3.4, a

Wino-like neutralino LSP is preferred, so that M2 < |M1| throughout a large portion
of the favoured MSSM-15 parameter space, and very large values of |M1| are allowed
at high confidence. Additionally, the increased preference for light Wino-like and

Higgsino-like neutralino LSPs opens up the possibility of a mixed state B̃/W̃ , B̃/H̃,

W̃/H̃, or even B̃/W̃/H̃ LSP (so-called well-tempered neutralinos [112]).

The 1D PL for M2 for the “Planck upper limit” analysis is very similar to the

corresponding 1D PL for the “All data” case. Similarly, small positive values of

μ remain strongly favoured, and, for sgn(μ) = +1, the 1D PL for this quantity is

almost identical for single-component and multi-component dark matter scenarios.

As shown explicitly in Section 9.3.1, small M2 and small, positive μ are required

to achieve a sizeable chargino-sneutrino contribution to the anomalous magnetic

moment of the muon, see Eq. (9.6). Small negative μ are disfavoured, as they would

lead to a large negative contribution to gμ − 2 from Eq. (9.6). In contrast, for large

negative values of μ, a sizeable positive neutralino-smuon contribution to gμ− 2 can

be achieved, see Eq. (9.7). In the “All data” case, large negative μ are in conflict

with the relic density constraint, as |μ| <∼ 1 TeV is required to achieve both a Bino-

like LSP with a significant Higgsino fraction (as favoured for mχ̃0
1
∼ a few hundred

GeV), and Higgsino-like dark matter (favoured for mχ̃0
1
∼ 1 TeV), see the discussion

in Section 9.3.1. In contrast, when relaxing the assumption that Ωχ = ΩDM, larger

values of |μ| are allowed, and the 1D PL for μ displays an increased preference for

large negative values, for which the measured value of gμ − 2 can be achieved.

The 1D PL for the lightest neutralino and chargino masses (bottom left-hand

and central panels of Fig. 9.5) for the “Planck upper limit” analysis are confined

to significantly lower values than the corresponding 1D PL for the “All data” case.

This difference is particularly pronounced for mχ̃±
1
. As mentioned above, relaxing

the requirement that Ωχ = ΩDM leads to the possibility of light Wino-like and

Higgsino-like dark matter, so that the mass of the lightest chargino can be small,

as favoured by the constraints on several SM precision observables, in particular

gμ − 2, Δ0− and, to a lesser extent, AFB(B → K∗μ+μ−). The experimental values

of these quantities are somewhat discrepant with the SM predictions and, as a result,

these observables play a dominant role in driving the profile likelihood results after

relaxing the constraint on the relic density of the neutralino LSP. For light charginos,

sizeable SUSY corrections to these quantities can be achieved, so that small mχ̃±
1

are favoured. Since mχ̃0
1
< mχ̃±

1
, the preference for small chargino masses causes a

shift of the 1D PL for mχ̃0
1
towards lower values.
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The 1D PL for the neutralino relic density is shown in the bottom right-hand

panel of Fig. 9.5. As expected, the distribution for the “Planck upper limit” case

is significantly more spread out than the corresponding 1D PL for the “All data”

analysis. The 1D PL peaks at Ωχh
2 ∼ 10−3, and extends to relic densities almost five

orders of magnitude below the measured cosmological abundance of dark matter.

While Ωχh
2 < 10−3 is somewhat disfavoured, the 1D PL is almost flat in the range

10−3 < Ωχh
2 < 10−1. In particular, large values Ωχh

2 ∼ 0.1 that are compatible

with the Planck measurement of ΩDMh
2 are favoured at high confidence.

9.3.3 MSSM-15 best-fit points

The coordinates of the best-fit points identified by the scans are given in Table 9.3,

along with the best-fit values for some notable derived quantities. From left to

right, we show the best-fit coordinates for the “All data”, “w/o g - 2” and “Planck

upper limit” analysis. Upon inclusion of LHC constraints on SUSY and the Higgs

signal strengths (see Section 9.3.5 below), the χ2 values of the pre-LHC best-fit

points become χ2 = 1054.32 (“All data”), χ2 = 9.44 (“w/o g - 2”) and χ2 = 267.52

(“Planck upper limit”). Therefore, the “w/o g - 2” best-fit point remains viable,

while the best-fit points for the “All data” and “Planck upper limit” analyses are

robustly ruled out. For these two cases, we also show the best-fit point found

after inclusion of the LHC constraints (third and fifth column in Table 9.3). The

characteristics of the post-LHC best-fit points will be discussed in Section 9.3.5.

In Fig. 9.6 we show the breakdown of the total χ2 by observable for the pre-

LHC best-fit points for the “All data” (red), “w/o g - 2” (purple) and “Planck upper

limit” (blue) analyses. In general, the contributions of the different observables to

the best-fit χ2 are very similar across the three cases. In particular, the observables

leading to the largest χ2 contributions are σ0
had, BR(Bu → τν)/BR(Bu → τν)SM ,

BR(Ds → τν) and R0
l . Additionally, the constraint on the isospin asymmetry Δ0−

leads to a sizeable contribution to the best-fit χ2 for the “All data” and the “Planck

upper limit” case. Note that Δχ2(Δ0−) is reduced compared to the cMSSM and

NUHM global fits analyses presented in Chapters 7 and 8, partly due to the inclusion

of a theoretical error for this quantity (see Section 9.2.4), but also as a result of the

larger number of free parameters in the MSSM-15, which can be adjusted to achieve

smaller values of Δ0−, in better agreement with the experimental measurement (cf.

the 1D PL for Δ0− in Fig. 9.3 with the 1D PL for this quantity in the cMSSM and the

NUHM, given in Fig. 7.10 and Fig. 8.5, respectively). As discussed in Section 9.3.1,

for the “w/o g - 2” analysis, the best-fit value for Δ0− is in good agreement with the
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All data w/o g - 2 Planck upper limit
Input parameters

M1 [GeV] -61.76 -136.09 59.70 -724.07 -130.06
M2 [GeV] 150.23 149.98 123.96 147.96 814.37
M3 [GeV] 1191.2 2000.09 2967.70 -1833.39 1294.62
mL [GeV] 438.34 152.35 351.99 449.03 142.26
mL3 [GeV] 286.68 1995.54 964.28 486.61 447.86
mĒ3

[GeV] 389.88 1250.89 3850.93 1823.49 542.16
mQ [GeV] 351.33 2234.41 1628.26 358.87 5860.04
mQ3 [GeV] 2408.24 658.41 696.35 3573.49 396.24
mŪ3

[GeV] 1579.95 1495.69 1341.55 804.81 1751.30
mD̄3

[GeV] 503.38 332.04 920.19 262.12 141.28
At [GeV] 3025.88 2380.81 2219.57 -3131.92 1962.58
A0 [GeV] -35.41 6396.91 1498.37 -11.78 3827.41
μ [GeV] 219.54 -778.01 -224.60 158.52 -582.89
mA [GeV] 2297.46 1550.08 1298.28 3731.24 1676.59
tan β 21.82 17.82 21.85 20.75 14.93
Mt [GeV] 173.34 173.30 173.19 173.11 173.06

Observables
mh [GeV] 125.78 125.52 125.16 125.61 125.41
δaSUSY

μ × 1010 27.98 30.18 -43.91 28.63 27.87
msquark [GeV] 489.57 2253.08 1554.61 497.96 5904.73
mstop1 [GeV] 1568.78 588.55 166.32 943.63 443.04
mgluino [GeV] 1256.10 2050.19 2834.23 1883.16 1463.97
mχ̃0

1
[GeV] 58.48 134.16 57.95 106.32 128.37

mχ̃±
1
[GeV] 130.26 159.29 118.10 109.17 578.25

σSI
χ̃0
1−p [pb] 3.56× 10−11 2.35× 10−10 3.86× 10−11 4.40× 10−8 1.03× 10−9

σSD
χ̃0
1−p [pb] 2.34× 10−5 2.14× 10−7 4.79× 10−5 9.78× 10−4 8.78× 10−7

σSD
χ̃0
1−n [pb] 3.48× 10−5 2.57× 10−7 4.63× 10−5 1.02× 10−3 8.35× 10−7

Ωχh
2 0.1194 0.1186 0.1174 8.84× 10−4 5.20× 10−2

χ2 values
Pre-LHC 8.18 8.64 7.79 8.18 8.91
Post-LHC 1054.32 9.45 9.44 267.52 9.68

Table 9.3: Best-fit points from global fits of the MSSM-15. We show the best-fit values
of the MSSM-15 parameters (top section) and several observables of interest (central
section), as well as the best-fit χ2 values (bottom section) for the “All data”, “w/o g
- 2” and “Planck upper limit” analysis (from left to right). For the “All data” and
“Planck upper limit” case we additionally show the mini-chains best-fit point found after
including the LHC constraints on SUSY and the Higgs signal strengths in the analysis
(see Section 9.3.5). For each best-fit point, we show both the χ2 value obtained prior to
(pre-LHC), and after (post-LHC) inclusion of the LHC results.

experimental constraint, leading to a very small contribution Δχ2(Δ0−). Mainly as

a consequence of the better fit to Δ0−, the best-fit χ2 for the “w/o g - 2” analysis is

somewhat reduced compared to the other two cases.
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Figure 9.6: Breakdown of the total χ2 by observable for the MSSM-15 best-fit points.
The contributions of the different observables to the best-fit χ2 are shown for the “All
data” analysis (red), the “w/o g - 2” analysis (purple) and the “Planck upper limit”
analysis (blue). We re-emphasise that the best-fit points were obtained from global fits
excluding LHC constraints on the SUSY masses and the Higgs signal strengths. The
addition of these constraints to the analysis rules out the best-fit points for the “All
data” and “Planck upper limit” analyses, while the “w/o g - 2” best-fit point remains
viable (cf. Table 9.3).

We do not perform a goodness-of-fit test of the MSSM-15, as our likelihood func-

tion receives contributions from highly non-Gaussian experimental limits, namely,

the ATLAS limits on SUSY. As we will show in Section 9.3.5, constraints from AT-

LAS SUSY searches have a strong impact on the MSSM-15 parameter space, and

thus can not be neglected in a goodness-of-fit test. As a result, the computation of

an approximate p-value based only on contributions from Gaussian-distributed ob-

servables in the likelihood function, as has been done in the previous two chapters,

may lead to incorrect conclusions. The correct determination of the goodness-of-fit

of the MSSM-15 best-fit points would require a detailed Monte Carlo analysis.
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9.3.4 Neutralino composition and implications for direct de-

tection

In Fig. 9.7 we show the 2D profile likelihood function in the planes of neutralino

mass vs. spin-independent neutralino-proton scattering cross-section (left-hand pan-

els), spin-dependent neutralino-proton scattering cross-section (central panels) and

spin-dependent neutralino-neutron scattering cross-section (right-hand panels). Top

panels show the 2D PL for the “All data” analysis, while central and bottom panels

show results for the “w/o g - 2” and “Planck upper limit” analysis, respectively. In

each panel, the contours show the 68%, 95% and 99% confidence regions. In the top

and central left-hand panels we show the 90% exclusions limits from the XENON100

collaboration [105] (red) and the LUX collaboration [77] (blue, not included in the

analysis) on the spin-independent neutralino-proton interaction. In the central and

right-hand panels we show the XENON100 limits on the spin-dependent neutralino-

nucleon interactions (red) [106]. As discussed in Section 9.2.4, in the “Planck upper

limit” analysis we assume that the local neutralino density scales with the cosmolog-

ical abundance of neutralinos, so that ρχ = ρDMΩχ/ΩDM (see Eq. (9.2)). Therefore,

the XENON100 and LUX exclusion limits, that were computed for a fixed local

density ρχ = 0.3 GeV/cm3, are not displayed in the bottom panels of Fig. 9.7.

At the tree-level, the elastic spin-independent neutralino-quark scattering cross-

section receives contributions from both s-channel squark exchange and t-channel

Higgs exchange diagrams. In the decoupling limit, and for moderate to large values

of tan β, the H/h exchange contribution to the spin-independent cross-section scales

as (e.g. Refs. [145, 195])

σSI
H/h ∝ f p2

Tq

m4
H/h

|(N12 −N11 tan θW )|2|N13/14|2, (9.9)

where θW is the electroweak mixing angle, N1i determine the composition of the neu-

tralino LSP (see Section 3.4.3) and f p
Tq

are the quark-nucleon matrix elements. The

squark exchange contribution can in general be well-approximated by the contribu-

tion from the exchange of ũ, d̃ and s̃ squarks. The amplitude from squark exchange

scales with ∼ 1/(m2
q̃ −m2

χ̃0
1
), and thus is strongly suppressed for m2

q̃ � mχ̃0
1
; for the

full expression see e.g. Ref. [247]. In the MSSM, the Higgs exchange contribution is

dominant, although contributions from both squark exchange and loop corrections

can be substantial in some regions of the parameter space. In Section 9.3.1 we found

that small values of the pseudoscalar Higgs mass mA
<∼ 1 TeV are disfavoured, so

that large values of mH
>∼ 1 TeV are preferred (recall that mH � mA in the decou-
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Figure 9.7: Direct detection prospects of the MSSM-15. The 2D profile likelihood
results for the “All data” analysis (top), the “w/o g - 2” analysis (centre) and the “Planck
upper limit” analysis (bottom) are shown in the (mχ̃0

1
, σSI

χ̃0
1−p

) plane, the (mχ̃0
1
, σSD

χ̃0
1−p

)

plane and the (mχ̃0
1
, σSD

χ̃0
1−n

) plane (from left to right). The black/filled contours show the

68%, 95% and 99% confidence regions; the encircled black crosses represent the best-fit
points. The solid/red lines shows the 90% XENON100 225-days exclusion limits [105,
106], while the solid/blue line shows the 90% LUX exclusion limit [77] (not included in
the analysis). The 2D PL contours span a large range of cross-sections, extending to
extremely small values that are outside the reach of any current or future direct detection
experiment.

pling limit). As a result, since σSI
H ∝ m−4

H (cf. Eq. (9.9)), we expect that light Higgs

exchange generally dominates the spin-independent neutralino-quark scattering am-

plitude in the MSSM-15.

The spin-dependent neutralino-quark scattering interaction receives contribu-
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tions from both s-channel squark exchange and t-channel Z exchange diagrams.

The Z exchange contribution, which is generally dominant, scales with the Higgsino

asymmetry of the neutralino LSP σSD
Z ∝ (|N13|2−|N14|2)2. The Higgsino asymmetry

depends on the Bino, Wino and Higgsino mass as [240]

|N13|2 − |N14|2 ∝ cos 2β/(μ2 −M2
i ), (9.10)

with i = 1 (i = 2) for a Bino-like (Wino-like) state. For a pure Higgsino neutralino

N13 = N14 = 1/
√
2, so that the Higgsino asymmetry vanishes.

It is clear from the above discussion that the neutralino-nucleon scattering cross-

section strongly depends on the composition of the neutralino LSP. In Fig. 9.8

we show the favoured compositions of the lightest neutralino in the (mχ̃0
1
, σSI

χ̃0
1−p)

plane. Top panels show the LSP composition for the “All data” analysis (left) and

the “w/o g - 2” analysis (right); the bottom panel shows results for the “Planck

upper limit” case. The neutralino composition is indicated by the colour scale. We

define the neutralino LSP to be Bino-like if it has a Bino fraction bf > 0.8, and

equivalently for Wino-like (Wino fraction wf > 0.8) and Higgsino-like (Higgsino

fraction hf > 0.8) neutralinos. A mixed (B,W ) neutralino corresponds to both a

sizeable Bino and Wino fraction, bf , wf > 0.2, and equivalently for mixed (B,H) and

mixed (W,H) states. Neutralino LSPs that do not fit into any of the above categories

are considered mixed (B,W,H) states. For comparison, black/empty contours show

the 68%, 95% and 99% 2D confidence regions (note that mχ̃0
1
is plotted on a linear

scale in Fig. 9.8; otherwise the contours are equivalent to the 2D PL contours shown

in the left-hand panels of Fig. 9.7).

For the “All data” and the “w/o g - 2” analyses, we can identify three main re-

gions in which a specific dark matter composition dominates. At lowmχ̃0
1

<∼ 600 GeV

the neutralino is almost exclusively Bino-like. As mentioned in Section 9.3.1, while a

pure Bino neutralino LSP tends to overclose the Universe, for low and intermediate

neutralino masses the relic density can be reduced to Ωχh
2 ∼ O(0.1) by resonance

annihilation or co-annihilation effects. In particular, for mχ̃0
1
∼ 50 − 70 GeV, the

neutralino is almost a pure Bino, and can efficiently annihilate through the Z/h-

funnels in the early Universe; note that the best-fit point is located in this region

(see Table 9.3). For mχ̃0
1
∼ a few hundred GeV several effects can be of impor-

tance,3 including annihilation via t-channel exchange of relatively light sleptons and

squarks (the bulk region) and co-annihilations with light sleptons. Additionally, in

3See also Section 7.3.1 for a description of the different processes which can lead to a relic
density Ωχh

2 ∼ O(0.1) for a nearly pure Bino state (in the context of the cMSSM).
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Figure 9.8: Composition of the neutralino LSP in the MSSM-15. The composition
of the lightest neutralino is shown in the (mχ̃0

1
, σSI

χ̃0
1−p

) plane for the “All data” analysis

(top left), the “w/o g - 2” analysis (top right) and the “Planck upper limit” analysis
(bottom). The colour scale indicates whether the neutralino LSP is Bino-like, Wino-like,
Higgsino-like, or a mixed state, see text for further details. The encircled black crosses
indicate the best-fit points. For reference, the 68%, 95% and 99% PL contours are shown
in black (cf. Fig. 9.7). Note that the neutralino mass is plotted on a linear scale to better
resolve the different compositions in the high-mass region. A broad range of neutralino
compositions is achieved throughout the MSSM-15 parameter space, reflecting the rich
phenomenology of this model.

this mass range, the LSP is commonly Bino-like with a small Higgsino admixture

hf ∼ 0.1, so that the relic density is reduced to the experimentally measured value

by co-annihilations with the second-lightest neutralino and the lightest chargino. As

can be seen in the top panels of Fig. 9.8, small islands of mixed (B,H) neutralinos

show up for mχ̃0
1

>∼ 500 GeV; this region corresponds to the transition from Bino-like

to Higgsino-like dark matter.

In the mass range mχ̃0
1
∼ (0.7, 1.6) TeV the neutralino LSP is predominantly

Higgsino-like. For a pure Higgsino state, annihilation in the early Universe is very

efficient, so that small neutralino masses mχ̃0
1
∼ O(100) GeV lead to a relic density

significantly below the value measured by Planck. However, for mχ̃0
1
∼ 1 TeV
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the correct relic density can be achieved, so that a Higgsino-like neutralino LSP is

favoured in this mass range.

At very large mχ̃0
1

>∼ 1.6 TeV, the neutralino LSP is mostly Wino-like. Winos

annihilate very efficiently into gauge boson pairs and, additionally, the relic abun-

dance for Wino-like dark matter is reduced by co-annihilations with the lightest

chargino. As a result, very heavy Wino-like states with mχ̃0
1
∼ 2 TeV are required

to reproduce the Planck measurement of the dark matter relic abundance. The large

values of M2, and thus also |M1| and |μ|, required to achieve Wino-like dark matter

with Ωχh
2 ∼ O(0.1) are in conflict with several other experimental constraints (in

particular, gμ − 2, see Section 9.3.1), so that neutralino LSPs with a large Wino

fraction are not included in the 2D PL contours for the “All data” case.

At mχ̃0
1
∼ 3 TeV we observe a small island of Bino-like dark matter. In this re-

gion, the correct dark matter relic abundance is achieved via gluino co-annihilations,

a phenomenological feature that can appear in SUSY models that do not impose uni-

versality of gaugino masses at high energy scales [379]. Additionally, atmχ̃0
1

>∼ 1 TeV

and large spin-independent cross-sections, several islands of mixed (W,H) neutrali-

nos can be identified. In contrast, mixed (B,W ) and (B,W,H) states are rare.

For the “Planck upper limit” analysis, the bulk of the favoured MSSM-15 pa-

rameter space corresponds to Wino-like neutralino LSPs, with the exception of

a narrow area at very low masses mχ̃0
1

<∼ 200 GeV and a small region at large

masses mχ̃0
1

>∼ 2 TeV that correspond to Bino-like dark matter. In the latter region

Ωχ
<∼ ΩDM is achieved via gluino co-annihilations (see above). Higgsino-like states

are somewhat disfavoured, and only show up as isolated islands in different regions

of parameter space, mainly corresponding to relatively large spin-independent cross-

sections. The preference for Wino-like dark matter is a direct consequence of the

shape of the 1D PL for M1, M2 and μ in Fig. 9.5. In particular, for the “Planck

upper limit” analysis, the 1D PL for M1 and, to a lesser extent, μ are significantly

more spread out than for the “All data” case, while small values of M2 remain

favoured (as discussed in detail in Section 9.3.2, this preference is largely driven by

the constraints on the SM precision observables, in particular gμ − 2). An interest-

ing feature is the pronounced region of mixed (W,H) states that is found at large

σSI
χ̃0
1−p and spans almost the entire range of neutralino masses; note that the best-fit

point for the “Planck upper limit” analysis is located in this region. The preference

for mixed (W,H) neutralinos is a consequence of the fact that light Wino-like and

Higgsino-like LSPs are allowed in the “Planck upper limit” case. As expected from

Eq. (9.9), mixed (W,H) neutralinos correspond to very large values of σSI
χ̃0
1−p, that

remain viable in light of direct detection constraints only because the local neu-
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tralino density is reduced according to the scaling Ansatz in Eq. (9.2). Other mixed

states ((B,H),(B,W ),(B,W,H)) are rare.

We now turn to the analysis of Fig. 9.7. We start by discussing the 2D PL

results in the (mχ̃0
1
, σSI

χ̃0
1−p) plane (left-hand panels). Multiple modes of high profile

likelihood can be identified. For each of the three analyses we observe a narrow region

at mχ̃0
1
∼ 50 − 70 GeV, spanning almost 15 orders of magnitude in σSI

χ̃0
1−p, that is

favoured at 68% confidence level. This area corresponds to the Z/h-funnel region,

in which the neutralino is almost a pure Bino (cf. Fig. 9.8). For the “All data” and

the “w/o g - 2” analyses, a second region that is favoured at 68% confidence is found

at mχ̃0
1
∼ a few hundred GeV. In this region, the neutralino LSP is Bino-like, but

can acquire a non-negligible Higgsino fraction, which enhances the spin-independent

cross-section, as shown in Eq. (9.9). The degree of Higgsino mixing is limited by

the XENON100 bound on σSI
χ̃0
1−p.

The 2D PL contours in these regions span a large range of σSI
χ̃0
1−p values, and

extend to very low cross-sections σSI
χ̃0
1−p

<∼ 10−20 pb. This is in sharp contrast to

the relatively narrow range of spin-independent cross-sections allowed in more con-

strained SUSY models, such as the cMSSM and the NUHM (see Chapters 7 and 8).

As shown in Ref. [347], when relaxing the minimal supergravity boundary conditions,

the light and/or heavy Higgs exchange contribution to σSI
χ̃0
1−p can be strongly sup-

pressed and, additionally, cancellations between different contributions can lead to

extremely small spin-independent cross-section values. In particular, a suppression

of the light Higgs exchange contribution to σSI
χ̃0
1−p occurs for Mi + μ sin 2β ≈ 0, with

Mi = M1,M2,−μ for a mostly Bino, Wino and Higgsino neutralino LSP, respec-

tively [198]. Furthermore, for moderate/large values of tan β, the light and heavy

Higgs exchange contributions cancel if 2(mχ̃0
1
+ μ sin 2β)m2

H � −μ m2
h tan β [318].

Additional cancellations among the squark and Higgs exchange contributions are

also a possibility [347]. A combination of these effects can lead to extremely low

spin-independent cross-section values σSI
χ̃0
1−p < 10−20 pb, as observed in Fig. 9.7.

Note that, since tan β ∼ O(10) is favoured in our analysis, in general |μ| >∼ 10mχ̃0
1

is required to achieve a suppression of the contribution from light Higgs exchange,

and/or a cancellation between the two Higgs exchange contributions. Therefore, as

large |μ| are disfavoured (see Section 9.3.1), very small values of σSI
χ̃0
1−p are easiest to

achieve at low neutralino masses.

The 95% confidence region for the “All data” analysis (top left-hand panel)

also includes a small region at mχ̃0
1
∼ 1 TeV, which corresponds to a Higgsino-like

neutralino LSP (cf. Fig. 9.8). This region is disfavoured with respect to the low-

mass regions by several SM precision observables, in particular gμ − 2, Δ0− and
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AFB(B → K∗μ+μ−), which lead to a preference for small values of |M1|, M2 and

|μ| (see Section 9.3.1). For the “w/o g - 2” analysis (central left-hand panel), this

region is significantly more pronounced than for the “All data” case, spanning a

large range of spin-independent cross-sections from just below the XENON100 limit

to σSI
χ̃0
1−p ∼ 10−20 pb. As shown in Eq. (9.9), the spin-independent cross-section

scales with |N13/14|2, so that a Higgsino-like LSP generally leads to relatively large

σSI
χ̃0
1−p values. However, for a pure Higgsino state N11, N12 → 0, so that σSI

h/H becomes

strongly suppressed, which explains the small σSI
χ̃0
1−p values that are included in the

95% PL contour for the “w/o g - 2” analysis for mχ̃0
1
∼ 1 TeV (note that for the

lowest cross-sections, σSI
χ̃0
1−p ∼ 10−20 pb, cancellations between different contributions

to σSI
χ̃0
1−p also play role in this suppression). Finally, for the “w/o g - 2” analysis a

small region at large neutralino masses mχ̃0
1
∼ 2 TeV is included in the 95% contour.

This region, which in the “All data” case is disfavoured by the gμ − 2 constraint,

corresponds to a Wino-like neutralino LSP, as can be seen by comparison with

Fig. 9.8.

The 2D PL in the (mχ̃0
1
, σSI

χ̃0
1−p) plane for the “Planck upper limit” analysis is

displayed in the bottom left-hand panel of Fig. 9.7. Compared to the other two

cases, larger spin-independent cross-section values are included in the PL contours,

as the predicted number of recoil events is reduced by the scaling factor ξ = ρχ/ρDM

(see Eq. (9.2)), thus relaxing the XENON100 bound on high σSI
χ̃0
1−p. As can be

seen from Fig. 9.8, in the region in which σSI
χ̃0
1−p is large the neutralino LSP is a

mixed (W,H) state. Mixed (W,H) LSPs correspond to large values of both N12 and

N13,14, and therefore lead to a sizeable Higgs exchange contribution to σSI
χ̃0
1−p, see

Eq. (9.9). Note that the maximum spin-independent cross-section value included in

the PL contours decreases as a function of mχ̃0
1
. This is a consequence of the lower

neutralino relic density values that can be achieved at small LSP masses, leading

to a smaller scaling factor ξ, and thus a reduction in the number of recoil events

(for fixed σSI
χ̃0
1−p). As mentioned above, the narrow region at mχ̃0

1
∼ 50 − 70 GeV

favoured at 68% level corresponds to the Z/h-funnel regions, in which the neutralino

is Bino-like; note that for the “Planck upper limit” analysis this region is somewhat

less pronounced than for the other two cases. As can be seen in Fig. 9.8, at larger

mχ̃0
1
the LSP is mainly Wino-like, although pure Higgsino states and well-tempered

neutralinos are also a viable possibility. Compared to the “All data” analysis, the

PL contours span a smaller range of neutralino masses, as large mχ̃0
1
are disfavoured

by several SM precision observables, which play a dominant role in driving the fit

(see Section 9.3.2).4

4In principle, the 95% contour for the “Planck upper limit” analysis should encompass the full
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The patterns observed in the (mχ̃0
1
, σSD

χ̃0
1−p) plane (central panels) and the

(mχ̃0
1
, σSD

χ̃0
1−n) plane (right-hand panels) are qualitatively similar to the 2D PL re-

sults in the (mχ̃0
1
, σSI

χ̃0
1−p) plane, discussed above. The Z/h-funnel region at small

mχ̃0
1
is clearly visible in the (mχ̃0

1
, σSD

χ̃0
1−p) plane for all three analyses, and is most

pronounced for the “w/o g - 2” case, for which it also shows up in the (mχ̃0
1
, σSD

χ̃0
1−n)

plane. Additionally, for the “All data” and the “w/o g - 2” analyses, the extended

region at mχ̃0
1
∼ O(100) GeV corresponding to Bino-like neutralinos with a non-

negligible Higgsino component can easily be identified. Similarly, for the “All data”

analysis, the region of Higgsino-like dark matter with mχ̃0
1
∼ 1 TeV is visible in both

the (mχ̃0
1
, σSD

χ̃0
1−p) plane and the (mχ̃0

1
, σSD

χ̃0
1−n) plane, and corresponds to relatively large

spin-dependent cross-section values. For the “w/o g - 2” analysis, both the regions

in which the LSP is Higgsino-like (mχ̃0
1
∼ 1 TeV) and Wino-like (mχ̃0

1
∼ 2 TeV) span

a sizeable range of σSD
χ̃0
1−p,n, with the smallest values corresponding to an almost pure

Higgsino and Wino LSP, respectively.

As in the (mχ̃0
1
, σSI

χ̃0
1−p) plane, the 2D PL contours span a large range of spin-

dependent cross-section values, extending to σSD
χ̃0
1−p ∼ 10−18 pb and σSD

χ̃0
1−n ∼ 10−16 pb

(for the “All data” case). For both the “All data” and the “w/o g - 2” analyses,

μ2 −M2
1 is typically relatively small in the regions corresponding to low-mass Bino-

like dark matter, leading to a large Higgsino asymmetry (see Eq. (9.10)), and thus

a large spin-dependent interaction. However, significantly lower cross-section values

can be achieved when the neutralino is almost a pure Bino state, as in this case the

Higgsino asymmetry becomes very small, leading to a reduction in the Z exchange

contribution to σSD
χ̃0
1−p,n. Additionally, cancellations between the squark and Z ex-

change contributions can further lower the spin-dependent scattering amplitude by

several orders of magnitude. Note that a simultaneous cancellation of the contribu-

tions to σSD
χ̃0
1−p and σSD

χ̃0
1−n is typically not achieved, so that very small values of σSD

χ̃0
1−p

in general correspond to much larger σSD
χ̃0
1−n, and vice versa.

As for the other two cases, a large range of σSD
χ̃0
1−p and σSD

χ̃0
1−n values is included

in the 2D confidence regions for the “Planck upper limit” analysis, with the lowest

cross-sections corresponding to both almost pure Bino and almost pure Wino dark

matter. The PL contours extend to slightly larger cross-section values than for

the “All data” and “w/o g - 2” analyses, as mixed (W,H) neutralino LSPs are

favoured at 68% level (cf. Fig. 9.8). As can be seen from Eq. (9.10), for well-

95% region favoured in the “All data” case, including the island at mχ̃0
1
∼ 1 TeV. However, in this

region strong fine-tuning of the parameters is required to obtain an acceptable fit to the observables,
in particular gμ − 2. After relaxing the constraint on Ωχh

2, which drives the scan towards these
regions, less time is spent by the scan to tune the observables in this area of parameter space, and
a good fit is not achieved.
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Figure 9.9: 2D profile likelihood in the (Ωχh
2, σSI

χ̃0
1−p

) plane for the “Planck upper

limit” analysis. The black/filled contours show the 68%, 95% and 99% confidence regions;
the encircled black crosses represent the best-fit points. A large range of neutralino relic
density values are included in the 2D PL contours; Ωχh

2 ∼ ΩDMh2 ≈ 0.1 is favoured at
68% confidence level.

tempered neutralinos with M2 ≈ μ, the Higgsino asymmetry is maximised, leading

to a significant Z exchange contribution to σSD
χ̃0
1−p,n.

Finally, for all three cases considered, the maximum values of σSD
χ̃0
1−p and σSD

χ̃0
1−n

that are included in the PL contours decrease as a function of mχ̃0
1
. This is explained

by the larger mass splitting μ2 −M2
i that, in general, is found with increasing mχ̃0

1
,

leading to a smaller Higgsino asymmetry (see Eq. (9.10)) and thus a decrease in the

spin-dependent scattering amplitude.

In Fig. 9.9 we show the 2D PL in the (Ωχh
2, σSI

χ̃0
1−p) plane for the “Planck

upper limit” analysis. The PL contours encompass a large range of neutralino

relic densities, extending to values just above Ωχh
2 ∼ 10−6. Regions at very small

Ωχh
2 <∼ 10−3 and relatively large spin-independent cross-sections correspond to a

well-tempered neutralino LSP, with wf � hf . For such a mixed (W,H) state, co-

annihilations with charginos and heavier neutralinos can significantly reduce the

relic density with respect to the value measured by Planck. A second area at small

Ωχh
2 ∼ 10−4 that is favoured at 95% confidence level shows up at slightly lower

σSI
χ̃0
1−p

<∼ 10−10 pb. This region corresponds to a Wino-like LSP, for which σSI
χ̃0
1−p is

reduced with respect to the well-tempered neutralino scenario. As mentioned above,

Wino-like neutralinos annihilate very efficiently, and in general lead to a relic density

value significantly below the Planck upper limit for mχ̃0
1
∼ O(100) GeV. The region
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of parameter space in which 10−4 <∼ Ωχh
2 <∼ 10−1 corresponds to a range of different

neutralino compositions, including Bino-like, Wino-like and Higgsino-like LSPs, as

well as different mixed states. A notable feature is the region at Ωχh
2 ∼ 10−3

that extends to very small cross-section values. In this region the neutralino is an

almost pure Wino state, leading to a suppression of the spin-independent cross-

section (additionally, cancellations between different contributions to σSI
χ̃0
1−p play

a role, see the discussion above). Values of Ωχh
2 ∼ 10−1 correspond to Bino-

like states, which in general lead to larger relic density values than Wino-like or

Higgsino-like neutralinos. The cutoff at large Ωχh
2 is a consequence of the upper

limit placed on the neutralino relic density by the Planck measurement of the dark

matter abundance.

Notice that, for large spin-independent cross-section values, a negative correla-

tion between σSI
χ̃0
1−p and Ωχh

2 can be observed, so that the smallest allowed values

of Ωχh
2 correspond to a very large σSI

χ̃0
1−p. This correlation is a result of the scaling

Ansatz adopted for the analysis (see Eq. (9.2)), which shifts the XENON100 limit

towards larger cross-sections as the relic density falls below the value measured by

Planck.

9.3.5 Impact of LHC constraints on SUSY and the Higgs

couplings

In this section we discuss the impact of ATLAS null searches for SUSY and CMS

measurements of the Higgs signal strengths on the favoured regions of the MSSM-15

parameter space, as determined in the above profile likelihood analysis. In particu-

lar, we investigate the joint impact of the 0-lepton and 3-lepton inclusive searches by

the ATLAS collaboration (see Section 9.2.4), which place constraints on the masses

of the first- and second-generation squarks and the gluino, and on the electroweakino

masses, respectively.

The evaluation of the ATLAS likelihood function is numerically very demanding:

the post-processing of all samples generated for the MSSM-15 analysis presented in

the previous sections would require an estimated computational expense of 400 CPU

years. This considerable task is the subject of a dedicated work, that is currently

in preparation by the authors of Ref. [415]. Instead, in this section we adopt an

intermediate approach, with the aim to provide an indicative assessment of the

impact of LHC SUSY null searches and measurements of the Higgs couplings on

the favoured regions of the MSSM-15 parameter space. In what we call the “mini-

chains” approach, we first produce profile likelihood maps from the full chains for
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several 2D planes of interest. During this process, we generate several thousands of

profile likelihood values in each 2D plane (given typical bin sizes), which, for each

plane, form a “mini-chain” containing the points of highest likelihood in each bin.

We post-process these mini-chains to compute the combined χ2 contribution from

the ATLAS 0-lepton and 3-lepton SUSY searches and the CMS constraints on the

signal strengths for five different Higgs boson decay channels (quantities tagged with

† in Table 9.2).

We emphasise that this is not a fully consistent statistical approach, and that

the obtained maps can not be interpreted probabilistically as profile likelihood maps.

However, the mini-chains approach does allow us to draw qualitative conclusions re-

garding the impact of LHC SUSY searches and measurements of the Higgs couplings

on the MSSM-15. In particular, mini-chain points that are not ruled out by the

post-processing with the LHC constraints would remain viable even in a full profile

likelihood analysis. Therefore, our approach provides an indication of the maximal

constraining power of the included ATLAS and CMS data sets (in the plane under

consideration).

In Fig. 9.10 we show the impact of the ATLAS null searches for SUSY in the 0-

lepton and 3-lepton channels and the CMS constraints on the Higgs signal strengths

in the planes of gluino mass vs. average squark mass (left), lightest chargino mass vs.

lightest neutralino mass (centre) and lightest neutralino mass vs. spin-independent

cross-section (right). Top (bottom) panels show results for the “All data” (“w/o g -

2”) analysis; the LHC impact on these planes for the “Planck upper limit” analysis

(not shown) is qualitatively very similar to the “All data” case. The colour coding

indicates the combined χ2 contribution from the LHC data sets included at the

post-processing stage. For cyan points the LHC impact is ≤ 1σ, pink points are

disfavoured with a significance of > 1σ and ≤ 4σ, and grey points are excluded

at > 4σ level by the LHC constraints. We only show mini-chain points that were

included in the 99% confidence regions prior to the inclusion of the LHC data sets.

As can be seen in the left-hand panels of Fig. 9.10, the ATLAS 0-lepton search

has a strong impact on the MSSM-15 parameter space, ruling out squark and gluino

masses <∼ 1 TeV. Additionally, the measurements of the Higgs signal strengths place

significant constraints on this plane. In particular, in the regions most strongly

affected by the Higgs signal strength constraints we observe a suppression of the hbb̄

(and, to a lesser extent, the hτ+τ−) coupling. As a consequence of this suppression,

the branching ratios to other final states are enhanced, leading to values of the

signal strengths in conflict with the experimental measurements. Specifically, the

constraint on μW+W− generally dominates the contribution to the total χ2 from the
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Figure 9.10: Impact of LHC SUSY null searches and measurements of the Higgs
properties. The scatter plots show the contribution of the 0-lepton and 3-lepton ATLAS
SUSY searches, based on 4.7 fb−1 of data at a centre-of-mass energy of

√
s = 7 TeV,

and the CMS measurements of the Higgs signal strengths, based on ∼ 5 fb−1 of data at√
s = 7 TeV collision energy and up to ∼ 19 fb−1 of data at

√
s = 8 TeV collision energy,

to the χ2 of the points in the 2D mini-chains; the colour scale indicates the extent to
which each point is disfavoured by the LHC results (cyan: < 1σ, pink: > 1σ and < 4σ,
grey: > 4σ). Top (bottom) panels show results for the “All data” (“w/o g - 2”) analysis.
The encircled black crosses represent the best-fit points prior to inclusion of the LHC
constraints. For the “All data” case, the pre-LHC best-fit point is excluded by the LHC
data sets; the mini-chains point that leads to the lowest χ2 after inclusion of the LHC
constraints is indicated by the black star. The best-fit point for the “w/o g - 2” analysis
remains viable in light of the LHC constraints. Both the ATLAS 0-lepton search and the
constraints on the Higgs signal strengths have a strong impact on the favoured regions
of the MSSM-15 parameter space; the impact of the ATLAS 3-lepton search is somewhat
more limited.

Higgs couplings, as the central value μW+W− = 0.76 is below the SM prediction, and

the experimental error for this quantity is relatively small.

At tree-level, one would expect the Higgs couplings to be approximately SM-

like, as mA
>∼ 1 TeV for the vast majority of points in the mini-chains. However,

this argument does not necessarily hold when higher-order corrections are taken into

account. Specifically, in Ref. [299] it was demonstrated that SUSY QCD (SQCD)

corrections to the the hbb̄ coupling can be significant even for large values of mA,

provided that one or both of the sbottoms are light (msbottom1/1,2 < 1 TeV) and/or

tan β is large. We have verified that this is the case for the regions most strongly
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affected by the constraints on the Higgs signal strengths, for all planes shown in

Fig. 9.10.

The effect of full decoupling can be observed in a narrow vertical region of

cyan points at large mgluino ∼ 5 TeV, for both the “All data” and the “w/o g -

2” analysis. In this region, the values of the Higgs signal strengths are in good

agreement with the SM predictions, and the LHC contribution to the χ2 is small.

However, even though mgluino is very large, the constraints on the Higgs couplings

still have an impact at low msquark, as these points correspond to very large tan β

values, tan β ∼ 50, for which the onset of decoupling is significantly delayed [299].

Note that the ATLAS searches in the 3-lepton channel also have an effect on the

points in this plane. In particular, for the “All data” case (top left-hand panel)

this channel impacts on a region at relatively low values of msquark and mgluino (but

above the ATLAS 0-lepton limit), as these points correspond to very small values

of mχ̃0
1
and mχ̃±

1
. Additionally, the 3-lepton search disfavours a number of points

at very large values of msquark and mgluino. For the “w/o g - 2” case, the impact of

the 3-lepton search is significantly weaker, due to the larger preference for a heavy

neutralino LSP compared to the “All data” analysis (cf. Fig. 9.4 above).

In general, the impact of the ATLAS searches in the 3-lepton channel is rela-

tively weak compared to the 0-lepton searches. In fact, for the “All data” analysis,

the majority of the points in the (mχ̃±
1
,mχ̃0

1
) plane that are excluded at > 4σ level by

the LHC constraints (grey) correspond to very low squark masses, and are thus ruled

out at high confidence by the 0-lepton search, rather than the 3-lepton search. The

constraints in the corresponding plane for the “w/o g - 2” analysis are significantly

weaker, as for this analysis low values of msquark are disfavoured compared to the

“All data” case (cf. Fig. 9.4), so that the impact of the (dominant) 0-lepton channel

is reduced. The constraints on the Higgs signal strengths also impact on this plane,

disfavouring points that are in tension with the SM predictions for a large range of

mχ̃0
1
and mχ̃±

1
values.

The impact of the LHC data sets on the (mχ̃0
1
, σSI

χ̃0
1−p) plane is shown in the right-

hand panels of Fig. 9.10. As can be seen, for the “All data” case, the LHC data rule

out a large number of points at low and intermediate neutralino masses, that were

previously strongly favoured; as explained above, this is mainly a consequence of the

0-lepton search. Therefore, for smallmχ̃0
1

<∼ 300 GeV, ATLAS null searches for SUSY

have a powerful impact, ruling out points corresponding to spin-independent cross-

sections orders of magnitudes below the reach of present and future direct detection

experiments (and indeed below the “ultimate” limit presented by the solar neutrino

background [159]). In contrast, for the “w/o g - 2” analysis, the mini-chain points

250



9.3 Results

Ωχ

σ
σ

σ σ
σ

Figure 9.11: Impact of LHC SUSY null searches and measurements of the Higgs prop-
erties in the (Ωχh

2, σSI
χ̃0
1−p

) plane for the “Planck upper limit” analysis. As in Fig. 9.10.

The pre-LHC best-fit point (encircled black cross) is excluded by the LHC data sets;
the mini-chains point that leads to the lowest χ2 after inclusion of the LHC constraints
is indicated by the black star. The LHC data sets have a strong impact on this plane,
and disfavour points corresponding to a large range of relic density and spin-independent
cross-section values.

in the (mχ̃0
1
, σSI

χ̃0
1−p) plane correspond to larger squark masses (on average) than

for the “All data” case, so that the (dominant) 0-lepton analysis has a relatively

weak impact on this plane. As a result, several points corresponding to small mχ̃0
1

remain viable in light of the LHC constraints. Note that at larger neutralino masses

mχ̃0
1

>∼ 500 GeV the MSSM-15 parameter space is almost unaffected by results from

LHC SUSY searches, but can be constrained by precise measurements of the Higgs

signal strengths.

In Fig. 9.11 we show the impact of the LHC data sets in the (Ωχh
2, σSI

χ̃0
1−p)

plane for the “Planck upper limit” analysis. As can be seen, the LHC constraints

have a significant impact on this plane, ruling out a large fraction of the mini-chain

points, corresponding to a broad range of different Ωχh
2 and σSI

χ̃0
1−p values. As for

the “All data” analysis, the ATLAS 0-lepton search has a particularly strong effect,

since most of the points in this plane correspond to relatively light squarks with

msquark ∼ O(100) GeV. Both the CMS constraints on the Higgs signal strengths

and the ATLAS searches in the 3-lepton channel also impact on this plane, dis-

favouring points corresponding to a range of relic densities and spin-independent

cross-sections. A broad region at intermediate and small values of σSI
χ̃0
1−p and Ωχh

2

remains viable after the inclusion of the LHC constraints. The same is true for a
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narrow area at very large spin-independent cross-section values, corresponding to a

well-tempered neutralino LSP (see Section 9.3.4).

Finally, we turn to the discussion of the impact of the ATLAS null searches

for SUSY in the 0-lepton and 3-lepton channels and the CMS constraints on the

Higgs signal strengths on the MSSM-15 best-fit points identified in the previous

sections (see Table 9.3). The pre-LHC best-fit point for the “w/o g - 2” analysis

remains viable in light of the LHC constraints, with a post-LHC χ2 of 9.44. On one

hand, this is a consequence of the relatively large best-fit gluino and squark masses

(mgluino = 2.83 TeV, msquark = 1.55 TeV). On the other hand, even though the

production cross-section of the lightest chargino and the second lightest neutralino

is large, their branching ratios to leptons are only a few percent. As a result, the

signal prediction for the ATLAS 3-lepton search analysis is compatible with the data

at the 1σ level. In contrast, the LHC data sets impact strongly on the pre-LHC best-

fit points for the “All data” and “Planck upper limit” cases, leading to post-LHC

χ2 values of 1054.32 and 267.52, respectively. The best-fit points identified in the

mini-chains for these two analyses after inclusion of the LHC constraints are given

in Table 9.3. In particular, for both the “All data” and the “Planck upper limit”

analysis the post-LHC best-fit point was taken from the (mgluino,msquark) mini-chain.

Prior to the post-processing, these points correspond to χ2 values that are within 1σ

of the pre-LHC best-fit χ2. The combined χ2 contribution from the LHC data sets

for these points is Δχ2(LHC) = 0.81 (“All data”) and Δχ2(LHC) = 0.76 (“Planck

upper limit”). Therefore, the post-LHC best-fit points given in Table 9.3 are in good

agreement with all experimental data sets considered in this analysis, including the

LHC constraints.

Compared to the pre-LHC best-fit points for the “All data” and “Planck upper

limit” analyses, we observe a shift of the squark mass to the multi-TeV regime

(2.3 TeV and 5.9 TeV, respectively), a slight increase in mχ̃0
1
(134 GeV and 128 GeV,

respectively), and a gluino mass of ∼ 1 − 2 TeV. The “All data” post-LHC best-

fit point is within the reach of the upcoming LHC run at increased centre-of-mass

energy [209]. Additionally, the spin-independent cross-section for this point, σSI
χ̃0
1−p =

2.3×10−10 pb, is accessible to the next generation of multi-ton scale direct detection

experiments [346, 126].

9.4 Conclusions

In this chapter we have presented global fits of a 15-dimensional phenomenological

MSSM, including the Planck measurement of the dark matter relic density, direct
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detection limits on the dark matter properties, precision tests of the SM, constraints

on the mass and couplings of the lightest Higgs boson and results from ATLAS null

searches for SUSY in two different channels. We have obtained statistically conver-

gent profile likelihood maps of the MSSM-15 parameter space, and have provided a

detailed analysis of the rich phenomenology of this model. In particular, we have

determined the properties and composition of the neutralino LSP that are favoured

by the included experimental constraints, and have discussed the phenomenological

implications for collider searches and dark matter direct detection experiments. We

have compared the results for both the case in which the lightest neutralino is the

sole constituent of the dark matter in the Universe, and scenarios in which it may

be a subdominant dark matter component. We have also evaluated the impact of

the constraint on the anomalous magnetic moment of the muon on global fits of

the MSSM-15. We have found that this constraint has a strong effect on our profile

likelihood maps, and plays a dominant role in disfavouring heavy neutralino LSPs

with mχ̃0
1

>∼ 1.5 TeV.

The majority of the MSSM-15 parameters are relatively weakly constrained by

the data sets included in our global fits analysis. In particular, the profile likelihood

functions for the squark and the gluino mass are almost flat within the investigated

parameter ranges. An important exception are the parameters related to the dark

matter phenomenology, M1, M2 and μ. Small values of these quantities are strongly

preferred, mainly as a result of the relic density constraint, the measurement of the

muon anomalous magnetic moment and some of the flavour observables. As a result,

light neutralinos are favoured, and the profile likelihood function for the mass of the

neutralino LSP peaks at very small values mχ̃0
1

<∼ 100 GeV, for all considered cases.

The rich phenomenology of the MSSM-15 manifests itself in a broad range of

neutralino compositions. For single-component dark matter scenarios, a Bino-like

LSP with a mass of ∼ 60 GeV is strongly favoured, although Higgsino-like dark

matter with mχ̃0
1
∼ 1 TeV is allowed at 95% confidence level. Upon exclusion of

the constraint on the anomalous magnetic moment of the muon from the analysis,

the profile likelihood function for the mass of the neutralino LSP can extend up to

∼ 3 TeV, and Wino-like dark matter with a mass of ∼ 2 TeV is favoured at 95%

level. In the case where the Planck measurement of the dark matter relic density

is applied as an upper limit on the relic abundance of the neutralino LSP, the

favoured neutralino compositions are substantially different. In particular, the bulk

of the favoured parameter space corresponds to a Wino-like (instead of Bino-like)

neutralino LSP and mixed Wino-Higgsino states are favoured at high confidence.

We have found that a large range of spin-independent and spin-dependent
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cross-section values can be achieved in the MSSM-15, with extremely small spin-

independent scattering cross-sections, ∼ 10−20 pb, favoured at 68% confidence level.

While upcoming experiments can probe some of the preferred regions, a sizeable por-

tion of the favoured MSSM-15 parameter space is outside the reach of any current

or future direct detection experiment. This is in sharp contrast to simplified SUSY

scenarios such as the cMSSM and the NUHM, for which much larger cross-section

values σSI
χ̃0
1−p > 10−11 pb are favoured, and direct detection prospects are generally

positive (see Chapters 7 and 8).

We have demonstrated that both LHC null searches for SUSY and constraints

on the Higgs signal strengths can have a significant impact on the favoured regions

of the MSSM-15 parameter space. Additionally, we have found that the LHC data

sets are highly complementary to results from direct detection experiments. In par-

ticular, ATLAS null searches for SUSY can provide stringent constraints on regions

of the parameter space that are inaccessible to direct detection experiments in the

foreseeable future. This further strengthens the case for a combined analysis of data

from astro-particle physics experiments and accelerator searches. The best-fit point

obtained after inclusion of all data sets is within the reach of both future multi-ton

scale direct detection experiments and the upcoming LHC run at increased centre-

of-mass energy.
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Chapter 10

Summary and conclusions

In this thesis we have presented a multi-messenger approach towards the characteri-

sation of particle dark matter. We have combined data sets from a range of different

experimental probes to derive the favoured dark matter properties in the context

of theoretical particle physics models, with a special focus on supersymmetric neu-

tralino dark matter. We have evaluated prospects for future supersymmetry (SUSY)

and dark matter searches, and have studied in detail the capabilities of future direct

detection experiments to reconstruct the physical properties of dark matter given a

significant detection in one or more future detectors.

In Chapter 6 we investigated the fundamental statistical limitations of future

dark matter direct detection experiments. We considered 36 different dark matter

models within the discovery reach of upcoming ton-scale experiments, and assessed

the effect of unavoidable statistical fluctuations in the data realisations by studying

the statistical properties of approximate profile likelihood-based confidence intervals.

We found that the intervals exactly cover or over-cover the true values of the WIMP

parameters, and hence are conservative. In contrast, the precision and accuracy

of the parameter reconstruction can be poor. A large uncertainty or bias on the

reconstructed dark matter parameter values is characteristic of heavy WIMPs, but

was also observed for intermediate-mass dark matter models leading to > 100 recoil

events, due to the statistical fluctuations that impact on each individual data set.

We demonstrated that both the coverage properties and the accuracy and precision

of the parameter reconstruction can be improved considerably both by combining

data sets from two independent experiments with different target materials, and by

increasing the exposure of the experiment(s).

In Chapter 7 we presented a global fits analysis of the constrained Minimal

Supersymmetric Standard Model (cMSSM), and evaluated the combined impact of

null searches for SUSY by accelerator experiments, the Higgs boson discovery, and
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constraints on dark matter from cosmology and astro-particle physics experiments

on the model parameter space. We demonstrated that the combination of SUSY

limits from the Large Hadron Collider (LHC) and data from the XENON100 dark

matter experiment can provide stringent bounds on the cMSSM parameters, high-

lighting the complementarity of collider experiments and direct detection searches.

Direct detection data were found to have a strong impact even when astrophysical

and nuclear physics uncertainties are taken into account. We observed that a lightest

Higgs boson mass of ∼ 126 GeV is difficult to achieve in the cMSSM, and requires a

significant amount of fine-tuning. We concluded that finding regions in the cMSSM

parameter space in which all experimental constraints are simultaneously satisfied

is becoming increasingly difficult; in particular, the measurement of the anoma-

lous magnetic moment of the muon is in conflict with several other experimental

results. Future discovery prospects are generally positive, but detailed conclusions

were found to depend strongly on the statistical perspective. The profile likelihood

function prefers low squark and gluino masses, that will be explored by the LHC

operating at
√
s =14 TeV collision energy. In contrast, the regions favoured from the

Bayesian perspective correspond to heavier sparticles, but lead to encouraging de-

tection prospects at future direct detection experiments. Indirect detection searches

currently have a very limited impact, but future data sets from the Fermi-LAT will

probe a sizeable fraction of the currently favoured cMSSM parameter space.

In Chapter 8 we performed a global fits analysis of the Non-Universal Higgs

Model (NUHM), which relaxes some of the high-energy boundary conditions of the

cMSSM. We evaluated the combined impact of results from particle accelerators, cos-

mology experiments and direct detection searches on the NUHM parameter space

and studied the phenomenological implications. We found that Higgsino-like dark

matter with mχ̃0
1
∼ 1 TeV is strongly favoured, and heavy squarks and gluinos are

preferred, leading to negative detection prospects at the LHC. On the other hand,

large neutralino scattering cross-sections are favoured, and the entire 99% credi-

ble/confidence region will be probed by future direct detection experiments. This

illustrates the importance of including astro-particle data sets in analyses of super-

symmetric models, as these experiments can explore regions of parameter space that

are inaccessible to the LHC. In light of the significant phenomenological differences

between the cMSSM and the NUHM, it should be possible to distinguish experi-

mentally between these two models given a positive signal in a future experiment.

In Chapter 9 we presented profile likelihood maps of a 15-dimensional phe-

nomenological MSSM (MSSM-15). We found that, in sharp contrast to the above

simplified SUSY models, most of the MSSM-15 parameters are relatively weakly
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constrained by the existing experimental results, with the exception of the param-

eters related to the dark matter phenomenology. We observed that a broad range

of different neutralino compositions can be achieved in the MSSM-15. Light Bino-

like dark matter with mχ̃0
1
∼ 60 GeV is most favoured, although Higgsino-like dark

matter with mχ̃0
1
∼ 1 TeV is allowed at lower confidence. Upon exclusion of the con-

straint on the anomalous magnetic moment of the muon, Wino-like dark matter with

mχ̃0
1
∼ 2 TeV is allowed. When relaxing the assumption that the lightest neutralino

is the sole constituent of dark matter, Bino-like, Wino-like, Higgsino-like and mixed

states are all favoured at 68% confidence level. Extremely small spin-independent

scattering cross-sections ∼ 10−20 pb are allowed at high confidence, so that a size-

able fraction of the preferred MSSM-15 parameter space is outside the reach of any

current or future direct detection experiment. We demonstrated that both LHC null

searches for SUSY and constraints on the Higgs couplings have a significant impact

on the favoured model parameter space, and can place stringent constraints on re-

gions that are inaccessible to direct detection experiments. This further strengthens

the case for a combined analysis of data from astro-particle physics searches and

collider experiments. The overall best-fit point is within the reach of both future

multi-ton scale direct detection experiments and the upcoming LHC run at
√
s =14

TeV centre-of-mass energy.

The central strategy underlying the work presented in this thesis is the appli-

cation of a multi-messenger global fits approach that combines results from cosmol-

ogy, astrophysics and particle physics experiments to probe models of dark matter

and weak-scale supersymmetry. We have applied advanced statistical and numeri-

cal techniques to achieve a detailed exploration of SUSY models, and to constrain

the nature and physical properties of supersymmetric dark matter in a statistically

consistent manner. We have developed new methodologies that overcome the sta-

tistical challenges presented by the high dimensionality and complicated likelihood

function of SUSY parameter spaces, and have successfully applied these techniques

to study several theoretically well-motivated models of supersymmetry. The global

fits approach adopted in this thesis is much better suited to the complexity and

interdisciplinary of the dark matter problem than more simplified methodologies

(random scans, grid scans), as it allows for a quantitative probabilistic interpreta-

tion of results, and can fully incorporate the effects of uncertainties. As a result,

we were able to derive robust and statistically meaningful constraints on the model

parameters and the properties of supersymmetric dark matter.

Global fits can be used both to infer the parameter combinations and observable

particle properties that are most favoured by the existing experimental constraints,
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and to determine the viability of theoretical models of new physics. The majority

of the global fits analyses presented in the literature focus on low-dimensional (toy)

models of SUSY, such as the cMSSM or the NUHM. We have demonstrated that a

number of experimental measurements are putting strong pressure on these simpli-

fied scenarios, and emphasised the limitations of studying SUSY and dark matter

phenomenology in the context of constrained models of supersymmetry. We have

presented a global fits analysis pipeline that can accurately explore high-dimensional

SUSY models in a numerically feasible manner, and applied it to obtain the first sta-

tistically convergent profile likelihood maps of a 15-dimensional phenomenological

MSSM. This model presents a more complete description of the MSSM phenomenol-

ogy, making it a much more suitable framework for phenomenological studies of

SUSY than the commonly studied constrained scenarios. In addition, it provides

a realistic set-up in which to evaluate the viability of minimal supersymmetry in

light of current and upcoming experimental results and to derive robust predictions

about the properties of supersymmetric dark matter in the MSSM. The extension

of the global fits approach from highly simplified SUSY frameworks to realistic phe-

nomenological models is one of the main accomplishments of this thesis.

The search for SUSY will enter a new era with the upcoming LHC run at√
s =14 TeV collision energy. At the same time, a broad range of astrophysical

and astro-particle physics experiments will probe so far unexplored regions of the

dark matter parameter space. We have presented a thorough assessment of the ca-

pabilities of next-generation direct detection experiments to reconstruct the WIMP

properties and have investigated several approaches to achieve an improved param-

eter reconstruction. The outcome of this study will facilitate obtaining an accurate

characterisation of the dark matter particle in the case of a positive WIMP signal.

Furthermore, we have provided an appropriate theoretical and statistical framework

for global fits of realistic SUSY models that can be applied to extract the nature

and properties of dark matter in the case of a future detection of supersymmetry.

We have presented global fits analyses of three different models of minimal SUSY

and have derived the favoured properties of both the supersymmetric dark matter

particle and the sparticles that are of greatest relevance for LHC searches. Given the

vast parameter space of supersymmetry, this information is extremely valuable, as it

provides guidance on which regions of the parameter space are most promising to ex-

plore with future searches, and pinpoints the experimental signatures characteristic

of supersymmetric dark matter. These results are essential to develop an experi-

mental strategy that maximises the prospects for the discovery of supersymmetry

and dark matter in the next few years.
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