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Abstract We study the Klein–shGordon (KG) oscillator
with a Cornell-type scalar confinement in (2+1)-dimensional
Gürses space-time backgrounds and report their exact solu-
tions. The effect of the vorticity parameter � on the energy
levels is found to yield some interesting features like; energy
levels-crossings, partial clustering of positive and negative
energy levels, and shifting the energy gap upwards or down-
wards. Such confined KG-oscillators are also studied in
a general deformed Gürses space-time background. More-
over, we consider the confined-deformed KG-oscillator from
a (2+1)-dimensional Gürses to Gürses and pseudo-Gürses
space-time backgrounds. The resulting confined-deformed
KG-oscillators are found to admit invariance and isospec-
trality with each other.

1 Introduction

Inspired by the Dirac oscillator [1], the Klein–Gordon (KG)
oscillator [2,3] has been a subject of intensive research in
the last few decades. For example, the KG-oscillator in the
Gödel and Gödel-type space-time backgrounds (e.g., [1–
8]), in cosmic string space-time and Kaluza–Klein theory
backgrounds (e.g., [9–13]), in Som-Raychaudhuri [14], in
the (2+1)-dimensional Gürses space-time backgrounds (e.g.,
[15–18]), etc. The reader may find a sufficiently comprehen-
sive sample of references on the historical progress back-
ground of this issue in [10,16,19–24]. The KG-oscillator in
the (2+1)-dimensional Gürses space-time backgrounds is the
focal point of the current methodical proposal.
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On the other hand, the introduction of Mathews–
Lakshmanan oscillator [25] has activated intensive research
studies on “effective” position-dependent mass (PDM in
short), both in classical and quantum mechanics [25–
42]. PDM is a metaphoric manifestation of the coor-
dinate deformation/transformation [29–31]. Nevertheless,
Khlevniuk [34] has argued that a point mass in the curved
space may effectively be transformed into a PDM in
Euclidean space. Such coordinate transformation/deformation
affects, in turn, the form of the canonical momentum in classi-
cal and the momentum operator in quantum mechanics (e.g.,
[29,30,33,37] and related references therein). In classical
mechanics, it has been shown that negative the gradient of
the potential force field is no longer the time derivative of the
canonical momentum p = m (x) ẋ , but it is rather related
to the time derivative of the pseudo-momentum (also called
Noether momentum) π (x) = √

m (x)ẋ [30]. In quantum
mechanics, however, the PDM momentum operator is con-
structed [33] and used to find the PDM creation and annihi-
lation operators for the Schrödinger oscillator [29]. It would
be interesting, therefore, to investigate the effects of such
PDM recipe [29,30,33,37] on the KG-oscillator in the (2+1)-
dimensional Gürses space-time backgrounds with a confine-
ment.

The KG-oscillator in a (1+2)-dimensional Gürses space-
time backgrounds was investigated by Ahmed [16,17], with-
out a confinement (i.e., the scalar type interaction S (r) = 0 in
m −→ m + S (r)). In the current methodical proposal, how-
ever, we consider the KG-oscillator confined in a Cornell-
type scalar potential (i.e., S (r) of (14) below, which is
commonly used in quarkonium spectroscopy [19,43]) in a
(2+1)-dimensional Gürses space-time backgrounds. We dis-
cuss the confined KG-oscillator in a Gürses space-time back-
ground (i.e. Gürses space-time metric ds2 (1) at specific
Gürses parametric settings) and report the corresponding
exact solution in Sect. 2. Therein, we discuss and report the
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effects of the vorticity parameter (i.e., � in (1) below) on
the energies levels through the reported Figs. 1, 2, 3 and 4.
Such figures exhibit some interesting features like, energy
levels crossings, partial clustering of positive and negative
energy levels, and shifting the energy gap upwards or down-
wards. In Sect. 3, we consider the confined KG-oscillator in a
generalized deformed (2+1)-dimensional Gürses space-time
background. We show that the resulting confined-deformed
KG-oscillator is, in fact, invariant and isospectral with that
in the (2+1)-dimensional Gürses space-time background of
Sect. 1. We discuss, in Sect. 4, a confined-deformed KG-
oscillator from a (2+1)-dimensional Gürses to yet another
Gürses space-time backgrounds. That is, the deformation in
the (2+1)-dimensional Gürses space-time metric ds̃2 is cho-
sen so that it belongs to a another Gürses space-time metric
but with different Gürses-type parametric settings. Moreover,
we consider (in Sect. 5) a confined-deformed KG-oscillator
from Gürses to a pseudo-Gürses space-time backgrounds.
The notion of pseudo-Gürses space-time metric is mani-
fested by the fact that its parametric settings do not belong
to the set of parameters of Gürses space-time metric, but it
can be transformed into Gürses space-time metric within a
transformation (26) below. The resulting confined-deformed
KG-oscillators are found to admit invariance and isospectral-
ity with the confined KG-oscillator in a (2+1)-dimensional
Gürses space-time background discussed in Sect. 2. Our con-
cluding remarks are given in Sect. 6.

2 Confined Klein–Gordon oscillator in a
(2+1)-dimensional Gürses space-time background

In this section, we recollect the basic formulation of the KG-
oscillator in a (2+1)-dimensional Gürses space-time back-
ground. Hence, we consider the (2+1)-dimensional Gürses
space-time metric [15]

ds2 = −dt2 + dr2 − 2�r2dtdθ + r2
(

1 − �2r2
)
dθ2

= gμνdx
μdxν; μ, ν = 0, 1, 2 (1)

with a0 = b0 = e0 = 1, b1 = c0 = λ0 = 0, and the vorticity
� = −μ/3, in the Gürses metric

ds2 = −φdt2 + 2qdtdθ + h2ψ − q2

a0

dθ2 + 1

ψ
dr2 (2)

(i.e., as in Eq. (5) of [15]), where

φ = a0 , ψ = b0 + b1

r2 + 3λ0

4
r2,

q = c0 + e0μ

3
r2, h = e0r, λ0 = λ + μ2

27
. (3)

The covariant and contravarian metric tensors in this case,
respectively, read

gμν =
⎛
⎝
ccc − 1 0 −�r2

0 1 0
−�r2 0 r2

(
1 − �2r2

)

⎞
⎠

⇐⇒ gμν =
⎛
⎝
ccc − (1 − �2r2

)
0 −�

0 1 0
−� 0 1

r2

⎞
⎠ ;

det (g) = −r2. (4)

Under such setting, the KG-equation, with a scalar confine-
ment S (r) (i.e., m −→ m + S (r)), is given by

1√−g
∂μ

(√−ggμν∂ν

) = (m + S (r))2 
. (5)

Moreover, we may now couple the KG-oscillator using the
recipes in [20,21] and allow the momentum operator to
indulge the oscillator through

pμ −→ pμ + iηχμ, (6)

with η denoting the frequency of the oscillator and χμ =
(0, r, 0). This would, in effect, transform KG-equation (5)
into

1√−g

(
∂μ + ηχμ

) [√−ggμν (∂ν−ηχν)

]

= (m + S (r))2 
. (7)

Which consequently yields
{

−∂2
t +

(
� r ∂t − 1

r
∂θ

)2

+ ∂2
r + 1

r
∂r

−η2r2 − 2η − (m + S (r))2

}

 = 0.

(8)

A textbook substitution in the form of


 (t, r, θ) = exp (i [
θ − Et]) ψ (r)

= exp (i [
θ − Et])
R (r)√

r
(9)

would result in a one-dimensional Schrödinger-like KG-
oscillator with a confinement S(r) so that

R′′ (r) +
[
λ −

(

2 − 1/4

)

r2 − ω̃2r2 − 2mS (r) − S (r)2

]

R (r) = 0, (10)

where

λ = E2 − 2 �
 E − 2η − m2; ω̃2 = �2E2 + η2. (11)

Obviously, Eq. (10) represents, with S(r) = 0, the 2-
dimensional radial harmonic oscillator with an effective
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oscillation frequency ω̃ and consequently inherits its text-
book eigenvalues

λ = 2ω̃ (2nr + |
| + 1) (12)

and radial eigenfunctions

R (r) ∼ r |
|+1/2 exp

(
− ω̃r2

2

)
L |
|
nr

(
ω̃r2
)

⇐⇒ ψ (r) ∼ r |
| exp

(
− ω̃r2

2

)
L |
|
nr

(
ω̃r2
)

, (13)

where L |
|
nr (z) are the generalized Lagueree polynomials. At

this point we may move further and use a Cornell-type scalar
potential

S (r) = Ar + B

r
(14)

so that equation (10) now reads

R′′ (r) +
⎡
⎣λ̃ −

(

̃2 − 1/4

)

r2 − β2r2 − 2mAr − 2mB

r

⎤
⎦

R (r) = 0, (15)

where

λ̃ = E2 − 2 �
 E − 2η − m2 − 2AB, 
̃2 = 
2

+B2, β2 = �2E2 + η2 + A2. (16)

Equation (15) admits a finite/bounded solution in the form
of biconfluent Heun functions

R (r) ∼ r

∣∣∣
̃
∣∣∣+1/2

exp

(
−β2r2 + 2Amr

2 β

)
HB

×
(

2
∣∣∣
̃
∣∣∣ , 2mA

β3/2 ,
A2m2 + λ̃ β2

β3 ,
4mB√

β
,
√

β r

)
.

(17)

The biconfluent Heun function HB
(
α′, β ′, γ ′, δ′, z

)
of (17)

becomes a polynomial of degree n′ [44] if and only if

α′ − γ ′ − 2 = 2 n′; n′ ≥ 0, (18)

where, α′ = 2|
̃| is a non-negative integer, β ′ = 2mA
β3/2 , γ ′ =

A2m2+λ̃ β2

β3 = λ̃
β

, δ′ = 4mB√
β

, and z = √
β r . This would indeed

offer not only a finite wavefunction but also a quantization
recipe with some irrational quantum number n′ ≥ 0 that
needs to be correlated with the traditional radial quantum
number nr = 0, 1, 2, . . . (i.e., number of nodes in the radial
wavefunction). In so doing, one may argue that the solution
in (17) should collapse into that in (13), with the eigenvalues
of (12), when the confining potential is switched off (i.e.,
A = B = 0). This should always be the natural tendency
of the solution of the more general problem of (15). Under
such confinement parametric settings, the biconfluent Heun

function of (17) would (using the Kummer relation [44])
yield

HB
(
α′, 0, γ ′, 0, z

)

= 1F1

((
1

2
+ α′

4
− γ ′

4

)
,

(
1 + α′

2

)
, z2
)

, (19)

Now, the condition that the confluent hypergeometric func-
tion becomes a polynomial of degree nr ≥ 0 (i.e, 1F1(
−nr , 1 + α′

2 , z2
)

) and finite everywhere is satisfied by the

assumption that 1
2 + α′

4 − γ ′
4 = −nr [44–46]. Consequently,

we may now recast (19) in its finite polynomial form as

HB
(
α′, 0, α′ + 2(2nr + 1), 0, z

)

= 1F1

(
−nr ,

(
1 + α′

2

)
, z2
)

= nr ! �(1 + α′
2 )

�(1 + α′
2 + nr )

L
α′
2
nr (z

2); nr ≥ 0. (20)

Obviously, our results in (13) and (12) are now retrieved up
to a multiplicity constant that can be absorbed in the normal-
ization constant. Hence, our irrational quantum number n′ of
(18) finds its fine tuning into a regular quantum number so
that n′ = 2nr ≥ 0. This would in turn establish the relation
between α′ and γ ′ required to make our biconfluent Heun
function in (17) a polynomial of degree n′ = 2nr ≥ 0 and
allows us to rewrite condition (18) as

1

2
+ α′

4
− γ ′

4
= −nr ⇐⇒ γ ′ = 4nr + α′

+ 2 ⇐⇒ α′ = γ ′ − 2(2nr + 1), (21)

Therefore, for our HB
(
α′, β ′, γ ′, δ′, z

)
in (17) to imply a

quantum mechanically viable and acceptable solution, we
adopt the parametric relation (21). This would consequently
yield that

A2m2 + λ̃ β2

β3 = 2
(

2nr +
∣∣∣
̃
∣∣∣+ 1

)
⇐⇒ λ̃

= 2β
(

2nr +
∣∣∣
̃
∣∣∣+ 1

)
− m2A2

β2 . (22)

In this case, we get the relation for the energy eigenvalues as

E2 − 2 �
 E − 2η − m2 − 2AB + m2A2
(
�2E2 + η2 + A2

)

= 2
(
�2E2 + η2 + A2

)1/2 (
2nr +

∣∣∣
̃
∣∣∣+ 1

)
. (23)

One should notice that this result collapses into that in
(12) when the parameters A and B of the Cornell potential
(14) are set zeros. Yet, the wave function in (17) would yield
that of (13) for A = B = 0. On the other hand, the Gürses
metric (1) suggests that the range of the radial coordinate
is restricted to 0 ≤ r < 1/|�|, otherwise the particle will
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(f)(e)(d)

(a) (b) (c)

Fig. 1 For η = m = 1 we show Enr ,
 of (23) against the vortic-
ity parameter � and for 
 = 0,±1,±2. In a–c we show the KG-
oscillator energies without the confinement (i.e., A = B = 0) for

nr = 0, 1, 2, respectively. In d–f we show the parametric effects of the
Cornell confinement (14) on the KG-oscillator energies with nr = 0 for
(A = 1, B = 0), (A = 0, B = 1), and (A = 1, B = 1), respectively

be outside the light-cone (which should be avoided). How-
ever, at the limit |�| → 0 the range of r is stretched so
that 0 ≤ r < ∞ becomes a viable range as well. Never-
theless, the above two conditions, (21 and 0 ≤ r < 1/|�|)
would therefore allow normalization and secure the finiteness
of the corresponding wavefunctions [22,45–48]. Moreover,
it is obvious that the energy equation (23) is hard to solve
analytically, not impossible though. Yet, it is clear that the
second term (−2 �
 E) on the L.H.S. plays a critical role
in shaping the fate of energy levels’ Enr ,
 structure when
plotted against the vorticity parameter � for some differ-
ent parametric values, and against the oscillator frequency
ω. This term is, in fact, associated to the non-inertial effect
of rotating frames and resembles the so called Sagnac-type
effect (cf. e.g. [46,47]). Nevertheless, the role of this term
(−2 �
 E±) is identified (± stands for positive and nega-
tive energy regions, respectively ) as follows: (i) the positive
energy E+, with � and 
 are both positive or both negative,
will be boosted upward for 
 �= 0, whereas (ii) the negative
energy E−, with positive/negative � and negative/positive 
,
the energy levels are boosted downward for 
 �= 0.

This is documented in Figs. 1 and 2. In Fig. 3, we observe
that the effect of the second term is clearly exemplified
through shifting the energy gap upwards (when � and 
 are
both positive e or both negative) and downwards (when �

is negative/positive and 
 is positive/negative, respectively).
As a result, we observe that the energy levels crossings (doc-
umented in Fig. 1), the energy levels partial clustering (doc-
umented in Fig. 2b–f), and the energy gap shifting (docu-
mented in Fig. 3a, b) are unavoidable manifestations in the
process. Furthermore, when 
 = 0 the second term effect
dies out and the spectrum retains its regular ordering format,
but remains infected with the effect of the vorticity parameter
though.

3 Confined KG-oscillator in a deformed
(2+1)-dimensional Gürses space-time background

In this section, we consider that the (2+1)-dimensional
Gürses space-time metric (1) is deformed in such a way that

ds2 −→ ds̃2 = −
(
dt + � r̃2d θ̃

)2 + r̃2d θ̃2 + dr̃2. (24)
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(c)
(b)(a)

(d)
(e) (f)

Fig. 2 For η = m = 1 we show Enr ,
 of (23) against the vorticity
parameter � at nr = 0, 1, 2, 3, 4. In a–e we show the KG-oscillator
energies with the Cornell confinement (14) (i.e., A = B = 1) for


 = 0, 1,−1, 3, 10, respectively. In f we show the KG-oscillator ener-
gies without the Cornell confinement (14) (i.e., A = B = 0) at 
 = 10

Then the corresponding confined KG-oscillator is given, with
χ̃μ = (0,

√
m(r)r̃ , 0

)
, by

1√−g̃

(
∂̃μ + η χ̃μ

) [√−g̃g̃μν
(

∂̃ν − η χ̃ν

)


(
t, r̃ , θ̃

)]

=
(
m + Ar̃ + B

r̃

)2



(
t, r̃ , θ̃

)
. (25)

We may now use the transformation

r̃ =
∫ √

m (r)dr = √Q (r)r; d θ̃ = dθ . (26)

to connect the deformed Gürses space-time (24) with the
formal one in (1). Moreover, the relation between m (r) and
Q (r) is given by

dr̃

dr
= √m (r) = √Q (r)

(
1 + Q′ (r)

2Q (r)
r

)
(27)

In this case, the deformed Gürses metric (24) reads

ds̃2 = −
(
dt + � Q (r) r2dθ

)2

+Q (r) r2dθ2 + m (r) dr2, (28)

and consequently the corresponding space-time metric tensor
is

g̃μν =
⎛
⎝

ccc − 1 0 −� Q (r) r2

0 m (r) 0
−� Q (r) r2 0 Q (r) r2

(
1 − �2Q (r) r2

)

⎞
⎠ ,

(29)

with its determinant det (g̃) = −m (r) Q (r) r2 and its
inverse

g̃μν =
⎛
⎜⎝
ccc − (1 − �2Q (r) r2

)
0 −�

0 1
m(r) 0

−� 0 1
Q(r)r2

⎞
⎟⎠ . (30)

The deformed (2+1)-dimensional space-time metric (28)
may very well be called a pseudo-Gürses metric for it may
return to the Gürses one through reversing the transformation
recipe.

Under such settings, one may, in a straightforward manner,
obtain

d2

dr̃2 R (r̃) +
[
λ̃ − Vef f (r̃)

]
R (r̃) = 0;
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(a) (b) (c)

Fig. 3 For A = B = m = 1 we show the confined KG-oscillator energies Enr ,
 of (23) against the oscillator frequency η at nr = 0, 1, 2, 3, 4. In
a for (� = 1, 
 = 2), b for (� = −1, 
 = 2), and c for (� = 2, 
 = 0)

Vef f (r̃) =
(

̃2 − 1/4

)

r̃2 + β2r̃2 + 2mAr̃ + 2mB

r̃
, (31)

which immediately inherits the form of (17) so that

R (r̃) = R
(√

Q (r)r
)

= N
(√

Q (r)r
)∣∣∣
̃
∣∣∣+1/2

× exp

(
−β2Q (r) r2 + 2Am

√
Q (r)r

2 β

)

× HB

(
2
∣∣∣
̃
∣∣∣ , 2mA

β3/2 ,
A2m2 + λβ2

β3 ,
4mB√

β
,
√

β
√
Q (r)r

)

(32)

Next, with R (r̃) = R (r̃ (r)) = m (r)−1/4 φ (r), equation
(31) reads
(

1√
m (r)

d

dr

1√
m (r)

d

dr

)
m (r)−1/4 φ (r)

+ [λ − Vef f (r̃)
]
m (r)−1/4 φ (r) = 0. (33)

Now multiplying from the left by m (r)1/4 we get
(
m (r)−1/4 d

dr
m (r)−1/2 d

dr
m (r)−1/4

)
φ (r)

+ [λ − Vef f (r̃ (r))
]
φ (r) = 0, (34)

where

Vef f (r̃ (r)) =
(

̃2 − 1/4

)

Q (r) r2 + β2Q (r) r2

+2mA
√
Q (r)r + 2mB√

Q (r)r
(35)

that admits isospectrality with the one dimensional
Schrödinger-like confined KG-oscillator in (15) with its
eigenvalues given in (23) and its eigen functions given by
(32). Hence the radial wave function is eventually given by

ψ (r̃) = ψ
(√

Q (r)r
)

= R
(√

Q (r)r
)

√√
Q (r)r

= f (r)−1/4 φ (r)√√
Q (r)r

. (36)

Obviously, the confined KG-oscillators of (34) and that of
(15) are isospectral and share the same energy eigenval-
ues of (23), therefore. Yet we may safely conclude that
the two confined KG-oscillators in a the (2+1)-dimensional
Gürses to deformed-Gürses space-time backgrounds, (7) and
(25), respectively, are invariant and isospectral. Moreover,
one should notice that equation (34) resembles an effec-
tive position-dependent mass (PDM) particles in the one-
dimensional von Roos PDM Hamiltonian [26] with Mustafa
and Mazharimusavi parametric settings [29,32,33]).

4 Confined-deformed KG-oscillator from a
(2+1)-dimensional Gürses to a Gürses space-time
backgrounds

Let us rewrite the deformed (2+1)-dimensional Gürses space-
time metric (28), using the transformation recipe in (26), as

ds̃2 = −dt2 − 2� Q (r) r2dt dθ

+Q (r) r2
(

1 − �2 Q (r) r2
)
dθ2 + m (r) dr2, (37)

and compare it with (2) of [15] to imply, that a0 = 1,

ψ = 1

m (r)
, q = μ

3
Q (r) r2 = c0 + e0μ

3
r2. (38)

Consequently, our Q(r) reads

Q (r) = e0 + 3c0

μr2 ⇐⇒ Q (r) r2 = e0r
2 + 3c0

μ
, (39)

to imply, through (27), that

m (r) = μe2
0
r2

μe0r
2 + 3c0

⇐⇒ ψ = 1

m(r)
= 1

e0

+ 3c0

μe2
0
r2 .

(40)
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Obviously, the resulted parametric structures agree with
those of Gürses [15] in (2), where

b0 = 1

e0

, b1 = 3c0

μe2
0

, λ0 = 0, h = e0r. (41)

Then the corresponding metric tensor is given by

g̃μν =

⎛
⎜⎜⎜⎜⎝

ccc − 1 0 −�
(
e0r

2 + 3c0
μ

)

0

(
μe2

0
r2

μe0r
2+3c0

)
0

−�
(
e0r

2 + 3c0
μ

)
0

(
e0r

2 + 3c0
μ

) (
1 − �2

(
e0r

2 + 3c0
μ

))

⎞
⎟⎟⎟⎟⎠

, (42)

with det(g̃) = −e2
0
r2, and its inverse

g̃μν =

⎛
⎜⎜⎜⎜⎝

ccc −
(

1 − �2
(
e0r

2 + 3c0
μ

))
0 −�

0

(
μe0 r

2+3c0
μe2

0
r2

)
0

−� 0 1(
e0 r

2+ 3c0
μ

)

⎞
⎟⎟⎟⎟⎠

(43)

Moreover, we may now report the corresponding confined-
deformed KG-oscillator in the deformed Gürses space-time
(50) background as

⎛
⎝
(

μe2
0
r2

μe0r
2 + 3c0

)−1/4
d

dr

(
μe2

0
r2

μe0r
2 + 3c0

)−1/2

× d

dr

(
μe2

0
r2

μe0r
2 + 3c0

)−1/4
⎞
⎠φ (r)

+
[
λ̃ − V (r̃ (r))

]
φ (r) = 0, (44)

where

V (r) = V (r̃ (r)) =
(

̃2 − 1/4

)
(
e0 + 3c0

μr2

)
r2

+ β2
(
e0 + 3c0

μr2

)
r2

+2mA

√(
e0 + 3c0

μr2

)
r + 2mB√(

e0 + 3c0
μr2

)
r

. (45)

This confined-deformed KG-oscillator is isospectral and
invariant with that of (15) and, therefore, shares the eigen
energies given in (23). The corresponding eigenfunctions are
readily given in (32) with Q (r) and m (r) are as defined in
(39) and (40), respectively. The confined KG-oscillators, (44)
and (15), in Gürses space-time backgrounds are invariant and
isospectral, therefore.

5 Confined-deformed KG-oscillator from a
pseudo-Gürses to a Gürses space-time backgrounds

In this section, we consider a deformation in the radial coor-
dinate through

√
Q (r)r = ar + b

r
⇐⇒ Q (r) r2 =

(
ar + b

r

)2

, (46)

which would, through the correlation in (27), imply that

m (r) =
(
a − b

r2

)2

. (47)

Consequently, Eq. (34) yields
((

a − b

r2

)−1/2 d

dr

(
a − b

r2

)−1 d

dr

(
a − b

r2

)−1/2
)

φ (r)

+ [λ − V1 (r)] φ (r) = 0, (48)

where V (r) is now given by (35) as

V1 (r) =
(

̃2 − 1/4

)

(ar + b/r)2 + β2
(
ar + b

r

)2

+2mA

(
ar + b

r

)
. (49)

Such confined-deformed KG-oscillators, (48) and (15), in
pseudo-Gürses to Gürses space-time backgrounds are invari-
ant and isospectral, therefore. Moreover, this system cor-
responds to a (2+1)-dimensional pseudo-Gürses deformed
space-time metric (28) of the form

ds̃2 = −
(
dt + �

(
ar + b

r

)2

dθ

)2

+
(
ar + b

r

)2

dθ2 +
(
a − b

r2

)2

dr2, (50)

The notion of pseudo-Gürses space-time metric is manifested
by the fact that this metric may yield a Gürses space-time
like metric (1) (discussed in Sect. 1) if the transformation is
reversed. Having said that, it is obvious that the only feasible
Gürses to Gü rses space-time metric backgrounds case is the
one discussed Sect. 4, where Q (r) and m (r) are, respec-
tively, given by (39) and (40). Any other structure for Q (r)
and m (r) in (28) should be classified as pseudo-Gürses to
Gürses space-time metric backgrounds.
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(a) (b) (c)

Fig. 4 a Corresponds to Fig. 1a but with the vorticity parameter � ∈ [−0.05, 0.05], b corresponds to Fig. 3e but with the vorticity parameter
� ∈ [−0.5, 0.5], and c corresponds to b above but with � ∈ [−5, 0.5]

6 Concluding remarks

In this study, we have considered (in Sect. 2) the KG-
oscillator confined in a Cornell-type scalar potential S (r)
of (14) in some (2+1)-dimensional Gürses space-time back-
grounds. We started with a confined KG-oscillator in a Gürses
space-time background (i.e. Gürses space-time metricds2 (1)
at specific parametric settings) and reported the correspond-
ing exact solution in (17) and (23). Hereby, we argue that the
natural tendency of a physically viable solution of a more
general case ( confined KG-oscillator in our case) should nec-
essarily collapse into that of a less complicated KG-oscillator
ones in (12) and (13), when the confinement parameters are
switched off. So is the tendency of our reported exact solution
in (17) and (23).

To observe the effect of the vorticity parameter � = −μ/3
(in our case) on the energy levels Enr ,
, we have reported
Enr ,
 (23) versus � in Figs. 1 and 2, and Enr ,
 vs η (the KG-
oscillator frequency) in Fig. 3. The mathematical structure
as well as the reported figures document the critical role of
the second term, (−2 �
 E) on the L.H.S. of (23), in shap-
ing the energies of the confined KG-oscillator. This effect is
summarized as follows: (i) the positive energy E+, with �

and 
 are both positive or both negative, is boosted upward
for 
 �= 0, (ii) the negative energy E−, with positive/negative
� and negative/positive 
, respectively, is boosted downward
for 
 �= 0, and (iii) for a fixed � the energy gap is shifted
upwards (for positive � and 
) and downwards (for negative
� and 
), whilst the gap increases as the KG-oscillator fre-
quency η increases. As a result of such effects, the energy
levels crossings (documented in Fig. 1), the energy levels
clustering (documented in Fig. 2b–f), and the energy gap
shifting (documented in Fig. 3a, b) are unavoidable natural
manifestations in the process. Moreover, to figure out how the
energy levels behave near � = 0 (i.e., flat space-time back-
ground) we have also reported Fig. 4. Figure 4a corresponds

to Fig. 1a but with the vorticity parameter � ∈ [−0.05, 0.05].
Obviously, at � = 0 the energy levels admit degeneracy as
follows: E0,0, E0,±1, E0,±2 form bottom to top for the posi-
tive energies and from top to bottom for negative energies. As
we move far from � = 0, we see that E0,+1 and E0,−1 switch
their ordering in moving from � > 0 to � < 0 regions (simi-
lar behaviour occurs for all Enr>0,+|
| and Enr>0,−|
| states).
To make sure that energy levels clustering do not indulge
levels crossings we plot Fig. 4b, c, they correspond to Fig.
3e but with the vorticity parameter � ∈ [−0.5, 0.5] and
� ∈ [−5, 0.5], respectively. Clearly, for a fixed value of the
magnetic quantum number 
 = ±|
|, no energy levels cross-
ings are observed and the energy levels just cluster without
ordering change.

Next, we have considered (in Sect. 3) the confined KG-
oscillator in a general deformation of the (2+1)-dimensional
Gürses space-time background (28). Hereby, we have shown
that the resulting confined and deformed KG-oscillator is
invariant and isospectral with of the confined KG-oscillator
(15) in the (2+1)-dimensional Gürses space-time background
(1). We have further considered (in Sect. 4) a confined and
deformed KG-oscillator in a deformed (2+1)-dimensional
Gürses (28) to a Gürses space-time backgrounds (2). That
is, the deformation in the (2+1)-dimensional Gürses space-
time metric ds̃2 (28) is chosen so that it belongs to a another
Gürses space-time metric (but with different Gürses-type
parametric setting) in (2). We have shown that such a confined
and deformed KG-oscillator is invariant and isospectral with
of the confined KG-oscillator (15) in the (2+1)-dimensional
Gürses space-time background (1). Finally, we have con-
sidered (in Sect. 5) a confined and deformed KG-oscillator
in pseudo-Gürses to Gürses space-time backgrounds. The
notion of pseudo-Gürses space-time metric is manifested by
the fact that its parametric settings do not belong to Gürses
space-time (2) metric but it can be transformed into Gürses
space-time metric (1) within the transformation (26). Once
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again we have shown that such a confined and deformed KG-
oscillator is invariant and isospectral with of the confined
KG-oscillator (15) in the (2+1)-dimensional Gürses space-
time background (1).

Finally, the current methodical proposal implicitly indulges
a new form of topological defects in cosmic string space-
time or in the geometrical theory of topological defects in
condensed matter that may lead to some interesting features
to be explored. To the best of our knowledge, within the
above methodical proposal settings, such KG-oscillators in
the backgrounds of (2+1)-dimensional Gürses to Gürses or to
pseudo-Gürses space-time metric have never been reported
elsewhere.
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