Eur. Phys. J. C (2022) 82:82
https://doi.org/10.1140/epjc/s10052-022-10043-3

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Confined Klein—Gordon oscillator from a (2+1)-dimensional
Giirses to a Giirses or a pseudo-Giirses space-time backgrounds:

Invariance and isospectrality

Omar Mustafa?

Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10, Turkey

Received: 25 October 2021 / Accepted: 19 January 2022
© The Author(s) 2022

Abstract We study the Klein—shGordon (KG) oscillator
with a Cornell-type scalar confinement in (2+1)-dimensional
Giirses space-time backgrounds and report their exact solu-
tions. The effect of the vorticity parameter €2 on the energy
levels is found to yield some interesting features like; energy
levels-crossings, partial clustering of positive and negative
energy levels, and shifting the energy gap upwards or down-
wards. Such confined KG-oscillators are also studied in
a general deformed Giirses space-time background. More-
over, we consider the confined-deformed KG-oscillator from
a (2+1)-dimensional Giirses to Giirses and pseudo-Giirses
space-time backgrounds. The resulting confined-deformed
KG-oscillators are found to admit invariance and isospec-
trality with each other.

1 Introduction

Inspired by the Dirac oscillator [1], the Klein—-Gordon (KG)
oscillator [2,3] has been a subject of intensive research in
the last few decades. For example, the KG-oscillator in the
Godel and Godel-type space-time backgrounds (e.g., [1—
8]), in cosmic string space-time and Kaluza—Klein theory
backgrounds (e.g., [9-13]), in Som-Raychaudhuri [14], in
the (2+1)-dimensional Giirses space-time backgrounds (e.g.,
[15-18]), etc. The reader may find a sufficiently comprehen-
sive sample of references on the historical progress back-
ground of this issue in [10, 16,19-24]. The KG-oscillator in
the (2+1)-dimensional Giirses space-time backgrounds is the
focal point of the current methodical proposal.
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On the other hand, the introduction of Mathews—
Lakshmanan oscillator [25] has activated intensive research
studies on “effective” position-dependent mass (PDM in
short), both in classical and quantum mechanics [25—
42]. PDM is a metaphoric manifestation of the coor-
dinate deformation/transformation [29-31]. Nevertheless,
Khlevniuk [34] has argued that a point mass in the curved
space may effectively be transformed into a PDM in
Euclidean space. Such coordinate transformation/deformation
affects, in turn, the form of the canonical momentum in classi-
cal and the momentum operator in quantum mechanics (e.g.,
[29,30,33,37] and related references therein). In classical
mechanics, it has been shown that negative the gradient of
the potential force field is no longer the time derivative of the
canonical momentum p = m (x) x, but it is rather related
to the time derivative of the pseudo-momentum (also called
Noether momentum) 7 (x) = +/m (x)% [30]. In quantum
mechanics, however, the PDM momentum operator is con-
structed [33] and used to find the PDM creation and annihi-
lation operators for the Schrodinger oscillator [29]. It would
be interesting, therefore, to investigate the effects of such
PDM recipe [29,30,33,37] on the KG-oscillator in the (2+1)-
dimensional Giirses space-time backgrounds with a confine-
ment.

The KG-oscillator in a (1+2)-dimensional Giirses space-
time backgrounds was investigated by Ahmed [16, 17], with-
outaconfinement (i.e., the scalar type interaction S (r) = Oin
m —> m + S (r)). In the current methodical proposal, how-
ever, we consider the KG-oscillator confined in a Cornell-
type scalar potential (i.e., S (r) of (14) below, which is
commonly used in quarkonium spectroscopy [19,43]) in a
(2+1)-dimensional Giirses space-time backgrounds. We dis-
cuss the confined KG-oscillator in a Giirses space-time back-
ground (i.e. Giirses space-time metric ds® (1) at specific
Giirses parametric settings) and report the corresponding
exact solution in Sect. 2. Therein, we discuss and report the
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effects of the vorticity parameter (i.e., Q2 in (1) below) on
the energies levels through the reported Figs. 1, 2, 3 and 4.
Such figures exhibit some interesting features like, energy
levels crossings, partial clustering of positive and negative
energy levels, and shifting the energy gap upwards or down-
wards. In Sect. 3, we consider the confined KG-oscillator in a
generalized deformed (2+1)-dimensional Giirses space-time
background. We show that the resulting confined-deformed
KG-oscillator is, in fact, invariant and isospectral with that
in the (2+1)-dimensional Giirses space-time background of
Sect. 1. We discuss, in Sect. 4, a confined-deformed KG-
oscillator from a (2+1)-dimensional Giirses to yet another
Giirses space-time backgrounds. That is, the deformation in
the (2+1)-dimensional Giirses space-time metric ds? is cho-
sen so that it belongs to a another Giirses space-time metric
but with different Giirses-type parametric settings. Moreover,
we consider (in Sect. 5) a confined-deformed KG-oscillator
from Giirses to a pseudo-Giirses space-time backgrounds.
The notion of pseudo-Giirses space-time metric iS mani-
fested by the fact that its parametric settings do not belong
to the set of parameters of Giirses space-time metric, but it
can be transformed into Giirses space-time metric within a
transformation (26) below. The resulting confined-deformed
KG-oscillators are found to admit invariance and isospectral-
ity with the confined KG-oscillator in a (2+1)-dimensional
Giirses space-time background discussed in Sect. 2. Our con-
cluding remarks are given in Sect. 6.

2 Confined Klein—-Gordon oscillator in a
(2+1)-dimensional Giirses space-time background

In this section, we recollect the basic formulation of the KG-
oscillator in a (2+1)-dimensional Giirses space-time back-
ground. Hence, we consider the (2+1)-dimensional Giirses
space-time metric [15]
ds® = —di® + dr? — 2Qr%dtdo + r2 (1 - erz) 46>

= guvdx"dx"; p,v=0,1,2 (D

witha, = b, = ¢, =1,b, = ¢, = A, = 0, and the vorticity
Q = —u/3, in the Giirses metric

h*y — g? 1
ds? = —pdi® +2qdrao + "V "L a2y La2 ()
a, v
(i.e., as in Eq. (5) of [15]), where
b, 3%
¢ =ay, 1//—bo+—2+Tr ,
2
eyl
q:co—l—%rz, h=e, x_x+ﬁ. A3)

The covariant and contravarian metric tensors in this case,
respectively, read

@ Springer

ccc— 1—92 2

g = 0
1
—Q =

det (g) = —r2. “4)

—Q
0

’

ccc—10
8uy = 0 1 )
—Qr? 0 r? 1—5222
0
1
0

Under such setting, the KG-equation, with a scalar confine-
ment S (r) (i.e., m —> m + S (r)), is given by

1

——0, (V/—gg"'o,¥) =
\/_—g M( v )
Moreover, we may now couple the KG-oscillator using the
recipes in [20,21] and allow the momentum operator to
indulge the oscillator through

(m+ S (r)*W. ®)

P —> Pu +inxu, (6)

with 7 denoting the frequency of the oscillator and y, =
(0, r, 0). This would, in effect, transform KG-equation (5)
into

1
e (3 + nxu) [V—28"" @v—nx) V]
=m+S@r)’w. )

Which consequently yields

2 1 g 2 1
—Bt + Qrat—;ag +8r+;3,

0?2 =20 — (m+ S (r))? } W =0.

(®)
A textbook substitution in the form of
W (t,r,0) =exp(i[€0 — Et]) ¢ (r)
exp (i [¢6 — E)) X0 ©)
=exp(i —
b Jr

would result in a one-dimensional Schrodinger-like KG-
oscillator with a confinement S(r) so that

R" (r) + |:A _(E-1d) :21/4) — &t —2mS(r) S (r)2:|
R(r) =0, (10)

where

A=E>—2QUE —2n—m? & = Q*E* + > (11)

Obviously, Eq. (10) represents, with S(r) = 0, the 2-
dimensional radial harmonic oscillator with an effective



Eur. Phys. J. C (2022) 82:82

Page3of 9 82

oscillation frequency @ and consequently inherits its text-
book eigenvalues

A =20 2n, + €]+ 1) 12)

and radial eigenfunctions
~ 2
R(r) ~ rliH12exp (—%) Lyl (ar?)
¢ W\ (-2
— ¥ (r) ~r'lexp <_T> L,‘h‘ (a)r ) , (13)

where Llfr‘ (z) are the generalized Lagueree polynomials. At
this point we may move further and use a Cornell-type scalar
potential

B
Sr)=Ar+— (14)
r
so that equation (10) now reads
72
/" by (Z B 1/4) 2.2 2mB
R" (r) + )L——z—,B re—2mAr —
r r
R(r)=0, (15)
where
A=E>—2QUE—2n—m>—2AB, (> =1¢*
+B%, B2 =Q¥E% + 1?4+ A% (16)

Equation (15) admits a finite/bounded solution in the form
of biconfluent Heun functions

~ 2.2
2A
R(r) ~ rMH/Z exp (——ﬂ A mr) Hp

2p
.| 2mA A’m®+Xp% 4mB
x<2£,ﬂ3/2, 53 ,\/E,\/Er>.
7

The biconfluent Heun function Hp (o', B/, y',8', z) of (17)
becomes a polynomial of degree n’ [44] if and only if

o/—y’—2=2n’; n' >0, (18)

where, &’ = 2|{| is a non-negative integer, 8’ = é’?—/z\, y' =

Lér}"gz = %,8’ = 4’”T:,andz = /B r.This would indeed
offer not only a finite wavefunction but also a quantization
recipe with some irrational quantum number n’ > 0 that
needs to be correlated with the traditional radial quantum
number n, = 0, 1, 2, ... (i.e., number of nodes in the radial
wavefunction). In so doing, one may argue that the solution
in (17) should collapse into that in (13), with the eigenvalues
of (12), when the confining potential is switched off (i.e.,
A = B = 0). This should always be the natural tendency
of the solution of the more general problem of (15). Under
such confinement parametric settings, the biconfluent Heun

function of (17) would (using the Kummer relation [44])
yield

Hg (/,0,7',0,2)

1 o J// o 5
—FA((z+>-2 ) (1+%).2), 19
11<(2+4 4) (+2>Z> (19)

Now, the condition that the confluent hypergeometric func-
tion becomes a polynomial of degree n, > 0 (ie, | F]

(—n,, 14+ 0‘7/, Z2) ) and finite everywhere is satisfied by the

assumption that % + "‘T[ — VT/ = —n, [44-46]. Consequently,

we may now recast (19) in its finite polynomial form as

Hp (o/, 0,0 +22n, +1),0, z)

a/
=1F] (—nr, (1 + 3) ,Zz>

. r(l+9%)

P2 L (z*); n, 2 0. (20)
L+ % +n)

Obviously, our results in (13) and (12) are now retrieved up
to a multiplicity constant that can be absorbed in the normal-
ization constant. Hence, our irrational quantum number n’ of
(18) finds its fine tuning into a regular quantum number so
that n’ = 2n, > 0. This would in turn establish the relation
between o’ and y’ required to make our biconfluent Heun
function in (17) a polynomial of degree n’ = 2n, > 0 and
allows us to rewrite condition (18) as

1oy / /
E+z—z=—nr<:>'}/ =4nr+(x
12e=sa =y —202n, + 1), 1)

Therefore, for our Hp (oc’, By, z) in (17) to imply a
quantum mechanically viable and acceptable solution, we
adopt the parametric relation (21). This would consequently
yield that

W:Z@n,—{—‘f‘—i—l)@i
—28 (2n, n M + 1) — m;fz. 22)

In this case, we get the relation for the energy eigenvalues as
m?A?

E*>—2QCE —2n—m*—2AB +
7 (LE? + 2 + A2)

1/2 ~
:2(92E2+n2+A2) (2n,+ M n 1). 23)

One should notice that this result collapses into that in
(12) when the parameters A and B of the Cornell potential
(14) are set zeros. Yet, the wave function in (17) would yield
that of (13) for A = B = 0. On the other hand, the Giirses
metric (1) suggests that the range of the radial coordinate
is restricted to 0 < r < 1/|€2|, otherwise the particle will
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Fig. 1 For n = m = 1 we show E, , of (23) against the vortic-
ity parameter 2 and for £ = 0, +1, +2. In a—c we show the KG-
oscillator energies without the confinement (i.e., A = B = 0) for

be outside the light-cone (which should be avoided). How-
ever, at the limit |2| — O the range of r is stretched so
that 0 < r < oo becomes a viable range as well. Never-
theless, the above two conditions, (21 and 0 < r < 1/|R2|)
would therefore allow normalization and secure the finiteness
of the corresponding wavefunctions [22,45-48]. Moreover,
it is obvious that the energy equation (23) is hard to solve
analytically, not impossible though. Yet, it is clear that the
second term (—2 Q¢ E) on the L.H.S. plays a critical role
in shaping the fate of energy levels’ E,, ¢ structure when
plotted against the vorticity parameter 2 for some differ-
ent parametric values, and against the oscillator frequency
w. This term is, in fact, associated to the non-inertial effect
of rotating frames and resembles the so called Sagnac-type
effect (cf. e.g. [46,47]). Nevertheless, the role of this term
(—2Q ¢ E4) is identified (£ stands for positive and nega-
tive energy regions, respectively ) as follows: (i) the positive
energy E., with Q and ¢ are both positive or both negative,
will be boosted upward for £ # 0, whereas (ii) the negative
energy E_, with positive/negative 2 and negative/positive £,
the energy levels are boosted downward for £ # 0.

@ Springer

n, =0, 1, 2, respectively. In d—f we show the parametric effects of the
Cornell confinement (14) on the KG-oscillator energies with n,, = 0 for
(A=1,B=0),(A=0,B =1),and (A =1, B = 1), respectively

This is documented in Figs. 1 and 2. In Fig. 3, we observe
that the effect of the second term is clearly exemplified
through shifting the energy gap upwards (when €2 and ¢ are
both positive e or both negative) and downwards (when €2
is negative/positive and ¢ is positive/negative, respectively).
As aresult, we observe that the energy levels crossings (doc-
umented in Fig. 1), the energy levels partial clustering (doc-
umented in Fig. 2b—f), and the energy gap shifting (docu-
mented in Fig. 3a, b) are unavoidable manifestations in the
process. Furthermore, when ¢ = 0 the second term effect
dies out and the spectrum retains its regular ordering format,
but remains infected with the effect of the vorticity parameter
though.

3 Confined KG-oscillator in a deformed
(2+1)-dimensional Giirses space-time background

In this section, we consider that the (2+1)-dimensional
Giirses space-time metric (1) is deformed in such a way that

A2 -
ds® —> di? = — (dt + szde) +P2d0% +dP?. (24)
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Fig. 2 For n = m = 1 we show E,, , of (23) against the vorticity
parameter 2 at n, = 0, 1,2, 3, 4. In a—e we show the KG-oscillator
energies with the Cornell confinement (14) (i.e, A = B = 1) for

Then the corresponding confined KG-oscillator is given, with

X = (0, Jm(r)r, 0), by

() [V (-0 2) v (9)]

B\? -
=<m+AF+T> w (,7.0). (25)
r
We may now use the transformation
F= / Vm (rydr = /Q (r)r; d = do. (26)

to connect the deformed Giirses space-time (24) with the
formal one in (1). Moreover, the relation between m (r) and
Q (r) is given by

N IGENIT (1+ ¢ mr) @7)
r 20 (r)
In this case, the deformed Giirses metric (24) reads
di? = — (dt +Q0 (r)r2d9)2
+0 (r) r2d6* +m (r) dr?, (28)

Q

¢ =0,1,—1, 3, 10, respectively. In f we show the KG-oscillator ener-
gies without the Cornell confinement (14) (i.e., A= B =0)atf = 10

and consequently the corresponding space-time metric tensor
is

cce — 1 0 —-QOr)r?
v = 0 m (r) 0 ,
QO 0 QmMrr(1-Q20)r?)

(29)

with its determinant det (3) = —m (r) Q (r)r? and its

inverse

cce—(1-Q20(r?) 0 -Q
~ 1
g//.v = 0 m(r) 0

—Q 0

(30)
1
o)

The deformed (2+1)-dimensional space-time metric (28)
may very well be called a pseudo-Giirses metric for it may
return to the Giirses one through reversing the transformation
recipe.

Under such settings, one may, in a straightforward manner,
obtain

2

d - ~ ~ ~
TSRO + [~ Ve O] RE) = 0:

@ Springer
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Fig. 3 For A = B = m = 1 we show the confined KG-oscillator energies E,, ¢ of (23) against the oscillator frequency n atn, =0, 1,2, 3,4.In

afor(RQ=1,£=2),bfor(Q=—-1,£=2),andcfor (R =2,£=0)

(572 —1 /4)

~ - . 2mB
Vepy () = ~———=+ B2 + 2mAF + — (D

which immediately inherits the form of (17) so that

Z‘+1/2

R®=R(VOwr)=N (Vo <r)r)‘
B0 ()1 +24m/Q )r
o £ tnd

2mA A*m?+rp% 4mB
’ﬁrgl/2’ mlg3 i ’ :/nB’\/B”Q(r)r)
(32)

l

XHB<2

Next, with R (F) = R (F (r)) = m (r)~"*¢ (r), equation
(31) reads

( L 4 1 d)m(rr”“mr)

m (r) dr Jm (r) dr
+[h = Verr B ]m ()" o) =0. (33)
Now multiplying from the left by m (r)'/* we get

(m (= j—rm (=2 ;7’" (r)‘”“) ¢ ()

+ [ = Vers G )] (r) =0, G34)
where
) (ZZ —1 /4) i i
Vers (r (r)) = W+,3 ow)r
2mB
+2m AV Q (r)r + o0 (35)

that admits isospectrality with the one dimensional
Schrodinger-like confined KG-oscillator in (15) with its
eigenvalues given in (23) and its eigen functions given by
(32). Hence the radial wave function is eventually given by

v = (Vo) = L2 gg;:)

@ Springer
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Obviously, the confined KG-oscillators of (34) and that of
(15) are isospectral and share the same energy eigenval-
ues of (23), therefore. Yet we may safely conclude that
the two confined KG-oscillators in a the (2+1)-dimensional
Giirses to deformed-Giirses space-time backgrounds, (7) and
(25), respectively, are invariant and isospectral. Moreover,
one should notice that equation (34) resembles an effec-
tive position-dependent mass (PDM) particles in the one-
dimensional von Roos PDM Hamiltonian [26] with Mustafa
and Mazharimusavi parametric settings [29,32,33]).

(36)

4 Confined-deformed KG-oscillator from a
(2+1)-dimensional Giirses to a Giirses space-time
backgrounds

Letus rewrite the deformed (2+1)-dimensional Giirses space-
time metric (28), using the transformation recipe in (26), as
ds? = —dt*> —2Q 0 (r) r’dt do

+0 (r) 12 (1 Q0 () r2) d0* +m (r)dr?, (37)

and compare it with (2) of [15] to imply, that a, =1,

! H 2 Gl 2
— , == = —r-. 38
14 w4 3 Q) =c+ -1 (33)
Consequently, our Q(r) reads
3 3
O =ey+ -2 e QNP =e>+=2, (39
wr 0
to imply, through (27), that
2.2
wegr 1 1 3¢,
=—01 = vy= = —
m () weyr? + 3¢, v m(r) e, pelr?
(40)
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Obviously, the resulted parametric structures agree with
those of Giirses [15] in (2), where

1 _ 3¢,

PN
e()

Ay =0, h=e,r (41)

Then the corresponding metric tensor is given by

5 Confined-deformed KG-oscillator from a
pseudo-Giirses to a Giirses space-time backgrounds

In this section, we consider a deformation in the radial coor-
dinate through

2
@r:ar+§<:>Q(r)r2=(ar+lr—7> , (46)

—Q (eor + 3“’)

(o= 32 -2 e+ 5)

, (42)

ccc— 1 0
o 0 per?
8uv = pegr?+3c,
3
-Q (eor + CO) 0
with det(g) = 2 and its inverse
2 2 3¢,
cce — (1 -Q (eor + 7")) 0 —-Q
~ pe r=+3c
g = 0 (7;’“(2’ > ") 0
-Q 0 !

3¢,
2 0
(eor + m )

(43)

Moreover, we may now report the corresponding confined-
deformed KG-oscillator in the deformed Giirses space-time
(50) background as

,l,L€2r2 —1/4 d ;,L€2r2 —1/2
—1/4
) ¢ (r)

+|i-vEmm]em=o,

2.2
o i pnegr
dr \ pe,r? + 3¢,

(44)

where

Vi =VFr)=

G 1/4)2 g <+3_) 2

(& 3‘“)
(45)
3C0

+2mA 2
V ,ur
\/ urz

This confined-deformed KG-oscillator is isospectral and
invariant with that of (15) and, therefore, shares the eigen
energies given in (23). The corresponding eigenfunctions are
readily given in (32) with Q (r) and m (r) are as defined in
(39) and (40), respectively. The confined KG-oscillators, (44)
and (15), in Giirses space-time backgrounds are invariant and
isospectral, therefore.

which would, through the correlation in (27), imply that

b 2
m(r):(a—r—2> .

Consequently, Eq. (34) yields

b\ a b\ ' d b\ 2
(-5) Sl-3) Sl-2) )ew

(47)

+A=ViHle(r) =0, (48)
where V (r) is now given by (35) as
B=1) o)
N = o TP (“r " ?)
+2mA <ar + ?) . (49)

Such confined-deformed KG-oscillators, (48) and (15), in
pseudo-Giirses to Giirses space-time backgrounds are invari-
ant and isospectral, therefore. Moreover, this system cor-
responds to a (2+1)-dimensional pseudo-Giirses deformed
space-time metric (28) of the form

ne \
d§2=—<dt+£2(ar+—> d@)
r
b\ b \?
~|—<ar—|——> d92+<a——2> dr?,
r r

The notion of pseudo-Giirses space-time metric is manifested
by the fact that this metric may yield a Giirses space-time
like metric (1) (discussed in Sect. 1) if the transformation is
reversed. Having said that, it is obvious that the only feasible
Giirses to Gii rses space-time metric backgrounds case is the
one discussed Sect. 4, where Q (r) and m (r) are, respec-
tively, given by (39) and (40). Any other structure for Q (r)
and m (r) in (28) should be classified as pseudo-Giirses to
Gilirses space-time metric backgrounds.

(50)

@ Springer
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Fig. 4 a Corresponds to Fig. 1a but with the vorticity parameter 2 € [—0.05, 0.05], b corresponds to Fig. 3e but with the vorticity parameter

Q € [—0.5, 0.5], and ¢ corresponds to b above but with 2 € [—5, 0.5]

6 Concluding remarks

In this study, we have considered (in Sect. 2) the KG-
oscillator confined in a Cornell-type scalar potential S ()
of (14) in some (2+1)-dimensional Giirses space-time back-
grounds. We started with a confined KG-oscillator in a Giirses
space-time background (i.e. Giirses space-time metric ds> (1)
at specific parametric settings) and reported the correspond-
ing exact solution in (17) and (23). Hereby, we argue that the
natural tendency of a physically viable solution of a more
general case ( confined KG-oscillator in our case) should nec-
essarily collapse into that of a less complicated KG-oscillator
ones in (12) and (13), when the confinement parameters are
switched off. So is the tendency of our reported exact solution
in (17) and (23).

To observe the effect of the vorticity parameter 2 = —u/3
(in our case) on the energy levels E, ., we have reported
E,, ¢ (23) versus Q in Figs. 1 and 2, and E,,, ¢ vs 1 (the KG-
oscillator frequency) in Fig.3. The mathematical structure
as well as the reported figures document the critical role of
the second term, (—2 2 ¢ E) on the L.H.S. of (23), in shap-
ing the energies of the confined KG-oscillator. This effect is
summarized as follows: (i) the positive energy E, with Q
and ¢ are both positive or both negative, is boosted upward
for £ # 0, (ii) the negative energy E_, with positive/negative
2 and negative/positive £, respectively, is boosted downward
for £ # 0, and (iii) for a fixed 2 the energy gap is shifted
upwards (for positive €2 and £) and downwards (for negative
Q and ¢), whilst the gap increases as the KG-oscillator fre-
quency n increases. As a result of such effects, the energy
levels crossings (documented in Fig. 1), the energy levels
clustering (documented in Fig. 2b—f), and the energy gap
shifting (documented in Fig. 3a, b) are unavoidable natural
manifestations in the process. Moreover, to figure out how the
energy levels behave near 2 = 0 (i.e., flat space-time back-
ground) we have also reported Fig. 4. Figure 4a corresponds
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to Fig. 1abut with the vorticity parameter 2 € [—0.05, 0.05].
Obviously, at Q2 = 0 the energy levels admit degeneracy as
follows: Eo.0, Eo,+1, Eo,+2 form bottom to top for the posi-
tive energies and from top to bottom for negative energies. As
we move far from €2 = 0, we see that Eg 1 and Eo, 1 switch
their ordering in moving from €2 > 0 to 2 < Oregions (simi-
lar behaviour occurs for all E,, -0, +¢) and E,, ~0,—|¢| states).
To make sure that energy levels clustering do not indulge
levels crossings we plot Fig. 4b, c, they correspond to Fig.
3e but with the vorticity parameter 2 € [—0.5,0.5] and
Q € [-5, 0.5], respectively. Clearly, for a fixed value of the
magnetic quantum number £ = =£|€|, no energy levels cross-
ings are observed and the energy levels just cluster without
ordering change.

Next, we have considered (in Sect. 3) the confined KG-
oscillator in a general deformation of the (2+1)-dimensional
Giirses space-time background (28). Hereby, we have shown
that the resulting confined and deformed KG-oscillator is
invariant and isospectral with of the confined KG-oscillator
(15)in the (2+1)-dimensional Giirses space-time background
(1). We have further considered (in Sect. 4) a confined and
deformed KG-oscillator in a deformed (2+1)-dimensional
Giirses (28) to a Giirses space-time backgrounds (2). That
is, the deformation in the (2+1)-dimensional Giirses space-
time metric d52 (28) is chosen so that it belongs to a another
Giirses space-time metric (but with different Giirses-type
parametric setting) in (2). We have shown that such a confined
and deformed KG-oscillator is invariant and isospectral with
of the confined KG-oscillator (15) in the (2+1)-dimensional
Giirses space-time background (1). Finally, we have con-
sidered (in Sect. 5) a confined and deformed KG-oscillator
in pseudo-Glirses to Giirses space-time backgrounds. The
notion of pseudo-Giirses space-time metric is manifested by
the fact that its parametric settings do not belong to Giirses
space-time (2) metric but it can be transformed into Giirses
space-time metric (1) within the transformation (26). Once
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again we have shown that such a confined and deformed KG-
oscillator is invariant and isospectral with of the confined
KG-oscillator (15) in the (2+1)-dimensional Giirses space-
time background (1).

Finally, the current methodical proposal implicitly indulges
a new form of topological defects in cosmic string space-
time or in the geometrical theory of topological defects in
condensed matter that may lead to some interesting features
to be explored. To the best of our knowledge, within the
above methodical proposal settings, such KG-oscillators in
the backgrounds of (2+1)-dimensional Giirses to Giirses or to
pseudo-Giirses space-time metric have never been reported
elsewhere.
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