@\ CERN-THESIS-2012-156
X 01/06/2012

Feicim: A browser and analysis tool for
distributed data in particle physics

Zoltan Mathé
UCD School of Physics

& o
UCD

v

A thesis submitted to University College Dublin
for the degree of Doctor of Philosophy

Head of School: Prof. L. Hanlon

Supervisor: Dr. R. McNulty

May 2012

iii

Abstract

The Grid was developed to solve large-scale scientific problems by providing access to wide-
area distributed computing resources. The Grid is used by various communities: high-energy
physics, earth observation, biology, etc.

LHCb is one of the four Large Hadron Collider (LHC) experiments based at the European
Organisation for Nuclear Research (CERN). The LHCb experiment produces a huge amount
of data. As a single institution does not have the computing resources to handle this data, Grid
computing is adopted to store and process the data. Managing PetaBytes of data in distributed
environments provides a large scale of challenges related to performance, reliability and scal-
ability. PetaBytes of data are spread over several Grid sites. The users and applications need
an efficient mechanism to locate datasets based on their content, which can be achieved by
associating descriptive attributes to these datasets and providing the associated information
to the users. A Grid service, called the Metadata Catalogue was introduced to perform these
tasks.

In physics very complex programming environments are used which are becoming ever more
complex. Consequently, a lot of time must be invested in learning how to use the existing Grid
resources for data analysis.

Feicim is a distributed computing tool that integrates a Bookkeeping Metadata Catalog and
a representation of data and analysis. Feicim provides datasets, data-content discovery and
analysis through the use of a Graphical User Interface.

This thesis presents my research into the functionality and design of Feicim. I present my
current effort in the LHCb experiment to use data-content, dataset discovery and analysis
within the Feicim framework.

Declaration

This thesis is the result of my own work, which was performed between 2008 and 2011 in the
Experimental Particle Physics Group in University College Dublin. The Feicim tool which is
presented in Chapters 5, 6 and 7 are my own work. I made explicit references to the work of
others. I declare this thesis is not submitted to another qualification or any other university.

Zoltan Mathé

Acknowledgements

I would like to thank Dr. Ronan McNulty and Dr. Tahar Kechadi for the opportunity to work
in the particle physics group at University College Dublin. In addition I would like to express
my sincere appreciation to Dr Ronan McNulty for guidance during this undertaking who also
had to read and re-read my thesis during the past few months and I am very grateful for all his
efforts. A big thanks must also go to Dr. Zsolt Lazar who provided me an excellent starting
point.

At CERN I would like to thank my third supervisor Dr. Philippe Charpentier for allowing me
to work with the LHCb computing group. I am especially grateful to him as he guided me
during this period and provided many very helpful ideas.

I would like to thanks all the DIRAC team whose were very helpful: Dr. Andrei Tsaregorodt-
sev, Dr. Joel Closier, Dr. Ricardo Graciani, Adria Casajus, Dr. Stuart Paterson, Dr Andrew
Simth, Dr. Federico Stangini, Dr. Elisa Lanciotti.

I would like to thanks Dr. Marco Clemencic who shared very useful information which helped
to integrate various LHCb software components.

I would like to thank my friends who encouraged me. We spent very good time together. A big
thanks must also go to the other students at University College Dublin. Together with them
we spent great times in Dublin and Geneva and they always helped to improve my English
knowledge.

Finally I would like to thanks my parents and my sister who have encouraged and gave emo-
tional support.

vii

Contents

1. Introduction
1.1. Outline

2. Grid Architecture and the Worldwide LHC Computing Grid
2.1. IntroductiontoLHCb

2.1.1. The Large Hadron Collider (LHC)
2.1.2. TheLHCbdetector
2.1.3. The LHCb triggersystem.
22, GridComputing e e
2.3. Why is a Grid significant? 0.
2.4. Grid Infrastructures Lo
2.5. Grid Architecture e
2.5.1. The Information System
2.5.2. Authentication
2.5.3. Workload Management System
2.5.4. Data Management and Replication
2.5.5. Logging and Bookkeeping Service
2.6. gliteMiddleware
2.6.1. Information
2.6.2. Virtual Organization,
2.6.3. Workload Management,
2.6.4. DataManagement
2.7. Metadata Serviceonthe Grid L.
2.7.1. AMGA metadata catalogue
2.8. Worldwide LHC Computing Grid (WLCG)
2.9. Summary e e

ix

[\

O 0 0 O O w»ni

X Contents

3. Distributed Data Analysis 23
3.1. Distributed data analysis in different scientific communities 24
3.1.1. Biomedical Informatics Research Network 25
3.1.2. Distributed Aircraft Engine Diagnostics 26
3.1.3. The World-Wide Telescope 26
3.1.4. LHC distributed analysis 27

3.2. Metadata Services on the LHC experiments 30
3.2.1. AliEn File and Metadata Catalogues 30
3.2.2. Atlas Metadata interface (AMI) 31
3.2.3. The CMS Dataset Bookkeeping Service (DBS) 32

33, Summary e 33
4. Distributed analysis in the LHCb experiment 35
4.1. Gaudiframework 35
4.2. Physics Applications 38
4210 Gauss 38
422, Boole 38
423, Brunel. 38
424, Davinclo 39

4.3. The LHCb experiment Data flow and Work flow 39
4.4. The LHCb ComputingModel 40
4.5. Resource requirements 42
4.6. Dirac e 46
4.6.1. Dirac design and implementation 46
4.6.2. DIRAC Architecture 46
4.6.3. DIRAC Systems 47

47, Ganga e e 54
4.7.1. Overviw of Ganga architecture, design and implementation 55
4772, GangaComponents 55

4.8. Summary e 57
5. Feicim 59
S.1. Motivationol e e 59
5.2, Architecture L 60
5.3. Componentsof Feicim 61
5.4. Design and implementation L. 62

54.1. DesignPatterns 63

Contents xi
5.5. DatahandlinginFeicim., 75
5.6 Managers e e 75
S7. Summary ... e e e e 76

6. Distributed analysis using Feicim 79
6.1. General tree data structure and tree traversal algorithms 79
6.2. Tree traversal algorithms oL 80

6.2.1. Depth-first traversal (DFT) 81
6.2.2. Breadth-first traversal (BFT) 82
6.2.3. Feicim tree traversal algorithm (FTA) 82
6.3. Feicim Data Browser 84
6.3.1. Feicim Data browser architecture 84
6.4. Feicim Data Analysis 94
6.4.1. Feicim Data Analysis architecture 95
6.5. Summary e 98

7. The LHCb Bookkeeping System 101
7.1. Evolution of the LHCb Bookkeeping System 101
7.2. A hybrid data model to describe the LHCb metadata structure 104

7.2.1. Relational DataModel 104
7.2.2. Query languages and Relational algebra 107
7.3. Design and architecture of the LHCb Bookkeeping System 108
7.4. Datalayer e 108
74.1. TheLHCbdataset 109
7.4.2. Bookkeeping Metadata catalogue 112
7.5. Query generalization layer oL L oL 117
7.6. Service Layer 118
7.7. ClientLayer e 118
7.8. ManagerLayer 119
7.9. Presentationlayer L 119
7.9.1. Command Line Interface 119
7.9.2. Graphical User Interface 120
7.93. Weblnterfaceo 126
7.10. The LHCb Bookkeeping System performances 126
7.10.1. Response time and Throughput 133
7.10.2. Testing Oracle 11g performances using Multi-Mechanize 135
TA1.Summary L e e e 144

xii Contents

8. Conclusion 145
A. Appendix 147
A.1. Relational Algebra 147

Bibliography 157

To Réka

1. Introduction

Computing has played an increasingly significant role in science over the years and scien-
tific communities have initiated a new approach which allows using wide-area computing
resources as a large virtual computer for solving large-scale scientific problems. The problem
of giving access to wide-area computing resources is a principal issue in the contemporary sci-
entific communities. For example, collaborations in physics, astrophysics, biology, medicine
and Earth science need to store and analyse huge amounts of data. Consequently, the analysis
of petabytes of data requires intensive computations. The appropriate computing and storage
resources can not be ensured by one research centre. The modern approach to the solution of
this problem is to utilise the computational and data storage facilities of the centres partici-
pating in the collaboration. The most advanced implementation of this approach is based on
Grid technologies, which enable effective work by the members of collaborations regardless of
their geographical location. Currently, the Grid technologies are used implemented in various
fields of science all over the world. One of the largest Grid infrastructures is the Worldwide
Large Hadron Collider Computing Grid (WLCG) which provides the production and analysis
environments for four Large Hadron Collider (LHC) experiments-ALICE, ATLAS, CMS and
LHCb at CERN.

The LHCb detector produces approximately 1 petabytes of data per year which has to be
stored, reconstructed and analysed. In the LHCb experiment where information is dynamic in
nature and not centrally managed, scalable and robust metadata management tool is essential.
The Bookkeeping Metadata Catalogue of the LHCb experiment stores structured information
that describes the datasets and consists of attributes such as name, time of creation, size on
the disk, details of the process that produced the data, data provenance, information about the
detector, data taking, information about Monte Carlo simulation, etc. A set of robust and user
friendly tools must be available that allows users to manipulate the metadata information.

In addition a dedicated workload management which performs data processing (reconstruc-
tion, stripping, etc.) is required; it is called DIRAC (Distributed Infrastructure with Remote
Agent Control). DIRAC is a Grid middleware component which manages data simulation,
reconstruction and analysis on the Grid. The simulation, reconstruction and analysis tasks,
or in other words, ’jobs’, contain associated information which, at the end of a Grid Job, is
reported to the Bookkeeping Metadata Catalogue.

The goal of the physicist is to make physics measurements using the data produced by the
LHCb experiment. The physicists must extract, interpret and filter relevant information from
the data in order to make physics measurements. The Bookkeeping Metadata Catalogue is
used to define the input data using metadata information that describe the dataset. In particle
physics the process and understanding of the data requires several processing phases and vari-

2 Introduction

ous algorithms which perform different applications. However, as programming environment
become larger and more complex due to the various applications, access to the information of
interest become more and more difficult. In addition, to prepare a job and run this analysis job
on the Grid is not an easy task for the users.

We designed and developed a distributed analysis tool called Feicim (Feicim is a Gaelic word
which means I see’) that provides a visual representation of datasets, data content discovery
and analysis through the use of Graphical User Interface. Feicim unifies various resources,
and gives access to these resources in a user friendly environment that is robust, adaptive and
scalable. It hides the complexity of the Grid and provides links between the people with Grid
experience and the physicist who does not dispose a prominent knowledge of Grid computing.

We have redesigned the previous LHCb Bookkeeping system based on Feicim and developed
a new LHCb Bookkeeping system which is currently used by hundreds of users. The LHCb
Bookkeeping System integrates the Bookkeeping Metadata Catalogue, Bookkeeping Service
and User Interfaces which are used to manipulate the metadata. The Bookkeeping Service
provides access to the Bookkeeping Metadata Catalogue in an efficient way, while the User
Interfaces (Command Line Interface, Graphical User Interface, Web User Interface) provide
a visual representation of the datasets stored in the Bookkeeping Metadata Catalogue in a
hierarchical format.

We have designed and implemented the Feicim Data Browser component which visualise
the data file content, and extract relevant information. This information is used to define the
different options which are essential to run data analysis. We pay particular attention to de-
signing the data browser algorithms which aims to browse and extract information from event
data. We designed and implemented the Feicim Plots Factory which provides an algorithm for
the creation of different type of plots and presents the extracted information to the physicists.
This component also allows to be defined filtering conditions on the visualization of the data.

We have designed and implemented the Feicim Data Analysis component which is respon-
sible to create and submit jobs to the Grid or local machine using DIRAC or Ganga. This
component automatically generates the algorithms, which perform on the dataset and collect
relevant information from the event data. In addition, it is responsible to generate specific
script (DIRAC or Ganga) which creates a job based on the automatically algorithms.

1.1. Outline

In Chapter 2 we present a comprehensive introduction to Grid computing and the LHCb exper-
iment. In addition we describe the general components of the widely used Grid middleware.
We pay special attention to the Metadata Services. Chapter 3 gives a general description of
the Distributed Data Analysis and the existing analysis tools and metadata catalogues which
are used to store metadata information about the datasets. We introduce the metadata cata-
logues of various scientific communities and in particular the metadata catalogues of the LHC
experiments. Chapter 4 presents the LHCb Distributed Analysis by describing its important

Introduction 3

physics applications. We present the LHCb official Distributed Analysis tools DIRAC and
Ganga. In Chapter 5 we introduce the Feicim tool which provides a user-friendly Command
Line Interface or Graphical User Interface which aims to join together the different LHCb
applications used for data analysis. In this chapter we introduce the Feicim design principles
that play a vital role for joining together different applications. In Chapter 6 we present the
Feicim Data Browser component of Feicim which can be used to discover data file content
containing different objects. We present different algorithms which are used to discover the
data file content and to present it to the users as a tree (or Virtual File System). The users can
browse in the data file content and they can select different attributes. Using these selected
attributes various plots can be made. In addition in this we present the Feicim Data Analy-
sis component of Feicim which can used to define tasks and execute these tasks on the Grid
or local machine. Chapter 7 presents the LHCb Bookkeeping System which stores metadata
information, data provenance and provides the access to the stored information. These data
are stored in a database and we describe how these data can be converted to a tree structure in
order to form a Virtual File System.

2. Grid Architecture and the
Worldwide LHC Computing Grid

In High Energy Physics (HEP) computing has played a vital role to process huge amounts
of data, collected by different experimental laboratories such as Brookhaven National Labora-
tory, DESY, KEK, CERN etc. The Large Hadron Collider (LHC) introduced in section 2.1.1 is
built by CERN and is the world’s largest particle accelerator. Section 2.1 gives a brief descrip-
tion of the LHCb experiment and its key components. An appropriate computing platform is
required where the scientists can execute their data intensive applications. The Grid is devel-
oped to provide this platform in order to process data which are distributed in millions of files.
Section 2.2 provides a historical view of the Grid computing paradigm from the beginning to
the present. In section 2.3 we formulate a few arguments for the importance of Grid Comput-
ing. Taking into account the functional aspects of the Grid we distinguish between different
Grid types which are presented in section 2.4. Overviews of Grid architecture are mentioned
in section 2.5 along with a review of the current standards. In section 2.6 we give special em-
phasis to the glite middleware that is being used by four LHC experiments at CERN and also
by other collaborations. Section 2.7 gives a brief description of the metadata service required
to manage the metadata information associated to the data and provide a reliable interface to
the users in order to access the metadata information in a user-friendly manner. In addition it
describes the glite Metadata catalogue. Section 2.8 presents the WLCG project that provides
the data storage and analysis infrastructures to the LHC experiments.

2.1. Introduction to LHCDb

The LHCb experiment is the smallest LHC experiment based at the CERN laboratory. It is
an international collaboration, consisting of approximately 760 scientists from 54 institutes,
representing 14 countries around the world. The LHCb experiment produces about 5 PB !
of data per year. In order to process this huge amount of data, LHCb uses the WLCG Grid
infrastructure that provides the data storage and analysis capabilities also used by the other
LHC experiments.

'PB (petabyte) is a measure of computing resources (memory, disk, storage capacity) and it is 2 to the 50th
power bytes.

6 Grid Architecture and the Worldwide LHC Computing Grid

2.1.1. The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) is a proton-proton collider that currently operates at a
centre of mass energy of 7 TeV. The LHC resides in a 27km tunnel underneath the Franco-
Swiss border near Genava.

Overall view of the LHC exeriments.

\\a/\.a

Figure 2.1.: The LHC - An overview of the SPS, LHC and its experiments, from[3]

-

Four major detectors have been constructed at the LHC: ALICE, ATLAS, CMS and LHCb.
Figure 2.1 illustrates the layout of the LHC and its experiments. The current theory which
describes the fundamental properties of matters is called the Standard Model[1]. The aim of
the four experiments is to explore the current understanding of the Standard Model, to search
for the Higgs particle (the missing component of the Standard Model) and to search for new
physics effects beyond the Standard Model.

2.1.2. The LHCDb detector

Large Hadron Collider “beauty” (LHCD) is a specialised B physics detector which has
been designed principally to study CP violation used to make an absolute distinction between
matter and antimatter in the b-quark sector at LHC. With large event statistics, LHCD is able
to investigate rare decay processes with high precision.

The LHCDb detector [4], shown in Figure 2.2 is a forward single arm spectrometer which
consists of a dipole magnet, two Ring Imaging CHerenkov (RICH) detectors, a Vertex Locator
(VELO), an electromagnetic and hadronic calorimeter, five muon chambers and four tracking

Grid Architecture and the Worldwide LHC Computing Grid 7

ECAL HCAL

SPIVPS M3
RICH2Z n) 1

Figure 2.2.: The LHCDb detector - Figure taken from[2]

stations. The LHCb detector is composed of several sub detectors that can be divided in two
types depending on their task.

The Tracking system reconstructs particle trajectories across the spectrometer, and deter-
mines the position of the primary and secondary vertices produced in the collisions. It consists
of the Vertex Locator [5] (VELO) which is located next to the beam pipe, close to the proton-
proton interaction point. The VELO measures very precisely the tracks of charged particles
allowing reconstruction of primary and secondary vertices. The three Tracking Stations (T1-
T3) are divided into a central Inner Tracker (IT)[9] station surrounded by an Outer Tracking
(OT)[10] stations. The IT and OT detectors are used to find charged particle tracks and mea-
sure the particle momentum which is important to precisely resolve the invariant mass of the
reconstructed B mesons[8]. The Tracker Turicensis (TT) improves the transverse-momentum
measurement. It covers the full detector acceptance and it is also used to measure the momen-
tum of slow particles which do not reach the Tracking Stations[6,7].

The Particle Identification (PID) system uses three detection technologies. The LHCb par-
ticle identification strategy involves two RICH detectors[11] and uses Cherenkov effects to
determine the speed of the particles. The RICHI detector is used to measure low momentum
particles, while the RICH2 is used for higher momentum particles. The energy of photons
and electrons is measured by the Electronic CALorimeter (ECAl) while the energy of kaons,
charged pions and protons is evaluated by the Hadronic CALorimeter (HCAL)[12]. The Muon
system[13] is made of five Stations of rectangular shape to identify the particles which pene-
trate through the calorimeters.

8 Grid Architecture and the Worldwide LHC Computing Grid

2.1.3. The LHCDb trigger system

One of the key component of LHCb is the trigger system[14], which aims to reduce the
40 Mhz proton-proton collisions in order to keep only the relevant events. The data rate is
reduced by a two-level trigger system to roughly 2kHz of particle collisions. The first level
or LevelO (LO) hardware trigger uses information from calorimeters and the muon system to
select particles with high transverse energy and momentum, reducing the rate of accepted
events to IMhz. The second level trigger or High Level trigger (HLT) is a software based
trigger. The purpose of the HLT is to perform different algorithms using dedicated clusters to
reduce the rate to 2 Khz. This RAW event data is temporary written to the Online system and
it will be transferred to CERN computing center for future processing[15]. According to the
size of the dataset, it is not efficient to use only one computing centre. The LHCb experiment
uses the Grid to distribute the data around the world in order to be able the process of data in
a reasonable time.

2.2. Grid Computing

Different scientific communities in physics, chemistry, genetics, mathematics etc. use exten-
sive computing and data storage infrastructures for modelling and analysing data. To process
these huge amounts of data it is not always possible to have all the necessary computing power
and storage capacity in one geographical location. Metacomputing is a technology intended
to integrate multiple computing resources, which are used by various applications as a het-
erogeneous computing resource. It is the ancestor of the Grid. The term Metacomputing was
coined around 1987 by NCSA Director, Larry Smarr{16]. Around 1990 scientists evaluated the
existing computing infrastructures and tried to define a better computing infrastructure. One
of the first project in this area was named I-WAY (Information Wide Area Year) which aimed
to virtualise resources over 16 participating sites using varying supercomputing resources and
Virtual Reality display environments[17]. The I-WAY was successfully demonstrated at the
Supercomputing ’95 conference. This project strongly influenced later Grid computing ac-
tivities. Ian Foster, as project leader of I-WAY, and Carl Kesselman published in 1997 a paper
[18] that introduced the Globus Toolkit[19] which is an open source software toolkit imple-
mented by the Globus Alliance for building Grids with Metacomputing. This paper becomes
the pillar of current Grid projects. Independent of the architecture and technologies, the Grid
was defined by Ian Foster and Carl Kesselman as[20]:

“a hardware and software infrastructure that provides dependable, consistent, per-
vasive, and inexpensive access to high-end computational capabilities”

A more recent definition from Wolfgang Gentzsch is[21]:

“A Grid is a hardware and software infrastructure that provides dependable, con-
sistent, and pervasive access to resources to enable sharing of computational re-
sources, utility computing, autonomic computing, collaboration among virtual or-
ganizations, and distributed data processing, among others”

Grid Architecture and the Worldwide LHC Computing Grid 9

Therefore, the Grid combines heterogeneous and distributed computational resources to a
large virtual computer through a middleware that can be used to solve various scientific prob-
lems. The benefit is faster, more efficient processing of different tasks. One of the first Grid
initiatives was the loosely connected network of independent desktop computers SETI@home
[41]. The implementation of this network was based on the Berkeley Open Infrastructure
for Network Computing (BOINC)[42] "volunteer computing” and Grid computing platform.
SETI@home is used for data analysis searching for extraterrestrial life by running free soft-
ware on several millions computers. Grid technology has the potential to affect other areas of
study with heavy computational requirements, such as urban planning[31]. Computer graphics
is another potentially important area for the Grid technology, because it requires large amounts
of computational power.

The Global Grid Forum (GGF) attempted to define Grid standards and standardize Grid
development. Several research and working groups approached this task, and later the En-
terprise Grid Alliance[22] was formed to develop enterprise Grid solutions and accelerate
the development of Grid computing. In June 26, 2006 the Enterprise Grid Alliance and The
Global Grid Forum merged to form the Open Grid Forum (OGF)[23]. The OGF aims to lead
the global standardization effort for Grid computing and to accelerate the adoption of Grids
worldwide. Several groups attempted to define a Grid and in the end they agreed that the adop-
tion of the Open Grid Services Architecture (OGSA) will define a Grid[24]. The OGSA is
developed by the Global Grid Forum working group[25] and combines the emerging strengths
of Grid technology by using Web Services concepts and technologies of Web Service Defi-
nition Language(WSDL)[27,28] and Simple Object Access Protocol (SOAP)[30]. These
concepts and technologies are developed to deliver a coherent architecture which are defined
in terms of Grid Services. The driving force of the Grid Services is the Web Services that
conform to a particular set of conventions (interfaces and behaviours). Consequently, the Web
Service is the core of the Grid Services. The Open Grid Service Infrastructure (OGSI)[29]
is designed to provide an infrastructure layer for the OGSA to support reliable Grid services,
but this has now been replaced by the Web Services Resources Framework (WSRF)[29].
The Open Grid Forum officially launched the Open Cloud Computing Interface Working
Group (OCCI-WG)[93] in spring 2009 which aims to describe an API specification for remote
management of Cloud Computing infrastructures. The scope of the specification will be high
level functionality required for the life-cycle management of virtual machines (or workloads)
running on virtualization technologies (or containers) supporting service elasticity[94].

2.3. Why is a Grid significant?

Many computer scientists have formulated the significance of a Grid. We try to summarize it
in the following lines:

e Different user communities can quickly and easily create a large-scale computing in-
frastructure that was formerly impractical or unfeasible due to the physical location of
indispensable resources.

10 Grid Architecture and the Worldwide LHC Computing Grid

e The Grid is a heterogeneous computing environment which mostly consists of thousands
of pieces of commodity hardware that can produce similar computing resources as a
multiprocessor computer, but at lower cost.

e The Grid provides a real-time response to analyse complex problems.

e Computing intensive applications that were previously inhibited by constraints on com-
puting power, become possible using the Grid.

2.4. Grid Infrastructures

We are interested in the functional aspect of Grid infrastructure. From a functional point of
view there are two different types of Grids: Computational Grids and Data Grids.

The early Grid developments were focused on computation, but Data Grids[43] are becoming
more important as they provide tools for easy access and manipulation of large and shared
datasets.

e A Computational Grid is a collection of distributed computing resources, within or across
sites, which are aggregated to act as a unified processing platform[20]. A Computational
Grid provides an architecture for transparent access to distributed heterogeneous Com-
puting resources. For example: TeraGrid[35] is a Grid infrastructure which provides
distributed access to United States and European supercomputing facilities. Grid-Ireland
[36] provides a research platform for scientists to use computing resources throughout
Ireland and worldwide.

e Data Grid technologies provide the infrastructure for users to process large volumes of
data across geographically distributed storage sites. For example: OSG (Open Science
Grid) [37] provides the computing infrastructures for different scientific communities.
The DataGrid[38] project objective is to build the next generation computing infrastruc-
ture providing intensive computation and analysis of shared large-scale databases, from
hundreds of TeraBytes to ExaBytes, across widely distributed scientific communities.

2.5. Grid Architecture

We now discuss the general features of a Grid architecture. A specific implementation will
be presented in the next section. An architecture [39] is a formal description of a system, and
defines its purpose, functions, externally visible properties and interfaces.

The first definition of the Grid architecture was presented in the article ’The Anatomy of Grid’
[44]. The Grid architecture identifies fundamental system components, specifies the purpose
and function of these components, and indicates how these components interact with one
another[44]. It defines standard protocols and APIs to help the creation of cooperative Grid

Grid Architecture and the Worldwide LHC Computing Grid 11

systems and portable applications. The Grid architecture is defined in terms of layers, where
each layer has a dedicated scope.

]
§&
§

Authentification
Authpezalion

\ayer

H ardw ane

Figure 2.3.: The Grid architecture - Figure taken from "WLCG” web page[86]

Following Figure 2.3 top-down, the first level of the Grid architecture is the Application
and Service layer. The Application and Service layer is defined by application and service
software which includes portals and development toolkits as well. This layer provides many
management-level functions such as accounting, and measurement of usage metrics.

The Application and Service layer is followed by the Middleware layer which consists of a
software system that located between applications and the operating system providing proto-
cols that enable multiple elements (network, storage, servers, etc.) to participate in an inte-
grated Grid environment. The Grid middleware purpose is to define standard protocols and
standard APIs realizing communication and data exchange between the various elements. It
enables virtualization which is used to mask the heterogeneous computing resources.

The Hardware layer (or resource layer)[46] consists of the actual resources that are part
of the Grid, including primarily servers and storage devices while the Network layer is the
underlying connectivity for the resources in the Grid.

Since one of the main subjects of this thesis is related to the Grid computing, we discuss this
part of the Grid architecture in more details focusing one by one on each service.

12 Grid Architecture and the Worldwide LHC Computing Grid

2.5.1. The Information System

The Grid Information System interconnects various Grid Middleware components by en-
abling dynamic and static flow of information. It provides information about Grid Services
needed for various different tasks, such as discovery and monitoring features, by allowing the
registration of available resources and services of member sites of the Grid.

Hierarchical directory services are used to define APIs and protocols for the Grid Information
Service. The first prototype, based on the Lightweight directory Access Protocol (LDAP),
was implemented in the Globus Toolkit[47].

The Grid Laboratory for Uniform Environment (GLUE)[49] defined a schema that fully
describes Grid resources and services and their properties which make a Grid Information
Service effective. The GLUE Working Group [48] which was a joint effort between Grid
projects in Europe and the USA together with the OGF working group worked on the stan-
dardization of the schema. The schema which is independent of implementation, describes
computing, data and storage resources and services in a uniform way.

2.5.2. Authentication

One of the most important issues is to allow for resource access without imposing compli-
cated and site specific authentication and authorization procedures. While authentication is
the process of attempting to gain access by allowing the users to prove their identity, autho-
rization is needed for granting the user or service the possibility to perform the requested
task.

Usually, the standard authentication mechanism in Grid computing uses the public key in-
frastructure (PKI)[50]. Authentication and authorization protocols are parts of the Grid
middleware layer. When the PKI based Grid authentication mechanisms used, the Grid users
must have a user certificate, which is used to generate and sign a temporary, so called proxy
certificate, often referred to as proxy. The proxy certificate generated using X.509 encryption
are signed by Certification Authorities (CA). Certificates are a combination of public key
and a password protected private key pair which can be used when authenticating with remote
services.

2.5.3. Workload Management System

The Workload Management System (WMS) defines and implements an architecture for dis-
tributed scheduling and resource management in a Grid environment by allowing participants
to allocate a number of resources and then schedule the tasks on those resources. The specific
kinds of tasks which require computation are usually referred to as jobs. The WMS is a very
complex system because it has to take decisions based on the status of the Grid resources at
the time a job is to be executed while hiding most of the complexity of the Grid from users.

Grid Architecture and the Worldwide LHC Computing Grid 13

The local resource management system/scheduler (such as Condor?[53], LSF[51], PBS[52])
is responsible for scheduling task in a cluster or farm according to specific allocation policies.

A Computing Element (CE) acts like a Grid batch queue. It is a gateway to local nodes of a
cluster or a farm. These nodes which belong to a computing farm or cluster and are attached
to the different CEs, are called Worker Nodes.

The WMS interacts with other Grid services such as Data Management Service, Information
Service, Logging and Bookkeeping Service, etc.

2.5.4. Data Management and Replication

Access to data in a Data Grid infrastructure must be transparent and efficient. In High Energy
Physics the data which, were produced by the particle detector or analysis, originally stored
in one location which may penalize researchers sitting in a different lab. Because, the access
of the data from different labs can be influenced by the network. In order to avoid this the
data must be replicated to some well defined and chosen locations. Data Replication is a
well known and accepted technique for replicating data in order to optimize data access. We
only replicate read only dataset which content will not change, otherwise the content of the
replicated data will be different than the original dataset.

The variety of storage resources which are available in the hardware/resource layer requires
a standard protocol to manage these resources. The Storage Resource Manager (SRM)[54]
interface provides a middleware layer between clients and underlying resources. The SRM in-
cludes storage, collection, backup and recovery of data, but does not define a transfer protocol.
The SRM allows the use of any transfer protocols (bbftp[55], gridftp[57], ftp[56]) which are
supported by the clients and servers. The advantage of the protocol negotiation mechanism is
that the user can control which protocol is used and it easily allows the implementation of a
new protocol. The GridFTP protocol is used for data transfer over a wide area network. It uses
Grid Security Infrastructure (GSI) (more details in Section 2.6.2) for secure data transfer
and is built on the FTP specification by allowing multiple data channels for network utiliza-
tion. The Grid File System (GFS) provides this logical hierarchical view of data and other
digital entities in a Data Grid[58]. The GFS creates a logical resource name space which is
independent of location and infrastructure details allowing the data to be replicated/migrated
to any file system resource at any Grid site[59].

2.5.5. Logging and Bookkeeping Service

The Logging and Bookkeeping Services (LB) is used to solve the problem of job monitoring
within the heterogeneous Grids environment. LB collects important events during the lifetime
of the Grid jobs and stores this collected information in a reliable way. One event indicates

2Condor was also taken as the software core of the schedulers within the WMS, which implements scheduling
tasks between the Grid sites.

14 Grid Architecture and the Worldwide LHC Computing Grid

a change of the job status. The jobs can have the following states: submitted, waiting, ready,
scheduled, running, done or aborted, cleared. The LB has been developed within the frame-
work of the Workload Management Service.

2.6. glLite Middleware

Various Grid middlewares have been implemented during the past few years such as Condor,
glite, ARC, etc. A special implementation of Grid Architecture is provided by gLite and
we look at this in some detail because it is widely used by the LHC experiments. glLite is
a Grid middleware which has been developed by the EGEE (which finished in 2010) [60]
project. Currently, gLite is maintained by the European Grid Infrastructure (EGI)[61] which
enables access to computing resources for European researchers. It is based on a service-
oriented architecture (SOA)[62] providing the following main services: Information, Security,
Workload Management, Data Management, Logging and Bookkeeping.

2.6.1. Information

The Information system aggregates information from different resources. The information are
consistent with the GLUE Schema. gLite uses two implementations of the Information sys-
tem: the BDII which is an evolution of Monitoring and Discovery Service (MDS) which
is utilised to publish the status of resources, and discover new resources; and the Relational
Grid Monitoring Architecture (RGMA) which is needed for publication of user level infor-
mation, monitoring and accounting.

The Information system has a hierarchical structure.

Figure 2.4 shows three levels of the Information system: The users query the top BDII to
find the information that they require. The site level BDII aggregates the information from all
the resource level BDIIs. The resource level BDII provides information about Grid services
running at the site. FCR refers to Freedom of Choice for Resources, and is a mechanisms
which allows to mask sites or services which are working correctly.

R-GMA is an implementation of the Grid Monitoring Architecture (GMA). It provides a
uniform method to access and publish information and monitoring data. Figure 2.5 shows the
main components of R-GMA. The data produced by producers (i.e. the data providers) is writ-
ten into a virtual database and read by consumers. The registry mediates the communication
between the producers and consumers.

The Information System is used by users, site managers and middleware. The users retrieve
information about geographically dispersed resources which are provided by site managers
and the middleware matches job requirements and allocates the resources.

Grid Architecture and the Worldwide LHC Computing Grid 15

| client |

o
10-18vEl BOII seersesssesserssananes m

Frovider

site-lewel BDIL «eevees

Figure 2.4.: Information system hierarchical structure - Figure taken from[63]

Producer
S
..‘..‘t?{e{,%
'*5??»9
Transfer B
Data N : Reg]_su-y
R
N
o
Y pete

Consumer |~

Figure 2.5.: The R-GMA architecture - Figure taken from[64]

2.6.2. Virtual Organization

We introduce the notation of a Virtual Organization (VO)[40] which is a new type of col-
laborative community to utilise geographically distributed resources. It is a set of individuals
and/or institutions defined by specific applications, data and resources sharing rules. The users
must join a VO in order to be authenticated and authorised to access different Grid resources.
glite uses Grid Security Infrastructure (GSI) for authentication and communication. GSI
is based on x.509 certificates. The authorization of a user on a specific Grid resource can be
done in two different ways.

e The first and simplest solution relies on the so-called gridmapfile mechanism. The Grid
resource has a local file, which maps the user certificates to local accounts[65].

16 Grid Architecture and the Worldwide LHC Computing Grid

e The second way relies on the Virtual Organisation Membership Service (VOMS) and
the Local Centre Authorisation Service (LCAS)/Local Credential Mapping Service
(LCMAPS) mechanism, which allows for a more detailed definition of user privileges.

VOMS maintains and verifies user groups and role attributes. The user resource level au-
thorization information is extracted from the proxy and processed by LCAS and LCMAPS
services. The LCAS make binary authorizations at the site and resources level, and checks
if the user is authorised (currently using the grid-mapfile). The LCAMPS maps Grid creden-
tials to local credentials and maps VOMS groups and roles. The proxy lifetime is limited to
a user specified certain period. MyProxy is a credential repository for the Grid that is used to
store long life proxy certificates. The File Transfer Service (FTS) (which will be described
in section 2.6.4) uses MyProxy to validates user requests and eventually renew proxies.

2.6.3. Workload Management

The gLite WMS[66] is responsible for the distribution and management of tasks (jobs) across
Grid resources. It provides the job management services for matching users tasks (jobs), sub-
mitting them, monitoring their state and retrieving their output. The two core components of
the glite Workload Management System are the Workload Manager (WM), whose purpose
is to accept and satisfy requests for job management coming from its clients and the Com-
puting Resource Execution And Management (CREAM) computing element. The other
fundamental component is the Job Logging and Bookkeeping Service whose purpose is to
keep tracks of the tasks (jobs) (see section 2.5.5). The WMS services run a machine which is
called Resource Broker (RB). The clients of the gLite WMS describe their computing tasks
(jobs) using the gLite Job Description Language (JDL). The JDL is a specific language
which is based on the Condor ClassAd[67] language. The ClassAd defines job attributes, data
attributes and job requirements. For a user task (job) there are two main types of request: sub-
mission and cancellation. The submission passes the responsibility of the job to the WM and
the WM will pass the job to an appropriate CE for execution, taking into account the require-
ments and the preferences which are defined in the JDL. The matchmaking process takes the
decision about the resources to be used. The scheduling (some prefer to call it planning, or
meta-scheduling) algorithms[68] for matching a job to a resource can be performed in two
ways:

e eager scheduling matches the best resource for the job based on the requirements. This
mechanism is usually referred to as push mode”.

e lazy scheduling where the job is held by the WMS until a resources becomes available
and matches the most appropriate job from the task queues. This is called ’pull mode”.

These approaches are symmetrical: eager scheduling implies matching a job against multiple
resources, however lazy scheduling implies matching a resource against multiple jobs. The
glite WMS also offers real-time job interaction, bulk submission, output peeking and proxy
renewal.

Grid Architecture and the Worldwide LHC Computing Grid 17

CREAM CE

The CREAM CE[69] is a simple, lightweight service for job management operation at the
Computing Element (CE) level. It implements direct job submission to the CE and jobs sub-
mission via WMS.

The management of tasks can use a legacy one (Web Service) and the Basic Execution Ser-
vice (BES) interface. The CE Monitor (CEMON)[70] service is responsible for providing
jobs state information by implementing a call-back mechanism to clients. The Journal Man-
ager (JM) stores the user job commands on persistent storage to preserve them in case of
system failure. The Journal Manager uses a Batch-system Local ASCII Helper (BLAH)
interface to translate the user requests to computing resource client commands by interacting
with the underlying LRMS. The gLite WWS has an additional component which is called
the Interface to Cream Environment (ICE). The ICE is responsible for directly interacting
with CREAM. The ICE receives the tasks from the WMS component and uses the appropriate
CREAM methods to perform the requested operation.

2.6.4. Data Management

The glite Data Management components provide tools for storing, cataloguing, transferring
and accessing files in a Grid environment. The Storage Element (SE) is the service which
allows a user or an application to store data for future retrieval. The files in the Grid are identi-
fied by Logical File Names (LFNs). Each LFN has a certain number of replicas at the same or
different Grid sites, which have corresponding Physical File Names (PFNs) associated with
them. The LFN name space is hierarchical, like a file system. Each LFN also has a Global
Unique Identifier (GUID) which guarantees the uniqueness of the LFNs. The logical name
space provides the concept of Logical Symbolic links; their semantics is similar to Unix file
system. The Storage URL (SURL) specifies a physical replica of a file, while the Transport
URLSs (TURLSs) are used to access files. The TURLSs include a protocol determining how the
files can be accessed and understood by SEs.

The gLite data services are the following:

e Storage: gLite supports CERN Advanced STORage manager (Castor)[71], dCache[72]
and the glLite Disk Pool Manager (DPM)[73]. Castor is a hierarchical storage manage-
ment system designed to handle millions of files which can be stored, listed, retrieved
and remotely accessed using Castor command line tools. DCache is a system for storing
and retrieving huge amounts of data. The DPM has been developed as a lightweight
solution for disk storage management. The DPM offers a security enabled RFIO inter-
face for posix like data access and gridFTP for data transfer. The DPM[74] architecture
consists of tree components: head node, disk node, client(s).

The head node includes SRM, DPNS and DPM demons, plus the database service. The
DPM demon handles files access requests. The DPNS handles all file and directory
related metadata operations. The SRM demon exposes the SRM interface to the clients.

18 Grid Architecture and the Worldwide LHC Computing Grid

The disk node hosts the actual data and provides remote access to the data. The follow-
ing data access demons run on each of these nodes: rfio[76], xrootd[77], gridftp[75] and
nfs4.1[78].

The client talks to the head node and disk nodes for metadata operations and data ac-
cess. The DPM services can be installed on a single machine or all services (including
the database server) can be distributed across different machines. glite uses the Grid
File Access Library (GFAL) and the LCG Utils (lcg utils)[79] clients for data manage-
ment. The POXIS interface of GFAL allows users to open/read/write/close files locally
or remotely. The GFAL includes SRM client capabilities. The Icg-utils toolkit is built on
the GFAL libraries to allow file replication with SRM based storages.

e (Catalogues keep track of where data is stored (more details below).

e File Transfers: The gLite File Transfer Service (FTS) is a low level data movement ser-
vice which provides reliable point-to-point file transfers. The File Transfer Interface is
used to submit File Transfer jobs and monitor them, to cancel transfers, to set priority of
transfers and to add, remove and list VO managers. The Channel Management Interface
is used to set channel parameters and to add, list, or delete channels for the FT'S instance.
The Status Interface is used for monitoring the transfer activity. The clients interact with
the FTS web service to submit transfer requests, which are then assigned to channels
where the GridFTP transfers are executed by transfer agents. The FTS interrogates the
SRM to ensure appropriate authorization and authentication.

Catalogues in gLite

Usually, if datasets are heavily used, they maybe replicated at many Grid sites. The user
application does not need to know about the dataset location. Therefore the dataset name,
which the user refers to, has to be a location independent LFN. These LFNs are kept by
different catalogues which stores the location(s) of their files and replicas. We distinguish
four catalogues (Figure 2.6):

e File Catalogue (FC) - manages the logical name spaces, making directories, renaming
files and creating symbolic links operations.

e Replica Catalogue (RC) - The RC stores the replicas of Grid files. The RC interface
provides the operations to add, remove, and list replicas for a file.

e Metadata Catalogue (MC) - Metadata is data about data. It provides additional in-
formation about the datasets. Each LFN may have additional metadata associated with
them. The MC interface provides the operations to set, get and query the metadata.

e Combined Catalogue - maintains a persistent state of all operations which are per-
formed across catalogues.

Each catalogue provides a well-defined interface which is used to execute a set of opera-
tions. The File Catalogue and Replica Catalogue make mappings of GUID-LFN-SURL. The

Grid Architecture and the Worldwide LHC Computing Grid 19

Combined Catalog l\ée;ggtga
File Reli
plica
Catalog Catalog

Symlink

Figure 2.6.: Catalogue services with the accessible mappings. - Figure from[80]

File Catalogue allows its users to perform various operations such as creating files, renam-
ing directories etc., while the Replica Catalogue gives access to GUID-SURL mappings by
identifying all replicas of a given GUID. The Metadata Catalogue is accessible through the
Combined Catalogue interface. The File Catalogue, Replica Catalogue, or most commonly
the Metadata Catalogue, might be implemented and controlled by the VO directly.

LCG File Catalogue

The LCG File Catalogue (LFC)[81] is a lightweight and scalable file metadata and replica
catalogue. The LFC provides a hierarchical view of the logical file name spaces. Each logical
file entry has associated metadata and replica information. The LFC maps LFNs or GUIDs to
a SURL. It is a high performance file catalogue which is built on Oracle and MySQL database
backends and it is integrated with the GFAL interface. It offers secure authentication VOMS
based authorization, and POSIX Access Control Lits (ACL) to define ownership.

2.7. Metadata Service on the Grid

The Grid allows millions of files to be spread over several storage servers on various Grid sites.
The users and the applications need an efficient mechanism to describe and locate datasets
based on their content. This can be achieved by associating descriptive attributes to datasets
and providing this associated information to the users. The Metadata service provides in-
formation about files; it can describe any Grid entry or object. The metadata can provide
monitoring information for running applications because the results from the running jobs can

20 Grid Architecture and the Worldwide LHC Computing Grid

be published on the metadata server. The official metadata service for glite is the ARDA
Metadata Grid Application (AMGA)[82] metadata file catalogue.

2.7.1. AMGA metadata catalogue

The AMGA metadata service provides database access for Grid applications [83]. AMGA
allows transparent storage and retrieval of metadata about data files, jobs, or general infor-
mation. AMGA provides a Grid style authentication mechanism and uses streaming for data
transfer that allows the retrieval of information at high speed. It gives database independence
and works with any supported back-end such as Oracle, PostgresSQL, MySQL, SQLite. Cur-
rently AMGA is being used by several groups on different user communities, including High
Energy Physics, Biomed[84] and UNOSAT[84, 85].

2.8. Worldwide LHC Computing Grid (WLCG)

The Worldwide LHC computing Grid[86] is a distributed computing infrastructure to pro-
vide the production and analysis environment for the four LHC experiments at CERN. The
aim of the WLCG project is to use a world-wide Grid infrastructure of computing centres to
provide sufficient computational, storage and network resources an order of magnitude higher
than previous particle physics experiments.

The processing of this data requires huge computational and storage resources, which do not
reside on one site (computing centre), therefore the WLCG computing services are imple-
mented as a geographically distributed Computational Data Grid. Currently WLCG contains
more than 140 computing centres in 35 countries[87]. The WLCG project was started in 2003
and has been extensively used by the four major experiments at CERN during 2009, 2010 and
2011 data-taking periods. The WLCG communities achieved excellent results for high-speed
data transfer, distributed processing and storage. The LHC used approximately 92 million
HS06> days of processing power and approximately 44 PB of disk and 52 PB of tape storage
during 2010[88] and it used approximately 129 million HS06 days of processing power and
60 PB of disk and 80 PB of tape storage from January till September in 2011[89].

WLCG contains the gLite middleware component which gives the impression to the users that
all of the computing resources are available in one coherent virtual computer centre.

The WLCG is built by using software which comes from various European and American
Grid projects:

e Globus: The Globus Toolkit[91] (GT) was an early implementation of the Grid infras-
tructure. The Globus Toolkit is coordinated by the Globus Alliance, which was the first
attempt to define Grid standards. The most popular GT2 was replaced by GT4[90]. The

3The HEP-SPEC (HS06) is the new High Energy Physics-wide benchmark for measuring CPU performance.
For example: Intel Xeon 3 GHz and 2 core machines provide approximately 11.51 HS06.

Grid Architecture and the Worldwide LHC Computing Grid 21

GT services are used by other projects such as Grid File Transfer Protocol, Grid Security
Infrastructure, etc.

e GriPhyN: The Grid Physics Network (GridPhyN) is based in U.S. and provides the
important infrastructures for astronomy and particle physics to perform distributed, col-
laborative analysis of data. To support these tasks gridPhyN has developed the Virtual
Data Toolkit (VDT).

e iVDGL: The International Virtual Data Grid Laboratory (IVDGL) aggregates hetero-
geneous computing and storage resources in Europe and Asia. iVDGL provide a data-
intensive scientific computing in a single system.

e European DataGrid (EDG): The European Data Grid[92] project goal was to support
the data access and computation needs of demonstration projects in High Energy Physics,
Earth Observation Data and Biosciences.

e PPDG: The Particle Physics Data Grid (PPDG) is involved in several experiments in
particle physics. PPDG is a joint project together with iVDGL and GridPhyN and funded
by a U.S. Grid project for physics.

e EGI: The gLite middleware is supported by the European Grid Infrastructure (EGI).

The WLCG is currently the worlds largest Grid[97]. The WLCG infrastructure interoperates
with other Grid infrastructures such as the Open Science Grid (OSG)[95] and the Nordic Data
Grid Facility (NDGF)[96].

2.9. Summary

Grid technologies are being adopted in various fields of science and industry to fulfil a com-
putational need for solving complex generic problems. The numbers of existing Grids are
getting comparatively high, as research organizations, academic institutions and commercial
enterprises take advantage of the existing Grid infrastructures and Grid technologies. Cloud
Computing has been started as a new computing paradigm and has become popular in the
past few years. In an article “A Break in the Clouds: Towards a Cloud Definition” Cloud
Computing is defined as follows[32]: “Clouds are a large pool of easily usable and accessible
virtualised resources (such as hardware, development platforms and/or services). These re-
sources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for
an optimum resource utilization.” Various Cloud computing projects are being started in order
to increase the computing capacity of the existing Grids[33]. Most of the time the applications
which are used on the Grid are dependent on specific operating system versions and have
a large number of complex software dependencies. Virtual machines have been introduced
to resolve this requirement by containing applications with complete execution environments
to run on resources that do not meet their operating system requirements. The Globus Vir-
tual Workspaces project was initialised to manage “virtual” resources[34] using standard Grid
technology. Virtualization introduces a layer of abstraction which provides a dynamically

22 Grid Architecture and the Worldwide LHC Computing Grid

controlled environment to the users, and provides great capabilities in managing and moving
operating systems onto different hardware resources.

3. Distributed Data Analysis

Different scientific areas produce a huge amount of data which has to be analysed. Distributed
Computing enables the users to handle this amount of data with less complexity and enough
resources to its manipulation. Currently, there are two important streams of distributed com-
puting technology development and research. The first stream is the so called Cluster based
computing which combines large amounts of standard computers into high performance com-
puting resources. However from our point of view the second stream Grid Technology is more
important. It makes data storage and computing facilities, that can be geographically widely
separated, available for a common, global data analysis. In addition to Grid Technology the
Cloud Computing is being adopted by different scientific communities for distributed data
analysis.

Different scientific communities have developed user friendly applications for job definition
and management, which allow easy access to the Grid resources by hiding the Grid complex
functionality.

This chapter presents four different systems that have been used to store and analyse informa-
tion produced by different scientific communities. Section 3.1.1 presents a distributed com-
puting framework for data sharing and analysis produced by various neuro-imaging scanning
technologies. Special attention is paid to describe the biomedical federated database system
and its data flow. Section 3.1.2 presents the Distributed Aircraft Engine Diagnostics which
brought together university researchers and commercial collaborators to design and imple-
ment a fault diagnosis and prognosis system over the Grid computing infrastructure for aircraft
maintenance. It provides a real time search on large distributed engine data archives through
the use of sophisticated pattern matching techniques. We describe a common hierarchical ar-
chitecture in section 3.1.3 for data store, data access and analysis of astrophysics data. Finally,
the huge data volumes of LHC experiments also require an efficient analysis environment. To
achieve this the LHC experiments designed different system for data storage and data analy-
sis tools which are discussed in section 3.1.4. Since the analyses require input data together
with the associated information (so called metadata), robust metadata management tools are
essential. Each experiment has designed their Metadata Catalogues and tools needed to ma-
nipulate these data. Section 3.2 presents each experiment’s database systems which were used
to develop their Metadata Catalogue.

23

24 Distributed Data Analysis

3.1. Distributed data analysis in different scientific
communities

We have studied the designs and implementations of distributed data intensive applications
used by different scientific communities. The data intensive applications of these experiments
use huge amounts of data that have to be analysed in order to produce different measurements.
When the experiments can not handle the data themselves, they either need to use external
computing resources or buy new computing resources. The latter solution is very expensive
and can be avoided using the Grid.

They have adopted Grid technology, re-used existing Grid services or implemented experiment
specific services to provide a reliable distributed computing framework for the sharing and
analysis of data. We distinguish between three types of experiment according to how the data
is stored:

1. Experiments that stores unstructured data: The Storage Resource Broker (SRB)[102]
logical distributed file system is adopted to store unstructured data in addition to meta-
data information. In addition they use various Grid systems (Information System, Data
Management System, etc.) Examples of these are the Biomedical Informatics Research
Network and Distributed Aircraft Engine Diagnostics described in section 3.1.1 and 3.1.2
respectively.

2. Experiments that store the data in a Relational Database Model: Relational Database
Management Systems (RDBMS) are used as a data repository that can store informa-
tion. The data repositories are distributed across different laboratories. On top of these
repositories a service is implemented which allows users to interact with the database to

retrieve datasets. An example of this is the World-Wide Telescope described in section
3.1.3.

3. Experiments that store data using Grid Storage element. An example of this is given by
the LHC experiments described in section 3.1.4.

Various methods such as data mining[114], pattern matching, etc. can be performed on the
data. Consequently, a service is required that supports different data mining techniques such
as classification, regression, clustering etc. Taking into account the experiment requirements,
they could decide to use existing services, or instead design and develop their own data mining
service.

In addition, in order to manage the large datasets efficiently each experiment uses a metadata
service, which provides descriptive information or metadata about the datasets that need to be
managed.

The Metadata Catalogues are based on a RDBMS such as Oracle, MySQL. In addition,
NoSQL database management systems (such as MonogoDB[103], ChouchDB[104], etc,) have
been introduced and used by two LHC experiments (ATLAS and CMS) .

Distributed Data Analysis 25

Each experiment has different information that can not be stored using a general Data Model
which can store their experiment specific information. Consequently, using a common Meta-
data Catalogue is not always trivial. Therefore, each experiment designed and developed their
own Metadata Catalogue that conforms to their requirements.

They implemented different types of User Interfaces (more detailed description found below)
that allows users to interact with the system.

Each experiment has common characteristics:
e They have to handle huge amount of data in a reasonable time.
e They adopted to Grid technology.
e They have different catalogues to store metadata information.

More detailed information about how the experiments handle the data will be introduced in
the next sections. The experiment specific services, applications, etc. will be presented. In
addition, the answer of why they adopted the Grid and how they using the Grid are provided.

3.1.1. Biomedical Informatics Research Network

The Biomedical Informatics Research Network (BIRN)[98] was designed as the first na-
tional cyberinfrastructure for biomedical research. The Morphological BIRN, the Functional
BIRN and the Mouse Brain BIRN produce 500 GB data/day[99]. Three core components
are implemented for managing and documenting acquired and derived data in a federated en-
vironment: the Human Imaging Database (HID)[100] for distributed/federated relational
database support and web-enabled GUI, the XML-Based Clinical experiment Data Ex-
change (XCEDE2)[101] for structured data or metadata storage and exchange, and the data
publication scripts to organize and transfer data to the distributed file system and send the
appropriate URL links to the HID database. The BIRN Portal and Mediator interface are
used to access the distributed databases, query the distributed data stores, and provide Grid
computing and application interface support.

Data can be produced by scanner application or Data Input terminal. The scanner applica-
tion data is uploaded to the SRB and the metadata information sent to the HID database. The
Data Input terminal allows the researchers to define their clinical data which was collected
by the imaging experiment, and the user defined data will be uploaded to the HID database.
The image analysis software can be used to extract the images from the SRB by using HID
database queries, execute the analysis, upload the results to SRB, and send the metadata in-
formation to the HID database. The external investigators can query the BIRN portal and
Mediator to extract datasets, perform their analysis, and send the results back to the federated
database system.

26 Distributed Data Analysis

3.1.2. Distributed Aircraft Engine Diagnostics

The Distributed Aircraft Maintenance Environment (DAME)[113], brought together uni-
versity researchers and commercial collaborators to design and implement a fault diagnosis
and prognosis system over the Grid for aircraft maintenance. It has to handle terabytes of
vibration and performance data per year.

DAME has implemented a Data Mining Service[117] which consists of the Advanced Un-
certain Reasoning Architecture (AURA)[116] pattern match system. AURA provides a real
time search on large distributed engine data archives through the use of sophistical pattern
matching techniques. The Data Repository stores all raw engine data along with any ex-
tracted and AURA encoded data[115]. A Metadata Catalogue is maintained which maps
logical handles to physical file locations. The system specific metadata can be added to each
record which means that the Metadata Catalogue can be queried in data centric way, rather
than in a location centric fashion.

3.1.3. The World-Wide Telescope

The World-Wide Telescope [105] (also called the Virtual Observatory) seeks to unify the
world’s astronomy archives, which were collected by various telescopes, into a giant database
and provides software tools to manipulate these data.

The archives store the astronomical data (text, images and raw data or files) in relational
database as well as metadata[106] which describe not only their physical units but also the
provenance of the data. The archives provide a web service interface for data query which
involves data transfer and heavy computation. Each archive declares its services with one or
more registers that will be used by portals:

e Multimission Archive at STScl (MAST) portal: is provided by National Aeronautics
and Space Administration (NASA) and supports a variety of astronomical data archives
[108]. The data archives are provided and distributed by the Space Telescope Science
Institute (STScI)[109].

e Open SkyQuery portal: allows the scientists to query the astronomical catalogues using
SQL[112] query language[111]).

The portals purpose is to answer user queries by integrating data from many archives.

The portals allow the scientists to generate and execute their queries. This requires a basic
knowledge of the SQL language.

The astronomy data on the Grid generally resides in read intensive relational databases that
are accessed by associative query interfaces that represent subsets of data.

The AstroGrid[110] project provides a set applications to enable astronomers to manipulate
the data (find data, share files, query databases, build and run scripts etc.).

Distributed Data Analysis 27

3.1.4. LHC distributed analysis

Distributed data analysis using Grid resources is core to the success of the current particle
physics experiments. The LHC experiments are using two approaches for data analysis: asyn-
chronous (analysis on the Grid) and synchronous (interactive) analysis through the experi-
ment’s computing frameworks. Huge data volumes of LHC experiments (ALICE, ATLAS,
CMS, LHCD) require an efficient analysis environment to achieve large-scale data-intensive
analysis. The most natural approach is to move the processing close to the data which means
to run analysis program at a computational centre where data is kept.

The Computing Model of the LHC experiments

The Models Of Networked Analysis at Regional Centres (MONARC)[118] for the LHC
Experiments project proposed the use of a hierarchical model, that could share the processing
and storage responsibility across member countries and institutes. MONARC introduced the
concept of a multi-tiered computing infrastructure with well defined functionality and connec-
tivity at each tier. The central site in the hierarchical model is the Tier-0, which has a strong
computing facility and from which the experimental data originates. The Tier-1s are large re-
gional centres which represent a country or geographical region and typically have a national
scope. The Tier-2s are smaller computing centres such as universities or institutes which rep-
resent a part of a country or geographical region. The Tier-3s have more limited computing
capability. The Tier-3s include individual computing clusters that belong to physics groups
which are focusing on the solution of one or a few specific computing problems. The Tier-4s
are individual machines which are desktops or laptops of group members where data analysts
actually work.

Each LHC experiment has a Computing Model that is based on the MONARC report, and
whose purpose is to define the expected data flow and the estimated computing and storage re-
quirements which is required at each Tier while the work flow describes how the experiments
process the data. The main concept of the Computing Model is that every physicist should
have equal access to the computing and storage resources which are needed for the processing
and analysis of the experiment data.

The Computing Model of the ALICE, ATLAS and CMS experiments are similar: the data
recorded by the detectors are immediately transferred to the CERN Tier-0 and distributed to
Tier-1 sites. The first reconstruction takes place at CERN and after these reconstructed data
are distributed to the different Tier-1’s where the second and third reconstructions take place.
The Tier 1 and 2 sites provide the resources for data reduction, analysis and Monte Carlo
simulation. In particularly the Tier-2’s sites are used for Monte Carlo production and analysis.
The Tier-3 centres are used on demand for physics analysis. The datasets in these sites are
handled locally; they are not available to the whole collaboration. In addition each experiment
has decided where their calibration, detector optimization will take place. In most cases they
use the Tier-0.

28 Distributed Data Analysis

The LHCb Computing Model is different than the models described above. A more detailed
description is provided in chapter 4.

Computing frameworks used by the LHC experiments

The experiments use the glite middleware, but due to their specific tasks, they have built their
own frameworks to support their data flow. The LHCb experiment has built a common frame-
work, which is called DIRAC to provide data and workload management system to fulfill all
terms of the data flow that requires the execution of computing tasks in the distributed envi-
ronment[119]. The ALICE experiment also developed a single framework within the ALIEN
[121] project, which is an implementation of distributed computing infrastructure needed to
manipulate the ALICE data flow[120]. The ATLAS[122] and CMS[123] experiments are
using most of the computational and storage Grid resources. To split the responsibility of
their Grid computing project, they have adopt specialised systems for different aspect of their
computing models. The ATLAS communities are using the Production and Distributed
Analysis (PANDA)[124] framework which is based on DIRAC to allow more effective re-
source management. The CMS experiment are using ProdAgent[126] and CMS Remote
Analysis Builder (CRAB)[127] systems which are developed to fulfil all aspects of the data
flow. The Batch Object Submission System (BOSS)[125] is used by CRAB and ProdAgent
to provide job submission and monitoring. ALICE, ATLAS and CMS distributed analysis will
be discussed briefly below in the next sections while LHCb will be discussed in detailed in
chapter 4. We focus on their Metadata Catalogues in section 3.2.

ALICE distributed environment

The ALICE collaboration has developed the AliEn (AliCe Environment) framework which is
a set of middleware tools and services that implement a Grid infrastructure to fulfill all aspects
of their Computing Model[120].

The analysis and reconstruction algorithm affects the time which is needed to analyse and
reconstruct events. To define the input data, physicists have to query the AiEn File Cata-
logue which is used to store the files and associated metadata. Different algorithms can run
on the selected input data by using the AliEn framework to submit interactive or Grid jobs.
The other possibility is to run fast analysis and reconstruction using the Parallel ROOT Fa-
cility (PROOF)[128] infrastructure. PROOF enables interactive parallel processing of data
on clusters of computers or multi-core machines. The ALICE collaboration has developed
the Monitoring Agents in A Large Integrated Services Architecture (MONALISA)[129]
distributed computing oriented monitoring system to monitor the computing resources.

Distributed Data Analysis 29

ATLAS distributed environment

ATLAS splits the Grid computing projects into four areas: Tier-O processing, Distributed
Analysis, Distributed Production and Distributed Data Management. Since the main purpose
of this section is distributed analysis, we concentrate on ATLAS Distributed Analysis (ADA).

ADA is based on a client-service architecture and is required to work with different Grid in-
frastructures. The analysis services manage the processing of data while the catalogue service
records data and their provenance information. Distributed Interactive Analysis of Large
Datasets (DIAL)[130] is a project that was originally founded to provide interactive analysis
of large datasets. The main purpose of this project is to allow users to submit and monitor
their jobs.

Another production and distributed analysis system has been developed to meet ATLAS re-
quirements for petabyte scale production and distributed analysis processing which is called
PANDA[131]. PANDA integrates the ATLAS Distributed Data Management (DDM) sys-
tem, a monitoring system for production and analysis operations. PANDA has a generic, high
level data-driven PANDA Workload Management System which meets the requirements of
large scale data processing. PANDA became the main analysis and production system for
the ATLAS experiment. Consequently, DIAL provides an interface for job submission to the
PANDA middleware.

Two main frontends have been developed for job submission which allow the users to submit
analysis jobs to different computing resources. pAthena is a glue script to create and send jobs
to the PANDA Workload Management System[132]. The other application is called Ganga
[133] which provides a simple and consistent way of preparing, organizing and executing anal-
ysis tasks within PANDA and different Grid resources.

CMS distributed environment

The CMS experiment has developed a set of tools for distributed analysis. The CMS Work-
load Management System’s purpose is to interpret user requests, create jobs that process
data, submit them to local or distributed systems, provide monitoring tools to monitor their
status and allow users to retrieve their outputs[134].

The Production Agent (ProdAgent)[136] is a tool to perform these tasks in a controlled en-
vironment, and provides a capable large scale coherent production system which meets the
simulation and data processing requirements of the CMS experiment while the CMS Remote
Analysis Builder (CRAB)[135] has been developed as a user friendly interface to handle
analysis in a local or distributed environment. The CRAB hides the complexity of interactions
with the Grid and CMS services, providing data discovery and location, job preparation, job
splitting, job submission, job monitoring and output data retrieval functionalities. The inter-
action with the Grid can be either direct with a thin CRAB client or using an intermediate
CRAB Analysis Server which is made of a set of independent components for managing user
tasks.

30 Distributed Data Analysis

The CMS Dashboard monitors the activities of the CMS experiment on the distributed infras-
tructure by providing a uniform and complete view of job processing and data movements. The
CMS Dashboard has a set of tools that provide access to the information that was collected
from various sources through web interfaces.

3.2. Metadata Services on the LHC experiments

In the LHC experiments where information is dynamic in nature and not centrally managed,
scalable and robust metadata management tools are essential. The Metadata Catalogues of
the LHC experiments store structured information that describes the datasets and consists of
attributes such as name, time of creation, size on the disk, details of the process that produced
the data, data provenance, information about the detector, data taking, etc

Sets of tools are available that allow users to manipulate the data e.g. to:
e query the dataset;
e insert, delete a dataset;
e retrieve different statistics; and
e determine the history of the dataset.

Each experiment designed and implemented various User Interfaces that can be used to dis-
cover the Metadata Catalogue content. The user who queries Metadata Catalogues is not
expected to have knowledge about the database structure (relation between different database
tables etc.) or database locations, because the architecture allows them to express queries in
terms of the application semantics.

Since Metadata Catalogues are central to this thesis we now describe the Metadata Catalogues
for ALICE, ATLAS and CMS. The Metadata Catalogue for LHCb will be described in Chapter
7.

3.2.1. AliEn File and Metadata Catalogues

The ALICE File and Metadata Catalogues has been implemented within the AliEn framework.
The File and Metadata Catalogue is designed to allow each directory node in the hierarchy to
be supported by different database engines. The AliEn relational databases can be installed on
different machines, Figure 3.1 shows the structure of the AliEn File and Meta Catalogues. It
stores the LFNs and provides the mapping to the corresponding PFNs. The PFN entries in the
catalogue describe the physical location of the files and contain the name of the storage ele-
ment and the path to the local file. The AliEn Metadata Catalogue has a specific functionality,
and keeps the job output for future retrieval.

Distributed Data Analysis 31

AliEn File & Metadata Catalogue

LFN->GUID ™, |
and
i GUID->PFN
LFN Metadata: P——
Index R Index =1
/ || 1-JAN-1970 —/.\ J
falice — i [anos = SRR
falicesuseripépsaiz _\:—_-‘__-—J I & 14-FEB-2007 \"
falice/simulation/2008 23-AUG.-2008 —
Alice/simulabons \E \\
o
(IR
‘____‘_____."_ \‘f’_._'—"“-.
\'.~ ’,’ "“ _— —
. LFNGatalogue " .~ GUID Catalogue

Figure 3.1.: The AliEn File and Metadata Catalogue - Figure taken from[137]

The interface to the File Catalogue is similar to a UNIX file system and is used by almost all
components of AliEn. The interaction can be carried out from a command line interface with
the most common UNIX shell commands or via a Web portal. AliEn provides a Perl, C and
C++ API to access the AliEn framework[138].

3.2.2. Atlas Metadata interface (AMI)

AMI was chosen as the ATLAS dataset selection interface to provide all the necessary func-
tionality for the users to discover the event data by using metadata criteria.

Application Specific Software DATASET SEARCH TAG OTHERS
COLLECTOR
AMI Generic Software
Database Connection management | Connection Pooling, Transaction management of AMI
Commands
JDBC Standard JAVA Package
Specific Database Libraries ORACLE | mySQL | SQLITE

Figure 3.2.: The AMI architecture - Figure taken from[140]

AMI has been implemented as a generic database management framework which allows par-
allel searches over many catalogues[139]. Figure 3.2 shows the AMI layered architecture. The
three lower level packages wrap the connections to the databases managing transactions: con-
nection pooling; transmission of SQL commands; and recuperation of query result. The top
layer of the software contains application specific packages with knowledge of the application
semantics[140],[142].

AMI currently uses MySQL and Oracle database backends which are deployed on geograph-
ically distributed servers. AMI is a web application which is implemented in Java but also

32 Distributed Data Analysis

provide a SOAP Web service for clients. A python interface, which is called pyAMI[140], is
integrated into the Ganga distributed analysis tool.

The purpose of AMI is to extract and correlate the information which is needed for dataset se-
lection from different data sources such as ATLAS production database, ATLAS Tag databases
[141] etc. This extraction of data is done by a special task server which runs tasks as Java
threads.

The AMI web interface provides several types of dataset search: a simple search on the dataset
name or on a selection of fields; a more complex search which allows the users to specify var-
ious requirements; and a hierarchical search for datasets, where the user selects one parameter
at a time. Each user has different rules such as read, write or update to access to the catalogues
using a personalized home page. AMI has implemented an internal bookmarking system to
save the user queries. The results of the queries are always recalculated dynamically by AMI
tasks which ensure that the users always get the latest information in a reasonable time.

3.2.3. The CMS Dataset Bookkeeping Service (DBS)

The Dataset Bookkeeping Service[143] has been developed to catalogue all data produced by
the Monte Carlo productions and the CMS detector.

DBESServiet
Server Software

DBESXMLParser

mvakgAFl()

HTTP(s)
(XI'H-‘IL]I DBSApI

"..wdleht Logic()

DBESApiLogic e DBManagement

generaleS0L|

Y
DBSSql

Figure 3.3.: The DBS system architecture and server software design - Figure taken from[143]

The database schema is designed to store all the data processing history and event selection
criteria. Each datasets in the database belongs to different categories such as primary dataset,
processed dataset, analysed dataset etc. which are crucial for the data processing. The DBS

Distributed Data Analysis 33

system is a multi-tier web application that has been designed to allow the usage of various
database technologies (Oracle, MySQL, and SQLite). Figure 3.3 illustrates the DBS architec-
ture which consists of several servlet[144] modules. DBS supports a hierarchical deployment
model which is convenient for working groups and users allowing them to work within the
local or global database instances.

DBS consists of a database and the services used to store and access metadata. The query
system is based on a query language that hides the complexity of the underlying database
structure. The DBS Query Language (QL)[145] is used to translate the user request into the
SQL language which can be executed on the database backend.

On top of the existing database services the CMS Data Aggregation System (DAS) has
been implemented to support keyword based search queries with the ability to use conditional
operators. The DBS Query Language has been adapted to the CMS DAS system in order to
build various database queries.

The CMS DAS system uses a non-relational data structure that describes the Data Model.
It collect metadata information from various CMS catalogues[123,146] and stores them in
a document oriented databases which is called MongoDB [103]. Several systems are used
for reliable data retrieval: DAS Mapping DB is used to track and collect information about
data services, translate the input and output parameters into a DAS keys, and stores mappings
between CMS DAS records and their user interface representation; the CMS DAS Analytic
DB collects information on user requests against the system; while the DAS caching system is
used to dynamically fetch and aggregate data upon user request using the DAS cache and the
DAS merge independent databases[147].

3.3. Summary

Different scientific communities use distributed computing infrastructures to analyse their
datasets. Each experiment evaluated the exiting technologies used for data processing. De-
pending on the size of the datasets of the experiments, they adopted the most appropriate
infrastructures which fulfill their specific requirements. Most of the cases the Grid or some
specific Grid services such as resource and data management, security, information services,
etc. are adopted to their systems.

To handle large datasets efficiently required a metadata catalogue which keeps information
about the datasets. The datasets of the experiments are different and very complex. Conse-
quently, it is not always possible to implement a common metadata catalogue. They developed
their own specific metadata catalogues. The metadata catalogues of the experiments based on
RDBMS, therefore NoSQL adopted when the RDBMS was not efficient. In addition, they
developed different tools and services to handle the metadata. When the experiments only
store very basic metadata information they use AMGA metadata catalogue which is a specific
service of glite.

34 Distributed Data Analysis

Each experiment developed their experiment specific applications to process the datasets.
These applications perform on the Grid and analyse the data which is stored by different
systems: RDBMS or a logical distributed file system.

4. Distributed analysis in the LHCb
experiment

LHCb data can be produced by Monte Carlo(MC) simulation or by the LHCDb detector. These
data have to be stored and processed using different applications. Section 4.1 presents the
Gaudi framework which provides a common framework to the LHCDb applications. A detailed
overview of these applications is presented in section 4.2. The Work flow describes how the
data is processed using these applications. The Data flow describes the ‘flow’ of data from the
detector to the final destination. A brief description of the Work flow and Data flow is given in
4.3. In section 4.4 the LHCb Computing Model is introduced which is based on a distributed
multi tier centre and describes the way LHCDb uses the resources at the collaborating sites.
Section 4.5 presents the computing resources used in 2010, 2011 and the estimated resource
requirements from 2012 to 2013. Section 4.6 describes the DIRAC software which is a mid-
dleware component which manages the LHCD activities on the Grid. In section 4.7 the Ganga
user friendly interface is presented, and is widely used to allow access to the geographically
distributed computing resources.

4.1. Gaudi framework

Gaudi[148] is a software framework which was initially developed by and for the LHCb ex-
periment and has since been adopted by ATLAS together with other experiments (GLAST
[149], HARP[150], DayaBay[151], MINERVA[152]). Gaudi provides a flexible framework
which fulfills various criteria of the computing activities such as data processing, simulation,
reconstruction and analysis. The architecture ensures changing requirements can be adapted
to over the lifetime of the LHCb experiment. Gaudi provides a common set of services and
components with clearly defined interfaces which are used by all event processing applica-
tions. Figure 4.1 shows different Gaudi categories of components: algorithms, services and
converters.

The Gaudi Interface Model provides well defined interfaces that separate the components
from each other. This approach allows transparent inclusion of new software or technolo-
gies which are developed on the same interface. The well defined interfaces allow run-time
dynamic library loading to be used in the software applications. A clear separation exists be-
tween Data and Algorithms which means an important role of the Gaudi architecture is the
de-coupling of objects describing data and the methods for manipulating the data. DataOb-
Jects are containers of data quantities which can be persistent or transient. The Algorithms

35

36

Distributed analysis in the LHCb experiment

Application
Manager | SE;:;CT;I" /ggmz | h Converter
=L Ana
b e AsPartCandidates|
EICI%C i T -
Message .- *{ Event Data | L‘:'ng;'f;imms | _|Persistency Data
SEF‘VICG \ / sel"ViCG H [MCVertices SGI"VICE FIlBS
{2 Raw
- Transient
JobOptions
Service | Algorithm _ Event Store)
Particle Pro \ Transient - _
rop- Detec.Data | | petector | Persistency Data
Service Service Store Service Files
Other
Services , Transient : -
Histogram | Histogram _|Persistency Data
Service Store Service Files

Figure 4.1.: The Gaudi framework architecture - Figure taken from[153]

perform event simulation, reconstruction and analysis on the DataObjects which are organized
in various Transient Data Stores. The Algorithms can be instantiated and executed based on
requirements of applications. They get access to the data to be processed through the relevant
Transient Data Store. The data are distributed over three stores:

e Transient Event Store (TES) stores the event data which is only valid during the time
which is needed to process one event.

e Transient Detector Store (TED) contains the detector data which includes the detector
description such as geometry, calibration, etc, which are valid for the time to process a
series of events.

e Transient Histogram Store (THS) stores the statistical data produced during event pro-
cessing.

Gaudi has the following basic containers: KeyedContainer, SmartRefVector, vector, ObjectVec-
tor. It provides various components which offer all the Services needed to manipulate the data
object in the Transient Data Store. For example: the Event Data Service is used to retrieve a
DataObject from the Transient Event Store. To read/select events the Gaudi Event Selector is
used.

Distributed analysis in the LHCb experiment 37

ElE Ewvent

- pac

B Ew
E Particles
EIE Phys
i Dy2eeLine2
- B DyzeeLines
i Dy2eeLines
- B WMuSingleTrackNoBias
. B Particle2VerexRelations
E E Particles
E WelLine
- B Zo2MuMuNoPIDsLine
i3 8 zozeeLine
- 8 zo2eeSS5Line
EE}--E Rec
- E Vertices
E-F Mo
EEI--E Muon
[—]--E Rec
E Header
E Muon
E Particles
B8 ProtoP
e B Rich
E Status
E Summary
E Track

Figure 4.2.: Transient Event Store - an example of how the data is stored in the TES; each folder is
the name of a given DataObject. For example: Event is a folder which identifies a data
object that also contains identifiable objects (DAQ, MUON, REC, etc).

Event Model

The Event Model[154] is an LHCb-specific component within the Gaudi framework which
describes the LHCDb event data structure, both simulated and real. The LHCb Event Model is
defined as the set of classes and relationships between classes which allow persistency. The
objects can be written on the storage and read back by another program. The Gaudi TES is
used to exchange event data inside the event processing loop. Algorithms simply retrieve their
input data from the TES and publish their output data to the TES. Data in TES is organized in
a tree-like format. Figure 4.2 gives an overview of the tree format.

38 Distributed analysis in the LHCb experiment

4.2. Physics Applications

Data processing applications are collections of software packages which perform particular
steps in the work flow. The LHCb applications (Gauss, Boole, Brunel and Davinci) are built
within the Gaudi framework and can be executed in a standard environment. Each applica-
tion shares and communicates via the Event Model and produces and/or consumes data. The
following sections give a short description of these applications.

4.2.1. Gauss

The LHCDb detector simulation application is called Gauss[155, 156] and is the first step in the
simulation of physics data. Gauss is used to study the performance and the behaviour of the
detector in response to proton-proton collision events. Within Gauss there are two indepen-
dent phases: Generator Phase and Simulation Phase. The Generator Phase is split into two
parts[157]. The event generation of the proton-proton collisions uses various generators such
as PYTHIA[158, 159], HIJING[160] etc. while b particle decays use the EvtGen[161] gener-
ator. The Simulation Phase uses Geant4[162] to simulate the detector response to particles
produced by the Generator Phase. The output of the Simulation Phase uses the Event Model
format.

4.2.2. Boole

The purpose of Boole is to provide a simulation of the response of the LHCb detector to the
simulated physics event. Boole[163] simulates the digitization of the detector using hits gen-
erated by the Gauss application. The Boole step includes simulation of the detector response
and of the readout electronics, as well as of the LO trigger hardware. The output produced by
Boole is in the same format as real data coming from the detector after the LO trigger.

4.2.3. Brunel

The Brunel application reconstructs the digitised output from the Boole application or real data
from the LHCb detector. Brunel integrates complete pattern recognition and performs parti-
cle identification. It produces output files containing all reconstructed items such as tracks,
clusters and performs particle identification. The Brunel application consists of a set of se-
quential phases (Initialisation, Reconstruction, Finalisation) and a series of independent pro-
cessing phases (Reconstruction, Relations and Monitoring). The sequential phases are used
for sequencing reconstruction algorithms. Each sequential phase can contain sequences of
subdetector algorithms. The processing phases use algorithms which can run on both real and
simulated data. The Reconstruction phase begins with clustering in the tracking detectors.
The tracking pattern recognition proceeds in several steps and uses the clusters as an input.
For simulated data, the reconstruction phase is followed by the Relation phase where clusters

Distributed analysis in the LHCb experiment 39

are associated with Monte Carlo particles. The Monitoring phase is used to study a specific
sub-system’s performance and may be executed selectively.

4.2.4. Davinci

Davinci is the LHCb experiment analysis framework which supports selection of events and
analysis on real and simulated data. The selection of events can be specified through job op-
tions or by using user supplied or predefined algorithms. These algorithms manipulate physics
event objects that are described in terms of particles and vertices. Davinci is configurable to
use several output formats: an output file containing event data selected to be used for later
processing or Analysis Object Data (Ntuples) files containing physics objects for later pro-
cessing.

4.3. The LHCb experiment Data flow and Work flow

The processing of event data occurs in several phases which normally follow each other in a
sequential manner. The Work flow Model describes how the phases follow each other while
the data flow describes the flow of the data from the detector to the final destination. The
terminology of each step is discussed bellow.

Simulated data

The simulated data are produced from a detailed Monte Carlo model. These RAWmc datasets
contain simulated hit information and extra ‘truth’ information which is used to record the
physics history of the event and the relationship of hits to incident particles.

The simulated datasets are larger than real data but nevertheless have an identical format and
are processed using the same reconstruction software.

RAW data

As mentioned in Section 2.1.3, data is collected by the LHCb detector with the LHCb Trigger
System to select events of interest. RAW data are transferred to the CERN Tier-0 computing
centre in quasi-real-time for archiving and future processing.

Data Reconstruction

Once the RAW data has been created, whether real or simulated, it is reconstructed using
the Brunel application in order to provide physical quantities and information about particle

40 Distributed analysis in the LHCb experiment

identification. The reconstructed events are typically 50 Kb each and are written to output
files called reduced Data Summary Tapes (rDST) or slim Data Summary Tapes (SDST). The
rDSTs contain all the information which are needed by the next step, while the SDSTs do not.

The reconstruction is performed after the RAW data is transferred to CERN Tier-0 computing
centre and distributed to the largest Tier-1 computing centres.

Data Stripping

The events stored in the SDST or the rDST are analysed in order to produce different streams
for future analysis by using pre-selection criteria proposed by physics working groups, called
stripping. The events are processed using these preselection algorithms, using Davinci. The
output of the stripping is a different DST stream which belongs to a physics working group.
Stripping is performed when the reconstructed data becomes available and is repeated for
any reprocessed reconstructed files (SDST,rDST) or when the preselection algorithms has
changed.

Merging

The events in the different DST streams are stored on various Storage Elements. Sites require
file size are grater than 2 GB file which imply these files must be merged in a proper way. The
Merging is performed in real time when enough stripped files are available from the previous
step.

Data Analysis

Physics analysis uses the DSTs produced by the previous phase. Data Analysis is performed
using the Davinci package and produces personal Ntuples or DSTs, which are analysed in
order to obtain final physics results. It is assumed that each physics working group or physicist
is performing a separate analysis on a specific stream. These outputs can then be shared by
physicists collaborating across institutes and countries.

4.4. The LHCb Computing Model

The LHCb computing model is based on a distributed multi-tier regional centre model and
is designed to maximise the use of resources available to the collaboration. LHCb uses the
resources which are located at national Tier-1 and regional Tier-2 centres in order to perform
data processing and analysis. The LHCb member states pledged resources to WLCG which
is used for data processing. Figure 4.3 shows the role of each Tier of computing centres.

Distributed analysis in the LHCb experiment 41

Generate RAW data

CERN | Reconstruction

Stripping
\ User Analysis

(0 O

% Reconstruction
= Stripping
6 User Analysis
% : , Monte Carlo

6 Tier-2's Production

Figure 4.3.: LHCb Computing Model Schematic - Figure taken from[119]

Tier-0

CERN is the central production centre and is responsible for storing and archiving the RAW
data which is produced by the LHCb detector, and for distributing the RAW data in quasi-real
time to the Tier-1 centres. It participates in all the activities of the data processing.

Tier-1

CERN can also be considered as a Tier-1 centre, because it has enough CPU and storage re-
sources for data processing. In addition there are six external Tier-1 centres: CNAF (Italy),
FZK (Germany), IN2P3 (France), NIKHEF (Netherlands), PIC (Spain) and RAL (United
Kingdom). These centres provide the necessary resources for data processing. The RAW
files are replicated in quasi real time to the SE of one of these external centres, where it is
reconstructed according to pledged computing resources. The reconstructed data is archived

42 Distributed analysis in the LHCb experiment

at the Tier-1 where it was produced and subsequently stripped and merged. The final DST
files are replicated to the four Tier-1 centres to ensure high data availability for analysis. Sim-
ulation also takes place at Tier-1 when the reconstruction, stripping and merging are not using
all the computing resources. The user analysis activity is performed at all Tier-1s where the
data is produced.

Tier-2

The Tier-2 centres are primarily MC production centres. The data produced at these sites is
uploaded to the associated Tier-1s. The biggest Tier-2 sites can be attached to a Tier-1 site and
they can participate during data reprocessing.

4.5. Resource requirements

LHCD utilises the resources of the Tier-0, Tier-1 and Tier-2 centres to perform the LHCb
computing activities. Each phase of the LHCb Work flow requires certain CPU and storage
resources. This section describes the resources which have been used from 2010 to 2013.

The following formula is used to calculate the CPU requirements:
x=y*n 4.1)

where x is the CPU requirement in a given period in HS06; y is the CPU time (second, day,
week, month, year) in HS06 which can be used to process one event. Each LHCDb application
introduced in section 4.2 has a certain CPU time. For example: a typical Brunel process
requires 12 second in HS06 to reconstruct one event; n is the number of events which can be
processed in a given period.

The same formula is used to calculate the storage requirements:

where x is the expected storage requirement in Kb; y is the required storage per event in Kb;
n is the number of events produced in a given period.

Every year the experiment requests computing resources calculated from these two formulae.

Resources used during 2010

Figure 4.4 shows the number of running jobs during 2010 separated into different computing
activities.

The simulation consumed almost all the computing resources and produced 2,791,308,366
events using Tier-0, Tier-1 and Tier-2 resources. Table 4.1 gives a short summary of the usage
of the computing resources, separated into CPU and storage.

Distributed analysis in the LHCb experiment 43

Running jobs by JobType

14 |

10 -

kjobs

0
Jan 2010 Feb 2010 Mar 2010 Apr 2010 May 2010 Jun 2010 Jul 2010 Aug 2010 Sep 2010 Oct 2010 Mov 2010 Dec 2010

Figure 4.4.:

52 Weeks from Week 52 of 2009 to Week 52 of 2010
T T T T T T T

Max: 14.1, Min: 0.18, Average: 4 58, Current: 4.18

B MCSimulation 47.1% @ Merge 1.8% W Hospital 0.0%
| user 34.0% @ s=m 0.5% [unknown 0.0%
W DataReconstruction 16.5% @ DataStripping 0.1%

Generated on 2011-11-20 15:17:27 UTC

Executed jobs which corresponds to a data processing activity during 2010 - Figure
taken from the DIRAC accounting page

Site | CPU (HS06.year) | Disk (TB) | Tape (TB)
Tier-0 7166 922 844
Tier-1 18148 2096 903
Tier-2 24273 0 0

All 49587 3018 1747

Table 4.1.: Computing resources (CPU, disk,tape) used in 2010 (Numbers taken from[88, 164, 165]).

Resources used during 2011

The LHCb

detector collected 1.12 x 10'° physics events during 4.6 x 10° seconds of LHC

collisions in 2011[164]. In parallel Monte Carlo simulation production generated an additional

1.17 x 10°

events. Figure 4.5 shows the data processing activities during 2011 which were

much higher than the previous years. The CPU, Disk and Tape required in the Tiers are given
in Table 4.2.

44

Distributed analysis in the LHCb experiment

Running jobs by JobType

100,000 -

80,000

60,000

jobs

40,000

20,000

0
Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011 Aug 2011 Sep 2011 Oct 2011 Mowv 2011 Dec 2011

B MCSimulation 72.6% [DataReprocessing
W user 10.8%: W DataStripping

W DataReconstruction 6.9% @ Merge

52 Weeks from Week 52 of 2010 to Week 52 of 2011
T T T T T T T

Max: 49,165, Average: 14,261

6.4% W sm
3.1% @ unknown
02% W

0.1%
0.0%
0.0%

.

Generated on 2011-11-20 15:19:28 UTC

Figure 4.5.: Executed jobs which corresponds to a data processing activity during 2011 - Figure

taken from the DIRAC accounting page

Site | CPUHSO06.year) | Disk (TB) | Tape (TB)
Tier-0 7200 1200 2100
Tier-1 35800 2700 3300
Tier-2 47000 0 0

All 89200 4000 5500

Table 4.2.: Computing resources (CPU, disk,tape) used from 1st of January to 30th of October in 2011. The
numbers are from[89, 165].

Resource required to 2012 and 2013

The expected data in 2012 is the same as for 2011 data e.g. since the beam is defocussed to
maintain an constant number of interactions and the trigger rate is fixed. In addition, the 2010
and 2011 data will be fully re-processed and re-stripped, together with 2012 data at the end of

the data taking period.

Distributed analysis in the LHCb experiment 45

The estimated computing resources for 2013 will be dedicated to re-processing and re-stripping,
because there will be no data taken throughout the year. The full 2010-2012 data will be re-
stripped twice and fully reprocessed during 2013. LHCb expects to produce more Monte Carlo
data in 2013, equivalent to 1000 M event[164]. This extra Monte Carlo data will be produced
at the Tier-0,Tier-1 and Tier-2 resources.

The CPU resources pledged at each site for LHCb activity during the 2012 and 2013 data
taking period is summarized in Table 4.3. The disk and tape resources required at Tier-0 and
Tier-1 is given in table 4.4 and 4.5.

2012 2013
Site | CPU(kHSO6.year) | % | kHSO6.year | %
Tier-0 34 18 33 18
Tier-1 113 59 110 59
Tier-2 43 23 43 23
All 190 100 186 100

Table 4.3.: LHCb 2012 and 2013 estimated CPU requirements at Tier’s. The numbers are from[165].

2012 2013
Disk TB % TB %
Tier-0 | 3500 | 27 | 4000 | 26
Tier-1 | 9500 | 73 | 11100 | 74
All 13000 | 100 | 15100 | 100

Table 4.4.: LHCb 2012 and 2013 estimated disk requirements at Tier-0 and Tier-1 centres. The numbers are
from[165].

2012 2013
Tape TB % TB %
Tier-0 | 6400 | 51 | 7700 | 49
Tier-1 | 6200 | 49 | 8000 | 51
All 12600 | 100 | 15700 | 100

Table 4.5.: (LHCb 2012 and 2013 estimated tape requirements at Tier-0 and Tier-1 centres. The numbers used
from[165])

46 Distributed analysis in the LHCb experiment

4.6. Dirac

The Distributed Infrastructure with Remote Agent Control (DIRAC) is a grid system
which allows a community of users to access the distributed computing resources in a user-
friendly manner. As a complete Grid solution, the DIRAC project was designed to make
available heterogeneous computing resources and supports all the aspects of the LHCb Com-
puting Model[167]. In this section we present the Dirac systems which plays an important
role in providing a reliable heterogeneous computing system.

4.6.1. Dirac design and implementation

To keep the system generic DIRAC was designed to use pluggable modules. These modules al-
low DIRAC to support future use-cases. The architecture was designed to ensure that DIRAC
could manage all the loosely coupled services required to perform distributed computing on
heterogeneous resources. Consequently, DIRAC can be used as a standalone environment or
on top of existing Grid middleware (in our case glLite) without any development or knowledge
of specific configurations. Therefore, when DIRAC is running within existing Grid infrastruc-
tures, no additional services are required to be installed at the site.

DIRAC itself is lightweight and portable and can be used with many operating systems and
architectures. It is implemented in Python. Because this is an object oriented and interpreted
language, it provides the ability to rapidly design and implement applications. In addition, due
to its portability, it is available in many computing platforms, and has a rich set of libraries
and modules which can be used by DIRAC.

4.6.2. DIRAC Architecture

The DIRAC architecture is based on a Service Oriented Architecture (SOA) which can be
decomposed into four categories: Services, Resources, Agents and Interfaces as shown in
Figure 4.6.

Resources in the DIRAC perspective are the underlying computing and storage facilities pro-
vided by the computing centres. DIRAC does not provide a complex Storage Element but it
implements a wrapper to the SRM standard interface as well as the most important data access
protocols (gridftp, xroot, etc). The DIRAC Agents interact with the Resources to perform
specific functions within the system[167]. The Services perform operations or requests. A
Service can be stateful or stateless. Each Service usually interacts with a RDBMS ! which
stores the state information. The Agents also interact with DIRAC Services to perform dif-
ferent operations which are requested by users or another agent. The services are centrally
managed in a controlled environment, while the agents can be executed anywhere in the dis-
tributed environment. Each Service offers a client interface which can be used by Agents or

'DIRAC Systems use MySQL databases except the LHCb Bookkeeping System

Distributed analysis in the LHCb experiment 47

Clients Production
BK Query Manager | (File Catalogue
Webpage DIRAC API Console Browser
Serwces

ConﬂgurallonSvc

() () ()
T/

Resources

Site
Gatekeeper

Tier-1
VO-box

{ Grid WN

Figure 4.6.: Dirac services, agents, resources and their interactions - Figure taken from[166]

by DIRAC Interfaces. DIRAC provides different Application Programming Interfaces (API)s
which provide various functionality to the users in order to execute their operations or requests.
The APIs or the Web interfaces are used to ensure access to the DIRAC services and are part
of the DIRAC System:s.

4.6.3. DIRAC Systems

The DIRAC System is composed of various services, agents, and clients which are destined
to support required functionalities. The main DIRAC systems are the Workload Management
System (section 4.6.3), the Data Management System (4.6.3), the Production Management
System (4.6.3) and the Bookkeeping System (chapter 7). Each DIRAC system has a dedicated
scope and they are built on a single secure DIRAC framework.

Framework

DIRAC has to manage a large number of distributed resources that require secure commu-
nication. It has to provide the infrastructures which are needed to build services and agents
easily. Therefore, a powerful and flexible framework is essential. The framework contains
a DIRAC SEcure Transport (DISET) protocol for secure communication, Configuration
System (CS) for providing configuration parameters to DIRAC components, Logging and
Monitoring System (LMS) for providing a report to all DIRAC components and a Web Site
for providing access to the systems and ensuring a visual representation of their status and
activities[184]

48 Distributed analysis in the LHCb experiment

[DIRAC Services and Agents |

-t P

DISET \
| RPC | Filetrnster |
A
| DISET Authorization o
| DISET protocol and object serialization |
|L N

SSLAuthentication |/ -

DIRAC pyOpenSSL
version Plain Socket

L OpenSSL l ‘

| TCP/IP |

Figure 4.7.: DISET layered architecture - Figure taken from[184]

The lowest layer of the DIRAC software is DISET. It is the DIRAC secure transport layer
which manages the communications between DIRAC components using OpenSSL to perform
authentication and encryption based on the X509 certificates. As the core of the DIRAC
framework provides network connectivity using standard TCP/IP protocol, a Remote Proce-
dure Call (RPC) and file transfer functionality are embedded into the services and clients
using multiple threads. Authorization rules can be specified to users and groups that make
the system more secure. DISET automatically checks the types of the call arguments and in
case of problems it returns an error which is advantageous for developers. Figure 4.7 show the
DISET layered architecture.

On top of this, the DIRAC framework provides a set of utilities which are required in order to
fulfil the application programming environments. The Services, Resources and Agents require
configuration parameters or information which have to be stored and accessible in a reliable
way.

The Configuration System (CS) stores configuration data in a hierarchical structure and pro-
vides these stored data to the DIRAC components using a mechanism consisting of a single
master with multiple slaves[185]. These are synchronised automatically with the master CS
and ensure the availability of configuration data to DIRAC services and agents.

The remaining framework utility is the Logging and Monitoring System that represent the
status of the DIRAC system. DIRAC services and Agents send their activity reports to the
Monitoring system, and send important messages such as errors or failures to the Logging
system.

Distributed analysis in the LHCb experiment 49

Workload Management

The DIRAC Workload Management System (WMS) is the central service of the DIRAC sys-
tem for distributed computing. It provides capabilities to the different users to submit and
monitor their computation tasks (jobs) and to retrieve their output. The WMS provides the

Pilot Agents

DIRAC
user

client

Job
Manager
Job Svc

|
A

Pilot Job

getUserJob

. Proxy download over DISET secure connection
~——» DISET secure connection

— Local database connection

———» GSl authenticated grid service connections

— — —p Local job execution (spawning)

- - Grid services : - DIRAC services/components

Figure 4.8.: DIRAC WMS - Figure taken from[166]

Worker Node

various computing facilities to its clients and increases the stability of the system by hiding
the transient failures on the Grid. Increased stability is achieved by rescheduling failed tasks
that are automatically retried by the DIRAC system.

50 Distributed analysis in the LHCb experiment

The WMS is based on the pull scheduling paradigm which ensures stability and efficiency.
Pull scheduling uses the execution environment found on the underlying computing resources
and tasks can only be executed on those resources which match the required environment.
The decision of the task execution is made when the resources are available which means a
scheduling can be applied based on priorities. DIRAC uses light agents or Pilot jobs which
are sent to the underlying computing resources in order to execute the tasks. These regular
WLCG grid jobs (pilots) which do not require any special handling tools, check the execution
environments and requests an eligible job from the DIRAC WMS. These pilots have an allo-
cated CPU and wall clock time limit when they are executed within a batch system. Therefore,
DIRAC is capable of optimizing the use of a batch slot according to the CPU and wall clock
time limit. Consequently, multiple jobs may be run within the time limits, increasing their
usage efficiency.

Figure 4.8 shows the major services and agents of the WMS which together make up the
pull scheduling architecture. The users must have a valid Grid certificate in order to be able
to interact with the DIRAC services through the DIRAC API. The DIRAC API is able to
formulate users tasks which are translated into the Job Description Language (JDL) format
and are provided to the Job Manager service through a secure RPC connection. The Job
Manager service is the entry point for clients and is responsible for creating a new entry which
describes the requirements of the jobs, the identity and group of the job owner. This job-related
information is stored in a relational database backend.

When a user runs an application on the Grid, in most of the cases the application requires
the use of small files which are less then Megabytes in size. These files are called the input
sandbox while the term output sandbox refers to similar small output files of a job, which do
not require permanent storage on the Grid. These sandboxes are stored in a database and the
SandBox services manage (uploads or downloads) these small files in a reliable way. The
users use the DIRAC API to specify the input sandbox files to be used during job execution
time.

The newly entered job is treated by a series of agents before being assigned to a TaskQueue.
The TaskQueue contains tasks with identical execution requirements and keeps the list of
pending tasks. Based on this list, the Director Agents, called TaskQueueDirector are used to
populate the available computing resources with Pilot Jobs. The pilot checks the environment
on the worker node and requests a job using the Matcher Services.

The Matcher service receives requests from the pilot jobs, checks available jobs in the Task
Queues and makes a decision according to the requirements presented by the pilot job.

Job Wrappers prepare the job execution on the worker node and provide all the data required
by the job.

During execution the job periodically reports back its status and progress information to the
Job State Update service. When a job has completed, the pilot job checks the time remaining
in the batch slot and attempts to match another job with the updated CPU limit requirement.

Distributed analysis in the LHCb experiment 51

The application may produce output files which must be stored. Two possibilities are available.
Small files can be stored in the output sandbox while big files can be stored in the Grid storage
element.

Data Management

A reliable Data Management system is essential in order to manage file transfer and catalogu-
ing of LHCb data according to the LHCb Computing Model. The DIRAC Data Management
system core resources are the Storage Elements (SEs) and File Catalogues. The Replica Man-
ager using the File Catalogues and SEs in order to perform simple file management on the
Grid.

Storage Element

The DIRAC Storage Element is an abstract layer on top of the storage resources used to mask
underlying storage technologies and protocols. It stores directories and files on the Grid SEs
and allows to upload, download and replicate these files and directories using different proto-
cols. The DIRAC DMS determines the protocols which are available in a particular resource
and ensure these protocols will be used in an efficient manner. The descriptions of each SE
for a given site are stored using the Configuration Service. This has a functionality similar to
the SRM service with the aim of providing transparent access to various SE implementations.
The access protocol relies on plugin modules, which represents disparate mechanisms of data
access. The SRM2 plugin is used by the SE with a GFAL python binding to contact the SRM
services and the Icgutils package is used to perform file transfers.

Catalogues in DIRAC

DIRAC uses different catalogues such as metadata and replica catalogues. The transparent
usage of the catalogues is essential for efficient data access. The catalogues can be used by
various types of users.

e The production jobs have to store and access the metadata, the location and replica(s) of
a file in an efficient and easy way.

e The distributed analysis jobs need to access the metadata and replica catalogues without
knowing in advance where the job is running.

e The Services or Agents use the metadata and replica catalogues to ensure data availability
and data consistency.

DIRAC uses the following catalogues:

e Bookkeeping Metadata Catalogue stores files and jobs metadata and job provenance in-
formation (more details in section 7.4.2).

52 Distributed analysis in the LHCb experiment

e LFC catalogue is a replica catalogue. It is used to keep files and it’s attributes (such as
size, creation time, owner etc), in addition to it’s replica location(s).

e DIRAC-FC is a replica and metadata catalogue. The DIRAC-FC is being used by the
non-LHCb community in order to replace the LFC catalogue.

DIRAC provides an abstraction layer called FileCatalog which provides a single point access
to these catalogues through different plugins which expose its functionalities. It uses the
Configuration Service as the SE to store the available catalogues and their attributes, but the
philosophy is different from a normal SE because each operation must be carried out on all
available catalogue plugins to maintain their consistency.

Replica Manager

The Replica Manager (RM) combines the functionalities of the Storage Element and DIRAC
catalogues in order to perform file based data management and accounting. The RM imple-
ments methods which are used by clients for the manipulation of files on the Grid. The RM
interface allows users to upload and download data which is described by LFN to Grid SEs
and register their contents to the various catalogues (such as Bookkeeping Metadata Cata-
logue, LFC). In order to have efficient data analysis, the datasets can be replicated using RM
to other Grid SEs and can be registered to the DIRAC catalogues. Like a File System, it

 SELEC | Central DMS
SE-LFC
Consistency Stnraﬁe Usage
_ Agent | gent
F— A
LFCSE BK-LFC
Consistency o Consistancy
Agent Agant

- T (S e—) N S ——
El B

Figure 4.9.: DIRAC Data Integrity tool architecture - Figure taken from[186]

allows the removal of files and replicas from Grid SEs and catalogues where these files were
registered. Figure 4.9 shows the data integrity suite architecture used to ensure the data in-
tegrity. The DIRAC agents check the different catalogues and SE in order to discover data
consistency and report the status to the IntegrityDBSve. A set of clients extract the Integri-
tyDBSvs service functionality. RM operations such as replication, removal, registration etc.

Distributed analysis in the LHCb experiment 53

may be persisted as a request in a Request Database in case of failure in a generic XML
format for later retry. The requests which are in the Request Database are retrieved and exe-
cuted by a series of agents: the transfer requests are retrieved and executed by the Transfer
Agent; the removal request are retrieved and executed by the Removal Agent and the regis-
tration requests are retrieved and executed by the Registration Agent. The DMS consists of
a bulk transfer framework which handles the transfer requests by submitting a job to gLite
File Transfer service (FTS). This framework also provides capability to monitor the submitted
jobs.

Production Management

While the WMS gives users the ability to run their jobs, the Production Management system
is designed to centrally manage large productions used to generate Monte Carlo data and to
process real data produced at the LHCb detector. The Production Management is built on
top of the Workload Management system to perform definition and submission of the produc-
tion requests in a fully automatic data driven way. The production requests are stored in the
database backend. Each production request is described by a production and the production
is defined by a Work flow. The Work flow describes the steps which correspond to the ap-
plications and configurations to be run, the input data requirements, the destination and the
data to be produced. The main components of the Production Management system such as
Production Database and associated services and agents are shown in Figure 4.10.

When a production request is defined and submitted to the production team, a Data Processing
type production is created by the production manager. The input data is retrieved from the
LHCb Bookkeeping File Catalogue by the BookkeepingAgent. These retrieved input files
are stored in the Production Database and assigned to a task queue with matching input data
requirements. The TransformationAgent periodically checks the active productions in the
system in order to create new jobs which are assigned to particular sites according to the
LHCb Computing Models. The agent uses two different criteria to create jobs for Monte
Carlo productions and for Processing productions:

e For MC production the agent creates jobs which correspond to the number of events
requested by the user.

e For Processing the agent groups the input files using a transformation plugin (e.g. by
size, by file type) according to their location and creates jobs to process.

The created jobs will be submitted by the JobSubmissionAgent to the DIRAC WMS. The
ProductionStateAgent monitors the production progress which can be followed using a com-
mand line or Web interface.

54 Distributed analysis in the LHCb experiment

—— -
—
—-——

Production Check Replicas

M r Data production

Data management

Production Production

Definitions File Catalog
Production | Production
File tables Job tables

Transformation
Agent

Production Job Submission

State Agent Agent
Production
state Job
update submission

DIRAC Workload
Management

Figure 4.10.: Schema of the Production Management system - Figure taken from[187]

4.7. Ganga

Ganga is a component-based system providing a user friendly interface for the configura-
tion, execution and management of computational tasks in distributed environments. Ganga
was developed to support distributed data analysis within the ATLAS and LHCb experiments
where large communities of physicists need access to Grid resources. This section presents
the design and implementation of the main Ganga components which are parts of the Ganga
software.

Distributed analysis in the LHCb experiment 55

4.7.1. Overviw of Ganga architecture, design and implementation

The design concept of Ganga is to develop a flexible tool which integrates new functionalities
using an object oriented paradigm. Since Python supports object oriented paradigms and has
many advantages over other programming languages, the Ganga developers decided to use
this programming languages. Ganga is based on plugin architecture which is composed of
various components which can be used through a text based Command Line Interface (CLI),
a file scripting interface and a Graphical User Interface (GUI). The architecture of Ganga is
shown in Figure 4.11. The user interfaces are built on top of the Ganga Public Interface
which is a liaison between the Ganga Core and the user interfaces. ~ The GPI produces a

&

‘Gu cLl) (script)
i \\\ - T
\\ l‘ x//

GPI

Ganga Core

AFS token
Application Plugins f# AVA oy Job Plugins
monitoring credentualst MyProxy .
Executable managemen | Localhost | | EGEE Grid %e
Persistency Manager | Batch ﬂ INorduGrid m‘
W B [mEe
Job File
@D e ek (N
metadata input/output files

Figure 4.11.: The architecture of Ganga - Figure taken[193]

simplified view for users, but at the same time more detailed information can be exposed from
the underlying computing resources. The Ganga Core provides monitoring capability which
plays a vital role during job execution. Each time the users want to know their job status, they
query the job repository which is built on the database backend. This repository stores the job
statuses such as submitted, running, completed, failed and killed. The input and output data
associated to the jobs may be stored in the local machine or the repository. Ganga takes care
of handling user credentials, including Grid proxies, and Kerberos[194] tokens which are used
by the Andrew file system (AFS)[195]. More details of the different components are given
below.

4.7.2. Ganga Components

Ganga implements a set of components which are used to construct a job. All jobs are required
to have an application component and a backend component. The application component

56 Distributed analysis in the LHCb experiment

defines the software to be run during the execution of computational task while the backend
component defines the underlying computing resources to be used by the application compo-
nent. Most of the jobs require input data and may produce output data. The input dataset
component is used to specify the job input data which is to be read and processed. The output
dataset component is used to specify the data to be produced. If the job has a huge amount
of input data to be processed, a splitter component is used to divide the job into independent
sub jobs and a merger component to aggregate the output of each sub job.

Application components

The type of the computational task is described by the application component. It defines
the options and settings of the software and provides methods for specifying actions to be
taken before and after the job is processed. Before the application is executed, intermediate
configuration may be required. These intermediate configurations are stored in files which
are created automatically by the application component. The configuration method carries
out integrity checks in order to ensure the sanity of the jobs. The Executable is the simplest
application component which has an exe property for providing the path to an executable
binary or script, an args property for storing a list of arguments to be passed to the executable,
and an env property for storing a dictionary of the environment which is to be defined before
the executable starts.

Backend component

The backend component is an abstraction layer for a range of widely used processing systems
which can be a local host, batch systems such as Portable Batch System (PBS), Load Sharing
Facility (LSF), Sun Grid Engine (SGE), Condor or Grid systems such as glLite, ARC, OSG.
The Backend component has plugins to DIRAC and PANDA-specific middlewares which
means the users can submit their jobs to DIRAC or PANDA Workload Managements Sys-
tems without having any specific knowledge of the Grid systems. The Backend component
defines properties which can be set by the users. For example LCG has the following prop-
erties: middleware, actualCE, requirements (memory,cputime, walltime,software), status, id.
The Backend component provides various methods to be used to submit, resubmit, kill, delete
or cancel a job. In addition it provides monitoring capability for the existing jobs. It provides
a method which is used to retrieve the output files of a job.

Dataset components

Dataset components generally define properties used to describe a particular collection of data
which have to be read and processed. They also provide methods for obtaining information
about the data. For example the users might be interested to know the data processing phases
or location where the data is stored. The details of how data collections are described can
be performed using generic dataset components. The datasets differ significantly between

Distributed analysis in the LHCb experiment 57

experiments. Each experiment has their own catalogues system which allows the users to
query these catalogues and find data collections which will be stored by an experiment specific
component. For example the LHCb Dataset component uses the LHCb Bookkeeping System
to retrieve datasets.

The users can specify their sandbox files which are stored externally. These sandboxes are
transferred from the user file system together with the job to the computing resources where
the job will be executed.

Splitter and Merger components

In many cases the computing tasks are too big to be carried out on a single processor. Conse-
quently, the users may want to split their jobs into sub jobs, to get the result in a faster time.
One very common usage pattern is to run the same code several time with slightly different
arguments. This can be achieved using GenericSplitter which specifies the number of sub
jobs to be created, and the way in which are sub job differs from another. Different splitters
have been implemented such as ExeSplitter which splits a list of executable into different sub
jobs, and ArgSplitter which deals with executing the same application many times, but with
different arguments. Most of the experiments have splitter components inherited from the
GenericSplitter to deal with creating sub jobs that process different parts of a dataset.

The outputs of the sub jobs may need to be aggregated. To perform this requirement Ganga
developers implemented so called Merger components. These components combine the out-
put of sub jobs at a later stage. A few predefined mergers are available in Ganga such as
MultipleMerger, SmartMarger, RootMerger, TextMerger. The merging can be performed au-
tomatically after the job and its sub jobs have finished. The users may want to merge files after
the job that created these files no longer exists. The merging of these files can be achieved
manually by the users.

4.8. Summary

The LHCDb experiment uses a set of application to process data taken by the LHCb detector
or produced by the Monte Carlo simulation productions. The applications are based on a
common Gaudi framework. The data taken by the detector or simulated by the Monte Carlo
productions is reconstructed, stripped and merged. The data can be stripped or reprocessed
more than one time during a year. DIRAC is implemented to process the data in a reliable
way taking into account the experiment specific requirements. It provides the capability to
execute different data processing jobs in the Grid or local cluster. Ganga implemented as a
user-friendly interface for configuration, execution and management of jobs in a distributed
environment. Ganga provides the possibility to submit jobs to the DIRAC system, different
batch system, and the Grid.

58 Distributed analysis in the LHCb experiment

We can distinguish between production and user activities. The production activities (recon-
struction, stripping, etc.) only use DIRAC system for data processing while the users uses
Ganga to submit their analysis jobs to the DIRAC system.

5. Feicim

This chapter discusses Feicim, a browser for accessing LHCb data. Feicim, from the Gaelic
word meaning “I see”, is a browser which provides a visual representation of datasets, data-
content discovery and analysis through a Graphical User Interface. We start with some mo-
tivation for the project in section 5.1. A well defined architecture is presented in section 5.2
and this is followed by a brief description of the main components of Feicim along with their
scope in section 5.3. Section 5.4 introduces various design patterns which are used to design
and implement loosely coupled components. We describe the Creational, Structural and Be-
havioral design patterns which provide a schema and the relationship of the components. We
present different architectural design patterns which are used to describe the schema of com-
plex software systems. We introduce the Composite Model View Controller which is based on
existing design patterns such as the Model View Controller and the Hierarchical Model View
Controller [196], but we avoid the disadvantages of these patterns in order to have a more
flexible and robust design pattern. In section 5.5 we introduce two objects which are used to
temporarily store data in memory. Managers present the data in a treelike format which is
described in section 5.6.

5.1. Motivation

The key element in high energy physics is the data collected by different experiments. The
goal of the physicist is to make physics measurements using this data. The physicist must
extract, interpret and filter relevant information from the data in order to make physics mea-
surements. When users run analysis on the data, they have to define the input data, understand
its contents and define the different algorithms to be performed. To find the input data is
not easy without a robust user-friendly tool. When the data is found the users have to ac-
cess this data often without knowledge of how and where the data is stored and how it can
be accessed. In particle physics the process and understanding of the data requires several
processing phases and various algorithms which perform different applications. However, as
programming environments become larger and more complex due to the various applications,
access to the information of interest become more and more difficult.

The Data-Grid Environment and Tools for Distributed Management and Analysis of
Large Sets of Scientific Data (DGET)[197] was created around 2005 to provide a framework
which can be used by various scientific communities such as particle physics, astrophysics and
bioinformatics. DGET unifies various resources, and gives access to these resources in a user
friendly environment that is robust, adaptive and scalable. The Feicim browser is developed

59

60 Feicim

as a DGET test application in particle physics. Feicim hides the complexities of the Grid and
provides links between the people with Grid experience and the physicist who does not need
to know about of Grid computing. In 2007 the first prototype of Feicim were presented at
CERN. Since this time, Feicim has developed and become more flexible. At the end of 2007
it was decided to use Feicim by the LHCb experiment as the main LHCb Bookkeeping Sys-
tem. At the beginning of 2008, Feicim was re-designed according to the LHCb requirements,
but the main principles did not change. In the middle of 2008 Feicim was progressively put
in production and used in parallel with the old LHCb Bookkeeping System by the users and
the Production Management System. At the end of that year Feicim became the main LHCb
Bookkeeping System. In the following years small improvements were made in order to im-
prove the scalability and reliability. The design of Feicim allows components to be extended
and changed without modifying the whole system.

5.2. Architecture

The basic concept of Feicim is to provide a visual programming language to the physicists
which lets users create their own analysis by manipulating program elements graphically
rather than by specifying the programming elements textually. The Feicim architecture per-
forms these tasks. The Architecture is composed of various components which solve specific
problems. The design of these components applies different existing design patterns (see sec-
tion 5.4.1).

The Feicim architecture is defined in terms of components and their interactions. Figure 5.1
shows the Feicim components.

e Interface Manager defines the basic interfaces which are used by other components.

The Interface Manager consists of the following interfaces: Controllers, Messages, En-
tities, Items and Managers.

e Communication and work flow manager is responsible for providing the data to the Fe-
icim data browser and the Feicim LHCb Bookkeeping catalogue.

e Application Builder is responsible for building the application managers.

e Explorer Viewer has two viewers:

1. Feicim Data browser contains widgets and controllers which are used to work with
the LHCb data files.

2. Feicim File Browser contains widgets and controllers which are used to find the
data. It contains the Feicim LHCb Bookkeeping catalogue which is used to select
data in the Grid Storage Element, and a local file browser which is used to select
data in the local machine.

Feicim 61

e Desktop contains the different algorithms. The algorithms correspond to graphical el-
ements. The graphical element is a visual representation of algorithms. The users can
easily create a complex algorithm structure by using the different graphical elements.

e GUI contains views which are used by the users to perform different tasks.

Graphical User Interface

Explorer
Viewer Application
Builder

GAUDI - Python

Figure 5.1.: Feicim high level architecture - illustrating the components of Feicim and their interac-
tion.

Feicim is based on loosely coupled components and uses DIRAC/Ganga for distributed anal-
ysis using the LHCb Grid infrastructures. Gaudi is used to read events which are in the files
and run simple algorithms on the local machine.

5.3. Components of Feicim

Feicim consists of tree components which will be discussed in the next chapters: the LHCb
Bookkeeping Metadata Catalogue for data location, the Feicim Data Browser for data-content
discovery, and the Feicim Data Analysis for running analysis jobs on the Grid or local ma-
chine. Each component has a dedicated role which means they can be used standalone. How-
ever, they perform together as a complex system which covers all the LHCb specific tasks
needed to run data analysis. Each component based on the Feicim architecture and the Feicim
design principles.

62 Feicim

5.4. Design and implementation

The design of Feicim takes into account existing design principles which are widely used by
software engineers during software development. Feicim is more than a simple application,
because it has to meet various criteria which have been achieved by studying existing software
technologies and design principles.

Feicim is designed as a platform independent application. We analysed the available capabili-
ties in order to have an optimal design which fulfill the following requirements:

e Re-usability: Feicim components can be easily re-used or re-integrated to another sys-
tem. In addition, the design principles of Feicim can be used to implement a new system.

e Scalability: We intend to use resources efficiently in order to provide a scalable system,
which can handle thousand of user requests without overloading the system.

e Manageability: Various components of Fecim can be manageable without having spe-
cific knowledge of the system.

We applied common solutions for common problems and as few technologies as possible to
achieve more scalability capable of absorbing new and changing requirements. We attempt to
design user friendly views which can be used without specific knowledge.

Design patterns are used to develop the components of Feicim. During the design of Feicim
we faced different problems: Feicm has to be able to show a tree structure using different
views;the views have to be able to show different types of tree structure without any modifi-
cation. We studied the Model View Controller and the Hierarchical Model View Controller
which can be used for manipulating multiple views on the same data model. If the data model
or views are implemented in a different programming environment, these two design patterns
can not be used, because a view can not communicate with it’s controller and model which is
in different programming environment. A new more flexible design pattern is required, which
is called the Composite Model View Controller. It has increased functionality compared to
existing design patterns, because it separates the data model from the views using different
layers to solve different problems. It also allows controllers to use different programming
languages.

In order to comply with the requirements above we decided to use the Python programming
languages and pyQt (Python-bindings to the Qt graphical toolkit). This allows Feicim to use
different external software to solve specific problems. We reuse existing software with small
modifications rather than reinvent completely new software.

We now present a general overview of Design Patterns before focusing on the Composite
Model View Controller that we have created.

Feicim 63

5.4.1. Design Patterns

A design pattern is a general reusable solution to a commonly occurring problem in software
design[200]. We decided to adopt various design patterns into our system. Design patterns
are used to show relationships and interactions between classes or objects. There are many
types of design patterns, among which we used the following: Creational patterns, Structural
patterns, Behavioral patterns and Architectural patterns.

Creational patterns

These patterns deal with controlling object creation mechanisms in a manner suitable to the
situation[201]. They are categorized into Object-creational and Class-creational patterns. Both
categories have dedicated scope; the object-creation deals with creating objects in an efficient
way while class-creation deals with class-installation using class inheritance effectively.

Factory Method

uses

Client

The user asks to create an object

=<interfaces== $
Product
+Operation() Factory
+Operation2() +makeProducts():Product
+.
+OperationN|)
- ------
|
1
ConcreteProductN ConcreteProduct2 ConcreteProduct1
+Qperationi() +Operation () +Operation ()
+0Operation2
& N
1
1
: creates

Figure 5.2.: Factory method design patterns - A simple Factory Method with basic classes.

This pattern implements the concept of factories that deal with the problem of creating objects
without specifying the exact class of object that will be created[202]. Figure 5.2 shows an

64 Feicim

overview of the Factory Method design pattern which is described below. Usually, an interface
is needed to specify the common methods which will be reimplemented by the subclasses in
order to perform specific tasks.

The implementations of these subclasses are different and optimized for different kinds of
data. The Client interacts with the Factory Method in order to create a specific Product that
performs a task. When the product is returned to the Client by the Factory Method, then it can
be used by its owner. In this way the Client does not need to know the implementation of each
subclass. It only needs one reference to the interface and the factory object. This encapsulates
the creations of objects and hides the creation of the very complex processes. In addition a
new Product can be implemented and can be created by the Factory Method.

Builder pattern

While the Factory method returns an instance of one of several possible classes depending on
the data passed in arguments by the creation methods, the Builder pattern provides different
representations of objects which must be constructed by different implementations of abstract
steps[203].

<<interfaces:
IModel

? Director <<Interface==

o
Model <. pirector (builder) =] Builder
+construct (Model]

+buildPart

For all ohjects in the ?

Model builder.buildParsi) \ T ... | ~~~~—===7—+=

ConcreteBuilderl ConcreteBuilder2 ConcreteBuilderN

+buildPart +buildPart +buildPart
+getResult +getResult +getResult

V v

Productl Prodict2 ProductN

Figure 5.3.: A general overview of the Builder design patterns - A simple Builder Methods with the
basic classes

Feicim 65

For example: we have a Hungarian text and we want to translate it into different languages.
The input text is always the same but the translations are different in each language.

In a case where the developers have to work on complex objects, then the construction of the
objects should be separated from its representation. Hence, the same construction process can
create different representations of the objects[204].

Figure 5.3 shows an overview of this design pattern. First a Model is defined as an implementa-
tion of the IModel interface. The Model is used to create the Product which is a representation
of the object that is being built. The Director constructs an object using the Builder interface.
The Builder is an interface which defines the abstract methods that are used to create the parts
of a Product object. The ConcreteBuilder implements the Builder interface which constructs
and combines together parts of the Products.

Structural patterns

The Structural design patterns deal with the composition of Classes and Objects that are used
to form larger structures[204]. The Class describes an abstraction and inheritance of various
classes that are used to compose an interface, while the Object describes how the objects can
be associated and composed to form larger structures.

Composite

When software developers are developing applications, they are usually confronted with an in-
dividual or collections of objects which form their application. The Composite design pattern
is used to compose these objects into tree structures to represent part or whole hierarchies.

This pattern allows clients to use individual objects and compositions of objects uniformly
[205]. The tree-structure data has leaf nodes and branches that make the code very complex,
difficult to read and understand. The concept of the tree-structure is to compose one or more
similar objects using 1-to-many, “has a” or “is a” relationships into a single interface together
with similar functionalities which can be uniformly treated by the clients.

Figure 5.4 shows the basic classes of the Composite design pattern. The Component is an
abstract interface with well defined methods which perform different operations on the com-
position of objects that participate in the hierarchical data structure. Each primitive object
in the composition has been assigned a well defined behaviour described by a Leaf object.
As the Leaf object has no children, they can implement services by re-implementing the ab-
stract methods of the Component interface. The Composite stores the child components and
implements the various methods that are needed in order to perform child related operations.
The Client manipulates objects using the Composite classes adding various Components or
another Composite into it.

66 Feicim

==nterface:==
Component
+0Operation
+AddComponent(Compaonent)
+RemoveComponent(Componerg
Client +getChildranli)

JaN

i\

childret

Leaf

+Operation

Composite

[N , ,
Each child in the +getChildren(i)
composite — — —{+RemoveComponent(Componeffi—

execute child.operation +AddComponent(Component)
+QOperation

Figure 5.4.: A general overview of the Composite design patterns - A simple Composite pattern
with the basic classes.

Behavioral patterns

These patterns deal with the interactions (communications) between objects which have to
communicate to each other. These loosely coupled objects can be used as a key to n-tier
architectures. As the name of this pattern ‘Behavioral’ suggest, they encapsulate the behaviour
of the algorithms into a single object which can perform alone.

Interpreter

This pattern specifies how to evaluate sentences in a language which is described in terms
of formal grammars !. This design pattern is not really used to solve a complex problem,
but it is very useful to solve simple problems in an elegant way. The implementation of this
pattern uses the Composite pattern which defines only the structure applied to solve a specific
grammar while the Interpreter design patterns defines the behaviour.

For example: suppose we have various quantities in a text: litre, millilitre or decilitre. This
pattern can be used to identify these quantities and convert them to a single quantity.

Figure 5.5 shows an overview of the Interpreter design pattern. The Client provides an abstract
representation of a syntax tree using the grammar in order to represent a particular sentence in
the language. In addition, the Client invokes the Interpreter operation. The Context contains
information that can be globally accessed by the objects. Each Concretelnterpreterl..n im-
plements and interprets one operation by reimplementing the corresponding abstract method

'The grammar is a set of rules which describe how to form strings from the language’s alphabet that are valid
according to the language’s syntax[199].

Feicim 67

={ Context

Client

==|nterface>= J:
> AbstarctInterpreter]

+interpret(context)

ConcrateInterpreterl| |ConcrateInterpreter2 ConcrateInterpreterN

+interpret(context) +interpret(context) +interpret(context)

Figure 5.5.: A general overview of the Interpreter design patterns - A simple Interpreter with the
basic classes.

which was declared in the Abstractinterpreter interface. This interface declares all the meth-
ods which will be used during the execution of one operation.

Template Method

In most of the cases where an algorithm is used to perform an operation, the Template Method
can be used. The Template Method defines the program skeleton of an algorithm which can
be composed by steps that follows various rules[206]. These steps can be overridden by sub-
classes in order to allow different behaviours without changing the rules which are followed
during the creation of the algorithm.

Figure 5.6 shows a simple overview of the Template Method. First an AbstractClass has to
be created with well defined abstract methods that provide the basic steps of an algorithm
design. The AbstractClass defines the skeleton of an algorithm and its abstract methods de-
scribe private operations that are implemented by the ConcreteClass. This class implements
the algorithm’s specific steps which perform various operations that were encapsulated in the
subclass.

68 Feicim

AN

AbstractClass PrimitiveOperation
| PrimitiveOperation2

+TemplateMethod(] F===== -=
+Private Operationd|]
+Private Operation2(]
+PrivateDperationh|

FrimitivOperationi

ConcreteClass

+PrivateOperation()
+PrivateOperation2|)
+PrivateOperationh()

Figure 5.6.: A general overview of the Interpreter design patterns - A simple Interpreter with the
basic classes.

Chain of Responsibility

The Chain of Responsibility pattern is used to handle requests (typically events) by using a
chain of objects[207]. Usually, each Handler knows its successor which allows it to forward a
request through the chain of Handlers until one of them can handle this event.

o =z=|nterfaces==
reque ~ P
> Handler <
+handleRequestrequest)
1
Clignt
succesfc
Concretelandleri Concretelandler2
+handleRequestirequest) +handleRequest(request] i

Figure 5.7.: A general overview of the Chain of Responsibility design patterns - It consists of the
basic classes which are used to create a Chain of Responsibility design patterns.

Figure 5.7 shows the UML diagram of classes that participate in the composition of the Chain
of Responsibility design pattern. The Handler defines the interface that is used to handle re-
quests. The ConcreteHandler implements the Handler interface in order to handle the requests

Feicim 69

and is responsible for forwarding the request to its successor if it can not handle the request.
The Client is the starting point of the request handling procedure, because it sends the request
to the first Handler object in the chain that is supposed to handle the request.

We can have many Handlers in a system which are grouped by a common interface. Each
group of the Handler can handle specific requests.

The Chain of Responsibility design pattern has a strong advantage, because it promotes the
idea of loose coupling[208]. However, the disadvantage of this pattern is that the chain can
be broken when we forget to add a few lines to the code which forward the request to another
Handler. The result of this is that the system may have unhandled requests.

Architectural patterns

Architectural patterns describe a high-level structure of software systems. They contain a set
of predefined sub-systems, which specify their responsibilities and define the relationships be-
tween the sub-systems[219]. Several Architectural patterns exist and are widely used. Each
of them helps to achieve a specific global system property. We studied the Model View Con-
troller and the Hierarchical Model View Controller and on the basis of our study we have
implemented the Composite Model View Controller. A general overview of these patterns
is described in the following subsections.

Model View Controller

Model View Controller (MVC) is an architectural design pattern often used by the applications
that need the ability to present the same data to their users. Most of the time the MVC is widely
used to maintain multiple views that perform on the same data. The MVC hides the complex
structure of the object by separating them into three categories:

1. Model manages the data which is required by the application. It disposes the information
to the view by providing detailed instructions.

2. Views are typically a user interface element to display all or part of the data which is
managed by the Model.

3. Controllers handle different events which can affect the model or the view(s). Usually,
the user triggers an event using the View, while the Controller receives the request which
is generated by the event and returns a response by initiating calls on Model objects.

Figure 5.8 shows the model/view/controller triads that play a vital role for developing Graph-
ical User Interface elements. Various implementations of MVC have been developed and are
widely used by different user communities. We distinguish two different categories depending
on where it is used:

70 Feicim

_______ =] Controller

r
I
<
o
=
Y
=
=]
o
0

Figure 5.8.: An abstraction of the Model View Controller - Tree classes which are used by the
Model View Controller.

1. based on GUI frameworks; such as Qt[209], Java Swing[210], Microsoft Foundation
Class Library (MFC)[211], GTK+[212] etc.

2. based on web-based frameworks; such as Spring Framework[213] Django[214], Pylons
[215], ASPNET MVC Framework [216], Struts[217], Oracle Application Framework
[218] etc

When the user interacts with the GUI by changing the graphical elements, then one or more
event may be generated. The events are treated by the Controllers that then modify the model
or the view, or both. Whenever the Controller changes the model data will be modified and
the view(s) automatically updated.

Hierarchical Model View Controller

While the MVC paradigm controls GUI elements (widgets), the Hierarchical Model View
Controllers (HMVC) introduces a layered design methodology which can be used to develop
a complete presentation layer (or client tier). As an extension of the basic MVC, it aims to
handle events of all child widgets which have the same parent widget, instead of having an
MVC triad for each particular widget[220]. A detailed view of the HVC is given in Figure
5.9.

The View is the interaction point of the users. The container is the highest level of the GUI
As the name suggests, it contains multiple views which may have relations to each other.
Depending on the complexity of the views, it may assign to them an independent Controller
and Model.

Feicim 71

Figure 5.9.: Overview of the HMVC design pattern - This figure shows a hierarchy of controllers
which are communicating to each other using the parent-child relationship.

The Controller uses the model and provides a distributed control of events through a parent-
child hierarchy. It is responsible for responding to all the application-level navigation and
data-request events[221]. It implements the Chain of Responsibility design pattern. Conse-
quently, each Controller in the hierarchy knows its successor and that means the parent can
send events to the child Controllers to perform request which are generated by the View or
other Controller. The HMVC allows the developers to define models at every layer of the
hierarchy. Implementing them is not required since this always depends on the application
design and requirements. The Model disposes the information which has to be displayed.

Composite Model View Controller

The Composite Model View Controller (CMVC) is an architectural design patterns which
controls different GUI elements that compose the GUI components in a developer- friendly
fashion.

Messages are simple objects that encapsulate information and deliver this information be-
tween Controllers. A Message object has two properties: Action and Items. The Action tells
the Controller to perform manipulations on a GUI component or display data which is re-
quested by the user, while the Items are used to encapsulate the data which will be used by the
GUI element or the Controller. In addition the Message can contain multiple actions that can
be performed on different GUI element which are parts of the GUI component.

In our case, a View consists of a single or various graphical elements which are stored in a
Container(s).

72 Feicim

The Model encapsulates and manages the data. The Model only provides data to the Con-
trollers. This allows us to have a complex GUI structure with various components which are
distributedly controlled.

The Controller is the key element of the CMVC design pattern. The implementation of a
Controller is based on the Composite and the Chain of Responsibility design patterns that
are used to compose the Controllers into a tree structure. Each Controller has parent and
child(ren) controllers and each of them has an associated MVC triad. While the Controllers of
the MVC and the HMVC manage the graphical elements through events, the CMVC controls
its graphical elements by sending Messages to the appropriate Controllers. The Controllers
can send Messages to any other Controller. The root Controller deals with the Model and
distributes the messages to the other sub controllers. In our case the root Controller only
transfers messages to its children; it never tries to interpret the messages or perform one action.
The Model are distributed between the child controllers. Consequently, when an action is
performed in one GUI element, it will be handled by its Controller. If this Controller cannot
handle the action, it will send a message to its parent Controller. This procedure can continue
recursively until the appropriate Controller handles the action and returns the result to the
requester.

Figure 5.10 shows the UML class diagram of the CMVC design pattern.

<<Intorface> ControllerAbstarct Model
AbstarctView +ControllerAbstarct(view, parentcontroller) X
- +messageFromParent(message)
+setupController(widget, controller) +messageFromChild(sender,message) -
GuiElements +gethntroHer[] +addChild(name, ControllerAbstarct) <<
+getWidget(] +removeChild(name)

+setParent(ControllerAbstarct)
+getParent()

ConcreteView parenteononer|__CONCreteController g
< +messageFromParent(message) children
controller / +messageFromChild(sender,messags]

vw? model

Figure 5.10.: The CMVC design pattern - A general structure of the CMVC.

The GuiElements , as the name suggests, consists of different GUI elements which are im-
plemented in a programing language. It displays the Model to its users and it exploits the
benefits of the programming language. Actually, each GuiElements has an associated MVC
triad (Model, View, Controller).

The AbstractView interface declares the abstract methods which must be used to create the
CMVC.

Feicim 73

The ConcreteView implements the AbstractView methods. Each ConcreteView must have an
associated Controller which is used to control the GuiElements. The ConcreteView:

e creates its own Controller;

e makes a relation between the newly created and the existing Controller of the MVC, by
assigning this new Controller into the MVC;

e sets up the child Controllers if the ConcreteView contains another GUI element which
has to be controlled.

The ControllerAbstarct declares and implements the interface which is used in the composi-
tion.

The ConcreteController implements the ControllerAbstract interface. Each ConcreteCon-
troller has a parent controller and child Controllers. Actually, it stores the Controllers in a
hierarchical structure and provides the methods which are needed for communications and for
manipulating the tree elements. The ConcreteController knows the view(s)?, handles the GUI
events, and provides the data to the GUI using the Model object.

The Model provides the data to the ConcreteController. The data source can be a database,
Extensible Markup Language (XML)[222] file, files with objects, file system etc.

The CMVC flexibility

CMVC can be used when we have a GUI and we want to control the GUI elements in an
easy user-friendly way. The CMVC allows us to have Controllers which are implemented
in different programming language. For example: the GUI might be implemented in Java
and the Model might be implemented in Python. That means the Controllers of the GUI are
implemented in Java while the main Controller is implemented in Python. Consequently, we
have a layered architecture with two layers that are dedicated to support different purposes.
The Message plays a vital role when a Python Controller has to communicate to the Java
Controller. The Message can be translated to a Java object or vice versa. In addition it can be
translated to a literal string which can be interpreted in both programming languages.

The CMVC can support a client server architecture. The Model is located on the server side
together with the main Controller which provides data to the client using the Message.

CMVC allows us to distribute the data within various Controllers.

CMVC supports a pluggable architecture. Each GUI component can work standalone with
minor modifications. In addition a new GUI component can be integrated without modifying
the whole application structure. A new Controller can be easily implemented and added to
the hierarchy of Controllers. CMVC is currently implemented in Python, but it can be easily
implemented in other object oriented programming languages.

2We can assign the same Controller to two different views.

74 Feicim

CMVC interaction with Controllers and their role

HMVC sends the events to all the Controllers, while CMVC only sends messages to the ap-
propriate Controller or a dedicated Controller. But if the appropriate Controller can not handle
a message, then it will be sent to its parent. The Controller can send a message to its children.
Usually when a request has to be performed in different views the main Controller sends a
message to its child Controllers.

The Model can be distributed among various Controllers. That means if we have a complicated
tree structure, we can split the tree into various sub trees. The root of the sub tree will become
the main Controller. This mechanism reduces the number of messages and the communication.

Figure 5.11 shows a general example of a complex Controller hierarchy structure that illus-
trates the described above statement.

& & G

Figure 5.11.: CMVC example - Tree of Controllers

In the figure we distinguish two types of Controllers: main Controllers which are marked in
red such as A, B, C, C1 and normal Controllers which are not marked. A is the main Controller
which have all the data associated to a Model. The A Controller distributes the Model to the
B, C and C1 Controllers and they become main Controllers. The B, C and C1 Controllers

Feicim 75

consists of 3 different sub trees; that means they provide the data to their children. When the
C10 controller has to send a message to the B3 Controller then it will be sent via C9, C7, C,
A, B, B1, B3 Controllers.

CMVC knows all the children which means that the main controller can send messages to
them. This reduces the number of communications. If the Controllers are located in a server,
the load on the servers will be reduced by a large factor.

5.5. Data handling in Feicim

One of the purposes of Feicim is to present data to it’s users. This requires that the data is
temporarily stored in memory. We introduce the notion of Entities and Items which store
data in memory. The Entity stores the attributes of various objects while the Item stores these
entities in the memory in a hierarchical (treelike) format.

Feicim has to work with millions of entries which requires applying different strategies for
efficient use of memory:

e Only load data which is needed, since that part of data is small and easy to handle.

e Do not keep data in the memory for a long period. To achieve this requirement, part of
the data has to be saved in a temporary file.

e The old memory space should be destroyed before a new memory allocation occurs.

e At any given time, the memory should not have the same information twice.

5.6. Managers

Managers manage the entities and provide methods which are used to browse through the
entities. They are responsible for creating tree structures in an efficient way. Usually, a Client
is associated to each Manager. The User can interact with the Managers using the Client.
Figure 5.12 shows a general UML diagram which describes a Manager.

We distinguish between Clients and Managers. Each Client has assigned to it a Manager.
Actually, the Manager is the key element, because it deals with the entities, while the Client
provides the access to the Manager functionalities.

The IEntitySystem is an abstract interface that describes the common methods that will be
reimplemented by the appropriate class. The BaseESClient has an associated ESManager
that allows the user to interact with its associated Manager. The ConcreteClient exposes all
the available methods, implemented by the ConcreteManager, which manage the entities and
creates the tree of entities. The IEntitySystemManager defines the methods which are only

76 Feicim

IEntitySystem

+list(path)
+cd(path)

+get (path)
+tgetPathSeparator()

i

IEntitySystemcClient IEntitySystemManager
+getManager() +getPathSeparator()

+get (path) +getAbsolutePathi)
+aetPathseparator() +mergePaths (pathl, path2}

? +aet(path)

BaseESClient ESManager

getManager () ot BaseESManager
getPathSeparator()

getPathSeparator()
mergePaths (pathl, path2)
getAbsolutePath(path)

+getipath)
ConcreteClient
manager
list B ———
get (path)
cd(path)
ConcreteManager
listipath)
— cd (path)
get()
getAbsolutePath

Figure 5.12.: UML diagram of a Manager -

used by the Managers. The BaseESManager implements the IEntitySystemManager abstract
methods and deals with the methods which are common to other Managers.

5.7. Summary

To analyse huge amounts of data in a easiest way it is not trivial without having appropriate
tools. The following steps has to be performed during data analysis:

¢ understand the content of data which have to be analysed.

e develop or use an existing algorithm(s) which used to extract information from the data,
or make different measurements.

e define the input data which will be used by the algorithm.

Feicim 77

e create jobs using different input files and run them on the Grid.

In particle physics each step which are described above has an associated application which
used to solve specific problems (locate datasets, create a Grid job, create an algorithm, etc.).
An tool required which integrates the applications which belongs to the different steps into
a single distributed analysis tool. This tool called Feicim. The architecture of Feicim is
very important, because it has to provide all the necessary functionalities required to create
different components which are used for analysis. In order to control the components of
Feicim and ensure the communication between them we are created the Composite Model
View Controller. In addition we used various design patterns for developing the components
of Feicim.

78

6. Distributed analysis using Feicim

In this chapter we present the Feicim Data Browser component which is used to discover the
contents (i.e. physics information) stored inside the data files. This information can be his-
togrammed, filtered, and written to a user file for future analysis. A general tree data structure
is introduced in section 6.1. Section 6.2 presents different existing tree traversal algorithms
and a new Feicim Tree Traversal Algorithm which is used to discover a data file content. In
section 6.3 a detailed overview of the Feicim Data Browser is given. The architecture of the
Feicim Data Browser components and a python implementation of the Feicim Tree Traversal
Algorithm are presented in section 6.3.1. Information from several data files can be combined
and analysed together, either locally or using the Grid. This is accomplished using the Feicim
Data Analysis which is presented in section 6.4. Section 6.4.1 presents the Feicim Data Anal-
ysis architecture which meets the requirements for performing data analysis using distributed
computing resources.

6.1. General tree data structure and tree traversal
algorithms

A tree is a widely used non-linear data structure that stores elements hierarchically. A general
tree structure is shown in Figure 6.1. A node is a structure which may stores a value, or a
condition, or a separate data structure or a tree of its own.

Definition: A tree[243] is a finite set T of one or more nodes

T ={r}UT1 UTh U...UT,, with the following properties:

1. The set consists of a specially designed node r which is called the root of T

2. The remaining nodes are partitioned into n > 0 subsets, 71, 1>, ..., T,;, and each of these
sets is a tree. The trees 11, 1>, ..., T, are called the subtrees of the root.

According to the previous definition we use T = {r,T1,T3,...T,} to denote the tree T and the
following terminology is used:

e child: Each root r; of subtree 7; of tree T is called a child of r.
e parent: The node r of tree T is the parent of all roots r; of the subtrees 7;,1 <i<n

e siblings: Two roots r; and r; of distinct 7; and T of tree T are called siblings.

79

80

Distributed analysis using Feicim

internal node (also called branch node, inner node): Any node of a tree that has child
nodes.

external nodes (also called leaf node, outer node, terminal node): Any node of a tree that
does not have child nodes.

edge of a T is a pair of nodes (u, v) such that u is the parent of v or vice versa.

path of a T": is a sequence of nodes connected by edges. If R is a set of nodes of a tree T,
then P = {ry,ra,...,rc}, is path of T, where r; € R, for 1 <i < k such that the i-th node
ri in the P, is the parent of the (i + 1)-th node, r;;; in the P. The length of the path P is
k—1.

height of a node is the length of the longest path from the node to a leaf.

depth of a node is the length of the path from the root to that node.

Figure 6.1.: Example of a tree - A general tree T

The tree in the Figure 6.1 can be written using the tree definition as:

Ty ={A, {{A1} {B,{C,{C1},{C2}} },{D,{E, {E1},{E2}, {E3} }}, {F, {F1}},{G}}}

6.2. Tree traversal algorithms

The objective of traversal is to visit (perform some operation at) each node of a tree. The
trees can be visited in several different traversal orders. However, all of them have a common
characteristic: that they systematically visit all the nodes in the tree. The following types of
tree traversal algorithms are available: depth-first traversal and breadth-first traversal.

Distributed analysis using Feicim 81

6.2.1. Depth-first traversal (DFT)

The DFT algorithm traverses the entire subtree of a node before beginning traversal of any
other subtree of another node. It tries to go deeper in the tree before exploring siblings. There
are three different types of depth-first traversals: pre-order, in-order, and post-order. These
types of traversal are usually used to traverse a binary tree. To traverse a generic tree, the
pre-order traversal algorithm is usually used. However, depending on the problem in-order or
post-order tree traversal algorithm may be required. The depth-first tree traversal algorithm
when the tree is generic is the following:

Algorithm 1 depth_first(T)
Input: is a tree.
Output: Nothing.
1: container < root // store the root node of T tree in a container.
2: while notcontainer.empty() do
3: // while there are nodes in the container
4: Node < container.pop() //get the next Node form the container
5: for i< Node.getChildren() do
6: //for each child of Node
7
8

container.put(i) //store i-th child of Node in the container
visit(Node) //do some work on Node
9: end for
10: end while

For example: Given the T4 tree which is shown in figure 6.1 . Algorithm 1 visits the nodes of
the T4 in the following order: A, Al, B, C,C1,C2, D, E,El, E2, E3,F, F1,G

The equivalent recursive algorithm for the one introduced above is the following:

Algorithm 2 depth_first(Node)
Input: is the root node of a tree.
Output: Nothing.

1: if Node <> None then

2: return

3: else
4. for i< Node.getChildren() do
5 /lfor each child of Node, visit the i-t child of Node (perform some operation)
6: visit(i)
7
8
9

depth_first(i) //go to the i-th child of the Node (one level deeper of the Tree).
end for
. end if

For example: The input parameter is 74 which is shown in 6.1. Algorithm 2 visits the nodes
of the Ty in the following order: A, Al, B, C, C1, C2, D, E, El, E2, E3, F, F1, G.

82 Distributed analysis using Feicim

6.2.2. Breadth-first traversal (BFT)

The BFT algorithm visits every node on a level before going to a lower level of the tree T.
This algorithm is also called level-by-level traversal algorithm. The differences between the
two traversal algorithms is the type of the container. The depth-first algorithm uses a stack,
while the breadth-first algorithm uses a queue. In algorithm 1 when the container is a queue it
visits the tree nodes in the following order: A, Al, B, D, F, G, C, E, F1, C1, C2, El, E2, E3

6.2.3. Feicim tree traversal algorithm (FTA)

The FTA is a novel traversal algorithm which visits the tree nodes in a given way (order). The
way to visit the nodes of a tree is given as a tree path. For example: P = {A,B}, P = {A,B,E},
etc. are paths of the tree T (see. Figure 6.1). We also use the notation /A/B, /A/B/E to describe
a path (calling to mind a unix directory structure). The FTA algorithm uses two functions:
isLeaf and visit. The isLeaf (Algorithm 3) function is used to decide the type of a given node
of a tree.

Algorithm 3 isLeaf(Node)
Input: Node
Output: True or False.

if len(Node.getChildren()) >0 then
//if the Node have at least one children, it is not leaf
return False

else
return True

end if

AN AN ey

We use the visit function (Algorithm 4) to go one level deeper (in other words to visit the next
node) of a given tree. If we visited one node of a tree and we want to visit the node in the
next level of the tree, we have to provide the subtree and the name of the node in the next
level. For example for a given 7 = {B,{C,{C1},{C2}}} which is a subtree of the T4 shown
in figure 6.1 and nextNode = {C1} the visit(Tp,nextNode) output is an empty set {}. If we
change the nextNode value to nextNode = {C} and we call again the visit (73, nextNode), the
visit returns {C,{C1},{C2}}} subtree.

The fta(7T, P) (Algorithm 5) algorithm uses the isLeaf{Node) and visit(T, nextNode) functions
and visits only the nodes of T which are given by P (path). This generic algorithm can be
applied to a particular data structure to visit a node in a sub tree.

The advantage of this algorithm is it is not visit all the nodes in a tree. Consequently, it is
faster than the existing tree traverse algorithms in order of magnitude.
For example: For a given tree T4 which is shown in Figure 6.1 and P where:

1. P={A}, fta(Ty, P) returns {A1,B,D,F,G}

Distributed analysis using Feicim 83

Algorithm 4 visit(7T, nextNode)

Input: T, nextNode, where T is a subtree and nextNode is the name of a existing or non
existing node of 7.

Output: is a subtree.

1: node + None //We do not have the next node.

2: for i <— T.getChildren() do

3: // for each children of the subtree T

4: if i = nextNode then

5 //1f the i-th children of the subtree T equals the nextNode, the next node (next subtree)

become i
6: node + i
7: endif
8: end for

9: RETURN node

Algorithm 5 fta(7, P)
Input: is a given path P={ry,r,...,r;} where r; € R, Ris a set of nodes, 1 <i <kandT tree.
Output: the child nodes of the ry.

1: for i< Pdo
2: // for each node in the P container

3: node < visit(T,i) // visit the i-th node, the node become the subtree of the i-th node
4: if isLeaf(node) then
5: if the node does not have any child, return that node.
6: RETURN node
7: else
8: if len(P) > 0 then
9: // If we have node in the P container which are not visited, visit that node.
10: RETURN fta(node, P)
11: else
12: // all the nodes which were in P are visited. The node contains the children of the
last node which was in P
13: nodes < [| //itis a container and used to store the children of the node
14: for i < node.getChildren() do
15: // for each children of the node
16: nodes < nodes +1i // store the node in the container.
17: end for
18: RETURN nodes // it returns the children of the last node in P
19: end if
20: endif

21: end for

84 Distributed analysis using Feicim

2. P={A,B,C}, the fta(Ty, P) returns {C1,C2}.

6.3. Feicim Data Browser

In most of the cases in High Energy Physics the users run analysis using different input files.
These files are distributed among different Grid sites. The LHCb Bookkeeping System was
developed to discover these input files using their associated metadata information.

The Feicim Data Browser is a component used to discover the content of these files. It allows
the user to select any data object (e.g. particles, tracks, energy depositions etc.) and to make
plots using the attributes of these objects. It hides the complexity of the LHCb software and
provides a user friendly GUI to make various selections and plots.

6.3.1. Feicim Data browser architecture

The architecture of the Feicim Data browser is shown in Figure 6.2. It displays three different
components based on the Feicim architecture:

e The Application Builder provides the important Gaudi functionality to the Communica-
tion and Workflow Manager which are needed to process events.

e The Communication and Workflow Manager creates a Virtual File System from the
Event Model, which will be visualized by the Event Viewer.

e The Explorer Viewer provides a Graphical User Interface to browse through the Virtual
File System.

Each component is now described.

Application Builder

The Application Builder provides access to the Gaudi framework in order to read event data
from a file. It initialises the Gaudi Application Manager which contains a Feicim Event
Service. The Feicim Event Service consist of an Event Data Services and different algorithms
used to manipulate the data.

Gaudi Application Manager the Feicim architecture allows to integrate different physics
software and it exposes their functionality. The ApplicationManager is an interface which
declares all the methods required to handle event data. The GaudiApplicationManager imple-
ments the abstract method and creates the relation between Feicim and Gaudi.

Distributed analysis using Feicim 85

Explorer Viewer

Feicim Command Line Interface

) o———
Feicim Data “ Feicim Object Gaudi Application Builder
Browser Manager Manager

t Feicim Event Services
A

Feicim Plot
Factory

Feicim Data
Container

[Algorithms J

Figure 6.2.: Overview of the Feicim Data browser architecture - This picture shows the components
and their relations.

Feicim Event Service The Feicim Event Service is a module which instantiates an Event
Data Service and provides algorithms to manipulate the object in the TES.

Algorithms As introduced in section 4.1, the objects in a data file produce a tree structure,
which is called an event tree, and it is shown in Figure 6.3. The path is used to identify
an object. For example: the EW identifier is ‘/Event/EW’. A branch node may contains a
DataObject or a Container which are abstract data types:

e DataObjects: They have a single instance per event and they contain another DataObject
or a Container. For example: Event (/Event), DAQ (/Event/DAQ), EW (/Eevent/EW),
Phys (/Event/Phys) are DataObjects.

e Containers: They store a collection of small objects such particle, track, etc. These
objects are called contained objects and they only can be accessed via the container. The
Particles (/Event/EW/Phys/WMuSingleTrackNoBias/Particles) node which can be found
in Figure 6.3 is a container which is a Gaudi KeyedContainer. The contained objects
which are in this container are LHCb::Particle objects. The children of this node are
method names (BoostToCM, Coordinates, Vect, Beta, etc) of one object (LHCb::Particle)
from the container which returns a value which can be a fundamental data type or an
abstract data type.

A leaf contains fundamental data types such as integers, floats, chars, booleans, etc. For ex-
ample: the leaves E (/Event/EW/Phys/WMuSingleTrackNoBias/Particles/momentum/E) and
Et (/Event/EW/Phys/WMuSingleTrackNoBias/Particles/momentum/Et) in Figure 6.3 contain
floats for the magnitude of a particle’s energy and transverse energy respectively.

86 Distributed analysis using Feicim

b EE Event
- paa
= ew
; E Particles
- Phys
. B Dy2eeLine2
& 8 DY2eeLine3
&8 Dy2eeLines
& @8 WMuSingleTrackNoBias
: E Particle2VertexRelations
: - E Particles
DY2eeLine2 ;’Y:glfst)"é‘; DY2eeLine3 | DY2eeLined E covMatrix
- B daughters
A E extralnfo
Paticle2Vertex- " B momCovMatrix
e b E}E momentum

& 8 BoostToCM

\ E Coordinates
daughters “ E Vect
__ . " Beta
°

Figure 6.3.: A data file treelike structure which is similar to a file system. - It provides two different
view of how the data are stored inside a data file. View a.) is produced by using the Feicim
Data Browser; the folders are name of an object (such as Event, DAQ, etc) which contains
other folders or selectable check boxes which are attributes (such as E, Et, etc.). View b.)
is a different view of the data file structure. The white circles are folders while the green
circles are leaves of the tree.

- ColinearR apidity

The root node of an event tree is always called /Event. This component consists of a recursive
algorithm which is a python implementation of the fta algorithm introduced in section 6.2.
This algorithm is used to discover the data file’s content by browsing through the data objects.

The isLeaf method is implemented in python and decides the type of a tree node. For example:
the nodes which are shaded green in figure 6.3 are leaves, because they store fundamental data

type.

Ox™O0O

O~IN NP W~

Distributed analysis using Feicim 87

The python implementation of the visit method is the following:
The input parameters of the method are:

e 0bj, an object which is one of the nodes of the tree.
e nextNode, the name of the node that has to be visited.

e callMethod, describing how to visit the nextNode.
The output of this method is the nextNode object.

it il dd ittt i g
def visit(self, obj, nextNode, callMethod=False):

node = None

if callMethod:

node = self.__objDesc.callFunction (obj, nextNode)
else :
node = self.findObject(nextNode)
return node

This method uses the callFunction and the findObject methods. The callFunction is used to
call a method (nextNode) of the object (obj). The findObject is used to retrieve an object from
the Transient Event Store. Depending on the input of the visit method, the following examples
show how the visit method works using the tree which is shown in figure 6.3:

e n = visit(None, ‘/Event’); returns the root node. If we call again the same method (n =
visit(None, ‘/Event/EW”)), it will return the EW node which is the child of the root node.
In these cases the findObject method is used.

e n = visit(obj, ' momentum’,True); The obj has to be one of the objects from the /Even-
t/EW/Phys/WMuSingleTrackNoBias/Particles container. The momentum has to be a
method name of the obj. The visit method result is the return value of the momentum
method. In this case the callFunction is used.

The python implementation of the fta algorithm is the following:

Input of the algorithm: rootnode, path, newpath, callMethod, description. The rootnode is
an object and it is the root node of the tree or a subtree. The path is a list which contains the
tree node. It describes how to visit a node. For example: [‘Event’, ‘EW’, ‘Phys’, “‘WMuSin-
gleTrackNoBias’, ‘Particles’, ‘momentum’]. The newpath is a string which contains the name
of a visited node. For example: When the EW node is visited, then the newpath is equal to
/Event/EW. The callMethod is used to decide how to visit a node. The description variable is
used to decide how many elements must be visited in a container. (If the description variable is
true, only one element of the container will be visited; otherwise all elements of the container
will be visited).

Output of the algorithm: a fundamental data type or an abstract data type.

88 Distributed analysis using Feicim

(e ddaddadddadddadladdaaddadddadddaddadddadiadddaddaddiadddalladdaatiadlsa
def fta(self, rootnode, path, newpath="", callMethod=False, description=True):
for i in path:
if callMethod:
newpath = i
else :
newpath = "%s/%s” % (newpath , i)
path .remove (i)
retVal = self.visit(rootnode, newpath, callMethod)
if not retVal[’OK’]:
return retVal
node = retVal[’Value’]
if self.isLeaf(node):
return S_OK(node)
else :
if len(path) > O:
if not self.__types.isDataObject(node) and self.__types.isContainer(node):
callMethod = True
items = []
for i in node:
retVal = self.fta(i, path, newpath, callMethod, description)
if description:
return retVal
else :
if retVal[’OK’] and retVal[’Value’] != None:
items += [retVal[’ Value’]]
return S_OK(items)
elif self.__types.isDataObject(node):
return self.fta(node, path, newpath, callMethod, description)
else :
rootnode = node
else :
return S_OK(node)
return S_OK(rootnode)

From line 3 to 12 it tries to visit the nodes in a given order. If the node is a leaf (line 13),
the method returns the current visited node. The algorithm will finish when we have visited
all the nodes (line 16). Line 17 decides the type of the node. If the node is a container and it
is not a DataObject then the way to visit a node will be changed (line 18). When a node is a
container we have to iterate through the objects which are in the container. This mechanism is
implemented from line 20 to line 27.

Depending on the output of the fta algorithm, we have created the listNode and listObject
methods in order to describe the returned node. The listNode is used when the type of the
node is DataObject. It returns the leaves of the node. The listNode method is the following:
Input parameter is an object which is a node of the event tree and its type is DataObject.
Output parameter is a list of node names.

— OO 00N NI W —

— —

FE a daddad i dadddaddaddad i daaddddddaddadddadddaddadddaddadidaddaadssddsd
def listNode (self , node):
result = SLERROR()
if node != None:
nodes = []
for i in self.__evtSvc.leaves(node):
nodes += [i.name ()]
result = S_.OK(nodes)
else :
result = S_LERROR(”The.node._is _NULL”)
return result

Line 6 retrieve the leaves of a node from the TES using the Gaudi Event Service.

J—
OO0 N W —

—
—_—

— e —
DB W

Distributed analysis using Feicim 89

The listObject method is used when a node is a contained object. The implementation is the
following:

Input parameter is a contained object such as a particle (LHCb:Particles).

Output parameter is a dictionary with the method names of the objects and their returned
values. The keys of the dictionary are the method names of the obj which return a value while
the values of the dictionary are those returned values.

HARRRRRRRRRRAAAAAAAAA A H A GG HRRRRRRRR R AAA ARG GGG HRRRRRRR AR A
def listObject(self, obj):

if self.__types.isContainer(obj) and obj.size() > O:
obj = obj[0]

retVal = {}
fs = inspect.getmembers(obj)
for i in fs:
res = self.__objDesc.callFunction(obj,i[0])
if res[’OK’]:
val = res[’Value’]
if val:
retVal[i[0]]=val
return S_OK(retVal)

Line 4 decides the type of the object. (If an object is a container we do not want to return the
container method names and their returned values). In order to list all the available methods of
a contained object, we use the inspect module of python[244]. Line 8 lists the object members
(method names) of the obj. Line 9 iterates on the method names. Line 10 tries to call the
method. If the method has a return value (it is a function), the method name and value is
stored in the retVal dictionary (Line 14).

Communication and Workflow Manager

In order to show the content of the database (or a data file) as a File System, we implemented
various modules which are part of the Communication and Workflow Manager component.
This component deals with the creation of the Virtual File System and provides all the meth-
ods which are needed to perform different operations. The Communication and Workflow
Manager contain different modules:

e The Feicim Data Container is used to temporarily store the data in memory.

e The Feicim Plots Factory creates different types of plots.

The Feicim Object Manager is a module which manages the Feicim Event Services.

e The Feicim Data Browser Manager creates the Virtual File System.

The Feicim Command Line Interface provides a User Interface to work with the Virtual
File System.

Feicim Data Container The Feicim Data Container (FDC) is a data structure which is
used to temporarily store the data in memory.

90 Distributed analysis using Feicim

The data files are large (more than 4 GB). Consequently, it is not advantageous to read all the
file content into memory. As at any one time the users only work with a part of data, this
is kept temporarily in the memory. We designed the FDC to be able to store the event data
and additional information that are used to create plots and provide all the methods needed
to manipulate these data (for example: add elements to the FDC, remove elements from FDC
etc.). The following information is stored by the FDC:

1. Tree: It stores the values of the selected leaves and their corresponding paths which iden-
tify them. For example: If we select the /Event/EW/Phys/WMuSingleTrackNoBias/Par-
ticles/momentum/x (figure 6.3), it stores the name and value of /Event/EW/Phys/WMuS-
ingleTrackNoBias/Particles/momentum/x.

2. FileName: the content of the memory can be saved to a file.

3. PlotTypes: Various plots can be made using the data. The name of the plot types is stored
in the PlotType data structure.

4. Options: Plotting options such as logarithmic scale (logX, logY) are used
5. Ranges: It stores the xmin,xmax,ymin,ymax values used for axis scaling and appearance.

6. Conditions: It stores numerical expressions which are used to filter the data. For exam-
ple: x > 500 (where x is /Event/EW/Phys/WMuSingleTrackNoBias/Particles/momen-
tum/x). Only particles will be selected which fulfill this condition.

The FDC is directly used by the Feicim Data Browser algorithms and indirectly by the users
through the Explorer Viewer.

Feicim Plots Factory The Feicim Plots Factory is a module which is used to generate
plots using the selected data which are stored in the FDC. Feicim consists of a layer which
integrates qtROOT[245] which is implemented as a layer of the ROOT[242] framework that
is used to make plots. Feicim Plots Factory module makes one or two dimensional plots.
The Template Method design pattern describes the creation procedure of the plots while the
Factory Method design pattern creates the plots. Figure 6.4 show the Factory Method and
the Template Method design pattern UML object diagrams.

The QMainwindow is a Qt implementation of a window. The PlotView inherits from the
OMainwindow and contains the ROOT widgets (for example canvas, buttons, etc.) which are
needed to make and show a plot. The Plot defines the interface of objects. It has the following
methods: Draw (build a plot), getModel (the records which have to be histogrammed), get-
RootTreeName (the name of the ROOT tree which can be saved to a ROOT file.), getFileName
(The name of the ROOT file). Each class which inherits from the plots must implement the
Draw method. The ComplexPlot and SimplePlot implement the Plot interface and in addition
inherits from the PlotView class. The PlotsFactory declares and implements the create_plot
factory method which is used to create SimplePlot or ComplexPlot.

Distributed analysis using Feicim 91

QMainwindow Use the plot |

Feicim Data Browser

Plot

PlotView Haneast
+Draw =
+getModel I ask to make a plot
+getRoot TreeNamg 1
+getFileN I
getFileName ! Draw()
A — ->| Using the same data,
it generates different plots e
otsFactory

ComplexPlot SimplePlot

+Draw

+Draw

N

Figure 6.4.: UML class diagram - Plot Factory Method and Template Method design patterns

Feicim Object Manager The Feicim Object Manager is a module which initialises an
Application Builder component and manages the Feicim Event Service. The Feicim Object
Manager is used by the Feicim Data Browser Manager to create a Virtual File System by using
the Feicim Data Browser algorithms.

Feicim Data Browser Manager The Feicim Data Browser Manager is based on the idea
which was introduced in section 5.6. It is used to present the file content to the users as a
Virtual File System.

To work with this Virtual File System the following operations are provided by the Feicim
Data Browser Manager: open, list, read, next and help. The open command is used to open a
file. The read command is used to read events from a data file. The next command is used to
read the next event. To list data file content the /ist command can be used.

The Feicim Command Line Interface provides a User Interface to work with the Virtual
File System. The Feicim CLI interacts with the Feicim Data Browser Manager. The users can
browse through the Virtual File System using the Feicim Data Browser Manager operations.

Explorer Viewer

The Explorer Viewer is a component which consists of various GUI elements. Like other
GUI components of Feicim it is based on the Composite Model View Controller. The Feicim

92 Distributed analysis using Feicim

Data Browser GUI is a module which is implemented on top of the Feicim Command Line
Interface. There are five widgets in the GUI and the hierarchy is shown in Figure 6.5.

ControlereventBrowserMain

ControlerEventBrowserTreeWidget ControlerPlotDialog

ControlerPAttributesForPlot ControlerPAttributesForConditions

Figure 6.5.: Controller hierarchy of the Feicim Data Browser. -

The ControllerEventBrowserMain controller deals with the Feicim CLI, Feicim Analysis Model,
Feicim Data Container and Jobs submission. It is used to manage the data sent by its child
controllers and it is used to provide the models to the appropriate controller.

The main widget of the Feicim Data Browser is shown in Figure 6.6. The FeicimEvent-
BrowserTreeWidget class implements this widget and has ControlerEventBrowserTreeWid-
get controller.

The FeicimEventBrowserTreeWidget consists of two panels which are shown in Figure 6.6:

1. The Feicim Data Browser is the left panel in the picture. It consists of a tree which
represents the data file content and the Event Reader widget which contains a text box
and four buttons. The users can set the number of events to read from the file using this
text box. The Refresh button is used to read only a single event. The Query button is
used to read events while the Analysis button is used to run an analysis. Using the Save
button the result can be saved to a ROOT file format.

2. The Right panel contains different tabs. Each tab contains a table with different numbers
which are the result of the query that has been created in the left panel.

In order to make different plots using Feicim the users have to use the PlotDialog widget.
Figure 6.7 shows the PlotDialog widget which allows the users to customize their plots and
define filter conditions to the selected data. The ControlerPlotDialog controller provides all
available information such as dimension of a plot, available plot type, the name of the attribute
which is used to make a plots, etc. to its widget and forward the user selected information
(only a single plot type, and the dimension of the plot, etc.) to its parent controller. When
the users press the Select button then the PAttributesDialog widget appears which contains
selectable attributes. Each button has an associated PAttributesDialog which is controlled by

Distributed analysis using Feicim 93

10077.3 | 69089.4 | 64914.5 |65316.2| 616691
4B87.54 |73040.4 B4167.2 | 64637 7| 612015
9977.86 |69915 | 64280.5 546864 6180186
957999 |71109.1 63763.4|64173.1 623054
B Particles .3 |9732.31 54.2|61277.1 |61721 |631294
563 Phys 5 |-45172.7 8 B2317.2 | 52548 1 | 6BO6B4
: -45073.5 | 66878.3 59914 |6501829 702482
459159 |57272.5 38278.7 | 38608 4433708
-41190.5|89341.5 | 55596.9 | 557728 | 1.12087s
-39940.8|93397.3 54126.8 543129 1.12386e
4663.59 |61774.3 35840.6 36186 | 442476
467994 |62663.0 35327 | 35669 8447352
B9 coumatix 4442.42 |54088.9 | 34374.3 | 34689.3 | 397133
- B9 daughiers -933922 |57053.2 | 34092.3 | 34446 7| 393211
- 9 extrainfo .9 |4360.52 |54766.7 33877.7 |341925| 395416
- B momCovMatrix .5 | 4359 55708.2 33329.7 | 33642 6 | 404252
E B momentum 5 |11932,6 |47419 | 34848.1 |35486 |244244
BB BoosiToCM 5 |10260.3 |51804.2 32734.1 |33381 4| 257132
B B Coordinates .6 |4121.05 |59926.1 30917.4 312394 | 413028
B veot .7 |-15591.7 |54054.8 | 34088.5 [34111.3[1.4772e+
- Beta .2 |-15880.5 34060.8 |34083.3|1.491788
- ColinearRapidity 15451.7 33725 |33748.8|1.47833
- E .8 |-15734.5|55859.2 | 33686.3 |33709.9 | 1.49252¢
- Et .8 |-13353.6|60840.2 | 32079.2 | 321059 [1.45244¢
- Et2 5925.3 |-13609.8|61016.6 31967.1 |31993.4 | 1.50458
12859 |64371.5 31077 |311058|1.49396e
-13136.9 | 64596.3 | 31009.9 | 31038.3|1.50764¢
14530.1 51813 | 30850.7 | 308721 |1.39298
272225 |51591.4 | 38484.5 | 385448923047
12956 |55699.6 30104.9|301289|1.39334s
27072.3 |51982.6 | 38286.6 | 383467 | 926633
12817.1|57160.8 | 29743.1 | 29768.1 | 1.39456¢
-13166.3| 55828 | 29893.7|29917.3|1.40338s
14704.3|51903.9 | 305911 | 30812 |1.4012e+
27165 52210 38062 |381221 928113
~11809.9 | 68830.9 290954291257 |1.50683¢
26919.8 |52890.1 | 37800.1 | 378603935548
270157 |52597.2 378652 379254 931721
-13020.3|57281.9 | 29518.7 | 295432 |1.40414e
26770.3 |53272.7 37603.1 | 376634939152
-12085.1 | 69076.9 | 29025.3 | 29056 2 | 1.52
28598.6 |53505.3 374297 | 37490 1 940348
-14022.9 | 55650.6 | 29820.7 | 29844 5 | 1.39369s
53883.2 37233 | 372935943956

¥ Hadron_z02TauTauPong_HadProng
¥ Tau_z02TauTauProng_TauProng
BB zo2TauTauProng_Line
B Particie2verie xRelations
E- B Particles

b
H
b
H

- Eta

- M

- M2

- Mt
M2
P
P2

l0oooooooooooooo

Figure 6.6.: Feicim data browser GUI.

94

Distributed analysis using Feicim

root.exe
mass htemp
Entries 11216
Mean -492.5
10 RMS 248.5
B 10°
107 E
- 10° Eﬁhﬁ
10 E ﬂh
E 4
E it
C 101 |
10 i ﬁ\ﬁw |
1 Bt bl vy 1l
E. . \”I L \” L [T T | PRI i | P 0 1000 2000 3000 4000 5000 6000 7000
-3000 -2000 -1000 0 1000 2000 3000 4000 pt
mass
[Quit l
[Quit

Dialog

Plot [px Py

l I Select l Options

[iogx

Condition

I

Flot types

[J1Dpiot |scar =
[v]2Dpiot |LEGD @ 2

[] Profile

(7]

Cordinates

[Ciegy

x1 [—300000

] xz

[300000 l

¥1 [—300000

]YE

[300000

[rar |

Cancel

[Quit

Figure 6.7.: Feicim plot dialog and Feicim plot attribute dialog. -

the ControlerPAttributeForPlot or ControlerPAttributeForConditions controllers shown

in Figure 6.5.

6.4. Feicim Data Analysis

The users can define and execute very simple Gaudi algorithms using the Feicim Data Anal-
ysis component, without writing program by manipulating graphical elements. It can be ex-
ecuted in the local machine or can be submitted to the Grid. These simple algorithms run on
huge amounts of distributed data among various Grid sites and select particles from a given
container (for example: /Event/EW/Phys/WMuSingleTrackNoBias/Particles in figure 6.3) us-
ing different filter conditions. Feicim uses DIRAC/Ganga back-end for job submission. The
DIRAC monitoring page can be used to monitor the jobs and different DIRAC Data Manage-
ment tools can be used to retrieve the job outputs.

Distributed analysis using Feicim 95

6.4.1. Feicim Data Analysis architecture

The Feicim Data Analysis architecture consists of different components which can be used as
standalone applications. These loosely coupled components deal with the generation of dif-
ferent scripts and jobs submission. Figure 6.8 shows an overview of the Feicim Data Analysis
components.

Figure 6.8.: Feicim Data Analysis architecture. -

Feicim Analysis Model

The Feicim Analysis Model stores the information which is needed to run an analysis job in
the Grid or Local machine. The following information is required to run a job: algorithm, job
requirements.

In order to generate an algorithm some information is required such as Program Name and
Program Version, input data (files), a path(s) such as /Event/EW/Phys/WMuSingleTrackNo-
Bias/Particles/momentum/x shown in figure 6.3 which is used to select events which corre-
spond to that path(s) of an event tree (an example is the event tree shown in figure 6.3) and
different filters which will operate on the selected events.

To submit jobs to the Grid it is required to know information which is related to the job running
conditions such as the job CPU requirement, platform, site where the job will be executed, job
name and option files which contain the algorithm requirements.

96 Distributed analysis using Feicim

The users interact with the Feicim Analysis Model through the Graphical User Interface by
manipulating graphical elements. The source of the requirements used to run analysis is the
Feicim Data Browser component. This component contains the selected path(s) from the event
tree (an example of the event tree is shown in figure 6.3) the input data file names, and the
output file name produced by the job.

Script Builder

The Script Builder generates the scripts (or option files) using the Feicim Analysis Model used
to run analysis in the local machine or in the Grid. It generates two types of script:

e a simple Gaudi script which contains a Gaudi algorithm used to select particles for a
given path of the event tree (an example of the event tree is shown in figure 6.3). The
users using the Feicim Data Browser select the path interactively.

e a simple Dirac script which prepares a job and submits it to the Grid or local machine.

Figure 6.9 shows the UML diagram of the Script Builder components which generates these
two scripts. The Script Builder implements the Builder design pattern which was introduced
in section 5.4.1.

FeicimAnalysisModel

A
ScriptBuilder
Scripts iptbuild
P serptourider ~, |tbuildHeaders
+Scripts (scriptbuilder) <= -~ |+buildInputFiles
+construct (model) +buildalgorithms
| +buildPlots
scriptbuilder. buildHeaders() DiracScript GaudiScript GaudiParalleScript
scriptbuilder. buildInputfiles() - - buildPlot
scriptbuilder.buildAlgorithms () buildrlots buildHeaders uL ots
scriptbuilder.buildPlots() buildAlgorithns buildInputFiles buildAlgorithns
buildInputFiles buildalgorithms buildInputFiles
buildHeaders buildPlots buildHeaders
T T !
1 1 !
1 1 !
v ¥ A 4
Script Script Script
+getScript +addStringToTheContent +addStringToTheContent
+addStringToTheContent +qetScript +getScript

Figure 6.9.: The concrete implementation of the Builder design pattern. -

The Script is a class that stores an executable script in a text format which can have different
types: Dirac scripts, Gaudi scripts which were introduced above or Ganga scripts.

The FeicimAnalysisModel introduced in section 6.4.1 provides all the information required
to build a Script.

Distributed analysis using Feicim 97

The ScriptBuilder is an abstract interface which declares all the abstract methods needed to
generate different Scripts. The DiracScript implements the ScriptBuilder abstract methods to
generate DIRAC script which will be used to submit jobs to the Grid or local machine. The
GaudiScript and GaudiParallelScript generate the Gaudi algorithm which will be executed
in a single core or multi core. It inherits from the ScriptBuilder and generates a python script
which can be executed using the Gaudi framework.

The script which submits jobs to the Grid through Ganga is currently not implemented, but
it can be implemented as any other script. In addition it is possible to implement classes
which can generate other scripts that can be used by other LHC experiments or non LHC
communities.

In the future the Gaudi script could be changed in order to combine different complex Gaudi
algorithms which are part of a work flow.

Job submission

The Job submission component can be use as a standalone application to submit jobs to the
Grid or local machine. The Job submission component coordinates the creation of the scripts
and interacts with the underlying DIRAC/Ganga frameworks in order to submit the job. It
hides the complexity of the job submission and the Gaudi algorithms.

Graphical User Interface

Like other Feicim Graphical User Interfaces, it is based on the Composite Model View Con-
troller design pattern. Figure 6.10 show the Feicim Analysis tool which consists of three GUI
element:

e Selected particles widget show the selected ’paths’ of an event tree (an example of the
event tree shown in figure 6.3).

e Input files widget contains a list of files which will be used by the algorithms. It allows
to add/remove input files from the list.

e Output widget contains the output file name. The result of the Gaudi algorithms will be
written to this file.

e Run Job widget that contains a Run button used to run parallel or non-parallel job

submissions.

As it is the simplest component of Feicim, it contains only one widget element and only one
controller. However, it is very important for performing data analysis.

98

Distributed analysis using Feicim

8(‘\(‘\

File Help

% Feicim

9

The Feicim File Browser The Feicim Data Browser Feicim analysis tool

/Event/EW/FhysAWMuLine/Farticles/momentum | [EventEW/Fhy |'

apidivlenergyl massl pt | px | Py | pz |

particles

/Event/EW/Fhys/AWNMuLine/Farticles

{EventEW/FPhys/Z02TauTauline/Particles
{EventEW/FPhys/DoubleDisplVertices/Particles

—InputFiles

4

Ahcb/LHCb/Collision1 1/EW.DST/00012708/0000/00012708_000C

Add Files |

— Output

Cutput Fil

e name: |ntuple.root

Run Job
o Single
" Parallel

Run

1|129052 |14674.4 | 2.46429 |105.658|19541.8 114025 | 115691
2|-17223.4 -5750.8 | 3.69915 |105.658 | 181581 | 366695 | 367144

Expresion(ex: x=0 and y=0) I select aﬂributhesl
~ Histo |

Figure 6.10.: Feicim Analysis tool GUI -

6.5. Summary

The events events generated by Monte Carlo productions or taken by the LHCb detector are
stored in data files. The data files contain data objects which store the events. The data objects
are organised to different hierarchical structure. We implemented a new algorithm called
Feicim Tree Traversal algorithm to discover the data file content. This algorithm is different
than the existing tree traversal algorithm, because it visits the tree nodes in a given order (or
in another word path).

An user-friendly tool is essential which can be used to analyse the data. Feicim Data Browser
allows to extract information from a data file using the Feicim Tree Traversal algorithm. It
allows to define different filters on the data. In addition, different plots can be made using the

data whic

h read by this algorithm.

Distributed analysis using Feicim 99

Feicim Data Analysis creates a simple Gaudi algorithm using the paths extracted from the data
file by the Feicim Tree Traversal algorithm. It allows to specify different input whereat the
Gaudi algorithm will perform. In addition it allows to create a job using this Gaudi algorithm
and submit it to the Grid.

100

7. The LHCb Bookkeeping System

In the previous chapters we discussed DIRAC and its components which compose the Work-
load, Production and Data Management Systems as well as the Feicim architecture and design
principles. In this Chapter we describe the LHCb Bookkeeping System, which is actually one
of the Feicim components. At the beginning of this chapter we present a brief history of the
LHCDb Bookkeeping system. As the LHCb Bookkeeping System is designed to store metadata
information of the datasets, the Data Model which provides a definition and format of these
data is crucial. We will point to the Relational Data Model and the Hierarchical Data Model
which are used by the LHCb Bookkeeping System in section 7.2. Section 7.2.1 provides a
more detailed overview of the Relational Data Model. In order to define operations of the
datasets and understand the logic of relations, the use of Relational Algebra is inevitable. In
section 7.2.2 we highlight the relation between the relational algebra and the query languages.
The architecture of the system is very important to achieve a robust and scalable application
which can handle thousands of user requests and in section 7.3 a detailed description is pro-
vided. In section 7.4 we present the dataset which will be stored in the Relational Data Model,
the Relational Database Schema, and the access protocol to the Bookkeeping Metadata cat-
alogue. To execute user tasks on the database the usage of different relational operation is
essential. These relations are dynamically generated based on the users requirements. The
mechanism of the generalization of the relational operations will be presented in section 7.5.
In sections 7.6, 7.7 the Bookkeeping Service and the Bookkeeping Client, which provide
access to the Bookkeeping Metadata catalogue, are introduced. In section 7.9 various User In-
terfaces are presented which are widely used by the LHCb community. We attempt to design
a system which is capable of serving a huge number of user requests. Different scalability
tests were carried out to understand the performance of the system. The results of the test are
described in section 7.10.

7.1. Evolution of the LHCb Bookkeeping System

The Bookkeeping Working group was formed at the beginning of 1999 to create a bookkeeping
system for the data produced by LHCb. They developed a prototype based on the Oracle
database[223].

During 2000 and 2001 the LHCb Bookkeeping System was widely used by various users but
in parallel many developments took place. This system has well defined functionalities:

101

102 The LHCb Bookkeeping System

e it stores the datasets and their metadata information and provides access to them using a
well defined API and a Web User Interface.

e the information about data location and some statistics about the datasets such as number
of jobs and their generated files can be retrieved.

In 2002 a new system was introduced because it was hard to manage the previous system. The
new system kept the old user interface but in addition provided more functionality to the users:

e replica and Grid management: all the replicas of a file are kept in the system;
e python programming interface;

e failure recovery: in case of error later on the information can be entered to the bookkeep-
ing system; and

e casy extensions: it easily allows to add all sorts of metadata.

The database remained as the old Oracle database; only the database content changed. This
system was used during 2002 and 2003 and some improvements took place (query optimiza-
tion, table partitioning) in order to be ready for the Data Challenge 2004 (DC04).

A new development started in 2005 that adopted the ARDA[169] implementation of the gLite
metadata interface called AMGA.

In 2006, several changes took place which affected the user interface. At the end of 2006 the
AMGA based LHCb Bookkeeping System was ready and available for the users.

At the beginning of 2007 the Bookkeeping Working Group concentrated on defining the book-
keeping requirements which are needed for data coming for physics collisions (sometimes re-
ferred to as ’'real’ data). Originally the LHCb Bookkeeping System was designed to store MC
data, so the new requirements had to be presented to the physics communities and accepted
by them. In May 2007 it was decided to redesign the existing system taking into account the
Feicim tree-like browser prototype which was developed by the Dublin group and this system
and its subsequent development is described in this chapter.

In 2008 this development was started in order to be ready by the end of the year. This new
development takes into account all the experiences learned from the existing system. The
database schema changed as well as the implementation of the LHCb Bookkeeping System
and the data search functionalities. The new system was based on AMGA, but in parallel an
Oracle schema was designed. In the middle of 2008 the data was migrated to the AMGA but
in parallel the data was copied to the Oracle database. In addition the DIRAC based services
were ready and being tested. The first proposal of the User Interface was presented and the
implementation of the GUI started. During August a decision was made not to use AMGA
any more, because AMGA does not provide all the functionalities like a RDBMS and required
extra work in the database level in order to optimize the queries, since this time a pure Oracle
database has been used to store the data.

The LHCb Bookkeeping System 103

In September 2008 the first Command Line Interface and GUI was ready and presented to
the LHCb community. In December 2008, the new standalone GUI and Web interface were
available to the users. All the existing functionality was provided by the new system and in
addition new functionalities were implemented in order to meet the requirements introduced
by real data. The existing system was decommissioned at the beginning of 2009 and since
then users have made use of the Feicim scheme.

In 2009 the LHCb Bookkeeping System was extended with new functionalities which are
required by the Production Management System in order to allow the users to define different
types of requests which describe the conditions and data processing phases used during the
data processing. In 2010, 2011 many changes occurred on the database schema and new
functionalities have been implemented in order to have a more flexible and robust system.

Currently the LHCb Bookkeeping System is widely used by approximately 500 users and
different DIRAC systems such as the Production Management System, Data Management
System, Transformation System and Workload Management System.

Metadata

In the LHCb experiment Metadata is used to describe an LHCb dataset. Different kinds of
Metadata have been identified such as Job provenance, File and Job Metadata and Bookkeep-
ing information which will be presented in more details in section 7.4.1.

The Job provenance contains information about the history of the data processing such as
processing phases, applications etc. The File and Job Metadata consists of information such
as execution time, start and end date, location, memory etc while the file Metadata consists
of information related to a file such as size, creation date, GUID, etc. The Bookkeeping
information is a selection of a dataset on which physics analysis can be performed. The
Metadata can be used to identify a dataset or it can be used to make measurements. For
example: how many job executed during a period at a specific Grid site? etc.

What is the LHCb Bookkeeping System?

The LHCb Bookkeeping system is a metadata management system which stores the condi-
tions relative to jobs, files and their metadata, as well as their provenance information in an
organized way. It provides tools to the users which allows them to get the collections of dataset
for analysis making queries on the basis of the metadata.

The LHCb Bookkeeping System contains three key components: the lowest component is
the Bookkeeping Metadata catalogue which consists of an Oracle database and a module
that allows access to the Oracle database. On top of the Bookkeeping Metadata catalogue
we have implemented the Bookkeeping Service which has been developed inside the DIRAC
framework. It integrates the Bookkeeping Metadata catalogue and provides the important data

104 The LHCb Bookkeeping System

functionality for selecting and inserting data to its clients. The highest component is the User
Interface.

7.2. A hybrid data model to describe the LHCb
metadata structure

The system has to store huge amounts of data and this data has to be accessed in an efficient
way. We designed a Data Model that provides the definition and format of the data. The Data
Model describes the structure of the database. The data that has to be stored are organized
as structured data. Various data models are available and can be used to describe the data
structure and specify how the data can be stored and accessed. The following data models are
available:

e Hierarchical data model is used to store data which is organized in a tree-like structure
[224].

e Network data model organizes the data using sets and records. Records contain field and
sets which define one to many relationships between records. It allows each record to
have multiple parent and child records by forming a generalized graph structures[224].

e Relational data model is based on the concept of relations which will be introduced in
the next sections.

e Object-oriented data model combines object oriented programming with database tech-
nology. It means the objects, classes and inheritance are directly supported in database
schemas and in the query language([225].

A part of metadata information is organised in hierarchical structures. Initially we only used
the Relational Data Model to specify data and queries. Because it was not easy to manage
(it was very hard to design efficient complex queries), we decided to study the Hierarchical
Data Model. As a result of our study we use a mixture of the Hierarchical and Relational Data
Models. Using this Hybrid Data Model we can manage the metadata in an efficient way (the
queries can be performed very quickly on the data as presented in section 7.10).

7.2.1. Relational Data Model

The Relational Model provides a very simple way of representing data. The idea of the rela-
tional model is to organize the data into collections of two-dimensional relations. An (ordered)
n-tuple is a sequence (or ordered list) of n elements, where n is a positive integer. For exam-
ple: (8,9,1,3) denotes a 4-tuple. A domain D in the relational data model is a set of values.
The types of the value (like integer, character, boolean, etc.) in a domain must be identical
and they are called data type of the domain D. The name of the domain D helps to interpret its
values. For example:

The LHCb Bookkeeping System 105

e EmployeeName = {Zoltan, Gabor, Gyuszi}; EmployeeName is a set of character string
that represent the names of people;

e PhoneNumber = {(0041)7030-12345, (0041)7200-10005,(0041)7230-10045}; PhoneNum-
ber is a set of thirteen digit phone numbers;

In this example the domain names are EmployeeName, PhoneNumber. The data type of the
EmployeeName is character string. The data type of the PhoneNumber is a character string
which has the following format: (xxxx)xxxx-xxxx, where x is a numeric digit like (0041)7030-
12345.

The name of the domains are called attributes; we denote an attribute A.

In the book of Jeffry D. Ullman the relation is defined as a subset of the Cartesian prod-
uct of domains[226]. Given a sequence of sets of domains Dy, D;,D3,...D, the Cartesian
product, written D X D> X ... X Dy, is the set of all ordered n-tuples (d;,d>, ...d,) where d; €
D;,i=1,2,3,...n. The n is the degree of the relation; another term for degree is ‘arity’. For
example, consider n = 2; Dy = {a,b} and D, = {1,2,3}; The Cartesian product (D| x D5)
is {(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)}; The set {(a,1),(a,2),(a,3),(b,1)} is a relation, a
subset of the product D; X D,

A set of attribute names for a relation is called a Relation schema. A Relation schema R,
is denoted by R(A},A3,...,A,), where R is the relation name and Aj,A», ..., A, are the list of
attributes. We denote one attribute from the relation schema R: A; or R.Aj.

An example of a relation schema for a relation which describes employees, is the following:
EMPLOYEES(Employeeld, Name, BirthDate, PhoneNumber, Salary, Tax). We display the
relation as a table, where each tuple is shown as a row and each attribute corresponds to a
column name. Each column has a domain which is the set of possible values that can appear
in that column. For example: Table 7.1 shows the EMPLOYEE relation.

Employeeld Name BirthDate | PhoneNumber | Salary | Tax
24 Zoltan Mathe | 18.09.1983 | 004278368749 | 15000 | 3000
34 John Smith | 18.07.1967 | 0033287568809 | 13000 | 2600
50 Johnny Cash | 18.08.1900 | 0041569800101 | 10000 | 2000

Table 7.1.: EMPLOYEE relation; The attributes of this relation: Employeeld, Name, BirthDate,
PhoneNumber, Salary, Tax; The tuples of the relation: (24, Zoltan Mathe, 18.09.1983,
004278368749, 15000,3000), etc.

A relation which describes a database table has to observe the following states:

e The tuples are different. That means in a table we cannot have identical rows. At least
one attribute value has to be different.

106 The LHCb Bookkeeping System

e The order of the rows or columns is irrelevant, because each column and row is identified
by its content.

e The attribute of the columns have to be different (Each column has a unique type).

e All entries in a column have same types.

Key of relations

Key is an attribute or a set of attributes which is used to identify a tuple in a relation. The
relations must have one or more attributes that serve as a key of the relation. Three types of
key are available: Super key, Candidate key and Primary key.

The relation state r refers to the present set of tuples in a relation R. We denote the relation
state r(R). For example, consider the EMPLOYEE(Employeeld, EmployeeName, Employ-
eeAdress) relation. The relation state may include 5 EMPLOYEEs; another includes 100
EMPLOYEEs. An n-tuple ¢ in a relation r(R) is denoted by t = (v1,v2,...,v,), where v; is the
value which corresponds to attribute A;, i = 1,n[224]. The following notations refer to the
values of the tuples:

e 1[A;] (sometimes t[i]) refer to the value v; in 7 for attribute A;

e t[A,,A,,...A;] where A, A,,...A; is a list of attributes from R where u,w,z < n, refer to
the subtuple of values (v,, vy, ...,v;) from ¢ which corresponds to the attributes specified
in the list.

For example, consider tuple ¢t =(’Zoltan Mathe’, 18.09.1983°,004278368749°,15000,3000)
from the Employee relation in Table 7.1. The ¢[Salary]=("15000), and t[Name,BirthDate, Tax]=(’Zoltan
Mathe’, *18.09.1983°,3000).

The Super key of a relation schema R is a set of attributes SK of R with the following condi-
tion: for any distinct tuples #; and t, in any #(R), t1[SK] # t:[SK][224]

A key K of arelation schema R is a super key of R with the additional property that removing
any attribute A from K leaves a set of attributes K’ that is not a super key of R any more[224].

The Minimal super key is super key from which we can not remove any attributes and still
do not have two distinct tuples in any state r of R.

A key satisfy two constraints:

e Two distinct tuples in any state of the relation cannot have identical values for all the
attributes in the key.

e [t is a minimal super key.

For example, consider the EMPLOYEE relation of Table 7.1. The key of the relation is Em-
ployeld because no two-employee tuples can have the same value for Employeeld (Each em-
ployee in a company has an unique identifier). Any set of attributes that includes Employeeld

The LHCb Bookkeeping System 107

is a super key. For example, consider the EMPLOYEE relation of Table 7.1. The super key of
the relation is any set of attributes {Employeeld, Name, Birthday}, but it is not a key of the
EMPLOYEE relation because removing Name or Birthday or both from the set, it still have a
super key.

A relation schema R may have more than one key. Each of the keys is called a candidate key.
For example, consider the CUSTOMERS(CustomerName, CustomerAddress, Balance) rela-
tion. The candidate key of this relation is CustomerName, CustomerAddress. The primary
key is a designated candidate key. For example, consider the previous CUSTOMERS relation.
The primary key of this relation is the CustomerName, CustomerAddreess.

eld eName eBirthDate eAddress eld Salary

11 | Zoltan Mathe | 18.09.1983 1. St. Genis, Fr 11 13000

12 | John Smith | 18.07.1967 | 2. St. Genis Poully, Fr 12 5000

14 | Johnny Cash | 18.08.1900 4. Carouge, CH 14 Cash | 10000
Table 7.2.: Employee relation Table 7.3.: Salary relation
eld eName eBirthDate eAddress Salary

11 | Zoltan Mathe | 18.09.1983 1. St. Genis, Fr 13000
12 | John Smith | 18.07.1967 | 2. St. Genis Poully, Fr | 5000
14 Jon Cash 18.08.1900 4. Carouge, CH 10000

Table 7.4.: New Employee relation

It is not acceptable to have two relations which contains one or more common attributes,
because the cost of duplication influence the relation operations. In order to avoid this, we can
combine the attributes of two relations and we can replace the two relations by one relation.
This new relation is the union of two sets of attributes. For example: consider the relations
Employee and Salary from Tables 7.2 and 7.3 that have the same eName common attribute.
These two relations can be replaced by only one relation (see Table 7.4) which contains once
the eName attribute.

In the next section we will use the following relational algebra operations: Select, Project,
Union, Cartesian product and Join. A detailed description of them can be found in Appendix
A.l.

7.2.2. Query languages and Relational algebra

This subsection presents the relation between the relational algebra and the query languages.
The query language describes the queries of a relational database. Various query languages

108 The LHCb Bookkeeping System

exists. One of the most widely used query language is the Structured Query Languages (SQL)
which is originally based on relational algebra and tuple relation calculus[229]; it manages
data in a Relational Database Management System (RDBMS). We can use projections and
selections within different relations in order to know natural questions about a single relation.
For example: Consider the Employee relation shown in Table 7.4. If we want to know which
employee earns more than 5000, we can write the following query:

1 SELECT e.eName
2 FROM Employee e
3 WHERE e .Salary > 5000

This query can be translated into the following relational algebra expression:
[Lenvame (Gsalary>5000 (Employee))

It can be presented also as a query tree shown in Figure 7.1.

T eName

Gsalary>5000

Employee

Figure 7.1.: Query tree - representation of a relational algebra expression

7.3. Design and architecture of the LHCb
Bookkeeping System

The system design is based on loosely coupled components. We apply the different design
principles of software architectures which were introduced in section 5.4. In addition we dis-
tinguish between different layers which compose the architecture of the system: Data Layer,
Query Generation Layer, Service Layer, Client Layer, Manager Layer and Presentation Layer.
Each layer has dedicated scope and is designed to solve specific problem. Figure 7.2 shows
the layered architecture. In the next sections we present an overview of the responsibilities of
each layer and the components that compose each layer.

7.4. Data Layer

The Data Layer is the lowest layer and consists of database specific subroutines which are
required by the applications in order to access the database resources. These subroutines are

The LHCb Bookkeeping System

109

(Graphical User Interface

—T\

LHCB_BKKDBCleint J

Command Line Interface

I}

e

LHCB_BKKDBManager

)

/

Oracle Database

Stored Procedures

BKK MONITORING
| Warehouse
| BookkeepingOracleDB Schema

Presentation Laye|

—

Manager Layer

Figure 7.2.: he box on the lower right gives an overview of the different layers. The rest of the figure
shows the interrelationships of the components and is colour coded to indicate which layer

it belongs to.

used to centralize the logic of the system that is required to execute several SQL statements.
Everything related to the database belongs to this layer such as Oracle specific subroutines:
Stored Procedures or User Defined Functions, Triggers etc.

7.4.1. The LHCDb dataset

According to the origin of the data, which can be real or simulated, it is necessary to store
additional metadata information such as data taking conditions or simulation conditions, dif-
ferent application(s) etc. Taking into account the metadata information in the database, the

110 The LHCb Bookkeeping System

following relations have to be stored in a database table: Configuration name and version,
Simulation or data taking conditions, Steps, Processing pass, Event type or stream, Produc-
tion or run number, File types, Data quality, Jobs and Files. These relations will be presented
in the next sections.

Configuration name and Configuration version

The Configuration name and version describes the data type which are produced by differ-
ent activities. They are used to distinguish the real and simulated data.

The Configuration Name of the simulated data is MC. As the name suggests all the simulated
data is grouped under MC. The Configuration Version is the data simulation year.

Data taking or Simulation condition

The Data taking conditions is used to determine the conditions that describe the detector
status when the real data was taken. It defines a set of runs which have been taken with the
same conditions.

The Simulation conditions describe the simulated (Monte Carlo) data. The simulation con-
ditions are equivalent to the data taking conditions for simulated data.

Event type or Stream

The event type describes the way the data samples were produced and classify the decay
channels[227].

The stream describes the way the real data were produced. It contains the events which are
classified according to the physics triggers which fired.

Steps

Steps is an abstraction of an application and its configurations which can be executed during
data processing. A step has a Step Name which describes the step, and it has an associated
application together with various option files which were introduced in Section 4.2. The Ap-
plication Name and Application Version contain the name and version of the applications
which are used for the data processing phases. In addition each application has Option Files
which are used to describe the Event type, Simulation Condition etc. The step also contains
information about tags which inform the user about the detector description: DDDb, CondDb.
The steps can use additional packages which are called Extra Packages.

The LHCb Bookkeeping System 111

Processing pass

The Processing pass describes the data processing phases which were introduced in section
4.3 for real and simulated data. The Processing Pass is a group of different Steps which
are compatible. The Steps of a Processing pass form a hierarchical structure. For exam-
ple the /Real Data/Reco10, /Real Data/Recol0/Stripping11, /Real Data/Recol0/Stripping12,
/Sim01/TriggerOxffff/Recol0.

Production or run number

The production number is used to identify a dataset which was produced by the same pro-
cessing phases (processing pass). It groups all the jobs which have the same simulation con-
ditions. The run number is used to identify a run. It groups the data which have been taken
with the same data taking conditions, during a short data-taking period (typically an hour).

Jobs

In order to analyse data in the Grid using Ganga/Dirac, we have to define a task, or in other
words, a job. From the LHCb Bookkeeping System point of view the job can have two origins
depending on whether it is real or simulated data. We decided to use only one classification of
a job whether the origin is the LHCb detector or the Grid.

Both of them have associated parameters such as Job Start, Job End, CPU time, Memory. If
the job origin is the LHCb detector, then in addition, it contains parameters which are needed
for real data such as run number, Luminosity, etc.

Filetypes

The jobs have output files which have various file types. The filetype describes the format and
type of the files.

Files

Each job produces Files which have associated parameters such as File Name, Size, Event-
Type, Luminosity, etc.

112 The LHCb Bookkeeping System

7.4.2. Bookkeeping Metadata catalogue

The Bookkeeping Metadata catalogue is an abstraction layer on top of the Oracle database. It
consists of a module which allows access to the Oracle database and provides the functionali-
ties which is required to manipulate the data.

The database schema

In order improve performance we decided to split the database schema into two parts: Ware-
house schema and Views. Figure 7.3 shows both schemas which are used to store the LHCb
datasets.

The Warehouse schema consists of various tables which are up to date, which means if an
operation is performed on the Bookkeeping Metadata catalogue, the result is immediately
available in these tables. The tables are partitioned and each table contains indexes, which are
partitioned and compressed.

In order to minimize the load of the database and maximise the response time we use Views
which is a representation of the SQL statement. They are part of the database kernel and are
stored in memory.

Oracle provides different types of Views. The Views are useful, because the queries are stored
in the memory and it hides the complexity of the query. However, if we have a very complex
SQL statement, they may have a bad performance, because more than two big tables can
be joined and joining big tables may take time. The Materialized View is used to improve
performance of the standard views. The difference between the standard and the Materialized
View is the Materialized View stores the SQL statement result on disk and, as soon as it is
created, all the tables of a complex query will be joined. Since all of the table joins have been
done, and the result are kept in the disk, running the SQL statement using the Materialized
View will be far faster than the standard view. The Materialized View has the disadvantages
that the data may become out of date, because new data may have entered the database or
been deleted etc. In order to have up-to-date data, we have to periodically refresh the Views
[230,231]. As we only have two Views we did not concentrate on optimizing the refresh of
these Views. Our Materialized View refresh is performed in parallel and takes around 15
minutes, which is expected according to the size of the tables (the three biggest tables have
160, 80 and 30 million rows). The refresh of the prodview and the prodrunview Materialize
Views is performed every 30 minutes and they are used to extract relevant information from
the Warehouse schema which is used by the users. The Materialized Views contain only
information which will not change very often. Consequently, the tables are used together with
these two Materialized Views to perform user requests.

Different SQL Stored Procedures and Functions are implemented and used, because they are
faster than the traditional SQL statements. They are pre-compiled and remain in the memory
after first being loaded into the memory.

The LHCb Bookkeeping System 113

Configurations N
9 FileTypes
[|+Configurationld: NUMBER — o FlEToreeiEk MUDERR
ConfigName: VARCHAR2(256) T\I'E YI:.;R;:HARZ ot
ConfigVersion: VARCHAR2(256) - ame: V7 (256)
InputFiles Description: VARCHAR2(256)
+Jobld: NUMBER Files Version: VARCHAR2(256)
+Fileld: NUMBER +Fileld: NUMBER
ADLER32: VARCHAR2(256)
Jobs CreationDate: TIMESTAMPT(6)
PN — EventStat; NUMBER EventTypes
—Config.uartionld- NUMBER -EventTypeld: NUMBER I~ [|+EventTypeld: NUMBER
DIRAC)obid: NUMBER FileName: VARCHAR2(256) Description: VARCHAR2(256)
DIRACVersion: VARCHAR2(256) “FileTypeld: NUMBER — | Primary: VARCHAR2(256)
EventinputStat: NUMBER GotReplica: VARCHAR2(3)
i GUID: VARCHAR2(256)
FirstEventNumber: NUMBER JFIIEISJ-ZT\I:UNIVIUBI“I‘;E{ER
JobStart: TIMESTAMP(6) =Jleleh DataQuality
Location: VARCHAR2(256) MD5SUM: VARCHAR2(256) || : |
Name: VARCHAR2(256) Qualityld: NUMBER +Qualityld: NUMBER
NumberOfEvents: NUMBER InsertTimeStamp: TIMESTAMPT(6) DatagualitvFlag: VARCHAR2(256
—-Production: NUMBER = RIS ELES
ProgramName: VARCHAR2(256) Luminosity: NUMBER
ProgramVersion: VARCHAR2(256) et HUAEER

StatisticsRequested: NUMBER
WNCPUPower: VARCHAR2(256)
CPUTime: FLOAT

WNChache: VARCHAR2(256)
WNMemory: VARCHAR2(256)

WNModel: CRACHAR2(256) RunQuality
WorkerNode: VARCJAR2(256)
RunNumber: NUMBER +RunNumber: NUMBER
FillNumber: NUMBER _:Euallwld: o
WNCPUHS06: FLOAT StepsContainer rocessin
TotalLuminosity: NUMBER L .
TCK: VARCHAR2(20) Ao MUMEER
+Stepid: Number
| Step: NUMBER |
Steps
ProductionsContainer +Stepid: NUMBER
| | StepName: VARCHAR2(256)
*E;zg:zg‘;”ld““:ﬁngR ApplicationName: VARCHAR2(128)
—-sinrd: NuaBEﬁ ApplicationVersion: VARCHAR2(128)
-DagPeriodId: NUMBER OptionFiles: VARCHAR2(1000)
SimulationConditions DDDB: VARCHAR?2(256)
P —— CONDDB: VARCHAR2(256)
: ExtraPackages: VARCHAR2(256)
= TR Simdescription: VARCHAR2(256)
DataTakingConditions NemErs e ERREER] InsertTimeStamps: TIMESTAMP(6)
+DagPeriodid: NUMBER BeamEnergy: VARCHAR2(256) Visible: CHAR(1)
Descripton: VARCHAR2(256) Generator: VARCHAR2(256) InputFileTypes: FILETYPESARRAY
BeamCond: VARCHARZ(2560) | | PAIerriels: itz OutputFeTypes. FLETYPESARRAY
BeamEnergy: VARCHAR2(256) Luminosity: VARCHAR2(256) FiBEEEIElFERs; VRRCE RRApEE)
MagneticField: VARCHAR2(256) Usable: VARCHAR2(10)
Velo: VARCHAR2(256) R
IT. VARCHAR2(256) Processing
TT: VARCHAR2(256) +ID: NUMBER — ProdView
OT: VARCHAR2(256) “Parentld: HUMSER Production: NUMBER
RICHL: VARCHAR2(256) Name: VARCHARZ(236) ProdRunView | | gyentypeld: NUMBER
RICH2: VARCHAR2(256) +Production: NUMBER Description: VARCHAR2(256)
SPD PRS: VARCHAR2(256) |xRunfiunber: WUMBER | | configName: VARCHAR2(256)
ECA[' VARCHAR2(256) ConfigVersion: VARCHAR2(256)
i} simid: NUMBER
HCAL: VARCHAR2(256) DaqPeriodid: NUMBER
MUON: VARCHAR2(256) FileTypeld: NUMBER
LO: VARCHAR2(256) ProgramName: VARCHAR2(256)
HLT: VARCHAR2(256) Warehouse schema Programversion: VARCHAR2(256)
VeloPosition: VARCHAR2(256) .
View schema

Figure 7.3.: The Bookkeeping Metadata catalogue schema.

114 The LHCb Bookkeeping System

ConfigName

Level 2 &L

DataTaking/
Simulation

Conditions

ProcessingPass

EventType/
Level 5 i

Level 6 Production

Level 7 Filetypes

Figure 7.4.: Bookkeeping Tree; The color of the boxes indicate the typical use-case. The levels which
are marked dark blue are used very often. The level 6 marked red is only used in specific
cases.

Data categorization

In order to improve system performance we decided to categorize the data. Seven categories
are used: Configuration Name, Configuration version, Event type/ Stream, Simulation/ Data
taking conditions, Processing Pass, Filetypes. Each category forms a hierarchical structure
which we call a Bookkeeping Tree. Figure 7.4 shows one Bookkeeping Tree. Each level
of the Bookkeeping Tree corresponds to a data category. The first and second level of the
Bookkeeping Tree is always Configuration Name and Configuration Version while the other
levels can be changed. In addition we can set the visibility of the level(s). For example: Most
of the time we have a lot of productions which correspond to the same dataset. From the user
point of view the production is not really interesting. Consequently, the users can hide (set
invisible) the production level (which is marked as red in the Figure 7.4). According to the
users requirements we implemented four types of the Bookkeeping Tree, corresponding to the
most common ways a user would wish to browse the data.

The LHCb Bookkeeping System 115

1. ConfigName, ConfigVersion, DataTaking/Simulation conditions, Processing Pass, Event
Type, Production, File Types

2. ConfigName, ConfigVersion, Event Type, DataTaking/Simulation conditions, Processing
Pass, Production, File Types

3. Production, Event Type, File Type
4. Run Number, Processing Pass, Stream, File Type

The most common queries are the 1 and 2 in terms of use. The last two queries are used
by the experts (production, managers, shifters, etc.) for monitoring the production opera-
tions. Each level of the Bookkeeping Tree is associated with the relational algebra operations
which are introduced below. These operations translated into SQL queries (more details in
Section 7.5) and are used to retrieve information from the database. The result of a query
only contains n-tuples whose values satisfy a given S condition, where S is a set of values
selected from the result of the queries executed in each level of the Bookkeeping Tree (S =
{s1,s2,531,532,54,55,56,57}). The relational algebra operations are the following:

o Level I:
Rl = HC()nfigName (prodview)
sl =t[ConfigName| where t is an n-tuple in R1
e Level 2:
R2 = HC()nfigVersion (GCOnfigName:sl (pVOdVi€W))
52 =t[ConfigVersion|, where t is an n-tuple in R2
o Level 3:
R3; = Hsimdesc(GConfigName:s1/\C0nfigVersi0n:s2 (prOdVieW) Wimid=simid (simulationConditions))

R3, = Hdescription (GCOnfigName:sl/\ConfigVersionst (PrOdVieW) |>qdatqperiodia':daqperiodid
(datatakingconditions))

R3 =R3;UR3,
s31 = t[simdesc] or 53, = t|description], where ¢ is an n-tuple in R3

e Level 4:

R4y = Hname ((GCOnfigNamezs 1A\ConfigVersion=s2\simid=s3 (prOdVieW> Mproduction=production
(productionscontainer)) X, ocessingid—id (Processing))

R4, = Hname ((GCOnfigName:sl/\ConfigVersionst/\daqperiodid:s32 (prOdVieW> Nproducti(m:pmduction
(productionscontainer)) X, ocessingid—id (Processing))

R4 = R4, UR4,
s4 = t[name|, where t is an n-tuple in R4

e [evel 5:

R5, = HEventTypeld ((GCOnfigName:s 1A\ConfigVersion=s2\simid=s3 (prOdVieW) Npmduclion:production
(productionscontainer)) W ocessingid—id (Oname—sa(processing)))

116 The LHCb Bookkeeping System

R5; = HEventTypeId ((GConfigName:sl NConfigVersion=s2N\daqperiodid=s3, (PVOdVieW) |>qproduction:production
(productionscontainer)) M p,,ocessingid—id (Cname—sa(processing)))

R5 = R5;UR5,
s5 =t[EventTypeld], where t is an n-tuple in R5

e Level 6:
R61 = HProduction ((GCOnfigName:sl NCon figVersion=s2\simid=s3| Neventtypeid=s5 (prOdVieW)
X production=production (productionscontainer))
Nprocessingid:id (Gname:s4 (PrOCeSSi”g)))
R62 = HProduction ((GC(JnfigName:sl AConfigVersion=s2N\dagperiodid=s3, \eventtypeid=s5 (prOdVieW)
X production=production (Productionscontainer))
Nprocessingid:id (Gname=s4 (PrOCeSSing)))

R6 = R6; URG6;
§6 = t[Production], where t is an n-tuple in R6

o Level 7:
RTy = HName (Gfiletypeid ((GConfigName:sl NConfigVersion=s2A\simid=s3| \eventtypeid=s5
Aproduction = s6(prodview)
X production=production (productionscontainer))
Nprocessingid:id (Gname:s4 (PrOCeSSi”g)))
Nfiletypeid:filetypeid (filelypes))
RT, = HName (Gfiletypeid ((GCOnfigName:sl NConfigVersion=s2N\dagperiodid=s3| \eventtypeid=s5
Aproduction = s6(prodview)
X production=production (productionscontainer))
Nprocemingid:id (Gname:s4 (PrOCeSSi”g)))
Nfiletypeid:filetypeid (filelypes))

R7T=RT7T{URT,
s7 = t[Name], where t is an n-tuple in R7

The Oracle interface design and implementation

We used the cx_Oracle module to implement an interface on top of the Oracle database in
order to execute SQL commands, Stored Procedures and Functions and parsing their result.
This interface is called OracleDB and it is designed to manage thousands of connections in an
optimized fashion. It allows the setting of a limit for concurrent connections. In addition, we
keep the connections in an internal connection queue and as soon as a new request arrives, one
connection from this queue is established. In this way we save time and resources. Another
advantage of this interface is to hide the complexity of the database access.

The LHCb Bookkeeping System 117

IBookkeepingDatabaseClient] - fatabaseMamager ~ [TBookkeepingDB

Client | ,lBookkeepingDatabaseClientl

| OtherBookkeepingDB | | AMGABookkeepingDB | | OracleBookkeepingDB

L
0 dbClient
dbClient

Figure 7.5.: Data and Query generation Layer.

7.5. Query generalization layer

The Query Generation Layer is used to build a query using different conditions as speci-
fied by the users. It plays a vital role in our system because it makes the relation between
the application and the database, generates the queries, calls the Database Layer using these
generated queries, parses the result and returns the result to the next layer. Together with the
Data Layer it is responsible for the database specific operations. Figure 7.5 shows the detailed
UML diagram of the Query Generalization layer.

Two modules provide access to the database:MDClient and OracleDB. The MDClient is a
python API to the AMGA based Oracle database. The OracleDB has been presented in Sec-
tion 7.4.2. IBookkeepingDB is an abstract interface which declares all the abstract methods
which have to be implemented by its subclasses. We have implemented the AMGABook-
keepingDB class because the old Bookkeeping System was based on AMGA, but in parallel
the OracleBookkeepingDB class was developed. We designed an interface which allows the
integration of any types of database. However, to decouple the various implementations of
the IBookkeepingDB interface, we introduced the /BookkeepingDatabaseClient abstract in-
terface. The BookkeepingDatabaseClient implements the IBookkeepingDatabaseClient and
consists of the concrete implementation of the IBookkeepingDB. This technique allows us to
easily switch between various implementation of the IBookkeepingDB without changing the
functionality of the system.

OracleBookkeepingDB

This implements the IBookkeepingDB interface and provides all the methods needed to create
the Bookkeeping Tree introduced in section 7.4.2. Each method implements a relation using
given conditions. In addition it also provides the functionalities used by different DIRAC
Systems during the data processing.

Each level of the Bookkeeping Tree is a relational algebra operation which can be performed
on different relations. We used the following procedure to create the select commands based
on the Bookkeeping Tree definition introduced in section 7.4.2:

118 The LHCb Bookkeeping System

e select the n-tuples which corresponds to the k-th Level of the Bookkeeping Tree by using
the] from Rk relation.

e select the name of the relations (which are names of tables) from Rk.
e make the condition string by comparing ¢ from Rk to the given conditions.

e return the result of the Rk relation.

The database queries are dynamic which means we do not have a predefined query; we only
have information about the way a query can be created. Consequently, we have full control
on the queries, can optimize them, and in case of a problem, the problematic query can be
identified very easily and fixed.

7.6. Service Layer

The Service Layer serves the requests to the clients using the previous layer. It provides all
the functionalities that are used to manipulate the data.

The Bookkeeping Service

The Bookkeeping Service runs the BookkeepingManager module which is dedicated to serve
the user requests. The BookkeepingManager is based on the DIRAC secure framework. It
manages the connections to the database, selecting and inserting data using the Bookkeeping-
DatabaseClient. The Bookkeeping Service exploits the advantages of the DIRAC framework
such as monitoring of this service, security which is provided by the DISET, multi-threading
etc.

The Bookkeeping Service has to serve different user-specific requests which are created when
a job finishes in the Grid. In order to interpret these requests the Bookkeeping Service has
an associated module called XMLFileReaderManager. This module parses and interprets the
XML requests, makes various checks (the minimal information are provided) and inserts the
content of the XML file into the database.

7.7. Client Layer

The Client Layer is used by the Managers. It connects to the Service Layer and exposes the
functionalities which are provided by the Service Layer.

The LHCb Bookkeeping System 119

The Bookkeeping Client

The Bookkeeping Client exposes the Bookkeeping Service functionalities and provides access
to the Bookkeeping Service. The communication between the client and service are secure
provided by DISET protocol. Because of this all users on the Grid have to use this client to
access the Bookkeeping Service. When the user instantiates a Bookkeeping Client then a con-
nection is established to the Bookkeeping Service. In order to allow efficient communication
between the client and service the connections are kept for a short period. That means when
the client sends a request to the Bookkeeping Service, then the connection will be re-used. In
this way we save the overhead of time required to establish connections.

7.8. Manager Layer

The Manager Layer provides the functionalities needed to present the database content as a
Virtual File system. The representation of the data is organized into virtual directories and files.
It consists of the LHCB_BKKDBManager class and the LHCB_BKKDBClient. The imple-
mentation of these classes is based on the Feicim Managers architecture which have been intro-
duced in section 5.6. The OracleBookkeepingDB provides the information which is needed to
create the Bookkeeping Tree structure while the LHCB_BKKDBManager is used to build the
four Bookkeeping Tree (which were introduced in section 7.4.2). The LHCB_BKKDBClient
exposes the functionalities of the LHCB_BKKDBManager and allows the users to browse
through the data as a file system.

7.9. Presentation layer

The Presentation Layer is the highest level used by the users. It is the interaction point be-
tween the users and the database. The Presentation Layer implements a CMVC design pattern
where the Manager Layer is the Model used by the Controllers. Various User Interfaces are
available which are part of the Presentation layer in order to fulfill different user requests. We
paid attention to design and implement User Interfaces which provide similar functionalities.
To meet this requirement we developed the Command Line Interface which is the core of the
User Interfaces. On top of this different User Interfaces are implemented which are discussed
below.

7.9.1. Command Line Interface

Using the Command Line Interface (CLI) the users can browse through the database content
in a similar fashion to a UNIX file system. Figure 7.6 shows the command line interface.

120 The LHCb Bookkeeping System

$[/1%1s
ECAL
FEST
Fest
HCAL

TPU_ECS

TT

VELD

VELDA

VELOC
certification
validation
&[/]%cd LHCb
$[/LHCb]%1s

Beam

Beaml
Calibrationl@
Calibrationll
Calibrationll_25
Collision@®
Collisionl®@
Collisionll
Collisionll_25
Cosmics

Physics
Physics_cosmics
Physicsntp
Physicstp

Ted

Test
Test|vfs4@@_notp
Test|vfs4B@_tpall
Ttcrxscan
%[/LHCb] %

Figure 7.6.: A screen shot of the Bookkeeping Command Line showing the response to the com-
mand ’Is’ - The users can use UNIX commands like Is, cd, help to browse the database
content.

7.9.2. Graphical User Interface

The GUI is implemented on top of the CLI and its design is based on the Composite Model
View Controller design pattern which were introduced in section 5.4.1.

The GUI consists of the following widgets: Main widget, Production Lookup, Info dialog,
Processing Pass dialog, Bookmarks widget, Add Bookmarks widget, File dialog, Advanced
save dialog, History dialog and LogFile widget. Using the Composite Model View Controller
we built the Controllers hierarchy which is shown in Figure 7.7.

The LHCb Bookkeeping System 121

ControllerMain

ControllerTreel | ControllerProductionLookup

ControllerBookmarks ControllerFileDialog

ControllerInfoDialog | | ControllerProcessingPass
I i | |

| ControllerAddBookmarks| |cOntrollerLogInfoDiang | |ControllerAdvancedTree| | ControllerHistoryDialog

Figure 7.7.: Controllers which are used by the GUI.

Each Controller has an associated widget which is used to present the data to the users. The
ControllerMainwidget uses the CLI in order to answer the users requests. In addition it
distributes the data to its child Controllers.

Main widget

The Main widget allows the users to browse through the content of the database. This widget
has an associated controller which is called the ControllerTree. The ControllerTree provides
the data using Messages to its child controllers and widgets. Figure 7.8 shows the main Book-
keeping windows.

At the top of the window two check boxes can be seen, one text box and one Bookmarks
button. The Check boxes allow the users to select the type of queries. The user can also limit
the number of datasets in the File Dialog window entering a number into the text box. When
a dataset is selected, then it can be bookmarked using the Bookmarks button.

In the middle of the picture the Bookkeeping Tree is found. The users can navigate through
the folders by selecting their metadata which identify a specific dataset.

At the bottom of the picture the different types of Bookkeeping Tree (which were introduced
in section 7.4.2) can be selected.

ProductionLookup

The ProductionLookup is a widget which shows all the available production/run numbers
which are available in the Bookkeeping Metadata Catalogue. The ControllerProduction-
Lookup associated to this widget is used to provide the data to the widget by asking the

122 The LHCb Bookkeeping System

Feicim - LHCbh Bookkeeping browser
File Settings

'+ standard | | Advanced Queries l Eﬁuukmarks

Page Size: [ALL]

Description

- @@ configuration version
- Beam
-7 Beaml
- [calibration10
- ¥ calibration11
- ¥ Collision0g
- [Collision10
-- Collision11
- @ simulation Conditions/DataTaking
+- [J Beam1380GeV-VeloOpen-MagDown
+- [Beam1380GeV-VeloOpen-MagUp
+- [Beam1380GeV-VeloOpen-MagUp-Excl-OT-R1-R2
+- [Beam1380GeV-VeloOpen-MagUp-Excl-R1-R2
+- [J Beam297GeV-VeloOpen-MagOff-Excl-MU
V-V ed-MagDown

@ Processing Fass

3 Real Data
+- [Beam3500GeV-VeloClosed-MagDown-Excl-R1
+- [0 Beam3500GeV-VeloClosed-MagDown-Excl-R1-R2
+- [Beam3500GeV-VeloClosed-MagUp
+- [Beam3500GeV-VeloClosed-MagUp-Excl-MU
+- [Beam3500GeV-VeloClosed-MagUp-Excl-R1-R2
i T ReaamIsNnGevVValarlncad -Manl In.Fyel WVE

Queries

® SimCond/ProcessingPass/Eventtype/Production/FileType/Program/Files
() Event type/SimCond/ProcessingPass/Production/FileType/Program/Files
() Production lookup

) Run lookup

Figure 7.8.: Bookkeeping Main widget.

ControllerMain controller. Using this widget the users can find specific information for a
given production/run and they can select files which corresponds to a given production/run.

InfoDialog

Each folder shown in Figure 7.8 may have associated metadata information which can be seen
by right-clicking on the folder. The InfoDialog widget is used to show this additional infor-
mation. To provide the metadata information the ControllerinfoDialog sends metadata related
requests to its appropriate controller which will return the requested metadata information.

The LHCb Bookkeeping System 123

ProcessingPassDialog

The ProcessingPassDialog deals with the data provenance information such as data process-
ing phases, software used to process data etc. (more information found in section 7.4.1). The
ControllerProductionL.ookup provides this information to the ProcessingPassDialog. Using
the information provided by this dialog the users have information about the processing of
specific datasets. Sometimes it is necessary to re-process datasets which have already been
processed using different algorithms. Without this information re-processing these datasets is
not trivial.

BookmarksWidget

The users can save their selected datasets using the BookmarksWidget by right clicking on
a folder in the Bookkeeping Tree. Using this widget each user can bookmark their favour
datasets. The ControllerBookmarks is assigned to this widget and provides the bookmarks
to it.

AddBookmarksWidget

To add and delete Bookmarks the AddBookmarkswidget can be used which provide a user
friendly presentation of the bookmarks. The ControllerAddBookmarks is assigned to this
widget in order to delete or add bookmarks by sending Messages to its parent controller.

FileDialog

The FileDialog displays the LFN names and additional information from a given dataset.
The ControllerFileDialog provides these LFN and additional information to the FileDialog
widget. Figure 7.9 show an example of the FileDialog widget.

AdvancedSave

The users can save their selected dataset in different file formats, in particular to a Gaudi con-
figuration file. In addition it hides the complexities of the data accessing using DIRAC Data
Management. It allows the users to save data in the POOL[232] XML file format which con-
tains the information required to have access to the data stored in a Grid Storage Element. The
AdvancedSave widget has an associated controller which is called the ControllerAdvanced-
Save. It provides different information to the AdvancedSave widget such as Grid sites, file
name etc. required to save the LFNs.

124 The LHCb Bookkeeping System

FileName “ EventStat FileSize o/l

1 |flhcb/LHCh/Collisionl L/EW,DST/00010830/0000/00010830 00002156 1 ew.dst : 9551 975390926 Configuration Name LHCb

2 |fihch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002155 1ewdst 16351 1318091077 | | Configuration Versian collicioni
3 |flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002154 1.ewdst 1837 169132007

4 |/lhcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002153_1.ew.dst 6818 675017738 simulation Conditions /veloClosed-MagDown
5 |/hcb/LHCh/Collision] L/EW.DST/00010830/0000/00010830_00002152_1 ew.dst | 45969 3830223179

6 |/Ihcb/LHCh/Collisionl 1/EW.DST/00010830/0000/00010830_00002151 1.ewdst 38354 3212421602 Processing pass ta/Recol0/Strippingl 3b
7 |/lhcb/LHCh/Collision] L/EW.DST/00010830/0000/00010830_00002150 1.ew.dst 1859 167700465

8 |flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002149_1 ewdst 58531 4872275546 BrEEE 90000000
9 |/lhcb/LHCh/Collision L/EW.DST/00010830/0000/00010830_00002148_1. ew.dst 59623 4928706463 File Type EWDST
10 |/Ihcb/LHCh/Collisionl 1/EW.DST/00010830/0000/00010830_00002147 1 ew.dst 58626 4906278396

11 |/lhcb/LHCh/Collisionl 1/EW.DST/00010830/0000/00010830_00002146_1 ew.dst 60510 4994161784 Tl

12 |/hcb/LHCb/Collisionl L/EW,DST/00010830/0000/00010830_00002145_1 ewdst 58120 4846574445

13 |/lhcb/LHCh/Collisionl L/EW.DST/00010830/0000/00010830_00002144_1 ew.dst 19187 1602371685 Program Name and version

14 |/Ihcb/LHCh/Collision] 1/EW.DST/00010830/0000/00010830_00002143 1 ewdst 53670 4547143429

15 |/lhcb/LHCh/Collision1 1/EW.DST/00010830/0000/00010830_00002142_1 ew.dst 11602 1040370231 Statistics

16 |/hcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002141_1.ew.dst 57860 4668393568

17 |/hcb/LHCh/Collision] L/EW.DST/00010830/0000/00010830_00002140_1.ew.dst 9575 869067324

18 |/Ihcb/LHCh/Collisionl 1/EW.DST/00010830/0000/00010830_00002139_1.ewdst 27375 2452804967

18 |/lhcb/LHCh/Collisionl L/EW.DST/00010830/0000/00010830_00002138_1.ew.dst 1926 179626700 Number Of Files: | 2549

20 |/lhcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002137_1.ewdst 1855 174519111 19070

21 | fihch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002136_1 ewdst 46511 3798471318

22 flhcb/LHCh/Collisionl L/EW.DST/00010830/0000/00010830_00002135_1 ew.dst 44057 3661096654 EventinputStat 2435849486

23 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002134 1 ewdst 55129 4647803779

24 |/lhcb/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002133_L.ew.dst 24748 2205918360 TotalLuminesity | 0.0

25 | /lhcb/LHCh/Collision] L/EW.DST/00010830/0000/00010830_00002132_1. ew.dst| 26748 2190043257 o

26 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002131 1.ewdst 18801 1572906913 LTSS 197616061.252
27 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002130_1ewdst 1677 173665451 Files size 716006684303 GB
28 |/lhcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002129_1.ew.dst 57049 4916529990

29 |/lhcb/LHCh/Collision] L/EW.DST/00010830/0000/00010830_00002128_1.ew.dst | 26026 2111418485

30 |flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002127 1ewdst 8079 687058212

31 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830_ 00002126 1 ewdst 11956 993848013 Selected

32 |/lhcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002125_1 ew.dst 2059 177251867

33 |/lhcb/LHCh/Collision L/EW.DST/00010830/0000/00010830_00002124_1 ew.dst 53337 4513345415

34 |flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002123 1 ewdst 2039 173668646 A

35 |/lhcb/LHCh/Collisionl L/EW.DST/00010830/0000/00010830_00002122_1.ew.dst 30669 2546463155

36 |/lhcb/LHCb/Collisionl L/EW.DST/00010830/0000/00010830_00002120_1.ew.dst 2088 191943424 Number OF Events

37 | fihch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002119_1.ew.dst 1579 180071118

38 |/Ihch/LHCh/Collisienl/EW DST/00010830/0000/00010830_00002117 l.ewdst 43076 3826361757 EventinputStat

39 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830 00002116 1.ew.dst 7549 700618378 .

40 | fihch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002115_1 ew.dst 49709 4144993010 mEllamy

41 |/Ihcb/LHCh/Collisionl L/EW.DST/00010830/0000/00010830_00002113_1 ew dst | 55820 4933915627 Ly

42 |/Ihcb/LHCh/Collision] 1/EW.DST/00010830/0000/00010830_00002112_1 ew dst 46786 3723742657

43 | flhch/LHCh/Collision11/EW.DST/00010830/0000/00010830_00002111 1ewdst 4203 362406828 Files size

44 |/lhcb/LHCb/Collisionl L/EW,DST/00010830/0000/00010830_00002109_1.ewdst 31107 2537595116 L
ﬁ_&mummumm;mmﬂfﬂmnmmmmmmm&—mnmm_
[Next Page] IHAdvanced Save IHSave Files. l GC\OSE

Figure 7.9.: Example view of the FileDialog widget.

HistoryDialog

Each Grid job corresponds to a step and each step create files. The HistoryDialog widget
allows navigating through the chain of files in order to have a clear history of the file cre-
ation phases. The ControllerHistoryDialog is the controller of the HistoryDialog widget and
provides the ancestors or descendants needed to navigate the files chain.

LogFileWidget

Each job in the Grid creates log files which are stored in the LHCb LogSE (Log Storage
Element). The Bookkeeping Metadata catalogue stores these log file relative paths that can
be used to open a log file in the LogSE using the HTTP protocol. Figure 7.10 shows the

The LHCb Bookkeeping System 125

for, Job 00003921 of Production 00006394 (DIRAC WMS ID 848,

[22 Reload | | http/flhcb-logs.cern.chystorage/hch/data/2010/L.0G/00006394/0000/00003921/

Log files for Job 00006394_00003921 =

Environment Dump ErrorLogging Stepl.log
Environment Dump_ErrorLogging Step2.log
Davinci 00006394 00003921 2.oq

Brunel 00006394 00003921 1.log
Environment Dump DaVinci v25rd Step2.log
Error Log DaVinci v25r4 2.log

Error Log Brunel v37r2pl 1.og
Environment Dump Brunel v37r2pl Stepl.log
std.out

bookkeeping 00006394 00003921 2.xml
jobDescription.xml

pool xml catalog.xml

dblookup xml

authentication.xml

bookkeeping 00006394 00003921 1.xml
Brunel v37r2pl Run 1.sh

DaVinci v25r4 Run 2.sh

job.info

Job 00006394_00003921 corresponds to WMS JobID 8483163 executed at LCG.NIKHEF.NI.

Parameter summary for job 00003921_00006394

Parameter Name Parameter Value

InputData hcb/data/2010/RAW/FULL/LHCB/COLLISION10/71805/071805_0000000049 . .raw
JobType DataReconstruction

LogFilePath ['/Ihch/data/2010/LOG/00006394/0000/00003921"]

LogLevel verbose

MaxCPUTime 1300000

[/Ihcb/data/2010/DST/00006394/0000/00006394_00003921_2.DiPhotonDiMuon.dst',
'lIhchidata/2010/DST/00006394/0000/00006394_00003921_2.Dielectron.dst,
'[lhch/data/2010/DST/00006394/0000/00006394_00003921_2.Calibration.dst',
'/Ihch/data/2010/DST/00006394/0000/00006394_00003921_2.Semileptonic.dst',
'/Ihch/data/2010/DST/00006394/0000/00006394_00003921_2 Bhadron.dst,
'lIhchidata/2010/DST/00006394/0000/00006394_00003921_2.Charm.dst',
'[lhch/data/2010/DST/00006394/0000/00006394_00003921_2 EW.dst,
'/Ihch/data/2010/DST/00006394/0000/00006394_00003921_2 Radiative.dst',
'/Ihch/data/2010/DST/00006394/0000/00006394_00003921_2.Dimuon.dst,
'lIhchidata/2010/DST/00006394/0000/00006394_00003921_2.MiniBias.dst,
'llhchidata/2010/DST/00006394/0000/00006394_00003921_2.V0.dst,
'/lhch/data/2010/HIST/00006394/0000/DaVinci_00006394_00003921_2_Histroot',
'/lhch/data/2010/SDST/00006394/0000/00006394_00003921_1.sdst,
'[Ihchidata/2010/HIST/00006394/0000/Brunel_00006394_00003921_1_Hist.root]

SoftwarePackages ||AppConfig.v3r55 Brunel v37r2p1;AppConfig.v3rs5;Davinci.v25r4
SystemConfig slcd_ia32_goc3d

ProductionOutputData

Figure 7.10.: Web browser to show the content of the LogSE interface.

LogFileWidget which deals with the log files. It is implemented like a web browser and allows
the user to browse easily through the content of the LogSE. The ControllerLogInfoDialog is
used to control the LogFileWidget and provides the data displayed by the LogFileWidget.

Instead of having one controller which could be overloaded by sending too many messages
to it, we distributed the data (model) to different controllers: ControllerMain, ControllerTree,
ControllerFileDialog. These three controllers become the main controllers. Consequently,
the ControllerMain controller only receives messages if the ControllerTree or the Controller-
FileDialog can not handle the requests. In this way we reduce the load of the Bookkeeping
Metadata catalogue.

126 The LHCb Bookkeeping System

The widgets: ProductionLookup, Processing Pass dialog, Info dialog, Bookmarks widget,
AddBookmarks widget and their controllers are used to define datasets. The main controller
of these controllers is the ControllerTree. The File dialog and its child widgets and their
controllers are used to select datasets.

7.9.3. Web Interface

The CLI interface is integrated into the DIRAC Web Portal to provide more possibilities to se-
lect datasets from the Bookkeeping Metadata catalogue. The LHCb Bookkeeping Web inter-
face[237] can be accessed using a valid Grid Certificate which is uploaded to the web browser.
It provides similar functionality to other User Interface. Figure 7.11 shows the Bookkeeping
web interface.

7.10. The LHCb Bookkeeping System performances

To achieve very good performance of a complex system is extremely difficult. We used pro-
filers for performance analysis, different monitoring tools to monitor our system, and Multi-
Mechanize frameworks for performance and load testing[239]. The profiling is a form of
dynamic program analysis that measures different metrics such as the usage of memory, the
number of function calls, etc, which can be used for program optimization. We used two pro-
filers: AUTOTRACE[233] to analyse the database performance and we developed a python
tool for profiling the Bookkeeping service. We used the DIRAC monitoring pages to moni-
tor the Bookkeeping service and the CERN oracle monitoring page, which will be presented
in Section 7.10 . Various query optimisation techniques were studied; the most important
techniques are introduced in the next sections.

Profiling

Each query is executed in different ways by the RDBMS. The execution plan contains the
steps that the Oracle database performs while executing the query and provides statistics about
how much work (resources) is needed to execute the query. AUTOTRACE is a tool used
for tracing Oracle database queries in order to identify their performance problems. AUTO-
TRACE is provided by Oracle and can be used through the SQL*Plus[238] Oracle command
line utility. Figure 7.12 shows an execution plan for a given query. At the top of the figure
7.12 we can see a table which has the following columns:

e /d column contains the order of the steps.

e Operation column contains the operations (Join, Select, etc.) which will be performed
on the tables.

e Name column contains the name of the tables which are used by the Operation.

The LHCb Bookkeeping System

127

e 0o Bookkeeping as Ihcb_user@LHCb-Production =
| b | + %, https:/ fvolhcb17.cern.ch/DIRAC/LHCb-Production/lhch_user/Data/BK/display ¢ (a- Google) (]
&3 [J] ## LHCb Home Page Google Translate Apple Yahoo! GCoogle Maps YouTube Wikipedia Mews (1,060) ¥ Popular ¥
$iv System ™ Jobs~ Production ™ Data ™ View ™ Web ™ Selected setup: LHCb-Production ~ (iiah
DIRAC SideBar «| | =p simJILHCb/Collision12/Beamd000GeV-VeloClosed-MagDow | ¢aGo | Bookkeeping info
Bookkeeping browser —| | # File Name Event... File Size Runn...)
— Configuration Name:
= (] Calibration1 1 /hcbiLHCH/Collsion12/BHADRONMD... 58017 8886.. 113141 e
@ (] Calibrationt1_25 2 /hcbiLHCH/Collsion12/BHADRON.MD... 174717 2228.. 113127
Calibration12 : -
=0 oration 3 JhcbLHCH/Colision12/BHADRONMD... 185712 2025.. 113135 Configuration Version:
(@ (] Colision0 = Collision12
& (] Colision 0 4 /hch/LHCH/Colision12/BHADRON.MD_.. 185184 2275.. 113104
& £ Collision11 5 /hcbiLHCH/Collsion12/BHADRON.MD... 206563 2483.. 112564 Simulation/DataTaking
] Colision11_25 6 /hcb/LHCh/Collsion12/BHADRON.MD... 178515 2384.. 113038 Conditions:
=3 Colision12 7 Mhcb/LHCBCollsion12/BHADRON.MD... 157085 2444.. 113017 Beam4000GeV-VeloClosed
jag”‘m@e"‘“’"’cm"”‘“"aﬂf’”" 8 /hcb/LHCb/Colision12/BHADRON.MD... 21388 2807.. 113040 Processing pass:
= Real Data
9 /hchiLHCh/Colision12/BHADRON.MD... 1510 2223.. 112788 Real Data/Reco13/Strippi
& (90000000 (Full stream) / /Stripp
] 90000001 (stream?) 10 /hchiLHCH/Collsion12/BHADRON.MD... 188270 2637.. 113014 Event Type:
3 0] 91000000 (Express stream) 11 /hch/LHCH/Collsion12/BHADRON.MD... 182241 2380.. 112564 ST
0 (£ 83000000 { Luminosity straam online) 12 fhchiLHCH/Collsion12/BHADRON.MD... 203477 2338.. 112562
A) File Type:
& (] 93000001 { Luminosity stream online) 13 /hchiLHCh/Collsion12/BHADRON.MD... 170116 2183.. 113034 bl
() (7 85000000 (Calib stream) 14 fhcb/LHCBCollsion12/BHADRON.MD... 6005 8420.. 113137 BHADRON.MDST
& (£ 95000001 { Calib stream) -
i 15 /hcbiLHCH/Collsion12/BHADRONMD... 28318 3786.. 112561
] 86000000 | NoBias stream) — Statistics
1] 97000000 (Bean Gas) 16 /hchiLHCH/Collsion12/BHADRON.MD... 108528 1317.. 113140
0] 97000001 (Beam Gas) 17 /hchiLHCh/Collsion12/BHADRON.MD... 180286 2267.. 113038 Number OF Files:
4] PreReco13 18 /hchiLHCH/Collsion12/BHADRON.MD... 188127 2576.. 113014 57
& [PreRecot3a 18 /hcbiLHCH/Collsion12/BHADRON.MD... 178681 2356.. 11307 Number OF Events:
=] PreReco13b 20 /heblLHCHCollsion1ZBHADRON.MD... B2824 1085.. 113148 Ep——
E Reco1d
= 21 /hch/LHCh/Colision12/BHADRON.MD... 187 416 2587.. 113103 i
[] 80000000 | Full stream) B File(s) Size:
% (] CaloFemioDST 22 /hch/LHCh/Colision12/BHADRON.MD... 187673 2536.. 113128 5.5 G
4] Stripping18 23 /hchiLHCH/Colision12/BHADRON.MD... 313 7102.. 113140 :
=3 Stripping18 24 jhch/LHCh/Colision12/BHADRON.MD... 12264 15B4.. 113145
=427 90000000 (Full stream) 25 jhchiLHCH/Colision12/BHADRON.MD... 134 4350.. 113138
9 BHADRON.MDST
O RUARDARCALID ETEEVERT MOT
SimCenditions first ¥ [Advanced == Add Bookmark ' Refres
Bookmarks +
DataQuality + Page 1 of3 b k| Displaying 1 - 25 of 57 [d save dizleg
data > Bookkeeping zmathe@ |hcb_user ™ ({DC=ch/DC=cern/OU=0rganic Units/OU=Users/CN=zmathe/CN=674937/CN=Zoltan Mathe)

Figure 7.11.: Feicim data browser GUI.

Rows column contains the number of rows which will be processed by a step.
Bytes column contains the size of the data which will read by a step.

Cost (%CPU) columns contains the cost of an operation.

Time columns contains the estimation of the time needed to execute a step.

Pstart and Pstop (partition start and partition stop) columns contains the beginning and
the end values of the partitions being accessed by each operations.

In the middle of figure 7.12 we can see the Predicate Information (access and filter conditions)
which tell how we accessed a table and which filter condition will be performed. At the bottom
of the Figure 7.12 we can see Statistics:

128 The LHCb Bookkeeping System

e recursive calls The number of internal Oracle calls during the execution of the query.
e db block gets The number of database blocks read.

e consistent gets The number of consistent reads from buffer.

e physical reads The number of physical reads from disk.

e redo size The number of redo entries.

e bytes sent via SQL*Net to client The number of bytes sent across the network from server
to client.

e bytes received via SQL*Net from client The number of bytes received across the network
from client to server.

e SQL*Net roundtrips to/from client The number of exchanges between the client and
server. If this number is high, we have to customize the Oracle array size according to
the network connection.

e sorts (memory) The number of data sorts using memory.
e sorts (disk) The number of data sorts using disk.
e rows processed The number of rows processed by the query.

We noted in particular the following parameters: Name, Rows, Bytes. In addition we checked
the db block gets, consistent gets, physical reads parameters and row processed. The SQL*Net
round-strips to/from client tells how many connections were used to return the data.

We implemented a python tool for profiling the Bookkeeping service. The Bookkeeping ser-
vice logs the request from its clients, the start and end time stamps of a request in addition to
the time which was spent to serve the request. It logs where the requests were made (the IP
address of the client) and the user nick name retrieved from the user certificate (proxy). The
python tool collects the information from the Bookkeeping service log. It creates different
plots using the ROOT framework[242] to collect the statistics.

Monitoring

We split the monitoring tools into two categories according to their usage: monitoring the
Bookkeeping Service and monitoring the Oracle database.

One of the basic services of the DIRAC framework is the DIRAC Monitoring service which
provides the real status of the DIRAC services[184]. The DIRAC web portal displays the
monitoring information. The DIRAC Monitoring Service is used to monitor the Bookkeeping
service[234].

The LHCb Bookkeeping System 129

The Oracle Enterprise Manager is used for Oracle database level monitoring[235]. We used
the PhyDB portal for the Oracle service monitoring provided by the CERN physics database
service team[236].

Performance and load testing

To understand the behaviour of the Bookkeeping Service under load we used the Multi-
Mechanise open source framework for API performance and load testing. During the perfor-
mance testing we can identify the weakness of our system and we can check how the system
meets the stated performance criteria. We used this tool to measure different parameters such
as response time, throughput etc. which are introduced in Section 7.10.1.

Techniques used for query optimization

One of the most important functional requirements of the Relational Database Management
System (RDBMYS) is to execute queries in a reliable time. Various commercial or scientific
applications have to manage very big tables which can contain billions of rows that require
fast results. The LHCb detector and Monte Carlo simulation produce huge amount of data
and its associated metadata are stored in large database tables (one table contains more than
100 million rows). Accessing these metadata information must be fast. The users cannot wait
one or two minutes to get the results. That requires an understanding and study of the query
optimization procedures. A given query can have many execution plans in the RDBMS and
give an equivalent result. Only the time needed to execute this query is different. We use AU-
TOTRACE to generate the query execution plan and also to display statistics. In addition we
made the query tree understand how the tables are joined and how the Oracle query optimizer
should join the tables. We tried to decouple the queries and execute them sequentially. Instead
of running a big query we split it into two or more queries. Each query reduces the number
of rows in the tables. When the last query is performed the number of rows in the tables is
already reduced. Consequently, the query will be very fast. We attempt to avoid the usage of
Natural joins.

There are many queries in the LHCb Bookkeeping System and since we have optimized each
in the same way we present the following query optimization as an example. For a given
simulation condition, [Configuration Name and Version, Event Type, File type and processing
pass] the query has to return the number of files, the size of the files and the total number
of events. The following tables are used: prodview (or we may call it bview), configura-
tions, files, simulationconditions, productionscontainer, processing and filetypes which were
introduced in Section 7.4.2.

130

The LHCb Bookkeeping System

We divided the query into 3 queries which will be executed sequentially:

11 SELECT simid
2 FROM simulationconditions
3 WHERE simdescription = ’Beam3500GeV—-Oct2010—-MagDown—Nu2,5 ’;

21 SELECT distinct prod. processingid
2 FROM productionscontainer prod
3 WHERE prod.processingid in

4

5
6
7
8

O

10
11
12
13
14
15
16

(SELECT v.id
FROM
(SELECT distinct SYS_.CONNECTBY_PATH(name, ’/’) Path, id ID
FROM processing v
START WITH id in
(SELECT distinct id
FROM processing
WHERE name=’SimO1)
CONNECT BY NOCYCLE PRIOR id=parentid) v
WHERE
v.path="/Sim01/Trig0x002e002aFlagged /Reco08/ Strippingl2Flagged’) and
prod.simid=429915 and
prod.simid is not null;

SELECT /%x+ NOPARALLEL(bview) =/ count(*), SUM(f.EventStat),
SUM(f.FILESIZE), SUM(f.luminosity), SUM(f.instLuminosity)
FROM files f, jobs j, productionscontainer prod, configurations c,
filetypes ftypes, prodview bview
WHERE j .jobid=f.jobid and
ftypes . filetypeid=f. filetypeid and
f.gotreplica="Yes’ and
f.visibilityflag="Y" and
ftypes . filetypeid=f.filetypeid and
j.configurationid=c.configurationid and
c.configname="MC’ and
c.configversion="MC10’ and
prod.simid=429915 and
prod.simid is not null and
j.production=bview . production and
bview.production=prod. production and
bview.eventtypeid=15960000 and
f.eventtypeid=bview.eventtypeid and
ftypes .name="ALLSTREAMS.DST’ and
bview . filetypeid=ftypes. filetypeid and
prod. processingid in (477,967,583,970,443,363);

The first and second query have an average execution time of 0.08 second, while the third
query takes much longer (around 0.39 second). In order to optimize the query we used AU-
TOTRACE and we generated the execution plan shown in Figure 7.12.

When the execution time is not acceptable (ie. it takes more than 20 second), we compare the
Oracle result to our query tree (see Figure 7.13) and try to understand the cause of the problem.
As we can see in figure 7.12 we have a Cartesian product called MERGE JOIN CARTESIAN.
According to the query tree the configurations and prodview tables are joined and the result is
this Cartesian product. But if we analyse the problem deeper, we find another problem. We
have to join the filetypes and files tables. If this join happens before the join of the jobs, files or
bview tables, it will create a Cartesian product again. The solution is to change this query. We

The LHCb Bookkeeping System 131

Elapsed: ©@:00:00.39

Execution Plan

| Id | Operation I Name | Rows | Bytes | Cost (MCPUD| Time | Pstart| Pstop |
I @ | SELECT STATEMENT 1 | 1| lee | 220 (1) ©00:00:03 | | |
1	S0RT AGGREGATE 1	11 1@6				
Z	NESTED LODPS		11 1e6	220 (1) o8:00:83		
31 NESTED LOOPS 1	51 455	2180 (1) eo:ee:e3				
[NESTED LOOPS 1	11 59 1 62 (2)	@o:00:81				
51 MESTED LOOPS 1	1	47	el (231 ee:eg:el			
I 6 MERGE JOIN CARTESIAN 1	11 32	61 (2)	el:e0:01			
71 TABLE ACCESS BY INDEX ROWID I CONFIGURATIONS	11 18	2 (@) o8:00:81				
1* & | INDEX RANGE SCAN | CONFIGURATIONS_MAME_VERSIONS | 11 | 1 (@) ee:ee:el | | |
&l BUFFER SORT 1 | 31 42 | 58 (2)! oB:8@:81 | | |
1* 18 | MAT_VIEW ACCESS FULL I PRODVIEW | 3| 42 | 59 (2) ee:ee:e1l | | |
I* 11 | INDEX RANGE SCAN I FILETYPES_ID_NAME | 11 15 1 @ (@) op:ee:e1 | | |
I* 12 | TABLE ACCESS BY INDEX ROWID I FRODUCTIONSCONTAINER | 11 1z | 1 (@) o8:00:81 | | |
1* 13 | IMDEX UNIQUE SCAN I PK_PRODUCTIONSCONTAINER | 11 | @ (@) ee:ee:el | | |
I 14 | PARTITION RANGE ALL 1 | 22 | 784 | 148 (@) @B:80:02 | 11 20 |
1* 15 | TABLE ACCESS BY LOCAL INDEX ROWIDI FILES | 22 | 784 | 148 (@) ee:e0:e2 | 1 20 |
1* 16 | INDEX RANGE SCAN I PRB1 | 365 | | 41 (@) ee:e0:01 | 11 20 |
I 17 | PARTITION RAMGE ITERATOR | | 11 15 | 2 (@) o8:00:81 | KEY | KEY |
1* 18 | INDEX RANGE SCAN I JOBS_CONFIG_JOB_PRODUCTION | 11 15 | 2 (@) ee:ee:eL | KEY | KEY |

8 - access("C"."CONFIGNAME"="MC"' AND "C"."CONFIGVERSION"='MC1®')

10 - filter("BYIEW". "EVENTTYPEID"=15960008)

11 - access("BVIEW"."FILETYPEID"="FTYPES"."FILETYPEID" AND "FTYPES"."NAME"='ALLSTREAMS.DST')

12 = filter("PROD"."SIMID"=479915 AND ("PROD"."PROCESSINGID"=363 DR "PROD"."PROCESSINGID"=443 OR “FROD"."PROCESSINGID =477
OR "PROD"."PROCESSINGID"=583 OR "PROD"."PROCESSINGID"=367 OR "PROD"."PROCESSINGID"=97@))

13 - access("BVIEW"."PRODUCTION"="PROD"."PRODUCTION")

15 - filter("F"."GOTREPLICA"="Yes' AMD "F"."VISIBILLTYFLAG"="Y')

16 - access("FTYPES"."FILETYPEID"="F"."FILETYPEID" AND "F"."EVENTTYPEID"=15960000)
18 = access("1"."CONFIGURATIONID™ "CONFIGURATIONID" AND “J"."JOBID"="F"."JOBID" AND
"J" . "PRODUCTION"="BVIEW"."PRODUCTION")

Statistics
8 recursive calls
@ db block gets
94527 consistent gets
@ physical reads
@ redo size
836 bytes sent via SQL*Net to client
476 bytes received via 5QL*Net from client
SQL*Net roundtrips to/from client
sorts (memory)
sorts (disk)
roWs processed

=]

Figure 7.12.: Execution plan for a given query - At the top of the picture we can see the time required
to execute the query 3. The join order of the tables are shown in the middle of the picture.
Step 6 produces a CARTESIAN product which result is the high number of consistent
gets as shown at the bottom of the picture.

132

The LHCb Bookkeeping System

Tcﬂle.filesize, files,eventstat

M files.jobid=jobs.jobid

prodwev production=jobs.production

a

files.gotreplica="Yes' and
files.visibilityflag="Yes'
files

i
(a3

jobs.configurationid=
configurations.configurationid
jobs

/prodview.production—productionscontainer.production

/\Mpmd"iewﬁ|etyp€!id—filetypes,ﬁletypeid
7T

‘ TE filetypeid

b |

< name='ALSTREAM.DST'

filetypes

TE configurationid

g‘t
o

S configname="MC' and
‘ configversion="MC10'

eventtypeid=15960000
configuration J
pr

dview

o

simid=429915 and
processingid=477 or
processingid=967 or
processingid=583 or
processingid=970 or
processingid=443 or
processingid=363

productionscontainer

Figure 7.13.: Query tree for a given query - This figure shows the equivalent query tree to the
execution plan 7.12. At the bottom of the picture you can see the configuration and
prodview tables. The result of the join of these table is a CARTESIAN product.

The LHCb Bookkeeping System 133

kept the first query and we made a new query by combining queries 2 and 3. The optimized
query is the following:

41 SELEcT count(x), SUM(f.EventStat), SUM(f.FILESIZE), SUM(f.luminosity),
SUM(f.instLuminosity) FROM jobs j, files { WHERE

j.configurationid=(select c.configurationid from configurations c where

c.configname="MC’ and

c.configversion="MC10’) and

j.production IN

(SELECT /++ NOPARALLEL(bview) +*/ bview.production FROM productionscontainer prod,
prodview bview, filetypes ftypes WHERE
prod. processingid IN (SELECT v.id FROM

10 (SELECT distinct SYS_.CONNECT BY_PATH(name, °/’) Path, id ID

11 FROM processing v START WITH id in (SELECT distinct id from processing

12 WHERE name=’Sim01°’) CONNECT BY NOCYCLE PRIOR id=parentid) v

13 WHERE v .path="/Sim01/Trig0x002e002aFlagged/Reco08/Strippingl2Flagged’) and
14 prod.simid=429915 and prod.simid is not null and

15 bview . production=prod. production and

16 bview.eventtypeid=15960000 and

17 bview. filetypeid=ftypes. filetypeid and

18 ftypes .name="ALLSTREAMS.DST’

19 Yand

20 j.jobid=f.jobid and

21 f.gotreplica="Yes’ and

22 f.visibilityflag="Y" and

23 f.eventtypeid= 15960000 and

24 f . filetypeid in (SELECT ft.filetypeid FROM filetypes ft WHERE ft.name=’ALLSTREAMS.DST’);

After this change the new query takes 0.08 seconds as shown on top of figure 7.14. In addition
the number of consistent reads from the database buffer (consistent gets) is decreased from
94,527 to 20,111, and the CARTESIAN product no longer exists.

7.10.1. Response time and Throughput

As the LHCb Bookkeeping system has to serve thousands of queries per minute, the perfor-
mance and capability of the system must be measured. We distinguish between the Response
time and Throughput.

The Response time is the time spent during the execution of a task. For example, it is the
time required for the system to show the contents of a folder after the user clicks on it. The
Response time consists of the Latency and Processing time. Latency is the amount of time
delay experienced in a system. This delay can be influenced by the network, high workload,
disk or memory etc. The Processing Time is the amount of time required by a system to
process a given request. In depends on the Latency and Processing Time:

Latency + ProcessingTime = ResponseTime (7.1)

Throughput is the number of executions in a specified time interval. For example during one
second how many times the users can open a folder in the Bookkeeping Tree.

The LHCb Bookkeeping system is widely used by the users and Production System. The
Response time is more relevant for the users but the throughput is more important for the

134

The LHCb Bookkeeping System

Elapsed: 00:00:04.08

Execution Plan

Plan hash walue: 3819118251

| Id | Operation | Name | Rows | Bytes | Cost (%CPUYI Time | Pstart!| Pstop

| @ | SELECT STATEMENT | | 11 ¥5 1 428 (1)) 00:00:05 | | |
I 11 GSORT AGGREGATE | | i1 751 | | | |
|21 NESTED LOOPS | | 11 75 1 426 (1)1 90:00:05 | | |
I3 NESTED LOOPS | | 16 1 968 | 426 (1)1 09:00:05 | | |
I 4 NESTED LOOPS | | 16 1 448 | 378 (1)) 00:00:04 | | |
I 51 VIEW | VW_NSO_1 | i1 13 1 68 C3)| @0:00:01 | | |
I 61 HASH UNIQUE | | 11 2047 | | | | |
[* 71 HASH JOIN | | i1 2047 | 68 C3)| @0:00:01 | | |
I 8 NESTED LOOPS | | | | | | | |
el MESTED LOOPS | | 21 282 | 61 C2)1 00:00:01 | | |
|18 1 NESTED LOOPS | | 21 58 | 58 (2)] 99:00:01 | | |
[* 41 | MAT_WIEW ACCESS FULL | PRODVIEW | 3 42 | 54 (2)] o0:80:01 | | |
I* 12 | INDEX RANGE SCAN | FILETYPES_ID_NAME | 11 15 | 9 (0} 09:00:01 | | |
[* 13 | INDEX UNIQUE SCAN | PK_PRODUCTIONSCONTAINER | i1 | 2 () 00:00:01 | | |
I* 14 | TABLE ACCESS BY INDEX ROWID | PRODUCTIOMSCONTAINER | 11 12 | 1 (@) 99:00:01 | | |
I* 45 | VIEW | | 26 | 52156 | 7 (1531 09:00:01 | | |
|16 1 HASH UNIQUE | | 26 | 884 | 7 (15)] @9:09:01 | | |
[* 47 | CONNECT BY WITHOUT FILTERING (UNIQUE)! | | | | | | |
I* 18 | TABLE ACCESS FULL | PROCESSING | 21 a6 | 3 (@) 99:00:01 | | |
|48 1 TABLE ACCESS FULL | PROCESSING | 985 | 22655 | 3 (0) 0d:00:01 | | |
| 281 PARTITION RANGE ALL | | 16 | 240 1 309 (9)] 90:00:04 | 11 z0

I 211 TABLE ACCESS BY LOCAL INDEX ROWID | JOBS | 16 1 240 1 309 (0)| 00:00:04 | 1 20
|* 22 | INDEX RANGE SCAM | PROD_CONFIG | 17 1 | 386 (@) 99:00:04 | 1 20
|23 | TABLE ACCESS BY INDEX ROWID | CONFIGURATIONS | i1 i3 | 2 (0)] 09:00:01 | | |
I* 24 | INDEX RANGE SCAN | CONFIGURATIONS_NAME_VERSIONS | 11 | 1 (@) 99:00:01 | | |
I 251 PARTITION RANCE ITERATOR | | i1 32 1 3 (0) 09:00:01 | KEY | KEY
I* 26 | TABLE ACCESS BY LOCAL INDEX ROWID | FILES | 11 321 3 (9) 90:00:01 | KEY | KEY
|* 27 1 TNDEX RANGE SCAN | FILES_JOB_EVENT_FILETYPE | i1 | 2 (0)] 09:00:01 | KEY | KEY
|* 28 | INDEX RANGE SCAN | FILETYPES_ID_NAME | 11 15 |] 09:90:01 | | |

@l

Predicate Information (identified by operation id):

AND "FTYPES"."NAME"="ALLSTREAMS.DST")

7 - access("PROD"."PROCESSINGID"="V"."ID™")
11 - Filter("BVIEW"."EVENTTYPEID"-15060008)
12 - access("BVIEW"."FILETYPEID"="FTYPES"."FILETYPEID"
13 - access("BVIEW"."PRODUCTION"="PROD"."PRODUCTION")
14 - Filter("PROD"."SIMID"=429915)
18 - Filter("V"_ "PATH"="/SimB1/Trighdd2edd2aFlagged/Reco®B/ Strippingl2Flagged’)
17 - access("PARENTID"=PRIOR "ID")
18 - Filter("NAME"='Sim@1i')
22 -
"C"."CONFIGVERSION"="MC10"' AND "C"."CONFIGNAME"="MC'))
24 - agccess("("."(ONFIGNAME"="MC' AND "C"."CONFIGVERSION"="M(18')
26 - Filter("F"."COTREPLICA"-"Yes' AND "F"."VISIBILITYFLAG"-'Y')
27 - access("]"."JOBID"="F"."JOBID" AND "F"."EVENTTYPEID"=15960080)
28 - access("F"."FILETYPEID"="FT"."FILETYPEID" AND "FT"."NAME"='ALLSTREAMS.DST')

Stotistics

8 recursive calls
® db block gets
20111 «consistent gets
@ physical reads
11852 redo size
836 bytes sent via SQL*Net to client
476 bytes received via SQL*Net from client
2 SQL*Met roundtrips to/from client
2 sorts (memory)
8 sorts (disk}

access("]"."PRODUCTION"="PRODUCTION" AND "J"."CONFIGURATIONID"= (SELECT "C"."COMFIGURATIONID" FROM "CONFIGURATIONS® "(™ WHERE

Figure 7.14.: Execution plan for a give query - Figure shows the execution plan of the query 4. The
elapsed time is lower than the previous query execution plan. In addition, the CARTE-
SIAN product is not longer exists and the number of consistent gets are reduced.

The LHCb Bookkeeping System 135

Table Name Number of rows
files 112,081,699
jobs 50,046,917
productionscontainer 19,511
prodview 17,876
processing 999
configurations 202
filetypes 99

Table 7.5.: The tables are used by the queries. The ‘Table Name’ column contains the name of the
tables, the ‘Number of rows’ column contains the number of rows in each table.

Production system. To measure the Response time and the Throughput we used the Multi-
Mechanize open source framework and we ran simultaneously different tasks executed by the
Bookkeeping Service.

7.10.2. Testing Oracle 11g performances using Multi-Mechanize

We used 261 different datasets (261 different queries) to measure the response time and
throughput, because only one dataset might not be typical of the system behaviour. Our re-
quirement is the maximum response time must be less than 20 second and the throughput
must be more than 10 transaction per second, because the users cannot wait minutes to get the
answer for a given request. We used these 261 different datasets randomly in order to avoid
the database cache. The queries were performed on seven tables which are shown in Table
7.5.

The database configuration was the following: 2 node cluster (itrac1011, itrac1021). Each
node had 4 x QuadCore Intel E5630 @ 2.53GHz CPU, 48 GB of RAM and 36 SATA 7200
RPM 2 TB disks configured with Oracle ASM as RAID10[240,241].

We used two Bookkeeping servers in parallel which ran a dedicated machine with the fol-
lowing configuration: 2 x QuadCore Intel L5420 @ 2.50 GHz CPU, 16 GB of RAM. The
Bookkeeping clients (test script) ran in a 4 x QuadCore Intel L5520 @ 2.27 GHz CPU, 48 GB
RAM machine.

We define the following terms:
e transactions the number of the executed queries during a specified period.

e run time the period during which our test script is executing.

136 The LHCb Bookkeeping System

e time-series interval (or interval data): time series interval for the results analysis. Itis a
number which gives the length of the intervals in second.

e threads: number of treads which will be executed parallel (or number of virtual users).

e rampup: is a number in seconds (60 second is used in our experiments). It is the time
required to start all threads.

e throughput the number of transactions during a specified period.

e response time is the time spent during the execution of tasks. It include the client con-
nection to the server, and database execution time. The following metrics are used:
average, min, max, stdev and percentiles (80th, 90th and 95th).

We implemented a script called query.py which chooses a dataset randomly and makes a
request to the Bookkeeping system with this dataset. The script was executed in parallel to
query the Bookkeeping system and continuously by a certain number of threads (virtual user)
using the Multi- Mechanise framework.

100 users

We run simultaneously 100 threads (which equals 100 users) by executing query.py continu-
ously during 7200 seconds and calculated the response time, and transactions as a function of
time. The results are presented in Figures 7.15, 7.16 and 7.17. Figure 7.15 shows the average,
80 and 90 percentile response time. Figure 7.16 shows the scatter plot of the response time in
a given period. The throughput of the system shown in Figure 7.17 is roughly 25 queries per
second.

w
u
w
a
w
E
=
v
]
=
Q
=8
v
W
[~

2 t ...

= O0pct
1 BOpCt |
= Mg
o 1 | 1 | 1 | 1
o 1000 2000 3000 4000 5000 6000 7000 8000

Elapsed Time In Test (secs)

Figure 7.15.: The average and the percentiles(80th, 90th) response time plot for the queries for Exper-
iment 1

The LHCb Bookkeeping System 137

Taking into account the results of this experiment the system was not overloaded. In addition
the response time and the throughput were stable during the test.

14 T T T T T T T

Response Time (secs)

0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.16.: Response time of the queries for 100 users.

In Table 7.6 we summarize the experiment results giving the minimum and maximum response
time, the average and the percentiles (80th, 90th, 95th) the minimum (min), the maximum
(max) and the standard deviation (stdev).

The maximum response time is 12.852 shown in Table 7.6. The LHCb Bookkeeping System
performed very well compared to our requirement that the maximum response time be less
than 20 seconds.

15 | -

10 4

Transactions Per Second (count)

o | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Elapsed Time In Test (secs)

Figure 7.17.: Executed queries per second for 100 users.

138 The LHCb Bookkeeping System

200 users

In order to load the system, we increased the number of users (threads) to 200. The results of
the test are found in Figure 7.18, 7.19 and 7.20 and the summary found in Table 7.6.

18 T T T T T T T

H : H : H i o« O0pct
.
-
un
]
H |
w
o
E 4
=
o
o 4
c
o
=3
u |
1]
=
4 F J

0 ! | ! | ! | !
0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.18.: The average and the percentiles(80th, 90th) response time plot for the queries for 200
users.

20 T T T

Response Time (secs)

0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.19.: Response time of the queries for 200 users.

By increasing the number of threads the response time is increased while the throughput is
not changed. The average response time shown in Figure 7.18 roughly doubled compared to
the previous experiment (100 users). Figure 7.20 shows the throughput of the system. The
number of executed queries shown in Table 7.6 is lower than the result of the 100 users, which
is a result of the high workload. The maximum response time shown in Table 7.6 is 19.4
second which is high but it is less than 20 seconds.

The LHCb Bookkeeping System 139

35 T T T T T T T

W L b . P b e e -

Transactions Per Second (count)

0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.20.: Executed queries per second for 200 users.

500 users

In an attempt to see how the system behaves under very high load we increased the number of
users (threads) to 500. Figure 7.21, 7.22 and 7.23 show the results of the test. A summary of
these results is found in Table 7.6

30 T T T T T T T

Response Time (secs)

0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.21.: The average and the percentiles(80th, 90th) response time plot for the queries for 500
users.

The average response time shown in Figure 7.21 is roughly five times bigger than first ex-
periment (100 users). The difference of the the average response time and the percentiles
(80th, 90th) is small according to this figure, which means the response time of the queries is
roughly same. Figure 7.22 shows the response time for a given period. The throughput shown

140 The LHCb Bookkeeping System

35 T T T T T T T

Response Time (secs)

0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)

Figure 7.22.: Response time of the queries for 500 users.

15 | -

10 | -

Transactions Per Second (count)

0 I | I | I | I
0 1000 2000 3000 4000 5000 6000 7000 8000

Elapsed Time In Test (secs)

Figure 7.23.: Executed queries per second for 500 users.

in Figure 7.23 is not changed compared to the 100 and 200 users experiments. The maximum
response time shown in Table 7.6 is 31.5 seconds which is more than 20 seconds.

In order to understand where that time is spent we calculated the average Latency. The average
response time is 20.3 seconds shown in Table 7.6. The average processing time is 0.22 seconds
as shown in figure 7.24, which was measured using a python profiler tool introduced in section
7.10, which analysed the log files of the system. The x-axis is the time required to process
certain queries, and the y-axis is the number of queries which are executed within a certain
time. According to the picture most of the requests take less than 0.5 second. The huge peak
at 0.3 seconds is related to the high number of queries that required this time to be finished.
The processing time of the Bookkeeping servers also includes the response time of the Oracle
database, because the information which is served by the Bookkeeping servers are retrieved

The LHCb Bookkeeping System

141

90000

ueries

q

80000

70000

Executed

60000

50000

40000

30000

20000

10000

Dcillll ITTTTTTTT II’ﬂ-, ITTTITTTTTITTT TITI] TTTTT

Processing time

Entries
Mean
RMS

358306
0.2183
0.2368

l_l

F-"__'_[_'_

1.5

2.5

35 4

Time in second

Figure 7.24.: The number of queries which required a certain time to be processed.

Number of users (threads) 100 200 500 1000
Time for Test Run 7,200 7,200 7,200 7,200
Number of transactions 179,000 | 176,000 | 177,000 | 222,000

Minimum response time 0.172 0.113 0.333 0.33
Average Response time 4.00 8.135 | 20.288 33.0
80pct response time 5.621 10.883 | 22.410 34.0

90pct response time 6.319 11.950 | 23.476 35.0

95pct response time 6.883 12.775 | 24.265 35.9
Maximum response time 12.852 | 19.431 | 31.470 47.5
Standard deviation of response time | 1.730 2.809 2.565 2.269

Table 7.6.: Summary of the four experiment results

from the database. Consequently, although the database performed very well, the average
processing time is 20.3 seconds. The average Latency, calculated using Formula 7.1, is 20.05
seconds. During this time the queries were waiting to be executed by the Bookkeeping system
which was under heavy load. To decrease the Latency of the Bookkeeping system another
Bookkeeping service would be required in order to share the load.

142 The LHCb Bookkeeping System

1000 users

We increased the number of users (threads) to 1000 in order to see how the system behaves
beyond 500 users. We expected the average response time will be roughly 40 seconds instead
of 33 seconds as shown in Figure 7.25. This difference can be attributed to the network traffic
which was lower than the previous experiment (500 users) or the other resources were not
busy when this experiment was performed. The scattered plots of the response is shown in
Figure 7.26. The response time is less than 50 second and beyond our requirement according
to this figure.

25 |- 4

20 4

15 | —

Response Time (secs)

10 —
= O0pct

= Mg

0 I | I | I | I
0 1000 2000 3000 4000 5000 6000 7000 8000

Elapsed Time In Test (secs)

Figure 7.25.: The average and the percentiles(80th, 90th) response time plot for the queries for 1000
users.

Figure 7.27 shows the throughput of the system which is higher than the previous experiments
that can be affected to the lower response time.

If the system will be used more than 500 users, It will be required to use another two load
balanced services according to the results.

Summary

The performance of the LHCb Bookkeeping System was evaluated using four different tests
which simulate the behaviour of the system under high work load. Table 7.7 gives a summary
of the tests. According to the results of the experiments the response time increased linearly
with the number of threads (virtual users) as shown in figure 7.28. The colors of the curve
indicate the number of users. The response time increases linearly until reach the 600 seconds
time limit of the Bookkeeping service. This means the queries must be served within 600
seconds, otherwise they will fail due to time out. The throughput remained at roughly 25
queries per second except the last experiment as shown in figures 7.17, 7.20, 7.23 and 7.27.
Figure 7.29 shows the number of queries executed by 100, 200, 500 and 1000 users. According

The LHCb Bookkeeping System 143

Response Time (secs)

o 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)
Figure 7.26.: Response time of the queries for 1000 users.
40 T T T T T T T

Transactions Per Second (count)

29_
sl L . L S L S o
ol L L L L L L]
5 - -
o 1 | 1 | 1 | 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Elapsed Time In Test (secs)
Figure 7.27.: Executed queries per second for 1000 users.
Average Response Time Executed queries during 2 hours
— Al o 150000
H a0 % 200000 H’/ﬁ
= _
‘% 20 s=_==1000 2 150000 w1000
E o s O 100000 | .
- - 500 g soo0o 200
H o [v] 0
% o 200 400 &D0 EOD 1000 1200)00 g 0 200 400 GO0 800 1000 1200 2 ™==100
w Mumber of users “ Number of users

Figure 7.28.: The average response time of the sys- Figure 7.29.: The number of executed queries
tem under heavy load: 100, 200, 500 during 2 hours made by 100, 200,
and 1000 users used the system. 500 and 1000 users.

144 The LHCb Bookkeeping System

to this figure the throughput was stable when the system was used less than 500 users. The
throughput was increased linearly by increasing the number of users.

Users | Average Response Time(second) | Average Latency(second) | Throughput
100 4.0 3.7 25
200 8.1 7.8 25
500 20.3 20.0 25
1000 33.00 32.8 32

Table 7.7.: Summary of the Average Response time, Latency and Throughput of the three experiments when
two Bookkeeping servers are used; Latency is calculated using 7.1 formula and we assumed the
Processing time is roughly 0.22 measured when the system was used by 500 users.

The current state is adequate for LHCb. If the Bookkeeping service were used by 500 users
simultaneously, the LHCb Bookkeeping System will not scale. The solution of this problem
would be a load-balanced Bookkeeping service that will increase the throughput and decrease
the response time.

7.11. Summary

When the datasets are distributed to the the Grid and not centrally managed, scalable and
robust metadata management tool is essential. We re-designed the LHCb Bookkeeping system
and we introduced a new concept to store and visualise the metadata information. The design
of the LHCb Bookkeeping System is based on Feicim architecture. The Feicim framework
is used to implement the Graphical User Interface which present the database content in a
hierarchical format. It allows the users to browse the database as a Virtual File System. The
users can select their datasets for analysis and it also allows to define the access protocol to
the datasets. The LHCb Bookkeeping System is more than a metadata catalogue, because it
is also used by other DIRAC systems for data processing such as Production Management
System, Transformation system, etc. It is widely used by the LHCb experiment. Because of
this the performance of the system is very important. We studied different query optimization
techniques. In addition we implemented or re-used different tools for monitoring and profiling
the system. We executed different tests in order to evaluate the limits of the system. According
to the tests the system behaved very well.

8. Conclusion

The ability to browse algorithms, graphically combine algorithms and submit them to run on
data on the Grid, is desirable. The architecture of Feicim allows the existing functionalities
to be extended. A new component could be implemented which allows the users to define
work flow modules and execute them in the Grid. As Feicim is based on loosely coupled
components this component could be implemented using the JGraph[246] drawing and graph
visualization library. The modules of the work flow consist of different algorithms which will
be executed by physics applications such as Davinci or Brunel and each algorithm has different
configuration requirements. To connect these components the COmputational MODule Inte-
grator (COMODI)[247] components based framework could be used utilising a component
repository[248]. This repository can be used to store the components which can be accessed
by different LHCb users. DIRAC/Ganga would then be used to execute the algorithm chain
defined in the work flow.

Feicim could be used by other LHC experiments. Due to the design of Feicim each component
can be used as a standalone application. Feicim can be reused as a high level GUI on top
of various databases. In addition it can be a layer on top of different distributed analysis
applications. As Feicim is capable of discovering file content it can be re-used to browse
inside an object file which is not produced by the LHCb experiment. Various algorithms
can be integrated into Feicim that can be used for Data mining. The tree like format data
representation can be applied to various scientific communities with simple modifications of
Feicim. The Feicim Tree Traversal Algorithm also can be used to visit different tree data
structures. The CMVC can be reused by other applications which have to control a complex
GUI. The easy to use plot generation as well as the job submission module can also be re-used.
The Feicim framework support loosely coupled components which means it can be used as a
framework for a new distributed analysis tool in other scientific communities.

145

146

A. Appendix

A.1. Relational Algebra

In this section we introduce the family of relational algebra operations usually associated with
the Relational Data Model.

Relational Algebra Operations.

We distinguish two groups of operations in relational algebra, which are the following:

e set operation which are unary operations; the unary operations operate on single relation.
We consider two such operations: select and project operations.

e database operations which operate on two tables and are binary operation. We consider
Union, Set Difference, Cartesian product and Join.

The Select, Project and Join operations are developed specifically for relational databases. The
next sub sections provide a description of these operations.

Selection operation

The Selection operation works on a single relation R and defines a relation that contains only
those tuples of R that satisfy a selection condition (predicate)[224]. If we think the relation is
a table, the select operations select some of the rows on the table. The selection operation is
written as:

6r(R), where 6 denote the SELECT operator, F refer to a selection condition (predicate)
which is a Boolean expression specified on the attributes of relation R.

For example: Table A.2 contains the result of a selection operation which is performed in the
relation R shown in Table A.1.

147

148 Appendix

A/B|C|D

alblcld A|B|C|D

d|{g|h|f d h|f

flg a flglc|a
Table A.1.: Relation R Table A.2.: 63—4(R)

Projection operation

The projection works on single relation R and defines a relation that contains the values of
specified attributes and eliminates duplicates[225]. If a relation is a table, the Select operation
selects some of the rows from the table and discards other rows, while the Project operation
selects certain columns from the table and discards other columns. The Projection operation
1s written as:

[1a, 4.45....4,(R), where A;, j = i,n are attribute names of the R relation.

For example: Table A.3 contains the result of a projection which is performed on the R (see
Table A.1) relation.

o
o = oo T

f

Table A.3.: T4 p(R)

Union

The Union (denoted as U) of a given R and S relations (denoted RUS) is a set of tuples which
are in R or S or both[225].

The Union operator can be applied when the ‘arity’ of two relations R and S are the same.
That means all tuples in the result contain the same number of attributes and all attributes are
defined from the same domain. When the Union operation is performed the attributes for the
operand relations R and § are ignored. Consequently, the attribute names of the result relation
can be given arbitrarily.

Table A.5 gives a simple example the union of R (see Table A.1) and S (see Table A.4) rela-
tions.

Appendix 149

al/blc|d

E|F/G|H d g|h|f

e|f|lc|d flglc|a

flglc|a e|f|lc|d
Table A.4.: S relation Table A.5.: RUS

Set difference

The difference of R and S relations is the set of tuples which in R but not in S. The Set
difference is denoted as R — S and requires both sets have the same arity. When this operation
is performed the attributes for the operand relations R and S are ignored. Consequently, the
attribute names of the result relation can be given arbitrarily.

For example: Table A.6 contains the result of the difference of R (see Table A.1) and S (A.4)
relations.

d
h|f

[oFu.

Table A.6.: R — S relation

Cartesian Product

The Cartesian product (Cross product or Cross Join) of two sets R and S, denoted R x S defines
a relation that is a concatenation of every tuple in relation R with every tuple in relation S
[224,226,228].

If R relation has ng tuples and S has ng tuples, R x S will have ng * ny tuples.

For example: Table A.7 contains the result of a Cartesian product which is performed on the
R (see Table A.1) and S (see Table A.16) relations.

Join Operations

The Join operation combines two R and S relations to form a new Q relation. If we consider
these relations as tables, the tables should be joined based on a common column. The Join
operation has the following types:

150

Appendix

1. Theta Join

A

Equi Join
Natural Join
Semi Join

Outer Join

Theta Join

A/B|C|D E|F|G|H
a|/blc|dje|f|c|d
a|/blc|d|f|g|c]|a
d|ig|h|f|le|f]c]|d
d|ig|h|f|f|lg|c|a
flglclale|f|c|d
flglcla|f|g|lc|a

Table A.7.: R x S relation

The most general Join operation is the Theta Join. The Theta Join is defined as the result
of performing a selection operation using comparison operator ® on the Cartesian product.
The Theta Join of R and S on attributes i and j, is written R X S, where © is an arithmetic

0]

comparison operator such as <,=,<=,>, >= %#[226]. In the join, only combinations of

tuples which satisfy the join condition appear in the result. For example: Given R and §

relations which are in Table A.8 and Table A.9, the result of RANES is shown in Table A.10.
<

A|B|C|D
11 2]3 |4
5|6 8

10 | 11 | 12

Table A.8.: relation R

E|F|G
2 15]6
1092

Table A.9.: relation S

Appendix 151

A/B|C|DJ|E|F|G
11213412 1]5]6
11213410792
5167 |8]10]9]2
911011121092

Table A.10.: R X S
A<E

Equi Join and Natural Join

A Join, where only the = comparison operator is used, is called an Equi Join. The result(s)
of the Equi Join, which is denoted as relation E, always have one or more pairs of attributes
that have identical values in every tuple. For example, consider the relations S shown in Table
A.11 and R shown in Table A.12, the value of the attributes A and D are identical in every
tuple of E relation, because of the equality join condition specified on these two attributes.

A|B|C

alclb B|C|D

elclb clbla A|B|C|B|C|D

d|b|a c|b alc|b|lc|b|a

c|f|g a|lf|b d|{blajc|b|d
Table A.11.: R relation Table A.12.: S relation Table A.13.: E=Ro<ga—sp S

The result of Equi Join always contains one or more pairs of attributes that have identical
values in every tuple. The Natural Join was created to get rid of the second attribute in an
Equi Join condition.

Formally, if A =A;,A», .., Ay are attribute names used for R and S, we have RX S =[]4(c¢c(R x S)),
where the selection 6¢ checks equality of all common attributes while the projection elimi-
nates the duplicate common attributes[226].

AB|C|D
A|/RB|RC|SB|SC|D

alc|b|a
a c b c b | a alc|bl|d
al| ¢ b c b | d elc|bl|a
e c b c b | a elc|bl|d
e C b C b d

Table A.15.: [larBrRCD

Table A.14.: Ogp=sprrc=s.c(RxS) (Or.B=s.BAR.C=s.Cc (RXS))

152 Appendix

The following example describes all the steps which have to perform on R (see Table A.11)
and S (see Table A.12) relations in order to compute the R X S:

1. Compute R x S (Table A.16)

2. Using the result of the previous step, compute the selection written as 6g p—s gar.c=s.c(R X S).
Table A.14 contains the result of this selection..

3. For each attribute names from the previous result, project out the column S.A, and re-
name the remaining columns from R. A to A. Table A.15 contains the result of the Natural
join.

>
~
vs]
7
P
w2
o
wnn
P
O

[T TN e T = Vo = W = T ¢ B I C I - B -)
- - A O O O O O O O O O
g 09 0 » ®» ®» O O O o o o
[I e T ¢ T - e T e I I e T o S - N e B o)
- o o - O O - O O - O O
T A Yy O Yy O a o e

Table A.16.: S xR

Semi join

The Semi join of the relation R by relation S is the projection onto the attributes of R of the
Natural join of R and S[226]. Formally, the Semi join is written: R o< S = [Tr(R X S).

For example: Consider R (see table A.11) and § (see table A.12) relations. The Semi Join is
the projection of the A.15 relation attributes onto A, B, C is shown in the Table A.17. If we
use the same relations (R and S), and we change the relations S o R, the result of the relation
is the projection of the A.15 relation attributes onto B, C, D shown in Table A.18.

When we use the Semi join or Natural join then the attributes of the relation become crucial.
If the relations R and S contain two many tuples, it will be expensive to calculate the result of
the Roc Sor RX S.

Appendix 153

A|B|C B|C|D
alc|b c|b|a
e|c|b cl|b

Table A.17.: Rx S Table A.18.: S<R

Outer join

The Outer join combines two relations R and S by keeping all the tuples in R, or all those in
S, or all those in both relations without checking whether or not they have matching tuples in
the other relation.

It has tree types:

e Right Outer join operates on two relations R and S. The result of the join includes the
tuples from § that do not have matching values in the common column of R. For example,
consider the relations R shown in Table A.19 and S shown in Table A.20. The Right
Outer join is performed on the C attribute in both relations. Table A.21 contains the
result R D{R,Czs_c S. The result contains all tuples from the right relation (in our case is
the S relation). If there are any unmatched values, a NULL value id returned.

e Left Outer join operates on two relations R and S. The result of the join includes the
tuples from R that do not have matching values in the common column of §. For example,
consider the relations R shown in Table A.19 and S shown in Table A.20. The Left Outer
join is performed on the C attribute in both relations. Table A.22 contains the result
R MR.C:S.C S. The result contains all the tuples from the left relation (in our case R)

e Full Outer Join operates on two relations R and S.The result include the tuples from R
that do not have matching value in the common columns of S and the tuples from S that
do not have matching value in the common columns of R. For example, consider the rela-
tions R shown in Table A.19 and S shown in Table A.20. The Full Outer join is performed
on the C attribute in both relations. Table A.23 contains the result R MR,C: sc S. The
result contains all tuples from both the R and the S relations.

154 Appendix
C|D
U1 A B RC |SC|D
AlB|C alg NULL | NULL | NULL | 1 f
alc|b b | h & b a a8
. a C b b h
e | flg e |]
] NULL | NULL | NULL | e]
c|h|i c |k
NULL | NULL | NULL | ¢ k
g|b|a g1
e f g g |1
Table A.19.: R re- Table A.20.: S re-
lation lation Table A.21.: RD}<zc_sc S
A B R.C S.C D
a C b b h
e f g g 1
A|B | RC| SC D c h i NULL | NULL
ajlc| b b h g b a a g
e | f g g 1 NULL | NULL | NULL 1 f
c|h i NULL | NULL NULL | NULL | NULL e]
g|b a a g NULL | NULL | NULL c k

Table A.22.: R DXkc_sc S

Table A.23.: R DX rc_sc S

Appendix 155

156

Bibliography

[1] W.N. Cottingham and D.A. Greenwood, An Introduction to the Standard Model of Par-
ticle Physics, Second Edition, Cambridge University Press 2007.

[2] LHCDb Collaboration et al, The LHCb Detector at the LHC, JINST 3 S08005, 2008.
[3] The four main LHC experiments, http://cdsweb.cern.ch/record/40525
[4] LHCDb Collaboration, LHCb : Technical Proposal, CERN-LHCC-98-004, 1998. - 170 p.

[5] LHCb Collaboration, LHCb VELO Technical Design Report, CERN/LHCC-01-011,
2001.

[6] J.A. Hernando, The LHCb Trigger, ACACTA PHYSICA POLONICA, 2007.

[7] R. Antunes Nobrega et al. (LHCb Collaboration), LHCb Reoptimized Detector Design
and Performance, CERN/LHCC 2003-030 (2003)

[8] J.J. van Hunen , The LHCb tracking system, CERN-LHCb-2006-027

[9] LHCb Collaboration, LHCb Inner Tracker Technical Design Report, CERN/LHCC
2002-029,2002.

[10] LHCb Collaboration, LHCb Outer Tracker Technical Design Report, CERN/LHCC
2001-024, 2001.

[11] LHCb Collaboration, LHCb RICH Technical Design Report, CERN/LHCC-00-037,
2000.

[12] LHCb Collaboration, LHCb Calorimeter Technical Design Report, CERN/LHCC-00-
037, 2000.

[13] LHCb Collaboration, LHCb Muon Technical Design Report, CERN/LHCC-01-010,
2001.

[14] LHCb Collaboration, LHCb Trigger Technical Design Report, CERN/LHCC-03-031,
2003.

[15] LHCb Collaboration, LHCb Online System Technical Design Report, CERN/LHCC-01-
040, 2001.

[16] The Metacomputer: One from Many,
http://archive.ncsa.illinois.edu/Cyberia/MetaComp/MetaHistory.html,
NCSA,1995

157

158 BIBLIOGRAPHY

[17] I Foster, J.Geisler, J. Nickless, W. Smith and S. Tuecke, Software Infrastructure for the I-
WAY High Performance Distributed Computing Experiment, IEEE Symposium on High
Performance Distributed Computing,1997

[18] I. Foster and C. Kesselman, Globus: a Metacomputing infrastructure Toolkit, Interna-
tional Journal of Supercomputer Applications, 1997

[19] Globus Toolkit, http://globus.org/

[20] I. Foster and C. Kesselman The Grid : Blueprint for a New Computing Infrastructure,
Morgan Kaufmannm publishers,1998

[21] Gentzsch, W. Response to Ian Foster’s "What is the Grid?, GridToday (2002)
[22] Enterprise Grid Alliance, http://xml.coverpages.org/ni2004-04-20-a.html
[23] Open Grid Forum, http://www.ogf.org/

[24] I. Foster, C. Kesselman and S. Tuecke The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration, Global Grid Forum, 2002

[25] History of Grid, http://www.it-tude.com/historyofgrid.html

[26] M. Gudgin, M. Hadley,N. Mendelsohn, J.J. Moreau, H.F. Nielsen, A. Karmarkar and Y.
Lafon SOAP Version 1.2, W3C Recommendation, 2007

[27] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana Web Services Description
Language (WSDL) 1.1, W3C Note, 15 March 2001, http://www.w3.org/TR/wsdl, 15
March 2001

[28] J. Moreau, A. Ryman, R. Chinnici and S. Weerawarana Web Services Description Lan-
guage (WSDL) Version 2.0 Part 1: Core Language, http://www.w3.org/TR/wsdl20, 26
June 2007

[29] Whitepaper, K. Cza jkowski, D. Ferguson, 1. Foster, J. Frey, S. Graham, T. Maguire,
D. Snelling, and S. Tuecke, From Open Grid Services Infrastructure to WS-Resource
Framework: Refactoring and Evolution, Whitepaper, 2004

[30] M. Gudgin, M. Hadley,N. Mendelsohn, J.J. Moreau, H.F. Nielsen, A. Karmarkar and Y.
Lafon SOAP Version 1.2, W3C Recommendation, 2007

[31] Q. Guan Grid-enabled Urban-CA GIS

[32] L. Vaquero, et al, A break in the clouds: towards a cloud definition, ACM SIGCOMM
Computer Communication Review, 39 (2009), 137150

[33] M. Stevens What Cloud Computing Means to You: Effi ciency, Flexibility, Cost Savings,
2009

[34] A. Agarwal et al, Deploying HEP Applications Using Xen and Globus Virtual
Workspaces CHEPOS, 2008

BIBLIOGRAPHY 159

[35] The TeraGrid homepage, www .teragrid.org/

[36] The Grid-Ireland homepage, http://www.grid.ie/

[37]1 The Open science Grid homepage, http://www.opensciencegrid.org/

[38] The DataGrid project, http://eu-datagrid.web.cern.ch/eu-datagrid/
[39] Architecture, http://en.wikipedia.org/wiki/Systems_architecture

[40] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 2009

[41] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, SETI@home: An
Experiment in Public-Resource Computing. Communications of the ACM, 2002

[42] D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage, 5th
International Workshop on Grid Computing, 2004

[43] Dominique A. Heger, An Introduction to Grid Technology Vision, Architecture, &
Terminology, Fortuitous Technology, 2006

[44] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid, Intl. J. Supercomputer
Applications, 2001

[45] Grid architecture, http://lcg.web.cern.ch/LCG/public/components.htm

[46] T. Singha , G. Kumarb Emerging Trends in Networking Environment, Challenges &
Opportunities in Information Technology, 2007

[47] K. Czajkowskiy, S.Fitzgeraldz, I. Fosterx, C. Kesselman, Grid Information Services
for Distributed Resource Sharing, Proc. 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, 2002

[48] OGF GLUE Working Group, http://www.ggf.org
[49] S. Andreozzi et al, GLUE Specification v. 2.0, Open Grid Forum, 2009

[50] S. Tucke et al, Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile,
Internet Engineering Task Force RFC 3820, 2004

[51] Load Sharing Facility (LSF), www.platform.com/workload-management/
high-performance-computing/lp

[52] Portable batch system (PBS), http://hpc.sissa.it/pbs/pbs.html
[53] Condor, http://www.cs.wisc.edu/condor

[54] A.Sim, A. Shoshani et al, The Storage Resource Manager Interface Specification Version
2.2, Open Grid Forum document, 25 September 2009

[55] BBFTP, http://doc.in2p3.fr/bbftp/index.html

160 BIBLIOGRAPHY

[56] File Transfer Protocol(FTP), http://en.wikipedia.org/wiki/
File Transfer_ Protocol

[57] 1. Mandrichenko, W. Allcock and T.Perelmutov, GridFTP v2 Protocol Description, Open
Grid Forum document, May 4, 2005

[58] Grid File System(GFS),https://forge.gridforum.org/projects/gfs-wg

[59] A. Jagatheesan, The GGF Grid File System Architecture Workbook, GGF Grid File
System Working Group, April, 2005

[60] EGEE, http://www.eu—-egee.org

[61] EGL http://www.egi.eu/

[62] SOA,http://en.wikipedia.org/wiki/Service-oriented architecture

[63] BDII, https://twiki.cern.ch/twiki/bin/view/
EGEE/InformationSystemOverview

[64] R-GMA, http://www.r—gma.org/fivemins.html

[65] The gridmap file, http://gdp.globus.org/gt3-tutorial/
multiplehtml/chl15s01.html

[66] P. Andreettoo et al, The gLite Workload Management System, CHEPO7, 2007

[67] M. Livny et al, Distributed Policy Management and Comprehension with Classified Ad-
vertisements, University of Wisconsin (Madison), Technical Report, 2003

[68] C. Marco et al, The gLite Workload Management System, CHEP09, 2009

[69] C. Aiftimiei et al, Job Submission and Management Through Web Service: the experi-
ence witht he CREAM service, CHEPO7, 2007

[70] CEMON home page, http://grid.pd.infn.it/cemon

[71] G. Lo Presti et al, CASTOR: A Distributed Storage Resource Facility for High Perfor-
mance Data Processing at CERN,MSST, 24th IEEE Conferance, 2007

[72] P. Fuhrmann et al, dCache, storage system for the future, Europar 2006, Dresden
[73] A. Lana et al, DPM Status and Next Steps, CHEP07, 2007

[74] Disk Pool Manager(DPM), https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm

[75] gridFTP,https://it-dep-fio-ds.web.cern.ch/it-dep-fio-ds/Documentation/

gridftp.asp

[76] RFIO, http://hikwww2.fzk.de/hik/orga/ges/infiniband/rfioib.html

[771 XRootD, http://xrootd.slac.stanford.edu/

[78] Network File System(NFS), http://tools.ietf.org/html/rfc5661

BIBLIOGRAPHY 161

[79] R. Mollon et al, GFAL and LCG-Util, CHEPO7, 2007

[80] DJRAI.1 Architecture and Planning, https://edms.cern.ch/document /476451
[81] S. Lemaitre et al, Recent Developments in LFC, CHEPO7, 2007

[82] Arda Metadata Catalogue(AMGA), http://amga.web.cern.ch/amga/

[83] gLite User Guide, https://edms.cern.ch/file/722398/
gLite—-3-UserGuide.html

[84] B. Koblitz et al, The AMGA Metadata Service, Grid Computing, Spinger Science, 2007
[85] UNOSAT project page, http://unosat .web.cern.ch/unosat/

[86] Worldwide LHC Computing Grid, http://lcg.web.cern.ch/
LCG/public/overview.htm

[87] The LCG home page, http://lcg.web.cern.ch/lcg/mou.htm

[88] WLCG Accounting Summary, https://espace.cern.ch/
WLCG-document-repository/Accounting/Tier-1/2010/december-10,
December 2010

[89] WLCG Accounting Summary https://espace.cern.ch/
WLCG-document-repository/Accounting/Tier-1/2011/september—-11,
September 2011

[90] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems, IFIP Inter-
national Conference on Network and Parallel Computing, 2005

[91] Globus Tolkit, http://www.globus.org/

[92] R.J. Wilson, The European DataGrid project, 2001

[93] Grid Forum, http://www.gridforum.org/News/news.php?id=132

[94] Cloud computing, http://cloudcomputing.sys—con.com/node/939230
[95] Open scieence grid web site, http://www.opensciencegrid.org/

[96] Nordic Data Grid Facility web site, http://www.ndgf.org/

[97] Science Daily, World’s Biggest Computing Grid Launched, Oct. 3, 2008

[98] M. Ellisman, S. Peltier, Medical Data Federation: The Biomedical Informatics Research
Network; Chapter 8; The GRID?2 Blueprint for a New Computing Infrastructure, 2009

[99] A. Rajasekar et al, Storage Resource Broker Managing Distributed Data in a Grid ,
Computer Society of India Journal, 2003

[100] D. B. Keator et al, Derived Data Storage and Exchange Workflow for Large-Scale Neu-
roimaging Analyses on the BIRN Grid , Front Neuroinformatics, 2009

162 BIBLIOGRAPHY

[101] XML-Based Clinical Experiment Data Exchange Schema,
http://www.xcede.org/XCEDE.html

[102] Storage Resource Broker, http://en.wikipedia.org/wiki/Storage Resource Broker
[103] Monogo DB, http://www.mongodb.org
[104] Appache couchdb homepage, http://couchdb.apache.org/index.html

[105] A. S. Szalay, J. Gray, Scientific Data Federation:The World-Wide Telescope; Chapter
7; The GRID?2 Blueprint for a New Computing Infrastructure, 2009

[106] R.J. Hanisch et al, Resource Metadata for the Virtual Observatory, Astronomical Data
Analysis Software and Systems XIII, ASP Conference Series, 2004

[107] NASA homepage, http://www.nasa.gov/

[108] MAS homepage, http://archive.stsci.edu/index.html

[109] Science Telescope Science Institute Homepage, texttthttp://www.stsci.edu/portal/
[110] AstroGrid homepage, http://www.astrogrid.org/

[111] Open SkyQuery homepage, http://openskyquery.net/

[112] SQL language, http://en.wikipedia.org/wiki/SQL

[113] J. Austin et al, Distributed Aircraft Engine Diagnostic; Chapter 5; The GRID2 Blueprint
for a New Computing Infrastructure, 2009

[114] Data Mining, http://en.wikipedia.org/wiki/Data mining

[115] B. Liang, M. Jessop, J. Austin, A Grid Enabled Visual Tool for Time Series Pattern
Matching, DAME team, Advanced Computer Architectures Group, 2004

[116] R. Davis et al, Pattern Matching in DAME using Grid Enabled AURA Technology,
DAME team, Advanced Computer Architectures Group, 2003

[117] T. Jackson et al, Delivering a Grid enab;ed Distributed Aircraft Maintenance Environ-
ment (DAME), DAME team, Advanced Computer Architectures Group

[118] M. Aderholz et al, Models of Networked Analysis at Regional Centres for LHC Exper-
iments(MONARC), Phase 2 Report CERN/LCB 2000-001, 2000

[119] LHCb Collaboration, LHCb computing: Technical Design Report, CERN/LHCC-05-
119, 2005

[120] ALICE Collaboration, ALICE computing: Technical Design Report, CERN-LHCC-
2005-018, 2005

[121] P. Saiz et al, AliEn - ALICE environment on the GRID, Nuclear Instrumemts and Meth-
ods, 2003

BIBLIOGRAPHY 163

[122] ATLAS Collaboration, ATLAS computing: Technical Design Report, CERN-LHCC-
2005-022, 2005

[123] CMS Collaboration, CMS computing: Technical Design Report, CERN-LHCC-2005-
023, 2005

[124] Kaushik et al, Panda: Production and Distributed Analysis System for ATLAS,
CHEPO06, 2006

[125] W. Bacchi et al, Evolution of BOSS, a tool for job submission and tracking, CHEPO6,
2006

[126] D. Spiga, CMS workload management, Nuclear Physics B, 2007

[127] D. Spiga et al, CRAB: the CMS distributed analysis tool development and design, Nu-
clear Physics B, 2008

[128] Parallel ROOT Facility, http://root.cern.ch/drupal/content/proof
[129] MONALISA Repository for ALICE, http://alimonitor.cern.ch/reports/

[130] D. L. Adams et al, DIAL: Distributed Interactive Analysis of Large Datasets, CHEPO6,
2006

[131] T.Maeno, PanDA: Distributed Production and Distributed Analysis System for ATLAS,
CHEPO07, 2007

[132] G. Negri et al, Distributed Computing in ATLAS, Porcessing of Sience conferance,
2008

[133] J. Elmsheuser et al, Distributed Analysis in ATLAS using GANGA, CHEP(09, 2009
[134] D. Spiga, CMS workload management, 2007
[135] CMS Collaboration, Distributed Analysis in CMS, J Grid Computing, 2010

[136] D. Evans et al, The CMS Monte Carlo Production System: Development and Design,
Nuclear Physics B, 2008

[137] S. Bagnasco et al, AliEn: ALICE Environment on the GRID, CHEPOS, 2008
[138] P. Buncic et al, The architecture of the AliEn system, CHEP0O4, 2004

[139] S. Albrand et al, ATLAS metadata interface(AMI) and ATLAS metadaat catalogs,
CHEPO04, 2004

[140] J. Cranshaw et al, Integration of the ATLAS Tag Database with Data Management and
Analysis Components, CHEPO7, 2007

[141] S. Albrand et al, The ATLAS metadata interface, CHEP09, 2009
[142] S. Albrand et al, The ATLAS metadata interface, CHEPO7, 2007

164 BIBLIOGRAPHY

[143] A. Afaq et al, The CMS Dataset Bookkeeping Service, CHEP(07, 2008
[144] Java servlet, http://en.wikipedia.org/wiki/Java_Servlet
[145] V. Kuznetsov, D. Riley, The CMS DBS Query Language, CHEP(09, 2010

[146] A. Dolgert, et al, A multi-dimensional view on information retrieval of CMS data,
CHEPO07, 2008

[147] V. Kuznetsov, et al, The CMS Data Aggregation System, ICCS 2010, 2010

[148] LHCb software architecture group., GAUDI LHCb Data Processing Applications
Framework, Architecture Design Document LHCb 98-064, CERN, 1998.

[149] GLAST experiment, http://fermi.gsfc.nasa.gov/
[150] E. Radicioni, Results from the HARP Experiment, TAUP 2007.
[151] DayaBay experiment, http://dayabay.bnl.gov/

[152] MINERVA experiment, http://minerva.fnal.gov/

[153] G. Barrand et al, GAUDI - A Software Architecture and Framework for building HEP
Data Processing Applications, Computer Physics Communications, Volume 140, Issue
1-2, p. 45-55.

[154] M. Cattaneo et al, The new LHCb Event Data Model, LHCb-2001-142,2001.

[155] S. Miglioranzi et al, The LHCb Simulation Application, Gauss: Design,Evolution and
Experience, CHEP10, CERN-LHCb-PROC-2011-006

[156] I. Belyaev et al, Simulation Application for the LHCb Experiment, CHEPO3, 2003

[157] Gauss, http://lhcb-release—-area.web.cern.ch/
LHCb-release—area/DOC/gauss/

[158] Pythiab, http://projects.hepforge.org/pythia6/
[159] Pythia8, http://home.thep.lu.se/ torbjorn/pythiaaux/present.html
[160] Hijing, http://www-nsdth.l1lbl.gov/ xnwang/hijing/

[161] EvtGen, http://lhcb-release—-area.web.cern.ch/
LHCb-release—area/DOC/gauss/generator/evtgen.php

[162] S. Agostinelli et al, Geant4 - A Simulation Toolkit, Nuclear Instruments and Methods
A, 2003

[163] Boole, http://lhcb-release—area.web.cern.ch/
LHCb-release—area/DOC/boole/

[164] R. Graciani, LHCb Computing Resources:2011 reassessment, 2012 request and 2013
forecast, LHCb Public Note, 2011

BIBLIOGRAPHY 165

[165] EGI accounting portal, https://www4.egee.cesga.es/accounting/reports.html

[166] S. Paterson et al, Performance of combined production and analysis WMS in DIRAC,
CHEP09

[167] A. Tsaregorodtsev et al, DIRAC: A Community Grid Solution, CHEPO7

[168] A. Tsaregorodtsev et al, DIRAC, Distributed Infrastructure with Remote Agent Control,
CHEPO3

[169] P. Buncic et al, Architectural Roadmap Towards Distributed Analysis, Technical report,
CERN-LCG-2003-033, 2003

[170] J. Closier et al, Results of the LHCb Data Challenge 2004, CHEP04

[171] A. Tsaregorodtsev et al, DIRAC: Workload Management System, CHEP04
[172] J. P. Baud et al, DIRAC Review Report, LHCb -2006-04, 2006

[173] R. Nandakumar et al, The LHCb Computing Data Challenge DC06, CHEPO7

[174] J. Closier, S.K. Paterson Performance of Combined Production And Analysis WMS in
DIRAC, CHEP09

[175] CREATIS, http://www.creatis.insa-lyon.fr/site
[176] Virtual Imaging Platform, http://www.creatis.insa-1lyon.fr/vip/node/2

[177] International Linear Collider, http://www.linearcollider.org/
about/The-people/The-ILC-community

[178] Linear Collider Detector, http://lcd.web.cern.ch/LCD

[179] J. Belle II collaboration, Belle II technical design report, KEK report 2010

[180] Gisela project, http://www.gisela-grid.eu

[181] Cherenkov Telescope Array project, http://www.cta-observatory.org
[182] BES collaboration, http://bes.ihep.ac.cn

[183] SuperB collaboration, http://web.infn.it/superb

[184] R. Graciani Diaz, LHCb: DIRAC Framework for Distributed Computing, CHEPO7

[185] R. Graciani Diaz et al, Belle-DIRAC Setup for Using Amazon Elastic Compute Cloud,
Volume 9,Journal of Grid Computing, 2011

[186] A.C. Smith et al, DIRAC: Reliable Data Management for LHCb, CHEPOQ7

[187] A. Tsaregorodtsev et al, DIRAC3 - the new generation of the LHCb grid software,
CHEPO09

[188] Proposed Ganga work plan in context of GridPP, LHCb/ATLAS GANGA/Gaudi

166 BIBLIOGRAPHY

Project, 2001
[189] K. Harrison et al, GANGA: a user-Grid interface for Atlas and LHCb, CHEP03

[190] A. Soroko et al, The GANGA user interface for physics analysis on distributed re-
sources, CHEPO4

[191] K. Harrison et al, Ganga user interface for job denition and management, Fourth UK
e-Science All-Hands Meeting, 2005

[192] K. Harrison et al, Ganga: a Grid User Interface, CHEP06

[193] F. Brochu et al, Ganga: a tool for computational-task management and easy access to
Grid resources, CHEP09

[194] B.C. Neumann et al, Kerberos: an authentication service for computer networks, IEEE,
1994

[195] J.H. Morris et al, Andrew: a distributed personal computing environment, Commun,
ACM 1986

[196] T. Reenskaug, The Model-View-Controller (MVC) Its Past and Present, University of
Oslo, 2003

[197] T. E. B. Hudzia, et al, A Java based architecture of p2p-grid middleware The 2006
International Conference on Parallel and Distributed Processing Techniques and Appli-
cations, 2006.

[198] Zs. 1. Lazar. et a, Feicim: A browser for data and algorithms, CHEP(Q7
[199] Formal grammar, http://en.wikipedia.org/wiki/Formal_grammar

[200] Design patterns, http://en.wikipedia.org/wiki/
Design_pattern_(computer_science)

[201] Creational Design patterns, http://en.wikipedia.org/wiki/Creational pattern
[202] Factory ,http://en.wikipedia.org/wiki/Factory method pattern
[203] Builder , http://en.wikipedia.org/wiki/Builder _pattern

[204] E. Gamma et al, Design Patterns - Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

[205] Composite ,http://en.wikipedia.org/wiki/Composite_pattern
[206] Template Method ,http://en.wikipedia.org/wiki/Template method pattern

[207] Chain of Responsibility , http://www.oodesign.com/
chain-of-responsibility-pattern.html

[208] Chain of Responsibility , http://en.wikipedia.org/wiki/
Chain_of_responsibility_patterna

BIBLIOGRAPHY 167

[209] Qt-cross-platform application and Ul framework , http://gt .nokia.com/
[210] Java Swing , http://en.wikipedia.org/wiki/Swing_(Java)

[211] MFC ,http://en.wikipedia.org/wiki/
Microsoft_Foundation_Class_Library

[212] GTK ,http://www.gtk.org/

[213] Spring framework , http://www.springsource.org/
[214] django , https://www.djangoproject.com/

[215] Pylons , http://pylonsproject.org/

[216] ASPNET MVC home page , http://www.asp.net/mvc
[217] Struts ,http://struts.apache.org/

[218] Oracle Application Framework , http://en.wikipedia.org/wiki/
Oracle Application Framework

[219] F. Buschmann. et al, Pattern-orineted software architecture, A System of Patterns, John
Wiley Sons, 1996

[220] A. Karagkasidis, Developing GUI Applications:Architectural Patterns Revisited, Eu-
roPLoP, 2008

[221] J. Cai, et al, HMVC: The layered pattern for developing strong client tiers, This hierar-
chical model eases the development of a Java-based client tier, Java World, 2000

[222] Extensible Markup Language ,http://en.wikipedia.org/wiki/XML

[223] Bookkeeping working group , http://lhcb-comp.web.cern.ch/
lhcb-comp/bookkeeping/project.htm

[224] R. Elmasri, S. B. Navathe, Fundamentals of Database Systems , Fourth Edition, Addi-
son Wesley, 2004

[225] S. Sumathi, S. Esakkirajan Fundamentals of Relational Database Management Systems
, Fourth Edition, Springer, 2007

[226] J.D. Ullman, Principle of Database and knowledge-base System, Volume 1, Computer
Science Press, 1988

[227] G. Corti et al, Monte Carlo Event Type Definition Rules, LHCb Internal Note, Jan 11,
2007

[228] Certesian product ,http://en.wikipedia.org/wiki/Cartesian_product
[229] SQL ,http://en.wikipedia.org/wiki/SQL

[230] L. Hoobs, Oracle Materialized Views Query Rewrite, Oracle Corporation, Computer

168 BIBLIOGRAPHY

Science Press, 2005
[231] N. Folkert, Optimizing Refresh of a Set of Materialized Views, Oracle Corporation
[232] POOL project homepage ,nttp://lcgapp.cern.ch/project/persist

[233] B. Bryla and K. Loney, Oracle Database 11g DBA Handbook, Oracle Press, Mc Graw
Hill company, DOI: 10.1036/0071496637

[234] DIRAC Monitoring ,https://lhcbweb.pic.es/DIRAC/LHCb-Production/lhcb
_user/ systems/activitiesMonitoring/ systemPlots?
componentName= Bookkeeping/BookkeepingManager

[235] M Girone, CERN Database Services for the LHC Computing Grid, CHEP07, 2007
[236] Physics Databases Services portal , https://phydb.web.cern.ch/phydb/

[237] LHCb Bookkeeping Web User Intefcae ,
https://lhcbweb.pic.es/DIRAC/LHCb-Production/lhcb_user/Data/BK/display

[238] SQL Plus ,http://en.wikipedia.org/wiki/SQL*Plus
[239] Multi Mechanize , http://code.google.com/p/multi-mechanize/

[240] Oracle Automatic Storage Management ,http://www.oracle-base.com/articles/
10g/AutomaticStorageManagement10g.php

[241] Redundant Array of Independent Disks ,http://en.wikipedia.org/wiki/RAID

[242] R. Brun and F. Rademakers, ROOT - An object oriented analysis framework.,
Nuc.Inst.Meth. in Phys. Res A, 389 (1997) 81.

[243] D.E. Knuth, Third edition: The art of computer programming., Addison-Wesley, 1997

[244] Python inspect module, http://docs.python.org/library/inspect.html

[245] Root qt integration project, http://root .bnl.gov/QtRoot/How2Install4Unix.html
[246] JGraph home page, http://www. jgraph.com

[247] COMODI home page, http://comodi.phys.ubbcluj.ro/main.htm

[248] Zs. I. Lazar, L. I Kovacs, Z. Mathe, COMODI: Architecture for a Component-based
Scientific Computing System, PARA06, UmeAA, Sweden

