

Bulk Viscosity near QCD phase transition and Spontaneous Chiral Symmetry Breaking Effect

Waseem Bashir ^{1,*}, Abdul Hamid Nanda ²,
Rameez Ahmad Parra ³, and Iqbal Mohiuddin ⁴

¹ Department of Physics, ASC, Cluster University Srinagar, Kashmir - 190008, INDIA

² Department of Physics, Guru Nanak University,
Telangana, Hyderabad - 501506, INDIA

³ Department of Physics, University of Kashmir,
Hazratbal, Srinagar - 190001, INDIA and

⁴ Department of Physics, Jamia Millia Islamia, New Delhi-110025, INDIA

We consider a strongly interacting fermionic matter that is in a state with spontaneously broken chiral symmetry. Invoking quasi-particle description for strongly interacting fermions with dynamic quasi-particle excitations we evaluate the thermodynamic properties of this matter in relativistic mean-field approximation. Taking into consideration Boltzmann transport equations in relaxation time approximation we evaluate the transport properties of this medium. It is found that due to the coupling of fermionic quasi-particle excitations and σ modes (whose strength is governed by the expectation value of Chiral Condensate in this model) ζ/s can get singular near transition region both along $O(4)$ transition line and in $Z(2)$ universality class. Our results remain applicable in the limit of vanishing expectation value of Chiral Condensate that is in the limit $T \sim T_C$, where σ field strength is given by its vacuum expectation value.

1. Introduction

The dynamics of strongly interacting matter can be evaluated by estimating the transport properties of the system under consideration. These properties are encoded in shear and bulk viscosity of the medium and are of immense significance for understanding the nature of QCD matter. The behaviour of these transport coefficients can provide important information regarding the dynamics of the strongly interacting matter and importantly about their dynamics near region of phase transition [1–3]. In case of Hadron Resonance Gas model it has been found that ζ/s becomes singular near transition region due to the effect of Hagedorn states. For $SU(3)$ gluodynamics, bulk viscosity can get singular near transition region due to fast growth of thermal expectation value of trace of energy momentum tensor. A similar result invoking Kubo formalism, low energy theorems of QCD and Lattice data was reported near critical re-

gion of phase transition. In this article we utilize Linear Sigma model for fermionic matter in a state with broken continuous symmetry and arrive at a description in terms of dynamic quasiparticle fermionic excitations that are coupled to σ and $\vec{\pi}$ modes. We show that singular behaviour of ζ/s near transition region is a general result and arises due to the coupling of fermionic quasiparticle excitations with the σ modes that are generated due to spontaneous chiral symmetry breaking in case of QCD phase transition.

MODEL: Let us consider a Linear Sigma model in presence of arbitrary interactions among fermions

$$\begin{aligned} \mathcal{L} = & \bar{\psi} (iD) \psi + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \vec{\pi})^2 + g \bar{\psi} \psi \sigma \\ & + ig \bar{\psi} \vec{\tau} \gamma_5 \psi \cdot \vec{\pi} - \frac{\mu^2}{2} (\sigma^2 + \vec{\pi}^2) \\ & - \frac{\lambda}{24} (\sigma^2 + \vec{\pi}^2)^2 + \frac{1}{4} X_{\mu\nu} X^{\mu\nu}, \end{aligned} \quad (1)$$

where ψ is fermionic field, $D \equiv \gamma^\mu D_\mu$, with covariant derivative $D_\mu = \partial_\mu - ie\chi_\mu$, e is the charge on fermion and χ_μ is the four-potential of exchange field. μ^2 is the mass term and

*Electronic address: bashir_waseem@yahoo.com

