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3D integration and miniaturization techniques get more widely used in conventional integrated circuits 
but also represent crucial ingredients for future quantum computing devices. This consolidates the 
need for efficiently detecting increasingly small defects on wafer size. Here we present a time-efficient 
and accurate way of measuring, localizing and statistically classifying defects down to the micrometer 
regime, utilizing a combination of scanning acoustic microscopy (SAM), You Only Look Once object 
detection, semantic segmentation and a machine learning super-resolution (ML-SR) approach. In 
particular, we test the capabilities of different ML-SR approaches to enable self-supervised quality 
enhancement of the measured image data. We reveal that the developed AI-powered workflow 
enhances time-efficiency by a factor of around 4x and 6x for the TSV and delamination analysis, 
respectively. Yet, the mentioned approach is not limited to SAM image data but presents a general way 
for speeding-up failure analysis in various fields.

Parallel to the trend of miniaturization and high-density integrated circuit (IC) technologies in classical 
computation, quantum computing (QC) provides another emerging field harnessing quantum mechanical 
instead of classical binary algorithms1. Hence, QC offers the possibility of solving computational problems 
beyond the ability of the most powerful classical computers. Quantum computers are proposed to perform 
especially well in cases where optimization problems play a large role, like in modelling molecular energy 
levels2–4, machine learning5–7, etc. In order to achieve this quantum supremacy, several quantum bit (qubit) 
implementations are discussed in research but also in context to industrial applications. Approaches include 
the use of vibrating molecules8, resonating superconductors6,9, spin qubits10–12, photons1,7, atoms13,14 or ion 
traps15,16. However, ultimately for the establishment of QC into the society, qubit up-scaling displays an essential 
ingredient. At this point ion traps, in particular, offer great potential not only due to high confinement forces, 
as well as unparalleled control at the single-atom level, but also by allowing high scalability by being CMOS 
fabrication compatible16,17.

Even though several recent advancements in lab-based quantum technologies emerged, challenges remain 
towards industrialization in context to integration and miniaturization15,18,19. 3D integration technology 
and miniaturization techniques have evolved rapidly in recent years for classical microelectronic devices 
to retain Moore’s law1,20 and enable the development of higher-density circuits with improved performance 
and efficiency21,22. The application of 3D integration techniques not only brings benefits to classical hardware 
architectures but also to QC technologies utilizing silicon wafer platforms18,23. It offers denser integration 
of qubits, improved control for the electronics as well as exhibits reduced wiring24. In general, wafer-to-
wafer bonding25–27 displays a 3D integration technology for stacking multiple heterogenous chips with high 
3D interconnect densities. Of special importance in this context are vertical electrical connections passing 
completely through the silicon wafers or dies. Electrical interconnects, such as through-silicon vias (TSVs), 
enable the reduction of signal-delays and power consumption28,29.

Nevertheless, to meet the unique requirements of QC, wafer bonding- and TSV-technologies have to be 
adapted. This is, however, not without challenges, since bonding and TSV production processes are delicate 
and small imperfections during electroplating, etching or oxide-removal can lead to the failure of the whole 
device30,31. TSVs, for example, show various defect types including voids resulting from electroplating31, 
adhesion problems arising due to thermal expansion mismatch28 or cracks resulting from global stress in the 
die warpage28,32. Wafer bonding techniques, on the other hand, mainly suffer from failure generation due to 
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insufficient adhesion properties between the two bonded wafers or void formation26,27,33. Hence, there is a need 
for fast, accurate and, above all, automated failure analysis workflows suitable to operate non-destructively on 
wafer-level with the ability to collect statistically relevant information, and ultimately to enhance production and 
device quality with reduced device failure.

Scanning Acoustic Microscopy (SAM) offers an efficient method to carry out non-destructive failure analysis 
in the field of microelectronics and power semiconductors34–36. The achievable resolution and contrast of SAM is 
restricted by the utilized frequency of the acoustic waves and the number of pixels to be resolved37,38. Increasing 
the number of scanned pixels enables the detection of smaller defects, however goes also with an increased 
scanning time. Therefore, the scanning of large areas incorporating the whole wafer area with high resolution 
and contrast is time-consuming and costly. Additionally, a lower practical limit is set to around several hundred 
nanometers by the physical properties of high frequency acoustic waves, which are absorbed by the coupling 
medium before penetrating into or reaching the sample37,38.

To solve the problem of long scanning times at high resolution, image enhancement approaches39 can be 
utilized. Whereas classical methods like bicubic- or spline-upscaling are a possibility for increasing resolution, 
they often perform mediocre in terms of restoring image quality40. A much more capable way of increasing image 
size is by the use of machine learning (ML)-based super-resolution algorithms. Super-resolution is a strongly 
discussed topic in literature dealing with imaging, and several different concepts have been proposed40–43. The 
discussed approaches reach from simple but capable convolutional neural networks (CNNs)42 and generative 
adversarial networks (GANs)41 to the impressive results of current generative diffusion44 or diffusion-like43 
models. GANs work by combining two models, a generator and a discriminator. The generators job is to generate 
high-resolution images from low-resolution images, whereas the discriminator tries to detect these fake high-
resolution images40,41. Instead of predicting the HR image in one go, like CNNs or GANs do, diffusion models 
use an iterative procedure to increase image fidelity step by step, also avoiding regression-to-the-mean43,45–47. 
However, most state-of-the-art super-resolution models need paired low- and high-resolution images for 
training and are not capable of being applied to out-of-domain real-world data48. Only very few super-resolution 
models, mainly based on self-supervised learning, tackle these problems49,50. Furthermore, the consideration 
of generative artificial intelligence hallucinations, creating a model output that is either nonsensical or false, 
is crucial for the selection of the model51,52. Onward, also energy consumption in combination with model 
performance are important selection criteria.

For the subsequent statistical defect analysis, object detection or segmentation algorithms can be employed53. 
Early ML-based methods utilize Random Forest and K-Nearest Neighbors algorithms for object detection34. In 
contrast to these methods, the recent sliding window technique, utilized within a convolutional neural network 
(CNN), shows great advantages for TSV localization in terms of speed and accuracy34. Even faster object 
detection can be performed by one-shot methods like You Only Look Once (YOLO)54,55 or transformer-based 
models56. For the segmentation of relevant features, various classical approaches like Canny Edge Detection57, 
Fringe Segmentation Techniques34 or thresholding as well as ML-based algorithm58 to process large amounts 
of image data, can be applied. However, all mentioned methods have problems in detecting objects close to the 
resolution limit, usually resulting in low localization, classification and segmentation accuracy59.

In this paper, we introduce a fully automated image analysis workflow, incorporating artificial intelligence-
based image enhancement, object detection and segmentation to inspect 3D integration technologies utilized 
in QC ion trap devices. The workflow is suitable to gain sufficient statistical data and allows accelerated and 
accurate defect analysis. In particular, non-destructive SAM is applied to measure image data on wafer-level for 
a bonded-wafer containing ion trap recesses as well as for TSV connections used in QC. A wafer with defined 
test structures showing different length scales is utilized beforehand to benchmark different image enhancement 
models including classical as well as artificial intelligence (AI)-based super-resolution algorithms. The different 
model architectures are tested (1)  on their ability to generalize on a large dataset and restrict unphysical 
hallucination but also (2) in terms of evaluation time and power consumption. Based on known metrics, the 
deep convolutional neural network with residual net, skip connection and a network in network (DCSCN) 
architecture showed its supremacy among classical and other ML-based image enhancement models. The 
workflow is enabled by passing the SAM image data to the mentioned super-resolution model, which increases 
image quality and, above all, enables further speed-ups in the SAM measurements. The artificially super-resolved 
images are then passed to an object-detection or segmentation algorithm to localize and classify defects in a 
specimen with TSV structures as well as analyze the adhesion quality of a bonded wafer specimen in a statistical 
manner. For the segmentation we utilize a ML-based U-Net architecture, whereas for the object detection, we 
introduce a fast YOLO approach, which speeds up the detection time by a factor of 60 in comparison to the state-
of-the-art TSV object-detection methods. The introduced workflow yields overall a saving in time, including 
the experimental data generation, of roughly 4x and 6x for the TSV and delamination analysis, respectively. 
Notably, the workflow is not limited to SAM generated image data and demonstrates the capabilities of modern 
ML-powered methods in the wide field of semiconductor manufacturing.

Results
SAM measurement and data generation
We utilize C-Scan SAM to generate the experimental data. Figure 1a shows the basic working principle of a SAM 
device. The transducer produces acoustic pulses which are focused via an appropriate lens onto the sample. 
From the intensity and travel time of the reflected acoustic waves, information on structure and possible defects 
are extracted. Additionally, the scanning resolution of the SAM device can be lowered, resulting in a smaller 
resolution while speeding up the measurement time. Furthermore, the effective resolution depends on the 
frequency of the acoustic waves used37.
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In this study, we exemplary investigate two specimens with two different 3D integrated technology-based 
building blocks on wafer level, crucial for the upscaling of trapped-ion QC devices. Figure 1b-c, illustrate the basic 
structure of the analyzed specimens. Further magnified C-scan images with different resolutions are provided. 
The first specimen, as shown in Fig. 1b, is fabricated by combining a fully metallized unstructured silicon as well 
as a glass substrate via eutectic bonding26 creating partly a MEMS based symmetrical 3D architecture providing 
more reliable trapping of the ions60, see Method section for further details. The ion trap recess is indicated on 
top of the wafer surface. We measure this wafer from the silicon side with two resolutions, namely with 300 μm/
px and 50 μm/px. For this, we utilize a piezo-electric transducer with a focus length of 8 mm, finally permitting 
a center frequency of 209 MHz at the specimen. The focus for the C-scan SAM image is selected to be at the Si-
eutectic interface at 5400 nanoseconds time-of-flight. Details with respect to time signal or A-scan are presented 
in Supplementary Note 1 and Supplementary Fig. 1.

The C-scan SAM image exhibits different grey values, which can be associated with the underlying different 
material phases and defect types originating from the eutectic bond between the wafers as well as delaminated 
areas. However, while the high-resolution (HR) 50 μm/px C-scan image displays sharp edges and good phase 
contrast, the low-resolution (LR) 300 μm/px image is pixelated and phases are harder to distinguish. This is 
especially problematic for resolution and contrast sensitive image analysis algorithms like object-detection and 
segmentation. In the utilized setting, the measurement of the 50 μm/px image takes around 6x longer than for 
the 300 μm/px image, due to its higher resolution. To leverage this problem and combine the high quality of the 
50 μm/px image with the low scanning times of the 300 μm/px image, AI-based image enhancement will be used.

The second specimen, displayed in Fig. 1c, contains 10,240 TSVs per ROI. For a precise measurement of 
the TSV structure, which exhibits an extension of only about 8 pixels, we utilize a tone-burst setup, see Method 
section for further details. The center frequency of the transducer is 200 MHz, resulting in a frequency of about 
205 MHz at the surface. The focus of the acoustic waves was selected to be at the surface of the wafer at around 
1315 ns time-of-flight, the opening angle of the utilized lens in the transducer is 60°. For scanning the ROIs, a 
resolution of 2 μm/px was chosen. Using a resolution of 1 μm/px approximately quadruples the time needed, if 
all other scanning parameters stay the same. Hence, image enhancement is used to speed-up measurements by 
using a lower scanner resolution and simultaneously enhance the accuracy of object detection on those images. 

Fig. 1.  Scanning principle of a SAM and two different QC 3D integration technology specimens. (a) Scanning 
principle of SAM. To obtain a HR image, the transducer sends out and receives acoustic pulses at many 
scanning points. When using a low resolution, the transducer excites fewer pulses resulting in a shorter 
scanning time. (b) For the first specimen, a schematic of a bonded wafer is illustrated. A glass and unstructured 
silicon substrate, both fully metallized, are bonded together via eutectic bonding. A SAM C-scan image from 
the whole wafer containing the ion trap recesses (white grey values) is shown. Further grey values within the 
image can be associated with different qualities of the eutectic bond (light grey) and delamination (white and 
dark grey). Two magnified C-scan images for the same region of interest (ROI) are displayed on the right. 
They are indicated as HR and LR. (c) The second specimen shows a wafer with five TSV structures, each 
ROI exhibits 10,240 TSVs. The ROIs are highlighted with the numbers 1 to 5. A magnified image of ROI 3 
is presented. A further zoom-in on the right highlights the TSV’s structure. HR and LR C-scan images are 
indicated. Winsam 8.24 software61 is employed for capturing and preprocessing the C-scan images.
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Further details regarding the specimens and setup are presented in the Method section and Supplementary 
Fig. 1.

Workflow—From data acquisition over image enhancement to failure analysis
The overall workflow for super resolution (SR) and the downstream image analysis is shown in Fig. 2. It consists 
of three stages including model selection, data acquisition and preprocessing, self-supervised learning and 
application of the trained SR model to resolution sensitive failure-analysis tasks, see Fig. 2a-c, respectively.

As depicted in Fig. 2a, a SR model architecture and learning strategy has to be chosen. This can be a supervised 
CNN like DCSCN, a SR-GAN or an iterative algorithm like InDI. Additionally, high resolution image data has to 
be collected by using SAM. C-scan images are then preprocessed by cropping and augmentation.

Inspired by ideas of current self-supervised real-world SR approaches50,62 the augmented HR images are 
then downscaled by nearest-neighbors to produce the corresponding LR counterparts. Using a simple nearest-
neighbors downscaling is justified by the fact that reducing the SAM scanning resolution is physically similar 
to deleting every second pixel in the image. To further ensure that the downscaled LR images looks realistic, 
multiplicative noise has to be added, since this is a common source of degradation in acoustic microscopy39. 
Lastly, we also employ Gaussian blurring and WebP compression to make the architecture more resilient to other 
degradation mechanisms. Multiplicative noise is applied with a probability of 30% and Gaussian blur as well as 
compression-noise is applied with a probability of 10% to every image. Details about training parameters and 
datasets used are available in the Methods section.

As can be seen in Fig. 2b, we use the final LR images as input to an exemplary SR model, which outputs 
images with higher-resolution. Image quality can now be measured in terms of a loss function to guide the 
training of the exemplary model. Nevertheless, this loss function can be chosen freely and the main problem 
comes down to avoiding regression-to-the mean, which causes blurry and less sharp image reconstructions63.

Depending on the quality and amount of training data, the SR model can now enhance various real-world 
images, see Fig. 2c.  The models are trained on a wide variety of C-scans, enabling them to perform well on a large 
range of images including different resolutions and transducer types, see Methods section for more information. 
The enhanced images are then used for resolution-sensitive downstream tasks like semantic segmentation or 
object detection, often enabling improved performance due to higher image fidelity.

Model selection and validation for image enhancement
For image enhancement we train various modern ML-based SR architectures and compare them to classical 
methods, see also Table 1. The developed image enhancement shall foster to eliminate time limitations fetched by 
the experimental HR scans by doubling the resolution after measurement, as shown in Fig. 3. Most importantly, 
the SR approach should also generalize to various scanning resolutions and transducer types. To achieve 
this, self-supervised model training is implemented, allowing to train on much larger dataset and improving 
generalizability. Moreover, the ML-models are discussed not only based on the performance gained by known 
metrics but also by their evaluation time per image as well as energy consumption.

One can quantify the reconstruction quality of different models by calculating common metrics like the peak 
signal-to-noise-ratio (PSNR) and structural similarity index measure (SSIM)63,64. Both allow a comparison to 
other models found in literature. However, these two metrics are sensitive to small image transformations and 
do not capture important image characteristics like sharp edges44,63,65. Therefore, they do not present useful 
objectives for measuring overall real-world performance, and we aim to introduce two new metrics which try 
to capture more of the physical information. The first metric is called edge correlation index (EdgeC). It uses 
a canny edge detection algorithm to detect edges and calculates the correlation function between the detected 
edges in the HR and reconstructed image. Possible values of EdgeC range from + 1 to -1, corresponding to 
perfect correlation or anti-correlation. Furthermore, we introduce a metric based on the scale-invariant feature 
transform (SIFT) algorithm66,67. SIFT is a popular method to find congruent points in two images. We can 
employ this algorithm and count how many congruent points SIFT detects between both images. The higher the 
count, the better the reconstruction. More details about these metrics are presented in the Supplementary Note 
2, Supplementary Fig. 2 and Supplementary Table 1.

Table 1 indicates the performance of bicubic and nearest neighbor upscaling in terms of the self-supervised 
regime, where the LR images are produced by artificially downscaling HR C-scan images. It is obvious that 
bicubic and nearest-neighbor upscaling perform poorly in terms of the introduced metrics. Nevertheless, when 
using AI-based models, there are several possibilities for selecting the loss function and training, leading to 
better reconstruction quality.

One common approach to achieve high-quality outputs is by the use of GANs. To test the capabilities of 
GAN models for the SR tasks, we implement a SR-GAN41. The generator has the same architecture as displayed 
in Fig. 3a and is trained with a combination of perceptual loss and adversarial loss, the latter representing the 
feedback from the discriminator. The discriminator itself is trained using a relativistic average loss68. As shown 
in Table 1 this SR-GAN approach shows better performance than classical models across all metrics.

Another way to produce high-quality images is by using an iterative algorithm. For this, we implement the 
recent inversion by direct iteration (InDI) diffusion-like algorithm, which uses a LR image and gradually increases 
its quality step by step43. As seen in Table 1 InDI performs good for artificially downscaled image data. However, 
InDI shows issues for the measured low resolution SAM image data, see Fig. 3b-c. There, real measurements of 
a wafer with test-structures, obtained with 50 μm/px and 100 μm/px resolution directly on the SAM, are shown. 
It is noticeable that the InDI algorithm is not able to reconstruct the straight lines in ROI-2 from the 100 μm/px 
image. Additionally, the InDI model hallucinates structures which are not there in the real HR image, as can be 
seen close to the edges of the cross in ROI-1. This further underscores the importance for real-world evaluations, 
especially for highly generative and iterative models like InDI. In fact, the problem of hallucinations in highly 
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generative models is gaining increasing attention in the last years51,52. Similar comparisons on real-world data 
using the SR-GAN model can be found in Supplementary Note 3 and Supplementary Fig. 3.

Perceptual loss functions46 are another common way to produce high-quality outputs in SR tasks. We chose 
to implement such a perceptual loss function, employing a feature extraction neural network for extracting 
important features and structure from the image. The mean-averaged-error (MAE) is then calculated between 

Fig. 2.  Overview of the super-resolution workflow. (a) The first step of the workflow consists out of model 
selection and data acquisition via SAM. The obtained C-scan images are cropped and augmented. To do self-
supervised training, LR images are constructed by downscaling and altering the augmented HR images. (b) 
Training of the chosen model architecture utilizing the downscaled images. A predefined loss function guides 
the model training. (c) After training is complete, the model can be applied to enhance various other images. 
Further, the enhanced images can be used to improve the performance of subsequent resolution-sensitive 
algorithms like semantic segmentation or object-detection. Winsam 8.24 software61 is employed for capturing 
and preprocessing the C-scan images.
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those extracted features, see Method section for further details. With this loss function, the state-of-the-art 
SRResNet (Super Resolution Residual Network)40 is implemented, which gives results close to SR-GAN and 
InDI in Table 1. However, when applied to real-world data, the SRResNet performs only slightly better than 
bicubic upscaling, as demonstrated in Supplementary Fig. 3.

Last but not least, we also implement a more complex fully convolutional neural network based on an 
adapted DCSCN architecture42 trained with the same perceptual loss as SRResNet. The DCSCN architecture 
is exemplarily shown in Fig. 3b. Surprisingly, this model shows the best performance across nearly all metrics 
presented in Table 1, even outperforming the generative models like SR-GAN and InDI, as well as the SRResNet. 
Furthermore, DCSCN is superior to other methods under real-world applications, as displayed in Fig. 3c and 
Supplementary Fig. 3. 

Table  1 also includes data for the evaluation time and energy consumption during training. To train the 
diffusion-like InDI and generative SR-GAN models, more powerful hardware has to be used, which also increases 
the energy consumption and environmental footprint by a factor of around two. Due to its larger parameter size 
and iterative approach, InDI also takes roughly one order of magnitude longer to reconstruct images. In fact, 
DCSCN seems to present the best balance between image quality, evaluation time and power consumption.

Detailed information about the SR-GAN, InDI, SRResNet and DCSCN architectures and training can be 
found in the Methods section, Supplementary Note 4 and Supplementary Fig. 4.

Failure-analysis of a bonded ion trap wafer
To test the capabilities of SR in industrial applications, we apply the selected CNN-based DCSCN model to the 
eutectically bonded wafer specimen displayed in Figs. 1b and 4a. The main goal is to show how SR can decrease 
the time for large-scale SAM measurements and improve the accuracy of subsequent segmentation-based failure 
analysis.

We again note that C-scan images of the wafer with 50  μm/px and 300  μm/px resolution are available, 
whereas the 300 μm/px resolution is close to the resolution limit for detecting small features. Different structures, 
material phases and defect types are visible in the C-scan image, see also Methods section. To quantify the bond 
quality of the wafer, the scanned images are segmented into 3 distinct regions and the corresponding areas 
are evaluated, see Fig. 4a. In particular, we distinguish between ion-trap recesses (white), intact eutectic bond 
(blue) and delaminated eutectic bond (red). For segmentation, three separate state-of-the-art residual attention 
U-Net69 models, for the three different resolutions (50 μm/px, 300 μm/px and DCSCN enhanced), are trained 
and employed. More information on the training for the segmentation model is provided in the Methods section.

In Fig. 4b a cutout of the segmented C-scans for a resolution of 50 μm/px, 300 μm/px as well as the DCSCN-
enhance image are presented. Clearly, deviations between all images can be depicted, especially between the 
300 μm/px and 50 μm/px images. In hard to segment areas, like for the upper ion-trap recess in Fig. 4b, the 
U-Net segmentation model trained on the 300 μm/px image struggles to detect the whole ion-trap structure. 
In comparison, even though the DCSCN enhanced image seems to be smoothened and loses some details in 
comparison to the 50 μm/px image, it is obvious that there is a better qualitative correspondence and all key 
features are properly segmented in this case.

Figure 4c provides a quantitative comparison of the relative errors in segmented areas between the 50 μm/px, 
300 μm/px, DCSCN-enhanced image and a manually labeled ground truth. When applying the DCSCN model 
to the 300 μm/px image, a decrease of the relative error by at least 10% or more can be established. There are 
three main reasons for the observed improvement. First, the LR 300 μm/px image is pixelated, leading to lower-
details in fine structure and, therefore, a different area of the phases. Second, manual labeling of the LR image 
for subsequent training of the U-Net is more difficult due to the decreased edge-contrast, making it harder to 
accurately train the model. Third, when a model is trained with LR data, it has a lower amount of pixel-data to 
be trained with. For example, the 300 μm/px image has 36 times less pixels then the 50 μm/px image, decreasing 
model performance and generalizability. All these three factors can be improved by applying super-resolution 
before manual labeling and model training. Also, according to this reasoning, the provided findings are general 

Model PSNR (↑) SSIM (↑) Edge-correlation (↑) SIFT (↑) Evaluation time per image (↓) (s) Energy consumption - training (↓)

Classical
Nearest-Neighbors 27.8 0.86 0.47 16.9 < 0.01 0 kWh

Bicubic 29.8 0.90 0.47 20.0 < 0.01 0 kWh

ML-based

SR-GAN 34.3 0.91 0.77 32.9 0.10 ~ 15.1 kWh

InDI 34.4 0.93 0.74 32.2 10.0 ~ 18.0 kWh

SRResNet 34.0 0.87 0.79 34.2 0.05 ~ 3.9 kWh

DCSCN 35.1 0.92 0.79 34.5 0.10 ~ 7.9 kWh

Table 1.  Evaluation of the SR models on randomized SAM images. For calculating metrics 1000, 256 × 256 
pixels C-scan images are first downscaled to 128 × 128 pixels by deleting every second pixel. Then, the LR 
image is passed to different SR models to be reconstructed. Different metrics are evaluated by comparing the 
original HR image with the reconstructions. Values obtained by nearest-neighbor and bicubic upscaling are 
provided as reference. Additionally, we show the evaluation time per image, tested for a batch of 10 images 
with 256 × 256 pixels on a Nvidia RTX A5000 with 24Gb VRAM, and approximate energy consumption in 
kWh used for training. See the methods section for more information on the hardware used for training.
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Fig. 3.  DCSCN model architecture and model evaluation of DCSCN and InDI SR. (a) Model architecture of 
CNN-based DCSCN SR model. The first block consists out of convolutional layers with 176, 160, 144, 128, 112, 
96, 80, 64, 48 and 32 filters. The second block (reconstruction block) is split in two. It has convolutional layers 
with 32 and 32, 64 filters. The kernel size is 3 except for the first layers in the reconstruction block, where we 
use a kernel size of 1 for feature extraction. (c) Evaluation of SR on a test wafer. The upper left image shows an 
overview of the test structures. The colored images are zoomed in sections (ROI 1–2). ROI 1–2 are measured 
and displayed for different resolutions (100 μm/px and 50 μm/px). From the 100 μm/px we reconstruct a 
50 μm/px image with bicubic interpolation, DCSCN and InDI. (d) PSNR, SSIM, EdgeC and the number 
of matched features found via a SIFT algorithm are listed as bar graphs. They show a clear advantage of the 
DCSCN approach compared to classical bicubic upscaling, but close to no improvement when using InDI. 
Winsam 8.24 software61 is employed for capturing and preprocessing the C-scan images.
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and carry over to different model architectures as presented in the Supplementary Note 5 and Supplementary 
Table 2.

Fast object detection and super-resolution for through-silicon-vias (TSVs)
For the failure analysis of thousands of TSVs, we localize and classify every individual TSV on the wafer, see also 
Fig. 1c. We implement and compare different ML-based object detection algorithms including YOLOv270 and 
YOLOv1271. YOLO is a so-called one-shot method, since it localizes and classifies all objects in an image within 
one evaluation of the neural network. This makes the method very time efficient, especially for large images.

Figure 5a shows the basic steps of the failure analysis workflow. The workflow starts by applying SR to the 
input image to double its size, then dividing it into a grid of cells. For YOLOv2, cells with a size of 32 × 32 pixels 
are usually used. For every grid cell, a neural-network then predicts three values namely, (1) a confidence score, 
which measures the probability of an object being present in the cell, (2) the bounding box coordinates of the 
object and (3) its class labels. Finally, non-maximum suppression (NMS) is used to filter out overlapping boxes 
with low confidence score and a statistical evaluation can be carried out.

In Fig. 5b three quality classes for the TSVs are defined. The first class contains fully intact TSVs without any 
sort of defect or other imperfection. The second class defines defective TSVs. This category is characterized by 
black or white imperfections around the edges of the TSV. The third class covers TSVs where a failure cannot be 
ruled out completely, e.g. they are prone to be impacted in functionality. These TSVs have a defect close to their 
boundary, however, the defect does not touch the TSV itself.

Fig. 4.  Bond quality evaluation of an eutectically bonded ion trap wafer. (a) Demonstration of ML-based 
segmentation using a residual attention U-Net. Three classes are distinguished: ion-trap recesses (white), intact 
eutectic bond (blue) and delaminated/incomplete bond (red). (b) Magnified area of the segmented wafer with 
a resolution of 50 μm/px, 300 μm/px and an image illustrating 300 μm/px with the applied DCSCN model, 
from top to bottom. Significant deviations of the 300 μm/px image from the 50 μm/px image are indicated by 
dashed black circles. Clearly the DCSCN and 50 μm/px images indicate higher similarity. (c) Relative errors in 
various segmented phases when compared to the manually labeled ground truth for the 50 μm/px, 300 μm/px 
and DCSCN-enhanced image. Winsam 8.24 software61 is employed for capturing and preprocessing the C-scan 
images.
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Fig. 5.  Workflow to enable YOLO object detection with SR and definition of defect labeling. (a) YOLOv2 
object detection pipeline. We start by increasing the resolution of the LR scanned image by 2 times, to 
increase the distance between adjacent TSVs. After that, the HR image is divided into cells of 32 × 32 pixels 
and evaluated by the YOLO model. The YOLO model utilizes an EfficientNetV2-B0 backbone. The outputs 
of the model are class labels, bounding boxes and confidence scores for every grid cell. In a last step, NMS is 
used to filter out intersecting boxes with low confidence. This algorithm can now be used to carry out large 
scale failure analysis as shown for a ROI containing 10,240 TSVs. (b) TSV classification and measurements. 
We sort TSVs in three classes: Intact TSVs (green), defective TSVs (red) and TSVs which are prone to be 
impacted in functionality due to nearby defects (yellow). Winsam 8.24 software61 is employed for capturing 
and preprocessing the C-scan images.
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As a matter of fact, detecting small objects, like the TSVs shown in Fig.  5, displays critical problem for 
every object-detection algorithm59. Table  2 shows that all tested object detection algorithms show increased 
performance when trained and evaluated on the DCSCN-enhanced SR images and perform worse when trained 
and evaluated on the original LR images. The YOLOv2 algorithm is not even able to converge to a proper state, 
since its cell size is 32 × 32 pixels, limiting the model to only distinguish between objects with a minimum 
distance of 32 pixels. However, the TSVs illustrated in the C-scan image data have a distance of 25 px, therefore, 
being too close for YOLOv2 to distinguish. In contrast to this, YOLOv12, which uses multi-scale training and 
smaller cell sizes, is still able to localize and classify TSVs on the LR images, however, with reduced accuracy. 
In fact, detection accuracy for both, YOLOv2 and YOLOv12, reaches 99.8% on the SR images. This means, that 
only 2 out of one thousand TSVs are not detected.

The classification accuracy for sorting the TSVs into the three classes defined in Fig. 5b is evaluated to be 
around 96% for all models trained on the SR images, and thus close to the capabilities of the approach presented 
in34, however with higher time efficiency. For example, the evaluation of 10,240 TSVs takes only around 8 s for 
YOLOv2. To further emphasize the time-efficiency of the YOLO model, we compare it to the recently introduced 
end-to-end sliding window approach34 by applying it to the data provided in34, see Supplementary Note 6 and 
Supplementary Fig. 5. Note that the presented YOLOv2-based model architecture outperforms, in terms of time, 
the mentioned end-to-end sliding window approach34 by a factor of 60.

Table 2 also includes a transformer based Real-Time Detection Transformer (RT-DETR) object-detection 
model56. Even though this model performs good for the SR images, it underperforms in terms of detection 
accuracy compared to YOLOv12 on the original LR images. Also, since RT-DETR is transformer-based, model 
inference can only be applied on images of the same size as the training images. This is a drastic practical 
shortcoming since object-detection is often trained on small image crops and then applied to larger images. See 
the Methods section for more details.

Conclusion
Ultimately, for the establishment of QC into the society and its industrialization, qubit up-scaling is crucial. The 
implementation of 3D integration to QC provides a highly beneficial platform and provides possibilities in this 
context. This also sets new challenges for failure analysis.

In this paper, we demonstrate how to leverage ML-based SR techniques to enhance SAM imaging for failure 
analysis and quality assessment in 3D integration technology utilized for advanced QC devices. In particular, we 
tested different modern model designs to enable SR, including GAN and diffusion-like approaches. Among these 
architectures, the DCSCN model showed the most consistent performance across all tested metrics, providing 
superior results in PSNR, canny edge-correlation and SIFT-based evaluations. Further, the DCSCN model is able 
to balance time-efficiency and output quality, featured by a decreased power consumption during training and 
enabling a reduced environmental footprint. Beyond that, the tested GAN and diffusion-like models are prone 
to unphysical hallucinations, which are unwanted for real-world applications.

The findings also highlight the ability of a ML-SR approach to reduce scanning time while preserving essential 
defect-related information. For example, integrating a SR model into the presented workflow enables reliable 
segmentation and quality-assessment of wafer bonding, even when a low-resolution C-scan image is used. This 
offers enhanced possibilities for high-throughput quality assessment in industrial applications. Employing SR 
and the discussed measurement setup, scanning times can be reduced by a factor of up to 6x. Note, that scanning 
times may vary slightly due to different measurement setups and scanning parameters.

Notably, SR also makes it possible to apply fast object detection algorithms like YOLO. In particular YOLO is 
used for the detection of 10,240 TSVs, enabling advanced statistical analysis. Due to the small size of the TSVs, 
common object detections approaches fail in detecting and localizing large amounts of TSVs with high accuracy. 
This can, however, be solved with SR. When applying SR, a detection and classification accuracy of up to 99.8% 

LR/SR Classification Accuracy Detection Accuracy Model Parameters (Million)

YOLOv2

Low-Resolution Training not converged 5.90

Super-Resolution 95.7% 99.8% 5.90

YOLOv12s

Low-Resolution 93.8% 98.2% 9.25

Super-Resolution 96.9% 99.8% 9.25

RT-DETER-l

Low-Resolution 94.8% 84.6% 32.8

Super-Resolution 96.6% 96.3% 32.8

Table 2.  Accuracy of different object detection models trained and evaluated on SR images and LR images 
of half size. YOLOv2 and YOLOv12 are CNN based one-shot models. Since YOLOv2 is limited by a cell size 
of 32 Px, it does not converge to a proper state for the LR images since TSVs are only 25 Px apart. RT-DETR 
is a transformer-based model. Even though performance is high for the SR images, detection performance 
drops fast at lower resolution. Additionally, RT-DETR has the highest number of parameters with the highest 
computational cost.
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and 96.9%, respectively, can be reached. This leverages the presented approach to overcome problems posed by 
small TSV sizes and associated long scanning times. In fact, SR enables a reduction in scanning time by a factor 
of about 4x in this case, assuming that the scanning time increases quadratically with resolution. Furthermore, 
the employed YOLO architecture reduces the time for carrying out object detection by a factor of 60x when 
compared to recently introduced approaches34.

In conclusion, ML-SR approaches like the DCSCN offer a scalable and efficient solution for high-throughput 
defect characterization in quantum-circuit- and semiconductor-manufacturing. The results underscore how 
ML-based image processing can be utilized to address challenges related to resolution, time efficiency and 
accuracy in industrial applications.

Methods
Ion trap specimens
The first specimen shown in Fig. 1b indicates the bonded sample resembling the bottom two layers of a MEMS 
based symmetrical 3D ion trap architecture58. The bonded specimen consists of a 725 μm-thick silicon substrate 
as the bottom wafer with a SiO2 passivation layer on which a 600 nm thick eutectic component 1 is sputter 
deposited. The top wafer is made of 400 μm-thick borosilicate glass featuring recess structures through the whole 
wafer, which are created by wet-chemical etching. A 550 nm thick eutectic component 2 is deposited onto the 
glass wafer by evaporation. Eutectic component 1 and eutectic component 2 are unstructured. The silicon and 
borosilicate glass wafers are bonded using eutectic bonding.

The second specimen as shown in Fig.  1c displays a wafer with TSV structures. It features five 0.8  cm x 
1.28 cm ROIs containing 10,240 TSVs in a 500 μm-thick silicon substrate. Fabrication is based on a 725 μm-
thick silicon on insulator substrate (SOI) with a bottom 500 μm-thick silicon layer, a 1 μm-thick buried silicon 
oxide (BOX), and a 225 μm thick top active layer (TAL) containing alternating silicon and silicon oxide layers. 
The TSV recesses are created by deep reactive-ion etching of the 500 μm-thick silicon. Filling of the recesses is 
done by low pressure chemical vapor deposition of doped silicon. Using the BOX as a stop layer, the top silicon 
layer is removed by mechanical grinding and subsequent chemical-mechanical polishing (CMP). A subsequent 
CMP step is employed to remove residual silicon layers on the back side opening up the TSVs. Therefore, a 
silicon oxide layer is deposited as a passivation layer on the back side using plasma-enhanced chemical vapor 
deposition.

The bonded specimen fabrication was carried out in industrial cleanroom facilities at Infineon Technologies 
in Villach, Austria. For the TSV specimen the facilities at Infineon Technologies in Regensburg, Germany was 
utilized.

Detailed measurement setup
We use a SAM 302 HD2 provided by PVA TePla. For all measurements a Winsam 8.24 software61 is employed 
for capturing and postprocessing the C-scan images. HQ setting was enabled for all measurements. The ADC 
employed, has a sampling rate of 5 GSamples/s.

TSV measurements presented in the paper are obtained using a tone-burst setup utilizing a transducer with a 
peak frequency of 200 MHz and opening angle of 60°. The measured peak frequency at the sample is 205 MHz. 
The surface of the wafer was used as focus point having a time-of-flight distance on 5400 ns.

The second specimen, a bonded wafer, is measured using two scanning resolutions (300 μm/px and 50 μm/px) 
utilizing a transducer of VHF+ (very-high-frequency plus) type with 8 mm focus length, a nominal frequency 
of 160 MHz and a center frequency of 209 Mhz reflected by the sample. The Si-eutectic interface is used as focus 
point for the acoustic waves having a time-of-flight distance of 1315 ns.

Details of the model architectures for super-resolution
In the presented paper, four different models for the self-supervised super-resolution approach are tested: Two 
purely CNN based models called (1) DCSCN (Deep CNN with Residual Net, Skip Connection and Network in 
Network) and (2) SRResNet (Super-Resolution Residual Network), (3) one GAN based model (SR-GAN), and 
(4) a diffusion-like architecture called InDI (Inversion by Direct Iteration).

The architecture of the DCSCN model is displayed in Fig. 1b and is similar to the architecture introduced 
in the original DCSCN paper42. The only difference is the use of swift activation to prevent the dying neuron 
problem, the introduction of CBAM attention blocks72 before each bottleneck layer, and a slightly adapted filter 
count starting with 177 filters in the first layer and reducing the filter count in steps of 16 to a minimum of 32. 
For the final upscaling, a sub-pixel convolution is used. The kernel size is 3 in every layer except the ones directly 
after the first concatenation. There, we choose a kernel size of 1 for feature extraction.

The SRResNet architecture is taken directly from the original paper40 only changing the activation function 
from prelu to swift. We used 24 residual blocks without batch normalization.

For the SR-GAN we adjust the architecture presented in the ESR-GAN paper41. The generator is changed 
from SRResNet to DCSCN, because DCSCN performs better. The discriminator is displayed in Supplementary 
Fig. 4 and is employing swish activation in combination with batch normalization. Strided convolutions are used 
for down sampling.

The InDI model is based on the original DDPM U-Net architecture45. Again, the only difference being the use 
of swish activation in contrast to relu activation. For evaluation, 10 iterations were used. When using more than 
10 iterations the InDI approach produced images with constantly degrading quality.

Detailed training settings for the super-resolution models
Except for the training of the SR-GAN, all presented SR models employ a one-cycle schedule73 with a cosine 
decay and AdaBelief74 optimizer. One-cycle schedule and AdaBelief have been shown to improve convergence 
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speed compared to other training schedules and optimizers. Furthermore, the one-cycle schedule, due to its 
increasing learning rate, acts as a regularizer in the middle of the training. For SR-GAN we use an exponentially 
decaying learning rate with adam optimizer to prevent unstable training.

The training set consist of around 300 large C-scan images from the SAM. Additionally, we add the DF2K and 
OST datasets to give the model the ability to generalize to a broader range of datasets75–77. This is justified by the 
fact that super-resolution models mainly learn structures in images, and typical structures like circles, lines and 
others are present in all mentioned datasets.

Since the datasets contains C-scan images with varying sizes, we split all images into patches of 256 × 256 
pixels. Random rotation, random flipping as well as random pixel inversion are applied to the HR and LR 
images for augmentation purposes. In contrast to this, the image modifications for self-supervised training 
(multiplicative noise, gaussian blur and image compression) are only applied to the low-resolution images.

The loss function used for training DCSCN and SRResNet is a perceptual loss function. For this loss function 
a VGG19 feature extraction network, pretrained on ImageNet, is employed. We use the activations of the second 
convolution in the second block ( ϕ 2,2) as features and calculate the MSE loss between the features of high-
resolution and reconstructed image. Also, we add a small MAE and TV loss to reduce unwanted high-frequency 
artefact. The detailed loss is

	 Lp = MSE
(
ϕ 2,2

HR, ϕ 2,2
LR

)
+ 0.1 ∗ MAE(HR, LR) + 5∗10−5 ∗ T V.

Both models are trained for 700k steps with a batch size of 16 on a NVIDIA Quadro P4000 GPU with 8 Gb of 
V-RAM and Intel Xeon Silver 4108 CPU with 64 Gb of RAM.

For the GAN training, three losses with relative sizes of 1/20, 1/50 and 1 are utilized: The perceptual loss 
mentioned above, an adversarial loss and a discriminator loss. The perceptual loss makes sure that the generated 
images stay close to the original HR images, whereas the adversarial loss gives the generator feedback about how 
realistic the generated images look like. Both, discriminator and adversarial losses are based on a relativistic 
average loss, which has been shown to reduce instabilities in GAN training68. To further increase training 
stability, we train the generator four steps, for every step of the discriminator. The reason behind this is that it is 
much harder to paint a Picasso, then to tell if a painting is a fake Picasso. Therefore, the training of the generator 
should be focused on. Lastly, the starting weights of the generator are set to the Lp pretrained DCSCN weights 
and training was done for 29k steps with 32 batch size on a NVIDIA A40 GPU with 48 Gb V-RAM and AMD 
EPYC 7513 32-Core CPU with 1024 Gb RAM.

For training the InDI model, a simple MSE loss is employed, similar to what was shown by the original 
authors43. The training was done for 117k steps with a batch size of 64 on a NVIDIA A40 GPU with 48 Gb 
V-RAM and AMD EPYC 7513 32-Core CPU with 1024 Gb RAM.

All preprocessing, training and the whole architecture design was carried out in python TensorFlow 2.10 and 
Keras 2.15. The power consumption depicted in Table 1 is calculated using the information form the hardware 
manufacturer and observed training time assuming an average utilization of 80% for GPU and 30% for the CPU.

Training and architecture details for YOLO and RT-DETR object detection
The mentioned YOLOv2 object detection model is based on an EfficientNetV2-B0 backbone78. The last part of 
the network consists out of a convolutional and a reshape layer to change the EfficientNet output to the required 
YOLO format. Here, the output is a matrix where every entry corresponds to one gird cell of the image. The 
entries themselves are vectors of length (4 + 1 + number of classes). The first four numbers specify the x and y 
position of the bounding box relative to the grid cell as well as the width and height of the bounding box. The 
fifth entry in the vector is the confidence score, telling us how likely it is that an object is contained in the image.

In fact, since we employ a YOLOv2 algorithm, the model output is not one matrix but several ones, each 
matrix corresponding to one anchor box. Anchor boxes are predefined bounding boxes, which give the model a 
starting point for finding the right size of objects. The optimal shape of these anchor boxes is usually found via a 
K-Nearest Neighbor algorithm. It turns out that two anchor boxes with the size of the TSVs, oriented vertically 
and horizontally, are obtained. The model outputs two matrices corresponding to the two anchor boxes. The one 
with the higher confidence score is then chosen as the final output.

YOLOv12s and RT-DETR-l are implemented using the standard implementation provided by Ultralytics 
without changing any hyperparameters.

For training, 832 × 832 image patches are used. These are obtained by splitting larger images into tiles. Since 
YOLO models are fully convolutional, they do not depend on the image size and generalize to other image-sizes 
without problems. This is not the case for the transformer-based RT-DETR model, since it implements a fixed 
positional encoding. The labeling is carried out with the labelme python implementation79. In total, we use a 
training set of 200 images containing TSVs from one die. For training, we employ a CosineRestart schedule till 
convergence (36k steps for YOLOv2) and a batch size of 8. The accuracy results stated in the main text were 
obtained by using ROI 1 for training and ROI 3 for testing. YOLO based models were applied to the whole die at 
once, whereas for RT-DETR the image of the die was split into patches of 832 × 832 pixels.

All preprocessing, training and the whole architecture design for YOLO was carried out in python TensorFlow 
2.10 on a NVIDIA RTX A5000 GPU with 24 Gb V-RAM and Intel Xeon w5-3433 CPU with 512 Gb RAM.

Semantic segmentation data, models and training parameters
All images are labeled with dragonfly and split in two halves, one for training and one for testing. Due to the 
sparse amount of training data, augmentation for training is employed. We use random crops to ¼ of the shortest 
image size, flipping, rotation, brightness changes and random-grid shuffle. Out of every training image we obtain 
1200 augmented images.
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The attention residual U-Net69 mentioned in the results section is implemented. The model is trained for 
70 epochs with early-stopping, an exponential decaying learning rate (lr_strart = 0.007, decay = 0.7/epoch), 
adam optimizer, batch size of 8 and sparse-categorical-crossentropy loss. The U-Net model has a depth of 4 
and a starting filter-count of 8. The filter count doubles after every down sampling layer. Residual blocks are 
implemented according to80 but using swish activation.

All preprocessing, training and the whole architecture design for YOLO is carried out in Python TensorFlow 
2.10 on a NVIDIA RTX A5000 GPU with 24 Gb V-RAM and Intel Xeon w5-3433 CPU with 512 Gb RAM.

Data availability
Data is provided within the manuscript or supplementary information files. Further data if necessary is available 
from the corresponding author upon request.
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