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FOREWORD 

This Volume contains the lectures presented a t  a week-long 
Conference on  De Sitter and Conformal Groups and Their Applications 
held a t  the University of Colorado, June 29-July 3 , 1970.  The lec— 
tures were both on the mathematical theory of the representations of 
a general class of non—compact groups,  and a l so  on their various re— 
cent uses in many areas of theoretical physics . Correspondingly the 
Volume is divided in two parts , and each into various Sections . The 
interest in  the representations of many non-compact groups is rapidly 
increasing among physicists who ,  unlike mathematicians,  need the 
actual construction of these representations . Perhaps 12h_e most impor- 
tant non-compact groups in physics , the Lorentz and Poincare groups, 
were the subject matter of a similar Conference here in Boulder about 
six years a g o }  Since then much has been learned about the represen— 
tations of groups like 0(3 , 2 ) ,  O ( 4 , 1 ) ,  O ( 4 , 2 ) ,  . . . and their inhomo— 
geneous and euclidian counterparts. At the same time, the applica— 
t ions of new group theoretical techniques-—which go much beyond the 
cus tomary  u s e  compact  symmetry groups--have brought new resul ts  
and new insights t o  a number of physical problems . We believe there— 
fore that it is timely and useful to  bring some of the existing litera— 
ture, the new results and the unsolved problems in the area of De Sit— 
ter and Conformal Groups to  the attention of physicists and mathema— 
ticians . This i s  what the present volume intends to d o .  

I w i s h  t o  thank  the  lecturers and the participants for their 
e f fo r t  for  a l ively Conference , and  to  Mrs . Marion Higa for  her invalu— 
able contributions in the organization of the Conference and  in  the 
editing of this  Volume. 

Boulder, December 1 9 7 0 .  A .  O .  Barut 

tLectures in Theoretical Physics,  Vol .  VIIA. The Lorentz Group 
(Univ. of Colorado Press ,  1965) .  
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INTRODUCTION TO DE SITTER AND CONFORMAL GROUPS 
AND THEIR PHYSICAL APPLICATION Sf 

A .  O .  Barut 

As a prelude t o  the contributions in these Proceedings we re— 
view in  some detail the general properties of De Sitter and Conformal 
Groups and  the areas  of their physical  applications. 
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TPresented a t  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1970 .  



4 A. O. BARUT 

I. The Role of De Sitter and Conformal Groups in Particle Physics 
Although the largest exact symmetry group used in particle 

physics is still the full inhomogeneous Lorentz group, extended with 

discrete symmetries (e.g. charge conjugation, baryon and lepton num- 
bers) , larger simple groups containing the Lorentz group play more and 
more an important role. Of course, the symmetry group of the general 

relativity theory is much larger, but there is not yet a theory which 

combines the gravitational and the strong, electromagnetic and weak 
interactions of fundamental particles. How do these large groups 

enter into the theory, and in what sense are we using them? We will 
answer these questions for the De Sitter and the conformal groups . 

There are three major areas of physical applications: 
(1) Theories Invargnt Under Dilatations and Special Confor- 

mal Transformations in flat space, in addition to inhomogeneous Lo- 

rentz transformations . 
The dilatations are associated with the change of scale of 

measurements , and the special conformal transformations may be as— 
sociated, roughly speaking, with the change of scale from point to 
point. With this interpretation the independence of the physical laws 
flow the scales used should lead to an _e______xact 15—parameter conformal 
invariance of the theories. I Except for” free electromagnetic fields 
and other wave equations for mass zero particles of arbitrary spin 

such invariant theories , however, have not been formulated. Instead 
the usual Lorentz—invariant Lagrangians of interacting massive scalar, 
spinor and tensor fields with mass terms are obviously not exactly in- 
variant under conformal group; they are only approximately invariant 

under certain conditions (e.g. at high energies). One speaks then of 
a "broken scale invariance. " This does not mean that we cannot for- 
mulate exact conformally invariant theories , e .g. field theories. We 

shall come back to this question in Section III. 1 . 
(2) Gecmetrization of Dynamics of Interacting Systems. 
The De Sitter and conformal groups are also used as dynam - 

Lil groups , generalizing the concept of symmety. If the standard 

symmetry group gives us the states of a system of a given energy 
(multiplets) , the dynamical group gives E the states of the system 
(infinite multiplets) . It may also be denoted more precisely as the 

group of the quantum numbers, or group of all rest—frame states. The 
concept is particularly useful in the relativistic theory of composite 
systems. In these applications , these groups are interpreted as 

0(4, 1) and O(4,2), respectively: they contain the physical homoge- 
neous Lorentz group 0(3 , l) as subgroup, but not the tanslations. 
In physics , we are not using abstract Lie groups, but groups whose 

1.This is by no means the only interpretation. 1) 
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generators have definite physical interpretation. Thus , the same 
group may occur in entirely distinct situations and distinct interpre- 
tations . Details about 0(4, 1) and O(4,2) dynamical groups are given 
in Section 111.2 . 

(3) Theories in Curved-Spaces in the Large (and in the SmaLlL 
According to Mach‘s principle, local inertial frames and local 

isotropy of space (i.e . rotational invariance) are due to the distribu- 
tion of distant galaxies. If the shape of the distant space is impor- 

tant for phenomena in the small, we should from the beginning start 
with a curved or closed universe , rather than the flat space—time. Of 
course, we have to give up the usual energy—momentum vector and the 
conservation of the total energy-momentum; instead of the transla— 
tions , we have new displacement operators. It has been conjectured 

that although the deviations of the space from flatness is very small, 

it is in principle essential that a consistent theory be formulated in 
the curved space.2 Along the same line, the introduction of gravita- 
tion, so it is hoped, may su ply the necessary cut—off factors for a 
finite quantum field theory.3 At any rate , quantum field theory in a 

curved space-time is one of the important, if not immediate, goals of 

theoretical physics.“ (Sec. III.3). 
All the above three points of view being valid we can imagine 

a super—theory in which the conformal group occurs at least three 
times in three different interpretations: scale—changes , curved space 
and internal dynamics! 

We begin with a review of the necessary mathematics . 

II. Mathematical Results 

1. Group Properties 
We shall be interested in the Lie algebras and in non-compact 

Lie groups O(3,2), O(4,1) and O(4,2) [O(3,3) and O(5,1)] , also in 
E(3 ,2), E(4,1) and E(4,2). The notation here is that O(p,q) is the f_ul_l_ 
real non-compact orthogonal group with the invariant form x13 + x23 + 
. .. xa- x§,+1-. . .- x3 , and E(p,q) is the corresponding pseudo- 
e‘ucli ian group, i.e.p6?pIQ) plus translations. 

We assume a knowledge of the Lorentz and Poincaré groups, 

(0(3 , 1) and 13(3 , 1)) , and their representations . 5) 
The group O(p,q) has four pieces , as in the case of the Lorentz 

group. The notation SOo (4,2) will be used for the component continu- 
ously connected to identity element (i.e. det = +1). 

The De Sitter and conformal groups belong to the complex sim— 
ple groups Ba and D3 in Cartan's classification (Table I). Different 
non-compact groups may have the same complexification. Conversely, 
for every simple complex group we get a unique com)pact real group, 
and a number of distinct real non-compact groups . 6 
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Table I. Complex Simple Groups and Their Real Forms 

Real No. of Some Real Non- 

Complex Cartan Group Compact Parameters Compact Forms 
Form r 

B,a 0(5) 10 O(4,1), O(3,2)  

D3 0(6) 15 o(5,1). 0(4.2), 0(3,3 
Cg Sp(4) 10 Sp (2 :2) 1 SP4 

A3 SU(4) 15 SU(S ,1), SU(2,2), 
SL(4.R). Qa 

The isomorphisms between the groups listed in Table I are shown in 
Table II. 

Table II. Isomorphisms Between Non-Compact Groups 

' Complex Isomorphism Real Isomorphisms 

Ba~ Cg 0(3.2)~Sp(4)~Sp(2.R) 

0 ( 4 I 1 ) ~  S p ( 2 I 2 )  

0(5) ~ USp(4) 

D 3 ~ A e  O(4,2)~SU(2,2) 

O(3,3)~ SL(4,R) 

1 0(6) ~ SU(4) 
‘ o(5,1)~ Q3 

De ~ SU(3,1) 

Two groups that have the same Lie algebra are related to each 
other by G’ = G/D Where D is a discrete group; i.e. the groups G' 
and G are locally isomorphic, but not globally. Among all such 
groups having the same Lie algebra there is only one which is simply 

connected; it is the universal covering group. In this sense SU(4) is 
the covering group of 80(6); SU(2,2) is one of the covering groups of 
SO(4,2) , but not th_e universal covering group. (The explicit corres- 
pondence is shown in Sec. IV.)  
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2. Realizations and Representations (Linear and Nonlinear) 
Most groups used in physics may be defined as the groups of 

transformations , linear or nonlinear, acting on a space with a rela— 
tively low dimension. Thus , the groups O(p,q) are defined as the real 
linear transformation groups on the p+q = n-dimensional real space; 
the groups U(p,q) as the complex linear transformation groups on the 
p+q = n—dimensional complex space. The conformal group has there- 
fore a 6—dimensional real linear representation as O(4,2), and a four- 
dimensional linear representation, by 4 x 4—complex matrices, as 
SU(2 ,2) . There is , however, another possibility: We can realize the 
conformal group on the 4—dimensional real Minkowski space—time by 
real, but nonlinear, transformations in such a way that the inhomoge— 
neous Lorentz subgroup is again linearly represented as before. That 
is besides the usual transformations 

X = A  x + a  ( 2 . 1 )  

we have the new ones 

and 

x -cx"a 
x’ = H (2.2) 

L1 l-2cvxv+c2x2 

(x2 Ex: 122) 

altogether a group with 15 parameters . Eqs . (2 . l)—(2.2) represent 
the most general group which transforms dsz = 0 into ds'3 = 0 in the 
Minkowski space (i.e. light cone into light cone). 

In quantum theory we need the representations of the group 
(defined, say, on the Minkowski space) on the linear space of quan— 
tum states. For symmetry groups this means the linear unitary repre- 
sentations in the Hilbert space (because of Wigner's theorem )) . For 
groups which are not symmetry groups other realizations may also be 
important. 

3 . The Lie Algebra 
Quite generally, the pseudo—orthogonal group‘s ‘O‘(p,q), (p+q=n, 

are generated by the r = n 11-1 generators which can be written as an 
antisymmetric tensor Lab -.- — Lhal a,b = 1 ,2, . . .,n. The group 
element 919-319-1613 generated by Lab is a retatir‘m (or a hyperbolic 
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rotation) by an angle eab around an axis perpendicular to the a—b— 
plane. For this choice of the generators (e.g. choice of basis of the 

Lie algebra), the group is parametrized by r angles eab' 
The commutation relations of the generators (i.e. Lie products) 

are given by 

[Lab' 1'c = _i[gacLbd + gdac ' gbcLad ' gadLbc]' (3'1) 

where gab = (+++. . .+ ————— ) . 
M M 

p—times q—times 

The quadratic, third and fourth, etc.—order (invariant) Casimir 
operators of the Lie algebra are (for n = 6, for example) 

« _ _ = _ _ ac db 
Q(2) ' 2T1” (LGLG) (gabgcd gadgbc) L L 

_ ab cd ef 
Q(3) — 6:abcdefL L L 

_ bc da 
QM) - LabL L c  (3.2) 

udt-t— ———— — _-——‘——| 

Note that lowering and rising of the indices in La10 is Carried out with 
g . ab 

3.1 A New Basis 
Quite generally for O(p,q) groups , we can define 

PA 5 LA,n—1 ' LAn 

KA z LA“?1 + LAn , A,B = 1,2,. . .n—2 

D a L1H,n (3.3) 

Then the commutation relations (3 . 1) become 

EPA, PB] =[KA, KB] = o 

[L ] =  AB' PA P DAB. KA] = -19AAKA; [L AB' D] = 0  -igAA B; 

(equation continued) 
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[PA’ K13J =1(gnn )1“ AB ZigABD 

) 

g n — l , n — 1 L  

[ D ’  13A:1 = _i(gnnLA, n— l +gn-l,n-1L!-‘.,n 

[ D '  KA:l = i(gnnLA, n—l gn—1,n-1LA,n ) . (3.4) 

which show that PA and KA are (n—2)—vectors whose components com- 
mute, and D is a scalar. 

A s a  specialcase n = 6 , p = 4 ,  q = 2 ( i . . e  9 n n =  - 1 n - 1 )  
we get in this basis the _t_wo Poincare subalgebras of the 0 : 9 a  
group: {LI-1W PM} and {HIV Kg} with the commutation relations:a 

[ P u t  PV]  = [ K U '  KV] = 0  

L P =-1 P L , K =-1 K; L D =0 I: uv’ u] gnu v’ E w u] gnu v E uv’ ] 
[PW KV'] = 21(1W — gWD) 

CD. PM] = +1 PM' 

[ D ,  Ku] =-11<L1 (3.5) 

In the nonlinear realization (2 . 2 )  , D is the generator of dilatations 
and are the generators of special conformal tensformations. To 
see t e se  commutation relations directly, we may use the group law 
in the -space and the corresponding compo:ition of representations: 
For exemple, consider-x“ =x’xu+ ’ ,  xu” ”:r“1’+au”=)\"'H'xM 
x” G a u ' i -  x u +  a“l , and correspondingly the representations 

31(mJafi).Then from the group property G =  G” G’ and the 
composition law of the parameters x =  -1' x ’  , a = x '  ’ + a ”  , we 
obtain the commutation relations [D,  P“ ] =  1?“. The other commuta— 
tion relations in (3.5) can be obtained in a similar wey. 

3 . 2 Group Contraction 
We show here a relation between the simple O(p,q)-groups 

and the corresponding pseudo—euclidian E(p,q— - l )  or E (p -1 ,q )  groups . 
Let us denote, referring to  the basis (3.1), the generators LA n bY 
CPA, and the remaining generators by LAB , , A  B = 1 ,  2 . . .n-1 . The 
commutation relations can be written as 
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L =ig P (3.6) 

_ i 
[P ’ l3B:l ignn (:3 LAB 

.1. 
c nB AA B 

Now we let c 4 0°. In this limitL and PA are generators of the 
pseudo-euclidian group in (mu-gianensions determined by gAB’ i. e. ’LAB 
generate the homogeneous transformations and PA, (which is (n—ll)- 

vector operator) generate the translations. Depending on the asign of 
g n we get E(p,q-l) or E(p-1,q) These groups are also written as 

1 Eofihq-l) , a semi-direct product of translations with the ortho— 
gonal group, Tn_1 being an invariant subgroup. 

Thus , the contraction of both 0(3 ,2) and 0(4, 1) can give the 
inhomogeneous Lorentz group. 

The quantity PAPA is an invariant of the contracted inhomoge— 
neous group, but is no longer an invariant in the original group. 

3 . 3 Two Other Parametriza‘tions. of 1:119 Conformal Ggoup 

(a) The U(2,2)—parametrization: We consider the complex 
four—dimensional space with the invariant form 

|21|3+ Izgla- |z3|3- |z4|3=invariant, (3.7) 

and parametrize the pseudo unitary infinitesimal transformations as 
follows 

I V V z = z + + 1 z 3 - 8 u H (mu 3“ ) V ( ) 

where auv and BM” are real parameters . The group elements can then 
be written as 

i(-%g.uvM +§15”VK v) 
G = e “V H , (3.9) 

with 

M = — M , K = K . (3.10) 
w W W vu 

9) The commutation relations of these generators are then 
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M , =-' M + M — M - M 
E IJV Moo] 1(guo Vp gvo HO gvo up gun v0) 

, =—' + K + K + 
[ Kuv K0 p] 1(guo Kvp gvp uo gvo u p  gup Kvo) 

[M , K ] = — 1  K — K - K + K ) 
uv Op (gm vp gvo H0 gvo up gun vo(3 11) 

The U(2) ® U(2) subgroup of U(2,2) is generated by (M12;  K11, K12 , 
K22) EB (M347 K33 I K34 , K44). For SU(2,2) there will a relation be- 
tween the four—diagonal elements Ku , H = 0,1 , 2 , 3 ;  only three of 

. . . Ll 
them Will be independent. 

(b) Cartan Parametrization: Because the set of generators 
fii commute-among themselves , they form the Cartan-subalgebra {Hi}. 
ext WQ define the 12 generalized lowering and raising- operators 

2 M +- 
Ea %( LIV I K H V )  

a M —' E %( V 1Kv)  

w‘v; d=1,2,...6. (3.12) 

In terms of these new generators, the commutation relations are in- 
deed in the canonical form]- 

[E 'EB]_N0LBE0L+B' “"8 

EB“. Efl] arm-g . (3.13) 

Let 

E — l  E — Q  

Y Y” E4 (3 14) 
AB Ea Yaa . 

E4 E5 

A I B  = 1 1 2 1 3 1 4  
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where YAA are again linear combinations of KHH'S . Then we have 
simply 

[YAB' Yon] = 930 YAD ' gAD YBC ' (3'15) 

and the Casimir operator becomes 

BA 
Q(2)=YABY (3.16) 

4 .  Homemfi‘hism Between 30 4 2 and SH 2 2 
In  this section we derive the relation between the six dimen- 

sional real coordinates n1 . . .116 a n d  the four-dimensional complex 
coordinates Z1. . . .24, . The discussion parallels that of the well known 
homomorphism between SL(2 , c )  and 30(3, 1) [or 30(3) and SU(2)].11) 

Define the anti—symmetric matrix 

0 n1 +i1'1,a n 3  +in4 n 5  +in6 

0 n 5  ‘i'rle 1'13 -int 
(4 . 1) 

0 Th ‘i’fla ‘ 

0 

and  the metric tensor 

. (4.2) 

Then 
+ 

Tr(AGA G) = 2[ (911922+gaag44)(n12 +7129) + (g11g33+g22944)(n32+n42) 

+ (9111‘-3144"'922‘?13:5)(T15:a +1152” (4.3) 

This expression is invariant under the transformations 

, + 
A -. A = UAU (4.4) 

if U+GU = c ,  that is, if U 6 SU(p,q), p+q = 6, then 
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Tr(A'GA’+G) = Tr(AGA+G) (4.5) 

Lemma: If A is antisymmetric and of the form given by Eq. (4. 1), 
then A’ = UAU+, U E SU(p,q) is also antisymmetric and of the form 
(4. 1). This follows from the property: 

(GAG)CD; A,B,... =1,2...4 , 
(4.6) 

where the bar indicates the complex conjugation. (Example: Alf 
g”- gull“). Thus the matrix A’ has the Same form (4.1) in terms of 
'six new coordinates n1 , . . .113”. The tansformation A’ = UAU+A 
duces therefore a transformation in the 11— space with the invariant 
Tr(AGA+G) . It follows from Eq. (4 .3) that this invariant is that of 
(pseudo)—orthogonal transformations in the 6-dimensional space o_nly_ 
in two cases: 

(a) All 9AA have the same sign: then we get the homomor- 
phism SU(4) -. 0(6). 

(b) Two of the 9AA are positive, and the other two negative: 
then we get the homomorphism SU(Z, 2) (,4 2). 

In both cases iU correspond to the same O(p,q) tansformation. 
If we define the antisymmetric tensors EA (generalizing the 

Pauli matrices‘),l' we can write 

A IA A B 

A = — A  =ée 
AB BA ABC D 

_ I = I . = A n 2A, A n 2A , T] 0 Er} (4.7) 

Hence 

IA _ B + =  A B 2A n UZBU 0 En 2A (4.8) 

or 

0’"B =%Tr(U 2B U+ 2A) (4.9) 

The inverse formula is left to the student as an exercise. To my 
knowledge these formulas are nowhere in the literature. 

, etc. 

0
0

0
*

“
 

0
0

0
0

 

O
O

O
O
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5 .“ Re presentation Theory 

5 . 1 Finite Dimensional Representations 
The finite dimensional irreducible representations of the  simple 

group B2 ~ 0 2  are  a l s o  the  unitary irreducible representations of the 
compact group 0(5). These same representations are non—unitary for 
O(4, 1) and 0(3 , 2 )  . These representations are well known and can  be 
characterized , a s  usua l ,  by the weight diagrams (or Gal'fand—Zeitlin 
patterns). 10)  ' 1 2 ) !  13) The dimensionality of these low-lying finite 
dimensional irreducible representations and  their reduction with res— 
pect to  the O(4)—subgroup i s  shown in the following Table: 

Dimension of Representations 

0(5) 1 z} s .10 14 16 
' /\ /\ A (5.1) 
O(4)—reduc t ion l  2 2 4 l 3 4 3 — - _ 

There are  general  formulas  for the dimensionality of the finite d imen— 
sional representations of classical groups in terms of top weight and 
roots (Weyl's character and dimension formulas). 

Similarly the finite—dimensional representations of D3 ~ A3 are 
the unitary representations of 0(6). The irreducible ones and  their 
reduction with respect  to  the 0(5)—subgroup i s  a s  follows: 

Dimension of Irreducible Representations 

0(6) 1 4 6 10 15 2 0  3 6  
_ /\1 ~"\ A /‘\ 

0(5)—Reduction l 4 5 1 0  5 1 6  4 20  1 6  

' (5.2) 

5 . 2 Explicit Form of the 4—d1menslonal Representations of 
"063)" and  "0(6)" Classes i n  Terms of Dirac Matrices 

This very u s e f u l  representation is  given in the Lie algebra 
the following matrices 

E = l '  - = E Lab L a b  g lyayb,  a < b ,  a , b  l,2,3,4,5 0 , 6  

Y a  = (Y1 I Y 2 :  Ya I _ Y 5 1  Y 0 ,  ‘11) 

o - + v5 =YY1Y2v3. v02 = 1. Y1“? =Y52=‘1: Y0 =v° 

Yi+=-Yi, YE+=-Y5 ' (5.3) 
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1 
The matrices *zab satisfy the commutation relations 5) ( 3 . 1 )  

with g-.»_ v- = (++++——) . This particular representation is pseudo—unitary 
with respect to the metric yo: 

=JL ( 5 . 4 )  
ab ab 

There is another inequivalent irreducible 4—dimensiona1 representation 

of the A3 —groups , namely 

(5.5) 

If we re strict in the above representation the indices to a ,b = 
1 ,2 ,3 ,4,5 E 0, we get the four-dimensional representations of Ba ~02 

—groups , which are also irreducible. We shall see later also infinite 

dimensional representations of 0(4 ,2) which when restricted to its 

various subgroup remain irreducible. 
In the above representation, the homogeneous Lorentz sub— 

group SO(3 , 1) is generated by 

= l '  _ LLiv 210(q 9W) . (5.6) 

and with respect to this Lorentz group the remaining nine generators 

can be grouped into a vector (% Yu)’ an axial vector («$2- Yaw“). and 
a pseudoscalar (-— 

The four—dgnensional representation can also be characterized 
by the representation relation 

Y I Y '— 2 5 . 7  

. 1 5 )  

134 =-2106 112 . (5.8) 

5.3 Labeling Operators. Choice of Bases 

In the following Table we show the enumeration of the com— 

plete set of commuting operators (CSCO):  
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Group No. of No. of No. of Additional Operators 
Parameters Casimir Cartan Needed to Label the 

Operators Generators States Uniquely 

"0(5),, 10' 2 z 2 

AI, ~ D ("C(63)") 15 3 3 3 

For irreducible representations, the choice of the 4 operators for Be , 
or the 6-operators for A3 (beside the Casimir operators) depend on the 
physical applications (i.e . which quantum numbers are diagonalized 
and interpreted physically). That the additional operators can always 
be found is seen by the following general solution for the group 0(2n). 
Consider the chain of subgroups: 

0(2n) D 0(2n—1) 30(2n-2) D ------  (5 .9 )  
(Dn) (En-1) (DH) 

In 0(2n) we need besides the n Casimir operators, n2 -n other 
operators. If we diagonalize O(2n—1)—subgroups, this one needs pre- 
cisely (n2 -n) total labeling operators. We choose the (n—1)-Casimir 
operators of 0(2n-1), the remaining (112 -2n+l) operators are just the 
total labeling operators of 0(2n—2), and so on down the chain. 

A similar construction holds for the chain 

U(n) 3 U(n-1) :> U(n-2) 3 ____ 

in the case Of unitary groups ' 16) Thus . for 0(4 .2)-representations we need 9 labels in general, but for special representations fewer 
labels are sufficient. 

5 .4 Representations in Terms of Boson Creation—Annihilation 

Operators. Tensor Methods . 
Consider 11 pairs of boson creation operators: a1 and a*, 

i = 1 ,2 , . . .n. 

’k = 
[ a i l  a j ]  5 i j o  

We form the bilinear combinations 
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l“1j = a1 aj , 91%;” in number 

G at a +§6 na " " 
11: a1 1 ii ' 

t +1 H11 = a 3 :  aj ' M ? )  ll ll (5 . 1 0 )  

These 2na +n operators span the Lie algebra of On: the unitary sim- 
plectic group in 2n-dimension which leaves the forms 

11 

xiyi and (x1 V1+n ' x 
.1 i=1 

“n Y1) (5.11) 

..
. 

[I
 

L
\

/
.

|
8

 

invariant. 
The linear combinations of Gij give the usual basis of the Lie 

algebra of the unitary groups (An_1 with (n2 -1) parameters). Note that 

> a iai commutes with all the G 1 .  A subset of the Gi' Jrepresents 
ii 

i=1 ngn—lz 
the Lie algebra of the orthogonal groups (Bn-l with 2 parameters, 

or Dn also with 11%;”- parameters), namelyzthe terms aIaj, i < j, in 

the combinations a; (Lab)1' a , where b)1 are the matrix elements 
of the n-dimensional representation of e generator La . It is inter- 
eating that the Lie algebras non-compact groups SO(p,q and SU(p,q) 
can also be represented by the bilinear combinations (5 . 10), even for 
unitary representations . We first represent the maximal—compact sub- 
algebras 80(1)) 4% SO(q), or SU(p) X SU(q) x U(l), by the Gu-terms of 
(5 . 10) as outlined above. The generators of these subgroups act on 
the states 

“1 “2 din 

a: a: ”a; I0) , (5.12) 

where the" powers all are real or complex numbers. The remaining so- 
called noncompact generators are formed by F11=a1aj and H” = a; a, . 
Becausa these are made out of two~annihiiation or two creation opera- 
tors, they change the value of the Casimir operator of the compact- 
subgroup. An example of this method for conformal group can be found 
in my contribution later in these Proceedings. The method is in fact 
equivalent to the tensor method of building the higher-dimensional 
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representations out of fundamental representation. The new feature 
for non-comffict groups i s  the use of formal complex powers in E q .  
(5.12).17)* 0‘ 

5 . 5  m m  -d1mensiona~1 gepresenta‘tions 
The classification of the infinite—dimensional representations 

for the De Sitter and  conformal groups i s  complete only for S O ( 4 , 1 ) .  
For SO(3 , 2 )  and  S O ( 4 , 2 )  there i s  not yet a complete l i s t .  This is due  
t o  the multiplicity theorem,  that  for  S O ( n ,  1)  and  S U ( n ,  1) every uni— 
tary irreducible representation contains each representation of the 
maximal compact subgroup, SO(n) or SU(n) , respectively, only once. 
Note that non-unitary representations need not be completely redu— 
cible. There are a class of non-unitary representations which are 
reducible but indecomposable . 
014,1!  

The continuous unitary representations of SO 4 1) in infini- 
tesimal form were studied by Thomas?” by Newton 45 and most rig-.- 
orously and completely by Dixmier25) and others.2 ) These represen- 
tations a r e  constructed on a ba s i s  of the compact subgroup SO(4) 
which is isomorphic t o  SO(3) X SO(3) which makes  the construction 
particularly simple . [ I n  f a c t ,  a l l  inequivalent continuous unitary 
representations of S O ( n , 1 )  and S U ( n , 1 )  have been given.‘37 ] One can  
also relate ,  by anal c continuation, the representations of SO(4.1)  
to these of 80(5) ,”  :29) as is known from the caSe of 0(2,1)—O(3) 
analytic continuation.17) .30) In physical applications , we often 
need the representations in global form, i . e .  the matrix elements of 
finite group elements. For SO(4 ,1 )  these global forms have been giv— 
en first by Takahash131)'32) using the theory of induced representa- 
tions.33 The explicit form of a special class of discrete representa— 
tions of SO(4 , 1 )  in terms of boson—creation and annihilation operators 
can be found in m y  contribution in this volume, a s  a special  case of  
the representations of SO(4 ,2 )  . 
SO(3 , 2 )  

Special  infinite-dimensional representations have been known 
for some t i m e , 3 4 ) t 3 5 ) 1 1 6  but there i s  no complete l i s t .  We refer 
further to contributions in  this  volume b y  A .  B'ohm and  L .  I a f f e .  
8 0 1 4 , 2 2  

The literature on the representations of SO(4 , 2 )  is exten- 
s ive ,18)  I37)‘45) but again there i s  no complete l is t  of a l l  unitary 
irreducible representa t ions ,  unfor tunate ly .  The s i m p l e s t  represen ta— 
tions are the so—called most  degenerate representat ions;  in  the  con- 
formal group interpretation these correspond to the states of m a s s —  
zero spin 1 particles , 1n the dynamical group interepretation to  the 
rest-frame states of composite particles with lowest spin j o .  
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These representations have also very remarkable reduction properties 
with respect to the subgroup so(4,1) and so(3 2‘) .45) and also with 
respect t o  the Poincaré and Weyl subgroups‘fl'l) (The Weyl group 
consists of the Poincaré group plus dilatations (11 parameters); it is 
also called the causality group, because according to a theorem of 
Zeeman,48)  it is the largest group of one-tc-one mappings of the Min— 
kows ki  space into itself that preserves the causal order of pairs of 
vectors . )  

The infinitesimal method i s  used most often in the construc— 
tion of the representations . Note that it is sufficient to determine 
the representations of the generators L12 , L23 , L34 , L45 and  L55; 
the others are determined by the commutation relations . 

Finally, we should like a l so  to mention some results  on the 
most-degenerate re resentations of groups of the type SO(p q)  and  migrate-53% ' 
III . Bhygical Applications 

1 .  Conformally Invariant Miss and Broken Conformal 
Smetrg 

Historial references to early physical interpretations and 
applications of the conformal group can be found in the review of 
Kastrup. 1) We adopt the interpretation that the conformal invariance 
expresses the change of unit from one frame to another which moreover 
depends on the space-time point. The physical laws are expected to 
be invariant under these transformations . The orthodox point of View. 
however, has  been to  look  a t  the present  Lorentz—invariance theories 
and see Whether they are a l so  conformally invariant. The radical 
point of View would, be t o  rewrite the theory in such a way that it is 
conformally invariant. Of ocurse, the concept of mass must a lso  be 
modif ied.  

In order to  compare the phys ica l  phenomena a t  different space— 
time points a correspondence of units must be established. Thus the 
physical laws must be invariant under coordinate-dependent transfor- 
mations of units .54)  Although there should be not much doubt about 
this point, the problem is to  obtain experimentally verifiable and 
meaningful new conseQuences of this larger invariance principle. 
This step apparently has not yet been achieved. Mathematically, 
conformal invariant wave equations can be written in some cases. 
Diracl) has written such equations for the electromagnetic field (in- 
cluding the current density terms), and for spin—Z: fields. It is inter- 
esting that he obtains an additional degeneracy of solutions which 
has not yet been interpreted physically. 
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Some properties of  the  conformal- invariant 5ssc)attering ampli-  
tudes have been given b y  Castell1 and Bali e t  a l  

In the orthodox interpretation of conformal invariance , on the 
other hand,  we have first the (trivial) case of the invariance of free 
wave equations fo r  m a s s l e s s  particles of arbitrary s p i n . 5 6 )  Themb— 
lem of  conformal invariance for interacting fields i s  much more com-  
plicated, 5 7  58  notably due t o  renormalization questions.5 9) '60) In 
this usual interpretation, the hope is  that conformal invariance is 
valid a t  very high energies when the effect of mass  terms are small .  61) 
The so- -called "scaling" phenOmenon in the inelastic electronaproton 
scattering6 2) (the fact that the form factors are functions of a dimen— 
sionless quantity) has been interpreted in this way. 5 9  

. minimal Groups 
No definite connection is  known a t  the present time between 

the use of De Sitter and  conformal groups a s  dynamical  groups or 
spectrum generating groups and  their u s e  a s  " space  - t ime—sca1e"  
groups .  A deeper connection might perhaps exist,  because the dyna— 
mical groups have been 6interpreted a s  the “symmetry" group of the 
"system + interaction"6 (for example, a H—atom plus the external 
electromagnetic f ie ld) .  Perhaps it i s  not the individual particles or 
systems but only sys tems  together with the measuring devices that 
have conformally invariant Hamiltonians . At the  moment ,  however,  
dynamical groups together with a current operator describe the proper- 
ties of non-relativistic or relativistic composite quantum sys tems,  
such a s  mass spectrum, form factors , magnetic moments. The con- 
formal group in the O(4,2)- interpretat ion h a s  been found t o  describe 
the Dirac part icle,  the H-atom a n d  a model  for proton interpretable i n  
terms of magnetic  charges (see m y  contribution in  these Proceedings 
and the references given there) .  The relation of the dynamical groups 
to other models of strong interaction such a s  the current algebra f rame— 
work can be found in a recent review.64 

3 . Theories in Curved Spaces 
The invariance requirements give u s  important information 

about the possible states of elementary particles and their possible 
interactions , although these latter are not uniquely determined by  
these requirements . The origin of t he se  invariance considerations 
goes back  t o  the isotropy a n d  homogenei ty  of  the space  and the t i m e ,  
such a s  the  rotational invariance or more generally the Lorentz invari- 
a n c e .  These ,  according t o  Mach 's  principle, are determined b y  the 
mass distribution of matter in the universe . [According to the same 
principle, the inertial mass  of a body,  or the inertial forces in a n  a c -  
celerated frame , are determined b y  the distant matter of the  universe . ]  
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Thus , we are led to consider the shape of the universe in our consid— 
erations . The space-time is not flat according to Einstein's equa— 

tions, and the simplest curved universes are the uniform universes 
both in space and time which are the Riemann spaces with constant 
curvature . These types of 4—dimensional spaces can be imbedded 
into a five —dimensional space, either of positive curvature (SO(4, 1)), 
or of negative curvature (SO(3,2)) [i.e. spaces on which 80(4, 1) and 
SO(3 ,2) act iransitively] . Little is known about the theory of parti- 
cles formulated in curved spaces, except the form of the free field 
equations, and questions like localizability and position operator‘.l . 
4 ”65 Both De Sitter groups can be contracted to the Poinoaré 
group, so also the field equations to the usual Poincaré invariant 
equations, as the radius of the universe tends to infinity. 

4 . Other Applications 
There are undoubtedly other applications of these larger non- 

compact groups . I mention one which is not really an invariance ar- 
gument. Consider a scattering process involving one or more mass- 
less particles. The Hilbert space of one—particle states of the mass- 
Zless particle is also the carrier space of the conformal group, in other 
words we can perform conformal transformations (scale changes) on 
massless particles without enlarging the Hilbert space , or introducing 
new quantum numbers . The S-matrix for the process is an isotropic 

tensor operator under the Peincaré group . If we make the further re- 
quirement“) that the S-matrix be an isotropic tensor operator for con- 
formal transformations (scale changes) on the massless particles only 
--because these transformations act on the same Hilbert space--we 
are led to specific dependence of the S—matrix on the momenta of 

massless particles . In particular, the vanishing of the amplitude for 

mass zero, spin zero particles, as, pM - 0 follows from this require— 
ment. (This result is equivalent to "plan gauge condition," or the 
see-called Adler's self consistency condition. 7)) 

There are also some interesting applications of the inhomoge- 

neous De Sitter groups, IO(4,1). This group arises as additional 
symmetry group of Lorentz-covariant wave equations .58 Also, if the 
mass term in the wave equations is interpreted as the fifth coordinate: 

95 p5 = m3 , the Lorentz invariant wave equations are then formally in- 

variant under 10 (4,1) .69) 
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ONE-PARAMETER SUBGROUPS OF THE CONFORMAL GROUP 
OF SPACETIME AND IN GENERAL OF UNITARY GROUPS 

WITH AN INDEFINITE METRICl~ 
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M y  talk today will be about some preliminary work on the sub— 
group structure of the conformal group S U ( 2 , 2 )  and related groups.  
This work was carried out in  collaboration with P .  Winternitz , who 
has in his own talk already explained that part of the motivation for 
this type of study comes from certain applications of the theory of 
harmonic analysis on nonoompact groups.“ In th i s ,  a s  well as  in 
many other applications of group theory t o  phys ics  , of course it i s  
useful to know something about the lattice of subgroups of the groups 
of interest .  Here we shall only study the conjugacy classes of one— 
parameter subgroups of the groups U(p,q) and SU(p,q) a s  the first 
step toward finding all the connected analytic subgroups.  

The approach considered here may be described a s  a n  applica— 
tion of geometric algebra.2) Our study leads to  a complete classifi— 
cation of hermitean operators with r e spec t  to  a n  indefinite met r ic ,  
which may well have some interesting applications to quantum field 
theory with a n  indefinite metric. However we must  point out that 
many of the theorems obtained apply  only t o  the case of finite-dimen- 
sional vector s p a c e s ,  whereas the Fock spaces considered in quantum 
field theory are usually infinite dimensional. 

In the specia l  case  of the conformal group,  we have the local 
i somorphism S U ( 2 , Z )  N S O ( 4 , 2 ;  R ) .  Thus  another approach to th is  case  
would be through a study of orthogonal groups with indefinite metric. 
Most of our methods apply equally well to orthogonal groups a s  to 
unitary g roups .  The conjugacy  c l a s se s  of subgroups of orthogonal 
groups with indefinite metric have been studied previously for  special 
cases , the best known case being the study of the Lorentz group by 
E .  P .  Wigner in  1 9 3 9 .  His  method can be generalized t o  the case of 

TPresented at  the Symposium on De Sitter and Conformal Groups, 
University of Colorado, Summer 1970 .  
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SO(n, 1; R), but since it depends on a certain triangle inequality, it 
does not generalize to groups with index greater than one .3 The 
simplest case of an index two group, SO(2,2; R), was studied in a 
series of papers by H. Zassenhaus. Finally we mention that the case 
of SO(3 ,3; R) comes up in connection with the Petrov classification of 
Einstein spaces . 

Since most of the remainder of my talk will lean heavily on 
general results of vector space theory and the general theory of linear 

operators and hermitean forms , it may be useful to quickly review 
some of this material and to agree on the terminology.4 

When dealing with indefinite metrics, it is important to make 

a careful distinction between ideas related to linear independence and 
ideas related to orthogonality. For the moment we shall consider vec— 
tor spaces in general without any hermitean structure . Subspaces 

$1 , . . . ,Sn of a vector space V are said to be independent iff for all 
111 e 81 . . . . ,xfn 6 Sn, the only solution of the equation 141+. . .+yfn=0 
is the trivial solution £1 = . . . = = O. In the case n = 2 this is 
equivalent to the condition 81 n 83 = 0, and in general, this is equi- 
valent to a collection of n — 1 conditions, a typical one being (81+. . . 
+ Sk) fl Sk+1 = 0. A sum of independent subspaces is usually called a 

d-irect sum, denoted by S1 6 . . . @Sn. 
We use the language of invariant subspaces to describe the 

structure of a linear operator as exhibited in its Jordan canonical form, 
in accord with the common view that this theory may be regarded as an 
application of the theory of torsion modules over a principal ideal 
domain. We reCall that a subspace S of a vector space V is an invari- 
ant subspace under the action of a linear operator y on V iff vs C S , 
that is , if VIII 6 S for all tr 6 S. Two invariant subspaces S1 and S2 are 
isomorphic iff there exists a one—one and onto linear transformation 

6.: S1 .. S? which commutes with y in the sense that d oyl = Yzod, 
where Y1 and Y2 are the obvious restrictions of y to 81 and S2 res- 
pectively. An indecomposable invariant subspace is defined to be 
one which cannot be written as the direct sum of two nonzero invari— 
ant subspaces. If V is finite—dimensional, then V can be written as 
the direct sum of a finite set of indecomposable invariant subspaces, 

the decomposition being unique only up to isomorphism. 

The essence of the Jordan canonical form theorem is that we 
can characterize the indecomposable invariant subspaces as those 
which are both cyclic and primary. We shall hereafter for simplicity 
restrict our attention to vector spaces over the complex number field. 
A generalized eigenvector Jrf E V of a linear operator y on V is any non- 
zero vector which satisfies (y - c 1)p xf = 0 for some complex number 
0 and some positive integer p. For p = 1 , this reduces to the ordinary 
definition of an eigenvector. For any complex number c we may define 
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the m - ' 3:2 component V3 C V t o  be the subspace consisting of the 
zero vector and  a l l  generalized eigenvectors of y corresponding to  c if 
any. It is then true that c i s  a n  eigenvalue in the ordinary sense iff 
the corresponding primary component is nonzero. An invariant sub— 
space S is said to  be a primarsLinvariant subspace iff a l l  i ts  members 
are generalized eigenvectors corresponding to a single common com— 
plex number 0 ,  that i s ,  iff  S C V3 for some value of c .  In particular, 
of course, the primary components are themselves primary invariant 
subspaces ,  and V is the direct sum of a l l  of t h e m .  An invariant sub— 
Space S is said to be a cyclic invariant subsgce iff there exists a 
vector cp in  S ,  called a cyclic vector, such that every vector 1: in S 
can be written a s  a polynomial in y acting on the cyclic vector: 11; = 
MY) cp. 

We shal l  be applying these  results  t o  hermitean linear opera— 
tors . In  the  case of a positive definite metr ic ,  of c o u r s e ,  the ordinary 
eigenvector theory suf f ices ,  and we are all  familiar with this theory 
from its application to  elementary quantum mechanics.  What we shall  
find is that by  using the more general concepts, we can set up  a par- 
allel theory even in the case of a n  indefinite metric. Actually, there 
i s  one case of a n  indefinite hermitean metric with which we are al l  
familiar a l ready,  namely the Dirac spinor space, which we may  cha— 
racterize a s  a four—dimensional  complex vector space  C 4  equipped 
with the metric (++——) . For convenience we shall  u s e  the same nota- 
tion that is used in the Dirac theory, namely c5111, for hermitean forms 
in general .  The bar notation will be henceforth reserved for this u s e ,  
and for clarity we shall use a n  asterisk to denote the complex conju— 
gate c* of a scalar c .  

To be precise ,  we define a n  hermitean gorm c514; on  a complex 
vector space V t o  be a complex-valued function of two vector varia— 
bles , linear in  q; a n d  antilinear in  cp, and  s a t i s f y i n g  the  condition 

(MP =. 47¢- 
We shal l  use  the term hermitean smce t o  mean a complex vector space 
equipped with a n  hermitean f o r m .  If 11; is  a vector in  a n  hermitean 
s p a c e ,  then  its norm W m a y  be pos i t ive ,  negative or ze ro .  It i s  cus -  
tomary t o  call a vector with zero norm a n  isotropic vector. Two vec- 
tors cp and ‘1: are said to be orthogonal iff GM = 0 .  

The subspaces of a hermitean space can be characterized by 
their metric signature. Two subspaces $1 and S2 of a hermitean space 
are said t o  be orthogonal subsgces iff every vector in 51 is ortho— 
gonal  t o  every  vector in  Se  . Note that  orthogonal subspaces  need not 
be independent ,  and  independent subspaces  need not be or thogonal .  
A hermitean space V is said to  be the orthogonal direct sum of the 
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subspaces 81 , . . . 'Sn' written V = S1 .1. . . . .L Sn' iff V is the direct 
sum of pairwise orthogonal subspaces . Thus the subspaces in an 

orthogonal direct sum decomposition are required to be both independ- 

ent and mutually orthogonal. Every subspace of a hermitean space 

can be written as an orthogonal direct sum of lines: S = L1 J.. . ..L Ln' 
There are three possible types of lines, because the norms of the non— 
zero vectors in a one-dimensional subspace all have the same sign, 

namely either +, —, or 0. Each subspace then has a unique metric 

signature, which indicates how many lines of each type there are in 

any decomposition of the subspace as an orthogonal direct sum of 
lines. Two subspaces 81 and SE of a hermitean space are said to be 

isometric iff there exists a one—one onto linear mapping an: S1 -' S2 
which preserves the metric in the sense that Whit) = E]; for all cpnli 
in S1 . Two subspaces are isometric iff they have the same metric 
signature . 

The orthogonal complement Sl of a subspace S of a hermitean 
space V is the subspace consisting of all vectors in V which are ortho— 
gonal to every vector in S . A subspace S of a hermitean space is said 
to be nonsingular iff its radical S n S'L is zero. Nonsingular sub— 
spaces may be characterized as those whose metric signature con— 
tains only +'s and —'s, but no 0's . For example, the Dirac spinor 
space C4(++——) is a nonsingular hermitean space. 

There are several important standard results about nonsingular 

spaces. If S is a nonsingular subspace of a hermitean space V, then 

V = S J. 8 * .  IfV is nonsingular and ifV = 8 1  . L . . . J .  Sn, then S1,..., 
Sn are also nonsingular. Finally, if both S and V are nonsingular, 
then we have (SJ'P- = S . 

A subspace S is totally isotopic in the sense that every vector 
in S is isotropic iff S C 8*. Totally isotropic subspaces may be cha— 
racterized as those whose metric signatures consist solely of 0's. All 
maximal totally isotropic subspaces of a given hermitean space V have 
the same dimension, called the index of V. The index may be com— 
puted from the metric signature as the sum of the number of 0's plus 

the number of (+—) pairs. In determining the possible metric signa— 
tures of the subspaces of a given hermitean space, one must observe 

among other things the requirement that the index of a subspace can—- 
not exceed that of the containing space . Thus , for example, there 

are fourteen possible types of subspaces of the Dirac spinor space 

C4(++--). These are listed below. 
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dimens ion index —. 

l 0 1 2 

0 0 

1 (+). H (0) 

2 (++). (--) (+-). (+0). (-0) (00) 

3 (++-). (+--) (+-0) 

4 (++——) 

The general structure of a hermitean space may also be des— 

cribed in the following way. Any hermitean space may be written as 
an orthogonal direct sum of its radical, which is totally isotropic, 

and a nonsingular subspace. Here the radical is of course uniquely 

determined, but the nonsingular subspace is only determined up to 
isometry. A subspace is said to be anisotropic iff it does not con— 
tain any nonzero isotropic vectors . Anisotropic subspaces may be 

characterized as those whose metric signature consists solely of +'s 
or solely of -'s , but not both. A hmerbolic plane is a plane with 
metric signature (+-). Hyperbolic planes may be characterized also 
as nonsingular planes which contain at least one nonzero isotropic 
vector. A hyperbolic sEce, defined as any orthogonal direct sum of 
hyperbolic planes, is clearly a space with a balanced metric signa- 
ture consisting of an equal number of +'s and -'s. A nonsingular her- 
mitean space may be written as the orthogonal direct sum of a hyper- 
bolic subspace and a subspace which is anisotropic, this type of de- 
composition again being unique only up to isometry. 

Unitary and special unitary groups with indefinite metric arise 

naturally in the study of the geometry of hermitean spaces .5 An in- 
vertible linear operator a, on a hermitean space V is said to be a $ —  
tary opegtor iff WW9) =c for all vectors 11: , cp in V. The set of all 
unitary linear operators on a hermitean space V forms a group called 
the unitary group on V. The subgroup consisting of all special unitary 

omrators, that is , of unitary operators with determinant one, is a 
normal subgroup of the unitary group, called the special unitary group 
on the hermitean space V. In particular, we may then characterize the 
conformal roup SU(2 ,2) as the special unitary group of Dirac spinor 
space.“ 

It is often more convenient to deal with the Lie algebras of 
these groups rather than with the groups themselves . The real Lie 
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algebra of the unitary group on a hermitean space V may be identified 

with the set of all antihermitean linear operators on V ,  that is , those 
linear operators B which satisfy Wm = -_¢'(Bcp) for  a l l  4:, (p in V .  Any 
rea l  linear combination of antihermitean operators i s  aga in  antihermi- 
t e a n ,  a n d  if  [31 and [-32 are  ant ihermitean,  t hen  their commutator 
[51 , 62]  = 81 ° 32 — 32 ° [31 is also antihermitean. The Lie algebra 
of the special unitary group on V may be identified with a n  ideal in 
this algebra, consisting of all traceless antihermitean linear opera- 
tors on V .  Instead of working with antihermitean operators , however,  
we prefer t o  work ins tead with hermitean operators, that  i s  , l inear 
operators y which satisfy the condition Wkp =Wycp) for a l l  qr, cp. We 
can obtain hermitean operators from antihermitean operators by multi- 
plying by i = f - 1  . If y i s  a nonz_ero hermitean operator, then the set  
consisting of all the operators eltY, where t is a real number, is a 
subgroup of the unitary g roup ,  called the one—parameter subgroup 
generated by y .  If two hermitean operators d i f fe r  b y  a nonzero real  
fac to r ,  then of course they  generate the same one-parameter subgroup.  
Thus , one-parameter subgroups of a group correspond to  one—dimen— 
sional subalgebras of the corresponding Lie algebra.  More generally, 
exponentiation of various subalgebras of the Lie algebra yield various 
connected analytic subgroups of the unitary group.  

Two subgroups H1 and  H 2  of  a group G are sa id  to  be c o n j u —  
ggte 'swrougs iff  there exists a n  e lement  on i n  the group G such  that 
He = on H1 0." . If two hermitean operators Y1 and Y2 are con u’ ate in 
the sense that there exists a unitary operator on such that Y2 = a. Yla ' l ,  
then they generate conjugate one—parameter subgroups of the unitary 
group.  If (1 here can be ta ken to  be a special unitary operator, then 
we shal l  speak  of special  conjugate hermitean operators.  To obtain 
the con jugacy  and spec ia l  conjugacy  c l a s s e s  of hermitean operators ,  
we study their invariant subspaces . We are thus led t o  study a lso  
the notion of conjugate subspaces of a hermitean space .  

Two subspaces $1 and S2 of a hermitean space V are said to 
be conjugate subspaces  i f f  there exis ts  a unitary operator or on V such 
that $2 = 0,81 , and if this  operator can be taken with determinant one , 
then we speak of special conjugate subspace . The Witt theorem says 
that i f  two subspaces of a nonsingular hermitean space are isometric, 
then any  isometry between them can be extended t o  a unitary operator, 
s o  that  the subspaces are also conjugate.7 Thus for subspaces of a 
nonsingular hermitean s p a c e ,  the quest ion of conjugacy can  be sett led 
s imp ly  by  examining the  metric signature of  the  s u b s p a c e s .  An i s o -  
metry between s u b s p a c e s  of  a nonsingular hermitean space can even 
be extended t o  a special unitary operator, s o  that the subspaces are 
special conjugate, in the case dim S + dim (S n 3*) < dim V, which is 
certainly the case for nonsingular subspaces .  The proof of the Witt 
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theorem for general subspaces can be reduced to the simple special 
case of nonsingular subspaces by using a result known as the hyper- 
bolic enlargement theorem. The hyperbolic enlargement theorem says 
that if S is a totally isotropic subspace of a nonsingular hermitean 
space V, then there exists another totally isotropic subspace T with 
the same dimension as S such that S n T = 0, and the direct sum S @T 
is a hyperbolic subspace of V. 

We are now ready to study the invariant subspaces of a her- 
mitean operator. If S is an invariant subspace of a hermitean linear 
operator y acting on a hermitean space V, then the orthogonal comple— 

ment S'L is also an invariant subspace . Sums and intersections of in— 
variant subspaces again yield invariant subspaces. 

We can say quite a bit about the primary components of a her- 
mitean operator on a nonsingular hermitean space. If y is a hermitean 
linear operator on a nonsingular hermitean space V, then the primary 

component V6 is nonsingular when c is real. Two primary components 
VC1 and Vce of a hermitean operator are orthogonal to each other if 

c: .and ca Eire not complex conjugates of each other. In particular, 
the primary component Va is orthogonal to itself, and hence totally 
isotropic, when 0 is not real. On the other hand. if 01 and c2 are 
complex Conjugates of each other, and if in addition v is nonsingular, 
then the primary components V$1 and V3 3 have the same dimension. 

If c is not real and if V is nonsingular, Ythen the direct sum VG $Vc* 
is nonsingular, and being the direct sum of two equidimensional 
totally isotropic subspaces, must be a hyperbolic subspace. All of 
these assertions follow as corollaries of the following theorem, which 
generalizes the familiar arguments about orthogonality of eigenvectors 
of a hermitean operator to the case of an indefinite metric. 

Theorem. 
If y is a hermitean linear operator on a finite —dimensional 

hermitean space V, and if c1 and c2 are two complex numbers which 
are not complex conjugates of ‘:each other, then the corresponding 
primary components VY1 and VY-a are orthogonal to each other. 

Proof. 
The kernels of the various powers (y - c1 1)p for increasing p 

form an ascending chain of subspaces which eventually terminates so 
that for sufficiently large p we obtain the primary component V“1 as 
one of these kernels. We shall show by induction on p that the ker- 
nel of (y — c1 Up is orthogonal to the other primary component VYz . 
For p = 1, qthe argument is simple because if (y - c1 l)¢_ = 0 and 
(Y _Cg 1)qcp=0,th'en0=1:(y«cg1)q =(c *—cg)q tcp,imp1ying 
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that {up = 0. Suppose now that the kernel of (y - fl DP is, orthogonal 
to Vcfl . 1ft belongs to the kernel of (y - c1 '1)” ‘, than (V - 91 1M 
bei‘oxigs "to the. kernel of (y — c1 1)p and is therefore orthogonal to V9? . 
Per any vector 2p in V33 there exists a smallest integer q such that ‘ 
fifty — c,a Egg; = 0. If q> 0, then we hag/em“ — ca MCI-1:9 
'_=_ 0', and it follbws than that (c1* “02”“ - c2 1)q‘ q, = 0, so that 
titty -— c3 llq'lgp = 0, in contradiction with the assumed minimal prop-'- 
erty of q. +IiIencefq = _O and \p = 0 , showing that the kernel of 
(Y - (3'1 1)p is, orthogonal to the primary component v$2 and thereby 
completing the 'inducflve argument. m 

We now introduce the important concept of an elementary in— 
variant subspace, which will bear the same relation to orthogonal 
direct sums that the concept of an indecomposable invariant subspace 
bears to ordinary direct sums . An elementary invariant subspace Of 
an hermitean space is an invariant subspace which cannot be decom— 
posed as an orthogonal direct sum of two nonzero invariant subspaces. 
If V is finite—dimensional, then it can be written as the orthogonal 
direct sum of a finite set of elementary invariant subspaces , V = 
S1 .L . . ..L S . 

This raises the problem of studying elementary hermitean oper— 
ators , that is , hermitean operators on a nonsingular space V such 
that the space V is itself elementary. Since we can alter the trace of 
a hermitean operator by adding a suitable multiple of the identity oper— 
ator, it is sufficient to study the structure of traceless elementary 
hermitean operators . If y is a traceless elementary hermitean operator 

smite -dimensiona1 nonsingular hermitean space V, then either 
or else V = V15® V'15 for some real 5 7‘ 0. Hence such Oper- 

atorsyare either 11112 gtent, at is , y“ = 0 for some integer n, or else 
they satisfy the equation (y3 + sa )p = 0 for some integer p. At this 
point it is appropriate to state some relevant theorems about nilpotent 
hermitean operators . For the moment we may drop the assumption that 
they be elementary. 

one 
'V=V 

Lemma. 
If a hermitean operator y on a hermitean space V is nilpotent 

with Y m  = 0, then the cyclic invariant subspace S generated by any 
vector 4; in V is a nonsingular m-dimension‘al subspace iff fiym— q; 75 0. 

Proof. . m—l {Since 3318 spanned by t. W. ---- Y in an? ”9°“ 99 in the radical :s n Si : , ‘n'be written as a_ ; 'ear combination ‘9‘: (59 4' °1Y + ...+.-°m_um‘ Mr. and we have «IN to =Of°ra11 k- 51““ Ym " 0' 
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we have 0 = [hm—1w: Comm—111” and if fiym 11117! 0 ,  then we have 
co = 0 .  By a similar argument we can also show that 01 = . . . = 
c m _ 1 =  0 ,  s o  that cp = 0 and S is nonsingular. Moreover, this same 
argument shows that the vectors 11;, W ,  . . . , ym'lq: are linearly 
independent, and  henc<—:;_Sm h a s  dimension m .  

Conversely, if W m  _ q; = 0 ,  then any vector cp in  S can be 
written a s  some polynomial in y acting on t and hence _-lsatisfies 
{Wm-1m: co Wm 1t  = 0 ,  and hence it follows that Ym t belongs to 
the m__xlatlicai S n 8*. If S Were nonsingular, this would imply that 
Ym it = 0 ,  and hence S Would haVe a dimension less than 111. 9.12.1). 

The above lemma allows u s  to  prove the following theorem, 
which has  a s  a corollary the result  that  e lementary  nilpotent hermitean 
operators a r e  indecomposable . 
Theorem. 

If y is a nilpotent hermitean operator on a finite-dimensional 
nonsingular  hermitean space V ,  then V is the orthogonal direct s u m  of 
a f in i te  s e t  of  nonsingular  cyclic invariant subspaces.  

Proof.  
Since y i s  ni lpotent,  there exis ts  a sma l l e s t  integer m such  

that ym = 0 .  If m = 1 ,  then v = 0 ,  a n d  every subspace of V is invari— 
a n t ,  and hence any orthogonal direct sum decomposition of V into non- 
singular lines does the trickl. If m > 1 ,  then by the assumed minimal 
property of m ,  we have Ym-_ 9‘ 0 .  If tym' l t  = 0 for all t in V, then 
by polarization, we obtain tym‘lcp - O for all imp in V ,  and since V 
is nonsingular, this would imply that ym = 0 ,  a contradiction. 
Hence there is a vector W in v such that {Hm-1t 7‘ 0 ,  and by the lemma 
it follows that the cyclic invariant subspace S generated by q; is  a 
nonzero nonsingular subspace .  Then we may  write V = S J. 8 * ,  and the 
argument may be repeated with S-L replacing V .  This process must 
finally stop somewhere because V is finite-dimensional. Q . E , D .  

W e  m a y  prove a similar type o f t h e o r e m  for the case  of a her-  
mitean operator y when Y3 + s2 i s  nilpotent. 
Theorem. 

If y is a hermitean operator on a finite -dimensional nonsingular 
hermitean space ,  and if y2 + s2 is  nilpotent for some real 5 75 0 ,  then 
there exist nonzero totally isotropic indecmposable subspaces Si 
such that S+ (-DS_ is a nonsingular invariant subspace . 

P r o o f .  
Since the nonsingular space V is the direct sum of the totally 

isotropic primary components V395 and VYis, it follows that for every 
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nonzero vector in via, there exists another vector in V is such that 
these two vectorsm are not orthogonal. If there is a vector cp+ in V13 
such that s“ - 13)mcp+ 7‘ 0 ,  for some integer m ,  then there is a vectOr 
cp_ 5 . a  ssuchthatcp_ ( v - i s )  m,cp+7‘0 and hence ( y + i s )  7‘0. 
Now letY p1 be the sma 1lest integer such that (y3 + 33)P= 0 .  If 
(y — imp"1 is zero onv Y '  then (y + is)p is zero on V is ,  and hence 
(ya + 53)?" = 0,  a contradi on. Hence there must exist vectors (pi 
invfls such that $_(y - is)“ up+ 7‘ 0 .  The cyclic subspaceis Si gen- 
erat by apt are totally isotropic and primary since Sic , and are 
hence indecomposable. finally one may verify that the radiZal cf the 
direct sum S e S_ is zero by using the fact that cpi satisfy 

<5-(v-1s)p cm“) m u  
These results show that there is a rather simple relation be— 

tween elementary invariant subspaces  and  indecomposable ones .  An 
elementary invariant subspace  of a hermitean operator on a nonsingular 
hermitean space is  either a nonsingular indecomposable invariant sub-  
space , or else is the ordinary direct sum of a pair o f  totally isotropic 
invariant subspaces which are indecomposable and have equal 
dimensions . 

We next s tudy the possible metric signatures for elementary 
invariant subspaces  . A nonsingular hermitean space  i s  sa id  to  have 
maximal index i f f  the number of + ' s  and - ' s  in its metric signature 
are either the same,  or else differ only by  one . An even-dimensional 
maximal index nonsingular space i s  just  a hyperbolic space.  

Theorem. 
Elementary invariant subspaces  of a hermitean operator on a 

nonsingular hermitean space are  maximal index nonsingular subspaces.  

Proof. 
If y is a n  elementary hermitean operator on a nonsingular space 

V, then V is either itself indecomposable , or is the direct sum of two 
totally isotropic indecomposable subspaces . In the latter case V i s  
hyperbol ic ,  while in  the former case we can  subtract a real  multiple 
of the identity from y t o  obtain a nilpotent operator. If y i s  a nilpo- 
tent hermitean operator, and if III is a cyclic vector for V ,  then every 
other cyclic vector is of the form p(y)1u , where p(y) is a polynomial 
in y whose constant term is nonzero. By explicitly constructing a 
suitable polynomial, it_is possible to show that there exists a cyclic 
vector 11! in  V such  that 11;k = O for  a l l  k except for k = n — l h  re 
n = dim V. We could multiply 4; by a suitable factor to make MP“ 1! = 
:I: 1 . If m = [n/Z] is  the largest integer not exceeding n/2 , then the 
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vectors 11;, my , . . . , Ym-l‘y span a n  m—dimensional totally isotropic 
subspace of V ,  and it follows that V has maximal index. Q . E , D .  

These results have a direct bearing on the problem of finding 
conjugate classes of hermitean operators. Let V = 81 .L . . . .L Sn 
a n  elementary decomposition of a nonsingular space V with respect 
t o  a hermitean operator y . Suppose that V = T1 J.. . ..L Tn is any  ortho- 
gonal direct sum decomposition of V into maximal index subspaces 
such that Si  is isometric with T1 for each i = l , . . . , n .  Then by the 
Witt theorem, there exists a special unitary operator on on V such that 
Ti = 0.81 and V = T1 J. . . . .L Tn is a n  elementary decomposition of the 
hermitean operator uyct'l . The classification of the special conju- 
gacy c lasses  of hermitean operators thus reduces t o  two problems . 
The first problem is  t o  find the possible ways of decomposing a given 
nonsingular hermitean space a s  a n  orthogonal direct sum of maximal 
index nonsingular subspaces . The second problem is to  find the 
specia l  conjugacy  c l a s ses  of  elementary hermitean operators on  a 
given maximal index nonsingular space . 

The maximal index decompositions of a nonsingular hermitean 
space are readily found in each case by inspection. For example, 
there are  six such breakups for the Dirac spinor space C (++--). 
These six possible maximal index decompositions of Dirac spinor 
space are the following: 

Case 1 .  (++-—) 

2. (++—)(—) 

3 .  (+)(+-—) 

4.  (+—)(+—) 

5 . (+-)(+)(-) 

6 . (+)(+)(-)(-) 

Our approach t o  the second problem was  based  on the expecta- 
tion that special conjugacy for hermitean operators would reduce 
pretty much to the determination of the metric signatures and Jordan 
canonical forms arising in their elementary subspace decompositions . 
By the use  of explicit canonical forms we find that it is a lmost  but not 
quite true that hermitean operators are special  conjugate iff their e le— 
mentary invariant subspaces are isometric and isomorphic. 
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To obtain the canonical forms we make use of the theorems 
stated earlier. For the case of a nilpotent elementary hermitean 
operator 1 ,  we obtain a canonical form by using the vectors 1}], W , 
. . . , yn' y a s  a basis, where q; is the cyclic_vec§or found in the 
proof of the last theorem, normalized so that Mn" t = e: , where s =i1 . 
In this basis , the matrix of the hermitean operator y is fairly simple, 
but the hermitean metric form i s  not diagonal .  It i s  therefore con— 
venient t o  introduce a slightly different canonical form by  using 
another basis ,  chosen to make the metric diagonal s o  that its signa— 
ture can be easily read o f f .  The final canonical forms obtained are 
slightly different for the cases of even and odd dimensional spaces , 
s o  that in al l  we obtain four canonical forms for nilpotent elementary 
hermitean operators. By restoring a real multiple of the identity, we 
thus  a l s o  get four  cases  for a n y  elementary hermitean operator with a 
single real eigenvalue . In the odd—dimensional  case  , the quantity 6 
just  determines whether the metric has one more + or - s ign .  In the 
even-dimensional case ,  however, the two cases with e = +1 and e = 
—1 represent examples of hermitean operators whose elementary in-  
variant subspaces are both isometric and isomorphic, but still not 
special conjugate. 

A similar procedure is  used to  obtain canonical forms for e le— 
mentary hermitean operators with a pair of complex conjugate eigen— 
values, that i s ,  the case V = VG®Vc . In this case we can find a 
pair of vectors cpi in V such thd’t $-34 - c 1)k cp+ = 0 unless k = p-1 
Where dim V = 2 p .  We can normalize these two vectors s o  that 
5_(y - c l)p‘1 cp+ = 1 ,  s o  that no  9 is necessary here, and we get 
just one more canonical form for even-dimensional maximal index 
spaces.  

We thus get  a total of five cases in a l l  for canonical forms.  

Case Metric Eigenvalues Other Parameters 

I czp+1(p+1, p) r e = +1 
II 02p+1(p, p+1) r e = -1 
III czp(p, p) r e = +1 

2 Iv c poo. p) r e = —1 
v C z p ( p . p )  r:|:is 
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Canonical Elementary Hermitean Matrix With A Single 

Real Eigenvalue r In The Odd Dimensional Case 

r r 1 0  0 - 1 0  

l r l  - 1 0 1  

O l r .  . 0 1 0  

. r l O — l O .  

1 r € 0 1  

0 1 r 1 0  

l O - e r l  

. 0 - 1 0 1 r .  

0 1 0 .  . r 1 0  

1 0 - 1  l r l  

0 - 1 0  0 1 1 ‘  
— —d 

43 
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Canonical Elementary Hermitean Matrix With A Single 

Real Eigenvalue r In The Even Dimensional Case 

r 1 0 0 "'1 

r 1 —1 0 

0 1 r . . 0 1 

. r l 0 0 —1 0 . 

1 r 1 -1 0 1 

0 1 r+e +3 1 0 

0 1 -c r-e 1 0 

l 0 -1 1 r l 

. 0 -1 0 0 1 r . 

0 l 0 . . r l 

1 0 -1 1 r 

fl 



0 

1 

is 

Canonical Elementary Hermitean Matrix With A Complex 

Conjugate Pair Of Nonreal Eigenvalues r :I: is 

1 0 

r 1 

1 r 

1 is 

is -1 

-1 0 

ONE -PARAMETER SUBGROUPS 
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In the three tables listing the actual canonical matrices for the 
five possible c a s e s ,  we have combined those cases which differ only 
by the value of the parameter Q . The significance of these canonical 
matrices may be summarized a s  follows . A se t  of vectors \lll , . . . "l’n 
is said to be a n  orthonormal basis for the nonsingular hermitean space 
Cn(p,q) iff $161. is 0 when 1 7‘], +1 when 1 = 1 5  p, and -1 when 1 = 
j > p .  If y is r’m elementary hermitean operator on  a nonsingular her- 
mitean space V ,  then there exists a n  orthonormal basis for V such that 
the matrix of y with respect to this basis has one of the five canonical 
forms listed. These canonical forms actually represent nonconjugate 
classes of hermitean operators , except that in the fifth case,  the 
canonical forms differing only by the sign of the parameter s are spe- 
cial conjugate to each other. Thus we obtain distinct special conju- 
gacy classes of elementary hermitean operators only if we restrict the 
parameter s to be positive , (say).  

It is instructive to illustrate the general theory with some spe-  
cial cases. The simplest illustration is the application of the general 
theory t o  the case of hermitean operators on the two—dimensional non- 
singular hermitean space C ‘(+—). In this case, the most general her— 
mitean matrix is of the form 

A + D  B + i C  

—B+iC A — D  

where A ,  B ,  C ,  D are real numbers. The eigenvalues of this matrix 
are given by A :I: m . There are thus three spectral cases , 
depending on whether D2 — B3 — C:3 is positive, negative or zero,  cor- 
responding respectively to a pair of distinct real eigenvalues , a com— 
plex conjugate pair of nonreal eigenvalues, or the degenerate case of 
a single real eigenvalue . 

There are only two passible breakups of the hermitean space 
Cz(+-) as a n  orthogonal direct sum of maximal index subspaces: (+-) 
and (+) (—) . The detailed correspondence between the three possible 
spectral cases and the two maximal index subspace breakups is clearly 
a s  follows: The spectral case of a real pair of distinct eigenvalues 
can only correspond t o  the maximal index subspace breakup (+) (-), 
while the spectral  case  of  a complex conjugate pair of nonreal eigen— 
values can only correspond to the breakup (+-). On the other hand,  
the degenerate spectral case of a single real eigenvalue could cor— 
respond t o  either the breakup (+—) or the breakup (+)(—) . In terms of 
the parameters A ,  B ,  C ,  D ,  the degenerate spectral case occurs when— 
ever B2 + C2 = D9 , but this  leads t o  a maximal index breakup of the 
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type (+)(-) only in the very special case B = C = D = 0 ,  and to (+—) 
otherwise . 

In a l l  cases here we can give prescriptions for writing down 
the canonical form corresponding to the original hermitean matrix in 
terms of the parameters A ,  B ,  C ,  D .  there are six such prescrip- 
tions, depending on the values of the parameters . These six cases 
can a l s o  be given a geometrical description in  terms of the cone 
33+ 09 = D2 in (B, C ,  D) space.  (See following page.)  

In determining the conjugacy classes of one-parameter sub— 
groups of the group U(1 , 1 ) ,  we have t o  remember that two mauices 
which differ by a nonzero real factor generate the same subgroup. 
we then obtain the following conjugacy classes of one-parameter 
subgmups of U(1,1‘), listed by generator: 

r + l  0 
_ c o < r < w  

0 r — 1  

1 0 

O 1 

r i 
_ m < r < e o  

i r 

a + 1  1 
a = 0 , : l : 1 .  

-1  a - l  

For the subgroup SU(l,1), only flawless generators are per- 
mitted, and thus we obtain only three special conjugacy classes of 
one—parameter subgroups for S U ( l  , 1 ) ,  generated respectively by the 
three matrices: 

[2 -3] . 
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Prescriptions For Writing Down The Canoniwl'P,, v 3* Of 
Hermitean Operators On The Hermitean Space 0 (+—) 

Inside the Upper Cone (+)(-) 

D > . / B a +  C5 > 0 

(+) H Inside the Lower Cone 

D <  -A/BQ+Ca < o 

Vertex of the Cone A 0 (+)(-) 

D = B = C = o 0 A 

Surface of Upper Cone A + 1 1 (+-) 

D =  B a + C s > 0  -1  A - l  

Surface of Lower Cone A — 1 —1 (+-) 

D = - A / B 3 + C a < 0  1 A + 1  

Exterior of the Cone A 1J33+ C’- 55 (+-) 

D3<B3+CS 131394-0343“ A 



ONE -PARAMETER SUBGROUPS 49 

References 
1. The related subgroup problem for the proper Lorentz group was 

studied in the same connection in I. Pris and P. Winternitz, 
Sov. J. Nucl. Phys. 1, 636 (1965), and for S U ( 2 , 1 )  by 
W. Montgomery, L. O'Raifeartaigh and P. Winternitz, Nucl. 
Phys. _l§_1_1_, 39 (1969). 
These authors use an approach to harmonic analysis which is 
based on the method of horocycles, described for instance in 
I. M. Gel'fand, M. I. Graev and N. Ya. Vilenkin, Generalized 
Functions, Vol. 5 , Integggl Geometry and games‘entation TheOrx 
(Academic Press , N.Y.  , 1966). 
Another approach to harmonic analysis on connected semisimple 
Lie groups makes use of the Iwasawa decomposition: Harish- 

Chandra, Bull. Amer. Math. Somfl, 529 ( 1 9 7 0 ) .  
In particular, harmonic analysis on the groups SU(p,q) has been 
studied recently: '1‘. Hirai, I. Math. Soc. Japan 3, 134 (1970). 
A useful general reference for geometric algebra is Artin‘s book, 
which, however, deals only with the orthogonal and symple ctic 
groups: B. Artin, Geometric Algebra (Interscience, N.Y.  , 1957). 
Another standard reference here is known to the French: 
N. Bourbaki, Sesguilinear Forms and wadratic Form; [French] 
(Hermann, Paris, 1959). 
The local isomorphism between SU(2 ,2) and SO(4,2; R) is one of 
several special isomorphisms existing among low rank Lie groups. 

For a more complete discussion we refer to Helgason's book, 

S . Helgason, Differential Geomag and Symmetric Spaces (Aca— 
demic Press, N . Y . ,  1962),  p. 3 5 2 .  
For the conjugacy classes of the Lorentz group there is a con— 
siderable literature: 
E. P. Wigner, Ann. of Math. Q, 149 (1939 ) .  
G .  Abraham, Proc. Indian Acad. Sci. 2—8, 87 (1948 ) .  
I. S. Lamont. Bull. Calcutta Math. Soc. 55, 51 (1963). 
The complete subgroup lattice of the Lorentz group is also known. 
Besides the paper of Pri‘s' and Winternitz quoted earlier, we may 
also mention the following: 
I. Segercrantz, Ann. Acad. Sci. Fennicae A .  VI.  m ,  1 ( 1 9 6 7 ) .  
R. Shaw, Quart. I. Math. Oxford (2) _2_1, 101 (1970). 
The classes of the De Sitter groups are discussed in: 
T. 0. Philips and E. P. Wigner, in Group Theory and Its A! 211- 
cations, edited by E. M. Loebl (Academic Press, N.Y. ,  1.968), 
p . 63 1 - 6 7 6  . 
The group SO(2 ,2 ;  R) and its generalizations over arbitrary fields 
have been extensively studied. H. Zassenhaus, Canad. Math. 
Bull. 1, 31, 1 0 1 ,  183  ( 1 9 5 8 ) .  



5 0  IOHAN G .  BELINFANTE 

The curvature tensor on a Riemann s pace with tangent space V of 
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CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS 
OF THE 0(4, 1) DE SITTER GROUPT 

I-‘ritz Schwarz 
Center for Particle Theory 

Department of  Physics 
The University of Texas 
Aus t in ,  Texas 78712  

Abstract 

By M5 we denote the vector space of real 5-tupe1s (x1 . . . x5)  
in  which the quadratic form x§+. . .+xi —x§ is given. The De Sitter 
group O ( 4 , l )  i s  the group of linear homogeneous transformations of 
the M5 which leave this  form invariant. At first we determine the ir— 
reducible representations of the identi ty component .  These irreduci- 
ble representations are extended in  a l l  possible ways t o  inequivalent 
representations of the whole group.  

I .  Introduction 
Let be the 5-dimensional vector space whose elements are 

the real 5-tupels (x1 . . .x5) and in which the quadratic form x§+. . . +  
xZ-xg is given. By O ( 4 , l )  we denote the group of linear homogeneous 
transformations of the M'5 which leave this form invariant, i . e .  , the 
elements of 0(4, 1) are the real 5 by 5 matrices g which obey the 
equation t g  = G .  Here G is the diagonal matrix with the nonzero 
elements {+1 ,+1 ,+1 ,+l ,—1}.  The group 0(4,  1) consists of four dis— 
connected pi c e s ,  which are characterized by d e t  g = 5:1 a n d  9 5 5  ; +1 
or g 5 5  g — l .  1 We choose the  following notation: 

tPresented a t  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  

53 
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Notation det g sign g55 Representative 

+1 0 0 0 0‘ 
++ 0 +1 0 0 0 

0 (4,1) +1 + £5 = 0 0 +1 0 0 
0 0 0 +1 0 
0 0 0 0 +1 

+1 0 0 0 ‘0 
_+ 0 +1 0 0 0 

0 (4,1) +1 - R = 0 0 +1 0 0 
0 0 O -1 0 

‘ 0 0 0 0 -1 

1 0 0 0 
+_ 0 +1 0 0 0 

0 (4,1) -1 + S = 0 0 +1 0 0 
O 0 0 -1 0 
0 0 0 0 +1 

(+1 0 O 0 0 
__ 0 +1 0 0 0 

0 (4,1) —1 - T = 0 0 +1 0 0 
0 0 0 +1 0 
0 0 O 0 -1 

Evidently O++(4,l) denotes the identity component of 0(4, 1) and the 
other three pieces are the cosets with respect to it. There are three 
other subgroups which we will use frequently: 

+ ++ + ++ — 0 (4,1) =o (4,1) U RO +(4,1) = 0 (4,1) U o +(4,1) (1a) 

01(4,1) = o++(4,1) u so++(4,1) = o++(4,1) u 0+‘(4,1) (1b) 

03 (4,1) = o++(4,1) u TO++(4,1) = o++(4,1) U o"(4,1) (10) 

The identity component is a normal subgroup of index 4 in the whole 
group O(4,1) and a normal subgroup of index 2 in each one of the sub— 
groups defined by Eqs. (1). Further, each one of the subgroups de— 
fined by Eqs . (1) is a normal subgroup of index 2 in the whole group 
O(4,1). 
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The group O(4,1) is not simply connected. The universal cov— 
ering group of the identity component O++(4,1) is isomorphic to the 
group SL(2,Q).2) This group consists of the 2 by 2 matrices, whose 
elements are quaternions , and which leave the form ix - 37y in the 2— 
dimensional vector space of quaternionic 2-tupe1s invariant. Let CP be 
the homomorphism from SL(2 ,Q) onto OH(4,1) and e be the unit ele— 
ment of SL(2 ,0). Then we have cp(d:e) = E5 . The situation is more 
complicated for the group O(4,l); for this discussion see Ref. 3. Let 
r, s and t be the elements of a covering group which correspond to R, 
S and T respectively, i.e. , co(:l:r) = R, cp(:|:S) = S and cp(:|:t) = T. Then a 
covering group of O(4, 1) is uniquely determined as soon as the square 
of a representative of each coset is fixed. If we take as representa— 
tives the elements r, s and t we may have r2 = ice, sa= :I:e and t3= :I:e. 
According to the different choices of the signs, there are 8 different 
covering groups of O(4,1), which we denote by 010(4, 1) with lgn. 
We fix the notation in the following way: 

-: r,s ,t commute 2 2 
010(4’ 1) r9 S t +: r,s,t anticommute 

+e +e +e i 1 - 
J = 2 +e +e —e + 
J = 3 +e -e +e + 
J = 4 +e —e —e — 
J = 5 -e +e +e + 
J = 6 —e +e —e — 
J = 7 —e -e +e 
J = 8 —e —e —e 

The elements :I:e, tr, :I:s and it combine differently in the different 
groups CjO(4, 1) ; their multiplication schemes are given in Table 1 . 

The identity component has a basic set of 10 one-parameter 
subgroups. For 6 of them we take the rotations in the xi-x--coordi— 
nates planes with 1 g i < j g 4 . The rotation in the x1 —X2 —p1ane , for 
example, is described by a matrix of the form 

. cos 0: sin c 0 0 0 . 
‘ —sin on cos a. 0 0 0 

912(CL) = o o 1 0 o (2) 
O 0 0 1 0 
0 0 0 0 1 

The matrices gij(0L) , which describe the rotations in the other coor- 
dinate planes, are similar. The remaining 4 one-parameter subgroups 
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are the pseudorotations in  the xi—xs -coordinate planes with 1 g i g 4 .  
The first one of them is described by the matrix 

cosh or 0 0 0 sinh or 
. D 1 0 O 0 

915 (a) = o o 1 o o (3) 
0‘ 0 1 0 

‘ sink a. 0 0 0 c o s h d  

The matrices for the other pseudorotations are obtained from E q .  (3) in 
a n  obvious fash ion .  We denote the Lie algebra of the identity compo- 
nent by s o ( 4 , 1 ) .  The basis elements Aij with l g i < j g 5 are defined 
by 

A..=‘ 9 (<1) (4) 1] til—d ill d‘ —0 

A simple calculation shows that they obey the following commutation 
relations: 

[A1]” A=kl] gjkAil + g111‘s}: ' gikAil ‘ glik (5) 
wi thg  i = + 1  for 1 g i g 4 ,  955 = —1 and gi- = 0 f o r i 7 5 j .  Laterwe 
will need a l s o  the commutation relations of the infinitesimal genera- 
tors Ai 1+ fo r  l g i s  4 with the elements  S , T a n d  R ,  and  therefore 
we givé them here . It i s  e a s y  t o  see that they have the following 
form: 

[ A 1 2 1 R 1 _ = [ A 2 3 1 R ] _ = [ A a 4 : R ] + = [ A 4 5 1 R ] _ = O  (6) 

[A121Sl_=EAga.S]_=[A34.S]+=[A45.s1+=o (7) 

[ 15 .12 .T ]_=[A23 ,T ]_=[A34 ,T ]_=[A45 ,T ]+=0  (a) 

where We used the notatiOn [X,Y]i = XY :i: YX. To classify the irre- 
ducible representations (111's) of the group 0 (4 l  l )  we proceed as  fol— 
lows: At first we determine in Section II the IR's  of the identity com— 
ponent .  Then we extend these  representations in  a l l  possible ways ,  
which lead t o  inequivalent representat ions , t o  the group 0 ( 4  , 1 )  or its 
covering groups . This is done in two s t e p s .  In the f irst  s tep the IR ' s  
of the identity component are extended t o  the groups defined by Eqs . 
( l )  or its covering groups .  In  the second s tep  the IR ' s  of these  sub-  
groups are extended to  al l  four p ieces .  This has the advantage that 

. -
\  

V 
-

’
¥
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we need only the connection between the representations of a group 
and those of a normal subgroup of index 2 contained in i t .  The gen— 
eral case, where the normal subgrou is not restricted to the index 2 ,  
has been treated by A .  H .  Clifford. However, the special case we 
need is considerably simpler and therefore we describe it in Section 
III. In Sections IV and V these results are applied to the De Sitter 
group for m51 integer or halfinteger respectively. The label m51 will 
be introduced in  the next section. 

II.  The " educible Re esenmtions of Identit Com merit 
In this section we c lass i fy  the IR ' s  of the identity component. 

We d o  this by  determining a set  of irreducible matrices which obey 
the commutation relations (5). As a special case we recover the uni- 
tary representations, which are already known (see Refs .  5 and 6 ) .  
We denote a matrix, which represents the infinitesimal generator A11 , 

by D‘11151 '2“) (A11)- The labels m51 and 253 mu be explained later 
in this section. 

It is easy  to  see that a representation is completely deter- 
mined if one knows the matrices which represent the generators 
A1,i+1 for 1 g i g 5 , because the other generators can be expressed 
through them with the commutation relations (5). We define a new 
set of generators 311 by 

Bi: =JgE-@ A11 (9) 

Putting these new generators into Eq .  (5) one sees easily that they 
obey the commutation relations of the Lie algebra of the 5-dimen- 
sional rotation group, i . e .  , a n  equation, which results from Eq.  (5) 
by replacing the g” by  the Kronecker symbol 611. In the reduction 
30(2) :2 30(3) c 30(4) c o++(4, 1) a vector within a representation 
space is completely specified by the labels m“ , m:31 , mu and mg,2 . 

“151 1252)“  
The matrices D 111+1 
ve ctors : 

) act  in  the following way on these 

m , z  
D (  51  52)(A12)'m41’m43lm31'm31) =1m21|m¢r1lm4alm31 'm21210)  

. 2  ) _ 
D(m51 52 ( A g s ) l m 4 1 . m 4 2 : m 3 1 : m 3 1 ) —  

=A(m21) |m41  111143 'm31 Ima1+1) " A(m21-l) |m41,m”,m31,m21-1) 
(11) 
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(In z ) D 41: 52 (Agé)ln141'm42'm31'm21>=1Ca|m411m421msllm21)+ 

B(m31)Im41 tm4a 'm31+1'm21)—B(m31_1)|m41 Im42 Imai ‘1 rmzi) 
(12) 

m z 
D( 51 I 53) (A45) 'm¢1  :m42 Im31 1 m m )  = 

= A(m41)lm41+1,m43 Imal Imai) ‘ A(m41"1)' "141-1 111142 Im31 rm21> 

+A(m4.2)l m41 ,m42+1,m31 final) ' A(m42-1)' "141 I m 4 2 - 1 1 m 3 1  rmai) 
(13) 

From the commutation relations it follows for the matrix elements 

A(m:ai) =‘L: - (111.31%? ' (martya (14) 

A(m4,1) = %  v (1.041%? -(m31+%)2 

[(251%)5 ' (mirth-"21E (252+:  - ‘ (mei’l‘kPJ 

[<m42+1F-m211[(m42+1)9-(m41+1)31 (15’ 

A0114”) =%‘ v 5:245; -(m31555 

(251w - (meme-.24” a) - (mam—=1 (16) 
HE; - (mammal - trauma] 

[mu 4mg 1 T? l[ (mung-(m1 HT“) 1 
B(m31) = 4n1 - (1113144) (m31+1)3[4(m31+1)2-1] 

"121 m“ (1114244) 

m3 1 (ma 1- +1) 

c 

(1 7) 

c2 = (18) 

These expressions are taken from the appendix of Ref. 6 . There also 
the occurrence of the complex labels z51 and 252 is explained. The 
labels m“ , m” , m“ and mm are integer or halfinteger at the same 
time and obey the inequalities 

[3141‘ é m a i  §m42 (19a) 

["1211 Emu (19b) 
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The complex constants 251 and 252 are restricted by the requirement 
that the 80(4) labels m“ and m e  obey the condition (19a) and that 
the representation specified through them is irreducible. We deter— 

mine now the restrictions for 251 and 252 which follow from these 
requirements . 

Eq. (l9a)means that m41 g m4mlax= mflin § 11149 . For this to 
be true the following equation must be valid: 

max m1n 
A(m41 )=A(m m4; ‘ 1) = 0 (20) 

From this equation we get the condition 

(251%) =(m2‘fxe) = (mime? (21) 
The solution of this equation is 251 = mm = m4mlax = minim with the 
condition 

[m41I <=m51 £17142 (22) 

If the 80(4) labels are integer, the range of m51 is 0, l ,2, . . .; if 
they are halfinteger m51 has the range % , g , g ,  . . . . 

The irreducibility requires that there( is no subspasce which is 
invariant under the action of the operator D (”151 ’ 2 5 ?  . If the 
80(4) labels are integer, this is certainly the case if 25:)1g5g+iy5g 
is an arbitrary complex number except an integer m52 which does not 
fulfill m51 = m52+l . To avoid having the same representation occur 

more than once, we restrict the imaginary part of 252 by 0 g y52 . If 
msg is an integer together with m51 and m51 7! m52+l , the represen— 
tation splits into the direct sum of two IR's , which differ only by the 
80(4) content. For m51 g mm the two IR's are 

'm41I § m 5 1  <=m42<=m52 (23a) 

|m41| i 11151 : m52+1 <= U142 (2313) 

For 0 <= m52+l < m51 there are 3 possibilities, one of which is al— 
ready contained in (23b): 

’ m 4 1 l é m 5 2 + l r  m51 Emile (24a) 

m52+2 <= +m41 < msi i “142 (24b) 

m 5 2 + 2  <= ‘ m 4 1  = /
\
 

3 U]
 

,_
. <= mm (240) 



6 0 FRITZ S CHWARZ 

Analogous considerations can be made for the case where the discrete 

label mm is halfinteger and we do not repeat them here . The results 
for m51 integer or halfinteger are collected in Tables 2 and 3 respec- 
tively. It is easy to derive the additional conditions which the labels 
mm and Z52 must obey so that these IR's are unitary. However, they 
were already derived in Ref. 6 and we include the results in Tables 2 
and 3 without further discussion. 

III. Some Results From A Paper by A. H. Clifford 4) 

In this section we describe the results of A. H. Clifford for 

the special case where the normal subgroup is of index 2; see also 

Refs . l and 7. We give only the results we need. The interested 
reader can find the proofs in these references. Let G be a group, 

H c G a normal subgroup of index 2. By h, hi we always denote 

elements of H, by g, g1 elements of G which are not necessarily in 

H. However, let always 90 f H, then 903 is the onset with resyect‘ 
to H and we have. G = H + gOH. If D(h) is a representation of H, then 
also D(g'l hg) = D*(h) with fixed g E G is a representation of H, be— 
cause always g“1 hg E H. The representation D* (h) is called a repre— 
sentation conjugate to D(h) . It may happen that the representation 
D*(h) is equivalent to D(h) for a subset of G, in this case it is called 
selfconjugate in this subset. Trivially this is the case for g E H, be— 
cause then D(g'1 hg) = D(g'1)D(h)D(g). However, in general the sub— 
set of G for which a given representation of H is selfconjugate, may 

be larger. It can be shown that this subset is always a subgroup of 

G, called the little group of the representation D(h) . If H is of index 
2 in G, the little group of an arbitrary representation of H is either H 
itself or the whole group G. 

Let 5(g) be an IR of G. If 15(g) is restricted to H there are 
two possibilities which can occur. If 5(g) remains irreducible, the 
representation D(h), subduced by 15(9), is selfconjugate in G. The 
other possibility is that D(h) is reducible. In this case the little 
group of H is H itself. 5(g) splits into the direct sum of two IR's 
D1 (h) and D2 (h) of H which are conjugate to each other. 

We want to describe now how the IR's D(h) of H , which are 
supposed to be known, can be extended to those of G. Such an ex- 

tension is determined if we know the operator which corresponds to 
one representative go of the coset. At first we consider the case 

where the representation D(h) of H is selfconjugate in G . There 
exists an operator C with 

D(gal hg) = c-1 D(h)C (25) 

for all h E H ,  and consequently 
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D(g: he’s) = D(g:)D(h)D(g'g) = 0'3 D(h)C2 (26) 

because 9% 6 H. It follows that D(g‘g) = a9 Ca , 1.e. , D(go) is deter- 
mined up to a constant and we have 

D(go) = $0 (27) 

where a. is an arbitrary complex constant. It is fixed by the require— 
ment that D(g‘a) has a prescribed value. The two possibilities of D(h) 
corresponding to the different signs at the right hand side of (27) give 
two inequivalent representations of G. 

The other possibility is that the little group of D(h) is the 
group H itself. In this case the extension of D(h) to an IR of G can 
be induced from D(h) . We take the unit element e and the element go 
as representatives of H and the coset respectively. The representa— 
tion 5(g), induced by D(h), is irreducible and given by 

Ms) D(ggo) (D(g’) = 0 1f g’fiH. g’ = g. 990. 
5(9) = > ‘ 

—1 —1 ‘1 , —1 D(srlo ) D(go ggo) go 9 or go 990 respectively) 
(28) 

where g is an arbitrary element of G. For g E H it follows from (28) 

Ms) 0 
15(9) = 1 > (29) 

0 D(go 99°) 

and for 9 K H 
_ 0 D(ggo) 
D(g) = . (an) 

D(g;1 g) 0 

From (29) and (30) one sees that the representation space of 5(g) is a 
system of imprimitivity for G. For g = go one gets from (30) 

0 D(gg) 
D(g) = > (31) 

D(e) 0 

The extensions of the IR's of H to the whole group G, described in 
this section, exhaust all possibilities which lead to inequivalent 
representations of G. 
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IV. Menstonto t3 Whole grggp If msl Is Integer 
If the discrete label m51 is integer, the results of Section III 

can be applied to the group O(4,1) itself. At first we extend the IR's 
of the identity component O++(4,1) to the three subgroups 0+(4, 1), 
01 (4,1) and 02(4,1). 

We begin with 0+(4, l) . As representatives of the identity 
component and the coset we take the elements E.5 and R respectively. 
If an IR of O++(4,1) is selfconjugate in 0+(4,l) , there exists an oper— 
ator B with 

_ (111511252) —1 _ )B D (R Ai,i+1R) 

= D(m51 I252)“ 

—1 (”151 .253) 
B D (Ai,i+l 

1.1+1) (32a) 

for i = 1,2 and 4, and 

B—1D(msl '253)(A54)B = D(m51 :Zsz)(R—1A64R) = _D(m51 '253)(A34) 
(32b) 

The calculations which lead to the operator B are similar to those for 
0(5)  and can be found in Ref. 8. Therefore we do not repeat them 
here . Eqs . (32) determine B up to a complex constant a with the result 

In 
Blm41 Im42 I m a 1  ,m21)= “(‘lx) 31(‘1)m41 |  -m41,m42,m31,m21) (33) 

There are no conditions for the labels m51 and 252 . However, from 
Table 2 one sees that the operator B does not exist for the represen- 
tations of the classes Na and Nb. B exists only in a representation 
which is the direct sum of two IR's of the identity component, one of 
which is from class IVa, the other from class Nb, and for which the 

labels msl and 25,, have the same values . We call the representa— 
tion" of this type simply the class IV. The requirement 130nm Izsz)(R2) 
= D "‘51 ’25? (I15) fixes the value of the constant a. in Eq. (33) to a: 1. 
According to Eq. (2 7) the two possible extensions are 

m ,z 
D( 51 52)(R)|m41 :m421m311m21) = 

i (_1)m,31(_1)m4.1|_m41 11114.3 Imal 117121) (34) 

The extensions to O1 (4, 1) and 03 (4, 1) follow from similar considera— 
tions and we do not repeat them here. The results are as follows: 
The IR's of the classes I. . .IV are selfconjugate in 01 (4,1). The two 
inequivalent extensions are 
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(m z ) 
D 51' 52 (S)|m41,m42,m31,m21) = 

= ('l)m31(_1)m42|_n1411n1421m:31 111121) ( 3 5 )  

Contrary to t h e s e  results, all IR' s of the classes I. .I,II Na and Nb 
are selfcon ugate in 02 (4,1) and the two inequivalent extensions by 
D(m51 1252- (T) are 

(m z ) 
D 5 1 '  52 (T11m411m421m311m21) = 

= <—1)m41(—1)m42|m41.m42.m31.m21> (36) 

Now we determine the IR'S of the whole group O(4,l) . To do this we 
can start with one of the subgroups O+(4, l) , O:L (4, l) or O2 (4, l) and 
extend their IR's in all possible ways to the whole group 0(4, 1). 
Clearly the results are the same in all three cases, and we choose 

0+(4, 1) As representative of 0+(4, 1) we take the unit element 35 
and as representative+ of the coset with raspect to 0+ (4, 1) the ele— 
ment 8- If an IR of 0+(4,1) is Selficmjugate in O(4,1). there exists 
an operator C which obeys the following commutation relations: 

—1 (”1511252) ( ”151 ,252 )  -1 _ 
C D (Ai,i+l)C= D (S Ai, i+ls) 

(m5; .252) 
D i,i+l) (37a) 

for i = 1 and 2,  

_ (m5 Zs ) (m Z ) _ l 1 ’ 2 5 1  l 5 2  1 = 
C D (A1, i+1)c= D (S Ai, i+1s) 

(U151 IZSQ) 
D 1.1+1) (37b) 

for i = 3 and 4, and 

C—1D(m51 1 2 5 2 ) ( R ) C  : D(m51 1252)(S—1RS) = D(m51 [252)(R) ( 3 7 6 )  

From Eqs . (3 7a) and (3 7b) it follows that C has the form 

_ mal mere Clm41,m42.m31,m21> —oc(-1) (-l) I-m41,m42,m31.m21) (38) 

A simple. calculation shows that (3 7C) is automatically fulfilled. The 
condition D(m51 '252)(Sz) = D(m51 .252)(BE) leads to o. = 1 and the two 
inequivalent extensions are again given by Eq. ( 3 5 ) .  The operator, 
which represents the element T is determined by the equation 
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D(m51 I z s a ) ( T )  = D(m51 Iz52)(R) 1391151 I z s z )  (39) 

Let us summarize the results which we have found in this sec— 
tion for mu integer. Each one of the IR's of the classes I .  . .III given 
i n  Table 2 can be extended to  a n  IR of the whole group 0(4, 1) . How— 
ever this i s  not true for  the IR's of the classes Na and Nb separately.  
Only the representations of the class IV, which were defined previ— 
ous ly ,  can be extended to  the whole group O(4,1). In each one of 
these representations the elements R and S are represented by the op— 
erators (34) and (35) respectively. The operator, which represents 
the element T is determined by E q .  (39) . The representations of 
0(4, 1) , which belong t o  the classes I .  . .III are irreducible under res— 
triction t o  O+(4 , l )  , O1 (4,  1 ) ,  Oz (4 ,1 )  and the identity component it— 
s e l f .  The representations of the c l a s s  IV remain irreducible under r e s -  
triction t o  0+(4, l )  and 01 (4,1) . However, restricted t o  02 (4,1) or 
O‘H'(4, 1) they are reducible and decompose into the direct sum of two 
inequivalent representations . 

V .  Extension to the Whole Group If 11151 Is Halfinteger 
If the discrete label mm is  halfinteger, the extension is more 

complicated. This is a consequence of the fact  that the group O(4,1) 
has  e ight  different  covering groups 010(4, 1) . That means  if mm is  
halfinteger we have t o  determine the IR ' s  of these eight covering 
groups.  We proceed in a similar way a s  in the case where m“ is in- 
teger,  i . e .  , at  first we extend the IR's  of the identity component t o  
the groups G 0+(4.1). c 01 (4,1) and (3,03 (4,1). 

We begin with C 0+ (4, 1). If an IR of the identity component 
is selfconjugate in 010 (4, 1) there exists a n  operator B with 

B—1D(m511252)(A )B=D(m511252)(r-1A 

1.1+1 ) = . . r 
1,1+1 

= D(m51 ' z 5 2 ) ( A .  

1,i+1) (40a) 

f o r i =  1 ,  2 and 4 ,  and 

B-1D(m51 ' 252)(Aa4)B = D(m51 Iz52)(r_1Aaér) = _D(m51 ' z 52 ) (Ae4)  (40b) 

From these equations it follows that B exists in  the classes I .  . .IV and 
is given by E q .  (33). The constant on is fixed by the requirement that 
D(m51 1252MB ) has a prescribed value. It follows that the two ine— 
quivalent extensions for 12 = +e are 
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D(m51 ' z s z ) & ) | m 4 1  ,m” I m a i  111121) = 

= ii(—1)m°1(-1)m“I-m41.ma.m31.mgn (41) 
and for 1,3 = —e 

D(m51 I z s g ) ( r ) l  m41 I m s z  ,m31 , m 2 1 ) =  

.= i (_1)m31(_1)m41l  'm41 Im42 'm31 Im21> (42) 

For the extensions t o  C-01 (4,1) and C 0? (4,1) we give only the re— 
sul ts ,  because the calculations are completely analogous. The IR'  5 
of the c lasses  I .  . .IV are selfconjugate in CjO1 (4,1). If SE = +e the 
two extensions are 

D(mE51 lzsz)(s)|rn4:1 Im4e ,m31;,m31) = 

= i(—1)m31(-1)m”|-m1,mrgmaumm) (43) 
and for s3 = —e 

D(m51 ' z sa ) ( s ) |m41 :m42 lm31 ("121) = 

= i('1)m31 (_1)m43 I _m4:1 rmse  Im31 I m s i )  (44) 

The IR 's  of the classes I .  . .Il-‘I and Na and Nb separately are self— 
conjugate in 01.03 (4,1) with the extensions 

(m z 
D 5 1 ’  52)(t)|m,1,1,m,“3,m31,m21)= 

(—1)m“(-1)m42|mu.ma.m31.a (4s) 
D(InS1 Iz52)(t)| 11141 [11142 ,m31 I I n g 1 >  = 

i (-1)m1(-1)m42|m41 Image 111131 I m e l )  (46) 

for t2 = +e or 1.3 = —e respectively. 
Finally we determine the representations of the groups 

0(4 1). As in the case where 111.5.1 is integer, we can start with 
33's of each one of the subgroups Cj0+(4,1),CO" (4,1) or 0103(4, 1), 
and we choose C 0+(4,1). As representative of’ the normal subgroup, 
which is now (313+,(4 1), we take the element a ,  and as representa- 
five of the onset with respect to it the element 3 .  If an IR of 



6 6  FRITZ SCHWARZ 

340414, 1) is selfconjugate in 010(4, 1 ) ,  there exists a n  operator C 
th  

C_1D(m51lzsa)(A. ) C  = D ( m 5 1 r z s z ) ( s _ 1 A i  
1,1+1 ,i+ls) = 

=. (m51 1 2 5 2 )  
D (Ai,i+l) (47a) 

for  i = l and  2 ,  

-1 (“1511252) = (111511252) —1 = 
C D (Ai,i+1)c D (s A1,1+1S) 

_ (“161 1252) 
‘ D (Ai,i+l) (47b) 

for i = 3 and 4 ,  and 

0—1 D(m51 lz52)(r)c = D(ms1 'ZBQ)S '1rS)=:I :D(m51 : Z s a ) ( r )  (47c) 

The +—sign at  the right hand side of Eq .  (47c) is valid if r and 5 com— 
mute, the —-sign if they anticommute. From E q s .  (47a) and (47b) it 
follows that C i s  given by E q .  (38). A simple calculation shows that 
E q .  (47c) is automatically fulfilled i f  r and s anticommute . In this 
case the operator which represents the element 5 is given by E q s .  
(43) and (44) for $2 = +e or s21 = —e respectively. From the discus— 
sion in  the introduction we see that r and s anticommute in the cover- 
ing groups CjO(4, 1) with j = 2 , 3 ,  5 or 8 .  That means that the IR's  
of the classes I .  . . IV can be extended o n  the s a m e  representation 
space to  a n  IR of these covering groups.  The operators which repre— 
sent the elements r ,  s and t in these representations are given in 
Table 4 . 

The representations of the covering groups 010(4, 1) with j = 
1 ,  2 ,  4 and  7 have t o  be i nduced ,  because  fo r  these  groups there 
exists no operator C which obeys the commutation relations (47) . We 
denote this induced representation by  13(m51 :zsa)(A) . For the matri— 
ces which represent the infinitesimal generators we get according to 
Sect ion III 

("151 1 2 5 2 )  
D (Ai,1+1) 0 

507151 '252)(A ) =  
i , i+1  (m z ) 

5 1  I 5 3  
0 D (Ai ,1+l '  
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for i = 1 and  2 ,  and  

D(m51'zsg)(A. ) =  

1 ,  1+1 
_D(m5 1 1 ZS 2 ) 

(Ai ,5;+1) (49?) 

for i = 3 a n d  4 .  The e lements  r and s are  represented by the matrices 

1301151 r252)(r) 0 

5(m51'252)(r) = (50) 
0 D(n151.252)(r),‘ 

0 113m“ ’252)(e)'_ 
501151 1252)(S)= (51) 

D(m51 1252)(e) 0 

The +~stgn at the right hand side of Eq. (51) is valid if 93 +e 
«Sign, 1f 5-3 = -e. In the former case we transform 5 (ms: nzs-af‘(31 
1111:!) an equivalent representation D(ms1 :Zsami) Evithothe matrix 

.1 0 B,“ . in the second case with the matrix 0 ~18 , Where 315 
defined by  E q .  (33) with on = l .  The result has the following form:  
The operators which represent the infinitesimal generators A. +1 are  
always given by 

D(m51.252)(A 
1 ,  1+1) 0 

5(1'051 I z s g ) ( A i ’ i + l )  = I 

) r  

(52) 
The matrices which represent the tale ents  r ,  s a n d  t i n  the represen-  
tations _D(mS1 'Z52 (A) and 5("151 1352 (A) are given in Table 5 . 

At the e n d  of th is  section let u s  again  summarize  the  resul ts  
which we have found for m51 hal f in teger .  We d is t inguish  two c a s e s .  

1)  An arbitrary IR of the c l a s ses  I .  . . I V ,  which are given in 
Table 3 , can be extended to  a n  IR of the covering groups CjO(4, l )  for 

0 D ( m 5 1 1 2 5 2 ) ( A  

i , i + 1  
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j = 2 ,  3 ,  5 and 8 on the same representation space.  The operators, 
which represent the elements r ,  s and t ,  are given in Table 4 .  If the 
IR of the identity component belongs to the classes I ,  II or III, the 
corresponding representation of the whole group remains irreducible 
under restriction to each one of the subgroupsc 00"" (4, l ) ,  0101(4, 1), 
C 03 (4 , l )  and the identity component itself. I; it belongs 1to the 
c ass Nthe representation do? 0(4, 1) remains irreducible under res- 
motion to ‘C 0*“ 4,41) and CJO (4,1). However, under restriction to 
(:a (4,1) or 010 (4,1) it is reducible and decomposes into the di— 
rect sum of two inequivalent representations. 

2) The IR' s of the groups 010(4, 1) f o r )  = 1 ,  4 ,  6 and 7 can- 
not be constructed on the representation space of a single IR of the 
identity component. They are induced from a subgroup. The matrices, 
which represent the elements r ,  s and t ,  are given in Table 5 .  Under 
restriction. to 010+“, 1) or 0101(4,1) these representations are redu- 
cible and decompose into the direct sum of two equivalent represen- 
tations. Under restriction to (330‘3 (4,1) or CJO‘H'(4,1) they are also 
reducible, and they decompose either into two equivalent representa- 
tions of one of the classes I ,  II or III, or into four representations, 
two of which are from class Na and two from class IVb. 
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Table 2 . Classification of the IR's of the identity component 
if m51 is integer. 
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Table 4 . 

Table 5 . 
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THE MATRIX ELEMENTS OF FINITE TRANSFORMATIONS 
IN THE DE SITTER GROUP Sp(Z ,2)1' 

Wayne I. Holman, HI 
Theoretical Physics Department 
Middle East Technical University 

Ankara, Turkey 

Abstra% . 

Spinor basis states for the irreducible representations of 
Sp(2 ,2) , the spinor covering group of the de Sitter group 80(4, 1), are 
obtained by analytic continuation from those of the compact group 
Sp(4). An algorithm is established for the determination of matix 
elements of finite transformations from the form of these basis states, 
and they are written down explicitly for all the unitary irreducible 
representations of Sp(2,2). 

L Lgtroduction 1 2 
In previous papers ) ' ) the basis states of irreducible repre- 

sentations of Sp (4) and the matrix elements of its finite transformations 
were determined. Also, the analytic continuation of these basis states 
to those of the irreducible representations of Sp (2,2), a complex ex- 
tension of Sp(4) was performed. Ref. 2 contains a short bibliography 
of previous work on the representation theory of Sp(2,2) . In the pres- 
ent work we shall consider the analytic continuation of the represen- 
tation functions of Sp (4) to those of Sp(2,2) . It is evident that such a 
method is possible, i.e. , that the representation functions of Sp(2,2) 
may be obtained from those of Sp(4) by suitable analytic continuation 
in the coordinates of the group manifold and in one of the two para- 
meters which label the irreducible representations of Sp(4) , since the 
matrix elements of the Sp(2,2) generators may be obtained from those 
of the Sp(4) generators by such an analytic continuation. The matrix 
elements of finite transformations are obtained simply by exponentia- 
tion of the generators , hence the representation matrices of Sp(Z ,2) 
must be analytic continuations of those of Sp(4). 

The representation functions of Sp(2,2) are of interest in parti- 
cle physics even if we do not make the physical assumption of a de 
Sitter universe , since the representation functions of the Poincaré 
group are all asymptotic forms of those of__ Sp(2 ,2) . E.g. , the matrix 
1-Presented at the Symposium on de Sitter anfionformal Groups, 
University of Colorado, Summer 1970 .  
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elements of a Lorentz transformation along the z—axis in de Sitter 
space is an analytic function of the invariant which we here denote 
as ‘l . The matrix elements of this transformation in the Poincare group 
may be found for all irreducible representations as different asympto- 
tic forms of the de Sitter function. The different representation func— 
tions of the Poincaré group cannot be obtained from one another by 
analytic continuation in the complex planes of mass and spin, but t hey  
may be found as different asymptotic limits of a single analytic func— 
tion, the matrix element of the Lorentz transformation in the de Sitter 

group. Thus this latter function constitutes an "analytic medium" 
within which all the irreducible representation functions of the Poin— 
oar-é garoup may be connected by analytic continuation and contraction. 
Sim-6m ) has investigated the Lie algebras of both the d e  Sitter and 
Poincaré groups and found which representations of the former yield 

any given representation of the latter under Wigner-Inonfi contraction 
and how the appropriate asymptotic limit is to be taken. In the limit 
of the contraction the 80(4) subgroup of the de Sitter group passes 
over to the E(3) subgroup of the Poincaré group, and so we obtain 
representation functions of the Poincaré group in infinite-dimensional 
matrix form, with states labeled by momentum and helicity. 

In crossed—channel momentum—helicity amplitudes of which we 

perform a harmonic analysis by means of these  infinite dimensional 
representation functions of the Poincare group, a pole in the complex 

mass plane will be given as the asymptotic limit of a pole in the plane 

of the complex parameter Q which labels the irreducible representa— 
tions of the de Sitter group Sp(2,2). StrZSm4 has also found the form 
of the matrix which transforms an irreducible representation of Sp(2,2) 
from the basis in its maximal compact subgroup Sp(2) X Sp(2) to a basis 
in one of its Lorentz subgroups SL(2,C). In the limit of the contrac— 

tion, then, this matrix will transform an irreducible representation of 

the Poincaré group from its E(3) to its SO(3 ,1) basis and show how a 
pole in the complex mass plane of the Poincaré group generates a 

family of Lorentz poles which in turn generate families of Regge poles . 

We shall then be able to study the behaviour of these Lorentz poles 

for scattering through arbitrary angles . The possibility of such a for- 

mulation is sufficient to motivate the study of the explicit structure of 

the Sp(2 ,2) representation functions . 
In Section II we shall review the construction of the represen— 

tation functions of Sp(4) , and we shall obtain two forms for these func— 
tions , Eqs . (II. 14) and (II. 16). Eq. (II.l4) provides us with the most 
convenient expression both for the analytic continuation to the Sp(2 ,2) 

case and for the subsequent contraction to the matrix elements of time 

translations in the Poincaré group. The analytic continuation of (II. 16) 
is extremely difficult since prescriptions must be found which specify 
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a unique continuation of the (9 —j) symbol, and such prescriptions do 
not immediately suggest themselves . In order to obtain such a con— 
tinuation we shall presumably have to obtain the representation func— 
tions of Sp(2,2) in the form (II. 14), then apply the Burchnall—Chaundy 
identities to obtain the form (II. 16). 

We first perform the continuation of the spinor basis states for 
irreducible representations of Sp(4) to those of Sp(2,2) . In so doing 
we are given the parametrization of these basis states in Sp(Z ,2) . We 
obtain two equivalent forms of this parametrization (Eqs . (III.9) and 
(III. 10)) , which are given by the two linearly independent analytic 
continuations of the hypergeometric function which occurs in the semi— 
maximal basis state. These two forms of the Sp(Z ,2) basis state are 
related by unitary equivalence . We then establish an algorithm for the 
determination of matrix elements of finite transformations from the ex— 
plicit expression for the basis states: We apply an operator of a finite 
transformation to the basis state , expand the resulting expression in 

.pQ'Wers of the elementary spinors aJ1-, then perform the commutations. 

with the spinors of the final state a_s g £113. inner producr were being 
taken between Sp(4) states . At this point we perform the analytic 
continuation in Q and obtain representation functions of Sp(Z ,2) . We 
must verify that in the limit of infinitesimal transformations we obtain 
the correct matrix elements of the generators . Having done so we have 
verified the parametrization of the spinor basis states. The parame— 
trization of the remaining structural units of the general representation 
function, i.e. , the four Wigner rotation functions in (II. 14) , is then 
uniquely determined by the condition of regularity at the origin. The 
results are expressed in Eqs. (III.18), (111.20), and (III.22), which 
give the matrix elements of finite Lorentz transformations along the 
4—axis in the continuous , positive discrete, and negative discrete 
irreducible representations , respectively. 

II. The Basis States and Representation Functions of Sp (4) 
In Ref. 1 the basis states and representation functions of Sp(4) 

were derived by a lowering operator method in the realization of the 
Sp(4) irreducible representations in terms of a calculus of boson Opera— 
tors. The generators of the group are: 
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Han — E”) was +194) 

E... 4 tic-14 +1.s)+1<1.. +1..)1 
Es: m1“ +1423) - 1a... +120] 

was - £4.) ML” - 1“) 

-E.. 1H1” —L..) +15%... -1..)] 
—E.. rm... -1“) - 1(1... - 1.1)] 

Am“ +33.) m1... +11...) 
ma. +323) «we. -1L15) 

WHEN - E42) AG“ +1153) 

@0331 -Ea4) flats ~11“) , (11.1) 

where E1 represents a four-dimensional matrix with unity in the (11) 
place and zeros elsewhere. The corresponding generators of the 
locally isomorphic group 80(5) are given in the right column. 

The irreducible representations of Sp(4) are labeled, in accord- 
ance with Cartan's Main Theorems, by the maximal eigenvalues of the 
generators of the Cartan subalgebra, HE“ - E”) and g. (E33 — E“), 
which we denote Im and Am, respectively. We may take Im - Am to 
be half of a non-negative integer without loss of generality. The 
space of the irreducible representation (1m, Am) is reduced by the 
representations of its Sp(z) x Sp(z) subgroup generated by the first 
six generators in the table above. The representations of the Sp(2) 
subgroup generated by @(E:11 - E”), B” , B“) are labeled by the 
angular momentum states I L M  ) , and those of the subgroup generated 
by Q0?” - E“), 4:“, - E”) by the states IA, M >. The states of 
the Sp (2) x Sp(Z) subgroup which occur in the irreducible representation 
Om, Am) are those which satisfy the conditions 

Jm+Amgl+A;Im-Am;|I-AI . (11.2) 

where these quantities are a l l  either non—negative integers or half- 
integers. 

We realize the generators E in terms of the boson operators 1] 
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_, p -p EH Z all aj , (11.3) 
p= , 2  

where 

-i k = [ a j .  a ]  61k 5 ” ,  (m4) 

and we define the vacuum states 

-1 k aj  [0) = (olaL = o .  (11.5) 

In terms of these boson operators the general semlmaximal state of a n  
Sp(4) irreducible representation may be written a s  

(ZIm-ZAm +1)I(I1m +A m+]-I\+l)!(Im +A m+]+A+2)'(2A+1)l - 

(Tm-A m-I+1\)!(Im+l\m-I-I\)!(21m+21\m+2)!(1111+1\m-]+A+1)!x llm.Am:LI;l\.A)= -[ 

% . 1 
(Im-Am+I+A+1) ! (Im-Am+I-A) I (I+l\-Im+l\m) ! (21+1) I] x 

3,13 Im +A m+ A I+A‘Im +Am 
Pl-ma'kAl ‘Am :I'A‘Im “A m'1IZI+2|“ '—')(aa4)m (31:3) 

I - A  +I-A I -A -I+A 
(anm m (anm m |o> , (me) 

i nwh ich  

_ 1 

a i ’ a i  
= _ 1 s a fl _  - a .  1 a j  a j a 1  . (H.7) 

We may obtain the most general state by operating on (II.6) with the 
normalized lowering operators: 

0+ .I(A+Mm)! 11‘ I—MI A—MA 
l I m l A m ; I I M J - ; A I M A )  = (2DIU_M]J I (2A) ! (A_MA) I ]  ( E 2 1 )  ( ‘34 .3)  X 

x lIm.Am;I.I;A.A> , (11.8) 
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and  we m a y  then  project  out the angular momentum s ta te  of the sub— 
group of rotations in  the dimensions (1,2,3) b y  means of the standard 
coupling: 

2 C I A L I I  A ' I M ‘ A M > = I I  A - I A ' L M >  (II9) MIMAM m ' m " I " A  m ' m " "  ' ' 
MI+MA=M 

The resul t  m a y  be written in the form 

- (BI -2A +1)! Ht, 4-1—A+J§AI: 
II ,A :LM;A,M )= E ? (-1)212 M E L — T  

m m I A H (Him-1H0 "ZIfi'l'ZAm-l-Z). 
j 1  +)\1 =Im m1+m2=MI 

1 2 + X 2 = A m  H1fll2=mA 

x qirAm+1+A+iII (HA-mi)! um+A .+I+l\+2) ! (1m +Am—I—A ) 1 (Im+Am—I+A+1) 1 
X 

(Im-Am+I-l\) ! (21+1) ! (2A+1)! 

(I+J'1—jg)!(A+A1 —A2)! % A_M 
A 

(I+J'2 —j1)!(ji+j2 —I) ! (j1 +12+I+1)!(MAB-A1)!(A1+A2—A)!(A1+A2+A+1){I ('1) 

mg I AIAQA (apjfi‘magfz’mz (a§)j2+m2(ag)jé‘m§' 
C C , m1 maMJ ulueMA [seminal-mam ‘t<:g+mg)!<jg—m2m* 

X14111 X1111 X24112 A2142 ' 
(3;) (6i ) (a: ) (a2) 

' é a: '0) 
01+H1) !0 \1_I~J~1) ! ]  [ (X2+H2) ! (Xg—Hg) ! ]  ‘ 

A-M . . A , ,. . J J I A A A (-1) Z Z 3(ImAmJAJn) 0131!;n CH:H:MA 
j1+A1=Im m1+m2=MI 

jgfl‘ 2=Am H1+H2=MA 

Cbififluaér-ji‘mi ((aefamwaafiz'ma) (Kg; WW1 g 91'“ ) 
: 0.1m111m-mnu.“ team; I (jg-mg) 11* [014141) : (Al—u; > 115' ' 

Agmg Xz-ue ( 1 5 2 % )  W , (11.10) 
mm) ! (Ag-H2) U 
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In order to find the matrix elements of finite rotations we first 
note that we may parametrize the general rotation operator as 

(R) 9145902) : (11.11) 

where (R) denotes a rotation in the manifold of the Sp(2) x Sp(2) sub- 
group (locally isomorphic to the SO(4) subgroup of rotations in the 
dimensions (1 , 2 , 3  ,4)). Hence we need investigate only the matrix 
elements 

(1m.Am;1’,M’;A’ ,MI'J em“) | Im,1\m;LM I :AlMA) (11.12) 
I 

where i i 

. “'9 (313+Es 1) ""9 (324+E42) 
ell'459 = e2 e 2 . (11.13) 

This relation prescribes that we treat the bosons in (II. 10) as fanning 
angular momentum states in the pairs (a? a5) and a5 a2) . The result 
is that we may express (11.12) as 

I I A’-—MI'\ A—MA 
Z > V Y (-1) (-1) x 

' ._ 1...: _L 

. _ . I I_ _ I _ 11+xl-Jm 11+11—Im m1+ma—MI m1+mg —Mf 
- _ I _ _ _ 
Jena—Am jz'flé—Am “fills—MA ”fills—M 

I 

A 

I I I I j; 151’ tag/v 1{-51+j;—12 
SGmAmfi A :1112) l'méM; CuiuéMA (—1) 

ifili‘h‘l‘mlfllfl %G1+)\1_m1-U1) 

)(_9) d . . . 
4" 01, ‘7‘1’ +mil. ‘U-J’. ) i (11")‘1 +m1 'Hi % 01_)\i_m{+llll.) &(11'x1m1+H1 

509+12+ma+u2) %(12+12-m2—ua) 

d110,»:swammama—us”) d%<j;—x;—m;+ug) ice—15mm 
'11 jg I like A 

C C 3 A 7 A ;  6 mlmeMI ”IUZMA (1m. m1 1112) 

)("6) 

=1.2- (11.14) 1 I I I 

”11+“: ’mi +”i 

We now note that 
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#0191 1+m1+u1) 1(11+x1-1m1-u ) 
d I I I _ (6) d I I _  I _ (‘ 6 )  1(11—11+m1-u1’)i(11 x1+m1-u1) 101-11-m1m1) 1(11 x1-m1+u1) 

= (-111’1-11-m1+ m1 0101 +11 +m 11+u)§(11+x1 -m1-(11) K1 x 

K1 M1"‘1’-'-m1'“’1’i(’1"‘1 m1'+“1,”1"‘1 

X dK1 (e) 0’ “1‘“1 +1a1+“1)"(’1+"1“"1 "“1) K1 
11—11 11-1 «1(11-11+m1-u1)1(11—x m1-1+u1) 11-11 

-m1 -11+m1 1J1 K1 K 1.1 K =1_11’I 120111111111 (9)011 1 1 
m1u’ ”+u 1’-x’1->» m u m m  1 m 1 1  1 1 1 1  1 1 1 1  (11.15) 

where we have applied the Regge symmetries of the Sp(2) Wigner 
coefficients . Projecting out the angular momentum state of the sub- 
group of rotations in dimensions (1 , 2  , 3 )  and combining the Wigner 
coefficients into (9—1) symbols we obtain: 

< I I 11 11.4591 ImAm 
I IA :1 .A : L ' . M  e I .A :I.A:L.M)'-‘8 (0) 

— I l = (-1)A A 2 Z Z (2K1+1)(2K2+1)sum/(mfl’lx'm’jg) 
11+7~1=Im j{+)1{=Im K1 1K2 
12+X2=A m j s + x é = A m  

’1 ’1 K1 K2 211—212 
[(ZI’+1)(2A’+1)] 1; 1; K2 d (e) d (-9) (-1) 

I I  A I  L j j f—X;  111-kl 14')»; jg- IXQ 

1 1 ‘11 M. K: 
E-Umhm:IAzjgilai)E(ZI-‘Fl)(211+1)1 “1,13 Kla 5MM’ 5111, , (II.16) 

I A L 

where the phase (-1)215 4’3 is canceled by similar factors contained 
in the monomials 3 .  It is interesting to compare (II. 16) with the 
matrix element of a finite rotation in the (2 ,4) plane: 
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111249 I A L 
( I ' A ; L ’ , M l l e  I I I A ; L I M )  = Z Old-[l M I  M I  

1 I A MI+MA M 
I+ I__.= I M]. MA M 

h. 

I I A L 
d I ( 6 ) d A  I ( '9) C ,.' ( H . 1 7 )  M M]. I MAMA M]. M A M  A 

In the dish-ix element (II. 16) we also have a factor of the form 
dJ1(e)d a(—e), but the coupling is accomplished not by means of the 
Wigner coefficient but by means of the (9-j) symbol. That i s ,  t he  
(9—j) symbol acts a s  a generalization of the angular momentum vector 
coupling coefficient, in  which one column denotes the angular momen- 
ta being coupled and the differences between the other two columns 
denote the magnetic quantum numbers . This is  a phenomenon of Regge 
symmetry and has been observ d in connection with the construction 
of SU(3) Wigner coeff}citgnt3. 5 In fact, Iucys and his collabora- 
tors and R .  '1‘. Sharp5 have found the following remarkable 
expressions for doubly and singly stretched (9-j) symbols which bring 
out their analogy t o  the (3 - j )  symbol quite clearly: 

.; a b c :  

d e f ‘  = I x 

a+d b+e J ' 
1 c f j 

x‘(123+Zd+1)1-(2b+29+1‘)~t] Ca-b d-e a+d-b-e ' (“'18) 
a b c '  

_ [  2b ! 2 +c—b ! d+f-e‘ ! Med-h l +h- I x 
(214-1) (al+b-c) ! (b+e-a). I (a+b+c+1). I (d+e -f ) .  I 

h b+e j 
(b+e+h+j+1)! f 

><(.e+f-d) I (d+e+f+1). I (d+h-a). I (a+h- d ) .  I (a+d+h+1). I (2b+2e+1). I X 

gnaw-bx)! , (am-b-xHK-I-h-a-e-mll‘ 

C c f j v. (11.19) 
a—b-x h-a—e+x h-b—e 
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When we consider the fact that the (9-1) and (3-j) symbols have iso— 
morphic symmetry groups of 7 2  elements, it becomes evident that the 
analogy between them i s  quite proffuRd. 

We note that the function 9 m  "'LIA L(6) i s  pure real  (pure 

imaginary) 1f A—A’ is integral (half1 a n  A o d d  integer). It has the follow- 
ing symmetry properties: 

I A I A I A 
9‘“ m (e) =sm m (6)=sm m (e)= 
I’A’;IA;L A'I';AI;L IA;I’A’;L 

I A * I A = 9 m  m (-6) = ~ ( _ 1 ) Z I ’ - Z I fl  m m 

I’A’;IA;L I '  A' 71A;L 
_ 2A'—2A Im Am* 
— (-1) 8] N a m  . (11.20) 

and the orthogonality property 

I A I ' A  
ZJ: sin3 ads 9'" m (6) 3““ Am* 

I’ A’ ;;IA L él'A'JAiL 
(6) 

6'11 
= mm A’“ A1“ . (11.21) 

(2] m+21\m+3)(2] m-zAm+1)(2/\m+1)(2]m+z) 

a
l

l
-

4
 

g .  The Analytic Cowation of Sp(4) Basis States and Representa- 
tion Matrices to Those of the de Sitter group Sp(ZIZ)  

We now adopt the following notation for  the state labels and 
invariants of the irreducible representations of Sp(4): 

Im+Am+l E Q 

Im-Am E A 

I+A+1 2 cp 

I-A E 6 

I-M:r E P 

A—M E Q . (III.1) 
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We may now obtain the spinor basis states for all the irreducible 
representations of the de Sitter group Sp(2,2), which is the spinor 
covering group of SO(4, 1), by the analytic continuation of (II. 10) in 
the complex plane of the parameter Q . This is essentially the method 
of master analyt'c representations discussed by Kuriyan, Mukunda, 
and Sudarshan, 8 except that we are now treating an explicit realiza- 
tion of the spinor basis states rather than their abstract representation. 

In order to treat (II. 10) as a spinor basis state for representa- 
tions of a complex extension of the Lie algebra of Sp(4), we omit the 
vacuum state I 0) and regard the operators a1 as abstract spinors, 

i.e . , as arbitrary complex numbers . Simultaneously we express the 
generators Eij as 

2 a E 4 2  ap - (111.2) 
p :  

in place of (II.3). We must also establish an algorithm for the evalu- 
ation of inner products of our new basis states as analytic continua- 
tions of the inner products of states of the form (II. 10),  which we can 
evaluate by means of the commutation of boson operators . Our method 
will be essentially the following: We shall first determine a para— 
metrization of the states (II.10) such that we obtain the correct matrix 
elements of the generators of Sp(Z ,2) . We perform the commutations 
of the spinors ajl. in Sp(4) according to the rule 

1 - I I 

((aj)“, (agnn ) = (nuann, 611, a“, . (111.3) 

then perform the analytic continuation in those parameters which are to 
be continued, then perform the internal summations which occur in the 

matrix element, and obtain the monomial result. When we have found 
a parametrization of the basis state (II. 10) which under this algorithm 
produces the correct matrix elements of the Sp(2 ,2) generators , then 
we have also found the parametrization of the basis state which pro— 
vides us with the analytic continuation of the representation functions 

(II. 14) to those of Sp(2,2). That is , the analytic continuation of the 
2P1 functions contained in the Wigner rotation functions is uniquely 
specified by the requirement of the regularity of the total function at 
the identity element of the group manifold, and that of all other siruc- 
tural units is prescribed by the parametrization of the basis states. 

In this manner we may uniquely specify that analytic continuation of 

(II. 14) which transforms this function into the matrix element of a 

Lorentz iransformation along the 4—axis in an irreducible representation 

of the de Sitter group Sp(2,2). 
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We note that we may obtain the finite-dimensional non-unitary 

irreducible representations of S p ( 2 , 2 )  immediately from (II. 14) or 
(II. 16) simply by the continuation 6 -' 1C , where C, is real, - <  g < +4», 
Then g is simply the hyperbolic angle which para'metrizes a Lorentz 
transformation along the 4-axis in de Sitter space . In order to  obtain 
matrix elements of irreducible unitary representations we must perform 
a further analytic continuation in the 1? plane. 

We give now the matix elements of the generators of rotations 
in the (15) plane, 1 g i g 4: 

. . = _ I i H A 9 Hr (EH+E,3)I§AJMI.AMA) IAIMCMI i M-i CM —!.r M J; 

I H: C A i H  

Inn-i; .MI-im-g ,MA-m 

MIA MI +MI-i CM A-éMA-i 

I Mu—é .MI—é wt . Mfg) 

+ACCI C] i 1+1 c "  11 Ht 
MI —§MI-é CMA -§MA—§ 

I M :H .MI-km-i .MA-in 

CA ’1 Mi 
'DIACMI-i -iM?-&C MA -§M [Ft 

I5A71+§1MI-§;A+Q,MA-§) , 

(E14+Eaa)|§A71MI;AMA) = ATACMI gBJd-Ei CM A: Mi; 

I IMI-é .MIfim-i ,MAii‘) 

(equation continued) 
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1151—; A § A + k  -B C C IA M143 Mr! M“ MAfir 

lam—é .Mfimfi .Mfi) 

”Ami .MI+é7A-b . MAfi) 

_ I it 14% A i A+§ DIACMI'l‘ Mlfi CM” MAH; 
|§A;I'|§.MI+§;A+LMA+5‘> , 

(313‘E42)IM:IM;AMA) = _A CI ‘1‘ I-% A 1; A-é 
C I m M11; MI+§ MA—b Mfg 

|M:I-§,MI+§:A-§,MA-§) 

_3 CI EH!  CA & [Hi 
IA M11: MI+E MA-itMA—Q 

IQAFI 'Q IMI'I'i'HHi l MA-i) 

I .3 H: A i: H 
+0IACMIJ; MI+§ CMA—i: MA-i 

' Q A fl fi  : M lfi ifl ' i p M A ' g )  

_ C: am a“ “a 
BM MI; My; MAéMA-é 

|§A71+§ .MI'ém-Ié .MA-l‘) 

(equation continued) 
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AMA)=+AI AC} i H  ’15 A-% (Eal- EQUIMHMI' M J: M $ 0  MAi Mfl 
[Mn-$2M} ém-é,  M A+§> 

+3401 9: H C A I  A44: 
IA MI-éMI—i MA%MA+95 

I M :J—% .MI-éfiHé ,MA+%) 

|@A71&.MI-%;A+%.MA+§> . (III.4) 
Where 

= gigs-1m +é’zh-A-lnfm') 
AIA (cp+a-i)(cp-6-1) ] 

BIA =[Q‘ ,-'6+1M§-§+Q§§+§m E l f  
b-ra-IHp-su) 

, % 
CIA [ (cp+5+1)(cp-6-1) J 

t — @ Mm+A+1mtp+1)(co-A) 
BIA—l: To (:p+6+1)((p-6+1) ] - (III.5) 

We have given here the matrix elements of the generators in  Sp(4). 
We obtain the matrix elements of the Sp(2,2) generators by multiplying 
each of the four relations (III.4) by i =/-1, i . e .  , we multiply the 
l as t  four  generators in  (III. 1 )  by  f — l  , a n d  we identify 
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1 < K 5 4  (111.6) 

a s  the generator of a Lorentz transformation along the K—axis .  That 
i s ,  the 5—axis becomes the time axis in the space of SO(4, l )  . The 
four quantities (111.5) are then multiplied by I - l ,  and we obtain uni- 
tary irreducible representations of Sp  (2 , 2 )  for the following values 
0f (1 ,A): 

I .  The  continuous c l a s s :  
(a) A = 1,2,3,...; -1(§+1)> o .  
(b) A = 1 ,  %, E u ” ;  -1(1+1)>%. 
(c) A = 0;  -§(§+1)> - 2 .  

I I .  The discrete c l a s s :  
(a) A = % 1 1 1 % 1 2 1 % I ' 0 0 ;  § = A _ 1 1 A _ Z I U ' O I 0  or "k; 

A ; — 6 3 § + 1  

(b) A = % : 1 _ : % : 2 1 % 1 - n i  § = A - 1 1 A _ 2 1 - - - 1 0 0 r ' % ;  

A 2 + 5 2 § + 1  
(0) 121,213,...: 1 = 0  (111.7) 

The re resentations 11. (a) are designated a s  positive discrete by 
8116111 and n.(b) as negative discrete. 

W e  mus t  now perform the analytic continuation of the spinor 
basis states and verify that our parameu‘ization of this continuation 
yields the correct matrix elements of the generators. Let u s  consider 
first the semimaximal state (11.6): 

[ (21H) !P(§-6+1)I‘(§+m+l)h+6)! f X 
01-6) lI‘(§ -cp+1)I‘(Z§+I)I‘(§+5 +1) (pm) I (M5) ! (cp—A-l) ! (p-G)! 

H)” A 21=1(—1+cp.—1—€>lap-6+1I—-al—"')(a112)§""(z-113)cp A 1(a1)A+5(a3)A 5. 
2 

(111.8) 
We note that we m a y  continue (111.8) in the 1 plane in either of two 
ways . We may use the expression (11.6), in  which the 21‘1 function 
has the form 

3.12 
zrl(-1+cp, —1+5|cp+s+1|-;;) . (111.9) 

or we may reverse the series before performing the analytic continua- 
tion in 1 away from its discrete lattice on the positive real axis . In 
this latter case we must replace (111. 9) with the expression 
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a Q a 

I‘§_f§-‘5+1}h+fizl __1: 'CP _ _ _ _ -2: 
r(§+5+1)(¢p—5)1 a“) 2F1( “no: I élco 5+1l a”) . (111.10) 

It is more convenient to use the form (III. 10) and discard an invariant 
phase (—1)§'A before the analytic continuation. This alternative gives 
us the basis state (111.8). If we were to perform our continuation from 
the expression (111.9) we would find that the matrix elements of the 
generators, evaluated for arbitrary complex I , would include a mean- 
ingless factor of the sort 

[-—L—Hm" 6' "'6' ]2 . (III.11) 
sin Tr(cp - 6-) 

which is simply unity for I on its initial discrete lattice but undefined 
for Q at an arbitrary point in its complex plane . Hence we use the 
expression (III. 10) and discard the invariant phase in advance . The 
resulting expression for the general semimaximal state is given by 

(111.8). 
In order to obtain the general state of the Sp(2,2) represen- 

tation (LA) we apply the normalized lowering operators 

big I (In 92 t " " - — ~ I 

[tom-1hr?! zp-fiil);IQj I] (E2 1)P(-Ela )Q (III. 12) 

to the state (111.8). We note that this operator commutes with the 
double spinors a12 and a3 4 , so that we have 

1 
"H _ _ ) § E _ _ _ _ 9 !  ‘9' _ _ 

[wlfiifipir—Simi] (Ezl>P(-Era)Qta13)°P'A 1(«z-:1)A+"’(a3)A 5—. 

- 0 W ?  _ r cv-A-l P o 
( l) [©+6-1)1P!(¢p—5_1)IQI] E ( 1) ( r x 

r ' x l y  
Y 

@+6-1-r)!r!fA-6+r)!(:p-A—l-r)! 1 
(cp+6-1-I'-P+X) ! (r-x) ! (A-6+r—Q+y)! (cp-A-l-r-y)! 

(3% )cp+6 ‘1 'r -P+‘X (6%)P'x (a? )r "X (a: )X (a13- )A ‘6 +1. "Q+Y (a: )Q-Y 

(aifp‘A'l'r'Y (a2)y . (m. 13) 
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whereupon we expand the double spinors by means of the binomial 
' theorem: 

E-cp-l, 

@131“q =2 1—1)5< 
C 

c > (aphfl'c (111)g 

)C 3)§'(p'L'g (a? (a3 

1, 
(630% =2 (_1)n( ) (aéf‘dn (111)” (1:12)” (aif’dn , (111.14) 

The resulting spinor basis state may be written as: 

'AMA) = liAxpta) =[L_L_L:Q_LL_MJD_L2A+1 11‘ g H 1“ "5+1 1‘ i' +1- I‘M’IMI' (A-6)1(A+5)1&p+A)I 

v- . 1 a 1 A+Q 
r(zé+1)p1Q1 ] (_1)cp 

T MYTH” (mg—human.” 
L1 («L—n) 1(a—cp-L—g)!(co—5+1)11(§+5-1)1g1n1r!(1p+5-1-P-r)I(A-a-Q-11)1 
{I 

01 

69-11-14)! 3 F‘z( PI ”1': §W+L+§|C+1,cp+6-P-r|1) 

P2('Q"‘P+A+1+rt '*>+n|n+1. A-6—Q+r+l| 1) 
( a & ) § + 6 ‘ 1 — P — L — r - g  ( a ; )g+P  (a§)r+§ (ag)§-cp‘L-C 

(a1)A‘5'Q+W‘” (a1)”+Q (a§)‘P‘A‘1'“"' (a:)*"" . (111.15) 

This expression, then, is the parametrization of (II.  10) which we shall 
use for the analytic continuation in the complex é plane. We must 
establish an algorithm for the evaluation of inner products of the type 

(Mxp'é’;P’Q’IFI§A:cp6:PQ) . (III.16) 

where F is some polynomial or transcendental function of the de Sitter 
group generators (III. 2), and Q is taken at an arbitrary point in its 
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complex plane. We do so by first performing the operation 
PI is mp6;PQ) , writing the result in an expansion in powers of single 
spinors a , then commuting the spinors of the initial and final states 
in (111.16)J as if 1 had its Sp(4) values, 1.e. , according to the rule 
(111.3), then performing the analytic continuation in 1 back to our 
chosen point in its complex plane, then summing the internal' series 

which remain after we have eliminated the Kronecker delta functions 
I which result from commutation of the spinors and which are 

italicated in (H1. 3). In case the power 11 in (III. 3) involves +1, as is 
the case for the powers of a} and a: in (III. 15), then the Kronecker 
delta 6m! in (111.3) is to be interpreted as 6 _ 11'— . We shall. form 
inner products of the type (III. 16) only Whenrft iniEial and final 
states have the same values of the invariants Q and A . 

When we perform the summations which remain after the eli- 
mination of the Kronecker deltas, we will in general find that some 
will be divergent. These may always be regularized by application 
of the identity 

1 
m m  = p—l _ q-l 

T“(p'~l~'q)" Er) d" t (1 t) . (111.17) 

with substitution of the appropriate Pochhammer contour for the line 
integral on the right, then performance of the summation before the 

integration. 
With this algorithm we find that we obtain correct matrix ele— 

ments for the generators of the de Sitter group; hence, necessarily, 

the correct matrix elements for finite transformations. The condition 
that we obtain correct matrix elements of the generators determines 
the admissibility of a parametrization of the basis state (111. 15), and 
the parametrization of the basis state determines a unique analytic 
continuation of the matrix elements of finite transformations, since 

we must apply the condition of regularity at the origin to these matrix 

elements . 
We obtain, then, the matrix elements of Lorentz transformations 

along the 4—axis: 

. I r_ 
(tA;cp’6’;P'Q'|e11°4§|1A;cps;PQ) =(—1)5 "9 “‘9 

(n+1) 11‘(§—m;’+1)1‘(§—.~‘5' +1) 
- (A-a’)!(A+a’)! x 

.t rtm’ +1)ri§+6’ +1Msg’—A-1)!(co'+6’ucp’ -6 ’)<cp’+6’—1-P')!tp’- 6’-1— Q’)! 
(cp’ +1) '1“(2§+1)PT'Q 1 l 

(equation continued) 
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_ _ a 
H)” 7 ‘. bl+6’-l-r’ll(A-6'-Ir’)l _ 
.x' I (r. '-,x’) 11‘ (:i w-‘t ’-,z&x'+1)(m'-a:'+L 91F(§*6"-&'+1)(¢pém'+z-xfllr§ 

Jez 
L’r’x’ 

_ 1 
(cp'+6'-l—P'—r’)!(A-6'-Q’+r’)!(cp'—A—1-r’)! 

3F2 ( _ P I  ’ _ r l  ’ _ § + Q p + & l + z _ x l  ICP 'CP,+Z‘X '+1  I c p l + 6 I _ P I _ r I | 1 )  

3F2(—Q’ ,-(p’+A+l+r’, —L'+x’ lx '+1,  A—5’—Q’+r’+1| 1) 

1“ (Q +5 ’,+co’-cotP ’46 ’-r’-z+x ’) (A -6 -Q+&+r-x)!(co-co ’-P '+z -X’)!(X+Q) !(m-co’+r"|-z ~X ’)1 
(Q ’+5 ’-Q-6 4; ’-r’+X'-H(,+r—x)!(Q-Q’+x-X’) !(cp—cp’-r+x+r’-x’)!(x,—x—L ‘I—x’)! 

I _ I _ I_ 

(cp-A—l—r+x)!I‘(§-cp-L'—z+x’+l)(&—X)!(cosh%)2§+6 +5 “0 '“9 2L 2’9 

I_ I_ _ I 

21-"1 (—A+6 '+Q'-I¢ ’—r’+x’ ,ws I-Pl-l-cpI-cp-LI-r’-z+x’l 

|5 '+Q’—5—Q—JL’—r'+x’+L+r—x+1| —sinhZ ‘2‘) 

2P1 (—x’—Q’ ,cp-Qp,+PI+Z-Xl+l| Q—Q'+x-x'+1| —sinh2 %) 

2F1(-cp'+A+l+r’—x’ ,cp—cp’+r’+z—x’+l lcp—cp’+r’—x'—r+x+l| —sinh2 %) 

21‘?1(—1;'+x' ,é—cp—L'—z+x'+l|JL-«E,'-x+x’+ll -sinh2 ‘2‘) 

(_l)r @6—1—r)!(A—6+r)! 
x !(1(,—x)!I‘(§—cp-JL-z+x+l) (cp-6+L)!1“(§+6 —1L+l)(z—x)!r! (cp+6 —1—P—r)! 

l 7(A—5 —Q+——-—r) ! (cp-A'l'r)! 3F2(-P,—r,—§+cp+&+z—x| z—x+1 ,cp+6—P—rl 1) 

3F2(—Q ,—cp+A+1+r,—L+x|x+1 ,A—a —Q+r+1|1)[ “ 
(A45) ! (A+6)! 

r(§+w+1)r(§?+6+1)(cp‘fl,:1) l(co+6)(co-6)(cp+6-1-P)!(co-6-1-Q)! f 
'(cp+A)!r(2§+1)plo! - 
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We now find that the s u m  over 2 asymptotically approaches the form 
of a divergent generalized hypergeometric series of unit argument .  
The sum over {,(L’) is convergent for finite g and fixed L ’  (L). For 
infinitesimal g the sum over X,’ is eliminated by Kronecker delta func— 
tions of the form 6 , L 1 The remaining sum Over b i s  diver— 
gent. We may remove the éé'ivéigences very simply by making the 
replacements 

1 _(—1)%1e‘i"(§‘“9) (1+) —1+cp+1-1 r 
(L-x)!(z—x)!I‘(§-cp-JE,-z+x+l) " ei(L- )1r(§—¢+1)Iodu “ ‘1'“) 1p 

_(—1zz'x e m h p  *1) f1”; t—Mp+1+z—x-1 (1_t)§-cp x; 
:1” 0 (III. 19a) 

_ (1);“ l a  ifffi'wp') 
(*9 amewsmmm—M 3:11:41) max—x )‘Ir amen 

(1+) , , , ‘Qp-w.’+Z-XI ,g-iTr (é-cp'-L) , , ,-§+cp +1 -1 _ , §-cp (—1,) 9 
I0 d u  11 (1 u ) 211i ' 

(1+) _ I _ I_ I_ I f dt’ t’ MPH” +z X 1(1—t')HO L . (III.19b) 
0 

We perform first  the s u m s  over x ,  x '  , r ,  and r ’  , which are  a l l  f in i t e ,  
then  the  sum over 2 ,  then  the contour integrals over t and t '  , then the 
s u m s  over L and L ’  , then the contour integrals over u and u ’  . In 
(III. 19)  a l l  the contour integrals a re  taken a s  starting a t  ze ro ,  circling 
unity once i n  the positive (counter-clockwise) direction, then ter— 
minating a t  z e r o .  Other replacements of factors with Euler—Pochham— 
mer contour integrals which achieve the convergence of a l l  ser ies  in 
(III. 18) may  easily be found.  

We m a y  perform the analytic continuation of (III. 18)  to  the 
representation functions of the positive discrete series  ( A _  > —5 > 
§+l _>_ 1 or ‘15), obtaining in this case 
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I I I _ _ 
<§Axp’6':P'Q'|e11'°‘c|§A;¢p5;pQ) = (-1)P +1+§(5 ‘hp +cp 5) i 

[(2%A+IIK-5'+§21h’+§ll '— ~11 ’+5 , ' 6  - ’+6’-1-P ! ’-§’-1—Q’)!]% 
(gs-5 ' )  1(A+5’) I (-5 ’-§-1)!(Cp -§-1)!(cp’+A)!(2§)IP’IQ:’I 

(1+) A 
Z 2r1rixr dt > 

{Jr zxx' 
L ’ r l  

I 

H)" (co'+6'-1-'-r")!(A-‘6’+r')1(-6"-§I-1+L")! 
x '  [ ( L t n e p L é  thy) ! r ’  lQp'+6 '-1-P"-r’)‘l‘(A-6 I_Q'I_h.l) I ‘p'—A-1-r'),l 

F2 (-P’ , -r’ , -§+cp+&’+z—x’ lcp-cp’+z—x’+1 , cp’+ 6’—P’-r’| 1) 

3P2(—Q', -cp'+A+1+!", -4’,’+x’|x’+1, A-5'-Q’+r’+1| 1) 

(Ae6;Q+X.+r-x)_l‘_m'+P’+z—x’) l bc+QL§939’+r’+z—x’)1 
(cp‘qa'4'z‘x’) ! ( -  -5'-§-cp '+cp+P'+L'-H"+z-X')!(Q‘I-6 '-Q—5 -&’ ~r‘-'i—x¢l-L+r-x)l 

(co-A-l-mzll (cosh g)2§+5 '+5 -cp’-cp—2L’-2L 
coax—chat" ) 1 ep-araam '-x1 I (L-x-L’m’ l l  2 

(sum Q)6'-cp'-6+tp-ZL'+ZL 
2 

F 1 ( _ A + 6  ’ +Q"L" r ’+x l  ' §+6 l-P'iml-Cp-LI—rI-z'l'x’ 

la '+Q'-6 -Q-L'—r’+x’+&+r-x+1l -sinhz 3% ) 
Z 

F1(-x’-Q’ , cp-cp’+P’+z—x’+1lQ-Q’+x-x’+1|-sinh Si) 

F1(—cp’+A+1+r’-x’ , cp-qp'+r’+z—x’+1[cp-cp’+r’—x’-r+x+ll —sinh2 £20 

F1(-L’+x’, é-cp—L’—z+x'+1|L—L’-x+x'+1| -s1nh2 %) 

(equation continued) 
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F2(-P ,-r,-§+cp+L+z—xl z-x+1 , cp+6 -p—r| 1) 

P2(—Q.-up+A+1+r, —w<|x+1, A—6—Q+r+1| 1) 

[ (A -’a)I(A+5)1emmp—1— 1)!(—6- -—1 —1)!(21)IPIQI ‘ I . 
(III.20) 

where the order in which summations and integration are to  be per- 
formed are explicitly indicated. We may observe that the condition 
for the convergence of the series 

2P1(-§+cp, -§-6[cp-5+1| 1) (111.21) 

is that Re (I) > 4;; hence the sum over z is the only one which we 
need t o  regularize by means of a n  Euler-Pochhammer contour. We 
consider the discrete representation 6 = % to  be merely the limit 
point of the continuous series of representations Q = 43+“) , 
-99 < p < +09 

The negative discrete series (A > 6 > I + l > 1 or %) is most 
conveniently obtained by use of basis states expressed in terms of 
the hypergeometric function (III. 9)  instead of (III. 10). We obtain 
the result in this case: 
<§A;cp'6';P'Q'leiI°4€I§A;cp6;PQ) =(_1)-%(5+s'+cp+go’)+o+1+1 

_1__ a . . - 
Z 2 m £  dt > _ (A+6’)!(A- 6’)!(cp’+A)!(6' —1——1)! 

I I ( I’M'h'q'x I I I I I 1 1L h m  -1-r) l(A-&+r )1 
:l x ’Iép'+5'+x,’)IEp-’+6I’-l-r’—P’)!r’l (cp’—1—1)1(21)!P' 1 Q’! 

'§+5'+ '-1 ! - ’+ ’-1 l - + ’+ _ I_1 r_ I 

(g-é’fiiogléxf-fir')? “’ “M z x (1-1)“tp L 

3 F2(—1,’+x' , —P’ , -r’ |x’+1,  cp’+5’—r’-P’| 1) 

3F2(-§'l'cp+£,’+Z-x’ , —Q’ , —Qp’+A+1+IJl(p-cp'+Z-X’+l, A-6'+r’—Q’+1l 1) 

(equation continued) 
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£45 ’-P'+JL ’-r’-x'-1)!(x’+P’)l(Q+z-x)lg'm'zlb r-A-l—H-‘z-x) ! 
(-1 —A+cp+6 +Q+L —r+z —x-1) I (Q'-Q+5 —5 ’+& ’-r’-x ’—1;+r+x) I (P’—P+x '-x) ! 

———-—1-——"—- (cosh 9)'2§+cp+cp’+6+6 ’+2L+2L' 
i(:.r:’—-Ix’-r-X) ! it '-x'--wx) I 2 

I _ I I_ (sinh gifp -cp+5 6 +2.4, 21; 

2Fl(-Q'-cp'itp’-z+x' , P’+x'+1|P’-P+x'—x+1l-sinh2 %) 

2P1 (-1 -A+cp+5 ’+Q’+L'-r’+z-x' , cp’+5 ’—P’+r,’-r’—x’ 

lQ"Q+5-5’+JL’-r'-x’-&+r+x+1|-sinh2 Ez') 

Fl(-up+A+1+r’-z+x’ , r’-l-x’+1lr’+:‘c'-r—x+ll-sinh2 '3') 

F1(-§+cp+L’+z—x’ , af,'—x’+1Iat,’-x’—J|_',+x+1I—sinh2 '3') 

3F2(-&+x, —P, —r|x+1, Qp+6-r-P| 1) 

3F2(—1+cp+r,+z-x, —Q, -cp+A+1+r|Z-X+1, A-6+r-Q+1|1) 

(—1)*s+e-1-rnm~wn«ma-1): 
x ! (b-X) ! (z—x) !(¢+6+&) ! (n+5 —1—r-P)!r!(A-5+r—Q) !(:p-A-1—r)! 

[ (A- —6)1(A+6)I(cp+A)!(6 12-—1)!(cp—§-1)!(2§)!PIQ! ' 
(111.22) 

In both (111.20) and (111.22) we have defined our phases simply by 
straightforward application of phase conventions in Sp(4), inverting 
the gamma functions wherever necessary. 

We use (III. 18), then, for the representation functions of the 
continuous class, = —%+ip , —°° < p < +00 for the principal series, 
and Q =15: +0 , 0 < c < 3  5 for the representations in the supplementary 
series I > —§(§+1) > —2. We may then study the forms of this function 
under the Legendre reflection I2 -. -§- 1 by applying the Euler transform 

to the hypergeometric function in the basis state (III. 8): 
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a34 a 1 2 + a 3 4  2 § + 1  

flew. —§—6|qo—6+1|-——a12)= "T... 

3-34. 
2P1(§‘5+1' §+cp+1lcp-6+1|-'a1—2) 

a 
-2 —1 a4 

=(a12) Q P (§-5+1,§+cp+1|cp—a+1|——) . 
2 1 312 

(111.23) 

We may set 

2§+l 
(312 + E134) = 1: (111.24) 

since this combination of spinors is invariant under all the generators 
of the group. We may then apply our algorithm for the construction 
of representation functions from spinor basis states to determine the 
resulting form of the matrix elements. 

References 
l. W. I. Holman, III, Iour. Math. P h y s .  E, 1710 (1969). 
2. W. I. Holman, III, Iour. Math.  Phys .  E, 1888 (1969) .  
3. S. Strb'm, Arkiv for Fys ik  1Q, 455 (1965). 
4. S. Ste, Arkiv f6r F y s i k fl ,  l (1969). 
5. R. T. Sharp and H. von Baeyer, Iour. Math. Phys.  1, 1105 (1966). 
6. A. Bandzaitis, A. Karosiene, and A. Iucys, Liet. Piz. Rin. A, 

457 (1964). 
7. R. T. Sharp, Nucl. Phys.  Afi, 222 (1967). 
8. I. G. Kuriyan, N. Mukunda, and E. C. G. Sudarshan, Comm. 

Math. Phys .  8, 204 (1968). 



ON THE INDUCED REPRESENTATIONS 
OF THE (1+4) DE SITTER GROUP 

AND THEIR REDUCTIONST 
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Department of Physics 
University of  Texas a t  Austin 

Aust in ,  Texas 78712  

I .  mtr'oducti on 
The present contribution to this symposium is aimed at giv' 3-9 

a survey of those aspects of the representation theory for 36311?) 
which are obtained from the induction procedure. In the course of this 
survey we will advocate the use of a 2x2  quaternion—man‘ix descrip— 
tion of m .  This will allow us to  display the induced represen- 
tations of a group of 2x2 quaternion—matrices, isomorphic t o m ,  
in a way which is very similar to the SL(2, C) description of 3 6 % :  
A restriction of the quaternions to complex numbers will give us the 
corresponding SL(2 , C )  relations . We will construct the unitary repre- 
sentations o f m  belonging to the principal continuous series in 
a form where they  are  explicitly reduced with respect to  a maximal 
compact subgroup. A more general reduction procedure from the theory 
of induced representations will then be applied to  the problem of re— 
ducing the previously constructed representations with respect to  
representations of a noncompact subgroup, isomorphic to  3 m ,  a 
reduct ion which h a s  obvious appl icat ions in  the theories which use  a 
global W space-time group, replacing the Poincaré group. 

tPresented a t  the Symposium on De Sitter and Conformal Groups , 
Universi ty  of Colorado ,  Summer  1 9 7 0 .  

=l=We denote by W the universal covering group of the group 
800(1, n) of real linear homogeneous transformations of (xo,x1. . .x n) 
which leave the quadratic form xo - X13“. . . ""n invariant and which 
are continuously connected to the identity. Similarly 363(5) denotes 
the universal covering group of the identity component of the :1- 
dimensional rotation group 800(n) . 

9 7  



98 STAFFAN STRO'M 

In Section II we briefly review some structural properties (of a suffi- 
ciently general class of Lie groups) which will be used in the con— 
struction of the induced representations . In Section III we introduce 
the quaternion matrix group and in Section IV we give some details of 
the induced representations of SOO(I,ZI). The alternative way of de- 
composing the representations is given in Section V together with the 
transformation connecting the two basis systems involved. 

II. Some Structural Properties 

In this section we give a brief review of those decompositions 
of a certain class of groups and their Lie algebras which are of rele- 

vance for the induced representations. The structural properties of 
3. 60(1 ,3) and SOOII ,2!) which we will need are actually only those 
which they have in cemmon with a much larger class of groups . 
Therefore we let, for the time being, G denote a real, connected 

semisimple Lie group with a finite center and we introduce the follow- 
ing notations: 

6: The Lie algebra of G. 
K: A maximal compact subgroup of G (all maximal compact 

subgroups in G are conjugate to each other). 
73: The Lie algebra of K. 
K(X,Y) E trace [ad x, ad Y} (the Killing form), where ad X, 

x e a is the transformation defined by ad x; Y 31X [xx] for all Y e 6. 
'f): The set of all X E 5 such that K(X,Y) = 0 for all Y 6 1'2. 

We then have the following properties: ( 6 denotes the algebraic 
direct sum) 

5 = ‘E 69 '5 (the Cartan decomposition). (II. 1) 

X750,XEE=>K(X,X)<0. (11.2) 

xaéo,xep=>K(x,x)>0. (11.3) 

[12,5] C E (The "k-vector" property of the 
elements of the set '5.) (11.4) 

[16,5] c E. (11.5) 

We further introduce: 
5: An abelian subalgebra of 6 which is contained in 5 and 

which is maximal among those having these properties . 

5a: The set of all elements X 6 5 such that for all h E 5 one 
has [h,X] = c.(h)X (i.e. the “root" oc(h) is in the dual space of a and 
it is independent of the elements in '6“) . 



REPRESENTATIONS OF THE (1+4) GROUP 99 

We then have 

[5“. 66] C E‘HB . (11.6) 

a+B=0=K(§“.§B)=0. (11.7) 
which are the main tools used in proving the various decompositions 
mentioned below (note that we are here considering real Lie algebras; 
notable differences between the roots of real and complex Lie alge- 
bras are (i) if c, 75 0 i s  a root,  2:; may a l s o  be a root ,  and  (ii) the mul- 
tiplicity of a root :1 ( L e .  the dimension of 30%) can be greater than 
o n e ) .  The basis  of the decompositions used in the construction of the 
induced representation i s  the result 

a = (9 6°” (11.8) 

g 
[

V
]

 

and we therefore consider it in more detail. It is easy to show that 

§ ° = §  9 E1 w h e r e m = g ° n i .  

In order t o  s implify the following exposition we now restrict ourselves 
t o  the case of SO,_-,(1,n§'r . Then it is easily seen that 5 is one—dimen— 
sional (‘p is then spanned b y  the n "accelerations," any  one of which 
can be chosen a s  5) and consequently the roots are just numbers. We 
introduce 

i . e .  (11.8) new reads 

§=fi+ea e m 911‘ . (11.9) 

The root property (11.6) furthermore gives 

N .d: Ni: .1. «.5: 
[ m i n  J c n l  [ a l n i j c n  

TWe d o  this only in order to  avoid the more involved definition of 
"positive roots " in the general case.  In f ac t ,  many  of the properties 
given below for S O o ( l , n )  are a l so  valid in the more general case 
considered u p  t o  now.  
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"id“:Eiea a e :36 (11.10) 

is a subalgebra of a and E5: is invariant in ti (actually iii are nilpo— 
tent and 5 69 hi are solvable , facts which will not be of immediate 
use for our present purposes). It is easy to see that the structure of 

the Lie algebra of 800(1 ,n) can be summarized in the following way: 

i) a is a one—parameter Lie algebra . 

ii) I?) is isomorphic to the Lie algebra of SO°(n—l) . 
iii) iii are (n—l) parameter abelian Lie algebras . 
iv) The roots are $1 with multiplicity (n—l) . 

The last two properties are clearly demonstrated e .g. by the following 

choice of s and of bases in F1 : 

N _ ~:l:_ a: = _ 
3" A1 "610 + e01' n ' Ni ' e10 + e01*(611 e11) 

i =  2,3...n 

where e.. is the matrix e.. = {éij} . 1 . 1 
liesides the above1 mentioned decompositions of E3 we will also 

make use of the Iwasawa decomposition 

N ~+ N 
g = n  G a e l ?  (11.11) 

which is easily derived from (11.8). Concerning the corresponding 

decompositions on the global, group level we will need only the fol— 

lowing result: (II. 11) has a complete analogy on the group level, i.e. 

we have (A,Ni,M,Ti are the groups which have 5,fii,rr”1,fi as Lie 
algebras) 

30W = N+AK (where K =WE” (11.12) 

whereas (II. 9) can be used to derive that the set of elements 

g = n+amn', ni 6 Ni, m e M, a e A (11.13) 

form an open dense set in m . In the next section we will give 
the quaternion matrix form of the decompositions introduced above, for 

the special case of 800(1,Z) . 
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III. Quaternion Matrix Description of 803%! .E! 
The SL(2,C) description of 800 ,3 is widely used and appre- 

ciated as a simplifying device for performing explicit calculations 
concerning $ 0 0 1 1 . 3 5 .  The possibility of using an analogous 2x2 qua- 
ternion matrix description of SOo(l ,45 seems to be less widely known. 
By giving the relevant formulae in a form which is closely related to 
the SL(2,C) formalism for 80011 .35 we hope to convince our audience 
about the advantages involved. 

Let Q and R denote the real quaternions and the real numbers 
respectively. For an element x E Q we write 

x 5x1 +ixa +jx3  + k x 4 , x i E R  

where 11 = -ji = k etc. i2 = j8 = k3 = —1 . It will be convenient to 
use the notations 

X1 E X 1  ‘ s - i  ‘10“ 

5': -j}-:-j 5x1 + 1X2 " J'X'3 + kxé 

1x1 m9 
and we note that (£37) = §-§,(3?§6 = y-§,|x - yI = l 'Iyl; x,y E Q. 
The set of matrices] of the form 

A: E) 
N N N ~ ~ ~ 

cw = (av). 66 = (66), a6 - yB= 1 (111.1) 

where MEN’S E Q satisfy 

can be shown to form a group which we will denote q . 1) According to 
(III. 1) we have imposed six real conditions on the original sixteen 
real parameters in f, i.e. Q is a ten—parameter group. Consider 
furthermore the real linear homogeneous transformations of the real 
variables x0, x1 . . .x4 induced by 76 Q according to 

xzx' = f x / T  (111.2) 

where 
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Xo+xs I x1 'ixe -kx‘ 

x1 +ix2 +kx4 , xo—x:3 
(III . 3) x

:
 

m 
and 

( h  = '  / rs fsr 

From (III. 1) it then follows that this transformation leaves the quadra— 
tic form 

x0a -x13- —x42 

invariant and just as in the case of SL(2,C) and soon—.35 one finds 
that Q is isomorphic to E50113”. By omitting the coordinate x4 and 
restricting a ,3 Ana to complex numbers we get back the usual SL(2,C) 
formalism. We may remark that if 

E1 E 1 1 
(n1) _ / ( n )  g i g  In!“ e Q! , 6 q 

E1111 ””1151 =§n ~55- 
it follows that 

a relation which is rem niscent of the local isomorphism between 
300(1,4) and Sp(l,1).2 

By considering similarity transformations C G C“1 of Q with 
nonsin lar quaternion matrices C we can obtain other realizations of 
SQOI‘IAE. Here we mention only one such example: the choice 

1 :  "j cma(%¢( ) 
_jl 1 

gives the group, denoted G, of matrices 
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where 

ab = Ed, [alg- lc|2= 1, |d|’3- |b|3= 1 

In this case, one considers the transformations 

x 2 x’ = gx g’f 

where 

x0 ,_ I: 
x=c‘1}"{c= XOER,x€R. 

x , x0 

The realization G is particularly conveni nt if one wants to make use 
of the 30(3) x 80(3) structure of so(4).1 

The subgroups mentioned in the previous section have the fol- 
lowing realizations as subgroups of q: we start by choosing G as 
the group of accelerations in the 3—direction, i.e. 

‘ 8V2 0 0 ‘ 

Then 

11 e U where U is the 
, u setofxE Qwithlxl=1. 

H. 

1162 

o 1 

.1 0 

ran/72H 262 
z 1 

where Z is the set of x E Q for which x = 5“: 
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:
I

I
!

 

I '1
 

u 3 [ a  ' where Ir|a+lnla=1, nf'= 61?) 
r , n 

The general result  that the elements of the form (II. 11) form a n  open 
dense set'in the group can inthe esent case more specifically be 
.famulated as  follows: all f = a g) with 6 7‘s 0 can be written 

Y r 

+ .. 
i = W wow/m» (z) .' We. note that a first step towards this decom— 
position i s  obtained a s  follows 

a. I B 8-1 I B 1 I 0 + .. )= - = T M 
Y . 5 0 l 5 5'1Y . 1 

where M E  11- and 'r 6 3+ 5 firm (a fl y  6 Z as  a consequence of 
the conditions (III. 1)) . Again, by resnicting the quaternion matrices 
to complex matrices we get the familiar analogous SL (2 , C )  decompo- 
sitions . 

IV. Mood Representations of Q 
We start by  giving a short review of the main steps involved 

in the construction of the induced representations . For further mathe-  
matical details we refer to the very readable survey given by W .  H .  
Klink3) and to the original work of Mackey.4) 

The representation space will be a certain function space . 
What are the natural candidates? Obviously various spaces of func— 
tions defined on the group constitute such candidates since then the 
operators representing the group elements are naturally defined (by 
left or right multiplication of the  argument) .  However it is obvious 
that by taking the space of all square integrable functions f (g): 

{m} s f  lf(g)l3dg<°° (IV.1) 
G 

and defining the group transformations by multiplication of the argu— 
ment we would arrive at  a representation which is  not irreducible (the 
left or right regular  representat ion) .  Our a i m  i s  to  construct unitary 
irreducible representations (UIR's) and we could now proceed in two 
different ways :  one would be t o  t ry  t o  reduce the regular representa- 
tion into its irreducible parts; another would be to make suitable res— 
trictions on the function space from the beginning, while retaining the 



REPRESENTATIONS OF THE (1+4) GROUP 105 

desirable feature that the functions are defined on the whole group, 
and thereby try to obtain irreducible representations . The induced 
representations may, for our purposes , be looked upon as an elabora- 
tion of this second approach (of. the earlier development of the theory 
of multiplier representations by Bar'gmanns) and by Gel'fand and Neu- 
mark5)) . We note in passing that the first approach would take us 
out of the framework of the induced representations: in the reduction 
of the regular representation into irreducible parts there occurs repre- 

sentations which are not realized as induced representations (the 
discrete representations). 

In the regular representation we have in the scalar product 
(IV. 1) the ordinary product f (g) -f (g) of the functions . Consequently 
this product varies over the whole group. We could then say that our 

problem is to find a product other than f -f, which is a function over 
some set which is smaller than the whole group while the functions 

are still defined on the whole group. One may of achieving this 1,5 
the following: consider a (closed) subgroup H of G and a UIR D(a (h) 
of H (h E H) and consider functions f(g) which satisfy 

mm = 13mm) f(g). h e H, g e G (1m) 
(sometimes called the covariance condition), i.e. we then assuage 
that the ((grs are vector‘functions ina representation space H ‘3‘ 
Where D a. (h) is realized, i.e. in more detail (137,2) reads 

5‘ (on) f — h f .3 (“0019) >_' D(m) (n) ( ) (n) (9) (IV ) 

(n) 

where (m)-((n)) is t e set of. indices which characterizes a basis vec- 
tor for the um 13‘“ (h), characterized by the set of indices (on). 
19‘“) (h) are the matrix elements of D a.) (h) in this basis. The scalar 

pégzliugt in Hm is 

(r1 (g). f3 (9%) 2: rim—(g) famfig’ . (IVA) 
(m) 

From the unitarity of Dm) (h) it follows that (f(g) , fB (g))(a) depends 
only on the right cosets in G with respect to H: 

(f1 (hg). fa (heme!) = (f1(g). fe (9))(0‘) - 
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In the above D(<1) may be finite- or infinite—dimensional. However, in 
our application we will only consider the case of a finite-dimensional 

D a). We then define a Hilbert space Std“) , later to become our repre— 
sentation space , by completion with respect to the scalar product 

(f1, £9) a f (f1 (g), f9 (gnh) du(Z) (Ii/.5) 
G 

H\ 
where du(z) is the quasi-invariant measure (i.e. it sends sets of 
measure zero into sets of measure zero; it will be enough for us to 
find one such measure cf. e.g. Ref. 4 on the set of cosets. We can 
now define a unitary representation M“ (g) of G on id“) in the follow— 
ing way: 

s‘“’(g) ago) = (0(z,g))%f(gog) (IV.6) 
where z and go belong to the same coset and where o(z,g) is the 
function which appears in the transformation of the quasi-invariant 

measure du(z): multiplication from the right with the element g E G 
induces a h‘ansformation 

9' z -‘ 2' (g) 

in the set of cosets and then 

du(2) '* di1(2’(g))E 0(z,g) du(Z). 

It follows that 8‘“) (g) in (IV.6) is unitary. The group property 

or a. (I s‘ ’(gl) 9‘ ’(ga) =s‘ ’(glgz) 
requires that o(z,g) satisfies (the "multiplier condition") 

0(2.glgg) =0(Z.g1) 0(Z’(91). 93) (NJ) 

a relation which follows from the very definition of the cosets of G 
with respect to H. The representation or“ (9) obtained in this way is 
called an induced representation and it is said to be induced from the 

representation D 0' (h) of the subgroup H. We note that in the above 
procedure the choice of H and du(z) fixed the general framework but it 
does not provide us with numbers which characterize the representa— 
tion. These numbers, i.e. (a), come exclusively from the covariance 
condition, i.e. the choice of D(0t) (h). By choosing the subgroup H 
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”sufficiently large " we may hope to obtain a representation Mung) 
characterized by "sufficiently many" indices (on) so as to ensure its 
irreducibility . 

We now consider the class of groups 80 (“(1 n5 treated in Sec— 

tion II and choose H =  T + —  = NAM. We define the principal continu- 
one series of representations of 80011, n) as those which are obtained, 
by induc c3115 Erom T+ and by choosing D61) (t+) = D(“1)(a) Dha) (m) 
where D “  (a) and D (“2)(m) are arbitrary UIR's of and M res ec- 
tively (we recall that W is invar)iant in T", i. e. D “215(3) D(°'-2 (m) is 
a UIR of '1"). We note that D(a.1) (a)D(‘12)(m) is finite-dimensional and 
the index (on ) characterizing the UIR' s of the abelian group A is "con- 
tinuous, " hence the name. 

The coset space of interest for the principal continuous series 

of representations is thus T+\S S,Oo(1 115. From (II. 10) and (II. 11) it 
follows that T+\m is isomorphic to l'n\.‘rc, i. e. it is compact. 
Furthermore, according to (II. 13) there is a one—to- one correspon- 
dence between "almost all" elements of T ' W W  and the elements 
of N“ , i. e. we expect a compactification of N" to be isomorphic to 
T+\SOO (1. n5 (cf. below). From now on we restrict ourselves to the 
case ofS SO 0L1 Z} and we use the notations of Section III. There is 
then a one—to-one correspondence between the elements of Nd” and Z 
and we simplify the notations slightly and use (1 and z to denote both 
elements in Z and the corresponding elements in h+ and n‘ respec- 
tively. The observation that we can describe the coset space of in— 
terest as m\}c is important since in physical applications we are in- 
tere sted in decomposing the representations with respect to UIR's of 

16. The realization of 3+\q in terms of Z is , however, most conveni- 
ent in some contexts and therefore we will develop both to a certain 

extent. We therefore now consider in some detail the various steps 
involved, for the case of the group 6,, in the construction of the prin- 
cipal continuous series of representations (further details are found in 
Refs. 1 and 7). 

An explicit formula for the transformation of the cosets under 

multiplication from the right is easily obtained by considering the ele- 
ments z E h' as representatives of the cosets . If 

on B = 1th57£0 I < a) W Y 

and if we introduce the notation 

2/ = T(z./) where z,zf E h- 

it follows that 
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Z - / =  (28+6)‘1(za+v) (IV.8) 

which should be compared with the corresponding fractional transfor- 
mation obtained in the case of SL(2,C). Note, however, that the order 
of the quaternion factors in (IV.8) is important. 

Consider next the description of 3+\Q in terms of m\q. This is 
obtained by considering elements it 6 JC and z E h' which belong to the 
same coset with respect to :1", Le. 1h and z for which 

‘ h = T z . (IV .9) 

Obviously all other elements in 1; which differ from h in (IV.9) by a left 
factor/ME m also belong to the same coset as 2. The relation (IV.9) 
can be used to obtain the desired relations, for any suitable parame— 
ters in m\}£, which correspond to (IV.8) (of. Ref. 7). We denote by 
dp(k) and dp.(m) the normalized invariant measures on R and m respec- 
tively. Then duduW is a suitable quasivariant measure on m\,}c 
and by direct calculations one finds 

duet) = du(Z) duh») 

where 

_ A dz 
W M  “2 W (IV-10) 

(1.6. I dp.(z) = 1; actually we compactify Z by the addition of a point 
ha- 

z¢m corresponding to f:s with 6 = 0. Since 

(i . 3-(43 . 3) 
these elements constitute only one coset). Since (BMW) is normal- 
ized we can therefore write 

I “9(7) dMZ) =J'Cp(/) duh) (IV.ll) 
7“ 16 

ifcp(f) is a class function with respect to 3+: cp(Tf) =q)( ), 'r 6 3+. 
We also need the tansformation properties of the measures. 

They are most easily expressed in the Z-formalism: from (IV.8) and 
(IV. 10) we get immediately 

du(Z-f) = 0 ( Z f )  du(2) 
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where 

8 

(IV.12) 

Our representat ion space i s  t o  be constructed from functions 
in  a representat ion space for  a UIR of r u n .  Since A i s  one—dimen— 
s ional  a n d  m i s  i somorphic  t o  SU(2) the U I R ' s  of (Mn are characterized 
b y  0L1 E p and  (12 -=- zt where p i s  a n  arbitrary real  number and  L i s  a 
non-negative integer or half—igteger. Thus we shal l  consider vector 
functions fL with components m,m=—£ , —X,+l . . .L—l , L ,  which sat isfy 

I, i p t  L I, L rmfif) = e Z Dmnm) fn(/) (IV.13) 
n= -& 

where T = Liam/29 and  Df’nnW) are Wigner matrices , and we write 

{a _ x; ,L = _ 'HL 
(“Hoary {inf m 

m=-L 

he representation space for  the representation (p,&) i s  de -  
noted K p '1’ and it i s  Obtained from the scalar product 

(5’, f’L) 5f (#(f), “(W/”m du(z) 
Z . 

Prom (IV. 11) it is clear that 369’“ can equivalently be characterized 
a s  the  Hilbert space  which has  the scalar  product 

I L  __ I L  «hf wish/Lt <fnmdu<m (IV.14) 

A unitary representation (p,&) of Q is then defined in  369:“ by  

s‘p't’y) fix/o) = (0(Z./))%- fig/J) (IV.15) 
It can  be shown that  for  p 75 0 and  «f, a non-negative half—integer and 
for p arbitrary real  and L non-negative integer,  (01%) is a l s o  irre— 
ducible . 1 )  The representations ( o u t )  and ( - p , & )  are  equivalent. 

In physical applications the decomposition of (9,1,) with res— 
pect t o  U I R ' s  of M i s  often of immediate interest .  We consider this 
decomposi t ion in some more de ta i l .  It will then be convenient t o  
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rewrite (IV. 15) in a form where only functions on 16 appear .  We write 
59) to  denote that 6 is the (22) element of and we use M ) to de— 
note a n  element in x which belongs to the same right coset of q with 
reapect to  3+ as; i . e .  ifjr- 72 thea) = T'z. Using 

(1. B 
Iéy’h ' l /mz = |Y|3+ | 5 | 2 1  / = <  ) 

Y 6 

and (IV. 12)  the defining relation (IV. 15) can be rewritten 

5( F19” 3 L 

(’0 = T O  Z)  

Next we choose a representative g o  = h o  E 16 and in analogy with the 
notation 2.! introduced above we write Mao?) 5 a n y  i .e .  he} = 
Tao-j )  an  1 1 . 7  is defined only up to a left factor ”E m. Further- 
more if 'r = nag)”; we write t = 12(1'), arm/Mfr) and also in general 
t = t ( 7 )  if 7 = n a ( t ) h , h € l c .  Then ‘ _ m 

I6('r)l = ”Mt”! = IMMH ' IM/(tH = [6(ao(t))| = e  

With these notations and using (IV.13) we get the following final 
expression from (IV. 16) 

8(p'u(g)f:1(ho)=16(h09(fi0.7)‘1)|'3'21p . 

i Dinkdhogmo'yr l»  field?) (“1'”) 
n=-& 

which explicitly defines the representation (p ,L) on functions defined 
on 16. The indefiniteness 1n the element a .y was a left factorme m .  
Equation (IV .17) still defines (p.:,) uniqueflr: from (IV.13), the repre- 
sentation property of D" (Ila) and the fact that )5 W ]  = 1 it is easily 
seen that the r . h . s .  cilia]. 17) is independent of the choice of «O. A . 

The UIR's of x can be characterized by two numbers p and 
which are both integral or half-integral and where p 2 I q l  . The re-  
duction of the representations (put)  with respect t o  UIR's of M is well 
known.8) According to  R e f .  8 the represantation space K ( 9 ' L  can be 
constructed a s  a n  infinite direct sum o f  representation spaces Ildpr‘l) 
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for the UIR's (p,q) of 1c, where p takes the values L ,  n+1, L+2 , . . . 
and  q t akes  the va lues  —J(,, -JL+1, . . .Jz,-l , Jr, f o r  each  value of p and  
each representation (p,q) occurs with multiplicity one . 

In our realization of 3c(p.& the spaces K0910!) are spaces of 
functions defined on H a n d ,  according t o  (IV.13), satisfying 

11 

down 7 Dfnnm) {3(a) (mm) 
m ._- 

{1:41 

Once we have chosen bases in the spaces R‘p'q) and thus mid"- '1’), 
the definitions (IV. 17) and (1V.14_) of the operator 8(1):” (3) and the 
scalar product immediately give a n  integral formula for the matrix 
elements of a n  arbitrary finite transformation. A convenient choice is 
the following: we choose a n  angular momentum basis for the UIR's (j) 
01111 and constructII'C p,q) as  a direct sum of representation spaces 

of the UIR's 0). Then the values j = lq l  , |q |+1. .  .p—1,p all 
occur once . The ix elements i n  th i s  basis of a transformation 
h E M are denoted R njun , (M p,q). If we parameterize 1h according to 

’1 =Wi’ha 4% (IV' 19) 

where/IV1 ,W2 6 In and £54:- 4:“ (y) is a rotation of an  angle 11;, 
0 S 4; Sn in  the (34)-p1ane, R}; m '  (h; p,q) decomposes a s  follows 

j j ’  =min(jlj’) 

m 
R m,(&:p,q)= Z Dinlrvamf'wmq) 133;. (We) (Iv.2o) 

r=-min(j ,1 ’)  
- - I  

where R? ( ix ;p ,q )  are well  known functions . Any fixed row in this 
general matrix is  again a n  angular momentum basis now realized in 
terms of functions defined on i t .  By  considering the row L , m  we 
obtain a se t  of functions which furthermore s a t i s f y  the  covariance 
condition (IV. 18): 

_ I 

a'jm'w'm p '  ‘1): 5: Din SW) RELIW pq) (Iv.21) 
=-& 

D" The dimension of a UIR (p,q) is (p+1)3- ofa , i . e .  the Rmm’ satisfy 
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jljg 1314 I ’ 
Idu(&)Rm1m2(mp.q) Rmamém; p . q )= 

+12— 9 '1-5 a 5, 5 5 
“p ) q )  mlma memi 111361314 pp’ qq’ 

and consequently the functions 

N(p.q; o,IL)((pI-1)3- qzé‘ ajnlr’m'. pq), (IV-22) 

where N(p,q; p,L) is a phase factor and where p,q,j’ ,m’ take the 
:‘ab'OVe-m'entioned values , constitute an orthonormal basis in 1MP It). 
We consider brie y,the general matrix elements in this basis. They 
are denoted fig”? (3:11),“. In order to obtain the simplest possible 

form for these elements we use the decomposition 

] mam/amine, swag eu,t2 o 

(valid for all .7 E Q). The only new functions to be determined are 
then the matrb: elements of the "boost" a, (t), which we denote 
qp q (t; p,“ (they are diagonal in the j and m indices and inde— 
pendent of m). Thus the general matrix elements are 

i” =m1n(p . p’) m” =1” 
I I _. _. II 

nflgrgmw) = Z 2 Ram” (1&1; pq) 
i”=maX( lql . I q’ l) m”=-J” 

I I II I 

flip q(t;p.m1n,am,<«2;pr. q') (Iv.23) 
I I 

and the integral formula for qp q (t; out) which one obtains from 
(IV 14) is j 

qp'q'm M) = W N(p'.q': p.&)((P+1)3-qz)((P'+1)a-CI')2)i 
Tr 

«mfg-H 2 mam-12:" (w:pq)(Cht—cos¢sm) 
"'o 

_ s -3/2-ipRL 
TT k 

k 

j (\h’m’q’) 

where 
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I=c_°5_iL'_T'9£t_ °°s‘” 1 -005i Tght 
I I 

The differential properties of qp q (t; p ,L) are obtained from a con-- 
sideration- of the action; of the generator of the boost as (t) on the gen;- 
eral matrix element (IV.23). We refer to Ref. 7 for more details . 
Other properties of these functions may be studied by using analytic 
continuation from corresponding matrix elements in a UIR of SO(5) .9 
The advantage of using bases and matrix elements in which the covari— 
ance condition takes a simple form will be seen again in the next sec— 
tion where we consider a different decomposition of the representa— 

tions (p ,L) . 

_.of a Nance-Intact Subgroup - 
In the present section we illustrate further the power of the 

theory of induced representation by applying it to the problem of de- 

composing the representations (p ,L) with respect to UIR's of a non— 
compact subgroup which is isomorphic to 3001135. As is well illus- 

trated by contributions to this symposium, there is presently a vivid 
interest in exploring the assumption that the apparent Poincaré invari— 

ance is in fact only approximate and should be replaced by an exact 
$0011.45 invariance, i.e. we should use a 80011.4} invariant particle 
classification and SODHAF covariant field equations, etc. The de— 
composition we are going to consider here will in such a framework 

replace the decomposition of the UIR's (m,s) of the Poincaré group 
corresponding to a positive m2 and spin 5 with respect to UIR's of the 
Lorentz group. 10) Particular cases may also be of interest in special 

dynamical models where SO(1,4) appears as the dynamical group (or a 
subgroup of it). 

The decomposition treated in Section IV was relatively simple 
inasmuch as the representatiOn space 1MP”?! could be constructed as a 
discrete direct sum of representation spacesflc “1 . When we con- 
sider a decomposition with respect to UIR's of a noncompact subgroup 

we expect that 3cm!“ has to be constructed as a direct integral of 

representation spaces. Before entering upon the details of the problem 

at hand we give first a very brief review of some relevant results from 

the theory of induced representation. The use of these results will 

enable us to give the solution of our problem in global form. 

The problem we are considering is thus of the following kind: 

suppose we have two subgroups H1 and H3 of a group G; suiagose fur— 
ther that L1 (31) is a UIR of ‘H1 and that a represen tion 8L1 1) of G 
has been constructed by'induct-ion, how is then 1911 1) decomposed 
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with respect to UIR's of He ? The key to  the resolution of this problem 
is provided (under some weak conditions on H1 and He , see Ref. 4)  
by the double cosets of G with respect to H1 and H3 , i . e .  the sets 
SY of the form 

3 2 H  fix, 6 G .  
Y nHa’ gv gv 

By considering sufficiently many 9 we get al l  elements in G ,  i . e .  
there is a minimal set of indices I ,  Y E I such that, 

G = U H1 n z  
y 6 I 

Correspondingly we split up a function f(g)  defined on G into com- 
ponents fv(g) according to 

f ) E f for  e S of Y(g (g) g Y 

fY(g) = 0 otherwise 

i .  e .  the representation spacelC LH1( 1 )  for  the representation 19L1(H1) 
is decomposed into the direct sum (iLn a (nneralized sense,  depending 
on the structure of I) of subspaces KY 1 (  formed by the functions 
f Y  (g)- L1 (H  ) 

If gY 6 SY then obviously g h  e s for he 6 H 1 
is invariant under right translation $572 a n  e ement2 in H: , i . e e 1 C Y L 1  (H1) 
i s  the  representation space f o r  a (usua l ly  very general)  representat ion 
of He . Thus once the set I has been determined the Llralmeining task is 
to ecompose the representation of He acting inlCY and denoted 

in)to irreducible parts. Now it can be shown (Mackey) that 
the D CH1 ' 5  can be constructed a s  induced representations, induced 
from . icular subgroups HY of He defined by 

H v = g ; 1 n Y n  He (v.1) 

In order t o  make this plausible we define 

fY(he) a fY(gYhe), he 6 He 

Let hY 6 Hy. Then, with hY = gY‘1 h1 gv, h1 6 H1 , 
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_ _ Y _ - _ _ fWtg) = — f (gY 1 h1 gt) — fY(h1gYh2) - L1 (111)fY(gYha)— 

= L h '1 fv 1(gY n ) (ha) 

i.e. the fY(h2)'s satisfy a modified covariance condition: 

H (ta) = LI(hY) fY(h2) (M) 
where L1 completely determines 13: 

impenehrn Y Y ' Y  

L1 (H1) The norm in SCY is (cf. Section IV) 

Y 
J‘sH If (an 1L1 

where 

nn 1L1 = Hffihlgvhznlil = Hugyhan 1L1 = IlfYflnaHI 
”9'01a 

which according to the above is a class function with respect to Pk, 

i.e. we may consider it as a function defined on HY\H2 . Thus, a er 
a correspon ng factorization of the measure, the representation 
spaces - 1 1) are seen to carry 6&1 need representation of H2 , 

1 induced 0111 HY and the norm inICYI-l is given by 

Hill: E J“ du’(§)l|fY(hz)l|LY (v.3) 
HY\H2 1 

In our application we shall consider the subgroup a of Q which 
is isomorphic to $0011.35 and which acts in the (0,1,2,4) space. Its 
maximal compact subgroup is then m and all elements {6 03 can be 
written ' 

{Mayan/2e (v.4) 

The representations (p ,L) of C} were constructed by induction 
from the subgroup 3+, i.e. we need the double cosets of Q with 
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respect to 3+ and f5. Using e.g. the parameters j =M+¢Q lam’h with 
ft parametrized according to (V. 19), one finds that any element of Q 
can be written in one of the following ways 

(i)j=Té’/, (ii)j=T// , (111)7=T&°/ 
+ . 

where T E 3' , {6 03 and where &+ = he“; (0) (i.e. the unit element) 
.V =fi34 (n), a" ma“ ew/Z). 

The three classes can also be characterized as follows 

(i) The j's withlél > Hi 
(ii) The y's withlé < [ H  
(iii) The j's withlé =|y| 

From this it is clear that class (iii) consists of elements character— 
ized by one parameter less than the elements in (i) and (ii). There— 
fore this class will not contribute to the integral formulae below and 

we will omit it completely in the following, i.e. the indices (y) are 
taken as (+) and (—) and we write 

u: _ z, a: 
fm(/3=fm(&/) 

Both the groups HY , i.e . H+ and H _  are isomorphic to m and there— 

fore we may write the modified covariance condition as 

l u: _ JL M: rm 9% — Z Jame?) fn (453 (v.5) 
n=—l’, 

:l: 
where/ME In, {6 IB and/Mi E éi/IM& )‘1 . It remains to express the 
measures in variables relating to the new subgroups . We recall that 
the formula 

& 

IMIIB (ft, #3:; ,1 Ifflwdm 
M n=—l, 

for the norm inflC(p ’X’) was obtained from the fact that 3+\Q and m\}c 
Wet-e isomorphic and since In is compact we could write the norm as an 
integral over it. The norm of the functions ffiilfi is now given by an 
integral over m\e (cf. (v.3)) , i.e . it can be written as an integral 
over LB. The explicit relation between the parameters and measures 
is obtained e.g. from a comparison between the parametrization j=Th 
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and cases (i) and (11) with / parametrized according to (V .4). One 
finds: 

1) o s 4: <%, 4mm) =1'a/4(t), T e 3", cos w = (ant)-1 

11) 12'» q: 2 a .  new)  = T4400, T 6 3+. cos 1!; = (CM)—1 
After intoducing the new variable t into dufli) and denoting by  dMA 
a n  invariant measure on  (B ( i . e .  with a suitably chosen constant) we 
get 

JP, MHZ = Z 2 y (ohtmmffymlaam (v.6) 
Y:+,- n=~f,a3 

With 

him (on wars/2 fffm. HIMMI PE ai’awm 
1:] L 

equation (V. 6)  reads 

H3113 =2 J‘Ilh’WMHS am (v.7) 
Y 6 [It] 

Next we determine the action of the representation 903"” on the func— 
tions luff-4‘5. From the general formula (IV .16) it follows that 

Mai/06”.; (OWL) a (0.1,) :I: _ 9 (Art (at) — m ° Nigerian-1.) {$4,493 (v.8) 

One finds that [amt/(nyi/rll = (Ch twfi ,  i.e. (v.8) can be 
written 

(9.1;) H _ L i  :9 whm<g)—hm<m (v.9) 

We denote b y  3C(p'&)i the Hilbert spaces of functions hfli (fl defined 
a s  above and with the norms 

Ilhu‘ll“ Exam Hh’tmn (me) a [L] 
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Thus we have 

34911!) =K(OI ’L )+  e K ( D I & ) _  (v.11) 

We recall that the general theory gave us information about the 
existence of induced representations of (B on rydUi (and how these 
could be constructed) but it  did not give the  decomposit ion of t he se  
werefentations into irreducible parts. Equation (v.9) shows that 
.0 9 '  (I) is closel related to the regular representation in both 
1MP! H and tick“ ' .  It is not the whole regular representation since 
the functions h *- m are not general square integrable functions on 1%: 
they must further satisfy (v.5) . However, the relatiOn to the regular 
representation will be important for our purposes since its decompo— 
sition into irreducible parts i s  known6 and the restriction given by the 
condition ( v . 5 )  i s  furthermore e a s i l y  introduced into that  d e c o m p o s i -  
t ion. As i s  well known the regular representation of is can be decom— 
posed into a (generalized) direct sum of UIR's of is characterized by 
two real numbers (vpto) where v 2 0 and where L0 is  a n  integer or half- 
half—integer (the representations (misc) of Hi a l l  belong to  the principal 
continuous ser ies) .  This decomposition is most  conveniently express- 
ed in terms of the generalized Fourier coeffidients with respect to the 
UIR's of a of the functions hfifid‘) (Le. rather than just writing down 
the relevant relations in operator form, we give explicitly the expan— 
sion and transformation coefficients). In order t o  define these Fourier 
coefficients we need the matrix elements of a general element {ea in 
a UIR (V'Lo) . We choose t o  consider the matrix elements in a stan— 
dard angular momentum basis and they will be denoted % '  (IRON) 
(the properties of these functions are well known). The Fourier coeffi- 
cients of 11:13: (i) are thus defined by 

mm’n l i t / r  
An important consequence of (V. 1 2 )  is now that many  of these  coef f i— 
cients are zero.  With 

k'=min(j,j’) 

D“, ”id/(11%): 2 Dj m m j j l h t  v ) D j '  m )  mm’ 4' mk’ k’ ’ o’  k ' m '  2 
k'=—min(j,j’) 

and using (v.5) it follows that the r . h . s .  of (v .12)  will contain 



REPRESENTATIONS OF THE (1+4) GROUP 119 

. I  5 5 I ‘ » J - r, i _ 1'4, m nhck' 

and thus  we may  write 

i jm ,(/“:Lo .v)hf’1i(/3du(f)=5 Ma: 
1 '  L6 m’  ’nhmn (LO'V) (V' ls) 

This resul t  provides the restriction on the possible values of L0 that 
can occur in  the decomposition of (p ,L). The possible values of j ’  
are I L l  ILol-I-l. . . . , 1. e .  the Fourier coefficients are nonzero only 
if L 2 h e ] ,  i .  e .  for fixed 1, onl. a finite number of Abe—values contri- 
bute. A transformation {-0 {AV in 1135?“) induces a transformation 

’43:“0'” ~é’iflmom) = yam Ding-1 , Lo, v) h:*(& 51) 
“3 

‘
I

I
 

I 

jj’ , 1'“: 
Z : Dmm[(!11 O ' v b é m ’ n  ( L O I V )  (v.14) 

- I =  I = _ - I  J !&OI,ILOI+1,... m J 

We introduce the notationficz’ i m o  . v )  fo r  the  Hilbert space  of 
the coeff ic ients  

Mia, In] S L 
)} m n (  “0 '  . lml $ 1 . 1 2  ILOI 

with the norm 

1,5: 
: Iii“). (LOIVHB 

lnlSL 
H'KLiQJONH l3 E z 

J‘ZILOI lml 

The Plancherel formula for the UIR ' s  of a then states that 

llh‘illa firm-22 f a ;  +v3)dvll"r(' *(r o'V’HB 01.15) 
0 

L 
0 

where the sum goes over the values $1,, :I:(X,—l), . . .:I:% or 0 for L0.  
This formula together with (V. 11) expresses the desired resu l t .  In  
analogy with (V. 15)  we may formally write 
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a: 

K(p,r)i_(2n1-2I§' J"(L02+v2)dvsc”(&o.v) 
:0 o 

where therange of summation is the same as in (V. 15). 
Above we have shown how functi ns fL (7:), square integrable 

over it, are associated with functions hn (4),square -integrable over 
03. In physical applications more explicit results are needed such as 
transformation formulae referring to specific bases . We therefore 
derive the relevant results in the angular momentum basis for the UIR's 

{Dill used above, i. e. we 311% consider the Fourier coefficients of 
those particular functions hn it“ ) which are associated with. the ortho— 
harm-1.: basis (IV. 21). In general we have 

—3/2 ft hffw. (t)) = (Ch t) (r1113. (15) 

where we have putllr 5111+ for 0 S111<E and w E d;— forE>1Lr 211. 111i 
and t are related by cos (1* = (Ch t)_1 . From (IV. 13) it follows that 

hfniw. (t)) = (Ch t)'3/ 2'19 ffnma. of» 
and in general we get 

hm _ -3/2—ip{. 
mW1fl4L(t)/IZQ)-(Ch t) f q i  “34011 )xma) (v.16) 

Thus we choose to consider the basis functions 

I; d: :h JL" :I: imw. may mg) st<p+1)2—qQJ*N<p.q,L,p) Rnfm,m whim.) 

The corresponding hf’ni —functions are deno’ced/t/m m’ li(fi; p, q, p) and 
according to (V. 16) we have 

bgéflépam) = (Ch t)_3/2_ip[(p+1)2 -q2]éN(p,q; L; p) . 

Dfn km flRj (Wm) Darya.) 
m l k  

W
L

V
]

 

For the Fourier coefficients we write 
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jll -III _ {1.11: 

@fduw) Dmimmw 171:0. v) I/mI (53mm) 2 

L 
6 ' 5 III Rim/I IJTIII: ,(Lo IVI plql  9) at ,3” m,m 

Integration of the compact variables yields 
a 

If, :I: 
l l  J I O L O  I V I  P I  01: C) = 5 m  II 6 - ]  ”figj'i m, (LO IVI  p I q ;  D) 
m”mm m,m J , j ,  

where 

6%l 
Rmm ,(LO I V !  p l q l  D): N(q £0) I In (2H1) (21’+1)- 

_ m — .' ' I  V (mm k Mob t) 3/2 19 A1k&(t;o & ,v) R? (1*; p,q>(c:h trad: 
I o 

where the integrand contains only well known functions. The 

Rtj'd: 
mm 

in the unitary transformation which connects the “Jot-basis" {jumper} 
.and the "a basis" ‘jmtonn. 

The decomposition formula relating the mqf’q ’m' (5.1, yore and 
the D”! MAJ: Lowrs is 

, (L0, v; p,q; p)' 5 may formally be looked upon as the matrix elements 

pqp’ q 4 -2 ‘ Djmj' ,m,(fi; I; p)= (e ) i 
Y 

I a 77—7—- ,(é; LON) Z aim (aqmsrpqmn j mime ,v;',p q, p) 
n (v.17) 

It is obtained as follows: a general scalar product in 360’” 

written 

a”, M) =V J" dmwm)Imam _ fl _ Y 

can be 

(217“ )‘2 

0
%

8
 

< 
L

\/
] 

2 
£0 

(’{,02"'\)2)d\)>-I Y 3" KIUJIIEY (to IV) Kj’E/to IV) 

j m 

a
t
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(V. 17) is now obtained by substituting 

all,” q:.N<p.qrn,p)£(p+1)3-q2fan mm» m) 

m w  '°(6)N(pcqoc.o)r(p'+1)a— 01'3i Sn'ma p ”q) 

where the latter element according to (V. 14) has the Fourier coeffi- 
cients 

- e 1'1” _ (Nu/i . , ,. 3-. > Drum]! (Kl £01V) Rmflmml('{’olv1 p r q  l p) I 
H 

j ll ml, 

Conclusion 
We have given a survey of a class of induced representations 

of SOO(I,4) and their decompositions . The theory of induced repre— 
sentations has been shown to provide a suitable framework for the 
introduction of and detailed investigation of various bases of particu— 
lar interest from a physical point of view. 
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GENERALIZED DIRAC AND MAIORANA REPRESENTATIONS OF 3—6 (3 ,2)? 
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Abstract 

We consider the use of the Gel'fand-Zetlin forflilae for $6) 
to obtain those unitary irreducible representations of_SO(3 ,2) which 
have a discrete singleton reduction with respect to SO(3 , 1) [the "dis— 
crete Lorentz" representations] . These discrete Lorentz representa— 
tions can be regarded as generalizations of the Majorana and Dirac 

representations in certain cases . The method used also generalizes 

easily to discuss an analogous class of representations of 80671.2) . 

Introduction _ 
_ The unitary irreducible representations (UIR) of S = SO(3 ,2) 

[SO(p,q) denotes the universal covering group of SO(p,q)] have been 
considered in Ref. 1 for those UIR which have a singleton reduction 
with respect to its maximal pseudo-compact subgroup K = 873(3) 8) 80(2). 
[A singleton reduction of a representation of group with respect to a 
subgroup means that each irreducible representation of the subgroup 
occurs at most once in the reduction.] These will simply be referred 
to as "singleton" UIR of S. 

However, for many physical applications we are interested in 

‘S, for example, bewuse it Emmi“ L+, the covering group of the 
proper Lorentz group ‘(L+a‘ SO(3 ,1)) as a subgroup. It therefore be— 
comes useful to know the reduction of representations of S with res- 
pect to L . _ 

We consider those UIR—of SO(3 ,2) which have a discrete single— 
ton reduction with respect to SO(3 , 1). [A discrete reduction of a 
representation of a group with respect to a subgroup means that when 
restricting the representation of the group to a representation of the 
subgroup we obtain a direct discrete sum of irreducible representations 
of the subgroup J] These will be referred to as "discrete Lorentz" UIR 
of S . 
tPresented at the Symposium on De Sitter and Conformal Groups , 

University of Colorado, Summer 1 9 7 0 .  
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We arrive at the remarkable result that all the "dis orete 
Lorentz " UIR are nothing but "singleton" UIR of S . 

We thus independently arrive at many of the singleton UIR 

obtained by Ehrman. In fact, we obtain all those singleton UIR in 
which for each value of the angular momentum the eigenvalues of the 
generator of 80(2) ,  A54, are bounded. 

Section 1 _ 
The real Lie algebra of S = SO(3 ,2) is given by the following 

commutation results [CR] : 

[AaB' Ava] = gaé ABY + n AM ' gav A86 ' gsé Aow (1) 

where the metric gun is given by: 
B 

9 = + 1  f o r a = B = 1 , 2 , 3  

= - l  f o r u = B = 4 o r 5  

= 0  otherwise. 

figfi: 1:11:19“ are the basis elements of the Lie algebra, with A;B= -AO.B 

Sectionz _ 2) . 
A UIR for SO(3,1) is specified by: [In the notation ofRef. 3 

m3; = m r  mai =1” lrnéll =10. ("laz+1)z =£1QJ 

Aeilmi ”142 m l  m21)=i m21|m41 Mn “‘21) (2) 

Aaslméi We 17131 H121) =A(m21)lm4,1 “142 ”131 may“) 

—A(m21—1)|m41 "142 m:31 "121-1) (3) 

'1A43Im41 "142 “‘31 mm) 

= B(m31)‘m41 mes m31+1 m21>- B(m.51-1)‘m4l ma:2 mal-l m“) 

+iCl41 "142 3131 mal) (4) 

where: 

A(m21)=i:[(mai+%)3— (malemi’ (s) 
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Emil? "(ma 1+1? ][ (m43+1)3 ~(m81 +1)?] é 

(”131+1)a[(ms»1+1)3 as] 
Bm1)=%£m212—(mm+1)215 

(5‘) 

“‘21 m41(m4 2+1) 
(7) 

(m31+1) ma 1 

The actions of the remaining are specified by the OR. 
The above basis is analogous tg that of §5(4) where the 

ranges of mg1 , m31 are specified by lflil S m“; lmul S m:51 Sm”. 
Finite dimensional representations of SO (3 , 1) have the same range, 
but for unitary representations m” is no longer the maximum value of 
m:31 and to satisfy unitarity m” has the following ranges: 

A. m41 = 0; [m42+1l = 1 
[The identity representation] 

B. m41=0; 0<|m42+1l<1 
C. 2 m41 integral or zero; m43+1 = 0 
D 2 m41 integral or zero; m42+1 = iy, y real and 

7! . 
N.B. [m41 , (m42+1)] specify the same UIR as [—m“ , -(m42+1)] . 
The ranges of m,31 , m:31 remain: Imzll S m:31 , Imul S m:31 , except 
for the identity representation where “‘21 = In,51 = 0. 

Section 3 
Since we casider UIR of S with a discrete singleton reduc- 

tion with respect to 80(3 , 1) we may write 
11141 “Meme/1 mall _, 

I 
$511114 m me m ) = 3  I m ‘ i l m e ’ m a ’ m  ) C  4 1 42 1 2 1 7 ’  I 1 2 1 21 m41m42 ma1m21 

m 41’lmézl (8) 
"131 ”“21 

In determining these UIR of S it is sufficient to determine the 
action of A54 on a §5(3,1) basis as the action of A51 [i=1,2,3] follow 
from the CR. , , , , 

The matrix elements Cm41 m4? m“ mal are determined from 
"141 mile “‘31 "121 

the OR, the pertinent ones being: 

[A211A54]=[A321A54] = 0  (9) 
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[ A 4 3  l [A54 I A431] = _A54 (10) 

[A54 r [A54 1 A43]] = “A45 (11) 

the remaining CR following from the Jacobi identity. 
There are several ways to proceed now: 

(a) The above commutation relations can be used to obtain recurrence 

relations for the matrix elements which then have to be solved. The 

solution of the recurrence relations following from (9) and (10) has 
been given by Gel'fand et a1.3 and hence it remains to solve those 
following from (11) . 
(b) The above approach is tedious and can be somewfit simplified 
by using the OR of A54 with the Casimir operators of SO(3,1), obtain- 
ing the same recurrence relations . This approach was used in Ref. 4. 
(c) The solution of the OR for S—O(5) obtained by Gel'fand and Zetlin5) 
can be used to obtain the matrix elements for S_O(3 ,2)._This approach 
lacks rigour but as the solution has been obtained for SO(n+2) ingen— 
eral it has the advantage that it can be generalized to discuss SO(n,2). 

Section 4 % 

_ If we put Am _:[g<m g B] Bu‘ we see that 30-8 satisfy the OR 
of the Lie algebra 0? 80(5). \APe can t'us write down the matrix ele— 
ments for BOLB from Ref. 5 and obtain in addition to Eqs. (2) to (7) the 
following: 

B54|m41 m”) =A(m41)|m41+1 m“) —A(m41-1)lm41-l m”) 

+ A(m4g)|m41 m42+l)-A(m42-l)|m41 ”142—1) 

where labels which do not change have been omitted and: 

]% [(rr15 14%)3— (m4 1am [(m5 sir—(m4 1 a)” *" 
A(m41)=%[(m314%)2—(m414%)2 . 

[(m4 2+1)2—m4 15] [(m42+1)2—(m41 +1)2] 

(13) 

[(m51+%)2—(m42+a§)3][(m54%)2-(m42+%)2]-|§ 

[m4 12—(m4 2+1)2] [m4f-(m4 2+2)3] ( A 1 ,, 

A 
2 A(m42) = %[(ma 1%)2‘(m4 JEEP] 

For $75 (5) the Gel'fand—Zetlin representation is obtained via 

the following reduction procedure: 
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s—o(5) D §6(4) :> s—6(3) 

where each reduction is a discrete si_ngleton reduction. The use of 
their results for our class of UIR of SO(3 ,2) remains valid since these 
UIR are obtained by the following reduction procedure: 

s—o(3,2):s—o(3,1):> s—o(3) 

each reductig1 being again a discrete singleton reduction. 
For SO(5) we have: 

‘méll s m31 S “142 

| m 4 1 |  S m51 S ”‘42 S mas 

and 

m51 =max|m41| =minm42 

msz =max m42 

However for $0 ,2) m4:3 and hence m51 , mEa have completely differ— 
ent ranges for a UIR. 

Now the use ofthe Gel'fand—Zetlin formula poses some prob— 
lems: ' 
(1) When a zefl occurs in denominator of either of expressions (13), 
(14), then for SO(5) there are at least two zero factors in the numerator 
and the entire expression is zero. For SO(3 ,2) this does not hold true, 
and we have the following set of rules: 

(a) If a zero occurs in the denominator, then the part of the 
numerator independent of m:31 must be zero. 

(b) There must be at least as many zero factors in the numera— 
tor as there are in the denominator. 

(c) It is sufficient (though not necessary) for a matrix element 
to be zero if there are more zero factors in the numerator than in the 
denominator . 
(2) When m“, (m4;+1) = 0 then m41 = m41' , m42+l = m42’+1 specifies 
the same representation as m41 = -m41' , m42 +1 = —(m42'+1) and this 
gives rise to the following problems: 

(a) If m41 = (m42+1) = 0 then Im41+l, ”‘42): lm“ m‘a-fl) 
specify the same states as Imu-l, m”) and m“, méz—l) respec- 
tively and Eq. (12) is no longer meaningful. In this case it should 
read: 
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Balm“ mtg) =aA<m41>lm41+L m4=,~>+s15.(m..2)lmt1 m42+1> (15) 
Where 

A(m41)='b[(m31+%)3- (mnsmi (16) 
M11142) =t[(mal+%)9- (mafia? (17) 

(b) If m41 = m41’= it, m4g+1 = 0 then m“ =13“, a: 1 respec- 
tively specifies the same UIR as  m. = mu". Taking, m41 = §  Eq. (12) 
remains valid if we put [mu—1 ,m a =‘(lmfi1 1W2)- 

(0) If m41 = 0, m42’+1 = then 1n” = mn’ =F 1 respectively 
specifies the same UIR as  m” = my; . Taking m49+1 = §  Eq. (1.2) 
remains valid with Im41 m42—1) = 6 | m u  1-1143). 

0., [3, y ,  6 have t o  be determined from the C R ,  which i s  never- 
theless a simpler task for  these special cases than for the general 
case. 

These rules can be justified by examining the recurrence rela- 
tions from which (13) and (14) are der ived.6  

Section 5 
Since A54 = —B54 and A54+ = -1-\54 for a UIR we have the  condi- 

tion that A(m41), A(m41—1), A(m42) ,  A(m42- l )  are real .  
A. Suppose m41 = o; Im42+ll = 1 .  We may take m42 = o as  m42+1 = 
:1 specify exactly the same UIR. Since m42 = 0 ,  m‘,‘1 = :|:1 speci— 
fies a non-unitary representation we must  have Mm“) =A(m41—1) = 0 ,  
and we must have, for example, mm = 0 .  [This uses rule 1 . ]  Also 
m41 = 0 ,  m‘,‘2 = l i s  non-unitary and hence Mm”) = 0 ,  giving m 5 2 =  0 .  
A ( m 4 2 - l )  i s  now undetermined by (1.4) , but it must  be zero for other- 
wise we have the UIR (n14:1 , m” +1) = (0,0) and A(m42—%i%) are singu— 
lar (mag! 0 ) .  __ 

S o  the identituepresentation of SO (3 , 1 )  can only occur  in  the  
reduction of a UIR of SO(3 , 2 )  if  the latter is  the identity representa- 
tion of S O ( 3 , 2 ) .  

S o  here we have: 

”141 =m42 = 07 "151 =m52 = 0 

B. Suppose m41 = 0; m42 = mg], 0 <  [m42'+1| < 1. We may take 
0' < m4; +1 < .'1. With this range for 11142 , mu = i1 is non—unitary and 
hence A(m41)=A(m41-1) = 0 ,  giving m5; = 0.  mu = 0 ,  n1.,,,2 = m45’+1 
is non-unitary and hence A_(m”')= 0 giving mM = m4; . Hence 
‘A(m_.,a'-l) _# 0 and it is real. Now m“ = 0 .  rm = m,3'-2 is non- 
unltary and hence A6114; -2) = 0 giving ("153+ 2)” = (m; i)” . Hence 
mu“; =11t - maa'. and mag = ma; = 45- 



DIRAC AND MAIORANA REPRESENTATIONS 131 

So finally we have that m41 = O, m42+l =% and: 

B54|m41 m42>=5A(m42-1)|m41 ”‘42) (18) 

From the CR we obtain 62 = —l and 6 = ii specify inequivalent UIR. 
So here we have [for both these UIR]: 

m41 = 0, m42+l =%; m51 = 0, m52+% =1. 

2|m41I integral or zero; m42= m4; , m42'+l = 0. Here m42 = 
m42 'dzl is non-unitary if m“ 75 0. If m41 = 0 then m”: m42'il is the 
identity representation which does not occur in any SO(3, 2) UIR apart 
from the identity UIR. So in both cases A(m42) = A(m42-l) = 0, giving 
m51 = 0. 

Let In,“ be the minimum value of [mu] occurring in the 
reduction. 
(a) m“ 2 1. When |m41|= _41 we may take m41=m41. Clearly 
A(m¢i—l) = 0 for g“ to be the:n minimum of [mu] in the reduction. 
Hence m52 “#11141“? [If m = l we have in the denominator of 
Minn-1) the factor (m42+l)-a- 4(m —l)2= O2 , requiring two zero fac— 
tors in the numerator. ] The reality condition is satisfied. 

So the range of m41 , m42 and the values of m51 , m52 are 
given by: 

_ . = a m52+ZS m41, m42+1—0, m51 0,%s msg + 2  

(b) r341 =%. We can take m41 = Q41 = %  and then: 

Bs4lrfl41 ”142) =A(r341)|rfl41+1 m42>+YA0114r1Hm41 IT1421) (19) 

The OR give Y2 = —1 and y = :ti specify inequivalent UIR. The 
reality of A(m41), A(m41—l) gives 0 S (m52+%)2 S 1. So we have the 
following: 

_. _ . _ 3 —  l. m41 —%, m42+l — 0, m51 —0, m52+§— l 

2. %Sm41,m42+l=0; m51 =0, OSm52+g<1 

remembering that each case specifies two inequivalent UIR. 
(c) 11141 = 0. In this case we have Eqs. (15), (16), (17).Clearly B = 0 
for A(m42) = A(m42—l) = 0. From the CR we see that on = / 2 .  So we 
have: 

— . = a :  0 S m 4 1 , m 4 g + l — O ,  m51 O, m 5 2 + 2  % 
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D. Suppose m” = m4; , m42'+1 = iy, y 75 0. Then m4:2 = m4; i 1 is 
non-unitary and hence A(m4:3 ) = A(m42'—l) = 0, giving: m51 = m4; = 
mag and 

A(m41)=%[(m 14t)"’- (name?)é (20) 
This gives the following UIR: 

1. 0 S  Imul, m42+1=iy, y > 0 ;  m51 =m5,a =m4,2 

2' i s  Im‘l-II' m42+1=1Y1 Y > O i  m51 =m52 =m42 

We thus  obtain the UIR indicated diagrammatically in the 
column under the L+ reduction in the appendix. ((1,3) denotes an L... 
UIR with m.1 = a, man = B. («1.3) — (0/ ,s’) indicates that there 
are non-zero matrix elements ‘of B“ mapping states in (0,3) into states 
in (a’ ,B’ ). (m) indicates that there are non-zero matrix elements of 
B54 mapping (g..B) into itself. _ 

We obtain a very restricted class of UIR of SO(3 ,2), the con— 
finement to a discrete reduction with respect to 56(3 , 1) being the main 
restrictive factor. _F_or example none of these discrete Lorentz UIR 
extend to a UIR of SO(4,2). Fo@(n,l) one obtains all the UIR u_sing 
this method” as all the UIR of_S_O(n, 1) have a discrete singleton SO(n) 
reduction. But all the UIR of SO(n,2) do not have a discrete singleton 

S—O(n, 1) reduction. 

Section 6 
The reduction of these "discrete Lorentz" UIR has been done in 

Ref. 4 and the results are included here in diagrammatic form in the 
appendix. 

The following is the connection between the notation used 
above and that in Ref. 4: 

1‘0 =13“ 
m = m21 

j = m 3 1  

k = m“ 

c = m42+1 ‘ 

k |D kcjm) = (1) Im“ m.,,2 ms; “‘21) 



DIRAC AND MAIORANA REPRESENTATIONS 133 

The relationship between D1 , Da and mm , m52 is given by: 

D1 = %  ' [m51+fi-]2 ' [m52+a§]2 

2 = - {final-$12 _%‘_}[(m62+%)3 -%} ' 

[(1.8] specifies a UIR of S—O(3) ® 8—0-(2) with m31=a and B being the 
eigenvalue of To. Solid lines indicate non-zero matrix elements for 
343 . 

The method used to obtain the 873(3) 8 S_(-)(2) reduction in Ref. 
4 is roughly as follows: _ 

The subspace of an SO(3,2) UIR space with :1131 fixed is finite 
dimensional and we can effect a similarity transformation in this sub- 
space which takes the basis Im,‘1 m42 m31 mgl) into a basis 
lo. 1-1 m,31 m m) which is diagonal with respect to B54 , and 

35410, p m31 m31)= i plat. u m:31 mm) 

[a u m31 mm) then specifies the SO(3) ® SO(Z) basis. We then show 
that the SO(3) ® SO(Z) reduction is a singleton reduction, the label a. 
being redundant. Putting: 

_. 
— L1 

I“- m31 "‘21)“ Z. |m41 ”‘42 mai m21)Cm m 41 42 
Ir141' “‘42 

and 

—| I I H, m3, 

A 4 3 1 “  m 3 1  n“21): X IL]. H131 11121) C 1 

q I H ms 
HI m31 1 

we obtain recurrence relations for the expansion coefficients 0: m . 
I I 4 4 

When these are solved the matrix elements of A43 , Cu m“ can éasify 
be determined. Ll m“ 

This method has the advantage over merely comparing the 
Casimir operators with the singiaton UB Ehrman obtain in that it_<_:an 
be generalized to discuss the SO(n) 8 80(2) basis of the UIR of SO(n,2) 
analogous to those obtained above for S_5(3 ,2). 

Conclusion 
The discrete Lorentz UIR include the four Maj orana UIR.  Class 

C(a), C(b)2, C(c) can be considered as generalizations of the Majorana 
UIR given by C(b)1 . 
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Class D1 , D2 UIR provide a natural generalization of the finite 
non-unitary Dirac representation to a unitary representation for integral 
and half—integral spin respectively. To see this note that tlfi Dirac 
rgpresentition has the following reductions with respect to SO(3 , 1) and 
SO(3) ® SO(Z) respectively: 

(‘%I%) ' Q! £2) 

[~%. %] {in '3‘] 

Clearly class D2 UIR is a unitary generalization of this and class D1 
UIR is the integral counterpart of D2 . It may be useful to investigate 
these UIR as representing an infinite tower of rticles with the same 
internal quantum numbers, but different spin.7 The expansion coef- 
ficients connecting the L+ basis to the compact basis are explicitly 
determined in Ref. 4 for these generalized Dirac UIR, and also the 
matrix elements of A” [which are omitted in Ref. 1]. 

Mithematically the above is interesting as a prelude to dis— 
cussing SO(n,2) in order to see what happens to the ambiguities in 
using the Gel 'fand-Zetlin formulae in a simple case. 
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Appendix 

_M_'“232_L,Reducfion K Reduction 
B '/2 1 (out) 5413:: (u) live 

1&21 iii 
9'0- ”C.  

(1.0) 

CMJE 1'42 (blue) , 
[dimegrul] L ‘ i ]  

b l  (v2.0) _, > 

0 '0 .  

l [h big: (m 
C» ’2 1 [—1 

1 (92,0) fi fi l  X 

etc 

(3) (as) 
Cu») ‘2 r1 , 

2 -”°<msf’=" “3"” ”him , 327 , 
I)o "3243/2- (32.0) ( J O )  in. M ‘ V 

i (5/2|,0) (#50)  ‘ ‘ ' 
M=i(m529%)1 ‘ etc 

6'0- ale. 
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_flm% L. Reduction K Reduction 
CM '12 '/2 (0.0) 0,0 

“ { 0 )  flag #J& 

(2.0) .‘2‘ 2.0 2.2 

.L. f m. 1 

D1 c.'/2 Ma 

rm ° (-I,c) m e )  4.: 0.: m 
(-2,| c) ( Z i c )  l-zfim .2 lethal 

' e t c .  etc. etc. 

(#2. c)——(Pz.c) 52 Us 
DZ “’2 new ado» u. s: x ~ a inf izfiiaixa 

010 9'0. 0'6. 
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SOME CLASSES OF UNITARY IRREDUCIBLE 
REPRESENTATIONS OF THE GROUP 80001.2)? 
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Department of Physics 
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Mm 
The identity component 800(4 ,2 )  of the group O(4,2) is usually 

called the conformal group. We determine the following unitary irre- 
ducible representations (UIR's) of the group 800(4,2): 

a .  The UIR's which contain only the discrete series of 
8 0 0 ( 4 , 1 ) .  

b .  The UIR's which change the discrete label of the 800(4, 1) 
representations only. 

c .  The UIR's which remain irreducible under restiction to 
SOo (4 , 1 ) .  

We begin always with the Lie algebra of the conformal group and con— 
struct a n  irreducible representation of antihermitian operators of i t .  
All representations obtained in this way can be extended to a UIR of 
the conformal g roup .  

I .  Introduction 
We denote by O(4,2) the group of linear homogeneous trans- 

formations of the 6-dimensional real vector space,  which leave the 
quadratic form xi + x3 + x3 + x2 - x3 - x3 invariant. The identity 
component SO (4,2) of this group is usually (rolled the conformal 
group. By $0813) we denote the Lie algebra of SO (4 ,2) .  

The conformal group has been of considerabge interest in theo- 
retical physics, see for exam le Ref. 1 ,  and has been studied there- 
fore by a number of authors . 2  In these references the unitary irredu- 
cible representations (UIR's) obtained are either reduced with respect 

tPresented at  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  

139 
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to  the maximal compact subgroup, or a basis in a Cartan-subalgebra 
i s  diagonalized. The representations given i n  this paper are reduced 
in the chain 80(4) C SOO(4,1)C 800(4,2) and we derive the following 
classes of UIR's :  

a .  The UIR's which contain only representations of the d i s -  
crete series of 80001.1). 

b .  The UIR's which change the discrete label of 800(4, 1) 
only.  

c .  The UIR's which remain irreducible under restriction to  
800(4, 1 ) .  . 

The group 800(4,2) contains 7 subgroups of the type 
1 

° . cos t . . . s i n t  1 _ < = i < j é 4  
9116:) = . Z (1) 

Lsint . . .cost .  5 § i < 5 § 6  
' l 

and 8 subgroups of the type 

1 

' cosh t . . . s inh t  1 5 1 : 4  

gij (t) = 1‘ 1 (2) 
—sinht . . éosh t .  5 g j g 6 

1 

The matrix 91 (1:) corresponds to a rotation or pseudorotation in the 
xi-x -plane respectively. The basis elements Aij of the Lie algebra 
so(4,2) are defined by 

_ i All — dt gij (t) Fe (3) 

and obey the commutation relations 

[Aij’ Akl] ‘ gjkAil + gilAjk ' gikAjl ' glik 
with gi = + 1  for l § i § 4 ,  911: —1 f o r i =  5 , 6  and g k = 0 i f o r j  # k .  
From 1(4) it follows that a representation of the  Lie algebra is com— 
pletely determined , if the operators A with 1 g i _<_= 5 are known, 
because the other operators can be'expressed through them with 
the relations (4) . We denote an Operator of a representation. 
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corresponding to the generator Aij , by the same symbol. In an UIR of 
the group 800(4,2) the operators Aij are antihennitian, e.g. 

+ 

ij — _ Aij (5) 

All representations of the Lie algebra so(4,2) derived in this paper 
can be extended to a UIR of the conformal group. This follows imme— 
diately from Ref. 3 , see especially the end of page 5 7 2 .  Further we 

assume that each SOO(4,1) representation occurs at most with mul- 
tiplicity one. Actually, we believe that this is not an additional 
restriction. 

We want to use as far as possible the results of Ref. 4 for the 
special case 80(6), which are given in the appendix. For that reason 
It is convenient to define new generators Bi byAi j' Jet—B” 
see Ref. 5... A simple calculation shows that if the A ogey {Lew rela- 
hens (4) the Bi obey the commutation relations (A. 9) of the Lie 
algebra 30(6). owever, the, condition (5.) for the unitarity of the 
group representation has to be replaced by 

_ _ + 
Bi]. — e 1] Bi]. (6) 

where 

{+1 for l g i , j § 4 o r 5 § i , j _ < _ _ 6  

e 
11 ‘ 

'—l for l < i < 4 a n d 5 § j § 6  
— —  

This means we can take from the appendix all those results for the 

derivation of which only the commutation relations are used, and then 
we impose the new condition (6). In Section II we derive the UIR's of 
the 800(4,l) De Sitter group, instead of changing the notation of Ref. 
6 to ours , because this is a good example of how easy is to derive 

also a wide class of UIR's of non—compact pseudorotation groups by 

suitable use of the results of Ref. 4. In Sections III, IV and V we 
come to our main task, the determination of the classes of UIR's of 

800(4,2), specified under point a ,  b, and c respectively. All results 
are collected in some tables at the end of this paper. 

II. The UIR' s of the De Sitter Group 300:4:1} 
For the generator 3T5 we have A.5=1345 and 13:5 = B45. From 

the appendix we get the following expression forB B45 as a result of 
the commutation relations 
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345lm4-1 17142) = A ( m 4 1 ) l m 4 1 + 1 ,  17142) +A(m42) ]m41  . “142+ 1) 

‘ A ( m 4 1 '  1)]11'141- 1 :  11142)-A(m42-1)|m41 ,m42—1) 

(7) 
with the matrix elements 

A(m4.1) = % d  (m31+%)8  _(m41+%)3 

[(25 1 +%)2 - (m41+%)2] [(25 a +%)3- (a1,1 +%)3] 

[ (m42 + 1)3 —m413][ (“142+ 1P —(m41+ 1 ? ]  
(8a) 

Mm”) airman»? —(m42+%)5 
«[ (251+%7)3 '  ( m 4 a + § ) 2 ] [ ( 2 5 2 + %  )2 ‘ ( m 4 2 + % ) 2 ] ‘  

[”1412 —(m42+1)2][m413 ' (m42+2)8] 
(8b) 

The labels m21 , mg 1 , m41 and m a  specify a n  irreducible represen— 
tation of 30(2), 80(3) and 80(4) respectively, and 251 and 252  are 
complex numbers 21 —1jx + i y  They have t o  be chosen in such a 
way that the 30(4) -labelis m41 and m42 have the region defined by 
(A. 4) and that 8‘5 is hermitian. 

Equation (A. 4) requires that lm,‘1 I < m = mumin— < m42 . 
For this to be true we must have A(m41max)== MmQ m1n_ 1 ) =  0 ,  and 
we get a condition for one of the two 1constants 251,  a n d  we choose  
2 5 1 :  

I m a x _  

(zsl+%)3 = (mumax +93 = (“142mm +93 (9) 

From (9) it follows that 251 = m51 = mumax = mégmm, so  that we 
have Im41l <_ ”‘51 <_ “142 ' 

Now We hav—e to determine the restrictions for 252 which result 
from the hermiticity of B45 . The hermiticity means that the square 
roots in (8) are purely imaginary, i . e .  , the expressions under the 
square roots have to  be real and negative. The requirement of reality 
restr icts  252  t o  one of the following two possibi l i t ies :  
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252 +% = iYsg (10a) 

z52 = x53 (10b) 

The fact that the expressions under the square roots in (8) have to be 
negative gives the additional requirement: 

(Zea +%)2 <=(m41 +9592 (11) 

We discuss now the condition (11) for the two possibilities (10) 
separately. 

In the case (10a), inequality (11) is evidently satisfied for 
arbitrary real y” . However, to avoid having the same representation 
occur more than once, we make the further restriction 0 < y52 and call 
these representations D(m51 , iysz). The equality 3’53 = 0 will be in- 
cluded in a later case. The 80(4) content is Imul gm“ g mMa . For 
(101)) there are different possibilities . It x5; = m52 , integer or half 
integer together with the SO (ID-labels , it may happen that m41 is fur- 
ther restricted, i.e. , mélmmg m41 for m41 positive and m,11 émélmax 
for m.11 negative , because for 

(mag +%)2 = «ain it = (mumax +9? (12) 
one has 

In max ) Mm41 in - 1) = A(m41 = 0 (13) 

A solution of (12) is m“mm = _m41max = m52+ 2 and we have two 
cases m52+ 2 5 im“ g :11,51 5: m.12 for 111-41 positive or negative res— 
pectively, with m51 and m52+ 2 =&, 1, g, . . . . We call these repre- 
sentat'ions D‘Hms1 , m“) corresponding to the sign of mu . 

Let us now assume m51 7‘ 0 and integer. Then the smallest 
value at the right hand side of (11) is evidently %, so that x52 is 
restricted by 

0 g (x52 +2)a gt (14) 

Again, we replace (14) by the stronger inequality 

0§xBe + %§% (15) 

because We want every representation to occur only once. If the 

<—sign on the right side of (14) is valid, the SO(4)-content is Im,‘1 I g 
m51 g m42 . These representations are called D"°(m.51 , x52). In either 
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case the range for the discrete 800(4, 1) label is m 5 1 =  1,2,3. 
If m51= 0 the right hand side of (14) can be replaced b y 9  4 , and by 
the same arguments following equation (15) we get 

0 § x 5 3  +1; < -  . (16) 

Ifthe <—sign at the right side is valid, we have m = 11151 = 0 < m42 
With the class D’1 (xaa); the = -sign leads to the trivial case A(m41) = 
A M Q E  0 .  The results of this section are collected in Table 1 .  

III. The UIR's of .  O 4 '2 Which Contain 0111 The Discrete Series 
of SO0 (4,1) ' 

In this section we want to  determine those  UIR's  of the group 
SO (4,2) which contain only representations of the discrete series 

:1131 , mm) of 300(4,1).*1‘he generator A56 is connected with B56 
through Ase = —BBS , and (6) gives in this case B“ = —B56 . i .  e .  , 135,5 
i s  antihermitian. As a resul t  of the commutation relations, we get 
from the appendix the following expression for Bse 

B s e l m 5 1 :  m e g )  = B(m51) |m51+1,  m e s )  + B ( m 5 2 ) l m 5 1 ,  m52+1) 

+ 1  04111151 , m a g )  - B ( m 5 1 - l ) | m 5 1 — 1 ,  m52)—B(m52—l)lm51,m52-1) 

(17) 
with the  matrix e lements  

B(m51) = “/tm412_(m51+1)2][(m42+1)2_ (“151+Da] ' 

J [2518 -(m51+1)21[(zeg+1)2 —(m51+1)31[(amt—(manna 
(m.5 1 +1)"2 [4 (m5 1 +1)3 —1][(m5 2+2)3 -(m51+1)3][(m52+1)3—(m51+1)3] 

(18a) 

B(msa)  = “Emma " (“"1524'1)Q 1‘: (1,142.11? -(m52 +2}? 

$2618 -(m52+2)3 ][ (262mg -(m52+2)2 ][ (263 +2)2 —(m52+2)3] 

(m52+2)"a [4(m52+2)21 -1][(m51+l)2 - (m52+2)3][m512 -(m52+2)3] 

(18b) 
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m41(m42+1)zs 1(2'6 3+1) (Zea +2) 

11151 (m51+1)(m53+1)(m53+2) C,‘ = (19) 

The labels m51 and mI52 specify a representation of the discrete series 
(m51 , msz) of 300(4,1) and have the range given in Table 1. Re- 

sulting from the commutations alone, the labels 261 , 263 and z63 are 
complex numbers . They are strongly restricted by  the requirements 
that  the 800(4, 1) labels are limited t o  the right range , that BE,5 i s  
antihermitian, and that the matrix elements contain no divergences. 
From Table 1 it is clear that we must have m‘_:lxm52_ < m5 max < m 1min 5 
m51 . For this t o  be true we need B(m53m‘fix ) = B-(m51 min_ 1:) = 0 ,  and— 
we get a condition for one of the constants 2617 we choose 261: 

min)3 (2 0 )  
2613 = (mszmax + 2)2= (m51 

That means, 251: m,31 , l m 3 1 | =  ‘5': 1, 9,3- . . . , integer or half integer 
together with the so o(4, 1) labels, and we have mm, + 2 < Im51|_ < 
m 5 1 .  Evidently different representations belong t o  :I:m61 Hbecause In,51 
occurs also in  C4 . The antihermiticity of 356 requires that the matrix 
elements (18) and (19) are r ea l .  The reality of 04  restricts the re— 
maining labels 262 and zsa t o  one of the following two possibilities: 

Zag+1 =x63+1 and z63+2 =x65+2 (21a) 

Zag+1 = i y sg  and  263 +2 = iye:3 (21b) 

1 = 0 ,  263+2 =x63+2 or iy63 . (21c) 

The reality of the matrix elements (18) requires in  addition 

[(z62+1)3 —(m51+1)3][ (253+2)2 —(m51+1)3] ; 0 (22a) 

[ (zegn)2 —(m52+2)3'_1[(z¢33+2)"3 -(m52+2)3] ; 0 (22b) 

Now it is easy  to see that the matrix elements (18) and (19) contain 
divergencies if 262 and 263 are arbitrary, and mm is not suitably 
bounded from below. A simple consideration shows that these diver- 
gencies can  only be avoided in one of the three cases which are pos -  
sible according to (22), L e .  if 

(262+1)2 g (m52+2)g (23a) 

(263%? g (m5:3+2)3 (23b) 
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Eqs . (23) show that m52 has to be bounded from below, and this ex- 
cludes also (21b). To limit the range of m52 , we choose 262 = meg , 
integer or half integer together with m61 . We have B(m52 -1) = O for 
ms,a =m52, i.e., 

62+2<=m52+2§m61 §m51 (24) 

It remains to determine the range of mag and the conditions for 253 . 
Let us assume at first that m62+1 = 1 , 5, 2. . . . Then from (23b) and 
(24) it follows that x63 is restricted by 

0 ; (Xss‘l‘2)2 ; (magma (25) 

Again, we want to avoid having the same representation occur more 
than once and replace (25) therefore by the stronger inequality 

0 g x53 +2 g m62+2 (26) 

If the <-sign at the right side of (26) is valid, there are no further 
restrictions on m52 . However, if x63 +2 = m62+2 , it is easy to see 
from (18b) that mud-‘2 is fixed to the single value m52+2 = m52+2 . 

Now we assume m32+ 1 =% . In the matrix element (18a) the 
factor [(m63+1)3 -(m52+1)2] cancels with the same factor in the deno- 
minator, and similarly in the matrix element (18b). This means m52+2 
always has the range m52+2 = —m61 . . .+m61 with mel half—integer. 
From (8) we see that m52 occurs in the SO (4,1) representations only 
in the form (m52+ %)2 , and a simple consigeration shows that the 
SO o,(4 l) representations occurring in this case are actually labeled 
by m53+2= — % 3  , 1;,” . 11161 . Prom (23b) we get the condition 

O<=x53+ 2:35- (27) 

for x63 . If the <-sign is valid at the right side, there are no further 
restrictions for the other labels. If x33 +2= g , either m52+2 is fixed 
tothe single value% and [mall %=,— 2...” orggm52+2§ [mall 
with |m61|§%,%,... . 

The last possibility we have to consider is m62+1 = O. The 
whole discussion is similar to the case m62+1 .=% and we don't repeat 
it here completely. However, this case is different from all the other 
cases in that m61 is always positive, because C4 = 0. The second 
possibility given in (21c) has to be excluded, because in this case 
the matrix element (18b) is not always real. 
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IV. The UIR's of 80 (4‘2) Which Change The Discrete SO (4 1) 
Label Only 

Now we determine the UIR' s of $00 (4, 2)  which contain only 
those 800(4,1) representations which differ by the discrete label m51. 
This i s  evidently the fact in the following two cases: 

252 +% = constant '(28a) 

252 +%=:l :é  ‘ (2813) 

To determine the generator B56 we start again with the matrix elements 
(18) and (19) . However, the label z52  i s  not necessarily discrete 
now and i s  , therefore, replaced by 252 . Clearly 252  i s  restricted 
from the beginning to  one of the values in Table 1 .  In the case (28a) 
we need evidently 

B(z52) = B(z52- 1) = 0 (29) 

This requires (z6 3+1)3= (z52+1)3 and (263+2)3 = (253+2),a 'with z53+1, 
z52+2 7‘ 0 .  With these restrictions the matrix elements (18a) and (19) 
simplify t o  

301151) = fimi‘a-(msl +1)3][ (mg+l)a—(m51+1)3] 

2 8 1 3 '  (11151 + 1)? 

v (30) 
(m51+1)3[4(m51+1)3 -1] * 

I114]. ( m 4 2 + 1 ) Z e  1 

c4 = i . (31) m 
In the case (28b) the conditions for the matrix elements (18b) are 

B(z53) = 0 for zEa + 2 = 1 

B(z52-1) = 0 for 252 + 2 = 0 (32) 

To cancel the divergencies in (18) and (19) we must have z e e + l  = 0 ,  
and the conditions (32) give immediately (z63+2)9= 1 .  With these 
special values for Z” and ze33 the matrix element (19a) simplifies to 
(30), from (18b) we get 
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3(s = Jim?- (253+2‘munw1r - (2.59mi? - 
[ 2 6 1 3 ‘  (252+2)2][1 ' (252+2)3] 

V [4(252+2)3- 1][ (m51+1)2 - (252+2)2][m513' (z52+2)a] 

and C4 = 0 .  If the operator 1356 with the matrix elements (30), (33) 
and C4 = 0 is applied to a vector with z52+2  = +1 , the result is a new 
vector with 252+2 = 0 ,  multiplied by a factor which is given by the 
right hand side of (31), the value of B(zsg - l )  for 252+2 = 1 .  A vector 
with 253+2 = 0 is transformed into a new one with 252+2 = l ,  multi- 
plied again by the factor (31). Now, 800(4,1) representations which 
differ only in the label 252 with Z52+2 = 0 or 1 are identical, and a 
simple consideration shows that the case (28b) is included in (28a) if 
we admit the values 252+2 = 0 and 1 . 

Considerations similar to those in the last section restrict 261 
to  me 1 with the condition I m e l  I = 11151 , integer or half integer a t  the 
same time a s  m51 . 

From Table 1 we get the ranges for m s l  , 262 and zea  . For 
252+§ =iy52 we have [mall = 0,%,1..., for Z52 =x52, 05x52 + 
is < i the range of m61 is  [ m a l l  = 1,2,3. . . with the 80(4) content 
m,‘1 = 0 ,  m.51 g m42 . If 252 is fixed t o  a value that specifies one of 
the discrete series Dd:(m51 , m52) , the resulting representations are 
already contained in Section III.  The results  of this section and  
Section III are collected in Table 2 . 

V .  The UIR'S of 800‘4IZI  Which Contain 01112 A §ingle $00M 1 1! 
Representation 

In this last section we determine those UIR's of 800(4,2) 
which remain irreducible when restricted to 800(4,1) . This is the 
fact i f ,  in addition to (28), one of the following two conditions is 
fulfilled: 

m51 +% = constant (34a) 

m51 +% = i1; (34b) 

For the possibility (34a) we have , 

B(m51) = B(m51— 1) = 0 (35) 

If melg = (m51+l)3 and m51+1 7‘ 0 ,  the first matrix element is  zero, 
and the second simplifes to 
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B ( m 5 1  - 1 ) = ' J ( m 4 1 2  " m 5 1 3 ) [ ( m 4 § + 1 ) a -  11151? 1 

' m 5 1 3  (2m51-1) 

The only possibility that (36) is zero is mug = mm2 with 111513 7‘ 0 .  
The second case (3 4b) has to be treated in the same way as (28b). 
The discussion i s  exactly the same with the resul t  that this possibi- 
lity is included if we admit in  the first case the values m51+1 and 
m51 equal t o  zero,  and in addition z53+2 = 0 .  From Table 1 it is 
easy to see that the requirements we need can be fulfilled only if 
either the 80° (4‘, l )  representation belongs to one of the discrete 
series Di‘hnsl1 , m52)w1th m538+2 = [ m u ]  = may or if it belongs to 
the  series D !  (X138) With x 5 3 +  % = é ' .  

The operators B45 and B56 are in this last case considerably 
simpler than the general expressions (7) and (17), and we give them 
for that reason in  the simplest form: 

(36) 

B a l m “ ,  m”) =% (m31+4;j)3- (m42+'7:}3 I m H ,  m42+1) 

‘%4,4~(m31+i )2‘  (m42+§)a Ink-1:  “142‘” (37) 

B s e l m u :  "142) =i(m41+1) |m41,  “142) (38) 

The results  of this section are given in Table 2 .  
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Appendix 
At first we give in this appendix the results of Gelfand and 

Zetlin4) for the rotation group 30(6) .  The notation has been changed 
slightly in  agreement with R e f .  7 .  The infinitesimal generators 
A1], (1 g i < j $__ 6 )  obey the commutation relations 

[Aij' Akl] = iAn  + 511 Ajk ' 51k Ajl ' 5j1 A11: 9"“ 
and they are  antihermitian 

A . = - A+ (A.2) 1] 11 
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An irreducible representation of 30(6) is determined by three numbers, 
ma 1 , me a and ms . We denote a mortar in a representation space by 
I m1 ) , where m1 is an abbreviation for a complete set of labels, 
which determine an irreducible representation and specify each vector 
in the representation space uniquely. The complete scheme is 

All labels m are integer or half—integer at the same time and obey 
the conditions 

|m611§m51 é m e g g m s g é m e a  

|m41| §m51 Emma émse 
(A-4) 

[“141] §m~91§m42 

lme1|§m31 

We denote the operators in an irreducible representation, which cor- 

respond to the infinitesimal generators A , by the same symbols. 

They are given by H 

A12|m21>=1m21lm21) (A.5) 

Aealm31)=A(m21)|m21+1) —A(m21-1)|m21-1> we) 

Ae4ln131> =B(m31)|ma1+1) +iCzlmal) — B(m31-1)lm,91—1> (A.7) 

Aeslmu: mes) =A(m41)lm41+1, "143) +A(m42)lm41, "142+” (A ) 
.8 

" A(m41-1)| m41-l I “14.2) ' A(m42—1)Im41 I m4g'1) 
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A56 |m51l U152) =B(m51)|m51+1, m52> + B(m52)|m51, m52+1)  + 

+iC4Im51, mag) ‘ B(m51-1)lm51-1, m52> 

'B(m52_1)|m511 11152—1) (A09) 

The labels in the state vectors which do not change have always 
been omitted. The matix elements are 

A(me1) =%‘ :-(m31+%__)2— (“121+i‘P (A.10) 

A(m41) =%V'I-'(m31+%)2 " (m41+§)3' 

f<m51+%)3 " (m41+%)2][ (m52+%)2 " (m41+i )2]  

[ (m42 +1)2 - “1412:“: (m42+1)2 - (H141 +1)2] 

A(m42) = ‘3‘ 3/} (ma 1+ ‘3‘)2 " (U142 +§i 

, E(m51+é)2- (mg +%fi1£<m52+%)2—(m42+4gr'1 
[(m412‘ (m42+1)2][m412— (m42+2)3] 

(A.11) 

(A.12) 

‘Fm415- (m31+1)2][(m42+1)2— (m31+1)2] 
+1) . 

(m31+l)2 [4(m31+l)2 — 1] 
(A.13) 

B(m51) = flm 4 1 2 -  (m51+1)2][(m4é+1)3- (mél+l)2] 

«[11:33 —(m51+l)2 ] [(m6 2+1)2—(m5 1+1)2 ][(m53+2)3 —(m51+l)2] 

‘ (m51+1)3[4(m51+l)3—l][(m52+2)2—(m51+l)2][(m52+l)2-(m51+l)2] 
(A.14) 
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Bonsz) =m412— (m52+2)21£(m42+1)2—(m5.+2')'3-J 

[ma 12_(m5 2+2? ][(m5 2+1)B- (m5 2+2 )2 ] [ (m6 3+2F”(m5 24-2)a 

(m5 2+2)2[4 (m5 2+2)2_1][(m5 1+1)2_(m5 2+2)2 ] [ m 5 1 2 _ ( m 5  2+2)3-] 

(A. 15) 
mg1 m4 1(m42 +1) 

cg =-——— (A. 16) 
m31(m:31 +1) 

m41(m42 +1) m61(me 2+1) (mes +2) 
C4 = (A.17) 

m5 1(m5 1 +1) (In5 2+1) (m5 2+2) 

Let us now describe by an example how one derives these results for 

SO(n+l) if they are already known for SO(n) . We choose n = 4, the 
general case is a straightforward generalization. Evidently the prob— 
lem reduces immediately to determining an antihermitian operator A45 
which obeys the commutation relations (A. 1) with l E i,j ,k,l g 5. 
Now it can easily be shown that the commutation relations for—80(5) 
are equivalent to those of SO(4) , which are given by (A. l) with 1 g 
i,j,k,l_<= 4, and the following ones: ”' 

[Ai,i+1’ A45] = O for 1<= i: 3 (A.18) 

[A34IEA451A34]]=A45 (A.19) 

EMS. [AWAMJJ = —A34 (A.20) 

From these commutation relations one gets the expression (A.8) for 
the operator A45 , and a set of recurrence relations for the matrix 
elements. A solution of these recurrence relations is given by (A. 11) 
and (A. 12), with the labels m51 and mag replaced by complex numbers 
251 and z52 . The requirement of antihermiticity (A.2) restricts them 
to m.51 and m52 with the range (A.4). 



SOME REPRESENTATIONS OF SOo (4,2) 

Table 1 

Representations Conditions for 11:51 6 252 50(4) -Content 

D("‘51, i"52) . 1 mm 0, 2, 1 

3 . 
‘52 * 2 ' 1)'52' ° <y52 

l"'41' 5 "'51 5 "'42 
me 

o D (“51' X52) m 5 1 '  1. Z, 3 ... 

. 1.5 l 
‘52 *52' ° 3 X522 ‘ z 

In1 (2:52) 

15m52+2§m51 or 

Fmsz'zgmn f" '“51' 
m52 i n t e g e r  or half- 

integer r e s p e c t i v e l y  

m51 - o 
_ . 3 § 

152 “52’ ° Sx52*2 ‘ 2 
'0 D (m51m52) m51 . 1, 2, 3 

252““52' "‘52 * 2 ' 1 

D*(m n 1 ) r n - : - l 1 §  m + 2 m § m § m  51' 52 51 2' ' 2 52 5 41 51 42 
I 1 3 

‘52""52' '“sz‘z'i' 1' 2 

D-("'51-'“sz) The same as for 

n+0"51' "'52) I 
t 
o 

o
 

o
-

—
I

 

"he 

Table 1. Classification of the UIR's of 800(4, 1). In the 
diagrams the coordinates of each dot, m“ and m” , 
specify a 80(4) representation. The operator B45 is 
given by (7) and (8) . 
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Table  2 

- Conditions for the SO 4 C Representat lons 500(4’2) and 50 ( 4 , 1 )  ( ) ontent  
Labels ° 

+ a . S D (m51.m52) mgl - (mspl)2 ’“52‘2 “‘41 “‘51 "‘42 
(zaznfl - (252+1)2 m42 
(‘53’232 ' (152”): 

I52 ' "'52 
""52”""51 

“52‘2"“51 "‘41 
< 

D-(m51,m52) The same as for the m52+2=-m41-m51-m42 
case D+(m51,m52) 

2 _ z 
52) "‘61 ("'51”) 

(“62”)2 = “52”)2 
”63*”2 ' (‘sz‘n2 

D l ( x  

"'51 
‘sz'xsz' x52 

Table 2 . The UIR's of 800(4, 1) which can be extended to a 
UIR of 800(4 ,2) . Each dot in the diagrams determines 
a 80(4) representation. The operators B45 and B58 
are given by (37) and (38) respectively.  
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l10  3 

C o n d i t i o n s  f o r  the  5 0 0 ( 4 , 2 )  Labe l s  500(4 .1 )  Content 
‘oi'mei- 262 “"d '63 

262'"62 ; m 6 2 + 1 - 1 . % , 2 . . . . ; m 6 2 ¢ z : l m 6 1 I  

‘63'*63 “'3 °:*63'2‘”sz‘2 m62*25msz’251moil:m51 
b') *63*2'”62’z “62‘2'M52*2='“61|:“51 

m61 i s  a lways  p o s i t i v e  f o r  x e s o z - o  

. - - 1 - 1 5 ‘62 “oz . "62" I ' z Im61| 

. 5 1 1‘ 5 5 ‘63 ‘63 " )  ° xes’z‘z 7"‘5.2‘Z 'mail ”51 
5') *os°z'% I‘msz*2:l”ell:“51 °' g5”sz*z=m61:”51 

m61 i s  always p o s i t i v e  f o r  x6302-o  

< 

‘ez'msz - “62‘1'0‘ ""ol 
z - n  5 E 5 5 6 3  6 3  I . )  0 x°3+2<1 1 m52¢2 In61 m51 

b . )  x 02-1 _ g 5 x 6 3  1 m52+2 m 6 1  m 5 1  

162-163-152 
1 1 . 3') '“61|'°-T'1"-' z52*? ' ‘Ysz‘ °‘:sz"m61‘: m51 
1 < 

b') '“61|'°-f'1"‘* zsz"sz ‘ °'xsz*2‘% 
c . )  m 6 1  - 1 . 2 . 3 , . . .  I s z - x s z ;  m 5 2 + 2 - 1 ,  m 6 1 = m 5 1 a n d  ”41-0 

Table 3 . The representations of-SOO(4 , 2 )  which are determined 
in Sections III and IV. The operator B e e  i s  given b y  
(17), the matrix elements by (18), (19) or (30) and (31). 
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UNITARY IRREDUCIBLE REPRESENTATIONS OF SU(2,2), 
REDUCTION WITH RESPECT TO 
AN Iso—POINCARE SUBGROUPT 

Tsu Yao 
Department of Physics 

University of Pittsburgh 
Pittsburgh, Pennsylvania 15213  

The noncompact group SU(2,2) , which is the covering group of 
the cOnformal group, or 001.2), has attracted some attention in recent 
years among particle and relativity physicists . 1) In this talk we shall 
restrict ourselVes to the study of the unitary irreducible representa- 
tions of SU(2',2) , and their reduction with respect to a subgroup 3(3 ,1) 
which. is isomorphic to the Poincaré group.” 

I. Commutation elaticns and Sub you s of SU 2 2 
The generators of O(4,2), Lab! obey the following commutation 

relations , 

L (I. 1) [Lab' Led] = fl gacLbd ' gadLbc ' gbc ad + gdac} ' 
a,b,c,d = 0 , 1 , 2 , 3 , 5 , 6  

with the metric gab chosen to be 

g11 = g22 = 9’33 = g55 = 'goo = '956 = 1' 

Let us concentrate on the 1,2,5,6 space (iso-Minkowski 
space) and define 

tPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1970 .  
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GB GB 
(Poincaré transformations) 

= + Po, L06. Lam 

Ra. E 1‘00,- L30. (special conformal transformations) 

L03 (scaIe transformation) 

“ 1 6 : 1 1 2 1 5 1 6  (1'2) 

Equation (I. 1) now becomes 

Esau. PB] = 0 
MW, Pa] =1{gWPV - gwpu} 

+ 9 1 1 }  gvmsu‘s vB uo, LEW, sons] = ”gua'cvfl _ quagm- 

LEW, Ra] = l igmfiv - swap} 

[8“. 88] = 0 

[Pow W'B:I = 41mm + gaBLos} 

[Lo3' Sons] = 0 
[ L 0 3 1  P a ]  = ' 4 ‘ ) “  

[L03, mm] = mm (1.3) 
/ 

Next, we inu‘oduce several noncompact subgroups of SU(2 , 2 )  . 
We begin with 

(1) W ”  
The generators of 13(2) are Pd: , and £5 I With 
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P i E P l i i P z  

£5  E £1 a o 

The commutation relations are 

Em. P_] = 0 

[ £ 5 1  P i 1 = fl 3 i  

and the Casimir operator of E(Z) is P+P_. We now introduce the basis 
vector Is,m) , and 

P+P_Ie,m) = e z l e , m )  

£5I6,m) = m l e , m )  

P i l e , m ) = € l e , m i  1) (1.4) 

with e3> 0,m = meg-p51... 
(2) 13(3) ngoup q. _. 
The generators of 3(3) are P, and s ,  with 

5-3 = (P1 I Pg I P 5 )  

3:. = (£12 I £ 2 5 :  £ 5 1 )  

The Casimir operators are 63.2 and-335. Let the basis vector be 
| § , e ;  t , m ) ,  and Si = $35 :h is“ . We now have 

53l§.e: hm) = §3l§.e; t.m) 

3 ' 5 l § , e :  t .m) = t § l § . e ; t . m )  

P s ‘ g l e ;  t p m )  = ( § 2 _  € 3 ) % | § I e ;  t lm)  

Silas; t.m) ={¥(§3- 62¢ i i éefia -  63ft +tE-(md=1)€l 
1 

x (52— eaf} lg,e; t,m:l: 1) 
where the unitary condition has been implemented, and §9> 0 ,  t = 0 ,  
:h-i‘, i 1 , . . .  . 
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(3) EI3 I1 !  subgroup 
The generators of M3, 1) amp , and 311B . u.q.=B.= 1, 2P, 5 

The Casimir operators are P P“ and WW“, where W 
Let the basis vector b e I  I n  E1 .6 .  s t  “mg For “time— ke" ulfutaryv irre— 
ducib‘le representations we have I n3> O, s = 0,§,1,3/2, . . . , 
-s S t s s . 

P U P H I T I I E I G ;  s l t l m >  = m a l n l g l e ;  s , t , m )  

W u w u l n l g l e ;  S l t l m )  = n 2 5 ( 5 + 1 ) I n : § : € ;  s l t l m )  

P e l m fi l m  s , t , m )  =(§2+"12)%IT1:§ :€7  S l t l m >  

sssln.§.e; S,t,m) = _1{(g2+na)%(§e mg)? % 

we -e8)9(:9+n3)*3 
+ £ ( g 3  -€a)-%(§2'”12)%} I n l g l e ;  S l t l m )  

41%} { (s—t) (s+t+1)}éln.§.e: slt+1 II“) 

—%1% {(s+t)(s-t+1)}%l'n fi l e ;  s,t—1,m) 

his” 516:5 t m) =-i(§ +n #25? 6—8 +§e(§3+n3)'1 

2|: (111331);l t — 1 ( g a "  € 3 ) 2 I n : § : € 7  s , t , m : l : l )  

t i i  44% I: i (53 -e2 )g}{ (s-t)(S+t+1)}% 

x I n ,  E ,  e ;  s ,  t+1 m,4_-1) =F§1ET12,—{§=F (g3—32)%} 

x {(s+t) (s- t+1)}éln ,§ ,e ;  s,t-1,md:1) (1.6) 

where we have normalized our s ta tes  to  be 

(T1, 15:, 1 5 , ;  S ’  , t '  1 m ,  I n l g l e ;  S l t l m )  = 501,3 ‘1']2) 5(5’2 “ € 2 )  

l 2 _ 2  x 6(e 9 ”5,55,: tam, m 
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So far our approach has been simple and standard. All six 
parameters have simple "physical" interpretation. 7] is the "mass, " 
g is the magnitude of "momentum, " e is the projection of "momentum" 
in the 1—2 plane, 5 is the "spin, " t is the "helicity, " and m is the 
component of "angular momentum" along the 5-axis. We remind the 
reader that all quantities are referred to in the 1,2,5,6 space. 

11. Reduction of. Unitary Irreduclble Representa_tions of SU(2.Z) with 
Respect to "Time-Like" Representations of E(3,1) 

The effect of a finite scale transformation is simple. We have 

-C eigL03|n,§,s; s,t,m) =e—8glne-g, 5e , ee_g; s,t,m) 

and 

L03ln.§,e,: s,t,m)=1{na— +§—§+ s — +  slln, g,e; s ,t ,m) (11.1) 

Next, and finally, we come to the lengthy determination of flu. 

)%[ Ba: +62 59 11 a a . = 2 _  2 
R ' S l n l g l e l  s l t l m )  {(g 6 + a g g  362 + 2 5 6 7 ]  a g  

+1110: waft—(ga— again — +— ;14(g2-e2)*+ee(gz—e2)%— a 

+ [60:2 -ea)_&- £053 -€3)‘] g; + m2 67%?“ —ez)% — 2m 2% 

+ t9 (g2 _83)é [—+ z g—lg +—]— s(s+1) 313(53 49):; 

-2t “ages-czfisamzfi B(s) -%(§3—ea)%(§3+n9)‘1 +%(g2-e9)‘1’ 
+n—12(§2 «:2 )%O.(s)} In,§,€; s,t,m) 

+ { (s-t)(s+t+1)}* g {- grams )5‘ E% +nl(t+1) “mes marl] 
+nl5(s)}ln:§:€;s.t+1lm) 

+1(mus—tun?{gramis 1% - file-1) +%n(§3+’n3)‘1] 
1 

+ EB(S)}|711§1€7 S ’t—1 ,m) 

(equation continued) 
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+ {(s+t+1)(s+t+z)}* 3% y(s)l'n.§,e7 s+1,t+1,m) 

+ { (s+t+1)(s-t+1)}% 2 51?“? —e3)%(§3+n3)% Y(s)ln.§,e; s+1.t.m) 

— {(s-t+1)(s—t+2)}%€ ? y(s)ln,  § , e ;  s+1,t—1,m) 

- {(s—t- 1)(s-t)}'b;r1 —— Y(s—1)[-n, E_,e; s— —1, t+1,m) 

+ {(s+t)(s-t)}% 2 ;Q—(:3-es)*(aa+n9)% y(s-1>|n.g.e; s-1.t.m> 
+ {(s+t-1)(s+t)}% "gin y(s—1)|n,E,e; s-1,t—1,m) (11.2) 
where Ms), 8(3), and y(s) are functions of s only, and depend on the 
eigenvalues of the Casimir operators Cg , Ca , and C4 of SU(2  ,2). 

The expressions for “ + 4  EL, and Re can be similarly written 
down.  

R’ + I l n  g l e é s  S l t l m )  

= _ _  3—3 i 31 13.. £ 1 1  1111 
{SE n2+BE2+Beg+ § 3 n 3 § + z e a e 3 § + z e a e a n j  

+fl[2(m+1)-:—: — 21:; (gB-eakB i 

+§[2(m+1)+3—§: - 2t  E052“ ‘68);13855 — + (2m+7)—- 

1 1 1 1 +m32+6mz+t3€[n—2+2E—3-'e—3']- s ( s + l ) — - t — ( § 2 -  e3)-% 

— 4tg—:(z3-e9)% - afiwwfi B(s) +—2- % gas-«212w 
-%e(§3m3)'1 —%e(§9-ea)‘1 +11% a(s)}ln.§.e; s.t.m+1) 
+ {(s-t)(s+t+m* gees -ea)*1{%(g2+n2)%t Bin +;]1- (H1) 
+%n(€a+n2)'1] -;11-B(S)}|n.§.e: S.t+1.m+1) 

_ e 1  _ _ it. 1 i A _ 1  _ +{(s+t>(s t+1>1 gm: (1:3 e2) Hgmzmz) [an n(t 1) 
+%n(€2+n2)‘1] + %B(S)}In,€.e; s,t-1.m+1) 

- { (s+t+1)(s+t+z)}% F1] is + (ea -e2 )5} Y(S)"m§.e; s+1,t+1.m+1> 
(equation continued) 
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+ {(s-I-t+1)(s-t+1)}§ 2 Ens-mzé‘ y(s)|n,E,e; s+1,t,m+1) 

- {(s-t+1)(s-t+2)}é —1n{§ - (53 13¢} Y(S)ln.§,e; 3+1.t-1.m+1) 

+ {(s-t)(s—t—1)}é1-{§+(§3 43%} Y(s-1)ln.§.e: s-1. t+1. m+1) 

+ {(s-txsfin’3 z W (gam3)i’v(s—1)|n,g,e; s-1,t,m+1> 
+ {(s+t)(s+t-1)}% éfi-(ga-eQfi'} v(s-1)|n.€,e; s—1, t-1, m+1) (11.3) 

R. _ In ,  E, e ; s  ,t,m) 

a3: 11 E A ;  1111 
6113 +ag:a+% +2§anaa§+zeaeag+2eaean1 

+n[-2(m—1)-7+ Zt-(E3 -e:3)*]a 3—; 

1 + 5 [ -  2-(-m 1) +3— g2+ 2t—(g2-e3)%] 3i - (2mm?e 
_% 

+m’3E—6m:+t3e[— 19+2§—3_e_13]' s ( s + 1 ) —  a + t § ( g 5 - e z )  g 
+4tE€-(§3-ea)* - 2t—a(§9m3)* B(s) +% 1 +% 53(§2_€2)-1 Z 

-%e(§2+n3)'1 -%e(§3 -63)'1 +n—za(5)}|n,§.e; s.t.m-1> 

- {(s—t)(s+t+1)}i a a-(ga -e2)i’1{§(gz ”13),! [% + fi<t+n 
+%n(§3+n2)'1]-%B(S)} l'flv’ile:s,t+1,m'1) 

- {(s+t)(s-t+1)}* l {a + (ES-ez)%}{-1-(§2+n3)%[l - la-n 5 5 an n 

+§n(§9+n3)'1] +%B(S)}l'n,§,e; s,t-1.m-1> 

+ {(s+t+1)(s+t+2)}a’ 311} {g _(§2_€3,§1} Y(S)ln.§.e: s+1.t+1.m—1> 
(equation continued) 
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+ { (S+t+1)(s-t+1)}* 2 figs-H1513 Y(S) In.§.e; 5+1.t.m-1) 

+ {(s-t+1)(s-t+2)}% —1{§+(§3-e3)%} Y(S)|n:§.e: S+1,t-l.m-1) 

- {(s-t)(s-t-1)}*—g{§- (Ea-eQfl Y(s- -1)|'n 5. e; s- -1, t+1 m,-1) 

+{(s-t)(s+tn* z — Ema-mt Y(s- ~1)|n g e; s- -1 t ,m-1> 
- {(S+1)(S+t-1)}:nl 1:? {*§+(l§a -e3)§} Y(s-1)|n.§.e: s-1.t-1.m-1) (11.4) 

as In:§:€:S s l t l  m) 

={- (#14119)é [an +33 +2 1 .6. 
3—3::+ ace 1; as 

g 
E B 

- [mg-”mar; +5 13(:3+na)*15? “Emmamsfi- n3 (gamerin fi 
—Ee<:9+n2>‘5 +§<ga+na¢15§ 

is + m3 2%. (:2 m 2 )  _ t fi < g 3  m2 )% (g2 _€2 )% 

+t‘3(§‘3-I-rfi’)é [Tl—12w 2 -1— +%] 53 e 

+ s(s+1) Elsfiahfli - ta- Ms) +% (gamafifia —e2)‘1-,%(§=+n3)‘z" 

+1713- (Ea-I'nafb 01(5)} l'n.§.e; s,t,m) 

+ {(s-t)(s+t+1n* $511-$132 «#1316 + (t+1) é - aces-earl] 
+ m Ii} [1115.67 S l t + 1  1m) 

+1<s+t)(s-t+1)}*§{§ (:2 wit-fe- — (t-l) el — 1e (:9 marl] 
+ mi} I m g l e :  Sit-11m) 

(equation continued) 
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+ 2 {(sfi+1)(s-t+1)}% EE- Y(S)ln.§.e; s+1,t,m) 

+ 2 {(s-t)(S+t)}% RE- v(s-1)|n.§.e: s—1,t.m) (11.5) 

Equation (11.5) for R6 is relatively simpler since it is the sum 
of five states. Equations (II.2)-(II.4) all contain nine states where 
As=0,=l:1, At=0,:l:1. 

III. The Casimir Operagus of SU(2.2.) 
(1) The second rank Casimir operator is 

= ab = v _ (1 Ce gLabL gswi‘ + 41L Rump (111.1) _ a 
03 L03 

and if we substitute Eqs. (I.4)-(I.6), (II.1)-(II.5) into 

C Q I C S  I c3 1 04.; n l g l e ;  Sltlm) = Gales I 0.3 1 04? T] E G; S , t , m )  (111.2) 

where 02 , c3 , and c4 are the eigenvalues of the three Casimir opera- 
tors of SU(2,2), we obtain 

(1(5) = c2 — Zs(s+1) + 4 (III.3) 

(2) The third rank Casimir operator is 

_1 abodef 
Ca = - 48 e LacdLef (111.4) 

and 

c3 
B(s) = - $71) (111.5) 

(3) The fourth rank Casimir operator is 

04 =%LabLbcda — so: - 202 (III.6) 

and 

(Zs+1)(Zs+3)(s+1)a Y3 (s) = I: (5+1)2 - 15.3][(s+1)’3 - Bz][  (s+l)3 — 03] 
(111.7) 

where 
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c2 A2+ 33+ C2 — 5 

c5 = ABC 

c4 =%[A3+B3 +CB—112— [A333 +B2 CB+C3A21 (III.8) 

It has been shownz) that for degenerate UIR's , C = B+1 . In general, 
A is discrete, 0, % ,1,3/2 , . . .; B and C may be discrete or continu— 
ous, or even complex. The determination of A, B ,  and C has been 
studied in a separate publication. 

IV. . “Space—like" and "Light—like" Representations of E(3 , 1) 
(1) "Space-like" Unitary In-educible Representations inf M3 ,1)-‘- 
To change from "time-like" to "space—like" UIR's of E(3 ,1) we 

simply replace n by 103, s(s+1) by r(r—1) in Sections II and III. 

P u p u l w l § l € ; r l t l m >  = w 2 | w 1 5 1 6 7 r 1 t l m )  

WuWulw,§.e; r,t,m> = - w2r(r-1)lm,g,e; r,t,m) (IV.1) 

The little group involved here is 0(2 , 1)~ SU(1, 1) , and ’aCcordin‘g to 
Bargmann5 has the mum/wing four classes of unitary irreducible 
representations: 

a) -r(r—1)> O, t = :l: integer 
b) —r(r—l) > i , t = d: half—integer 

3% i; 1%: 1: $323: E;i;f*.i:i;:..{eieereee 
continuous series 

(2) "I. ht~11ke" U-~tar Irre ucible e .esentat as 
a) UIR's with discrete "spin" 

Pufi‘lgm; t,m) = 0 

Wuwulm; t,m) = 0 (1m) 

where the basis vector IE ,6; t,m) depends on four parameters only. 

The representation of the generators is as follows: 

Pil 5.6; t,m) = 9] §,e; t,mil) 

P5l§167 tlm) = (§2_€Q)%IEI€; t1m> 
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P6 I 5 1 3 ;  t l m >  = g l g l e :  t lm)  

£s|§.e:t.m) =ml§.e:t,m) 

silfile; mm) = {His -ea)% fi iéefia -ea)+ 

+ t §  - (mil) %(§3-e3)%}lg.e; t.m=t1) 

Sselfile: tlm) = -1{(§9-ea)i% +i%(§3-ea)% 

+% 5(59-63)~&}l§,e;t.m> 
. _ 3— _3- _ fle'g'e' t.m> — -1{e 65 + 536 +%gi(md=1)§ 

4‘ t l  (Ea-e9)%}|§.e; t.mi=1) 

L 0 3 | § , e ; t ,  m) = 1 { E —  + e ;  + 2 } I § . e ; t ,  m) 

2 

351%.6; tlm) = {(59 -ea ”La—é '13:: __ae_2] +['%(§3-63)%+§(§3-63)-%]g% 

+[e(ga-e9)‘* —l(r:a- e3)*1— +(ga-ea)*[(ta+m9)i3--EE151-zmti 
+ (:9 wart 5(t)} I § . e ;  t.m) 

S 3 _ R i lg'e’t '  m): {e[a_§—a:+ae:+2e ac at; 
_ S _ _ i _a_ +[gi2(m:b1) e 4: 2 t :  (g3 68) k g  

5: (2mi5) Ba? - t3 i E teltgga -e:3)‘g +%(§a -e3)%] +£(m3i4m+%) 

+%§E(§9-e3)‘1 4:? - sea-earl 5(t)}‘§,e;t.md=1) 

. = _ 3—2 i i i  i 5 .5. 5. Re|§,e,t,m) {51:2}? +363 +2g ag —e]— 4 —F+ ea] +1263 

- 2mt gga—efl m2 5,: + gags -e9)'1 -§ 
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where the function 6( t )  is related t o  the eigenvalues of the Casimir 
operators . 

ca = 3 t 9 - 5 - 2 5 ( t )  

ca =t[6(t) - t3  —%;J 

c4,=-:1-{3t4 —t3[1+46(t)] + 1 2 [ a ( t ) - 1 ] }  (Iv.4) 

It can be shown that 6,(t) =—5-. 
b) UIR's with contiguous "spin" 
It can be shown that in the reduction of SU(2 , 2 )  with respect 

to E(3 ,1), the continuous "spin" representations of E(3 , 1) do 112; 
contribute . 

c) The null representation of 31341): P = 0 .  
Similarly, the null representations of ER) , 1) with Pu = 0 a lso  

do fl contribute . 

V. _§rief Discussion of the Maximal Commct Subgroup SU§2) X SU§2) x 
Ugl) 

The maximal compactflsubgroup of 81)}(2,2) is SU(2) x SU(2) x 
U(1), which is generated by I ,  K,  and R0.2 The basis vector is 
[ j ,p , ;k ,p. ;x)  , and (for simplicity for the moment we drop the extra label 
a which removes degeneracy),  

‘ 10+1) 

U. 

l i lu;  k.\); x) = k(k+1) 1141; km; x) (V.1) 

The other eight generators of SU(2,2) are Pi’ Qi, S :I:’ Ti’ with 

PAM“ k,v: n = [Gm+1)(k-v+1)]% a10.k,x)li+%.u+b; 
kit. v-é‘: H1) 

(equation continued) 
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+ [Um+1)(k+v)]é ago,k,x)|1++,. us; k-t. v-é; x+1> 
+[o—u)(k-v+1n'~’ aa (Lkmli-Q, us; ks. vat; x+1> 
+ [(j-u)(k+v)]% a4(1.k.x)IJ-t,u+é;k-'b.v-é;x+1) 
P_Ij.u; mm = -[(J-u+1)(k+v+1)]é b1 (LkAHJii. u—t: ks, win-1) 
+ [o—u+1)(k—v)1‘~' bammme. u—é: k—t. Win-1) 
+w+ma<w+1nifiaa mum-a. u—a»; ks, vs; x—l) 

— [cum-m” b40.k.x)|J-é. u-éi k-lr. win-1) 
etc. The functions aifl,k,x) and bio ,kA) have been given in pre- 
vious publications.” 

Next, we discuss the p—x diagrams, p = j+k, which are con- 
venient to the study of the various types of representations. 

(a) Finite—dimensional (nonunitary) representations 

allowed states of SU(2) x SU(2) x U(1) 
are inside or on the boundary 
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(b) 

‘ I  

allowed states are inside or on the boundary 

(C) 
A. 

x=p+1 

allowed states on the boundary only 

(d) 1\ p 

\ q  
\allowed states are inside or on the boundary ) 

(e) x is unbounded. 
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VI. Matrix Elements (Overlap Functions) of SU(Z.2) 

We are interested in the calculation of the matrix elements 
(1 u; k,\); “mine; 5 ,t,m) which in general turn out to be confluent 
hypergeometric functions . Here we shall present only a simple exam- 
ple to illustrate the general technique involv d. 

We study the "ground state" of the E series , Ij = p0, u = p0,- 
k = 0, v = 0; x = po+l) which satisfies the following relation, 

£+li =p0. u=p0: k = 0 .  v=07x =po+1) 

=~1(I+-K+)Ip0. p0; 0,0:p0+1> =0 (v1.1) 

Since we are dealing with unitary representations , we have 

(p0. 130:0. 0: p0+1l£_I§.e: t.m) = 0 (VI.2) 

where "light-like" representations of the iso-Poincaré subgroup have 
been used. (This choice is dictated by the eigenvalues of the Casimir 
operators .) If we define 

f(§.e; t) E (p0. po; 0.0; po+1l§.e; t. m=po) (v1.3) 

eq. (VI.2) with the use of Eq. (IV. 1) becomes 

Has-H" 58—6 saga-62W" HE“ poighsfl f(§.e; t) = o (V1.4) 
with the solution 

po-t A i t f(§.e; t) = c(§.t) e (53 —e3) 4 [g + (ta—earl (VI.5) 

If, in addition, we also use the expression for R5 in Eq. (IV. 1) we 
can determine the function C(g ,t) in Eq. (VI.5) and obtain 

_ .i p 
f(§.e; t=p0) = c e g 5%(§2_ea) ‘t [g + (gs-wi‘] 0 (VLG) 

Other more general matrix elements can be obtained through the re- 
peated use of Eq. (v.2). 

We shall not present all the results we have obtained for the 
various types of unitary irreducible representations of SU(Z,2) . The 
interested readers are referred to a forthcoming article for all the 
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details/1) which are sufficiently complicated to prevent us from giving 
any meaningful summary here . They all involve Whittaker functions 
and their derivatives . 

The rest of this talk presents a summary of our results on the 
reduction of SU(2,2) with respect to the iso-Poincaré subgroup E(3 , 1), 
together with the allowed eigenvalues of the three Casimir operators. 
Summary of results: 

a) UIR's reducible with respect to "light-like" representations. 

mews, ,po = o,§,1,3/2,... 
C2 = 303% — 1) 

Ca =¥ 100(1)?) - 1) 

C4 = " nb ' 1P 

b) ULR'S reducible with respect to "time—like" representations 
ofE3 1 

b1,b2) Biseries,jm,km=0,§,1,3/Z,...,xm=j +km+s , 
sm = —1,0,l,2,... (if either jm or kmequals 0, sm can aTso be 3) 

C2 = 21m(jm+1) + 2km(km+1) + xm(xm+4) 

C3 -(xm+2)(jm-km)(jm+km+1) 

C. Ham”)? - 4Jm0m+1m(xm+2)2—4km(km+1)] - 

- (xm+4)3 
and the s = 0% ,1, . . . representations of SU(2) are used here. 

b3) The most degenerate principal continuous series: 0 > 0 

Ca = -4 — p’3 

03 = 0 

04 =% P4 + 03 
and the s = 0 trivial representation of SU(2) is used. 
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b4) The most degenerate complementary continuous series: 
0 s o < 1 

—4 +03 Cs 

0 3 : 0  

and again the s = 0 representation of SU(2) is used. 
c) UIR' s reducible with respect to the "space-like" repre- 

sentations of 3:3,11 
c1) Bdncipal series: p0 = 0431,... , p > 0 

9 = B _ 2 _ _  

Ca =i 100(93 +%) 

Co. =% 9'5 +1330? -%) 

where the principal series of SU(1  ,1) is used here. (See diagram b.) 
c2) Complementary series: p0 = 0,1,2, . . . , - 1 <  o < 0 

c3 = p?) + 2(o-1)(o+2) 

Cs = i p0 o(o+1) 

04 =21- p‘f, - p%(03+o +1) 
where the complementary series of SU(1 ,1) is used. 

03) For p0 = half-integer, the p -' 0 limit of Cl) splits up into 
two inequivalent unitary irreducible representations, with 

_ 9. 
02 ' p?) 2 

04 = ip‘é - gp‘a 
and p — X 2 O, p +)\ 2 pa +%. Here, the D+ series of SU(1,1) is used. 

c4) This is the other half of the split representation, with 
p + 1  2 0, p -x 2 p0 +%. Here, the D' series of SU(1,1) is used. 

c5) For p0 = integer = 1,2,3, . . . , the o -' 0 limit of c2) splits 
up into three inequivalent unitary irreducible representations, with 
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c. = p?) — 4 

Ca = 0 

0. =tp45 - p?) 
and p -). 2 0 ,  p + x  2 p0 + 1 .  Here,  the D+ series of SU(1,1) is 
used. 

CG) This is the second part of the split representation, with 
p +). 2 0 ,  p -). 2 p .+ 1 .  Here, the D‘ series of SU(1,1) i s  used. 

07)  This i s  the third part of the sp l i t  representation,  with 
p — x 2 p 0 ,  p + 1. 2 p 0 .  Here,  the trivial one—dimensional represen- 
tation of SU(1,1) is used.  

c8) For p0 = 0 ,  the c -' 0 limit of c2)  remains a s  a single uni- 
tary irreducible representation with 

C g = " 4  

0 3 : 0  

( 3 4 : 0  

and p — x 2 0 ,  p + x 2 0 .  Again, the trivial one-dimensional repre- 
sentation of SU(1,1) i s  used. 
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COORDINATE TRANSFORMATIONS THAT FORM GROUPS 
IN THE LARGE‘I‘ 
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Alum 
One generally takes geometric symmetry group as motions 

(metric automorphisms). We show that both in nonrelativistic and 
relativistic mechanics there exist (well known) examples where the 
physical symmetry is larger than the group of motions of flat space 
into itself. Similar situations exist in general relativity. It is 
pointed out that there exist a wealth of coordinate transformation 
groups (both linear and nonlinear realizations of groups used in ele- 
mentary particle theory) in both flat space and curved space-time 
which arise as automorphisms of some geometric entity such that the 
distance is left unchanged. Various possible approaches for applica- 
tion to elementary particle theory are suggested . 

Since the inception of relativity and quantum hypothesis a 
great deal of progress has been made in understanding of those pheno— 
mena that are related to electromagnetism. The successes of the 
quantum theory as presently understood have been so far less than 
spectacular in the field of elementary particles (strong and weak 
interactions) and almost nil in the field of gravitation. In fact the 
foundations of the theory of general relativity (G.R.) as a theory of 
gravitation appear to be quite distinct from those of the quantum 
theory. In its motivation, elegance and beauty the theory of G.R. 
is rarely to be surpassed. In spite of what we have said above, 
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there have been several efforts to quantize G . R .  One of the view- 
points taken is that the present difficulties in the application of quan- 
tum theory t o  elementary part icles would somehow disappear  i f  gravi— 
tation is also quantized. Among the attempts t o  quantize G . R .  are: 

1 . B .  S .  Dewittl uses the concept of infinite dimensional 
groups (connected with coordinate gauge) to  se t  up  a generally covari— 
ant  field theory in curved space.  

2 .  I .  A .  Wheeler2 uses topological considerations t o  identify 
the possible elementary structures in space—time which could then be 
put in some kind of correspondence with elementary particles . 

3 .  P .  A .  M .  Dirac” formulates new type of bracket expres— 
s ions  (called Dirac brackets)  t o  introduce Hamiltonian structures in  
theories where there are  gauge groups:  e . g  . the gauge groups in  e l e c -  
trodynamics and coordinate gauge in G . R .  On the negative side we 
mention the work of Salecker and Wigner4) who point t o  the great dif— 
ficulties involved in giving a n y  meaningful concept t o  quantum mecha— 
nical measurement of length and momenta when applied to  curved 
space .  The difficult ies involved in  the structure of quantum field the-  
ory even in  flat space make it doubtful whether the essential point in 
the process of quantization is yet understood. It appears that the 
difficulties originate in the very concept of canonical quantization. 

The recent great proliferation of groups in  various branches 
of physics such a s  classical mechanics , nonrelativistic quan tum 
mechanics and  G . R .  seems to offer some hope that one can after al l  
put the various offshoots of physics on a unified basis . The hope is 
founded on the fact that the symmetry groups offer a coordinate free 
description s o  crucial t o  G . R .  In the following we attempt t o  show by 
'simple, Well known examples how coordinate transformations that  form 
groups in the large are associated with the symmetry group of the 
problem, even though these transformation groups are different from 
What one usually takes a s  the "geometric" symmetry group (the 
"motions") .  In this way we try t o  isolate the essential point involved 
in quantization and suggest a possible method of quantizing G . R .  and 
application t o  the particle theory. 

Nonrelativistc Mechanics 
One can describe the trajectory of a particle in three-dimen— 

sional space in two different ways. One can conceive of this tra- 
jectory a s  a trajectory in curved space to  be described by a geodesic 
equation; if one further assumes that the space is Riemannian, one 
can determine the parameters of the curve in t e rms  of the metric ten-  
sor components . The maximum number of linearly independent com— 
ponents of the Riemann tensor in this case is jus t  6 .  In mechanics , 
on the other hand ,  one considers the trajectory to  be in absolute 
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(flat) space and in  absolute time together with the concept of fo rce .  
If th is  force is  derivable f rom a symmetr ic  stress tensor (the symmetry 
follows f rom the  isotropy of space in the  usual way), then  the two 
descript ions are  equivalent .  For i n s t ance ,  for  a spherically symmet— 
ric potent ia l ,  the equivalent curved space metric is  

dsz = f(r) drz+ :2 (0193+ sin2 edcog) . (1) 

f(r) =—o.(k —r '2+2§£‘2)‘1  7 (2) 

where J6 i s  related t o  the  angular  momentum and  o c , k  are constants t o  
be determined b y  the  boundary conditions . For t h e  Kepler problem 

§=—MG/r, 0L>0, and k=2E/m20  , 

according a s  E 2 0 .  It i s  known” that  3—dimensional  spherical ly 
symmetric metric such a s  (1) can always be conformally represented 
i n  a Euclidean space a s  follows: 

dsz = H3 (R) [ e  dR2+ R2 «192+ s inze  d 3 ) ]  , (3) 

where e = :|:l denotes the s ign  of f ( r ) .  Since (3) represents a space of 
constant curvature, its group of motions is  a 6—parameter group.  In 
fact  i t  is $04 for E < 0 and SO(3,l) when E > 0 .  These happen t o  be 
the symmetry groups for  the Kepler problem in 3—dimensions.  How- 
ever ,  note that we would obtain the same symmetry for  a n y  spheri- 
cally symmetric potential .  Generalizing t o  n—dimensional space with 
metric of the type ( 3 ) ,  the symmetry will be SO(n+l) . People have 
“obtained8 s u c h  resul ts  by  using the canonical fo rmal i sm.  In th i s  
formal ism more than one type o f  symmetry  groups a r i s e .  

A .  The Conjugacy Group 
This ar ises  flom the very definition of a Poisson bracket (P.B.) 

which requires the existence of a momentum conjugate to  each  coor- 
dinate 

{qi. pj} = 61]. . (4) 

For a sys tem with n—degrees of freedom these are  n—equations. Each 
of t hem corresponds t o  the 3—dimens‘iona19) noncompact group d? of 
r ank  1 with e lements  q ,  p ,  and  ident i ty .  The conjugacy group i s  thus 
a 2 n + l  parameter noncompact semisimple  group of r ank  n :  

d§®d§® . . . ® d § : ® d §  n—times. (5) 
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The importance of this group lies in the fact that its elements 
are the building blocks of all other canonical variables. 

B. "The Infinitesimal Canonical Group" 
This arises from the symplectic structure of the Poisson 

bracket. If we put 111 ,ng . . ”In: q1 ,q;g . . .qn; nn+1. . .1121.1=p1 . . .pn, 
the Hamiltonian equations take the form 

1 d 1 a H  Tit-=97 ' (6) a n 

and the P . B .  is 

r f {f,g}=eJa—1 i% . (7) 
an 

For given 111, fixed in a small neighborhood the set of transforma— 
tions £11 =a'n ’ i/ 3115 leaving the amisymmetric numerical matrix 6 
unchanged constitute the "infinitesimal canonical group" ,10) i. e. 

X s E T = e  - (m 

It is clearly isomorphic to the symplectic group in 2n dimensions and 
on the reals;~ the rank of this  group is n. It has two important sub— 
groups which are also sxi aminetry groups of H (i.e. have vanishing 
P. B. with H); these are SO(n+1) and SU(n). Since all these 
groups are local symmetry groups they do not, in general, give the 
true symmetry group which is necessarily a subgroup of these groups. 
For a true (physical) symmetry grou it is essential that the transfor- 
mations form a group in the large. 1 For instance in the case of 
Kepler problem and the harmonic oscillator these transformations 
arise as nonlinear realizations (in coordinate space) of 80(4) and 
SU(3) respectively (one can use the generators of 30(4) and SU(3) to 
explicitly evaluate these transformations). It would therefore be of 
interest to have a method of obtaining global symmetry group of a 
problem without having to solve the problem first. However, there 
does not seem to exist (at least it is unknown to the author) a general 
method of determining a " global symmetry group. “ 

The system of equations (4) which are the basic building 
blocks of all canonical transformations have a direct physical signi- 
ficance only if the coordinates qi are cartesian. In this case the pi 
are translation generators in . In transition to quantum mechanics 
only these are carried over.1 Even in that case, as was first 
shOWn by Wigner,14) given Heisenberg' 5 equations of motion the 
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canonical commutation relations do not uniquely follow from it. 15) 
Furthermore , Wigner in a careful analysis of relativistic invariance 

and quantum phenomena has shown how an unsatisfactory situation 

results in quantum theory if one insists on treating coordinates as 
observables . Even in classical relativistic Hamiltonian framework 
there exist "no interaction theorems"17 unless one is ready to aban— 
don position as a canonical variable (or the existence of world 
lines) . 18) Thus we conclude that in transition to quantum mechanics 
what is carried over is not the structure (4) or the symplectic struc— 
ture of phase space, but only the physical symmetry group, charac— 
terized by the coordinate transformations that form groups in the 
large . This is more in keeping with the spirit of G.R. , i.e . a coor— 
dinate free description. Before we proceed to consider the relativis- 
tic case we review some well known material on continuous trans— 

formation groups to show how coordinate transformations that form 
groups in the large arise naturally in the context of various geometri— 
cal objects . 19) I 20 

Coordinate Transformation Groups in the Large as Geometric Entities 

"In the 1870's ”F. KleinZI) suggested a program of character- 
izing various geometric entities in terms of the group character of the 

coordinate transformations as automorphisms of space into itself. 
But soon mathematicians realized that the group of automorphisms will 
then be an abstract rather than a transformation group. This was con— 
sidered as a natural step beyond Klein's own formulation of the pro- 
gram and interest in the studies of transformation groups subsided. 

But there is an alternative viewpoint. One can consider the coordi— 

nate transformation groups as a realization of the abstract group 
through transformations in the field of coordinates. But since we live 
in space to which we endow coordinates for convenience , it is essen— 
tial to know which of our deductions on natural phenomena are depen— 

dent on a particular coordinate system employed and which are due 
to the intrinsic geometrical properties. In this manner the concept of 

coordinate transformation groups arises naturally in the study of dif- 
ferential geometry and physics , and has recently been used extensively 
in general relativity. Both in the study of flat and curved space one 
finds a wide variety of transformation groups which ’could be of interest 
in elementary particle theory. With this motivation we summarize in 
the following some of the well known results on the field of contin- 
uous transformation groups and show how coordinate transformations 

that form groups in the large arise in the context of various geometri- 
..ca1 quantities. The pflgicipal ref rences used are Eisenhartfizhz“? 
Robertson-and Noonan, 4) Yanoza and a recent Work of ‘Katziln et a .. 
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Given a n  n—dimensional space, if there exists a set  of map- 
pings of space into itself such that: 

l . The product of two such mappings belongs to  the se t .  
2 . The identity map exists . 
3 . For every map there exists a n  inverse m a p ,  such that 

these two maps taken in any  order give the identity m a p ,  then the 
space i s  said to  admit a n  automorphism. 
The set  of a l l  such maps constitute a group. For a n  r—parameter 
group one m a y  represent  a coordinate Uansformation a s  

1 = f i ( x j ’ a d ) '  a . = 1 , 2 . . . r ;  (9) 

and possess  "generating vectors"  

1:; (x)= —L (10) 

The necessary and sufficient condition for  the existence of  these 
automorphisms is  that 

B_xi 
Baa = 5 8  1(xj)A: (aY) (11) 

If we introduce the operators 

x =5 6—1 (12) 

then 

X’i = [exp(a(a) §(m))]%i , 
i 1 3 xxx + a ( a )  2g“) M, + O ( a  ) . (13) 

For this reason X0. are called the infinitesimal generators of coordi— 
nate transformations. For the set  of r-linearly independent functions 
g; satisfying (11) one can write 

‘ k 1 k i o i + = 14 go gy,k gy 56$ CGY go ( ) 

where comma denotes differentiation. The constants c: are 
given in terms of A ,  by Y 
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c = on B U _ 0 
0Y5 BY B6(AOMB AB’a). (15) 

where B is a matrix inverse to the matrix A. It is t hen  easy to see 
that C's satisfy 

0 Li 0 U. 0 Li + + = 0 . CmES cCY csycw CYOLCOS (16) 

In terms of the operators ESQ. one may re-express (l4) and (16) as 

[x , x ] = c °  
“‘11 ‘13 (LB 2go ' (17) 

DE“. [38' EYJJ + [EBEEY' £09] + [XV pg“, KB“ :88) 

Also we find that 

B" 130:0p B: . (19) o B - 
Ll u m  i uh 

\J 
X I D B 

The three fundamental theorems of Lie are 
l) The set of transformations fi'(x;a) form a group if they satisfy (11) 
with det A(0) 7! 0 and fi(x;0) = x1. _ 
2'} If we are givena set of r linearly independent functions g1 and the 
set of cons ants C“ such that (14) is satisfied, then there exist 
functions -. (a) such that (11) is satisfied and yields the solution 
"fianal whit: defines our r—parameter group of automorphisms. 
3)_ If a set .ofconstants 00’ satisfy (16),  then there exist functions 
a; (x) such that (14) is satisfied. 

This set of theorems can be applied to a wide variety of 
systems to determine their global groups of automorphisms. One may 

therefore apply these to a classical canonical system or to a Riemann- 

ian space . In order to apply it it is necessary to decide which geo- 

titan-‘10 object (a set of quantities which transform linearly under coor— 
dinate transformations)22):23) is under consideration. 

Let us apply this to a general Riemannian space. Here the 
fundamental object is the metric tensor, in terms of which the infini- 

tesimal distance along a curve is given by 

ds2 = gij dx1 d (20) 

Let us take gij as the components of the geometric object whose auto— 

morphisms we are interested in finding. The set of transformations 

x'1 4 x1 such that 
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I I _ I gij(x ) -  9116:) (21) 

when they exist are called the metric automorphisnxs or group of 1 
motions of space into itself. In terms of the generating function 5(a) 
the condition for the existence as motions may be expressed by the 
vanishing of the Lie derivative“- 

+ €171: 0 (22) 

(killing equations), where the semicolon denotes covariant differen- 
tiation. If the equations (22) have r solutions, then the space i s  said 
to  admit a n  r-parameter group of motions. The equation (20)  is  a first 
integral of the equation of a geodesic 

1 1 1 flax 1 di £1x_ _ . 
as: + i  ds ds ‘ 0 '  (23) 

The I‘J’k are the christoffel symbols and are called affinities . The 
automorphisms Which leave affinities unchanged in form are called 
affine-automorphism (or affine—collineations). The condition for their 
existence i s  that 

£ i = 0 : (24) 

or equivalently 

shij7k = 0 (25) 
has solutions . Similarly one can consider Ricc i ,  Einstein and curva— 
ture automorphisms . For curvature automorphisms the necessary con— 
dition i s  the existence of solutions to  

hjm;1h = hjm;hi ' (26) 

One can a l so  consider transformations that are based on a different 
geometric concept than distance . For instance the mappings which 
preserve angle (conformal correspondences) and those which map 
paths (geodesics) into paths (geodesic or projective correspondences). 

B y  projective correspondence we mean those changes in I‘ 
which leave the system of geodesics unchanged; however the metric 
i s  changed .  One therefore defines a projective aff ini ty  (IT) and projec- 
tive curvature tensor (W).  The condition for the existence of a 
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projective automorphism then is that the £11 = 0 (which implies that 
W = 0) or 

= m m 
(n+1) hij;k zgijg ;mk + g115nm + gjkgrmi ' (27) 

where n is the dimensionality of space. 
For conformal correspondences 

20 91]. e gij (28) 

and one gets in this case a hierarchy of three automorphisms.  Let g = 
det(gij) . Then for the existence of conformal mot ions the condition is 

-1 = _ 
£(g gij)  0, or 

W
 

= = "1 h i j  c i j ,  0 § ; k n  (29) 

has  solutions . When a i s  a constant, these motions are called homo— 
thetic.  One can similarly define automorphisms arising from the 
vanishing of the Lie derivative of conformal aff ini ty and  the conformal 
curvature tensor .  The various possibilities are  summarized by  Katzin 
et £11.27) 

Thus we see that there exist a wide variety of coordinate 
transformations that form groups in the large; these arise a s  coordi- 
nate t ransformations which leave a given geometric object  unchanged 
i n  func t iona l  f o r m .  Since mos t  of the coordinate transformations that 
form groups in the large (apart from motions and affine automorphisms 
of f lat  space) are  nonlinear, t hey  are of intrinsic interest a s  they  
could possibly be used in  a nonlinear theory of elementary particles 
in  which fields ac t  a s  coordinates thus  achieving a true democracy of 
a l l  the  f i e ld s  . This could be connected with general relativity in two 
possible ways . 
1) Given a cosmology and a geometric object determine its automor- 
phism in the form of nonlinear coordinate transformations. Construct 
a Lagrangian invariant under  these  coordinate transformations , where 
now coordinates a re  the  f i e lds  t hemse lves .  
2)  Given a cosmology and some group of automorphisms associated 
with i t ,  find the group space19 of the parameters. The automorphism 
of the group space of the parameters gives the elementary particle 
g r o u p .  The group s p a c e  i s  i n  genera l  Riemannian where the coordi-  
nates now are the parameters of  the group of automorphisms of the 
original space.  If one identifies the fields and the coordinates such 
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that the Lagrangian has  the symmetry of automorphisms of group space 
we get another possible theory.  

S ecial Relativit 
The relativistic invariance group i s  the Poincaré group.  These 

transformations leave the expression 

as? = n1 dxi d = dxoz- dxf - 01x2g - ax: (30) j 
unchanged in  the form.  That is  , the Poincaré group is a group of 
metric automorphisms . From a physical  and geometrical viewpoint 
it would appear that the only requirement should be that ds2 remain 
unchanged. A possible reason (apart from simplicity) for assigning a 
preferred role t o  metric automorphisms i s  that the Poincaré generators 
have physical interpretation familiar from the Galilean group.  But in 
the investigations of the past  fif ty years we have come a long way 
and have a t  our disposal more conserved quantities than one can com- 
fortably account for on the 01d picture . (We remark parenthetically 
tha t  in  general relativity the familiar  conservation laws a r i s ing  from 
Galilean and Poincaré invariance d o  no t  seem t o  have any  relevance , 
a n y  w a y . )  Some of the possible candidates for larger groups in flat 
space are :  
1 . The affine group in  f lat  space .  This is the inhomogeneous linear 
groupL GL(4,R)@ T4;  Lorentz group and the group SU(2 , 1) are its 
subgroups .  Its generators a re  

51 = 0L1 + 81i . (31) 
2 . The group of projective transformations of flat sacs. This in— 
cludes the aff ine group a s  a subgroup. It i s  a 2 4  parameter group with 
generators 2 2 

E1 = (11 + Bi j  x] + Y k  x k  x1 (32) 

3 . Conformal transformations of flat sacs. These may be deter— 
mined a s  follows . A space of constant curvature can always be 
brought into the form23) 

ds2 = nij A2 dxl dx’ , (34) 

A‘1 = a x 3 + 2 x - b + c  (35) 

a c =  ba+ iK  . (35) 
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Since we are interested in flat space, let us put K = 0. Now the 
following cases arise 

a. bi1 = O, a = 0, c = 1: this gives motions; 
b. b” = 0, a = 0, c >  1: this gives dilations 

x'1=gx1 . (37) 

c. bLl = 0, a 75 0; it follows from (36) that c = 0. Hence after 
a dilation, I\'1 = X2 . These transformations can be realized as inver- 
sions in a unit hypersphere 

x'1 = (x2)"1 x1 (38) 

d. HJ= 0, a = c = 0; by (36) buis then a null vector and has 
therefore only one independent component, which can be made unity 
by a dilation. If we take bu = (1,- 0,0,1), then A'1 = (x-b) = (x0— x3) 
and for the transformations we get 

xo' =%A(x2— 1) , x3, = —Q~A(x2+ 1) 

I ._ I 
X2 ‘ A Y  : x1 = / \ X  . (39) 

For a = l, we get (38) combined with 1ranslation as 

xii = (51]. + bixj)(1 + Zb-x + nz)‘1 xj (40) 

The set of coordinate transformations consisting of motions , (37)  and 
(40) constitute the so—called "conformal group. " Its Lie algebra is 
isomorphic to the Lie algebra of SO(4,Z) , or SU(2,2) . The Lie algebra 
of the group of motions of De Sitter space (space of constant curvature 
7‘ 0) is isomorphic to the Lie algebra of SO(4,l) or SO(3,2) . This has 
led to the belief that De Sitter group is a subgroup of the "conformal 
group. " However the above analysis makes it clear that the "confor— 
mal group" is related to the flat space. 

We now turn to an application of the "conformal group" to the 
problem of irreversible loss of radiation by a charge in acceleration. 

The equation of motion of a particle in uniform acceleration is 

u 
_da__ 2 L1: dT a V  0 , (41) 

where V'u and al’1 are velocity and acceleration 4-vectors, a2 = auaH = 
constant. Equation (41) integrates to give 

\ 
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x”=x L1+a"3(a“-a U) . (42) o o 

where x Mand  a u are position and acceleration four-vectors in a 
given momentary rest frame. If we put 

= u _ u u :  u y"1 x xo , A '5 a0  (43) 

we get from (42): Au(yu+ yaAW = 0;  or the equivalent set 

y'“=X(A.y)(y”+y‘"‘A”). Auy’ =0.  
which defines a coordinate transformation in y”. On squaring we get 
y"3 = ya)? (1 + ZA'y + A3 ya) ,  so  that the inverse transformation is 

_ -1 IP- K “ A ”  
yu"‘ [Y“1+2A-y+11=’y3]  

In order that these transformations form a group, the direct and inverse 
transformations must have the same form; this determines X uniquely 
a s  

>51 (A,y) = 1 + 2A'y +A3y9 

Thus transformations from a n  inertial frame to  a uniformly accelerated 
frame 

I l l :  2-. +£Ap'  
Y _ 1 + Z A ' y + A y ‘  ' (44) 

together with (43) and the conditions 

L1 I = H = A y n  0 ,  A All 0 .  (45) 

We s e e  that these transformations are  def ined for  a region around a 
given (but arbitrary) momentary rest frame . This region is defined by 
x 4 2  0 .  As )5‘1-O 0 ,  the velocity of the particle approaches the velo— 
city of l ight.  These transformations when applied t o  the Coulomb field 
yield the correct Bondi— —Gold fieldsza) for  a charge in uniform acce— 
leration. It is known that a point charge moving with uniform velocity 
or with uniform acceleration does not radiate 28)  2 9 )  In this connec— 
tion it i s  amus ing  t o  note that  only fo r  these  two motions (v iz .  uniform 
velocity and  uniform acceleration) there exist transformations , con- 
necting these frames with inertial frames , that form groups in the 
large . Consequently the direct and inverse transformations are of the 
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same type and the frames of reference so related are equivalent. 
On the other hand, in flat space, there exist no transformations con— 
necting an inertial frame to one in nonuniform acceleration such that 

the direct and inverse transformations are of the same type . Thus a 
frame of reference in nonuniform acceleration is in no sense equiva— 
lent to one in uniform motion (or uniform acceleration) and hence 

irreversible loss of radiation in this case is to be expected. 

In the above we have seen an example of a coordinate trans— 
formation group in the large , to wit the "conformal group, ” which is 
bigger than the Poincaré group and is a symmetry group in the physi- 
cal sense as far as classical relativity is concerned. Therefore it 
must also be the symmetry group in quantum theory. 

Discussion 
We have discussed the role of coordinate transformations that 

form groups in the large as physical symmetry groups. We saw that 
in nonrelativistic mechanics (classical and quantum) and in classical 
special relativity there exist examples of such coordinate transforma— 

tion groups which though not motions (of space into itself--metric 
automorphisms) are symmetry groups of the problem. In general rela— 
tivity, in the absence of the usual conservation laws of energy and 
momenta one is led to take seriously the conservation of such geo— 
metric entities as curvature . In this case again one has to consider 

the coordinate transformation groups that are not motions. Further— 
more the group of metric automorphisms of a curved space (or the 

metric automorphisms of the "group space of the metric automorphisms 
of the given curved space ") is in general obtained as a group of non— 

linear coordinate transformations unlike the transformations of the 
usual Poincaré group. 

We therefore conjecture that such groups of coordinate trans— 
formations are of relevance also to elementary particle theory. More 

specifically they can arise in elementary particle theories in any one 
of the following ways and their variations . 
1 . In a nonlinear theory of elementary particles , an elementary parti— 

cle group can arise as metric automorphisms of curved space with 
fields playing the role of coordinates. 
2 . The elementary particle Lagrangian has the same symmetry (and its 

realization) as the automorphisms of a geometric entity such as cur— 

vature tensor in a given cosmology. 
3 . The symmetry group of the elementary particle Lagrangian is iden— 
tical to the metric automorphisms of the group space of the metric 

automorphisms of a given cosmology. 
It would appear that this is possibly the only way of bringing 

G.R. and short range interactions within the same fold. The point of 
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view adopted in making this assertion is that in transition from the 
classical to quantum theory what is carried over is the structure of 

the symmetry group and its relevant realizations rather than the cano- 
nical commutation relations . 
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NONCONTINUOUS REPRESENTATIONS OF LIE GROUPS'H: 

Bernd Pirrung 
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Clausthal—Zellerfeld , Germany 

Section I 
If we want to describe a physical system by means of group 

theoretical methods, we do two things: (i) We choose-—because of 
physical or formal reasons——a certain Lie group G, and (ii) we iden- 
tify the physical system or certain properties of it with a (a) faithful, 
(b) unitary, (c) irreducible, (d) linear, and (e) continuous represen- 
tation of G. 

The relation between the physical system and the representa- 
tion is given in the following way: The generators of the representa— 
tion are identified with observables and a rule is given on how to ex- 
press all observables by these generators. 

This is the way one usually proceeds , and the reasons for the 
choice of such a representation are the following: 
(a) The transformations should be observables , and therefore the 
representation ought to be faithful, since different observables should 
correspond to different operators . 
(b) If one examines pure symmetry transformations , then the invari- 
ance of the theory enforces the (anti-) unitarity by the theorem of 
Wigner. Nonsymmetry groups contain in general the symmetry group 
as a subgroup. Thus at least this subgroup has to be represented 
unitarily, and this unitarity is carried over to the representation of the 
whole group . 
(c) One should suppose that reducible representations contain dyna— 
mics which one can only describe in the frame of group theory, if one 
embeds G into a larger group which is represented irreducibly, then 
one obtains the physical contents, if one reduces this representation 
with respect to G. 

tPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1970. 

$Part of a paper to be published by H. D. Doebner and B. Pirrung. 
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(d) The linearity of the representation i s  desirable ,  a s  nonlinear 
representat ions are  more difficult  t o  hand le .  
(e) Now let us  consider for  example the 3-dimensional rotation group. 
An experimentalist can realize every rotation; hence the continuity of 
the 3—dimensional representation of the rotation group. If one uses  
noncontinuous representations , one l o se s  the  properties which d i s -  
t inguish Lie groups , s ince there a re  n o  generators . 

But this i s  not the whole story! 
(a) The faithfulness is violated in  very simple and often used exam- 
ples . Consider the unitary, irreducible representations of the n- 
dimensional translation group T n .  They are  characterized b y  a n  n-  
vector k and have the form: x -¢ exp i ( k - x )  . These representations 
are not fa i th fu l  because  of two reasons :  exp i ( k - x )  has  a period of 211, 
and the scalar product ( k - x )  has  the same value for different values 
of x .  Therefore a l s o  the often used representations of the Poincaré 
group in the Hilbert space are not fa i thfu l .  A fai thful  representation 
of Tn--which is  of  course reduc ib le—-is  for ins tance:  

x -' V = I 11'rx1 x e 

C 111x e n 

And obviously this representation i s  unitary. 
(b) The unitarity i s—-as  mentioned above-—not always enforced by  
Wigner ' s  theorem,  and the  mos t  important argument for the unitarity 
is the fact that it is very difficult to  classify nonunitary represen- 
tations. 
(c) The reasons for the use  of irreducible and linear representations 
are s im i l a r ,  namely  of mathemat ical  k i n d .  
(d) In  f ac t  one cannot rea l ize  transformations which are infinitesimal.  
Thus the experimentalist cannot verify the existence of generators, 
and one can prove the continuity only approximately by showing that 
the mean values,  which are measured for a small  but not infinitesimal 
in terval ,  a re  continuous funct ions of the  group parameters .  We sha l l  
prove later tha t  these  mean  values  exis t  for  one c l a s s  of noncontinu— 
ous representations . I want t o  stress that one should avoid noncon- 
tinuous representations in a n y  case;  there are too many of them.  But 
we shall  see later that they appear in some constructions which are 
reasonable  f rom the  p h y s i c a l  point  of v i e w .  

Now we have s e e n  that  the choice of f a i t h fu l ,  unitary,  irredu- 
cible, linear and continuous representations is a simplification, 
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which cannot always be justified by physical arguments . We have 
seen that these properties are sometimes not even compatible, and 

therefore one should not disregard representations , which do not have 
these properties . 

Section II 

Now we shall investigate the continuity of representations . 
Let us first recall the definition:8) 

Consider a Lie group G and a representation x - Vx of G in 
a Hilbert space H. 
The representation is weakly continuous iff (f, g) is a con— 
tinuous function of x for all f ,g 6 H. 
It is strongly continuous , iff the mapping x —~ Vx is continu- 
ous for all f E H. 
It is weakly )r—measurable , iff (f, g) is a x—measurable 
function of x for all f,g E H. 
Of course one can construct noncontinuous representations by 

changing the topology of the group. But we do not want to do that; 
we always use the normal (Euclidean) topology. 

The global properties of noncontinuous representations csf 
locally compact groups are described by the following theoremzl ' 6 ) 1 0 )  

Every weakly continuous, unitary representation of a locally 
compact group in a Hilbert space is strongly continuous. 

Every weakly x—measurable , unitary representation of a locally 
compact group in a semble Hilbert space is strongly con— 
tinuous . 

That means: If we want to construct noncontinuous represen— 
tations in a separable Hilbert space , We obtain only representations 

which are not weakly x-measurable . And if we want to obtain mea- 
surable, noncontinuous representations , we have to consider non- 

separable Hilbert spaces, and that is the thing we shall do first. 

A simple example for such a representation is given in Ref. 4 in con- 

nection with a model of a ferromagnet. Another example is given in 

Ref. 8, §22.20. 
Of course there are many nonseparable Hilbert spaces, but we 

now consider one which is well known and applied in physics , namely 
ID 

the infinite direct product H® = II 1 ® H on of Hilbert spaces H“, which 
a = 

was defined and investigated by John von Neumann in Ref. 11 .1 

tH® is the closure of the pre—Hilbert space Hé) , where 

(footnote continued on bottom of 
next page) 



196 B . PIRRUNG 

Now consider a Lie group G with a c, f, 1). (continuous, faithful, uni- 
tary and linear) representation x -° V: in Ha. , a = l ,2 ,3 . . . and define 
x -' Wx in the following way: 

(D Q 
a. 

c p — i  l'I ® V X  fan)’ i f c p — i  1'[ 8%“), 

v=1 a.=l v=l (1:1 

andcp=lim“cp,ifcp=limcpK . 
“-03 K 4 ”  

We can then prove the following statements: 
a) x -° Wx is a linear representation of G in H® (this repre- 

sentation is called ®—representation) 
b) The ®~representation is faithful and unitary. 
c) The ®-representation is weakly x-measurable . 

Proof: 
Obviously Wx is a linear operator in 38- If x and y are two elements 
of G, then 

° 2. 
nCi nofalv>=z H ® n f a N = i  H®vyfq,v= 

v=l <1=1 \J=1 (1:1 v=1 cx.=l 

Q ‘9' 0 

mi navtfw>=wxwy<z m.) 
v = 1 a = l  v=l a=1 

a 

={cplcp=y H®fcc, ;;p<w HIIf‘1 Il<°°forv=1,..,p; 
_l “ I  

v=1 «=1 q=1 

2. 2 °° 1 (co.‘1’)= Z l H (f M 9 M  
v=1 u=1 «=1 

5 

It is necessary for this construction that one defines II 20.: 0 , if 
a: on (1:1 

Izu I converges and (121012 does not converge. Here 20‘, c.=1,2. . 
“ = 1  

are complex numbers . That means, for example, 1'! (-1)°' = 0. 
$1 
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i. e. WX xy -‘-'-Wx WY on H®. As a similar calculation can be performed, 
if cp is a limit element of Hg, we obtain a). b) is obvious . As 1: -o V?“ 
is continuous , it is weakly x-measurable, and therefore by theorem 
(11.18) in Ref. 9 (W xcp,‘i') is measurable for 31141,!" 6 H9, 1. e. the @- 
representation is weakly 1- measurable. Obviously x-o Wx is faithful, 
if x - v: is faithful for one <1. Therefore we define: 

1: —~ Wx is completely faithful (cf) iff x -' v: is faithful for 
a. = 1, 2 3,, . . . . 

We have seen that the ®-representation is faithful and unitary, 
if x -' Va is faithful and unitary for all on. But a similar theorem cannot 
be proved concerning continuity. Let us consider a simple case: 

Let G be a nondiscrete topological group and x -1 VS; a 
c, f, u representation of G in H“, a. = 1, 2, 
Suppose that Ha: H5 and V fi =  VB for all a and 8. Then the 
®—representation x » Wx is not continuous . 

Proof: 
We show that (\Nxcp,‘l’) is a noncontinuous function of x, if 

so 

cp=a1'=ll®f, 1=anlevx fa, fq= £8, for allc,B,and ”fall = 

In an arbitrary neigh ourhood Ux of x we can always find an element 
y such that (Vif 01' x for): = a 7‘ 1 for all a. Ial S 1, because x-o Vx 
is c, f, u. 

Thus: 

_ °° a Icp.1)-(wycp,1)|—.|a1=11wxfa,v:fa)- r1130] 1“ ,sa)|= 

a co 

=|ln 1 -  11 a|=|1—o|=1, 

as either the absolute value of a "”is less than 1 or a = exp(i cp) and in 
both cases the infinite product an =1a is zero. Therefore in every neigh- 

bourhood of x there is an element y such that 

'(WXCD: Y) _ MYCPI Y” = ll 

which completes the proof. 
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Thus we have found a new method to construct noncontinuous 

representations of every nondis crete topological groups? 

Section III 
Now we shall prove the following general theorem for non— 

solvable Lie groups: 

Let G be a non-solvable Lie group with a c, f, u representation 
x.-o v“ in How a. =‘1,2,3.. . 
Then ’the aareprasentation x —. wX of G is not CdmnuOUS'. 

Proof: 

It is well known that every semisimple and therefore also every 
non—solvable Lie group contains SO(3) or(and) SO(Z, l) as a subgroup?) 
Therefore we have only to prove that the ®—representation of SO(3) , 
resp. SO(2,1), which is given by the representation of G, is not con— 
tinuous . 

Let us consider first 80(3): According to Ref. 5 we can choose 
fa e H“, with llfall = 1, such that 

CL CL 
(V f l f ) = v  ( C p 1 l e r c p 2 ) =  x a on {’n 

= eX1o(—it0L cpl) 2%“(1 + cos e)’L°Lexp(—ita m2). x 6 80(3), 

Gt, is a positive integer or half inte er, cp1 , 0 , cp2 are the Euler 
angles). Now let us take I = Y = n1® fa. and investigate the conti- 

a}: 

nuity at x = e (e denotes the identity). 

on a on 

I, - w ,  = [ I  f , f - H f , f =  [(wy Y) ( e t  YH |m=1(vy a 0L) a=1(°‘ 0L) 

= | E  z'L“(1+cose)*’°‘—1|=|0—1|=1, 
OL=l 

because y may be chosen such that 8 75 0 and cp1 = — cp2 . Then 
a = : 2'1(l + cos 9) is less than 1, and therefore fila’ta = 0. 

a :  

flf we do not demand complete faithfulness , then it is of course easy 

to construct continuous ®—representations . Take v; = Vx and v: = 1 , 
a ‘= 21.3;4j'o - o 
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In a similar way one can prove that the ®—representation of 
SO(2 ,1) is not continuous (by using the matrix elements given in Ref. 
2), which completes the proof. 

Section IV 
This result cannot be generalized, because abelian groups and 

even the Heisenberg group may have c, cf, u ®—representations:* 
This can be easily shown for the translation group Tn' by taking as 
representation in Ho. 

The proof for the Heisenberg group affords a lengthy calculation. 
That is all that we want to say about noncontinuous representations 
in the infinite direct product of Hilbert spaces . 

TIt is very probable that a Lie group G has a c, of, u ®—representa- 
tion, if G has the following property: 

For every 6 > 0 there exist e1 , . . .en> 0, 9.1 S 6, such that 

// _ g(on{ , . . .(112)' g(o.§’ , . . .gn) — g(on1 , . . .gn) 

implies 

g(e1a{, . . .engg) - g(e1d{’ , . . .enocgl) = g(e:10,n1 , . . .engn) 

for all g E G (on1 , . . .onn are the group parameters). 

It is obvious that groups with this property——we call them contractible 
——may be treated in a similar way as the translation group Tn. It can 

be proved that if a group is contractible , it must be nflpotent (and 
therefore solvable). 
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Section V 
Now we shall dis cuss noncontinuous representations in sepa— 

rable spaces . 
The 3-dimensional representation of the 3-dimensional rota— 

tion group may be written in the following form: 

I V = V , 9&1 9:602)” g vas 691) Va1 (e) as be) 

where, for example, V has the form 
as Qp) 

I 

Here the functions C and S have to fulfill the functional equations: 

Ch1+cpa)= Chm) C(cpa) - 8691) Sépa) 
5‘01 +693) = 5&1)C(5Ps)+ 3(CP2)C(CP1) 

096p) +33%) = 1. 

These equations have of course the solutions cos cp and sin (p for C(p) 
and S(cp), but also cos fQ‘p) and sin £69) are solutions if “91"603) = 
fem) + Mpg) . 12) Hamel has shown in Ref. 7 that there exist noncon— 
tinuous functions f which fulfill these equations. And if we use these 
functions and replace cos cp by cos f((‘p) and sin up by sin f(cp), we ob- 
tain a noncontinuous finite dimensional representation of the rotation 
group. 

In the same way one can construct arbiirary dimensional repre- 
sentations of 80(3), which are not continuous , and thus one can even 
obtain noncontinuous representations of each group, which contains 
80(3) as a subgroup."r 
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GENERALIZED 0 ( 2  , 1) EXPANSIONS‘I‘ 

C .  Cronstrom at 
Institute for Advanced Study 

Princeton, New Jersey 08540 

Abstract 

We give a brief review of the 0(2 ,1) expansion for a square- 
integrable scattering amplitude and i ts  relation t o  the Sommerfeld- 
Watson transform. The conventional 0(2 , 1) expansion is then gen— 
eralized t o  cover the case of asymptotically growing but power ' 
bounded functions. Certain ambiguities inherent in the generalized 
0(2 , 1) expansion are discussed in detail. 

For simplicity we discuss only the case of two-body ampli- 
tudes with equal mass  kinematics and no spin.  

I .  Introduction 
The material presented in  this talk i s  t o  a large extent based 

on unpublished work by W .  H .  Klink and myself, which is still in 
progress. One of the objectives of this work is to generalize the 
0(2, 1) expansion for square integrable scattering amplitudes, which 
was first discuSSed by I .  P .  Boyce,” to asymptotically growing scat— 
tering and production ampli tudes.  Here I will only discuss the s im-  
plest possible situation; namely the expansion of a two-body scatter- 
ing amplitude with equal mass kinematics and without spin.  The ex- 
pansion formula we arrive a t  has  a l so  recently been derived by 
H .  D. I .  Abarbanel and L.  M .  Saunders,” and by C .  E. Jones et al .4) 
The derivation of the generalized 0(2  , 1 )  expansion formula given here 
is slightly more complicated than the derivations given in Refs .  3 and 
4 , but exhibits clearly a n  ambiguity inherent in the generalization of 
the standard 0(2 , 1) expansion t o  non-square integrable functions. 

tPresented at  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  

$On leave from the Department of Theoretical Physics ,  University 
of Helsinki, Finland. 
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This ambiguity is quite essential in establishing the connection be- 
tween the generalized 0(2 , 1) expansion and the Sommerfeld—Watson 
repre-s entations) of the amplitude . 

The group theory underlying the standard 0(2 , 1) expansion 
has been given in Ref. 2 , and in the review articles by P. Winter- 
nitz ,5 .7 and also in the talk by P. Winternitz at this conference. 8) 
Let me therefore only briefly mention the relevant arguments in arriv- 

ing at an 0(2 , 1) expansion of a square-integrable amplitude . 
We consider a scattering amplitude F(s ,t) (s and t are the 

usual energy and momentum transfer variables , respectively) for a 
fixed value of t in the physical region of the s-channel. In the 

general mass case the variable t can be positive for a range of values 
of s in the s-channel physical region, provided the masses satisfy a 
certain inequality. We shall, however, only consider negative fixed 
values of t. The momentum transfer vector is then space—like , and 

the little (or stability) group corresponding to a fixed momentum trans— 
fer is given by 0(2 , l) . This can most easily be seen by considering 
the amplitude in the brick-wall system (in which the momentum trans- 
fer vector has a component along the third space axis only). In this 

system the amplitude is parametrized (for fixed t) in terms of a hyper- 
bolic angle B, which is related to s and t as follows (for equal masses 

m) . 
2s 

x E c o s h B = m  — 1  (1.1) 

F(s,t) a f(t,x) (1.2) 

Any amplitude which is square—integrable (in x) can be expanded in 

terms of the unitary irreducible representations of 0(2 , l) . 
The expansion formula, which is known in classical analysis 

as the Mehler-Pock representation,” I 10) takes the following form 

f(X) =4; dq a(q) P_%+iq(x) (1.3) 

= h I a(q) qtan «1”q f(x) P —&+1q(x) (I 4) 

Here we have suppressed the dependence of the functions involved on 

it (this will also be done in the sequel, whenever expedient). The 
.function PL (X) in EqS. (1.3) and (1.4) is the Legendre function of the 
first kind. An-account of this and related functions can be found e.g. 
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in the first volume of the Bateman Manuscript Projectll) (references 
to this work in what follows will be given as B followed by the appro— 
priate page number). 

The representation (1.3) is very similar to a Sommerfeld— 
Watson background integral (taken along Re I; = -%) . There are two 
important differences , however. 

In the first place the range of integration in Eq. (1.3) is (0,00) 
and not (~°°,°°) as it would be in the case of a SW background inte— 
gral. However, since Eq. (1.4) defines the expansion coefficient 
a(q) as an even function in q (because of the symmetry of the function 
P&(x) under the substitution «E, -* —.[,—l) we can simply extend the range 
of integration in Eq. (1.3) to (40,09). In so doing, however, we 
create a possibility for iniroducing ambiguities in the integral repre— 
sentation, since one may now add any "reasonable“ odd function of q 
to the expansion coefficient a(q) without affecting the integral repre— 
sentation. This fact will be very important in the sequel. 

Secondly, in applying the expansion formulae (1.3) and (1.4) 
to an amplitude f(x) we are not a priori forced to split up the ampli— 
tude into two parts , corresponding e.g. to even and odd signature. 
However, the splitting of an amplitude into an even and odd signa— 
ture part in conventional Regge theory is not really a logical neces- 
sity but rather a matter of choice. 12) A detailed account of Regge 
theory without signature has also been given in a recent paper by 

T. K. Gaisser and C. E. Iones.13) We shall therefore proceed with— 
out introducing signature although one could do so albeit in an ad 
hoc manner. 

The rest of this paper is organized as follows . In Sec. II we 
show in detail how the expansion formulae (1.3) and (1.4) can be 
brought into a form in which they coincide with the Sommerfeld— 

Watson transform of an amplitude which is assumed to satisfy a fixed 
t dispersion relation. Sec. III is devoted to the generalization of 

Eqs . (1.3) and (1.4) to non—square integrable functions. It is shown 
that the generalized 0(2, 1) expansion can still be made to coincide 
with the SW transform, provided one makes effective use of the am— 
biguity mentioned above . 

The final Sec. IV gives a summary of the results obtained. 

11. samgarison with the Sommerfeld—Wats on Transform 
By introducing a complex variable 

L = - % + i q  (11.1) 
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by dividing Eq. (1.4) by q tanh (q1-r) , and by extending the range of 
integration in Eq. (1 .3) ,  we can rewrite the Eqs. (1 .3)  and (1.4) as 
follows , 

f<x)= 2—1110n P (x) (11.2) 

am *1d f(x) PL (2:) (11.3) 
1 

The Eq. (11.2) can be recognized as a Sommerfeld-Watson background 
integral, provided the expansion coefficient 5(1) can be related to the 
partial wave amplitude a (t) as follows , 

a& (t) = £0.) cos 11L . (11.4) 

We shall assume that the (square-integrable) amplitude f(x) 
satisfies a fixed t dispersion relation, 

I! (15' As.(s',t) 
f(x) = F(s, t) =—J‘ — —  (11.5) 

m3 s' ~s-ie 

Since the presence of a u-channel contribution to F(s ,t) plays no 
decisive role in what follows, we simply neglect it for ease of 
writing. Inserting Eq. (11.5) in Eq. (11.3) we obtain, using the 
formula B. 140, 

a _  -1 
5(a) = Ayn—4L Elf ds’ As(s',t) 

cos n1; 4mg 

{edm QJLC 4:33;; '1 'i€>+e1MQ—&-l<4nzlzs:t 4—16)} 
(II. 6) 

where QJL (x) is the legendre function of the second kind. Eq. (11.6) 
defines SQ.) as manifestly even in q“, = -%+iq). However, the even— 
ness of PL (x) in Eq. (11.2) guarantees that only the even part of the 
integrand in Eq. (11.2) contributes to the integral. We can thus add 
any reasonable odd function of q to 5Q.) defined by Eq. (11.6) .  In 
particular, we may replace the expression (11.6) by the function 
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~I __§ $t-4m3)"1 a I -11'rL / 218’ \ a (1,) —" j‘ ads’ As(s ,t) e QLK4m3-t -1 —1ej(II 7) 

We shall now turn to the Sommerfeld—Watson transform of the 
amplitude defined by Eq. (11.5). We shall then temporarily consider 
the variable t fixed in the interval 

0 < t < 4m3 (II-8) 

and 

0 s s< 4m3 (11.9) 

We can now define a variable zt, 

_ Zs 
zt — t-4m3 + 1 (11.10) 

with values in [-1 , 1] . The amplitude F(s ,t) can then be expanded 
a s  follows 

“5.1) =,Z(21+1)a&(t) 1&(zt) (11.11) 

with 
+1 

3”) =§f dzt P£(zt) I-‘(s,t) (11.12) 
-1 

Inserting Eq. (11.15) in Eq. (II. 12) we obtain 

. _ g _ _ , , 4111. r 213' _ 1111(1) - -n (t 4m3)1f ds As(s , t) e QLKd 1) (11.13) 
4m‘3 

For t fixed in the interval (11.8) the series (11. 11) converges in a Leh- 
mann ellipse with semi-major axis (4m3+ t)/(4m‘3 - t). We can then 
perform. a slightly unorthodox Sommerfeld-Watson transform of the 
series (II. 11), retaining the factor e'm‘f' in Eq. (II. 13) even for com- 
plex values of L. The result is 
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1+1... dz,(2&+1) a (t) P. (~21) F(s.t)=1§J" *9 4 I (11.14) 
‘14” sin 11% 

We note that the argument -zt of the Legendre function in E q .  (II. 14) 
is defined in terms of s and t by the same expression (I. 1) that de- 
fines x = cosh B in Eq. (11.2). 

Let us also remark that the unorthodox step from Eq. (II. 11) to 
Eq. (1.1. 14) could have been avoided by using 13‘ E «zt as an expan- 
sion variable instead of z . However, the final result, Eq. (11.14), 
with a), (t) defined by E'iq. (11.13) would still have been obtained, the 
unconventional factor e" 117% now being a result of the analytic con- 
tinuation of PIX-g) to P JL(=§) Pt (— —z t)' 

We can now (trivially)& continue the representation (II. 2) in s 
and t to the ranges of values given by Eqs. (II. 8) and (II. 9), with 
the symmetric expansion coefficient 50,) replaced by the equivalent 
expansion coefficient 5' (1;) given by Eq. (11.7). Comparing the ex- 
pressions (11.7) and (11.13) we see that the functions 31(t) and 5' (L) 
indeed satisfy the relation ( I I .4),  i.e. 

6% (t) = — '5.’(&) cos m; (11.15) 

There is thus a perfect agreement between the O(2,1 )  result, Eq.  
(11.2), and the Sommerfeld-Watson representation, Eq.  (11.14). 

III. The Generalized 012,1) Expansion 
As a natural generalization of the Mehler—Fock representation 

(1.3) we consider the following ansatz, 
W 

fix) =1 dq A(p.q) Ppfiqcc) (111.1) 
with 

_ % 5 p S p o < 0  (111.2) 

For p = - ‘35 Eq. (111.1) reduces to Eq. (1.3), with A(-%,q) given by 
Eq. (1.4). Let us now invert Eq. (III. 1) for p fixed in the interval 
(111.2) . We use the integral representation B .  156, 

Pp+i (cosh B) =/_2 n i m m m  (111_3) 
q Judah s -  -coshcn 
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Inserting Eq. (111.3) in Eq. (III. 1) and inverting the order of integra- 
tion we obtain 

f(cosh B) = Q I B M  (III.4) 
" 0 A/COsh B - coshcp 

with 
Q 

1303.09) =j' dq A(p,q) cosh [ 6‘ + p + 101W] (III.5) 
— Q  

Eq. (III.4) is essentially Abels equation}4)which can be inverted, 
with the result, 

Mun) = “" _.___fl._(_§)_ 3:: ‘1‘ d8 sinh f cosh (III.6) 

0 J2(cosh cp - cosh a) 

Let us now split up Eq. (III.5) into its real and imaginary part, 
res pe ctively , 

a 
“' + 
AR(p,cp) = 2 cosh rcpj' dq AR(p,q) cos qcp 

0 . 

— 2 sinh I'cp 2E dq AI— (p,q) sin qcp (III.7) 

KI (P109) = 2 sinh rap I dq A;(p.q) sin qco 
0 

m + + 2 cosh rcpI dq AI (p,q) cos qcp (111.8) 
0 

Here the subscripts R and I denote the real and imaginary part of the 
function, respectively, the superscripts + and - denote the even and 
odd part (in q), respectively, and we have introduced the abbrevia- 
tion 

r = % + p  . (III.9) 

The problem that remains is now to invert the Eqs. (111.7) and (111.8). 
It is not difficult to verify that the following expressions satisfy 
these equations , 
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A;(p,q) =% J; dtp e-rw §R(p.co) cos qcp 

A103“) = -% {as e"“" ER(p,cp) Sin Clcp (111.10) 

and 

Al;(p.q) 111 jfdcp e rm 131(p.cp) sin qco 

A;(p.q) =1l1 {11¢ e'rep fiI(p,cp) cos qcp (111.11) 

We then recover the function A(p,q) a s  
+ .. 

A(p,q) = AR(p.q) + AR(p.q) 

+ 1Af(p.q) +1A'I1p.q) (111.12) 

A(p,q) =5; 1Edcp e‘mfi‘flq)co Mum) (111.13) 

Before expressing A(p,q) in terms of the function f(x) by using 
Eq .  (111.6) let us  consider the question of uniqueness of the solution 
(III. 13) . We then have to  specify in more detail what we require of a 
solution A ( p , q )  . It is reasonable t o  require that A(p ,q)  should in  fact  
be a function of the complex variable t = p + i q ,  

A(p,q) = F(p + iq) (111.14) 

where 

(i) FOL) is analytic and regular in a strip contained in —%< p <  0 
(ii) F(&) vanishes to the appropriate order as  II m L] -' °° 

(iii) For) reduces t o  a n  expression equivalent to  E q .  (1.4) in 
the limit Re 1 .. a}. 

Let us now assume that there are two functions A(p,q) satisfying E q .  
(111.5) (or Eqs .  (III.7) and (111.8» and the conditions above. Then 
their difference A (p,q) has to satisfy the equations , 
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on 
+ 

cosh rcp £ dq AR(pIQ) 005 0169 

— sinh rep I dq AI-(p,q) sin qcp = 0 (III.15) 
0 

and 

SJ'nh rep q A;(p.q) sin Qco 0 
+ cosh rep I dq A: (i,q) cos qcp = 0 (III.16) 

0 

Eqs . (III. 15) and (III. 16) are satisfied e.g. by the choice 
m + .. 

I dq AR(p,q) cos qcp = c (up) sinh ftp 
0 

J‘wdq AI'(p.q) sin qcp = C_(cp) cosh rep (111.17) 

and 0 

Imdq A};(p,q) sin qcp = d-(qg) cosh rep 

0a: 

II) dq A;(p.q) cos q«p= - d-(cp) sinh I'cp (III. 18) 

The functions c (co) and d—(cp) in Eqs. (111.17) and (III.18) should be 
real, odd, independent of p, and such that C-(cp) exp rap and 
‘d‘(¢) exp rcp have Fourier transforms . The requirement that c" (co) and 
d'fip) be independent of p follows from the analytidty condition via 
the Cauchy-Riemann equations . 

Let us consider the example 

C_(cp) = X1 (p e-i‘ICP' 

(flap) = - )2 q, e'élcpl (111.19) 
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where )1 and x2 are real constants . From Eqs .  (III. 17) and (III. 18) 
we then obtain 

X 2L+l  
“9"” =E [L-(_L+l-)]§ (III . 20) 

where )t = x1 + 112 and 1, = p+iq. 
We have thus demonstrated by means of a n  example that the 

solution to the Eqs  . (III. 7) and (111.8) i s  not unique . 
A little consideration and abstraction from the example (III. 20) 

allows us to  infer that we may in fact  add any function A (t) , which is 
analytic 1n the strip — i < Re 4!. < p0, whose boundary value on Re J2, = 
—% is antisymmetric in q ,  and which is such that A(L) d )  is inte- 
grable on Re 1!, = -§ and Re L = p to the expansion coefficient A(p,q) 
in the integral (III. 1) without affecting the value of this integral. 

Having established the fundamental nonuniqueness of the ex- 
pansion coefficient A(p,q) i n  the ansatz  (111. l )  , let us  return t o  the 
expression (III. 13) which gives one solution for A(p,q). Inserting Eq. 
(III. 6) in Eq. (III. 13) , integrating by parts and changing the order of 
integration we find 

1 °° °° ‘(XI'PQL‘MD 
A(p,q) =9?) I dB sinh B [I + M — _ .  f(cosh B) 

0 B J‘2(cosh go — cosh B) (111.21) 

The term within brackets in Eq. (111.21) can be recognized a s  
a n  integral representation (3.155) for the Q L—function. The final 
result is thus 

1 w 

A(p,q) =3?) 1 de sinh g QL (cosh B) f(cosh B) (111.22) 
0 

Let u s  introduce the notation 

211 
2L+1 

The pair of formulae, Eq. (III. 1) and Eq. (111.22) then take the form 

bot) = A(p,q) (111.23) 

P+1°° 
f(x) = fi— £ 4d (n+1) bot) P 16‘) (111.24) 

bOL) =j' dx QLbc) f(x) (111.25) 
1 
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It should be observed that a l l  the steps in the derivation of the inver— 
s ion formula (111.25) are  valid for  functions which (in addition t o  sa t -  
isfying certain smoothness conditions) behave asymptotically a s  

f(x) = 0(xp'e) (111.26) 
where p i s  fixed in  the interval (111.2) and e is a n  arbitrarily small 
positive number. It should be emphasized that the result given in 
Eqs . (111.24) and (111.25) does n__ot mean that we have shown that func- 
tions behaving asymptotically a s  given by Eq. (111.26) can be eXpandr 
ed as in Eq.  (I11.'24) 'with the expansion coefficient bet) given by Eq. 
(111.25). What we have done s o  far is to assume that the functions 
fix) we consider can be represented by the expression (111.24) , and 
then shown that a suitable candidate for the expansion coefficient 
b9.) is given by Eq. (111.25) . We have also shown that the expansion- 
coefficient b0.) in the formula (111.24) is not uniquely determined by 
the function f(x) so that the particular choice given by Eq.  (III .25) is 
but one member of an equivalence class of coefficients bet) (the mem- 
bers of this equivalence class differing by functions AOL) of the type 
discussed previously). 

O n  this level of sophistication it is not diff icul t  to  j u s t i f y  
the validity of the Eqs . (III. 24) and (111.25) even for asymptotically 
growing functions . A "r igorous" argument  would be somewhat l eng— 
t h y ,  s o  we shall  merely give a plausibility argument. The expansion 
coefficient bolt) defined by Eq.  (111.25) is analytic in  L i n  the whole 
right-hand t-plane. We may therefore shift the contour of integration 
111361. (111.24) to the right a s  far as we please. The formulae (111.24.) 
and (111.25) then make sense for functions behaving asymptotically 
a s  given by E q .  (111.26), where p now i s  a n y  f ini te  positive number.  

Let us stress again that the derivation of the Eqs . (111.24) and 
(111.25) does not constitute a complete proof of the generalized 0(2, 1) 
expansion theorem. What remains to  be done is to  formulate condi— 
tions on the c lass  of functions that are  to  be represented b y  E q .  
(111.24) , which would ensure the convergence of the representation. 
The most  general conditions of that  kind are global conditions on the 
functions to  be expanded, which would ensure the convergence of the 
representation (111.24) in the mean (in the sense of a suitably defined 
norm).  For physical applications it i s  , however, of greater interest 
to  find global and  local conditions on the functions t o  be expanded,  
which ensure point-wise convergence of the representation (111.24). 
Considerations of this  kind will be left  for future communications . 1 

Let u s  finally examine the connection between the formulae 
(111.24) and (111.25) , and the Sommerfeld—Watson representation of 
the amplitude considered in S e c .  11. At first  s ight  there appears to 



215 c . CRONSTRéM 

be a contradiction between E q .  (111.24) and the Sommerfeld-Watson 
representation. We can for instance move the integration contour to  
the right at  will in Eq .  (III. 24)  without changing the form of the repre— 
sentation, whereas in the SW—representation we pick u p  discrete 
terms (due to  the term cosec TIL in the integrand) when we move the 
integration contour to the right. This contradiction is only apparent, 
as  can be seen by using the freedom of adding non-contributing func— 
tions A (L) to the integrand in Eq .  (III. 24) (or to  the integrand in the 
SW—representation) . Let us  for simplicity demonstate this fact only 
for the case when p satisfies the condition (111.2). 

We shall then again assume that the amplitude f(x) is given 
by the fixed t dispersion relation (11.5). Inserting Eq .  (II.5) in Eq.  
(III .25)  we obtain 

2 °° , , 1 °° dx 01,“) 
b(&) ‘ W  I a d s  AS(S I ' D F J I  —X:-§_ 

4m 1 

_ Zs '  . E = 1 - m  + 16 (111.27) 

From the analytic properties of the QL-function follows the 
dispersion relation 

“-5339 (X) +1 d‘ ‘16:) l __L_ = 1 L _ 

1" I1 3‘ + g. sin m, { _1 g -'x-_ Q&(§)} (111.28) 

However, the first term on the right—hand side of Eq .  (III.28) does 
not contribute to the integral (III. 24)  since this term (together with 
the factor 21L+l) is of the type A (1,) discussed previously. We may 
thus replace the expression (111.27) b y  the equivalent expression, 

on 

b ' m é M  J“ 2 ds’ As(s’,t) QLG) (111.29) 
s m  TM. 4 m  

Using the relations (B. 140) we ge t ,  

. _ 1 _ -  Q / 2 I 
b'(&) = W e  m y  ds' AS(s',t) QLU‘mifi - 1 - 1e) 

4m’3 (111.30) 
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Comparing E q .  (111.30) with (11. 13) we see that there is perfect agree- 
ment between the generalized 0(2 , 1) expansion and the SW-represen— 
tation a l so  for Re 4’, 7! - % .  The argument outlined above can be 
carried through for a general positive value of p a s  well,  with unim- 
portant changes in detail .  

IV- may 
The main result of this paper is  the derivation of a general- 

ized 0 ( 2  , 1) expansion formula for asymptotically growing amplitudes . 
It was shown that the generalized O(2 ,1)  expansion coefficient is not 
unique , but that t o  each function to  be expanded corresponds a whole 
equivalence c lass  of expansion coefficients . Conditions which would 
ensure convergence (pointwise or in the mean) of the generalized 
0(2 , 1) representation are not given, but will be elucidated in forth- 
coming communications . 

We have further shown that the generalized 0 ( 2  , 1) expansion 
agrees with the Sommerfeld—Watson representation of the amplitude , 
defined without signature, in the sense that the expansion coefficient 
in  t h e  SW-representation (which i s  essent ia l ly  the  partial wave ampl i -  
tude) belongs to  the equivalence class  of 0(2  , 1) expansion 
coefficients . 
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EXPANSION THEORY AND THE LORENTZ GROUPS 
IN NON—CANONICAL BASES? 

N. W. Macfadyeni 
Physics Department 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

I. Introduction 
There are several reasons for studying the reduction 0(3 , l) 3 

0(2 , l): the intrinsic interess of the topic; the elucidation of the role 
of "second—kind" functions;1 the possible application to Regge 
theory; and, most pertinent to this symposium, the study of how 
things can go wrong if we choose an unusual basis. Since there are 
so many reductions of SO(4,Z) , it may be of interest to examine the 
unexpected behavior of such a well known group as SL(2.,C) in an 
SU(1 , 1) basis . 

The results I shall present are by no means all new: the 
reductions SL(2,c):> SU(1,1)2) and SL(Z,R) 30(1,1)3) have been 
treated by many people , and I cannot mention them all here . As far 
as I am aware, the actual use of the matrix elements of finite trans— 
formations in this basis to expand functions defined over the group i_s 
new, as is also the brief summary I shall give of the chain SL(2,C) D 
SU(1.1) 3 0(1.1).4) This is not the place to 'give explicit proofs or 
detailed arguments , and so these will be almost completely absent. 
They can be found in the references . 

II. The Reduction SL(2 ,R) 3 0(1 L1) 
Because this problem displays so many features of the higher 

dimensionality without also having its complexities, I shall go into 
most detail here and simply give an umbrella assurance that proofs 
for that more interesting case follow the same lines.1 I apologize to 
all those to whom this is quite familiar. 

Consider then a representation j of SL (2 ,R) . Instead of letting 
the operators act on special functions defined over a homogeneous 
space of the group-—i.e. , 

’rPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  

#Present address: DAMTP, University of Cambridge , England. 
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m = m Tr. r1 (0) Yj (0r) , (1) 

it is much more convenient to carry the j-dependence in the action of 
the operators Tr, and let the basis functions be simple. Following 
the Russian school, we set up our representation on a space of func- 
tions defined over a hyperbola we shall parametrize by Br: the T-label 
specifies the sheet, and B E (-°°, w) the position thereon, and the 
operators Trj are specified by 

[123: {IT (a) = In“ (sign x)” fT'm') (2) 
where the parameters are defined uniquely by 

( 1)°(ch 3/2 sh B/Z)<r11 r12) 

‘:-'1 I shB/Z chB/Z r21 r22 

I 

{.1 u 1 p oh B’/2 shB’/2 < X > ( > X -l shB’/2 ch B’/2 
I 

or, in matrix notation, epBr = kep B’ . The parameters q- and p are 
discrete; T = i1 only and p =§(1 — T). The label v is either 0 or 1, 
depending on whether the eigenvalues of Is in the given representa- 
tion are integer or half—integer. 

It is eaSy to check that this is indeed a representation of 
SL(2,R), and clearly we have diagonalized the generator K1, conju- 
gate to the boost B: that is , 

ET; mm) =rT(s +e') . (4) 
1 

The new feature is the appearance of the label rr . We can look at 
this in two ways, of which the simpler is algebraic: the operators 
A = I 2- K12 - x 2 and K do not form a maximal Abelian set but 
can 3be augmenged by a reflection R which in the standard homo- 
morphism of SL(2 ,R) and 0(2 ,1) has the significance of a change of 
sign of the Z-axis: 

R: (x0, X 1 ,  x 2 )  = 6:0, X 1 !  _x2)' (5) 
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The other way of regarding this is as a corollary of Gel' fand' s horo— 
spheric method——it is exactly analogous to the two terms required4) 5) 
to expand a function defined over a hyperboloid with a hyperbolic co— 
ordinate system.‘ In either case, (2) tells us that provided the repre- 
sentation j is irreducible, each representation p. of SO(1 ,1) is doubly 
degenerate therein. We shall treat principal series representations: 
if Re j = —% , we can introduce an inner product 

fim=%;z‘fffi)da (@ 

and then provided 13(3) belongs to a certain space of functions 19]., teh 
representation is both unitary and irreducible. 

Having thus set up a representation, we must choose a set of 
basis functions . Since the T are discrete labels, these are obviously 
also 2—vectors, and a convenient choice is just 

chum) = 

Obviously many other choices are possible: a different one with some 
advantages (particularly for the supplementary series of representa— 

tions) is to take the sum and difference of these, corresponding to 
1 , . __ I eigenvalues of the reflectlon R. Clearly, (CpM ' cpl,)- 5TTI6m—u ). 

The vectors actually do not belong to .99- because they are not square— 
integrable, but we can regard them as members of the dual space in 
the usual way. 

III. Matrix Elements 
Let us first consider what we have to calculate. It is found 

that the parametrization r = BbB’ covers SL(2 ,R) only with three 
choices of b: convenient ones are: 

.g/Z E/Z 

_e—§/2 

cos 6/2 sin 6/2 

(
F
 

m 

u (3) 

—sin 6/2 cos 6/2 
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with -°° < E < co, -21'r s 6 < 211. The first double coset class is 
exactly the analogue of the single one in the canonical parametriza- 
tion r = 6 E e ' , and we calculate its matrix elements in a straight— 
forward manner. Clearly these will have a pair of T—labels attached; 

indeed, by (2) we find 

[T]: :cp+]+ (a) = (e‘5 cha s/z - eg she 5/2)J Cp+(8') 
ET; mph" (8) = o 

5 she B/Z)j MB”) [Tjg ”(7]— (B) = (eg Chg B/Z - e— 

H; mm“ (a) = «sign mv (eg sha B/z - e'g one 3/2)j cp‘os'”) (9) 
where 

th s’/2 = e5 th 3/2 
th s”/2 = e'g th 3/2 
th B’”/2 = e'g coth e/z . (10) 

Notice that although the subspace rr = + is invariant, its complement 
'r = - is not so; for g < 0 the situation is reversed. Inserting the 
basis functions we find 

5% (sh 5/2)2j (th 5/2)‘i(”+“') x 

xF(—j+ip., —j+iu,’; —2j; —1/sha 5/2) (11) 

j++ =r§1+§n+lgr§ym+ll -j—1—— 
du'u(§) ru+m’+1)ru—1u'+1)du’u (a) (12’ 

dj_+ = 0 u,” (E) 

cos 1T(j+v/2)dit;(§) = cos TT(iu'-\)/2) dill-{1%) - cos n(iu-v/2)di;;:§3)) - 
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All this is valid fort? > 0; if 5 < 0 we find 

J'TT’ _ = j -T ’ -T  = —j—1T’T dwmlal) dw, (Iii) duh (lgl) . (14) 

Now notice what effect this decomposition has had upon the 
matrix elements . Consider in particular the integral defining (11): 

j ___ 
d 
u’u 

OD _ .  I _ . . II 

(g) =—lj‘ e 1” B (e5 ch2 8/2 — e g she [3/2)J e1“B dB . 
2H -00 (15) 

The term in parentheses is always positive; and since it has a mini— 
mum value of unity, the asymptotic behavior in the complex j—plane 
(or the I; ~p1ane) comes entirely'from the ends of the integration, at 
both of which it has behavior n. This agrees with (11). Similarly, 
(12) has specific and simple behavior of the opposite kind: only (13) 
is of mixed type. Closer examination shows that (12) and (1 l) are 
exactly the classical “second kind " functions for the group SL(2,R), 
analytically continued to imaginary values of m = in (that is , modulo 
irrelevant phase factors). The significance of (13) we shall see 
shortly. Notice that for g = 0 the first two matrix elements degen— 
erate into 6 (H‘H’) . 

We just mention that the matrix elements of the other double— 

coset Classes can be calculated similarly. We find 

- l I 1 - _ I 
mfg, :e) = (—1)V(° + ’ all], (a) , (16) 

and £1"?! (6) turns out” to be just a representation functiOn‘ of SU(2) 
after gnglytic continuation in j, u, (1’ . The diacrete series kt, t = i, 
of representations of SI.(2,R) behave similarly; but 0(1, 1) is not 
degenerate in any of these representations and consequently all the 
matrix elements vanish if sign (TM) 7‘ t. Those remaining are exactly 
the continuations of the principal continuous series matrix elements . 

Now let us return to (12) and (13) . Since these relate expres— 
sions involving j and —j—l , which label equivalent representations, 
we expect that a study of the intertwining operator will be useful. 
Recall that this is an isometric operator A: 191- -' 39_j_1 , which satisfies 

A V r e SL(2,R) . (17) 
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We ask how A transforms our pseudo—basis states , and find that the 
only possibility is 

11' T ~l-1'r 63 off '1'1'T A: = a 18 mu u cpLl u cpll ( ) 

with the relations 

a = (I._ E 
u -u a.“ 

+ _ V , "‘ _ , 

a ,  _ 1  = G. I 1 9  u ( ) -u u ( ) 

Further, we know an integral representation of A in the reduction 
SL(Z ,R) 3 E2: 

W 

[A:f] (x) “ I  Ix—x' I 41-2 signv(x-x’) f(x’) dx’ . 

Together with the requirement of is ometry, this specifies the intertwin- 
ing coe cients cc up to a pure phase; carrying out the integrations 
we find ' 

all =='-,=1'r_l I‘(j+iu+1)I‘(j-iu+l) cos 1T(ip. -v/2) 

c’u = 41-1 I‘(j+iu+l) 1"(j-1u+1) cos 11(j-v/2) . (20) 

In the canonical basis SL(2,R) 3 0(2) we should have found Aw:n = 
am ill-111d , where with this normalization4) 

a =1'r-1 I‘(;|+m+1)I‘(j—m+1) sin n(m-j) e-irr v/Z m (21) 

Now return to (17) and calculate the matrix elements when r 
belongs to the first coset class; we obtain two equations 

a 1++ = : -.'i-1-- a. u, du,u(<;) a, “01“,“ (g) (22) 

-j-1+- j++ -j—l++ 
I d = I I — d on H ”In (C) “u du Ll(Q) cu “I” (Q) (23) 

which upon inserting the values of a, o" are just (12) and (13). 
Clearly an analogous result holds for the second coset class--we just 
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use (16); but it fails for the third, which we called 9 , since then 
none of the function is of simple behavior in the j p—lane and none 
vanishes--and it was precisely the vanishing of dj + (g > 0) that 
gave the usefulness of (22). Therefore this class, which has no ana- 
logue in the decomposition SL(2 ,R) 3 0(2) , has no meaningful second— 
kind decomposition at all. This is of interest. 

IV. The Reduction @1243) :2 3110,11: 0(2) 
Everything here follows exactly as in the last section; we 

define a representation by 

-j —o—l j -c-1 , 
[ficfma ° X° CpT(V') (24) 

where I 
epva=kep v’ XEUOIG} -. 

v 6 SU(1, 1), a E SL(2, C), k is the complexification of the k of the 
13.31: section, 210 is integral and a imaginary. The complicating fea— 
tune is thatcp 7(v) must now be expanded in terms of the representation 
functions 911 _'lm(v) of sun, 1)--1. e. , in shorthand notation 

o 

T _ —‘ .1 ”11' f (v) —J'dM(j)Z sflOImM rm (25) 

where J'dMG) stands for summing 03$: the discrete and integrating, 
over the continuous principal series. There are exactly the same 
double coset classes as before, except for an important caveat we 

shall mention shortly, and we can calculate the matrix elements 
exactly as before. Thus , for g > O we obtain 

l"(j -L)I‘(m—X,)I‘(j+j o+1)[‘(j+m+l) 

o{F(-j o-L)I‘(-m-L)1‘(J'-l 0+1)I‘(j-m+l) 
m+jo 

x - _  — awn) - (—1) 

m+jo 

(m+¢,+1)t 0°+L+1)t , 

x E. F(m+j°-o‘+{,+2+t)tl (2 6) 

X P(m+jo+JL-j+t+l, L—o+1; m+j°+L-o+2+t; 6'25) 

- - ._ _ _ _ _ _ - . 'ZE X4P3(m-J.JOJ.-mJo-t.-t. 1:, m t , Jr, 10 t, m+Jo+l,e ) 
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and 

figs) = 6"“ (g) . (27) jml; 

Many more relations and identities can be found in R e f .  1; they all 
bear a strong similarity to those of the last section, although like 
(27) some are simpler because of the normalization of the basis 
functions . We need not give them here. Let us proceed at once to 

examine the asymptdtic behavior of (26) as if; —. on; from the defining 
integral we see thatthis is just e O , with no term in e‘go , and so we 
can just sum the leading terms of the series to obtain 

(figs -’ on) ~ {lé PRWH’I‘I‘L‘“) e"E(m+j0'O+l) (28) r‘b'e—q.+1)r(m-4U+l‘)(m+jio) I 

As we expected, this is exactly the form of a classical second—kind 
function, and once again closer inspection shows that is just the 

analytic continuation (in )Z, and j) of that function. Therefore (26) and 
(27) play exactly the role for SL(Z ,C) that their sisters (11) and (12) 
played for the real group. We can of course find the function dX+‘(E) 
directly by integration, but the result is very complex and it is better 

to use equivalence. Now the representations x = [jo,c} and —x = 
{—jO,—c} are equivalent, and we can define intertwining coefficients 

+ - _ 
on . = c. . =  d. 

J v J J 

_ 1  I "  _=_ I ( ) on J on] 

and deduce 

= d _ x _ _  a', dfmj(a)a am. (g) (29) 
x++ x+— _ 

aLi) - BL(_X)L dX mjfi) -BJ. (-X) db mjfli ) (30) 

where ‘B (x) = on- (x) )/on’ ..(x) The coefficients are very difficult to cal- 
‘eulate giftrejcztlyJ but can be found by examining the asymptotics of the 
d—functions: 

on]. = 11—1 I‘(j+o+l) l‘(o—j) sin no - 1'0) 
09']. =TT_1 l"(j+o+1) l“(o-J') Sin 11(0 - J'O) . (31) 
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Knowing these, we can express all of the matrix elements of the 
first two classes by means of (26) . Only the third double coset 

class 6 remains, and it seems impossible to calculate its matrix 
elements in this basis . 

V- $31.0) 3 SU(1.1)3 0(1 .1) 
But in this reduction” only the third coset class .ii amenable 

to calculation. The problem reduces to the previous reduction with 
different basis vectors, which are specified by the covariance condi— 
tion arising from the ambiguity in the phase of X in (24) together with 
the requirement that K1 be diagonalized: this implies that the basis 

vectors QpT(V) satisfy 

CpT (ell-GUS V eiBKl) = eijOTa CDT (V) eiU-B I (32) 

which means that cpT is a “cross—basis" math; element of SU(1 , 1) 
which we can label schematically as (O(2)| e1§K2 [0(1 , 1 ) ) .  Because 
0(1, 1) is degenerate in a representation of SU(1, 1) , we actually 
need another label t = £1 to specify which particular subgroup we 
mean, as in Section II, so that our pseudo-basis elements can be 
labeled a; j #16,) . These functions are properly defined and dis— 

cussed el.s§whene4)-—here We only note that they are complete and 
orthogonal in all labels . The representation functions of SL(Z ,0) 
therefore have two pairs of discrete labels onthem, corresponding to 
the pair of discrete operators 

T I (X0133) = (X0, X 1 ,  X 2 ,  _ X 3 )  

R : (x0123) = (X0: X1 1 “X2: ‘ X 3 )  I ( 3 3 )  

XTT' 
but, jp't 

lated explicitly for a belonging to the third coset 9 ,  and bear dis— 
tinct resemblances to (26), but of course are not of "second—kind" 
behavior at all. The reduction has the interesting feature , however, 

that apart from the matrix elements of the third coset classes in both 

SL(2,C) and SU(l, 1), all the other d—functions are of simple behavior 
in the group elements . This would seem to be the ultimate that we 

can hope for in the way of second—kind decompositions . 

and can conveniently be written 39 , (a). These can be calcu— 

VI. Expansion Thegzems 
At last we mention applications——which means expansion the- 

orems over the group. For SU(l ,1) D O(1 ,1) everything is well 
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behaved, although we do of course obtain two terms, exactly as we 
do in expansions over a hyperboloid. For SL(2 ,C) D SU(1 ,1) 3 0(2) , 
however, unexpected complications occur: specifically, we find that 

we must introduce new functions , that are not representation func- 

tions , for the coset class 6 if we are to obtain orthogonality and com— 

pleteness relations. The new function occurs only in the generalized 

partial wave projection formula, not in the inversion; for we still find 

f(a) = Z j'dMét)dM(j)Z jdx 19:21:11, (a) E , (34) 
'r'r' mm’ 

but now 

_ ~XTT' 3' -fdu (a) fltmjmwa) f(a) (35) 

where 3(a) = 9(a) if a is in the first two cosets, but is our new func— 
tion if it is in the third. The cause of this remarkable phenomenon 

is easy to find: it lies in the parametrization of the group. We set 

a = v b v’ , and this is in general a seven parameter set, but reduces 
to six if b is g or ge . Therefore a straightforward integral over v, v' 

and 9 will cover some cosets more than once, and so in deriving (35) 
we find at one point that a measure enters that is not the invariant 
measure over SU(1, l)-—and that therefore the projection function is 
not a representation function. Clearly the difficulty does not occur 
for SL(2,R) 3 0(1, 1); but it shows that the orthogonality of represen- 
tation functions is not something to be taken for granted , and such 

problems may be expected to occur for SU(2,2) in at least some 
reductions . 

Finally, let us note the suggestive similarity this has to the 
results) that a second-kind transform formula exists only for SL(2 ,R), 
whereas the inversion holds for both this and SL(2 ,0). 
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TWO-VARIABLE EXPANSIONS 
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m 

A review is given of a scattering theory based on two—variable 
expansions furnished by the Lorentz group. Arguments are given for 
using the conformal group in such a program, in order to make as 
much use as possible of relativistic invariance and crossing symmety 
simultaneously. 

Introduction 
' The aim of this paper is to give a short review of the present 
status of a scattering theory, based on two—variable expansions of 
scattering amplitudes , furnished by an application of the representa— 
tion theory of the homogeneous Lorentz group 0(3 , l) and to indicate 
how further developments of this approach to particle scattering lead 
us to a consideration of the conformal group of space—time, or rather 
the group O(4,2). 

Much of what is c 'nta-ined in this report was published in a 
series of original papers “ but was reviewed as a whole only in 
unpublished 1ectures,13) since which there have been further 
developments . 

The reason for writing two-variable expansions has been dis- 
cussed in the above publications. Let us just repeat the main argu- 
ments which are essentially the same as for performing any type of 

tPresented at the Symposium on De Sitter and Conformal Groups, 
University of Colorado, Summer 1 9 7 0 .  

$On leave from Nuclear Research Institute , Czechoslovak Academy 
of Sciences, P e2, Czechoslovakia, Present address: Department 
of Physics , University of Pittsburgh, Pittsburgh, Pennsylvania. 
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direct channel or crossed channel partial wave analysis. Namely, by 
using group theory to capitalize on the symmetries of the space-time 
and momentum framework, in which the reactions occur, we wish to 
treat as much as possible of the kinematics in a general fashion, to 
transfer the dynamics to the expansion coefficients, which then serve 
as a tool for making physical assumptions (similar to the reggeized 
partial wave amplitudes in complex angular momentum theory). The 
fact that all the dependence on the kinematic parameters (e .g. the 
Mandelstam variables s , t and u) is contained in known function 
should make it possible to describe a large amount of data in terms 
of a few parameters . Further, such expansions can serve as a tool 
for imposing general principles, like Lorentz invariance, crossing 
symmetry , unitarity , etc . 

We call the coefficients in the 0(3, 1) two-variable expan- 
sions "Lorentz Amplitudes" and the hope underlying all attempts to 
develop such a theory is that these Lorentz amplitudes are an ade- 
quate tool, having reasonable, and in some sense simple, properties. 

In Section I we give a brief exposition of the 0(3 , l) expan- 
sions which have so far been considered and mention some of their 
implications . Section II is devoted to a comparison between our ex- 
pansioxss arsd other two—variable expansions , existing in the litera- 
tum,19 '21 which are based on an SU(3) group. In Section III we 
show how the group O(4,2) appears in the context of two-variable, 
or more generally, multi-variable expansions and give some prelimi- 
nary discussion of O(4,2) expansions. 

I . gorentflroup Expansions 

A. Subgroup and non—subgroupjype expansions 
The general way in which we obtain expansions of scattering 

amplitudes consists of three steps: 
1 . We construct a mapping of the physical region of 

the Mandelstam plane (for two—body reactions) or its generalization 
(for many-body reactions) onto a homogeneous space of a certain 
group, in such a manner as to be able to consider the scattering 
amplitude to be a function of a single point in this space. 

2. We choose convenient coordinates on the homo- 
geneous space and find a complete set of generalized harmonic 

functions of the group. 
3 . Making use of completeness and orthogonality 

relations (or of a generalized Plancherel formula), we expand the 
scattering amplitude in terms of these harmonic functions . 

The first step depends on the frame of reference in which we 
consider the scattering and of course on the group and homogeneous 
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space which we choose. The second step--choice of harmonic func- 
tions-~is alsoin general far from unique . Indeed, givena group there 
are many different bases in which we can consider the group represen— 

tations . We obtain basis functions by considering complete sets of 

commuting operators , containing the invariant operators (Casimir 

operators) and other operators lying in the enveloping algebra of the 
group algebra and possibly also some further ones. The basis func- 
tions are then obtained as the common eigenfunctions of such a com- 
plete set of operators. If we limit ourselves to second order operators 
in the enveloping algebra then we find6 that for any given Lie group: 
only a finite number of such sets of commuting operators exists and 

that there is a one-to-one correspondence between these sets and 
coordinate systems , allowing the separation of variables in the La- 
place operator on the corresponding homogeneous space. Further, 

it was shown that the simplest types of separable coordinates each 
correspond to a set of operators consisting of the Casimir operators 
of all subgroups figuring in a certain reduction of the considered 

group to its subgroups, whereas more complicated coordinate systems 
of the elliptic type correspond to other second order operators . 

In the following paragraphs we shall consider the 0(3 , 1) ex- 
pansions, obtained by considering individual chains of subgroups and 
also a "non—subgroup" type of O(2,l) expansion. We shall limit our- 
selves to the two—body scattering of spinless particles, so that we 
have only one scattering amplitude, depending on four momenta p1 , 

. . . p4 , satisfying 

P1+p2=Ps +12. pf=mf mi>0 (1) 

1=1,...,4 

and the dependence on the momenta is restricted by the requirement 
of Lorentz invariance. Instead of moments pi it is convenient to con- 
sider the relativistic velocities vi = pl/mi, which for arbitrary masses 
satisfy 

3 v3=vo’3-v1 -v23.-v39=1 vozl 
(2) 

and this upper sheet of a two-sheeted hyperboloid is the homogeneous 
space under 0(3 , l) which we shall be using. 

B. The Q(3,1) 3 9(3) 3 0(2) Reduction 
This chain of group reduction corresponds to an introduction 

of spherical coordinates on the hyperboloid (2), so that the momenta 
can be written as 
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p1 = m1(cosh a1, sinh ai sin 61 cos cpi, sinh a1 sin 91 sin cpi, 

s1nh a1 cos 61) 

0Sa1<°°, OSeislT, OScpi<211 (3) 

In order to construct a mapping of the Mandelstam variables s , t and 
u onto the hyperboloid, it is convenient to make use of the center-of— 
mass frame. Thus, we fix a time—like vector, the total energy mo- 
mentum, to be p1+ p2 = ([5, 0,0,0). Further we choose the coordi— 
nate axes so that p1 and p2 are parallel to the third axis and the 
first and third axes lie in the scattering plane . 

Imposing these conditions , together with the conservation 
laws, we find that the components of p1 , p9 , and p4 in (3) can be 
expressed in terms of a:3 and 63 (cps = 0) so that the scattering ampli— 
tude can be written as 

f ( s l t )  E f(a3 I es) 5 f(V) (4) 

Le . a function of a point on the hyperboloid v2 = 1 (or a function of 
one of the four momenta). It is easy to see that given the above 
choice of a frame of reference the above parameter 9 = as is simply 
the c.m.s . scattering angle and a = a3 is related to the total energy. 
The relation of a and e to s and t for arbitrary masses was given 
previousrly.8)118 For equal masses m1 = . . . = m = %  the formulae 
simplify to 

2t 
COSha=\/.Sl cos e = 1 + fi  . (5) 

The basis functions can now be obtained as the common set 
of eigenfunctions of the Casimir operators of the group 0(3 , l) and the 
subgroups in the considered reduction, i.e. 

AL¢ OWE: amp) =o(o+2) (box, m(a.6.cp) 

L2 ¢om(a,e.cp) = L(&+1)¢0Lm(a.e,cp) 

IG ¢0Lm(aleICp)=m¢oLm(areICP) (6) 

Here AL, L2 , La can simply be realized as the Laplace Operators on 
the hyperboloid v2 = l, the sphere v0 = const and circle v.0 = const, 



TWO-VARIABLE EXPANS IONS 23 5 

v3 = const. Using spherical coordinates we can separate the vari- 
ables in  (6) and explicitly find the eigenfunctions. To normalize them 
is a somewhat more difficult t a s k ,  performed1 by us ing the methods 
of integral geometry.  Finally,  for scattering ampli tudes ,  depending 
on a and 9 only ,  we obtain the expansion: 

2‘ 6+1» 
f(a.6) = > (2mm (0+1)2 do 

6 do 

6+1 
1-‘('+1-L)L P—L—%(cosh a)  x 

sinh a %+o 

x PL (cos 9) (7) 

Add) 

“° TT 

N“ sinh‘a adaf sin e de f(a,e) x 
O O 

1 P—JL—é 
A/sinha %+c 

Strictly speaking, these formulae are only valid for functions 
satisfying 

_i_____11"(-o-1 
AN") 4 1"(-o— 1- -)L 

x (cosh a )  PL(cos 9 )  . (8) 

W TT 
fsinhaadaf sin e de|f(a,e)l3 < co (9) 

0 

L e  . for amplitudes corresponding to total cross-sections limiting to 
zero a s  s -’ w .  Such functions can be expanded in terms of the basis 
functions of the irreducible unitary representations of the principal 
ser ies ,22)  corresponding to c = —1+ip in (7) and (8) . In order to  in— 
corporate more general amplitudes , the expansions m u s t  be general- 
ized t o  non-unitary r egresentations , e . g .  by'bonsidering more gen— 
eral integration p a t h s )  in  formula (7) . Let us note that the reason 
why  only  one of the two invariant operators of 0 ( 3  , 1)  f igures  in  the 
set  (6) is that the other one is identically equal t o  zero for particles 
with spin zero. 

0 .  113‘s Q(3,lLD O(Z,1) 3 0(2) Reduction 
This group reduction corresponds t o  hyperbolic coordinates 

on the hyperboloid, in  which the momenta are 

pi = mi(cosh d1 cosh Bi’  cosh a1 sinh 61 cos cpi, 

cosh a1 sinh Bi sin cpi, sinh (1.1) (10) 

—ou<c,1<oo 0 5 8 1 < ° °  0Scp1<21T 
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Let us now consider the scattering in a brick wall (or Breit) 
frame, obtained by aligning a space—like vector——the momentum trans— 

fer p1 -pa with the third axis p1 —p3 = (O , 0 , 0 ,f—t) (we are considering 
t < 0 only). Further, let us choose the space axes such that 31 and 

'p's are parallel to the third axis and the first and third axes lie in the 
scattering plane. Such a choice of the reference frame is again suffi— 
cient, together with the conservation laws , to enable us to express 

all the momenta (10) in terms of one of them and thus to obtain the 
scattering amplitude as a function of a single point, i.e. f(s,t) = 
f(d ,B) = f(v) . This time the parameter or will be related to the momen— 
tum transfer and B will be related to the c.m.s . scattering angle in 
the crossed channel (in our case in the t—channel). The general rela— 

tion betweleé') (1,8 and s,t was given for arbitrary masses else- 

where, for m1 = . . . = m4 = % we have 
25 

1 —t (11) sinhd =/—t cosh B = —1 + —  

The complete set of commuting operators , determining the 

basis functions, again consists of the Casimir operators of all groups 

in the reduction, supplemented this time by a discrete operator, cor— 

responding to a reflection of the third axis . Diagonalizing these four 

operators as in (6), separating variables in hyperbolic coordinates, 
solving the equations and normalizing the obtained functions , we 

arrive at the expansion: 

_ '——l Yfi“ 5+1“ 2 i-L-Fl‘ I" a+¢+v21 

f(oc,[3)—16/2 1T £4” (%+l) cot rr/L dr, Iii-1) do Phi-Z“) ,, x 

Xcosh a {14+ (6 ,L) [IF—0- l(~tanh on) + {Pi—1mm (1)] + 

+A_(o,&) [IPLO— 1(— tanh a) — 1(tanh (1)1}L p (cosh B) (12) 

j' coshz add I sinh BdB f(d,B) 
~oo O 

{IP0+11( —tanh on) :l: P :  11(tanh on)}& P (cosh B). (13) 
coslh a. 
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Again, if the amplitude f(on,B) is square integrable with res- 
pect to the invariant measure over the hyperboloid, then only the 
unitary representations of the principal series will figure, i.e. L = 
- % + iq, c = —l+ip, p,q are real. The functions Flax) are Legendre 
functions on the (-1, +1) cut. 

D. The 013,113.22 3 0(2) Reduction 
Let us now introduce horospheric coordinates on the hyperbo— 

loid, putting 

= m (cosh +§r ze-Yi r e_Yi cos r e-\(1 sin ' p1 1 Y1 1 ' 1 Cpi’ 1 c"1' 
'"Y 

sinh Y1 + ”his 6 1) (14) 

_ m < Y 1 < a o  Osri<°° O s c fi < Z | T  . 

We shall consider the scattering in a frame of reference which 
we call the “light—velocity system. " Since it should be adequate for 
the reduction into E2 , the group of motions of a Euclidean plane, 
which is the little group of a light-like vector, we wish to obtain a 
scattering frame by standardizing a light—like vector. A convenient 
choice, satisfying K"a (s,t) = 0, K(s,t = 0) = p,,, -p3 is: 

me _A m: “HQ ‘1: 
K(s,t) = [)4 E e - P2 coshA =—2—ma—m— (15) 

Putting K(s, t) = (1), 0, 0 ,w), where w is an arbitrary scaling 
constant, choosing 013 as the scattering plane and putting the third 
axis parallel to p; and p4. , we find that we can again express all y 
and :1 in (14) in terms of say 1/1 and r1 , thus obtaining f(s, t) = f(y,r) 
= fly). This frame of reference was so constructed as to be meaning- 
ful particularly for nonequal mass scattering, when m1 74 me and/or 
m2 75 m4 . The relation between s t and y,r is quite complicated and 
is given in previous references. )I The complete set of commuting 
operators consists of 

A L I  e = ( K 1  + L z ) g +  (K13 _ L 1 ) 2 l  16! 

where K1 are boost generators and Li rotation ones . Writing eigen- 
function equations similar to (6), separating variables, normalizing, 
etc. , we finally obtain the expansion formulae 
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an 54-11: 
1 Y Y f(y,r)=E1_£kdkg 1(2+1)3do 110+” A(o,k) e K0+1(ke ) ]°(kr) (16) 

A(o,k) =77?) Lyme—ZY d'y £rdr f(y,r) eY K_o_1(keY) Io(kr) (17) 

where again a = —1+ip, p real for square-integrable amplitudes . Here 
]o(x) are Bessel functions, Kv(z) Macdonald cylindrical functions. 

E. Dim sion of the Subgroup Type. Bxpgnsious 
The maximal subgroup in all three above expansions plays an 

important role. Beyond simply being a subgroup of the 0(3, 1) group, 
which acts as the group of motions of the space of independent kine— 
matic parameters and thus generates the expansions, the subgroups 
also appear as little groups of the Poincaré group, leaving a certain 
timelike, spacelike or lightlike vector invariant-—namely that vector, 
the standardization of which determined the frame of reference . Due 

to this dual role of the subgroups our two—variable expansions incor- 
pornte the 0(3), 0(2, 1) and 32 little group expansions?3 )"25)Indeed, 
formula (7) can be interpreted as the standard direct channel partial 
wave expansion, supplemented by an integral expansion for the partial 
wave amplitudea (3). Formula (12) similarly represents an 0(2, 1) 
expansion, i. e.a11:‘he integral of Regge pole theory, together with an 
integral expansion for the reggeized partial wave amplitude a(&, t) 
(for t < 0). Finally the expansion (16) can be viewed as the E2 little 
group expansion for t = 0, (m1 75 m‘.a , m2 75 m4) and as its generaliza— 
tion for t 75 0, again supplemented by a further expansion of the cor— 
responding) partial wave amplitude . The 0(3, 1) little group expansion 
of Teller2 )for t=0, m1=m3 , m2 = m (elastic forward scattering) is 
also contained in the two—variable approach, namely as a special 
limiting case of expansion (12) . The relation between these two dif— 
ferent 0(3 , l) expansions is considered in Refs . 9 and 18. 

Thus , the 0(3 , l) two—variable expansions incorporate the 
Poincare little group expansions completely, so that they d o  make 
full use of relativistic invariance and in particular should be useful 
for solving problems connected with various types of kinematical 
constraints upon amplitudes. For particles of spin zero the only prob— 
lems of this sort are connected with nonequal mass scattering at t =  0. 

For a. discussion of these problems we refer to previous publica- 
tions. . 18 In particular, a consideration of nonunitary represen— 
tations makes it possible to incorporate Regge poles, branch points 
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and cuts , etc. in the expansion (12). The expansion for the regge— 
ized partial wave amplitude 

1: cos EL 6+1” = a av”) emu cosha. J;_(°+1)2d0 

+ — —1 — -1 ' {A (o,&)l:[PLU (—tanh or) + IPJLU (tanh 0)] + 

+ A'(c,u[u>f‘1 (—tanh or) — Plo'l (tanh 00]} (18) 

following from (12) makes it possible to relate the singularities of 
a()(,, t) in the complex X; plane, 1. e. the divergencies of the c-‘integral 
in (18), to the behavior of the Lorentz amplitude: Ai (Opt). In this 
formalism Lorentz poles, i. e. singularities of Art (0, I.) at finite values 
of lo] can only lead to fixed singularities in the L-plane whereas 
moving singularities, e.g. Regge trajectories depend on the behavior 
of the Lorentz amplitudes for Im a a ice, Re 0 = 6 = const. 

Let us just mention that if we add Mandelstam analyticity to 
the assumptions about f(s ,t) , then the 0(3 , l) 3 0(3) expansion in one 
channel and the 0(3 , l) 3 0(2, 1) expansion in the other can be proved 
to be analytic continuations of each other and the Lorentz. amplitudes 
in the two channels will have definite analytic properties. 15 

F. Exggnsions of the Elliptic Type 
All three two—variable expansions considered above were of 

the subgroup type and the stress was on the incorporation of the little 
group formalism, i.e. on the utilization of relativistic invariance. In 
this paragraph we shall mention a different approach in which we make 
use of group representation theory in an "elliptic" basis , not related 
to any subgroup. 

The motivation for going into such complications is that we 
wish to write crossing symmetric expansions, i.e. expansions which 
converge in at least two channels and which have particularly simple 
properties with respect to crossing symmetry. Thus , let us consider 
a crossing symmetric reaction-—one that coincides in the s and t 

channels. To ensure properties like 

f(s,t,u) = if(t,s ,u) 

we shall first construct a specially symmetric mapping of s ,t onto 
some coordinates on, B on a hyperboloid and then expand the ampli— 
tude f(d,B) into such basis functions of the group representations , 
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that they have the same type of dependence on a and B . For all 
details we refer to the original paper. 

For mathematical simplicity instead of using an 0(3 ,1) hyper— 
boloid as above , we shall make use of the fact that with our usual 
choice of the scattering plane, all momenta have zero components in 
the direction of the second space axis , s o  that we can consider the 
velocities as lying on an 0(2 , 1) hyperboloid \b B-v19-v 3 = l  . Let us 
parametrize this hyperboloid using elliptic functions26 

Vo = - cn(d.k) cn(B.k). V1 = 1 sn(a.k) dn(B.k). v2 =1dn(d.k)sn(8,k) 
(19) 

where we put the modulus of the elliptic functions k = l/fZ and take 
the variables in the region 

a. 6 (1K, iK+2K) B 6 (1K, 1K+2K) (20) 

where K = [1"(%)]a/4f11 is the real and the imaginary period of the 
Jacobi functions . 

We shall construct a frame of reference , in which an  inter— 
change or, - B, B -. ZK-c corresponds to pg .. -pa , pa -' -pg I In " D1 1 
p4, -‘ p4 . Such a frame turns out to be a specifically oriented brick— 
wall system, in which we have (for m1 = . . . = m4 = 1): 

p1 = (-cn3d1 , isncx,1 dnor1 , 0, idntzur.1 dml) 

pa = (—cm a ,  ism. dnB, 0 ,  idm snB) 

p3 = (-cnd a ,  -i dnc, snB, 0 ,  —1 3m (1118) 

p4 = (-cn"‘a,1 , —i snot,1 dmt1 , 0, —i snot1 dndl) (21) 

where 

dml =‘/;2 [ 1  _ M 1 2 § m a f _  1}% (22) 

The scattering amplitude is now a function of the variables a. 
and [3, L e .  of a point, say pa on an O(2,1) hyperboloid. It is a 
simple matter of algebra to  show that 



TWO-VARIABLE EXPANS IO NS 2 4 1 

és=1-§-y(1—x§) 
i» x = s m d n a + d m  snB 

é t =  1 '§ ‘+Y(1 3%) 
Y = cm a 

%u = x2 (23) 

and i 

a. _ ‘s ' ' ‘ stu§s+t-st) (24) 
° n 4 { 3 } _ '  4(s+t) i i l :  s + t  ] 

The s-channel physical region now corresponds to a, 6 (1K, iK+2K) , 
B 6 (1K, iK+2K), the t-channel to  a, 6 (1K, iK+2K), B e (—iK, —iK+2K) 
and the u-channel, which does not enter symmetrically, to  a. 6 
(1K, 1K+2K), B E ( 0 ,  21K). 

The Laplace operator for the 0(2, 1) hyperboloid allows the 
separation of variables in the coordinates (19) and the separated 
elgenfunctions will be eigenfunctions of the operators:6 

All! = (133- K13- KQBNJ = —L(2L+1)¢ (25) 

L¢=(K13-%Laz)¢= hr 

X4! = P4! 
E rifim) 

Y\ll = q r  (26) 

where p , q  = i1  and X , Y  represent reflections of v1 and v2 , res— 
pectively. Upon separating the variables in (25) and (26) and solv— 
ing the obtained equations, we find 

figs 3) =A" he) A 31(3) h +5 =m+n (27) 
where A§h(z) are  Lamé f u n c t i o n s , 2 7  symmetric or ant isymmetr ic  with 
respect  to  z = iK + K for p = +1 or —1 a n d  standardized a s  

A+(1K+K) = 1 A+' (iK+K) = 0 

A_(iK+K) = o A"(1K+K) = -1 . (28) 
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Expansions in terms of these functions can be obtained by 
making use of the method of horispheresZB) (essentially to obtain 
normalization and completeness relations). Leaving out all the 
detailsfiw) we finally obtain an s—channel expansion (for square 

integrable amplitudes): 

81 a%+i°° 
is (a, s) = —2—ild(ZL+1) cotrrL E ENph hwy”) h) [Ex 

“5‘31 °° 
h plq 

>< {q<L,h) Aihm Afgfim) +q(L,E)A:I~1(a)/\gh(f3)} (29) 

a, 6 (1K, iK+2K) a 6 (1K, iK+2K) 
with 

Xq(L,h) = —%jj‘da dB(cn30c + cnzB)/\ W M  we) fs (at B) 

iK+ZK 

'I_1\TLh]l=-rK|AEh(Z)IBd—Z_ 

M+(L,h) =/?12- A:h(z) (icnz)_ _ dz 

iK+2KA_ 

ALh 

iK+2K 

AZh 

( R M — ( E M J ‘  (z) (icns’ 3 snz dnz dz 

+_ (Z)(ia) ‘2 snzdz 

iK+2 K 
=‘&—+211 A_ (z)(icnz)_)L—2(idnz)dz (30) 

1th 

Again, performing1 a lot of algebra, we can show that the cor— 

responding t—channel expansion is 

co 

t N 2 
f (0L,B)= 311172£_:f(%+1) cot Tm L. Z q  Nihlp ll L, h)| 

h m 
p p q " qp N p” q _~ 

{B (lL,h) Amen) A&E(ZK—B) +B(L,h)ALh(°")ALh(2K 3)} (31) 

on 6 (1K, iK+2K) E e (—iK,—1K+ZK) 
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pq iK+2K iK+2K t 
B (ah) = sq I don j dB(cnac + ones) Aihm Agfifi) f (¢.2K—B) (32) 

1K 1K 

Note that the sums over h in (2 9) and (31) are over a discrete infinite 
set of eigenvalues, determined by the orthogonality conditions for 
fig (2). It is crucial that (29) and (31) are expansions over Lamé 
fimctions defined over the same intervals , so that they both converge 
simultaneously . 

For a crossing symmeh‘ic reaction we must have 

fs(s,t)=:|:ft(t,s) i.e. fs(d,B) =ift(c,,2K—B) . 
Thus, we shall have "term-by—term" crossing symmetry, if we simply 
put 

qcm) = iqom). (33) 

Let us stress that so far no use has been made of any analytic con- 
tinuation in s and t or a and B . This is a problem currently under 

inve stigation . 

II. Two—Variable Expansions Based on an SUCS) Group 

A. The Expansions and Crossing Symmetry 
Completely different two-variable expansions of fear ering 

amplitudes have been suggested by Balachandran et a119 '20 and by 
Charap and Minton.21) Both of these expansions were written for 
amplitudes in the nonphysical region, namely the inside of the Man— 
delstam triangle, and originally for reactions involving four spinless 
particles of equal mass (recently they have undergone much further 

development—-see Ref. 29 and references contained therein). 

The main purpose of these e2§pansions (we shall mainly follow 
Balachandran's approach)1 ),20 '29 is to write expansions by means 
of which crossing symmetry, i.e. symmetries of f(s,t,u) with respect 
to permutations of s,t and u, can be imposed in a simple and general 

manner. 
Similarly as the 0(3 , 1) expansions, these expansions are 

generated by a second order differential operator (9 in the variables 5 , 
t and u, which is specifically so constructed as to be symmetric under 
arbitrary interchanges of s,t and u to commute with the angular mo— 

mentum operator L3 in the s-channel (and hence in all channels). 
Such an operator is determined uniquely to be 
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= 3 2 +  8 e L s + L t  Lu (34) 

It is now a simple matter19) to find the common set of eigenfunctions 
of G and L2. putting 

e S:(s,t) = (n+t)(n+JL+2) s:(s,t) 

3 L = 1, 
LS Sn(s,t) L(L+1) Sn(s,t) (35) 

Solving (35) in the nonphysical region 0 S s S 1, 0 S t S 1, O S u S 1 
(m1=. . .=m4=%) we find that a complete set of solutions can be writ- 
ten as 

(2L+1,0) 
L — L . = .21 Sn(s,t) — (1 s) Pn (25 1) P&(zs) zfi 1 +s-1 (35) 

Le. a product of Jacobi and Legendre polynomials (n,«f,= non-negative 
integers). Any scattering amplitude, square integrable over the Man- 
delstam triangle with the measure (1 —s)dsdz can be expanded as 

f(s,t)= E 2(n+&+1)(2&+1)a:8:(t) (37) 
n,)(,=0 

*‘=%§1(1- )d 1d r( t)(1—)*’P ‘2*+1'°’(2 1)P( ) (as) an o 3 s}; z s, s n 5- L25 

The important feature of (37) is that the “partial wave cross- 
ing matrices" for such an expansion will be block-diagonal. Indeed, 
if ye write a similar t—ohannel expansion in terms of the functions 
I (s ,t) obtained by interchanging s and t in (36), We find that any 
0 fficient an’? in the s—channel can be expressed in terms of a finite 
number of coefficients bNL in the t-channel expansion, because 
Sn‘z'(s,t) and T I'(s,t) are both eigenfunctions of the operator s. It is 
precisely this lock~diagonality of the crossing matrix which makes 
it possible to impose crossing symmetry simply. 20) 

Further, let us note that from the group theoretical point of 
view the operator 9 can be interpreted as the second order Casimir 

operator of SU(3) and the functions (36) are basis functions of irre— 
ducible representations of S U ( 3 )  , corresponding to the reduction 

SU(3) D SU(Z) D u(1). 
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Generalizations of thse results to physical regions were 
suggested using the group SU(Z ,l)19) or a transformation from sums 
to integrals in (237) along the lines of the Sommerfield-Watson 
transformation. 1) 

B. Comparison of Lorentz Group and S U ( 3 )  Expansions 
The simplest way to make a direct comparison between the 

O(3,1) and SU(3) expansions is to consider both for equal masses 
and inside the Mandelstam triangle. Indeed, consider the O(3,1) 3 
0(3) 3 0(2) expansions for m1=. . .m4=% and 0 S s,t,u S 1. We can 
put 

2t 
cosa=fs cost=J=1+sT1 

and identify a and a with the spherical coordinates of a point on a 
sphere, instead of a hyperboloid. We then obtain an 0(4) 3 0(3) 3 
0(2) expansion 

a. Q s 
“W =? Z —22$1-%L—L‘m“ii1§)'<N+1)} Am ' 

n=0 L=0 
1 -L% 

' m  Pfi+n(cos a) PL(COS 6) (39) 

= m rim * " a " . AM 211 411 I‘(N-I-.+1) (N+1)} josin ada£sine d6 

‘L 
‘ f(s,t) filfi P§+n(cos a) P&(cos e) (40) 

The 0(4) and SU(3) expansions can now be directly compared 
and it is poSsible to expand the two sets of basis functions in terms 
of each other.13 The results are quite complicated and we shall 
not repeat them here. The partial wave crossingmatrices can also be 
calculated once and for all and expressed in terms of generalized 

hypergeometric functions. However, since the Laplace operator on 

the 0(3 , 1) hyperboloid or 0(4) sphere, generating our expansions , is 
not symmetric in s ,t, and u and is thus a different operator in each 

channel, the 0(4) crossing matrices will not be block diagonal, so 
that no simple relationship between the Lorentz amplitudes (or 0(4) 
amplitudes) in the two channels is obtained. 
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To summarize: The 0(3 ,1) expansions make full use of rela- 
tivistic invariance by completely incorporating the little group for— 
malism, they are written for arbitrary masses and for s ,t,u in the 
physical regions . Crossing and analyt icity can be incorporated 

either by using "elliptic" expansions , or by making use of the con- 
nection between the 0(3) and 0(2 , 1) reductions . 

The SU(3) expansions have particularly simple properties 
under cros sing; however they are in general not related to little 
group expafigjons . They have been generalized to arbiu‘ary masses 
and spins , however at the price of giving up their group theoreti- 
cal interpretation. Most of their useful properties were obtained 
inside the Mandelstam triangle and a continuation into the physical 

region involves new complications . 

It would obviously be of interest to write expansions, incor- 
porating the useful features of both approaches . If these are to be 

based on group theory, then the corresponding group must contain 
all the little groups of the Poincaré group as subgroups on one hand 

and should have a second order Casimir operator, identifiable with 

the symmetric operator (9 , discussed above , on the other. 

Two remarks are in order at this point. First--the group 
SU(2,1) cannot be used in such a program, since it does not have an 
Ez subgroup,” so that it cannot incorporate the complete little group 
group formalism. Second--a second order operator (9, commuting with 

angular momenta in all three channels , or even in two of them, exists 
if and only if all four masses are equal. 

III. Remarks on Possible Cbn’formal Group 3 %  nsions 

A. General Remarks 
In this section we present some arguments indicating that the 

conformal group or the group O(4,2) can be used to generate expan— 
sions of scattering amplitudes and that these are of interest for sev— 
eral reasons: 

1. The group O(4,2) is a candidate for the two-variable 
expansion program discussed above. Indeed, since it contains the 

whole Poincaré group as a subgroup, it obviously also contains all 

the little groups , including 0(3 , l) . Further, as we shall show below, 
the symmetric operator 9 can be related to the Laplace-Beltrami oper- 

ator AC on an O(4,2) hyperboloid. 
2 . Two-variable expansions should also be developed for 

reactions involving particles of zero rest mass . Proceeding along 
lines analogous to Section I we would obtain the scattering amplitude 
as a function of a point on the cone v02 — V12_ vgz— v32 = 0. Scale 
and pure conformal transformations in this space 
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+ )\. 
A , m mum 

V = V V = 41) 1 + 2 W + (1" VA ( H L1 u (1" av VX 

do not leave any hyperboloid invariant; they do, however, transform 
the cone vuv“ = 0 into itself. 

Thus for zero mass particles and possibly even for massive 
particles at very high energies it would be of interest to write expan- 

sion in terms of the basis functions of the irreducible representations 
of the conformal group. 

3 . The third possible application of O(4,2) expansions which 
we have in mind concerns five point functions , i .e . production ampli- 
tudes for reactions of the type 

1 + 2 - ' 3 + 4 + 5  (42) 

Indeed , if it was possible to map a physical region of a two-body 
process depending on two variables , onto an 0(3 ,1) or 0(2 , l) hyper- 
boloid, a similar mapping for reaction (42) depending on five inde— 
pendent parameters , would require at least a five dimensional space. 
A homogeneous space of the O(4,2) group would obviously serve this 
purpose and the Laplace—Beltrami operator on such a space would 
serve to generate five-variable expansions (or expansions of any 
lower dimension, if desired). 

B. The Reduction 0(4,.2) D 0(4) X 0(2) 
Let us introduce spherical coordinates on the hyperboloid 

vog+v53—v13—v23—v33—v43= 1 (43) 

putting 

v0 = cosh A cos ‘1: v1 = sinh A sin a sin 9 cos cp 

v5 = coshA sin 11: v2 = sinh A sin a sin 9 sin CO 

v3 = sinh A sin a cos 9. 

v4 = sinh A cos a (44) 

With 

O S A < ° ° ,  OSaSTl', o s e s T r ,  0S1||<2Tr, OScp<211 (45) 
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these cover the whole hyperboloid. 
The Laplace —Be1trami operator can be written a s  

A _ 1 A cosh A sinhaA—a— +-—1 .5: - - -.—-,.—-—5— _ 
C gosh-A sinh A 8A 6A coshaA 3W9 

_1_ ” 1 .5. . a j. _____1_____ _a__ _a_ 
“1'1t Sinaa aa sm a a a  +sin3‘asine‘ 256 Sin 9 as + 

1 i 
+' sin3 a sin“ e 3c } (46) 

The basis functions corresponding to the considered reduction are the 
eigenfunctions of the set  of operators A C ,  A s  ( the Laplace operator 
on the sphere v19 + v33+ v33 + V42 = sinh 3A,  L2 (the angular momen— 
tum) and the generators of one parameter rotations L12 and L 0 5 .  They 
can be written a s  

(A ,a , e  .CDMII) = N tanhNA cosh-L-4A - CPLNJLmk LNLmk 

' F{%(-k+N+L+4), %(k+N+L+4); N+2, tant}° 

46/5 
1 P (cos a )  Pin(cos e )  e1m an e 

A/sin a §+N 

where L = —2-iA , A real corresponds t o  unitary representations of the 
principal continuous series and L= - l  , 0  , 1 , 2  , . . . to discrete series . 
These functions, their normalization, range of parameters, e t c .  have 
been discussed by Limic et a 1 . 3  

Let us now compare the operator A c  of (46) with the symmetric 
operator (9 of (34). Introducing the usual s—channel c . m . s  . variables 

ik 11: (47) 

cos 9=1+82Tt1 c o s h A = / s  (48) 

it i s  e a s y  t o  check that 

1 B - a a 
G 4 'COBhA Sinha:A 3 A  C O S h  A s m h  A B A  

1 1 A . a 
+ sint sin e b e  S m  9 "e" . (49) 

Thus , we have 
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Ac = - 49 

provided that we keep a, co and q: constant in (46) and put sin? = %. 
Only a certain subset of the basis functions (47) will also be 

eigenfunctions of the operator 6;, namely these satisfying N(N+2) = 
4&(L+1), i.e. 

N = 2 L  or N = - 2 & - 2  . (50) 

These functions will constitute a complete basis for a Hilbert 
space of square integrable functions, depending on the variables A 
and 9 only. 

The 0(3) subgroup of 0(4) in this reduction chain, producing 
the angle 9 , identified with the c.m,s . scattering angle, will figure 
as the little group of p1 + p2 in the corresponding two variable 
expansion. 

C. 1h} Reduction 0(4,2)D o(2,2). x 0(2) 
Let us now introduce coordinates on the hyperboloid (43), cor 

responding to a reduction into 0(2 ,2) X 0(2) and to the further reduc- 
tion O(2,2) 3 0(2, 1) D 0(2): 

v0 = cosh A cos a cosh B v1 cosh A cos a sinh B cos cp 

v5=coshAsina vg=coshAcosasintincp 

v:3 =sinhA 0051) 

v4 = sinh A sin¢ (51) 

With 

-°°<A<c° 0Sa<211 0 s B < e o  OScp<2Tf 0 s ¢ S n  (52) 

these coordinates cover the whole hyperboloid. The Laplace—Beltrami 

operator in these coordinates is 

- 1 a 3 _ 1 33 

— 5 — — — , ‘ — .  

Ac sinh A cosh A 3A sinh A COSh A BA SWA Mia + 

a B l a a 
+——.—— _ 2 _ _ ‘ _ __ 
ceshaA { —  cos2 a aa cos a aa £39,393 sinh 5 55 Sinh 3 BB 

1 33 
_ cosza sinh2 [3 Eggs} (53) 
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The basis functions. in this reduction will be the eigenfunctions 
of AC, A (Laplace operator on the space v03+ v53 - v13- V23» = 
cost), H3 (Laplace operator on the space voa- V l a “  Vg‘3 = 
cosheA cosz a )  , of the rotation generators L12 , L3 4 and of two addi— 
tional discrete operators R and  S , where R corresponds to  a n  inversion 
of Va and v4 and S t o  a n  inversion of v5 . 

Let u s  compare A c  of  (53)  with the symmetric operator 9 .  This 
time we use the t-channel brick-wall system variables 

sinh A =/-s cosh B = -1 + 1—:— (54) 
and transforming e to  these variables we get 

_ 1 a . a B - —.*.—‘—.'—,r" — — 4 amp Acosh A BA smh A °°Sh A 3A + 
1 _B_ e 

+ coshQA sinh B a B sinh B a B (55) 

We now see that (53) and (55) satisfy A c  = —4t§, if we keep a ,  cp and \y 
constant in  (53) and put cosza  = % .  

Thus , with similar restrictions a s  in the  previous paragraph we 
c a n  write O ( 4 , 2 )  expansions f o r  func t ions  depending on A a n d  B o n l y ,  
in terms of the eigenfunctions of operator (9. The O ( 2 , 1 )  subgroup in  
the reduction f igures  a s  the little group of the momentum transfer 
p1 - pa (for t < 0)  and will thus furnish a Regge—type expansion in 
terms of the Legendre functions Pucosh 5 ) .  

IV. Conclusions 
We have given a brief exposition of some recent and older 

work on two—variable expansions  of relativistic scattering amplitudes.  
In particular we have shown how the desire to make maximal use of 
relativistic invariance a n d  of crossing symmetry leads us t o  a con— 
sideration of the conformal g roup ,  which in this  approach a l s o  comes 
up  in  other connections (zero mass  particles, production ampli tudes) .  
Thus , t o  the many reasons why the conformal group i s  of i n t e res t ,  we 
add a further one—an interest in harmonic analysis  on this group.  As 
we have s t ressed ,  the specif ic  form which the harmonic analysis  takes 
depends crucially on the parametrization of the homogeneous space 
under  considerat ion,  a n d  i s  of greates t  physical  s ignif icance . Since 
each different reduction of a group,  s a y  in our case the group S U ( 2 , 2 )  
leads t o  a d i f ferent  parametrization and  thus  a d i f ferent  expansion,  a 
detailed study of the subgroup structure is necessary. Indeed a 
classification of a l l  subgroups of SU(2  , 2 )  has been initiated173 and 



TWO-VARIABLE EXPANSIONS 2 5 1 

such a classification of one parameter subgroups of general U(p,q) 
groups will be presented by I. G. Belinfante at this conference. 
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Summary 

The conformal invariant quantum field theory of massive parti- 
cles uses  tensor fields defined on the 5-dimensional manifold of 
“spheres" in space -time, which allows the usual T-exponential defi-  
nition of the S operator. These irreducible unitary representations 
have continuous mass spectra, typically ( 0 ,  a ) .  It i s  suggested how 
the "mass selection rules" given by the Feynman diagram rules might 
pick out certain values of the incoming and outgoing masses  in a 
dynamics-dependent way,  and thus explain the observed quasi- 
discrete mass spectrum. Exactly the same mathematical mechanism 
is responsible for avoiding causality troubles coming from the fact 
that time—like and space—like intervals can be exchanged by the con- 
formal group . 

I .  ,grelim‘ mar! 
In my opinion, in spite of its many tantalizing promises of 

physical relevance, the conformal group on space-time has not yet 
made contact with physics. The central problem is  mass .  It has 
been known for a long time that the theory of a mass less  f ie ld admits 
conformal invariance . But s o  do  massive particles, provided they are 
grouped into one of the massive conformal IUR's (irreducible unitary 
representation), each of which has a continuous mass spectrum 
(either 0 < m < an or -on < m < 0 or both) in full accord with O'Raifear- 
taigh‘s Theorem. It is just these continuous mass spectra which pose 

tPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  
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the central problem: granted that the conformal group is physical, 
how is the observed, apparently discrete, mass spectrum to be recon— 
ciled to it? 

Massive conformal IUR's can be treated in momentum space 
without introducing new physical concepts . But to treat them in posi— 
tion space, space—time alone is inadequate, one must enlarge it to 
the 5-dimensional space of all "spheres" in space—time, character- 
ized by their centers x” and radii x. That sphere space is the natural 
domain of the conformal group is old mathematical news, dating from 
the classical work of Felix Klein, Sophus Lie, Liouville, and other 
geometers about a hundred years ago. What is meant is that if one 
treats the spheres as points Xa (a = 0,1, . . .5) in a 5—dimensional 
projective space, then the conformal group is characterized as that 
subgroup of the projective group which preserves a certain quadric 

GabXaXb = 0 (I. 1) 

The 4-dimensional locus (I. 1) represents the null spheres (x = 0), 
L e  . , space—time itself. Non-null spheres are carried into other non— 
null spheres such that the angle under which they intersect is pre- 
served. The new physical concept s o  introduced is the fifth coordi- 
nate x . 

One can solve for IUR's of g (the conformal group) as tensor 
fields Ila. . . (x,x) comprising a set of spin values over this 5-dimen- 
sional manifold. The main virtue of these objects is that one has a 
natural way to build the g-invariant S operator out of them, namely 
as the T-exponential of an interaction Lagrangian polynomial in these 
(quantized) fields integrated over the whole 5-dimensional manifold. 
This permits a study of g-invariant particle theory in perturbation 
theory via the battery of Feynman diagrams . The problematical nature 
of x then gives no trouble since it is integrated out; the external 
lines of the diagrams bear the familiar five labels pL1 (4—momentum) 
and m (mas-s) connected by p2 + m2 = 0. 

I do think that this 5-dimensional sphere space will eventually 
find a physical use. The fifth "degree of freedom" is sort of a gauge 
space, or space of all lengths , and x should mean something like the 
ratio of the length unit one has chosen to some standard meter stick 
chosen once and for all. The dilatation subgroup 

xuacxu, x-wx; o =const. > 0 (1.2) 

then means a uniform change of unit over all space-time, while the 
subgroup of special conformal h‘ansformations represents a non- 
uniform, or local, change of unit restricted only by the demand that 
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light propagation in the new, regauged coordinates continues to be 
governed by sxa- t2= 0. 

In view of the popularity of studying "scale invariance " at 
the present moment, it is worthwhile to make a few distinctions 
which are usually lost in the current brouhaha. First, the group (1.2) 
_i_s a change of unit. We know this because for example the field 
equations for the ya. . . (:91) have the mass operator B)‘ in place of 
the various fixed masses of ordinary (Poincare-invariant) field theory. 
Thus (1.2) induces the change m - c‘1m on all masses (and corres- 
pondingly for any dimensional quantity, where we always hold h = c 
= 1). Again, the explicit solutions of these field equations show that 
. and m are conjugate to x“l and 1 respectively, and one can expli- 

--.c11i1y verify that (I. 2) induces the transformation pH -' 0'1 p” , m - 
c m. 

Secondly, change of unit i_s an exact symmetry of all our phy— 
sical laws; i.e. , every physical field has a definite dimension, and 
dimensions balance on both sides of an equation. 

Thirdly this exact symmetry leads, a la Noether's Theorem, 
to a conserved current2 s“(x,x) (u.=1, . . .5) 

smug s“)=o . (1.3) 
which yields a detailed constraint on the behavior in x and x of mas- 
sive fields . 

Consider now the different group 

x“~ ox“ , m1» m1 (1= 1,2,...) (1.4) 

(mL any dimensional constants) which underlies the current "scale 
invariance " investigations. First, it is clear that (1.4) does 333 
mean’ change of unit. Only in the case that all mi = 0 does it mean 
that.3 

Secondly, the group (1.4) is M a symmetry of our physical 
laws . Whether it is an approximate symmetry (in some sense) and 
thus can yield physical information (e.g. , in high energy scattering) 
is far from a priori obvious and remains to be demonstrated. 

Thirdly, since (1.4) is not a symmetry, Noether's Theorem 
can only yield the nonconservation law 

Bun” = terms involving the m1 74 0 . (1.5) 

This is less information than (1.3); for whereas (1.5) gives no way of 
building a conserved quantity in the case of massive fields , accord— 
ing to (1.3) 
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D 2  j daxdm's 84km) (1.6) 
x4=t 

in time —independent4) for a system of interacting massive fields . 
Therefore in view of these differences in the two types of 

"scale invariance, " we urge that they be clearly distinguished, for 
clarity of thinking on the subject, and furthermore that the first kind, 
which is an exact symmetry and is guaranteed to give a conserved quan- 
tity in g-invariant QFT, be not so thoroughly ignored.” 

To return to the subject of this talk after digressing on the phy- 

sical meaning of x and the consequent symmetry under changes of unit, 
the Q—invariant QPT of massive particles made possible by the use of 
sphere space tensor fields contains families of conventional particles 

with all masses from 0 to 0°. The central problem, unsolved to date, 
is then by what mechanism the observed quasi-discrete spectrum is 
picked out. In the following sections I want toremind you of two con- 
sequences of this x—dependence (equivalently: the continuous mass 

spectra) which look physically promising. One bears on the mass 
problem noted above, and one , on the causality problem for the con— 

formal group. They both spring from the fact that the elementary wave 
functions contain the m and x dependence in Bessel functions I (111)..) 
just as the pp and XM dependence is contained in exponentials eilp'x. 

II. Conformal Tensors on Sphere Space 
If one looks for conformal IUR's as tensor fields over the mani- 

fold (x,)\), i.e. , if one chooses the generators of the "orbital" plus 
"spin" form 

Mab=191ab+sab (a,b=0,1,...5) 

_ b a flab = -1(xaa/3x -xba/ax ) (11.1) 

where the homogeneous coordinates Xa are connected to XL1 and K via 

a well known formula and the spin part Sab is some finite-dimensional 

(matrix) representation of the g—Lie algebra, then the solutions take 
the form 

Mm) = U‘1 (x) Wm), U(x) E exp 135”? (II.2a) 
—ik°x 

Mink) = e gawk) (II.2b) 
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_ = 6+0  cHk) Z x sn(6)(mi) U6 (k) (II.Zc) 
5 

s 
A U6 (k) = 1805U5 (k) = 6U6(k) (II.2d) 

6 = a. + m(m=0,1 ,  . . ’mmax); 

k2+ m2) = 0 (II.2e) 

n(6) = n o ,  In even: = n0 - Sgn n o ,  In odd 

n0 5 n h ) ,  Inol s 1 (II.2f) 

and the spin wave functions U5 (k) satisfy a s e t  of Dirac type momen- 
tum 8pace wave equations in the space of the matrices Say .  U5 (k) is 
a direct sum of parts each of definite spin. The solutions ) of these 
wave equations will fix the values of the various parameters c ,  a ,  
m ax'  n0 (which include the values of the three invariants) for any 
girgen IUR. To summarize: the "reduced" wave function “x,“ has 
the momentum dependence in exponentials exp(—ik 'x)  and mass depen- 
dence in a linear combination of cylinder functions Zn(mx) of just two 
orders multiplied by  various powers of x . (We know In is really the 
mass by Eq.  (II.2e).) 

I remark in passing that the x—dependent change of spin frame 
021.23) is a vitally important practical aid in solving the field e a -  
tions. For it reduces the original translation operator Pu E M5H to 
the familiar one without a spin part: 

I E  .1 _____ Pu U (X)(ibu+85u)U(x) 13” (11.3) 

This has the result that the transformed field equations now involve 
only differential operators independent of x“ and therefore of a rea- 
sonably familiar ,  manageable type . Proof: the field equations are 

{3’ 1|! (>970 = qflbnx) (‘11 = eigenvalues of the invariants 01' i = 2,3,4) 
w are the nansformed invariants Q; commute with the P '  = i s”  and 
thus are x—independent, Q .E .D.  In addition, Q; , Q; agd Q5 are dif- 
ferential operators of orders only 2 and  1 , respectively. 

Particular examples of these  equations have been solved in the 
literaturefl) for example the scalar (Sab a O), "spinor" (S b E 
“21’“ BEaBbJ' Where 83% + absa = zGabl) and "vector" ab 
adjoint representation of the g~Lie algebra) IUR's. 
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III. Causality; 
Consider the "vector" IUR for definiteness; after quantization 

the causality of the resulting QFT will be determined by the field com— 
mutators in position space .  (This is typical of any  of the conformal 
IUR'S discussed in Section II.) It comprises (in the inhomogeneous 
formalism) a Lorentz vector A (x,x) and Lorentz scalar A5 (x,x) field. 
One finds “ 

[A5 (X1.h).A5 (x2 .xgn = imam, (x, .u A—x? is) (111.1) 
where x E x1 - x2 and 

A0 = f  01mm:o (m1) Io(mxg)A (x:m) (111.2) 
0 

where A(x;m) is the usual commutator invariant function for mass  m :  

A (mm) «mu-1 ar{e(><*)10[m(-aé)*]}. x°< o 
= 0 . x9> 0 (111.3) 

For Aubgfl),  A0 ”A: defined with two Bessel functions 11(mx), while 
Au and A5 commute. i’ 

Thus the commutators are determined by the 91101,); , (~15) ') , 
n = 0 , 1 , where we define the function 

no 

gn(21 .22 .23) E if) dyylnwzl) In(yzg) 106123) (III-4) 

These integrals were evaluated, in the classical age of analys is ,  by  
McDonald”) in 1 9 0 9 .  One gets 

90 (K1 1 X 3  1 (_x3 )i) = 1 nxlxa  c s c e ,  Icos 6 |  < 1 

= 0 , I c o s  6 |  > 1 
(III.5) 

in terms of the fundamental finite invariant, the angle 6 under which 
the two spheres intersect: 

cos a a [(xl—xzfi+x19+x32]/2x1xz . 
(III.6) 

91 has csc e -' cot e in (III.5). Thus the fields commute at two points 
if the corresponding spheres do not intersect a t  al l  ( I c o s  9 |  > 1 ) ,  



CONFORMAL QUANTUM FIELD THEORY 265 

while if t hey  do intersect (9 a real angle), the commutator is a simple 
trigonometric function of 6 . The supports of these commutators for 
fixed “gauges" M A B  are crescent shaped regions inside the light 
cone , as shown in the figure . 

This shows that for the conformal QFT acausality troubles do 
not arise, even though conformal transformations can take space-like 
into time-like intervals and vice versa. The clarification of this 
puzzle lies in the compensating behavior of I under Q. Even though 
("1‘ x2? > 0 may go into (x1’— x203 < 0, the formulas (111.1) to (III.5) 
show that the causality depends not on (x1 — x2)2 but on the extended 
quadratic invariant cos 9 , Eq. (III.6) , and this indeed is invariant 
under g. Or, said another way, one has the whole set of Poincaré 
fields for 0 < m < 0°, not just those for a few isolated mass values. 
These arrange to interfere in just such a way that for those time-like 
intervals which E be transformed to space-like intervals (namely 
x1 IM and x,a As such that (x1— x2)2< 0 and Icos 6| > 1) the commu- 
tator is zero anyway. Those time—like intervals for which some signal 
is possible (Icos 6| < 1) can never be transformed into space—like 
intervals (see figure). 

IV. Selection Rules on Mass 

Consider a typical case of conformal quantum fields in inter- 
action, the Yukawa coupling of the "vectorll and "spinor" fields de- 
fined in Section II. The general form (II.2) shows that at a vertex 
there will be the 6 (k1+k2 —k5) of momentum conservation, while the 
masses of the three lines will be constrained, not by a 6 function, 
but by the product of three Bessel functions integrated over i . 11) 
But these are just our functions gn(m1 ,m2 ,m3) already defined in Eq. 
(III. 4), which here crop up in a new context. 

Rewriting e.g. go in a form more suitable to the present argu— 
ments, one gets 

2}]‘b 2 
go(m1 ,mgmna)=1;[{ms"3-(ml-mePH(m1+m,a)"-ma 

m1+ma > ma > lm1‘ma l I 

= 0 otherwise. (IV.1) 

These curious "continuous Clebsch-Gordan coefficients” therefore 
restrict the coupling between Poincare fields of various masses: if 
the outgoing mass m,3 is too different from the ingoing masses m1 , ma 
(precisely, if it does not lie between their sum and difference) the 
coupling is zero. Note that the coupling is maximally strong at the 
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C? 

Support of the functions gnt)‘1 .13 , (-x3 )i for typical values 
of xi 7‘ x2 . 
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endpoints of the interval: if m3 = Im1 -m3| — or (m1+m2)+, go is 
actually infinite . 

Another interesting feature is that the "coupling constant" for 
a second order process is not simply the product of the "coupling con— 
stants" for the first order processes . For if the two vertices are con- 
nected by an internal line, the integration over the internal line mass 
in Eq. (111.2) produces an effective coupling of the four masses m1 , 
m2 , m1' , mz' 

w 

geffm1 .m2; m1 ’,m2{) =J‘ dmmgo (m1 mg ,m) 90 (m1' .m3' .m) 
0 (IV.2) 

where the integration is actually over the finite overlap between 
(Im1 —m2| , m1+ma) and (Im1’-m2'| , m1'+me'). Thus a theory of 
"matrix coupling constants" results. 

These elementary observations suggest that the conformal QFT 
at least has the mechanism of emphasizing some configurationslz) of 
initial and final masses over others. For example, the amplitude may 
have tremendous resonances , even blow up, at some sets of mass 
values . And it is clear that this depends on the dynamics , i.e. , the 
topology of the Feynman graphs . One might then guess that these 

particular values of the masses should be those observed in nature. 
Of course, there are technical problems to settle first, e.g. , how is 
one to treat a discrete mass value in a formalism with continuous 
mass spectra . 

In any case I feel that the dynamical mechanism afforded by 
interacting conformal QPT gives a hope of solving the central mass 
problem alluded to in Section I, and is worth pursuing to a definite 

conclusion. 

References and Footnotes 
1. Our metric is diag (+++-).1. 'x‘ = time, p‘ = energy, etc. 
2. c193 = g “8(1):“d =x‘5(dx°:|:d).3), x5 =x. de 2: angle between 
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mannian space of constant curvature . 
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determining equations (field equations , commutation relations , 
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stant. For one obviously then has cpbx; m 1) = 0-;Dcp(x cm 1) 75 
odq) (mm ) for any d, where D is the ordinary dimension and the 
mi are ta en typically as masses . In particular (1) does not hold 

. for any interacting field in a meaningful (nondivergent) formalism, 
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The u s u a l  reason  given is that the  l -d imensional  symmetry group 
(1.2) is “trivial" or “mere dimensional analysis," as if this made 
it a n y  different i n  kind f r o m ,  s a y ,  the 3—dimensional  rotation 
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Abstract 

We define the conformal-invariant S—matrix for elastic scatter- 

ing of spin zero particles with mass m = 0 and with mass m > 0. For 
the S—matrix a partial wave expansegn is given. The comparison with 
the usual scattering phases (e 51’ s — 1) allows us to make definite" 
predictions about their s dependence and certain angular momentum 
correlations . 

I. Physical Representations of the Conformal Group for Seals; 
Particles 

In this paragraph we introduce the unitary irreducible represen- 

tations of the conformal group which describe spinless particles with 
mass m > 0 and mass m = 0. 

It is well known that the identity component of the conformal 
group SOC,(tl,2)/Ca contains the identity component of the Poincaré 
group 800(3 , 1)x)T4 as a subgroup. Furthermore it contains the dila- 
tations . 

Y u I = P Y u r  0 < p < ° ° 1  (1a) 

and the special conformal transformations 

yin: U._ bu” 
be 

6(yrh) I 0(Yrb) _ 1 - 2by + Y9 , metric +++-, 

- m < b < + e o  , (1b) 
u 

fPresented by L. Castell at the Symposium on De Sitter and Conformal 

Groups, University of Colorado, Summer 1 9 7 0 .  
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The Klein-Gordon equation for massless particles 

and also the scalar product 
H 

(em) = i Ico*(y) firm day , (3) 
are invariant under the conformal transformations; the wavefunction 
transforms like 

cp ' (y) = -1- up (37/ p) under dilatations 
" (4a) 

and 

iii-”fl I u up (y*)= {fly 43p “(in-'13)) under spec1al 
conformal transfor- 
mations . (410) 

From this (and from the Poincaré transformations) we find the 
infinitesimal operators of the conformal group for zero mass particles: 

_ l _  
u=v1<YI-1: Yvaayu I’ll—13:” 

<—> x =i-(f-+2v@_+1>> 
The Fourier transform 65(3) in momentum space is defined by 

-3 2 1 cp(Y)= (2n) / wpe )e ”9-394. (6) 

and the corresponding infinitesimal operators in momentum space are 
given by 

M11:  

I-
I-

||
_

- 

-1 4 = 
j 41 

D=1(pjaj+1). K1=piaja -2(pjaj+1)ai. K4=piajaj . i 

6. =Lj . 1.j=1,2.3. (7) 1 6p 
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For the scalar product we obtain in momentum space 

.0 

(M) flaws) M3) at} . (a) 
We normalize the improper eigenstates I 3 )  of the three momentum-p. to  

(Eli?) =2|Blaa(B-B’). (9) 
Which representation of the conformal group shall  we use  to  

describe scalar particles with m a s s ?  Let us  make the assumption 
that a particle with m a s s  transforms in the same way a s  a certain 
state of a system of two massless  particles. (One could even g o  s o  
far a s  t o  describe a particle with mass  a s  a scattering state of two 
massless  particles , but we d o  not want t o  make such a specific inter- 
pretation a t  the m o m e n t . ) 1  What we have t o  d o  i s  t o  take  the direct 
product of two representa t ions  (7)  and t o  p ick  out the representation 
with relative angular momentum zero .  

ParticIes one and two have the four-momenta 1 and pl‘lz , 
respectively. Moreover, we have p‘h > 0 ,  p‘ > 0 an  p30 — 2 = 
,0. Therefore, there are 6 independen variablbg p 1 ) ,  13(12 . or the) 
time being, we are only interested in that part of e pr uct repre- 
sentat ion with the relative angular  momentum zero .  S o  we can assume 
that the functions in the product Hilbert space depend only on the four 
components of the total momentum pi1 = p?” + (2). 

i _  i 1 _. —. 

p _p(1)+p(2) ' p4=lp(1)'+|1°(z)l, (10) 

i 1 
V .- , P. .2. =a_ “rpm- l _a__ =3. + 2 A; 
_1 1 ' . 1 ap‘ ' i 1 p 31> ' 

39(1) 5 9  fit“) 39(2)  B D  (2) (11)  

The infinitesimal operators of the product representation are then 
found to  be 

(1) + Mt(fi))=i,ll(1ouaV — pvau), Pu= Pfil)+ P512) = p , 
U. 

M = M 
W uv 

D = D(1)+ D(z) = 1(p“aL1 + 2) . 
(1) (2) D K =K +K = 3 3  - 2  ‘5 + 2 3  , u u u pu o (p o ) u  

U I V I D = 1 1 2 1 3 1 4  - (12) 
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From Lorentz invariance it follows that the measure in the 
scalar product must have the form g(m2) dép. Because the represen— 
tation (12) is by construction self—adjoint, g(m9) has to be a constant, 
which we chose to be one . Therefore 

(coll!) = 4L cp*(p) Mp) d‘p . (13) 
p 0 
m3>0 

where the integration has to be performed over the forward cone. We 

will normalize the states Ip) with four—momentum p according to 

(plp'> = 64(p - p’) - (14) 

Actually, the representation (12) of the conformal group, which is 
supposed to describe particles with mass is only the first member of 

a whole series of similar representationszl of the group 800(4,2). 
Each of these representations is characterized by an integer v 2 0, 
and its infinitesimal operators are 

_ l _ = 

Li D = i  a + 2 ,  (p u ) 

K =p (aa°+"§-)-2(p-°a +2)a . (15) 
L1 L1 P P D u 

The scalar product is again given by (13). 
Representations with v = l ,2 ,3 . . . are obtained if one studies 

the transformation behavior of two-particle states , where each parti- 
cle is massless but is allowed to carry the same helicity v/Z or - \ ) /2.  
Therefore the quantum number v contains the information which pair of 
massless particles has to be used to build up a certain scalar particle 

with mass . As the 11° couple's electromagnetically to 2Y it has been 
suggested3 that the 11° should be described by the massive represen- 
tations (15) with the conformal quantum number v = 2 . (A massless 
particle cannot couple conformal—invariantly to two mass zero parti- 

cles .) It should be mentioned that a generalized Goldstone argu- 
ment3) ,4) leads to the same representation for a conformal Goldstone 

particle. Therefore this massive Goldstone particle can be identified 
with the 110. After having assigned the mass zero particles like the 
neutrino and the y-quantum, and the massive 1T0 to definite irreducible 

unitary representations of the group 800(4,2) or its spin—covering 
group SU°(2,2) the question arises , under which conditions could 
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conformal symmetry be physically relevant?” A preliminary answer 
to this problem is that in an extremely relativistic situation, where 
the energy and the momentum transfer are high compared with the 
masses of the incoming (and perhaps outgoing) particles 5 ,  -t, —u >> 

2 mi? , the scattering matrix may show conformal symmetry. We shall 
see that the result of the limit 5 , —t, -u —~ no will turn out to be dif— 
ferent, if we are dealing with a mass zero or a O < m2 < °° representa— 

tion of the group 800(4,2). The additional assumption which some 
people have proposed that one can neglect all particle masses right 
from the beginning (in this introduction we have already given some 
comments which do not justify this assumption) is much more specific 
and would restrict conformal invariance far too much. Even in the 

limit of asymptotic high energies phase shifts for massive particle 
scattering behave quite differently from the phase shifts for mass zero 
scattering. 

II. Clebsch-Gordan Coefficients and S—Matrices 

A. man Theoreti Prel 

We start the analysis of the S—matrix elements by the descrip- 
tion of the ingoing (or outgoing) two particle states. They will be 
simply a direct product of two one—particle states with three—momenta 
'51 and Ba, positive energy p1)> 0, 1:2 > O, with real masses ml 
and H12 , and with conformal quantumn nlulibers v1 and v2 , respectively. 
(For mass zero particles there is no new conformal quantum number.)5) 
Therefore the incoming states are labeled by |V1 , pl 7 v2, p2) and the 
outgoing ones by (v1, p1 ';v2 , p2 ’| for elastic scattering. 

The two—particle product representation will always be redu- 
cible, its irreducible components will be specified by one or several 
quantum numbers on . In our examples we shall always find that on is 
discrete and that one of the q's is given by the maximal spin of a 

spin multiplet. 
Within an irreducible representation on of the direct product 

the basis states will be labeled by the quantum numbers L, La , p”, 
where X, is the value of the relative angular momentum or total spin 
(usually more than one It occurs within one irreducible representa— 

tion) and {,3 is the value of the third component of the angular momen- 
tum. Therefore the basis states can be written as Id, p, it, La) and 
the normalization can be chosen to be 

(a! p l  {’1 {lala’l p l !  {III $13,) = 6a (1,, 6463—13,) 6 

' (16) 
5 

LL’ L3 ,&3’ 
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Using the completeness relation, the matrix element of the operator 
8-1 is given by 

W; .pl’: v2. pg'lS-llvlmlwg .133) =_[‘d"‘p d4p’ 2 
(1.0V 

amaze» ;  

(v1.p1’;vg.p§|a’.p’.b’ .&§><a’.p’lb’ .LéIS-lla,p.&.&3) 

(a.p.&.La|v1.p1;v2.p2) . (17) 

From the assumpt ion  that the S-matrix is invariant under conformal 
transformations , and  from the fact that there i s  no  degeneracy in our 
examples, follows that 

5 5 ’ Lamb; “1' 
(l 8) 

<oc'.p' ,L’.&a’IS-1la.p.L.La> = (f(<x)-1) 64(p-p')r>& & 

Unitarity means in this generalized framework that the energy- inde— 
pendent reduced S—matrix elements f(a) obey the relation |f(on)| s 1 . 

The Clebsch—Gordan coefficient in  (17) has  the form 

(3)6‘L (9‘91 ‘93):  

(19) 
where M3 = -(p1 +139)" and the unit vector 3 specifies the dirgction of 
p1 in the center of mass system. Our task is t o  determine g '  v . 
The two other factors in (19) follow from Lorentz invariance. \11 ’ 2 
Inserting (18) and (19) into (17) we obtain 

a. 
( a l p l L  1&3 |V1 I P 1 7 V 2  1132) :  gV]. 'V2(M2 Harm-f 1m: )YL 11/3 

( V 1  :p1 ’7  V 2  1132’ I 8-]. l V 1  I P 1 7  V 2  11%) = 

1 'k 

E E (f(a)-1) 931 V (amla . m f )  g0L (S.&.m1’2 .m53)(2&+1) 
' 2 V1 N 2  

art, 
P£(cos e) 6“ (101w2 -p1' -p2') , (20) 

- * .., = 2L+1 where we have used the relation ZYL 1&3 (e)YL :La(e ) 411 PL(COS 6 ) ,  

.. _. La 
cos  6 = e - e '  . The con? man between the f(oc) and  the u sua l  reduced 
S-matrix element e215”! 5 Will be treated in the examples . Now we 
shall present the results in detail.  
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B .  Calculations 

In this paragraph we determine the Clebsch-Gordan coeffici- 
ents3) for two spin zero representations . The product Hilbert space6 
for the two particle states is given by 

(13.31 dag? 2 4 + 7% 2 "  a s J‘WW 2p; dml dmz =IW d p m“ edml dme , 
a: M m1; _ m: + _ / -  + 

p = p 1 i p g l  M 2 = ' ( p ) 2 1  q _ & \ p  ‘ T P > I  
y 

—o -9 + — 0 +  

e = q - ( q " ’ / M + p “ ) p .  e = 1 .  

x = M4 — 2Ma (m12 + mag) + (m13 - mes)a . (21) 

In  case m1 or me or both are z e r o ,  we have to  omit the corresponding 
integration in (21) . 

In order to  calculate the Clebsch—Gordan coefficients we have 
to diagonalize the  Casimir operators of the product representations . 
In a l l  the cases we sha l l  consider ,  it is sufficient to  deal  only with 
the first operator C , because this operator already distinguishes the 
representations . T e operator CI is given by 

= W H _ cI %MuvM +%(Pu1<”+KHP) D3. 

We shall not give the details of the calculation in the first two cases 
where the resul ts  can be checked directly. 

1) First we consider the case where m1 = m2 = 0 .  The norm 
(21) is now simply given by 

% “Fly *1; d4 p+ d3; . (22) 

The Casimir operator CI  of the product representation turns out to be 

C I  = 2L («L+l) - 4 .  (23) 

Each angular  momentum state belongs t o  a different irreducible repre- 
sentation of the conformal group. The Clebsch—Gordan coefficient is 
given by 



276 L. CASTELL AND K. RINGHOFER 

3/2 (C(L).p.&5|-151732> = 2 Y .3‘3’ wp - p1 — p2) . (24) ’32.)! 

It is easy to check that this Clebsch—Gordan coefficient obeys the 
completeness and orthogonality relations with respect to the norm (22) . 
For the S-matrix element we obtain finally 

2 
(p1,;pQIIS-1lp1;p2) =;T_ Ska—”(21144) Pit/(COS 6) 54 (1:>1+p2-p1'-p2')(2 ) 

_l 5 L 

The reduced S-matrix elements fl, 5 e216& are constants lfgl S l. 

2) Next consider the case where m1 > 0 and m2 = 0. If we 
introduce the variable x = m12 /M‘°‘ , we can express (21) by 

%f¢*¢ d4p+ Madge (l—x)dx . (26) 

The Casimir operator CI is given by 

CI = 2(n+&)(n+{,+\)1 +2) + (\)1+1)2 -4, (27) 

and the Clebsch—Gordan coefficient has the form 

-' 1 I, V + V 
(C(n+£).p.&.&alv1,p1;pg> =—(1—X) x 1/2 P (l 2*” 1)(Zx—l) 

[N n 

__  4: Y&'L3(e) M 6  (p p1 pg) 

n=0,1,2,.... (28) 

The normalization factor is given by 

2‘3 n+2 s+1‘ may I 
N =(2'r1-‘I-1214, +v;1+2)n!(n+az, an)1 +1)!“ (29) 

The important point is that one irreducible representation is described 
by the quantum number n + L , which equals the maximum spin which is 
contained in one irreducible representation. This has to be proved 
separately and does not follow from (27)  . 
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The S-matrix i s  given by 
3. 1 1 $1,; sslN P(l+SL'V1)(2x-l) P;1+21,,v1)(2x,_1)' 

l -x  r/l—x' Z‘ "' 

-((1—x)(1-x’))L+& (xx’)v 1/  z6—(m13-  m l ’ a )  (2&+1)PL(cos e )  - 

~ 6“ (p1+p2-p1’- pg’) . (30) 
In this expression we have replacedm Mg by the total energy 5 .  Corres- 
pondingly we have x— = Mia/s, x’ = 1 ’ a / s  . From the irreducibllity of 
the product representation follows £111: f“-1 = fL+Z= . . etc. 
In order to compare the matrix eleme‘nt (316)1withn the usual S-matrix 
elements for elastic scattering where the one-particle states are nor— 
malized t o  2p: 55 ip" -p), we have to form a wave packet with respect 
t o  the m a s s .  We integrate the incoming and  outgoing s tates  over 
ID(m12 - m3)dm12 t1n<ifD(m1'3--Ih_3’2)dm1 , respectively. The function 
D(m2 - E?) is different from zero monly n e a r m  , t h e  actual m a s s  of the 
part icle ,  and  i s  normalized t o  o n e .  

flD(m3- in?”3 dmz = 1. (31) 

Instead of 

Z n ml’  P'EIHZL v09“) PSJ'ZL'VWZXH 1)((1-X)(1—x'))L+é 
n 

- ( ) E X I ) V 1 / 2 _  6 (H112 _ m l l g )  ( 3 2 )  

we obtain 

—I _ 1 2 , 

>3 (til ‘1) IJ‘D(m13 ‘ Ina—@112“- L v1)(2x-1)(1—X)L+k xvi/2 dmg ' 3  

E (eZiér,(s,fil3)_ 1)  . (33) 

From the generalized unitarity condition Iffi’hI S 1 we derive 
that the usual necessary condition for unitarity [e 15%| S 1 holds . 

This  fol lows f rom the abso lu te  convergence of t h e  s u m  

as 2 _ _ g  1 (1+2J(,,v1) 2 _ _ Hi \21/2d a 3 = Z ID(m1 m )J—m Pn ( x  1)(1 x) x m l $3.4) 
n=0 
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If 6:3 is. the half width of D(m:3 ~53) we can approximate the expression 
(33) e216»)! — l for the phases '6‘: by 

'6 
6 2 1 %  - 1 m  

2 s  62 1 (1+2L, ) F112 m2 2H1 fin2 v 
fut—”@631 V1 (2?-1))2(1-?) ( g ) 1  

n=0 (35) 

216% 
The high energy limit of this expression is given by e — l m 

r'nz v 53 
(?) 1(-S—) for s -. °°. Here we have assumed that the sum (35) 

converges uniformly. Quite unexpected is the fact th its in the expres— 
eaten mgrm the lphase shift (35) the threshold behavior (e1 M. - Uses 

1for 3 ~ 111 turns out to be correct. Th1 suggests that 
one determines for each partial wave the constants fn: n = 0, 1 ,‘2. . . 
from the experimental data. If conformal invariance is satisfied the 

relations 

_ +1 _ -1 _ 
fir—{£4 _f:;+1 _ etc' 

have to hold . 

3) Now we consider the case where each of the two incoming 

particles has mass different from zero. The norm in the product space 
is given by (21). In the variables pu+ and pH_ the Casimir operator 
CI is given by 

_ _ V1? V 3  + 
CIIII -[:(P+2 - p  2)®_B_+W +51%) -Z(p 6 )2 

+ 2(p‘a_)2 + 6(p'a_) + v12 +v§]¢ . (36) 

In this case we shall not give the exact solution of theproblem, be— 

cause it is very cumbersome to separate the variables of the first 

Casimir operator. Instead we shall give only the high energy, and 

the threshold behavior of the Clebsch-Gordan coefficients . If we 

introduce the variables x = mlz /M2 and y = meg/1V1a and solve the 
equation (36) for x,y << 1, we see that the solution is independent 
of C . The condition that (36) is a.se.1f—adjoint operator selects the 
square-integrable solutions . We obtain 
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1 m1 V1 m V2 
(0.10.4 .433 I v1 .101; v2 ,pg) “ W  (M) “if" Yam (é)6*(p-p1-p2). 

(37) 
From this we can calculate the high energy behavior of the phase 
shifts under similar conditions than in the case 2) , and obtain 

Zié (5,512) ‘ 2 v  —g\)2 2 2 
*4 —1)s(ml)l(m—2) (31—)(6—2) .(38) S S S S 

(e 

To calculate the threshold behavior we transform (36) into the center 
of mass system, and solve the eigenvalue equation for small values of 
)3") /M. The first term in the expansion gives us the threshold beha— 
vior of the Clebs ch—Gordan coefficient. We obtain 

_ 1 x% L .. 4 
(Clpl&l&3lvl IP11VQIP2)NW('M2) Y&l&3(e)6 (D‘Pl‘pg): 

x = M4— 2M2 (m12+ mg) + (m13— m23)3. (39) 

From this follows for the phase shifts for elastic scattering 

2i5&(s,m12,r—r123) — 2 
€12 622 17112 m2 (e -1)~(S)(S)[1—2(S+S) 

171112 17122 2 {4%. 
+( S - S )] . (40) 

. . , , -a 2L+l , 
Equation (40) exhibits the correct threshold behav1or Ipl in a 
relativistic invariant form. This result gives the hint that a conformal 

phase shift analysis might also describe some aspects of low energy 
scattering . 
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RESTRICTIONS ON INELASTIC CHANNELS 
FROM CONFORMAL INVARIANCE‘I' 

L. Castell 
Max—Planck-Institut ffir Physik und Astrophysik 

Miinchen, Germany 

Abstract 

It is shown group-theoretically that conformal invariance res— 
tricts all final states of two incoming mass zero particles very strong- 
ly. We apply these results to a conformal—invariant scalar field the- 
ory and to y-Y scattering, and conclude that there could be at most 
elastic scattering. The paper ends with a comment on deep inelastic 
electron-proton scattering . 

1. Ms Zero Representations of SUO§2 ,2} 
Let us consider all irreducible unitary mass m = 0, positive 

energy p4> 0 representations 1) of the spin-covering group SU°(2,2) of 
the identity component of the conformal group SO (4,2)/Cz . All these 
represgnta'tions are contained in the exceptional degenerate discrete 
series . Each irreducible representation in this series is com- 
pletely characterized by a certain value of the helicity x , where X = 0, 
Hr, i1, 5:3/2 , . . . etc. The states of one irreducible representation 
can be specified by the quantum numbers of the maximal compact sub- 
group of SUo(Z,2), namely SU(2) x SU(2) x U(1). The quantum numbers 
are given by S(l)' 5(1) 3 , 5(2) '3, and n. The most important relation 
between these quantum'numbers are 

+ s  + 1 ,  (1) n = S(1) (2) 
and 

* =s(i) ' S(2) ' ‘2’ 

tPresented at the Symposium on De Sitter and Conformal Groups, 
University of Colorado, Summer 1 9 7 0 .  
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This leaves three discrete integer or half-integer quantum numbers 
5(1) 3, 5(2 3, and n 2 l to describe the states of one irreducible 
représenta )on. They correspond to the three-vector p in the momen- 
tum basis” . We can represent the structure of these irreducible rep- 
resentations in a j - n diagram, j = 5(1) + 3(2). 

1 

Fig. 1. Mass :11 = 0, 4'> 0 representations. 

II. He General Structuje of. the Direct Product of mass m = 0, ‘,p‘> 0 
Representations 

For simplicity we now omit 3(1) 3 , 1 =  1, 2, and describe the 
states of the representations by the quantum number (3(1), 3(2) ,n) , or 
more conveniently by [1,)” n] , where j = s( = 5(1) - s 2 . 
For mass m = 0, p“> 0 representations we (Illgvefiz : -  n- -l, and X i; the 
helicits'r. The general product state is given by 
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($21). SEZ)’ 11’) X (SIEIV 812). n”) = E  (5(1)’ 5(2)" n) . 

S ( 1 ) = s z i ) + S I z i ) l  s z i ) + S I Z 1 ) - 1 , . . .  l s z i ) — S ” ( 1 ) | '  n ; n l +  n i l .  

(3) 

Note that for a l l  s tates  in  the product of two m a s s  m = 0 ,  p4> 0 repre- 
sentations the maximum j chew the equation 

m a x i = j ' + j " = n ’ + n " — 2 = n - 2 .  (4) 

Differently expressed 

n 2 j + 2 . (5) 

For the direct product of a mass  m = 0 ,  p‘ > 0 representations the 
general structure i s  given by the relation 

n 2 j + q  . (6) 

This equation i s  expressed in  Pig.  2 .  

j' 

Fig. 2 .  The direct product ofa. mass m = 0 ,  p4“ > 0 
representations . 

The restriction of the representations of Fig.  2 t o  the Poincare 
group shows that they are characterized by 0 < m2 < co and p“ > 0 .  
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We define the physical representations ofOSU 0(2, 2) by their 
restriction with respect to the Poincare group. The physical represen— 

tations are characterized by the mass spectrum m = O or 0 < m2 < co 

and by the sign of the energy p4 > O. In the discrete basis (for more 
details see Section IV) this corresponds to n > 0, where n is the 
eigenvalue of M46 . We have seen that for physical m = 0 represen— 
tation n = j+1 , and that for the direct product of two m = 0 represen— 
tations n 2 j + 2. Yam has shown that for all degenerate represen— 

tations of SU0(2 ,2) for which n > 0 we have either the mass m = 0 
case , or n 2 j + 2 for the massive representations . For this we are 
led to the following conjecture. 

All irreducible unitary representations of SUO(2 ,2) cha- 
racterized by a mass spectrum 0 < m2 < 0° and positive energy p4 > 0 
are contained in the direct product of a finite number of mass m = O ,  
p‘L > 0 representations of SU0(2,2). 

In a scattering process of mass zero particles the investiga— 

tion of all inelastic massive channels is thus reduced to the investi— 

gation of all inelastic mass m = 0 channels. And this is the problem 

we are going to solve. 

IV. The Direct Product of Two Mass m = 0, p4 > 0, spin 0 Represen— 

tations 
The irreducible representations of the direct product4) of two 

mass m = 0, p4 > 0, spin )L = 0 are specified by the mass spectrum 

0 <  m’2 < 0°, and by the fixed angular momentumi, = 0,1, 2, 3. . . . 
This follows from dilatational invariance , and from the value of the 
first Casimir operator 

CI=ZJL(J(,+1)—4. (7) 

Poor the following we shall use the local isomorphism SUO (2, 2)~ N 
(04,2), and correspondingly for the maximal compact subgroup 

SU 2) X SU(2) X U(l)~ ~ 30(4) x 80(2) .  If we use the metric +++— +— 
the first Casimir operator is given by 

z;- _ + 

CI zMikMik+ M46 (Mi 41M4 M16M16)’ 

ik=l.2,3,5- (8) 

Or if we introduce the rising and lowering operators M k :  M 
with respect to the eigenvalues n of the operator M46’ we obtainiM 
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+ _ 

=& M. likkM + M26 - M 1  M1 — 4M46.  (9) 

The lowest eigenstate with respect to the eigenvalue n is defined by 

Mk(0 '  0, 1) = 0. For the direct product Mm) is given by 

_ I II .— Muv — M u v + M u v '  u,v—l,2...6. (10) 

The question is now what is the minimum eigenvalue of M46 
for each irreducible representation of the dire ct product characterized 
by the angular momentum L . Consider the product state with maximum 

j for each fixed n. These states are of the form [1. 0, 1+2]p, j = 0, 
1, 2, . . . . The index p specifies the j + 1 fold degeneracy. If we 
apply the lowering operator to the j + 1 linear independent combina- 
tions of these states, we get in general states of the form 
[j — l ,  0, j + l] ; for BEE certain linear combinations we get zero, 

as there are only 1 linear independent combinations. Now we calcu- 
late CI for this state. From (9) we obtain 

= j(j+2) + (j+2)2 - 4(j+2) = 2j(j+1) - 4 . (11) 

This is the state with the lowest value of n for the irreducible repre— 
sentation characterized by the angular momentum «f, = j. We exhibit 
the reduction into irreducible representations graphically in Fig. 3 . 

jA 1 A  

/. )n  

Fig. 3 . Reduction of the direct product of two spin 0, mass 0, 
p4 > 0 representations into irreducible components. 
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If we compare this reduction with the general structure of the 
direct product of 0. mass m = 0 representations on > 2 we see that the 
direct product of two mass m = O, p‘L > 0, spin 0 representations is 
not contained in them. Two mass m = 0, p4 > 0, spin 0 representa- 
tions (initial state) can couple conform-invariantly only to tw_o mass 
0, p‘L > 0 representations . It will turn out in Section V that the "in- 
elasticity" consists in a helicity transfer. The possible final states 
in each angular momentum channel r, are given by two mass m = O, 
p4 > 0 particles with helicity). = s and x’ = —s, s = 0, é‘, 1, 3/2. . J/Z 

I V. 1 Application to a Conformal Invariant Scalar Field Theory 

Consider a conformal—invariant quantum field theory which 
contains for simplicity only a scalar field q)(y), e. g. the cp“ (y) theory. 
The one-particle wave function (plcp (y)| O) transforms 5) like the direct 
sum of a mass 0, p4 > 0 representation, and of a physical massive 
spin 0 representation characterized by the Casimir operator CI = v3 - 4 
= - . This massive state can only be interpreted as the lowest angu— 

lar momentum X, = 0 component of the direct product of three of the 

mass 0, p“ > 0, spin 0 states in the sense of Section III. From these 
restrictions +of the basic states and the previous results follows that 

there can be only elastic mass 0, spin 0 scattering. The6 reduced S- 
matrix elements exp 21:6; are constants, 4) for which [e 15 “ = 1 .  This 
is the group theoretical result. If we impose in addition unitarity and 

crossing, we find that there is no scattering at all. 

V. The. Direct Prodgct of TWO Mass m = 0.3‘ > 0 Remesentations of 
Helicitz i and 1’ 

The direct product of two mass 0, p4 > 0 representations of 
arbitrary helicity x and x' contains representations of the Poincaré 
group characterized by 0 < m2 < co, p4 > 0 and spin 

L=|1—x'|+k, k=0,1,2,.... (12) 

7) Each representation occurs once. The first Casimir operator of 

SUO(2,2) is given by 

=(1+1')3+2w+1)-4. (13) 

Therefore one irreducible representation of SUo (2, 2) is characterized 
by 0 <  m’a < 0°, p“ > 0,1, andx +X’. In Fig. 4 w e  give the lowest 
weights of each irreducible representation for the case 12 0 and X’S O. 

+It remains to be proved that there are no states with m = 0 and x=i 1, 
i2 , . . . in the scalar theory. 
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In parentheses we denote the quantum numbers (s1 , SE) for the lowest 
weight. 

3 ?  0+1, -x’+1) 

(Mi.  ->\’+§) 

IM+IVI 

Pig. 4 .  Lowest weights for the irreducible representations of 
the direct product, i 2 0 ,  X’s 0 .  

In Fig.  5 we treat correspondingly the case where x 2 0 ,  x ’  2 0 .  

1A. 
(x+x'+1, 1) 

' (mus. s) 

(x+x’  , 0) 

IH’I 
_ = - i) 

1H + h’l  " 
Fig. 5 .  Lowest weights for the irreducible representations of 

the direct product k 2 0 ,  x ’  2 0 .  

From the comparison of Pig. 5 and Fig. 4 ,  or more abstractly 
from the value of CI follows that for conformal-invariant mass 0 
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particle-scattering there is no helicity-flip X -° ). , X '  —o - l '  . The cor- 
responding result has been obtained in field theorys) for spin 0 scat— 
tering of f  spin’l‘ a n d  spin 1 m a s s l e s s  part icles .  

V. 1 . Mplication to Blown—Photon Scattering_ 

If a t  high energy a photon—photon scattering becomes confor— 
mal-invariant our analysis shows that the inelastic channels are 
highly restricted. A final state which consists of two mass  m = 0 
particles with helicity X 75 1:1 i s  not a realistic possibil i ty,  a s  we are 
dealing with electromagnetic interactions . Moreover, only if the 
helicity of the incoming photons is  the same (e .g .  x = k ’  = +1) we 
can expect inelastic channels . In the angular momentum X, = 0 chan— 
nel we can obtain: 1) four mass  0 ,  spin 0 states (which can combine 
t o  two massive s t a t e s ) ,  2 )  two neutrinos , and  one m a s s  0 ,  s p i n  0 
state, 3)  two antineutrinos , and one mass 0 ,  spin 0 s ta te .  In the 
x, = 1 channel the only inelastic final state is  given by two anti- 
neutrinos, and  a m a s s  0 ,  spin 0 state. From the assignnwnt of mas-  
sive elementary particles to irreducible representations” of the con— 
formal group,  we can conclude that none of the inelastic channels 
corresponds to a n y  s t a t e ,  which contains a massive elementary par— 
ticles . S o  there remains only e las t ic  scattering. 

V. 2 . Comment on Deepfiigelastic Electron-Proton Scattering 

We should like t o  show that the following approximation (5 ke-  
leton-theory) which some people propose,  in order to  explain scaling 
of deep inelastic electron-proton scattering does not lead to  reason— 
able  resul t s  . If  one replaces the incoming e and  p and  the outgoing e 
by neutrinos and studies the conformal-invariant reaction 

V + V " \ ) + X ,  

we obtain again only ela stic scattering x = v . 
The only inelasticity, which is in the I, = 0 channel (three 

mass  0 ,  sp in  0 s t a t e s ) ,  i s  excluded a s  one v has  to be in  the final 
state. This shows that mass ive  elementary particles have t o  be as— 
signed to massive representations of the conformal group. 9)  

Finally it should be mentioned that a corresponding analysis 
for the two-dimensional Thirring—model shows very elegantly that 
there is  no scattering. 
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CANONICAL AND NONCANONICAL 
SCALE SYMMETRY BREAIGNG‘I' 

R .  Iackiw¢ 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

We have undertaken a s t u d y  of  sca le  symmetry breaking both 
on the formal,  canonical level, and in detailed perturbative calcula- 
tions . Our main result is that  in perturbation theory mass  terms are 
not the only objects which break scale symmetry ,  even though this 
might be the conclusion of a formal canonical investigation. Most 1) 
probably, this state ofaffairs persists in the complete theory a s  well. 

We first summarize here the consequences of the formal theory 
of scale symmetry breaking. It is shown how one m a y  derive theo- 
rems about ,  e . g .  the high energy behavior of Green's functions . 
These theorems are then demonstrated t o  be f a l s e ,  and their failure is  
explained by showingthat (1) scale dimensions of f ields are affected 
by interaction and  ( 2 )  mass  terms a re  not  t h e  on ly  objec ts  which break 
scale symmetry.2 

I .  Formal Theory 
Consider  a renormalizable field theory.  It is possible to  

introduce a new, improved energy momentum tensor 6””, suc that the 
scale current DH and the conformal current KO“ have the form 

13‘1 = x 9"” (1) 
V 

KOwl = q'xv 6"” - x3 6“” (2) 

It i s  assumed that only masses  break dilatation invariance, on the 
Lagrangian level .  

+Presented at  the Symposium on De Sitter and Conformal Groups , 
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3“ DM = ep'u = mass terms (3) 

a K‘W = 2x“ a d“ (4) 
H» U- 

To extract the consequences of these hypotheses , we derive 
Ward identities satisfied by matrix elements of 6*“). In order to do 
this , we need to know the commutator of 6”” with a renormalized field 
(9 of scale dimensionality d (d = 1 for Bosons, 3/2 for Fermions) . 
Under very general hypotheses, one can show that 

[e°°(o.§). non =a°cp(o)s(=y +2°1cp<0) 61 6(a) (5) 

1[e°1(o,35). cp(0)] =Bicp(0)5(>_€) -%6p(0)615(§) 

+t 2” Mo) 3]. 5(a) (e) 

(EDA) is the spin matrix appropriate to the field cp. .) These are the for- 
mal, canonical commutators. No statement is being made concerning 
their validity in perturbation theory. Since the commutator of a” with 
q: necessarily contains gradient terms, the ‘1' product of 6”” With cp is 
not covenant. In order to arrive at the covariant T* product,a covar— 

iantizing seagull S‘u LN must be added. Hence we are led to consider 

P” (p q) =J‘d‘x d‘yeiqxe 1” mm 9 (x)cp1(y)cpj(0)l0> 

= Id‘x cry e101x e11W <o|T ewe) coin) cpjw)‘ o> 
+ sgvma) (7) 

PH (p.q) = J‘d‘x d4}! eiqx eipy (0| T9”u(X) cpi(y) cpj(0)l0) (8) 

In the above 1,)” label the fields, the labels may be space-time or 
internal indices. It is assumed that matrix elements of e“ u require 
no seagull. The covariantizing seagulls may be explicitly con- 
sn‘ucted from the known commutators (5) £1; (6). Hence a Ward iden- 
tity may be derived. Its form is 
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qu Pfivma) = 1 p" G(p) -1(p+q)"e(p+q) 
i uv _1_ Liv 

+ 2 q“ 211’ Gi'j(p+q) + 2 ‘31i G11’(p) (9) 

Also a trace identity is obtained, from the explicit form of 5:?) 

gm 151% ,q) = Fijuw - 1 <1 G” (p+q)— 1 a G1]. (p) (10) 

In Eq. (9) and (10) G1.1 is the renormalized propagator 

1 Guns) = $1141: e 1"" M T epic» 111(0)] 0) (11) 

The formulae (9) and (10) contain all the restrictions that the 
various space-time transformations (Lorentz, scale, and conformal) 
impose on the propagator. (Had we wished to study the n particle 
Green's function, we would consider the matrix element of 6*” with 
n fields.) Once a model for scale symmetry breaking, e.g. mass 
terms, is adopted, then one may deduce theorems about G(p). We 
now show explicitly how these restrictions are contained in Eq. (9) 
and (10). 

1 . Lorentz transformations Differentiate (9) with respect 
to get and set q to zero. This gives 

PZYm,o)=—ig°“’ G. .(p)-1p" gp—Gfloo) 

1 
+2- 211'Gij (P)+% 2&1 [Gil-1(1)) (12) ll 

Since 13:?) is symmetric in d and v, we learn from (12) that 

v i _  a; = [1) p 6px;] Gfl(p)2 ail G1 I. (10) +201 ‘— 39“ G1j1(p) (13) 1;), 

This is the trivial and well known constraint of Lorentz covariance . 
2. scale transformations Form the trace of (12). We have 

(suppressing indices) 

9 FW(DIO)=—41G(p)-ipa—B— em (14) 
“V ap0L 
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Combining (14) with (10) at q = 0 leaves 

Hp. 0) =1(2d- -4)G(p) -1p “i—Gm (15) 
390. 

This provides a constraint on G(p), once F(p,0) is known, i.e. once 
we have a model for scale symmetry breaking. 

3 . Conformal transformations Differentiate (9) by 

8 8 8 a 2 — — - g  — —  
a. v a aq aq cw a £18 

and set q = 0. This gives 

a W a 2 — 9  F11 (pq) -81--G(p)-21p —-——G (10) MG uv 11:0 6911 ii Bap13 6p 11 

a CtB +1p iB—Laps G1111(p)+2121:—113 G1,1(p) (16) 

The left hand side of (16) may be evaluated from (10). After a rear— 
rangement of terms , we are left with 

a 2 —  1 = _ __ _ _  a11111=11(p q) 01:0 1(2d map“ G1 1(p)- -21p11a1113a p G11(p) 

, on g as _a_ + 1 p  -—G1111(p)+212}ii G (P) (17) a 1 1 1 8 3 5 > 1 1 1 ' 1 1 1 1 I 8  11 

This equation may be simplified by using (13) and (15). First 01 is 
eliminated between (17) and (15). This gives 

2 l- P (p, a a1111111q)q=0-g11- F11 (p,O)= 

143—[59‘a —:;G11 1(p)- p8 ——G11<p)+za 11. G. 11<p)] (18) 
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Next we use (13).. 

_a_ _ _  _ _ a8 2801 Pij(p.q) = w F.1(p.0) 1‘42“, 2“, Gwen] 
at q 0 ‘1 (19) 

Eq. (19) determines the constraint on G which follows from a model 
for conformal symmetry breaking. 

II. False Theorem 
It is now shown that the constraint equations for scale and 

conformal transformations cannot be interpreted naively. Consider 
for definiteness the propagator for a theory of spin zero fields with 
mass u and a quartic self-interaction. The propagator may be written 
in the form 

G(p)= ---5 9092413) (20) 

We find from (15) that g satisfies 

P2:P(p.0) =u: g ’(r>"/u3 )+ (l-d) g(1:>"/u2 ) (21) 

Consider the limit as p3 -' 0. one might expect that the left hand 
side vanishes, since 1" is the matrix element of 9% which formally is 
p,” q)” . On the right hand side, this limit is equivalent to 93-0 a. 
‘Hence we find 

11m 9p Ala) °= (s>3/L1‘a)dl_1 (22) 
[33" cu 

Since (:1 = 1 for Boson fields , we further conclude that the Boson pro- 
pagator goes as 1/p3 for large pa . 

This result, a weak form of Lehmann's theorem, is manifestly 
false in perturbation theory where it is known that logarithmic terms 
are present in the asymptotic domain. Thus we must abandon the 
steps which lead from the true (by definition ) Eq. (21) to the false 
result. Specifically we cannot conclude that d = 1 and that F van— 
ishes with the mass . 

III. True Theorems 
Detailed calculation in perturbation theory in lowest non- 

trivial order of the interaction yields the following conclusions . It 
remains possible to assert that F vanishes with the mass. However 
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d changes from its canonical value of 1. To exhibit the change in d ,  

we consider the definition of that object 

1mm). won = 1 jdax x1 temps). axon 
= d cp(0) (23) 

The commutator is evaluated by the Bjorken—Iohnson-Low prescription. 
Specifically an application of this technique to P”v(p,q) , gives by 
definition 

lim ~97 qo P°1(p.q =idG(p) (24) 
010"” Bq g=0 

Hence the true value of d may be computed from the high energy beha- 
vior of Pu". Explicit calculation in lowest order gives 

d=1+c).3 (25) 

where c is a well defined numerical constant, and l is the coupling 
strength of the quartic self interaction. Substituting this value of 01 

into Eq. (22) (which remains valid to lowest order, since F does 
vanish with the masses), we find 

lim Mpg/L12) «(pa/pa)“: 1 + 0x2 log log/“2 (26) 
p u t ”  

Explicit calculation of the propagator to the same order verifies (26) 
with precisely the same coefficient. Perturbative calculations for 
several models have been performed, and the conclusion is always 

the same, in lowest order: although the scale breaking term van— 
ishes with the masses, the dimension changes , and the resulting the- 
orem about high energy behavior is verified by comparison with a 
calculation of the propagator. 

Although perturbative calculations beyond lowest order have 
not been performed, it is possible to obtain answers by another 
method--that of the renormalization group. The crucial question is 

whether or not the propagator, in the high energy domain, behaves as 
a power of (p3 /p.3). In this case one could say that scale breaking 
effects disappear with vanishing mass , but d changes from its cano- 

nical value . On the other hand if a power behavior for the propagator 
is not found, then the scale breaking effects do not go away as the 
mass goes to zero. The renormalization group indicates that the latter 
behavior is true . 
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From the renormalization group for the ))cp4 theory, one can 

deduce the asymptotic form of the propagator 

g(p2 A12) A DEQOJ + loaf/$13] (27) 

P3” °° DEQQH 

D and Q are two undetermined functions . Q()() is related to the Gell- 
Mann—Low eigenvalue function Mk) by 

l 
W =3— 0(1) (28) 

According. to the renormalization group, \HX) has a zero at X = 1 if 

the unrenOrmalized coupling constant is finite and equal to X0. Prom 
(27) it is easy to deduce the follow) equation, which forms the 
basis for our subsequent discussion. " 

f}— g '(pz/u )—>B(1) gang/u )+w)— mpg/(f) (29) 
p z — O Q  

Here B()() is an undetermined function of 1. It is evident from (29) 
that power behavior for g is in general not obtained due to the pres- 

ence of the second term on the right hand side . Only if 111(k) has a 
zero and x is chosen to be the zero of this function, does (29) yield 
a power law for g. Thus we conclude that if the unrenormalized coup— 

ling is finite , then scale invariance becomes exact as masses go to 
zero, but the dimensions change. On the other hand if MM has no 
zeros and the unrenormalized coupling constant is infinite (as it is in 

perturbation theory) scale invariance remains broken when the masses 
go to zero. Since the renormalization group can be formulated indepen— 
dently of perturbation theory, this analysis applies to the complete 
theory, as well as to perturbative approximations . 

A comparison between (21) and (29) shows that Bot) = d-l , 
while 111(k) a/akg(p2 A?) is the residual scale breaking term when 
masses go to zero. We can understand the presence of these "ano— 
malous , "non‘can‘onical scale break kfinvg terms in the following way. 
In calculating matrix elements of 9 vgit is necessary to insure their 

conservation. However in specific calculations these matrix ele— 

ments are not conserved, and conservation is achievedu for example 
by Pauli—Villa‘s regularization. One defines 99'" = 0”" 9 M ,  
where 9%; is formed from regulator fields cp carrfigg mass M. Phy- 
sical, conserved matrix elements are obtained by letting M -’ w. 
Consider now the trace of efiVg , which according to (3) breaks scale 
invariance . Evidently we have 



298 R. IACKIW 

<30» 
Thus if matrix elements of £52 behave as M'3 for large M, the regu— 
lator contribution to (3 O) survives , even in the physical limit M -’ on. 
Specific calculation shows that 653 does indeed behave in this fashion. 
Therefore even when p2 is zero, gm) efi‘e’g does not vanish. 
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A NEW IMPROVED ENERGY MOMENTUM TENSOR'!‘ 

R .  Iackiwt 
Massachusetts Institute of Technology 

Cambridge , Massachusetts 

In order that the energy momentum tensor be a n  observable, a s  
surely it  is due t o  its weak coupling to  gravity, it is necessary that 
it possess finite matrix elements. We have shown that for any renor- 
‘malizable field theory it is possible to  fB'rd a n  energy-momentum 
tensor whose matrix elements are finite . However this object is not 
always the conventional Belinfante tens or,  although the total energy 
and angular momentum of course remain unchanged. 

Before exhibiting our tensor, we turn to  the topics of scale 
and conformal fiansformations , since our tens or arises very naturally 
i n  th i s  context. A Poincare covariant Lagrangian theory is scale in- 
variant when the  following relation is  true: 

53. 9!" 
4s = (d+1)a“cp +2—i dcp . (1) 

Here .6 is the Lagrangian function of the theory ,  assumed to  depend on 
a set of fields cp, and on single derivatives of these fields 3%.  The 
quantity d is the scale dimension of the field cp , chosen to be 3/2 for 
Fermions and 1 for Bosons .  Moreover a Poincaré covariant Lagrangian 
describes a conformally invariant theory when two conditions are met: 

(1) Scale invariance must hold; i . e .  Eq .  (1) is true. 
(2) The field virial, V“, defined by 

7 u v“1 gig—(9" d -2"“)cp . (2) 
68‘ tP 

must  be a total divergence: 

tPresented a t  the Symposium on De Sitter and Conformal Groups ,  
University of Colorado, Summer 1 9 7 0 .  

$Alfred P .  Sloan Fellow 
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v uv V = 6  0 3 u ( ) 

(In Eq. (2) 2V” is the spin matrix for the field cp.) It is remarkable 
that  for all renormalizable theories Eq. (3) is true, though of course 
for none of these theories is scale invariance exact. (Condition (3) 
is also true for theories involving fields of spin not greater than one, 
without derivative interactions .) 

Once (3) is satisfied, we may introduce our tensor GHV by the 
following procedure: Form the Belinfante tens or SUV in the usual way. 
Farm also, the object 

lpuv _ M: W M1 pv Xv up 
X 9 0+ 9 0+ - 9 0+ 

+ gHV019_lngU-VU + _  %glugpvo (4a) 

uv . . uv 
where 0+ 15 the symmetr1c part, and o the trace of o . The new 

improved tensor is now given by 

W = W + MW 6 9B s aka p x (4b) 

In terms of 6*” the dilatation current DLl and the conformal current 

K044 are given by the simple formulas 

DlLl = xveu" (5a) 

Ka'u = Zxaxvevu - x2 60""1 (5b) 

aHDLl = 6““ (6a) 

' aux“ = 2x‘1 ago“ (6b) 

Eq. (6) exhibits the fact that for the theories under consideration, 
i.e. for theories where (3) is true, conformal invariance is broken by 
the same mechanism as scale invariance. 

Explicit computation shows that ULW is identically zero except 

for spin zero fields . 
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spin 
zero 
fields 

Hence 

Liv: uv _ l “ v _ LN a e 93 6 2 (as g map (a) 
spin 

zero 
fields 

(The unique role of spin zero has not as yet been understood.) In 
renormalized perturbation theory, it is em), as given by (8), rather 
than 6%“ which has finite matrix elements. (For scalar particles, it 
is also necessary to shift the scalar field cp by an infinite constant.) 

Since in the usual Einstein gravity theory 9%” rather than 8*” 
is the source of gravity, it is necessary to find a new theory of grav— 
ity in which 6““ is the source , at least to lowest order in the gravi- 
tational interaction. This modification must be consistent with the 
usual tests of general relativity. It will depend only on spin zero 
fields , since the difference between 63“" and GW inv valves only these 
fields. Such a modified field theory has been B.found It is derived 
from the action 

= 4- _ _R___R.a I fax/9L”.rrrG 12:99 +sm] (9) 

In the above R is the Riemann curvature, g is the determinant of the 
metric tensor, G is the gravitational coupling strength, and Sm is the 

matter Lagrangian. We have assumed that only one spin zero matter 

field ('9 is present. The field equation for gravity is 

_ = _ 31" 
uv uv l - 4/3 nGrp euv (10) 

and to lowest order in G, our tensor is indeed the source of gravity. 
If 4'. refers only to the field cp, with a mass u and a -).¢P"' self- 
interaction, then the matter equations are 

l3cp=—ugtpa -4).CPa-%R:p (11a) 
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R can be eliminated between (10) and (118.), so that the final matter 
equation is 

Elcp=-p.acp3 -4(x+%fiGua)cpa (11b) 

Hence the only effect of our new gravitational theory is to change, in 
a universal way,  the strength of the quartic self-interaction; this is 
obviously consistent with the principle of equivalence . 
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SU(3) X SU(3) AND DILATATION INVARIANCE 
OF STRONG INTERACTIONST 

P .  L .  P .  Haberlert 
Department of Physics 

Duke University 
Durham, North Carolina 27706 

After many lectures on the more formal group theoretical cha- 
racter of the conformal and De Sitter groups it seems worthwhile t o  
look into the dynamical  consequences  of  the conformal g roup ,  e s p e —  
cially its implications for hadron physics. 

Stimulated by the fundamental work of Wess ,  1) Kasn'up,2) 
Macks) and Wilson4) recently much workS) has been done on the 
possible application of the  conformal group to  strongly interacting 
particles . One first important result6 , 7 )  which has been established 
i s  that for a wide class of Lagrangian theories , which include all  r e -  
normalizable interactions except €93 coupling, scale invariance im-  
pl ies  invariance under conformal transformations . 

The fundamental quantity in  the study of scale invariance is 
the local energy momentum tensor, ('3) v(x). With its help, one can 
construct the generators of iranslaticgls and Lorentz rotations in the 
well known way .  Now a dilatation, or change of scale ,  obviously 
changes coordinates by xu -o xxu .  The generator of the dilatation, D ,  
can by analogy with the Lorentz generators be written a s  

D = Idax ® 0 nxu~ —ixuau. 

It generates scale transformations on f i e lds .  For a finite scale 
change, x -' X x ,  a field transforms a s  

to (X) " xdcX) 

tPresented at  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  - 
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where d is the dimension ofcp . As is well known for free fields a t  
least ,  01 = 1 for spin 0 ,  d = 3/2 for spin 1/2, and s o  on .  

Now we can define7) a current i)” = @1v such that D is the 
space integral of its time component.  Then time independence of D 
or sca le  invariance of the t heo ry  corresponds t o  :9 being divergence— 
free . The divergence of flu is easily seen t o  be just  ®ul1, the trace of 
the energy-momentum tensor .  We want the limit of scale invariance 
to correspond t o  the  vanishing f rom the Lagrangian of t e rms  having 
dimensional coupling constants, since a theory with only dimensional 
coupling constants should be scale invariant. Therefore,  @u“ should 
be proportional t o  those terms in the Lagrangian having dimensional  
coupling constants. owevgeflo a s  )we heard from Professor Iackiw he 
and  several other people8 ) h a v e  found that due to divergences 
which are inherent in all nontrivial field theories a formally scale in— 
variant interaction term may give rise to terms which break scale in— 
v‘arlance unless the expansion parameter (unrenormalized) of perturba- 
tion theory has a fixed value. We will ret to this point later on.34) 
Besides this very serious problem Wilson11 remarked that the dimen- 
s i o n  d of a f ield m a y  change due  t o  the  interaction (anomalous d imen— 
sions) . Another important point which has been dealt with quite often 
in the literature5 concerns the question whether conformal invariance 
can be realized in  the Goldstone w a y ,  i . e .  , whether there exists  a 
zero mass scalar particle which couples to the vacuum through @uv‘ 
This would allow some masses to  remain norfiero in the symmetry 
limit. This possibility has  led many people5 to look for a combined 
scale and chiral invariance of strong interactions , because of s imi— 
larities which I shortly sketch below.5) 

Although a detai led theory of strong interactions does  not yet  
exist it is reasonable to  suppose that SU(3) x SU(3) is nearly a good 
symmetry. We write the energy density @00 in  the form 

® = ®  + u  (1) 
00  00  

whereuoo is invariant under SU(3) x SU(3) and u contains SU(3) sing- 
let and octet components . From the work of Gall-Mann, Cakes and 
Rennerlz it seems plausible that u has the simple form “0 + c u with 
0 near -/2 (so that the min mass is nearly zero), the ui hein scalar 
components of a (3 ,  3)G) (3, 3)  representation. Under standard ) a s -  
sumptions 

1 auflu=iEF15,u] i = 1  ----- 8 (2) 
and the axia_1 current divergences are dominated b y  a pseudosoalar 
octet in  ( 3 , 3 )  + ( 3 , 3 ) .  
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When u goes t o  zero the axial vector currents are conserved 
and the pseudoscalar octet becomes massless  . However other parti- 
cles apparently remain massive in this limit. The numerical analysis 
of von Hippel and Kim13) indicates that the nucleon mass remains 
essential ly unchanged a s  u -’ 0 .  It a l so  seems that the 71' remains 
massive i n  this limit. Thus it i s  reasonable to  assume that con- 
tains a scale break=ing (scalar) operator 6 in addition to a part of 
dimension d = - 4 ,  @00 

n = 6  + 6 + u  (3) 

6 is to  be SU(3) X SU(3) invariant, as  is 500. It was Wilson” who 
f i rs t  advocated the existence of  5 . Mass  sh i f t s  of  the  order of 1 GeV 
are t o  be attributed t o  the operator 6 , while u causes shifts of a few 
hundred MeV. 

In the limit where 6 goes to  zero we distinguish two types of 
theories . In the f i r s t ,  a l l  masses  vanish in the limit of scale invari— 
ance and the vacuum is  normal under scale transformations . The 
second alternative i s  that of spontaneous breakdown of scale invari- 
ance,  i n  which case the vacuum i s  degenerate. 

Recently doubts14 have been raised whether scale invariance 
can be realized through the Nambu—Goldstone way.  We will come to  
this point la ter .  For the moment we note that the vanishing of a l l  
bare m a s s e s  and dimensional coupling constants i s  one necessary 
condition for a combined scale and chiral invariance of strong inter- 
actions . 

In the following we are going to  investigate the condition of 
vanishing of all bare dimensional quantities in the framework of La- 
grangian field theory .  To accomplish  t h i s  we have t o  choose a model  
f ield theory  which supposedly  i s  capable of describing strong inter- 
actions . A promising candidate i s  the field theory of mesons and 
baryons with fseudoscalar Yukawa coupling. In this framework Drell, 
Levy and Yan 5)  and other-316 were able t o  derive useful results for 
inelastic electron-proton scattering. Also Padé—approximant calcu- 
lation based on this field theory yields results which agree very well 
with the data . 17) I 18) 

The Lagrangian of. the pion—nucleon system is given b y l g )  
(SU(2) case): 
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_ —o 3 — - o - o  L=Y(1Ya -M)Y+%(6urr)3 --‘42—E3-igov-cpw 
_ 3 — .  +5Mw+§2“—1r3 

= _ = 2 _  2 8M M M 0 .  6n u “o  (4) 

where M and ”a are the physical masses of the nucleon and pion res— 
pectively,  M 0  a n d  L103 are the corresponding bare m a s s e s  , g o  i s  the 
unrenormalized 11 — N coupling constant and Y and cp are the uni-enor- 
malized nucleon and pion fields respectively. 20)  

The interaction Lagrangian in the SU(3) case i s  given by 

= _ - a _ a LI 2 1 g0 BYSEOLD + (1 a )?  JBPa (5) 

plus the se l fmass  terms which we d o  not explicitly write down. 0!. i s  
the mixing parameter which measures the relative strength of the sym— 
metric and  antisymmetric couplings (D and  F types  respec t ive ly ) .  B 
and Pa are unrenormalized baryon and mesons fields respectively.  

In the framework of this theory one can derive the following 
exact relation for the bare m a s s e s  . 2 1  
Nucleons: 

M0=MZQ+ZQ I a [ r 1 ( a ) - r 1 ( - a ) ]  d a  (6) 

(MW) 

M01 = M1221 + 2211 j‘ a[r11(a) — r11(—a)]da (7) 
(Mm) 

where Z5J (231) is the wavefunction renormalization constant for the 
nucleon (baryon octet) and r1 (a) (r11(a)) is the renormalized Spectral 
function of the fermion propagator 
Mesons: - 

‘ 9 

L103 =L12Za +Za J" aap(a2) d aa (8) 
4M‘3 

Meson octetzzz)  
co 

“021 = u21 Z31 + 231 j“ a2 p1(a2) d a9 (9) 
4M2 
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where Z3 (Z31) and p(a3) (pi(a2))  are the corresponding quantities for 
the pion (meson octet).  Now let us discuss these equations from the 
point of view that  the bare m a s s e s  have to  vanish in the limit of scale  
invariance. We start with M 0 .  From E q s .  (6) and (7) we learn23 
that there are two possibilities for M0 to  vanish 

00 

I.  22710, M+j '  a l r 1 ( a ) - r 1 ( - a ) l d a = 0  (10) 
(Mm) 

or 

II.  2 2 : 0 ,  | M + j  a [ r 1 ( a ) — r 1 ( — a ) ] d a | < ° °  (11) 
(Mm) 

Case I ,  which one: could interpret a s  the case where the nucleon is a 
fundamental object, has  been dealt with in the lijtfiu-ature24 t o  calcu— 
late the pion-nucleon coupling constant without much success  . 
Case II leads t o  the conclusion that when the wavefunction renormali— 
zation constant vanishes , t h e  bare m a s s  has  t o  v a n i s h .  The condi- 
tion 22 = 0 is known a s  the condition for compositeness of a particle 
in field theory .25)  Salam26 conjectured that 

6 M = M - M 0 = 0  (12) 

2 
when Zg  = 0 and Hagen 7 )  later o n  made this statement more precise 
in showing if the  vacuum is  nondegenerate actual ly  

M = M 0  = 0 (13) 

from Z 2  = 0 follows in  a y 5  invariant t h e o r y .  Hagen a l s o  noted in  
this  case  that  a spontaneous generation of symmetry emerges  . There 
i s  s t i l l  another possibil i ty which has  to  the bes t  of the  au thor ' s  know— 
ledge not yet been reported in  the literature , namely  that  f rom 22  = 0 ,  
MD: 0 follows but M 75 0 . In this case the vacuum has to be degener- 
ate and we expect that the Goldstone-Nambu theorem 8) applies, in 
that  there exists a s p i n  z e r o ,  mass  zero particle . In  view of the work 
of R e f .  13 it  is very important t o  know whether such  a possibil i ty 
exists . Therefore we have investigated this quest ion in  our chosen 
f ie ld  theory for  strong interactions . 

Before I tell you. the results I should point out that usually' you 
.axpectz 7) MO to be infinite when 23 = 0 .  Also straightforward pertur- 
._hat1.on theory gives you always M = ~ I» and  therefore we introduce a 
cutoff t o  make the integrals well gefined . Later on we will see that 
the cutoff plays a special  ro le .34)  
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First let us see what lowest order perturbation (unrenormalized) 
gives. For 22 we find 

22 = 1 _ J‘AZL I1 'd-zu-z) zENP(1-z)9+1.z] 
o I NF (l-zI‘m5'2 + I.zl= (14) 

and for G M  
A . ._ 

_ dz 2 1 - z“) 6M—M§dL£-EMB (1--z)3+uazz+l '] (15) 

From Eqs. (14) and (15) we learn the following 
1. For M = 0 (physical mass of the nucleon) indeed 5 M  = 

M — M = 0. But letting M -o 0 in the expression for Za we find that 
Z2 diverges (infrared). Therefore it seems that _Za has nothing to do 
with 6 M  in this case . This observation is confirmed when one looks 

at the rainbow approximation2 9) (summing up the rung—diagrams) and 
in the Zachariasen30) version of this model. 31 

2. For M 75 0 one readily sees upon comparing Eq. (14) and 
Eq. (15) that for p, = 0 (physical mass of the pion) indeed M0 = 0 from 
Za = 0 follows . This relation can be written inthe beautiful form 

6 M  Z2 =‘1 _ V  (16) 

or 

Mo = 29M 
The validity”) of this relation is confirmed in the abov mentioned 
models29 )and I think that it is true in general3 for theories 
where the limit boson mass -' 0 exists . 

When one looks at the SU(3) case these results do not change. 
One finds in this case31) an octet of masslesa pseudoscalar mesons 
emerging while the masses assume the value of the nucleon mass in 
the symmetry limit. 

These findings suggest that the condition Z2 = 0 (and all 2'5 = 
0 in 9911313126» lead to a spontaneous generation 02f SU(Z) x SU(Z) 
(SU(3) x SU(3)). But the emergence of massless pseudoscalar Gold- 
stonous is not yet enough to have a chiral symmetry. One has to 
show that the axial vector current is conserved when the wavefunction 
renormalization constants are zero. Following Gell—Mann and Levy33) 
we perform the following chiral transformations on our Lagrangian 
equation (4): 
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- o - o  

Y " ( 1 + i T ' V Y 5 ) ‘ 1 ’  

1'1' -. E (17) 
. 33) The axial current is given then by 

i - i 
91 = ‘l‘ ‘1’ 1 u Yu Y5 T ( 8) 

and its divergence 

p. 1 = - i — 1 a mu ZiMoYY5TY+g°YY°P (19) 

where all quantities are understood ito be unrenormalized. We have 
calculated (NI mi IN) and (Man :1 1N) . IN) fixed physical nucleon 
state and found t at in the limit wl‘l'ére u = 0 

(NI M UN) = M Y” ys 1-1 (20) 

and 

<Nla“ film =Z§<Zz+ze*) Mn (21) 

for zero momentum 'tt‘ansfer Squared.35) If one formally renormalizes Bob (19) one finds“) 

a“- 1 = _ - i i - 1 mu 2(M 6M)i za ‘l’R vs T YR + 9023 2a VR icpR (22) 
R 

which has essentially the same Z-factors as Eq. (21) when one uses 
the condition (16). (The additional Za factor in (21) comes from the 
sandwiching between physical states.) Therefore we conclude that 
Eq. (20) and (21) are in general true. Therefore we find that if Z3= 0, 
indeed, the axial current is conserved provided that the pion mass is 
zero. Also the equation 22 = 0 does not mean that the axial current 
itself vanishes identically when Z2 = 0. It is an easy exercise 
to convince oneself (in lowest order) that 

a i _ 
a t  Q5 — 0 

where 

Q: =j'd3x 9126:) . (23) 
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Therefore we conclude that the condition Zz= O indeed leads to a 
spontaneous generation of chiral symmetry (SU(2) X SU(2) in this 
case), which at the same time turns out to be spontaneously broken. 
Although the connection Z's = 0 (bootstrap) and the emergence of 
higher symmetries has been noted a long time ago35) the simultane- 
ous breakdown of the emerging symmetry has to the best of the know- 
ledge of the author not yet been reported in the literature . 

Although many people may argue that this result seems to hold 
only in a special model, I would like to emphasize again the rele— 
vance of. this field theory for what is going on in nature: these results 
again support the work of Ref. 13 . Further, although one usually be— 
lieves that the o—model33) is a better model for strong interactions 
these results suggest that the advantages of the 0 model (chiral in- 

variance) are actually hidden also in the simpler «(5 theory. 

_ Now let us turn to the bare mass of the mesons. At first sight 
it seems that again ug= 0 when Za= 0. But one has to be very care- 
ful in this case. Hagen”) actually claimed that the opposite is true: 
if zs= o, u 3 is infinite. But other research workers in this field“) 
have found ate condition 

zs ans = 0 (24) 

i.e. 6 9 is not infinite . This was confirmed recently by Kang and 
Land3 who reexamined this problem very carefully. They showed. 
that condition (24)  is indeed necessary for a complete bootstrap. Fur- 
thermore they showed that the complete bootstrap condition imposes 

a restriction on the propagator, namely that the propagator requires a 
subtracted Lehmann representationzn in this case . 

Since (24) is compatible with U02 = 0 we conclude again that 
from Z3= O a vanishing of the bare mass [403 in the symmetry limit 
results . Indeed calculations based on perturbation theory confirm 
this . 3 1) 

Now after we have made it very plausible that the vanishing 
of all renormalization constants leads to the necessary conditions for 
chiral invariance , we still have to investigate whether these condi- 

tions also lead to scale invariance. There the big question arises 
whether as in the case of chiral symmetry or Goldstone-Nambu reali- 
zation is possible. It was claimed in the literature38) that the 0 - 
model provides an example for a Goldstone solution, the o—meson act— 
ing then as a Goldstone . But a recent careful renormalization of the 

o-model393o40) shows that when the physical mass of the o vanishes, 
all"‘1 other masses, including the nucleon mass, vanish also. Also 
on general grounds Genz and others14 ‘ have provided indication that 
the Goldstone situation cannot arise in the case of scale invariance. 



SU(3) X SU(3) AND DILATATIONS INVARIANCE 311 

But let us  look into meson-nucleon theory when al l  the wavefunctions 
renormalization constants vanish. Following R e f .  7 , the divergence 
of the dilatation current is given by 

U- _ H _ — 2 “’3 a s u — e u — M o r r + u o w  (25) 

Formally renormalizing this expression introduces Z-factors . How— 
ever, taking matrix elements between physical nucleon states or phy~ 
sical pion states shoWs31 that, only if Q physical masses vanish, 
ails“ = 0 follows . However we still want to be cautious because this 
emerges  o n l y  in  a lowest  order calculat ion.  Nevertheless we fee l  that 

‘ it is a strong indication against a Nambu—Goldstone realization of 
scale invariance . 

S o  le t  me s u m  u p .  You have s een  that there i s  a strong con— 
nection between t h e  bootstrap apprach and the way symmetries arise 
and  how they  a re  real ized i n  the symmet ry  l imi t .  We found that  chiral 
symmetry has to  be realized in  the Goldstone-Nambu w a y ,  while scale 
invariance seems to  demand that a l l  physical masses  g o  t o  zero in the 
l imit .  From this immediately follows that a quantity 5 must  ex i s t ,  a s  
introduced by Wilsone) who claims that Glashow was the first who 
gonsidered i t .  Therefore this suggests the following picture for 9 0 0  = 
6 0 0  + u + 6 i n  the symmetry l imit:  

When u goes to  zero ,  the pseudoscalar masses  g o  t o  zero and 
the baryon masses  s t ay  f in i te .  In the limit 5 -' O a_ll masses  g o  to  
zero . 

Furthermore, our findings strongly suggest  that Abdus Sa-  
l am ' sze )  original hypothesis is r ight ,  namely that a l l  Z ' s  = 0 i s  the 
f ield theoretic equivalent of the bootstrap hypothesis . 
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COMMUTATION RELATIONS 
FOR THE BROKEN CONFORMAL INVARIANCE 

IN QUANTUM FIELD THEORY'H 
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University of Notre Dame 

Notre Dame, Indiana 46556 

The interestl) in conformal invariance has recently been 
greatly revived by Gell—Mannz) and othersa) in connection with SU(3) 
x SU(3) as applied to hadrons.“ Like SU(3) X SU(3), the dilatation- 
conformal symmetry is badly broken by the strong interaction as is 
evidenced by the nonvanishing masses of hadrons. There are , how— 
ever, at least two basic differences between the conformal symmetry 
and an internal symmetry such as SU(3) x SU(3). First of all, the 
conformal generators d o  not commute with the Hamiltonian even in the 
limit of exact symmetry: and secondly, the conformal symmetry is a 
geometric symmetry induced by space-time transformation. We shall 
here mainly make use of the latter property of the conformal invari— 
ance , which enables us in Lagrangian model field theories to define 
the infinitesimal generators in terms of the field operators through 
the Noether's theorem independent of the manner in which the sym— 
metry may be broken. We shall later also consider a direct geomet- 
rical definition for the dilatation—conformal generators . But we shall 
see that in all renormalizable Lagrangian models containing fields of 
spin 0, % , and l, the Noether“s generators and the corresponding 
geometrical‘ones are in fact equivalent. The commutation relations 
among these generators will be obtained. We shall demonstrate that 
the breaking is completely determined by the divergence of the dila- 
tation current and that the broken algebra involving only the Poincaré— 
conformal generators and the divergence of the dilatation current is 
model independent. At the end, we shall also give a direct geometri- 
cal meaning to the breaking terms of the conformal invariance. 

’rPresented at the Symposium on De Sitter and Conformal Groups, 
University of Colorado, Summer 1970. 
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The infinitesimal scale and special conformal transformations 
are defined by their action on a space-time point x in the Minkowski 

space , , u 

SS: x * x ' = x  + e x  
L1 Ll Li L1 

a Auzx "x’ = x  + a  xz —2x (on-x) 
u H L1 M u u 

Where we netioe that the spatial. conformal “generator nu acts: non- 
linearly on - . 1 1 V 

For a given Lagrangian Skp , co ) which depends on ”:1 through- 
th‘e space-sums dependence of the fiel and their derivatives , S and 

will induce a corresponding change in theme fields and hence the 
Lagrangian, very much like what happens under the Lorentz transfor- 

mation. One demands on physical grounds that under S and AM the 
action integral 

w = faix £(coi(x). wile» 
be invariant up to an integral of a divergence so that the field equa— 
tions will remain unchanged . This gives rise to a current which be— 

cbmes divergenceIBSS when S and Au is a symmetry of the dynamics 
described by £601, m1). This is the content of the Noether's theorem, 
in accordance with which ‘we may now write down, for a given Lagran- 
gian s-(cpi, cpi). the infinitesimal generators of the Poincare-conformal 
generators even. if the symmetry is broken, 

PU = Idsx Tou(x) 

= a _ MUN Id x (xv TO“ K“ Tov) 

_ a K 355. i S—j‘dx(x To}. —E£i 'i to) 
. i V am. a 

= a X _ _ . X fi x  1 
Au Id x [qx Td XQT0L1 Z(2Lixu+1x aux) mp“ Cp 

1 ‘r ’0 

+ guo 2 Helena] (1) 
boson 
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where we have used the metric ( 1 , - 1 , — 1 , - 1 ) ,  cp =fl-  and 
H 6X“ 

g i t p  _ g  S 
L i v :  _. 3 i v m) 

1 ( p u l l  

i s  the canonical energy—momentum tens o r . 5 )  The l a s t  term within 
the integral for is summed over boson fields only and is necessary 
in order to make v divergenceless when the symmetry is exact. 
2.1 is the dimension of the field cpl such that under an infinitesimal 
scale. transformation, a boson field of dimension L ,  for instance, will 
transform a s  , 

S: epbc) ”cp'bc’) =cp(X) +£€ cp(X) 

But 

cP'(X’) Etp'(X+€X) =cp'(X) + exHa—u cp(X) + o(e3) 

and 

cp’(x) = (1 -1es)cp(x) (1 + ieS) 

=ep(x) - ieES. cp(x)] + 0(33) 
Hence 

1 A m.¢mn=;{—L+x 4%]ws) (m 
a x  

Similar ly ,  under  a n  inf ini tesimal  special conformal transformation, 

[AM mm] = il[—21Lxu + qxxfi - x2 83?] cp(x) (3) 

We see that the dimension L of cp(X) is not determined by these trans- 
formations, but rather by  tbs transformation property of the canonical 
momentum of cpbt), Tr(x)= , which in  turn depends on the equal- 

time canonical commutation relation, 

k a = y = i P & - %  (s 
0 0 
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Thus, using this equation, one gets from Eq. (1) 

11.:X x a— 
ax)‘ 

Es, Tr(X)] = + 3 + L ]  n(x) (5) 

However, when the dilatation symmetry is exact, dS/dt = 0, we may 
also get the commutator by direct differentiation of Eq. (2) , 

[8.1160] =il[x7‘ % +  1 —JL]1T(X) (6) 
8x 

Hence, to be consistent the boson field must have a scale L = —l . 
Similarly, the unrenormalized fermion fields are limited to the scale 
L = — 3 / 2 .  

To derive the commutation relation for the conformal genera— 
tors, one needs to make use of the equal-time canonical commutation 
relations such as Eq. (4) and 

[11(X). ViCph/HX _ 

Hawev'er, for reasons to become clear later it is better muse, Where-6 
We: pdssible, the Schwinger's6 equal-time commutatorammg various, 
components of the energy momentum tensor, 

. _ a _5_ 3 =9 *- T l o o  o o - « o  —. 1[T00(x). Too(y)]xo=yo — [Token + T014373] axk a (x—y) — (x .y) 

iETOO(X).TO 10M; =0Y = [T k(") + To oma k]-—6 (x— y)— °°'°i(?<.§) 

TtToim, Toj(y)]XO=yO=ETO Oj(x)a:+To' (37);;16Wx— y)— °i'°j(§,§) 

where the T's are the Schwinger terms; they are in general q—number 
quantities but each of them involves at least two three ~divergence 

such that our result will be for most part independent of Schwinger 
terms. We will neglect their presence in the following discussion. 

Now using these commutators , it is not difficult but exceed- 
ingly tedious to verify the following relations , 
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= ' — i 

[Mimi Pl] 1 gm Pv gvx Pu 

= — + — M 
Muv' MM] 1 gm Mvo 1 9110 v igvc Mm 1 n  L10 

[3: S] = 0 
= — X [S’Pu] iPu+iguoIdaxa s)‘ 

= a _ X [8, MW] 1J'd x (guoxv gvoxu) a s 

x = _ + 2 8 EA“, PV] 21(gws MW) 1 gvo J'd x xua sx 

EA)" Muv1=igvxiiA -1g A +2ij'd3x (gL1 ox v_gvoxu)’3\aoso UM 

=.. 3 )t [1511.8] 1Au+1guofdxxaa s)\ 

X 
= a — [1511, Av] 21 Id 3: (gnoxv gvo x“) x9 3 SK (7) 

We would like to remark that: 
(a) All the breaking terms come from the divergence of the 

dilatation current aXS)‘ . With the definition given by Eq. (1) , we have 

x _ as 1 
aS)1‘_‘1":'Z|:L1a—T‘l’“”1 ”6— 3 11°91] 1 co emu 

which means that those terms in the Lagrangian having dimensionless 

coupling constants such as the kinetic energy terms, interaction terms 
like Mp‘ , try “I.“ , or \FyE top will not contribute to the divergence of 
the dilatation current. Furthermore all the breaking terms are simple 
moments of a . The commutators [S, v] and EA”, AV] contain 
only odd moments of a Multsfiaav EL}; S] only even moments of 3x8, while 
[ , P  V] and {AA oth even and odd moments of a 
H nce, Vit is Ate possible to construct a model where all the 03d 
moments of a l. say vanish, so that the commutators [8, MH ] and 
[ n ,- " are the same as in the exact symmetry limit. In any case, 
"th ‘h'ea'king of the symmetry is completely determined by 6,8,“. 
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In specifying 3x81 , we have also specified thf model of breaking. 
In particular, in  the limit of exact symmetry 3 8x = 0 ,  the above com— 
mutation relations reduce t o  the closed algebra of the conformal 
group. We notice once again that S and d o  not commute with the 
Hamiltonian Po even in the limit of exact symmetry. 

(b) All the breaking terms in the above relations carry a fac-  
tor g0L0 with one zero—component subscr ip t .  This m e a n s ,  for 
instance , that only the zero-component of P and Muv induce a n  
explicit time dependence on the generators g and AA in the commuta- 
tors ES, Pu] , ES, Mu ] .  E , Pv] and [Au Mm].  Similarly, only 
the zero—component of, n induce a time dependence on S and . 
This implies in  particular that the commutators [ 8 ,  Pi] , [ 8 ,  Mil] , 
[Aw Pi] , [AH M11] , [A1, S] and [141, A1] with 1, j = 1,2,3 are not 
changed by any  conformal breaking. 

(c) Inside a three—dimensional integral in theabove equa- 
tions , a term like xuaxsx may be replaced by — i‘ 31A} , since these 
two expressions can differ  a t  most by a total d1vergence.7 In this 
Sense, the special conformal generator Au is not independent of the 
dilatation generator 8 . In other words , knowing S“, A“ may be ob- 
tained by taking moments of the dilatation current SW This will be- 
come even clearer when we consider the geometric definitions of S 
and . 

A” (d) In deriving the above equations , partial integrations are 
quite often performed and what have been integrated out are dropped. 
This means that we have assumed the fields and the energy-momen— 
tum tensor t o  be s o  localized spatially that  for instance, 

_.L1m xi Tuv(x’ x0) = 0 
x - o o o  

. (e) There are terms of the form Idax Jt,(1f,+l)tp2 (x) on the 
right-hand side of the last  two of the above equations.  The simple 
form given holds only if we have assumed that the boson fields have 
the dimension at. = -1 . 

(f) The commutation relations for the exact conformal sym- 
metry a re  invariant under the following transformation,  

A " A  
H H- 

P * l P  
L1 C L1 

S - ' S  
and 

M * M  uv uv  
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for any constant c. 
This is no longer true for the broken algebra; we may say that 

the above symmetry transformation is also broken by the existence of 
the divergence of the dilatation current. 

The above considerations based on Lagrangian models suffer 
from one serious drawback, namely, the canonical equal—time commu- 
tators used to derive these relations such as Eq. (4) are for bare fields 
and their canonical conjugate momenta only. Even for renormalizable 
Lagrangians, the canonical equal—time commutators for the renormal- 
ized fields and their conjugate momenta will be multiplied by some 
cut-off dependent and hence scale dependent renormalization constant. 
Quite possibly, the. renormalized fields will no longer transform under 
S with a definite dimension.8 This promptsus to consider the new 
definition of s and AL1 given by Gen—Mann} 

s = d  x" eox 

A =J‘d3[2x)\x sol—x39 1 

PL1 = d  em1 

174W =J‘d3 [xv em - xLl 9W] (8) 

These definitions coincide with our geometrical intuition on these 
generators, they depend only on the physical quantities em, but not 
on the Lagrangian, and hence are model-independent. The divergence 
of the dilatation current 5 = x 9, MA is now simply given by the trace 
of the symmetry energy momentum tensor 9““. It follows that unlike 
the canonical T W' is traceless in the limit of exact scale invari- 
ance. For renormalizggle Lagrangians containing fields of spin 0, i, 
and 1, Coleman et alg) had shown that e differs friom the symme— 
trized canonical T v only by the Huggins-Iterlm 0) ‘ 1(3 WE g“ D) cpa’ 
for each scalar or pseudoscalar field cp. It is then easy to checfit that 
for all the renormalizable Lagrangians considered in Ref. 9, 

a”§ =6“ 
u , u 

ausM = 1““ '2 i i  i i 
Liaim’rcpucou] 

1 cp 
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so that 

“s —a“s Z[cpil:| cp +L cp a _‘a~s i 1‘ . acp 
1 u 

from which we 1mmediate1y obtain 

a“s =a“§ (9) 
L1 L1 

and hence 

a”A = “A = — 2x a“§ (10) 
uv uv v u 

provided that 

3 cp1 = — L 3i. (11) 
p. 1 BCPI 

u 

which is true if there is no derivative coupling in S and the dimen- 
sion of spin zero bosons is —1 . Note that if we only want to preserve 
the Poincaré generators, the Huggins term is far from unique. For in— 
stance , multiplication with any polynomial in the Klein-Gordon opera— 
tor, P([]), to the Huggins term will not affect PH and v' The coef— 
ficient —1/6 is again required by the canonical dimension of the 
bosons . After renormalization, the dimension of the boson field will 
in general change; this coefficient must then be changed accordingly 
in order to preserve Eq. (9) and Eq. (10). 

It now follows from Eqs. (9) and (10) that 

s = s 

L1 H ( ) 

which together with P and Pu and — M  show that the geometri- 
cal generators defined by Eq. (8) are in facl‘tN identical with those de- 
fined through Noether' s theorem as given by Eq. (7) . 

Having demonstrated their equivalence in Lagrangian models , 
we may now discard the Noether's definition in favor of the geometri- 
cal one. Since the geometrical generators of the conformal group 
depend only on the energy-momentum tensor aw, all we need to ob— 
min the commutation relations for these generators are the equal—time 
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commutators among components of '6 v' New since the Schwinger's 
equal—time commutators among various components of the energy~ 
momentum tensor follow from locality and Lorentz covariance alone, 
they are the same for e v and T ; furthermore , they are not affected 
by renormalization. 11) With this reasoning, it is straightforward to 
Show that the generators S, _ , P , and — again satisfy the com— 
mutation relations of Eq. (7) . We conclude that the broken algebra 
involving only the Poincare—conformal generators and the divergence 
of the dilatation current is model—independent. 

In order to give a direct geometrical meaning to the breaking 
of the conformal algebra , let us consider the well known represen— 
tation of the Poincare—conformal generators by differential operators 
acting on a Hilbert space of L(p3) 

' _ L Pu iaxu 

uv v ax” u 32:" 

- )t 
S = i x  3—K 

B x  

i=i<x3— a_ -2xu)‘x —) (13) 
ax“ 

where we have omitted some constants in S and IE1 which are neces— 
sary to make them hermitian differential operators. Such omissions 
are justified since they play no role at all in the commutation rela- 
tions. The form of the differential operators follows directly from the 
action of the infinitesimal generators on a space-time point . Thus, 
when the infinitesimal scale generator operates on a squared inte- 
grable function, we have 

§[f(x)] = H?! + 6X) 

= f(x) — is (123—5?) fix) + 0(e2) 
B x  

hence 

_ _5_ S i x  A 
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Similarly, under A , we have 
u 

§u[f(x)] = f(x ”+0113.3 — sa-x) 

{ 1 — q  i X z——2xx —-—>+0(o.3 )]f(x) 

which gives 

11 =i/x9— — 2x —-——- 
H ex” ex 

If we form commutation relations for the generators given by Eq. (13), 
we get j u s t  the Lie algebra of the conformal group. Now if the sym— 
metry is broken, the generators Sand will be explicitly time— , 
dependent. To obtain the broken algebra, we first assume the time— 
dependent Heisenberg equations of motion for S and A“, 

— - _ - . ds 
ES, PM] — iPL1 + 1gu° _dt (14) 

_ _ _ _ dK = 2. _ . H 
EA”, PV] 1 (£1q MW) + 19v0 dt (15) 

We next postulate the commutator, 

1 Ex“. S(xo)] = xL1 

We then have 

Es, MW] = i (guox -gvox u E? (16) 

and 

[§, '3'] = 0  (17) 

If we now also make use of the fact that  for the representation given 
we have the following simple relation among A”, PH' and S, 

P: = x 2 §  —2x S (18) 
u u u 

one can then verify the following relations , 
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[AVA—II W1=1(gV A M-QHAWHflg x “90:19:13,: 

- _ - 2L5 [Au,S]— 1Au+ixaguo dt 

d§ EA“, Av] = 21 x2 (xvguo — xugvo E (19) 

plus the usual Poincare algebra which is not affected by the conformal 
breaking. Taking into account therelation that 61-19% = —2xv 3113“ 
there is a one-to-one correspondence between thes relations a 
those given by Eq. (7) . Indeed, it is easy to show for instance, 

d S _ d  3 _ 1 
dt tfdx "0"“ e 00 x 901) 

= 3 _ 1—3- Idxeoo Idaxx BX]. 9 ij 

= 3 L 1 :  3 X j‘dxeLl fdxa sx (20) 

We see that the breaking of the conformal invariance is directly given 
by the time variation of the conformal generators d§/dt and - /dt. 

The above discussion strongly suggests that the broken con- 
formal algebra we have obtained is not only model-independent but 
also more general than the particular representation we have chosen. 
We think that quite generally, for any satisfactory definition one may 
give to the conformal generators S and , their commutation rela- 
tions Will take the form given by Eq. (7) . 
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CLOSED ORBITS AND SO(4,2) SYMMETRY 
IN RELATIVISTIC TWO-BODY THEORYT 

C. M. Andersen and Hans G. von Baeyer 
Department of Physics 

College of William and Mary 
Williamsburg, Virginia 2 3 1 8 5  

Many of us have been fascinated for some time by the special 

symmetries associated with the nonrelativistic spinless hydrogen 
atom, or, as it is often called, the Kepler problem. In this problem 

we have one particle bound to a second particle, treated as infinitely 
massive, by a l/r potential. From the classical point of View, this 

problem is very special because all the bound orbits are closed: in 

fact they are ellipses . From the quantum point of view the special 

feature is the presence of the so-called "accidental degeneracies. " 
In either case we have an 80(4) group of transformations (an invari— 

ance group) which may be applied to the irajectories or to the states 

resulting in a family of trajectories or states with the same energy. 

The six generators of this group are the three components of the con- 

served angular momentum and the three components of the conserved 

Runge-vLenz vector. 1 
We may even extend this group to the noninvariance group 

SO(4,2) which in the quantum mechanical case has a single irreducible 

representation whose basis vectors are in one—to-one correspondence 

with the entire set of bound states and wherein the several basis vec- 

tors associated with any one of the various representations of the 

80(4) subgroup correspond to states of the same energy. 

The problem just described is a W prob- 
lem. We now ask how to formulate a relativistic one-body problem 

with the same symmetry. We impose three conditions. 

(1) It should reduce to the Kepler problem in the nonrelativiS- 

tic limit. 
(2) It should have the relativistic energy—momentum relation 

in the free particle limit, i.e. as the potential goes to zero, the 

energy—momentum relation should become E3 = P2 + m3 - 

TPresented by C. M. Andersen at the Symposium on De Sitter and 

Conformal Groups, University of Colorado, Summer 1970. 
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Examples of theories satisfying these  first two conditions are 
given by the following sets of equations: 

(a) dB/dt = -'v°v(r) , v = -k/r 
-O -O 

p = myv 

which implies 

E E m Y  + V = c o n s t  

(E —v)2 =p3+m3. 

This is a vector theory in the sense that V is treated as the fourth 
component of a vector. It is familiar to us because it properly des- 
cribes the Coulomb electromagnetic interaction. The space-like com— 
ponents of the 4—vector A” are set equal to zero and V is the time-like 
component A0 . 

(b) dB/dt = -y'1 cr); v = —k/r 
-9 -o 
p=Ev; B E  (m+V)y 

which implies 

E = const 

E3 =19a + (m+V)2 . 

This is a scalar theory, and the potential V is now more closely asso- 
ciated with the mass m than with the energy E . In fact the "effective 
rest mass" is now (m + V) and, for an attractive potential, may go 
through zero and become negative if the particle comes sufficiently 
close to the origin. 

(c) dB/dt = -(m/E) 'v'v(r); v = —k/r 
no —u 
p =Ev; E E myA/l + 2V/m 

which implies 

E = const 

E g =  3 + m 9  +2mV. 
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This again i s  a scalar theory with an effective rest mass  which 
depends on the position coordinates . 

In addition t o  these three examples, there are numerous theo— 
ries in  which V(r) i s  a component of a tensor of rank two or higher. 

Now we state the remaining condition. 
(3) There should exist closed orbits in  the classical theory 

or "accidental  degenerac ies"  in the  corresponding quantum theory .  
All three conditions are met  in  Example (c) wherein the bound or- 

bits not only are  c losed but are  e l l ipses  a s  in  the nonrelativistic problem.  
Note that in  Example (c) the equations of motion 

In “0 (E) v 
_. 

L“. E 
E m ’ 

apart from the presence of  the quantity m/E, which is  a constant of the 
motion, are the same a s  for the nonrelativistic Kepler problem. On the 
other hand in Examples (a) and (b) factors of y are brought into the 
equations of motion and  y i s  not a constant of the motion. Because of 
the similarity of Example (0) t o  the Kepler problem we may expect a 
conserved Runge—Lenz vector to  exist there . It i s  given by  

s
k

a
 

a
s

;
 

with ? =  F x B and has exactly thegsame form a s  in the Kepler problem. 
For bounded trajectories , A i s  closely associated with the 

eccentricity of the ellipse of the orbit. The distance from the center 
of the ellipse to  one of the foci is given by 

mk  ~ 
m a - v A .  

_. 
e :  

For unbounded trajectories , that  is , in the case of scattering, 
the existence of  the conserved quantities ene rgy ,  angular momentum, 
and Runge—Lenz vector allows u s  by  means of a three—line calculation 
involving no integration or differentiation to  determine the scattering 
angle 6 :  

m k  k l - v 2  
b mvab ' 

N
l

a
:

 

tan 
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where b i s  the impact parameter and v i s  the velocity of particle long 
before and long after  the scattering. Note that a s  v -' 0 this  becomes 
the Rutherford fo rmula .  

The relation between (c) and a c lassical  theory of point parti— 
cles with interaction mediated b y  a scalar f ield has  been d i scussed  
by the authors elsewhere . 

For the corresponding Schrodinger theo ry ,  i . e .  in  a wave 
equation in which E a n d  p are  treated a s  operators a n d  the Hamil to-  
nian i s  H = p3+ m 2 +  2 m V ,  the  energy spectrum is j u s t  that  for the 
Dirac hydrogen atom with quantum number k se t  equal  to  the principal 
quantum number n ,  i . e .  

En = m / 1  — (k/n)a , 

where the principal quantum number n t akes  on the values 1 , 2  , . . . . 
Of course the degeneracies are the same a s  for the  nonrelativistic 
hydrogen a t o m .  En  is  independent of the other quantum numbers 42 and 
m sat isfying L = 0,1,. . . , n — 1  and 4L S m s  t .  

Now we want t o  look for a relativistic tum-bod! theory. 
Diracs) tel ls  u s  that we may try to  d o  this  using a "pom " form of 
dynamics , i . e .  using 4-vectors a n d  manifes t ly  covariant equations or 
by using a n  "instant" form of dynamics in  which we work with 3— 
vectors . However, even  us ing the instant  form we can have Poincaré 
invariance. The particular instant form we have turned to is due to 
Ba-kamjian and Thomas.” For the two—body. problem one may} a con- 
tact transformation from the coordinates 331xa and momenta p1 p,B of 
the particles to new coordinates 3, rfiand new momenta F ,  5. The 
total momentum of the system is P = 131 + 'p'a , and R may be thought. of 
a s  the position of the center of m a s s  . The upper» case  variables , R 
and P ,  are referred to  a s  "external variables. " r '  is related to  the d i f -  
ference in  positions of the  two particles , and B i s  related to the d i f -  
ference i n  their momenta .  The lower case  var iables ,  r and  p ,  are re-  
ferred t o a s  “internal variables." T h e  center of mass  energy M is  taken 
t o  be a. scalar function of the  internal variables , i . e .  we have M = 
M ?  , r - p ,  p 2 ) .  The total Hamiltonian i s  given by 

H ={|'§|3+M9€2 E53 33)}% total ’ ' 

and is  independent of fi .  Our freedom of  choice consists  in  selecting 
the functional form of the center of m a s s  energy M .  We need t o  apply 
three conditions 

(i) We recover the Kepler problem in  the nonrelativistic limit.  
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(ii) The energy—momentum relation should reduce to 

p13+ me. + 4p23+ mg 

in the free particle limit. Examples of the choices open to us at this 

stage are the forms: 

(.51.) M =./ p94: m13-+ ,/ p3+ m2g + V(r) 

This form was given by Bakamjian and Thomas . With the proper choice 

of V(r) one gets Hamiltonians invented by Breit and by Darwin which 
correctly give the first few relativistic correction terms for the hydro- 

gen atom problem. 

(B) M =  , 1+- m1+=v + 1 PQH‘BBJ'V ) 
which is patterned after the first scalar interaction. 

(C) M = 1/. E5 -- + 11:15-1- zmrvE) + «/ p5+ m55+'2mrvm 

where mr is the reduced mass m1 me/(m1+ m2) . This is patterned after 
the second scalar interaction. 

Condition (iii) is the existence of a conserved Runge-Lenz 
vector. This we can accommodate as well. We use form (C) with V = 
—k/r. The Runge— —Lenz vector is a function of the internal variables 

r and p and has the same form as before 

so 0-0 a t .  Arm) =_:_Lxfin_ 
m k  
r 

with'fmt' =1; x B. 
Let us explore a few of the properties of this theory. We de- 

fine a "little" Hamiltonian 

1169,33) = pz/Zmr- k/r. 
and "imbed" this little Hamiltonian into the full Hamiltonian in the 
following way 

E = H(E,E,r,p) = { |3|2+ (./_-m.=>+ zmrh’éfm + 

From this relation, we obtain the Hamiltonian equations of motion 

was. mh', ~.p’ ' )2 
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dt dt ' 
a -. 

dii 15,-”3” 
dt E ’ “at a? ' 

where in the center of m a s s  f rame the reduced energy 8 has  the form 

”(1113+ 2-t -‘  ./ma=+ Zmrh 
, 8 = ‘ - ' | I 

‘./'.m__—1§‘.:.+‘2mth + A/m2§+ Zmrh 

Note that the equations of motion for  the internal variables 
have j u s t  the same form a s  in the relativistic one-body problem except 
that we must distinguish the reduced energy 8 from the total energy E .  

The proof that MP,” 9) is Conserved is simple, namely A "com— 
mutes" with P and with Man) and thus with H .  

So  far  we have not related the canonical variables r ,p,R, P to  
the coordinates x 1 ,  x2 a n d  momenta p1 , p2 , other than  to  s a y  that  
this  relation is  a 1contact transformation, i . e .  that the Poisson  brack- 
ets { ’}§1?23132 and { ,}§P‘;’B are equa l .  Thenrelation has been 

worked out in  detail  by Bakamjian and Thomas in  such a way a s  to  
explicitly give Poincare invariance. These relations are quite com- 
plicated s o  we give them here only for  the  special case of total 
momentum equal t o  zero.  They look a s  follows: 

.1 . q a _, .,/m13+2mrh x1 + A/m23+ Zmrh x2 
"fi: 

Jm12=2mrh + J m 2 3 + 2 m r h  

«a no a. 
P = p 1 + p 2 = 0 .  
~a no wt  

r = x 1 — x 2 ,  

m 4  -smv 
p = " m a  r pl 7 m1 L pz 

Jm12+ Zmrh + fmzz+ Zmrh 

The total  angular  momentum I t O t a l =  E X T; + ? X B is a conserved 
quanti ty.  Using the generalizations of the above relations for the 
case P 75 0 ,  one obtains a Hamiltonian 
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H =H(x1. p1. X2. pa) 

with the desired symmetry properties . In the case that one particle 
is infinitely massive we recover the relativistic one-body problem 
that we discussed earlier as Example (0). 

The discussion of the $001.2) noninvariance group“ goes 
through unscathed by the imbedding of h(r,p) into the two-body Hamil- 
tonian. The SO (4, 2) Poisson bracket relations are among quantities 
formed only from the internal variables r and p. 

The existence of a conserved Runge-Lenz vector allows us to 
find the scattering angle . We find 

_=m_k= Ink 
2 pzb bvzeg ' tan 

However, 63 is related to the initial velocity v by an algebraic equa- 
tion which is quartic in 63 and in Va . 

Summary 
First we have displayed a one—body theory with relativistic 

kinematics and SO(4, 2) symmetry. This theory can be made quantum 

mechanical simply by interpreting the energy and mom)%ntum variables 
as operators. The Hamiltonian is H =  (p3+ m3 - k/r) 

Secondly we have generalized this theory to a Poincaré invari- 

ant two—body theory with the same symmetry. The device we used 
was Bakamjian-Thomas theory and this can also be quantized easily. 

Fronsda1,5') starting from an approximation to the Bethe-Sal- 
peter equation, has obtained a relativistic classical mechanics which 
also has closed ellipses. However, he has put the particle with mass 

m1 on the mass shell and kept the other one off, whereas in our theory 
the particles are treated symmetrically. In the potential theory limit 
(mg/m1 _. 0) his mechanics coincides with ours.” Our hope is that 
the quantum version of our theory can also be shown to be a well- 
defined approximation to a Bethe—Salpeter equation. 6 
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REPRESENTATIONS OF THE DYNAMICAL GROUP O ( 4 , 2 )  
REALIZED IN THE DYONIUM ATOM‘H 
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Boulder, Colorado 8 0 3 0 2  

I .  'Dyonium and Its Energy. Spectrum 
’ We consider the bound and  scattering states of two mass l e s s  

particles having both electric and magnetic charges . The usual  H -  
a tom i s  a specia l  case  of th is  new c lass  of a t o m s ,  called dyonium.  
Let m1 and m,a denote the masses of the particles and q1 = (e1 ,g1) 
and q 2 =  (e2 , g g )  be the charges , where ei represent the electric and 
g i t h e  magnetic charges. Let the particle 2 be a t  the origin of the 
cioordinate s y s t e m ,  and particle 1 t o  move in the field produced b y  
particle 2 .  The electromagnetic f ield of the particle 2 can be d e s -  
cribed b y  two vector potentials 

= (A0: _ A )  a n d  A“ = (A l ‘25) ‘9 ( 1 )  0 

where ,  in  our coordinate s y s t e m ,  

e ,., ... 
o=r_2‘ AO=-€:_2' 5 : 9 2  1.3.0:)! A = _ e 2  2(5) ( 2 )  

with 

m a x i m  My r(IZ-£1:n)2]'1 , (3) 
where f} is an arbitrary unit vector. 

Note that An is a vector under parity, and " an axial vector 
(under parity: = -E B B, e - e ,  g - ~g; J e d  :Jm *Jm). Note 
also the singularity line in the vector potential D in (3) at r3= —[g- -n)‘3 
i .  e .  along. 11. Nevertheless we have V x D([) = ~ r / ,  independent of ii. 

‘l‘Presented a t  the Symposium on De Sitter and Conformal Groups ,  
University of Colorado ,  Summer 1 9 7 0 .  

$Supported in  part by  the Air Force Office of Scientific Research under 
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The relativistic Lagrangian for particle 1 in the field (1) is 
given by 

e]. p, 91 L=c/u""’1+-C—ALl u1 +2-21q , (4) 

which leads to the canonical momentum 

g e é 
Pu mc ulH c AL1 c AL1 (5) 

and the Minkowski force 

= r11 21.~ v 
Ku K c  Fm; + c Fuv) ul ’ (6) 

where‘r 

_ ~ .~ ~ _ M) F —A -A and F = A  -A —%e F (7) 
UN VII-1 HIV I-lV VII-l HIV MVMJ 

The Eqs . (4)—(7), as well as the Maxwell-Dirac equations (Gaussian 
units) 

:v__41 e ~ ,v=flr_ m uv Cju . Fuv Ci“ . (8) 

and all equations that will follow, are invariant under the two-dimen- 
sional chiral rotation by any angle 8 in the 1ye—g plane (or je-jm plane), 
and simultaneously in E-fi plane (or PW FHV plane). 

From Eq. (5), because 31:“ = 1, we have 

(1ou - — A —  9—;2)§0=m%8 (9) 

Hence the Klein—Gordon Hamiltonian is given by 

H(KG) E cpo =e1Ao + g1A° + [m2 c4 + (cg-elA A-gIZi)3]% (10) 

If we expand formally the square root and subtract the rest energy we 
also obtain the Hamiltonian in Schrodinger form 

1- 

:: Ba E: 
= “33 Ba 0 1 a a = Fuv 0 -31 y , 6 +1 
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(S) _ i 2 s~ 3 
H _ e + g fi o + 2 m < R _ c A — c é >  (11) 

The last step is , in principle, no longer meaningful if the field is 
very large. If we insert (2) into (10) and (11) we get 

H(KG) =_e;%‘:glga +[m3 04+ [CE ‘ (elgz- e291) 2(2)]? It (10’ )  

Here the dependence of the Hamiltonian on charges is through the two 
chiral invariant combinations 

-t 

—(e1e2 + 9192) = 451 "12 (12) 
u=(elgg -eggl)=q1L q , (13) 

a 

only, as it should be. We shall see presently that u is of the order 
of one (in units of hc) . Thus, the passage to the Schrodinger form 
does not break down because 91 is large (see below), but for small 
r because of the factor l/r in Qt). 

Finally, introducing the new momentum 

JI=R'L12(£) . (14) 

we have the Hamiltonian 

H(KG) = _-:‘- + [113+ m"3 c4]% (10”) 

with its formal Schr6dinger counterpart 

(S) 112 g: . (11//) 

H 2m 

These HamiltOnians are characterized by a M invariant 
mrameter u. Eq. (13). For 1.1 = 0, we get back the same Hamiltonians 
as that of the Ordinary atom but with a different 0; in general (u = 0 
does not necessarily mean 91: gg= 0, but .31; —J-). Each value of I! 
characterizes a new system. The possible 2values of u can be ob- 
tained from the quantization of the angular momentum. 

The conserved total angular momentum satisfying the commu— 
tation relations is given by 

l=£xI§-u£ . (15) 

We have 
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[H.JJ =0, [11.11] =1€1jklk . (16) 

The component of lalong “£15 equal to 1.1, which can take only inte— 
ger and half-integer values . Hence 

u=0,:|:%,:l:1,:l:%,... . (17) 

For a fixed '4, the values of j range as follows: 

j=lp.|,lpl+1,lul+2,... (18) 

We shall see these results also in another way. 
In order to solve for the specuum of (10") or (11"), we first 

notice that the following 15-operators: 

6 

l=£x1l "UI.’ 

A= i m a  -TT(L1T)+EJ+J2J‘F B r — L ,  

=i}rrra -1'r °Ir_)+}i_I+-2IL :3r+fi£, 

.1Z=IIr,. 

=Hma+r+li3) : 

I‘4. ='L‘(!Tra -r+%—3-) , 

T =_t:_'1'r_ - i . (18) 

satisfy the commutation relations of the Lie algebra of SO(4,2). The 
Casimir operators are calculated to be 

02 = LabLab = 3019- 1) 
ab cd e f _  

e:abcdefL L L = 0  
bc da = Q4, ‘ L  abL L c const. (19) 

03: 

”Om (19) we see that the Operators (18) realize a particular class of 
“1°“ degenerate oscillator—type representations of SO(4, 2): The para- 
meter [14‘ has the meaning of IOWe‘st spin, and for each discrete 

‘45 
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eigenvalue n of To the spectrum of ]‘a is indeed 

= M ,  |u|+l. Ip.|+2,...n-l . (20) 

This is because the operators 1‘0, T4 , T form an 0(2 , l)—Lie algebra 
commuting with 1: 

[TO, 11] =iT; [11,] — —jro, [-T, 1“ o] =11“4 (21) 

[1“0.J]=[I‘4.J]=[T,J]=0 (22) 
Hence 1"O has a discrete spectrum, and, because 

Q2=T03-1"f-T9=le, (23) 
we have a discrete representation of 0(2, 1), D +(— --j -l) and the spec- 
trum n of I‘ has the range 

n=j+1,j+2, . (24) 

In the other discrete representation D_(—j-l): 

n = — ( j + 1 ) l  _ j _ 2 l  _ j _ 3 l  - - 0  ( 2 5 )  

We shall see that n is precisely the principal quantum number. 
Now we discuss the spectrum of H for various cases: 

(A) u = 0, H(S)=21n p3 — %: we introduce the following operator, 

= (S)_ _ _1_ 2 . ® — r(H E) — 2m rp Br (1, 

then from (18): 

® yin-crown-Ero—m-a. (26) 
which is thus a Simple unem- combination of the roup generators in 

"(18). The problem! of finding the specuum of H S is equivalent to 
solving the equation 

6=C2icro +I‘4) acre—r4) wfi =0 (27) 
By the so-called tilt operation 5 = e19 Té we can then diagonalize 
either P0 or T4 , and we get, in the standard fashion, the bound states 
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as the discrete eigenstates of PC, with eigenvalues n and the scat— 
tering states as the continuous eigenstates of 1"4 with eigenvalues X . 
This gives the well-known H—atom solutions: 

3 2 a. E = - t m m n F "  and E x =  F (28) 

(B) p. 7‘ 0, H(S) =fina - %: In this case we introduce three new 

'operators 

1‘0’=§(m9+r), 1“," =%(rrr9-r), T ' = T  (29) 

which also satisfy exactly the equations (21) and (22). But instead of 
Eq. (23) we now have: 

Q’3 = 19- u? . (30) 

Consequently, the eigenvalues of I‘o' are 

n’ =—cp’, —cp’+ l, -co'+Z,-.- 

1) Hence, one finds 
2 —2 

Es=-%md [5 +4} +,.{(j+§)3 -u3] 

s=0,1,2,3,... (32) 

(C) u 7‘ 0, H(KG) = [112+ m9 1%: g: In this case, we define the new 

operators 
I ‘ ” % 3 +  “'3 o — (m r - r )  

T4,” ==l»(r1'r3 - r -°:—3) 

T” = T (33) 

which again satisfy Eqs. (21) and (22) with 

Q02 = 12 _ H2 _ as (34) 

For positive values of Q” , we have then the same results as before, 

except for the change ' 



O(4,2) IN THE DYONIUM ATOM 343 

«p' w” = 11 M‘s—Who gr-«u -a . (as) 
For the treatment of 

(a) the Dirac equation, 
(b) the case of large coupling constant 0. 
(c) the O(4)~syn)1metry and its breaking, 

we refer to other work. 1 
The theory presented here is parity and time—reversal invari— 

ant. But because under P and T: u -’ -u, we solve the dyonium prob— 
lem for +u and -u, and then construct parity eigenstates of the form 
I“) i I11).5)l6) 

rConclusions 
The quantum states of the dyonium atom for a given L1 (H—atom: 

u = 0) are in one—to—one correspondence with the basis of an irredu— 
cible representation of the dynamical group SO(4,2) with the value of 
a particular invariant equal to u . (See next section.) Both bound and 
scattering states can be obtained from the group states by the tilting 

operation. The Hamiltonian in Schrodinger, Klein—Gordon and Dirac 
forms are exactly soluble, even get large coupling censtan . The dy— 
namical group SO(4,2) solves the problem even though we have a bro— 
ken O(4)—symmetry (except u = 0, and nonrelativistic case). 

II. SO(4,2)—Representations Characterized by u 
The representations of SO(4,2)—algebra given by Eq. (18) for 

each value of u form a special class of representations, the so— 

called "oscillator—representations." We now list some of the proper- 
ties of these representations: 

(1.) They are characterized completely by a single representa- 
tion relation: 

{L ,LA }= —2(1-u2)g , (36) AB C BC 

where L B = 'LAB are the 15 generators of SO(4,2). 
(2) The generators (18) can be written in terms of the boson 

creation and annihilation operators 

]K %(a oka+b okb) , k 1,2,3 

A . —%— (a+o .a—b+o . b) 
1 1 1 

+ + M J; (a ciCb —aCcrib) 
(equation continued) 
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I‘1 =—1(a+i+oCb +aCo 1b) 

T =§ 2(a+Cb++aCb) 
1 + + 1'}, = 5  (a Cb —aCb) 

o = é  (a+a+b+b+2) (3 7) 

where 01 are the0 Pauli matrices and C the antisymmetric matw: 
v _ 0 l  (M. 

ljimflama) N 3 1  

‘3 = (11+m1)! (11-m1)! (13+mQ)! (la-m2)! (38) 

These bdson operators act on the states 

+ jl+m1 3291131111 b:- 134-1133 1);; 124113 '0); 

(3 )  We can indeed explicitly give the invariant operator with 
the eigenvalue u :  

K = §(a+a — b+b) , (39) 
which commutes with a l l  the 1 5  generators . Under parity 

P: a+ ~ 10+, b+ ~ -a-+ (40) 
s o  that L1 changes sign.  

(4) The multiplicity diagram for a general representation is  
shown in Fig . l . 

n=lu|+1 n=|u|+2 n=lul+3 
pi=|ul ‘" 5=|ul ’" j=lu| ku- 

j = | u |+1  __, j =  |u|+1|<.;- 
F 

1= lul+2|€ —--- 

Fig .  1 . Multiplicity pattern of SO(4,2)—representation. 
Each box i s  an  SO(3)-representation (one spin state) .  
Each vertical column is an SO(4)—representation. 
Solid lines between boxes indicate nonzero matrix 
elements of I‘ and M ,  broken lines the nonzero matrix 
elements of I}, and T (["o i s  diagonal),  and dotted lines 
the nonzero matrix elements of A .  
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(5) There are two 4—vzactor operators( with: respect to the ho— 
mogeneous Lorentz group) (1‘0, I‘) and Tu (A, T) satisfying 

(1) (2)0 _ . Tu } - 0 (41) {Tu 

These representations remain irreducible when restricted to the sub— 
group SO(4,1) and to the subgroup SO(3 ,2), except for the case L1 = O, 
which when restricted to SO(S ,2) splits into two irreducible represen- 
tations . 2) 

(6) These discrete series of representations of SO(4, 2) remain 
also irreducible With respect to the Poincare suligmutg. (The 1foinear‘é 
subalgebra consists of the genemtorsl, M I?“ ) -1“1( 

Note however that the conformal group “,OM L12) has? een used 
here as adgnamical group to describe all the rest frame states of the 
dyonium atom; it does no_t contain the physical Poincaré group as a 
subgroup. The momenta Pu are outside the algebra of SO(4,2) as in— 
terpreted in this application. It is however possible to introduce P 
additionally and to construct states of the atom with the total momen- 
tum Pu . 

III. Dzonium Model In Strong Interactions 
The representations of the dynamical group SO(4,2) have been 

used in the past four years to describe the rest frame states of had— 
rons: u = 0 representations for mesons, and u :  % representations for 
baryons. The main reasons were: 

1 +  

(1) the existence of more than one j —  — — —baryon states with 
the same internal. quantum numbers as nucleon Q.(e g. N*(1470)), indi- 
cating a new quantum number n.3 

(2) the dipole electric and magnetic form factors for the proton 
valid up to t = 25 (GeV/C)'2 . 

These properties follow from the L1 = %  representation of 
SO(4,Z) . It was concluded that some strong long—range forces inside 
the proton must be responsible for the excited states of the proton, 
without knowing what these forces could be. The model is more trac— 
table and simple than the 3—quark model of the proton, for example , 
and so far agrees with experiment. 

It was later discovered that the representation u = % used was 
precisely identical with the dyonium system with u = 3: discussed in 
Sec. 1.5) This remarkable correspondence cannot be accidental for 
the following reasons: 

(1) Proton is identified with the dyonium—system u =% , g1 = 
—gg (hence total g = 0), thus a. a: 1 3 7 / 4 .  At large distances there is 
only electric Coulomb force between two protons, because gtot = 0. 
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At small distances there are van der Waals forces which are short- 
ranged and strong and are identified with the nuclear forces . Inside 
the proton we have superstrong Coulomb forces, plus the vector 
potential (1136) . Thus the strength and range of strong interactions 
comes out correct. 

(2) Spin j = [(1] =4} of the ground state does not belong to one 
of the constituents of the proton, but to the system as a whole. This 
is very important for the correct dipole—form factor of the proton. The 
bound state of a (spin % and spin 0) system with orbital angular mo— 
mentum JL = 0 does not give a dipole form factor. 

(3) The fact that one can construct a spin it state out of two 
spin zero particles with magnetic charges has been overlooked in the 
past. There is no contradiction here. The wave function is double— 
valued and not an eigenstate of parity. Under parity u -' -u, and pa— 
rity eigenstates are constructed as superpositions In) d: I —u) . 

(4) Because magnetic charge (I is an axial charge, the expec— 
tation value of it in parity eigenstates vanishes. There may not be a 
superselection rule for magnetic charge which may explain why it is 

not detected readily. 8) 
F r further details we refer to the extensive published litera— 

ture . ”'68 

IV. Minite Component Wave JEquations on the Representation-Spaces 
of 0(4,2) 

The states (38) are eigenstates of To. In fact from (37) and 
(38) we have 

Tolj1m1j2m2> =(j1+12+1) ' j 1 m 1 j 2 m 2 >  (42) 

Thus (j1+j2+ l) is equal to n for the 0(2 , 1)-algebra (21) , and equal to 
n' for the algebra (29). Because I‘O is the component of a four vector 
with respect to the Lorentz group generated by Ik and M1 in Eq. (3 7) , 
we have 

$19154 roP° 8-1;; M: PUP“ (43) 

Consequently from (42) and (43) we see that the states (38) also satis- 
fy the following covariant wave equation 

(141pLl - M(j1+jg+ 1) e15“ )1, m112m2> = o (44) 

If we let 

M 0 1 + j 2 +  1) = Mn 2 K (45) 
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and assume K to be a constant, in the simplest case, we obtain 

L1 .. (F Pu — KM: — 0 . (46) 

This is a Majorana—type equation, written now on the representation 

space of O(4,2), rather than 0(3,2) as in the case of the original Ma— 
jorana equation. The mass spectrum derived from (45) is clearly M = 
K/n, by construction. 

It, instead of (45), we put 

Mn = %(M9 — 6) (47) 

we obtain the mass spectrum M = n i JZb + n2 which increases with 
increasing n. The corresponding wave equation can be written as 

u 
_ H = (r PLl i‘PuP +b)111 o (48) 

Next we consider the states eleTI j1 mljg mg) . Then from (21), 

eleT r0 e"leT = r0 cosh e +r4 sinh e , (49) 

and, because 1"4 is a Lorentz—scalar, we obtain again from (42) and 
(43), the more general covariant equation 

i ° M  iGT . . ' 
'F‘ N e ljlm112m2)=0. 

(50) 

In this way, a class of general infinite—component wave equations 
can be constructed.9 These equations generalize the H—atom and 
dyonium e uations to the relativistic case and include the recoil 

effects.10 .5),5) 

(1“Ll PH cosh e +I‘4M sinh e - M(j1+j2+ 1))e 
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The Dirac spinors, which are generally thought of as solu— 
tions to the Dirac differential equation, are developed from a group 

theoretical point of view. The motivation for this approach is three— 
fold: First, by obtaining the Dirac formalism from group theoretical 
methods, the importance of symmetries is stressed. Second, because 
of the recent successes of group theoretical techniques in physics, it 

is significant that the Dirac formalism can be obtained from group 
theory as well as from a differential equation. Finally, and most 

significantly, the formalism which is developed here can readily be 
generalized so that either all half-integer spins or all integer spins 
are allowed. It seems very probable that such mathematical struc— 
tures will be useful in describing baryons and mesons . 

This work is based upon the infinite component wave equations 
Which were original y introduced by Majorani} in 1932 and recently 
revived by Nambu. 2 The use of infinite component waits equations 
is intimately connected with the increasing employment of unitary 

representations of non—compact groups in particle physics. An exams 

ple is E's-onsdal's "relativistic symmetries. "3) By restricting Prous- 
dal's relativistic symmetries with the Dirac representation relation, 
one obtains the Dirac representation of the relativistic symmeties 
which is a non—unitary representation of a non—compact group. 

A group theoretical description of leptons has also been 
developed by Barut and collaborators. ' In that work, the four 
dimensional irreducible representation of the group O(4,2) has been 

used in the description of leptons . While Barut's work is more con- 
cerned with lepton interactions , the major objective of this talk is 

to fully develop the Dirac formalism. That is , to construct the Dirac 

+Presented at the Symposium on de Sitter and Conformal Groups , 
University of Colorado, Summer 1970. 
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spinors , the Dirac gamma matrices and so forth directly from the 
group theory. 

The talk is divided into four sections: In Section I the com- 
mutation relations of the relativistic symmet‘ies and the Dirac repre— 

sentation relation are given. In Section II the representation of the 
"intrinsic part" of the relativistic symmetries is briefly sketched. 

Section III is devoted to finding the representation of the whole rela— 

tivistic symmetry. The spinor basis and the canonical basis are de— 
fined and their properties under a Lorentz transformation are explored. 

In addition, the canonical basis is expanded in terms of the spinor 
basis . The Dirac formalism is developed in the final part of the talk. 
The Dirac spinors are shown to be the transition coefficients connect— 

ing the canonical basis and the spinor basis. 

Section I. 
The restricted relativistic symmetry is essentially the en- 

veloping algebra of the Poincare group 6(P)  in certain representations 
adj oint by a Lorentz-vector operator 1“ . The relativistic symmetry is 
an associative algebra generated by t e operators 

, S T (1) 
A 

P,M=(P“P)2,L = M  +s , 
u L1 W W m» u Liv 

where Greek indices range from 0 through 3 . The metric tensor g 
is given by the expression UV 

(2) LG
 

I
]
 

|
 

l
 

._
. 

“V g22 _ 

The defining commutation relations of the relativistic symmetry are 
as follows: 

[PW P ] = 0 (3) 

L P =' P —  P 4 [ u v ’  91 1(91W) u gun v) ( )  

. [Luv,LpO]=i(g L +g ) (5) L - L - L 
Hp V0 VG UP nG VP gVO L10 
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[MW Spa] = o (s) 
i‘euvpoMpo = 0 (7) 
up, spa] = o (e) 
KPH. TV] = o (9) 

= _  + _ _ [Suwspo] 1(9WSW gWSup guosvp gvuo) (10) 

[LpoJ‘u] = [890' Pu] = “go“ I‘p - 9 HPO) (11) P 

[rp, r0] = as” (12) 

Equations (3)-(12) define the mathematical structure which is 
thought to be applicable to particle physics. As a first step toward 
exploring the consequences of the above relations , we restrict them 
with the Dirac representation relation. As will be shown, the com— 
plete Dirac formalism can then be developed from the restricted struc- 
ture . On the basis of this success , the Dirac representation relation 
is dropped and the complete structure is used to describe hadrons in 
the talk by A. Bm. 

The Dirac representation relation is 

{P9, To} =%9p0 (13) 

P and are the generators of the Poincaré group; conse— 
quently, they represent the usual physical observables momentum and 
angular momentum. The splitting Luv = v + S is the familiar 
splitting of the total angular momentum in o the orbital angular momen— 
tum and the intrinsic or spin angular momentum. 

Section II. 
Since the representation of the intrinsic part of the relativistic 

symmetry is well known, it will only be sketched briefly. The second 
Casimir operator of SO(3 '2)? S is 

H' UV 

R = .rur“ 4.; SW SW . (14) 
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where all repeated indices are summed over the range of the index. 
The second order Casimir operator of SO(3 ,1)s i s  

(w 

= _  W :  _ _ a i s m s  1 c9 ko (15) 

and the second order Casimir operator of SO(3 , 1)? 1,8 1) is 

1‘11“Jl — 3181 = 1 - c'3— koa (16) 

where 

Si=-%eijk s jk  (17) 

and i ,  j , k  = 1 , 2  , 3 .  The two numbers ko and c characterize the 
SO(3 , 1) representations . Since SO(3 , 1)?i Si and SO(3 , 1)S are 

' v 11 
algebraically equivalent SO(3 , 1) subgroups , the reduction of a n  irre— 
ducible representation of SO(3 '2)ru 'suv with respect t o  either of 

these subgroups must  be the s ame .  As a consequence, the possible 
values of k0 and c on the right hand side of (15) and (16) are the same. 
From the Dirac representation relation (13) it follows that 

(a) 14‘1“L1 = 1 (Izmir1 = -% (c) to” =1 (d) (1‘1)a = -i (18) 

Using (18a) and (15) in (14) we obtain 

R = -(cz + koa) (19) 

Since R is an  invariant of SO(3 ,2)? is , the number 92.4.]‘03 is a 
(y 

constant in  a n  irreducible representation of SO(3 ,2) . Using (18b) in 
(16) yields 

= " 2  = _  2 3131 s -} + ca+ k0 (20) 

Because 63+ k02 is a constant in the Dirac representation of SO(3,2), 
we conclude from (20) that the Dirac representation contains only 
one irreducible representation of SO(3)S , Rs . That is , the Dirac 
representation contains only one spin 5 .  Since k0 is the smallest 
spin 

k0 = s (21) 
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From (20) 

s(s+l) = k°(ko+1) = -% + (13+ kc:3 (22) 

_ '7 Ca - ko + 2  (23) 

To find the values of k0 and c ,  we need to use the fact that a finite 
dimensional representation of SO(3, 1) reduces with respect to SO(3) 
according to 

s=k +n-1 
o s 3C(ko,c) 2 I? (B R (24) 

s=k o 

where n is a n  integer and 

c8= (k°+n)2 (25) 
From the fact that the representation contains only one sp in ,  we con— 
clude that n = l . From (25) we then have 

c3= (ko+1)9 (26) 

Solving (26) and (23) for k0, we find two solutions: k0 =%— and 
k = —% . The latter value of k is excluded because of the restriction 0 k0 = s 2 0 .  From (26) we then obtain 

c = 3: =3 (27) 

Consequently 

Dirac 35% _ 3; 
1c sum» 2 moi. c=%) ®R(ko=l‘. c=—%)= R an" 

SO(3 , 1) SO(3) (23) 

The basis vector 
i=1: c 

If ) (29a) 
is 

is introduced with respect to the reduction 
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so(3,2)S '1. DSO(3,1)S 330(3)s 330(2)SS (29b) 
W H UN 1 

As a consequence of the manner in which the basis vector] fj=§c C) is 
defined, we have 

i=4!) 0 Ft 0 
8108:1If3 ) =1koc|fj3 ) (30) 

Similarly the basis vector 

Is=§,sa,c) (31a) 

is introduced with respect to the reduction 

80(3 ,2)S '1. D 80(3'1)I‘ .  IS . 3  SO(3)S 3 SO(Z)S:3 (31b) 

W M 1 11 1 

and 

I‘1_S 1Is =é, sa ,0) =ik ocls ,ss, c) (32) 

For t510311Y motivated reason-s which will become apparent later, 
we would like to introduce a basis system IS =% , s3 , u) in which I‘o 
and SO(3)S are diagonal. 

i 

Fols =‘l‘. 83. u) =u|s =%. sa. u) (33a) 

From the Dirac representation relation To:3 = :1; . Therefore 

F03|S=é. 83. u) =uals=i.sa. u) =t|s=in Se: u) 
Consequently we may conclude that 

u = i 1: (33b) 
Section III. 

We now consider the whole relativistic symmetry. An irredu— 
cible representation is characterized by the eigenvalue of the mass 
operator W =  PuP, by e = sign P o' and by the irreducible represen— 
tation of SO(3, 2)sv as restricted by the Dirac representation 

relation. We introduce two basis systems into the irreducible repre- 
sentation space: The spinor basis is the basis in which the Lorentz 
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transformation generated by 11“ is explicitly split into an orbital part 
generated by v and a spin part generated by S v' The spinor basis 
is then the corresponding product of the two basis systems 

6 j=% e 10 

I fj 0(p)) = I f  (13)) x Ifj ) (34) 
3 

where [is (p D is a generalized eigen ctor of; the "orbital" Poincaré 
group generated by P“ and Muv and Ij c) is a basis vector (29) of 
sets 2) as restricted by the Direc representation relatiOn. The cane— 
nical basis is defined by 

Ipssa u e) = flee» E I cp€<To=o>> >< ISSaI-l)] (as) 
Here L 1(5)) is a "boost" and U 1CL(p)) changes the state {rem One 
with zero three momentum to a state with three momentum P. use (p) 
is a generalized eigenvector of the "orbital" Poincare group and 
[53,”) is fine basis vector (33) of see 2) as restricted by the Dirac 
representation relation . 

The spinor basis lef 
set of commuting operators 

9 i  
j (17)) is an eigenstate of the complete 

3 

= u = =-* = 11' P“, M3 PP”, s3 s”, sisi s2 ssijs , 310s1 (36) 
Ft — 0 

Under a Lorentz transformation A, I if (p)) transforms as follows: 

6 9 : 3 0  1 = C §  F e e  
U(1\)Ifa (p))— =2”; , (Ap))8ja,ja(l\) (37) 

13 

1=% c 
where s is ’ 1'3 
(ko= -t o) 

The canonical basis Ipsssu e) is an eigenstate of the com- 
plete set of commuting operators 

(A) is the representation matrix of A in the representation 

P 1‘” 
P“, M3 = PHP , wt1 =se“"°°P L , w = —w w“, Ji— 

u v po u M 
(33) 

Since PH?” is a Lorentz invariant 
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21>”r _1 21>“r 
T E  Ipssau 6) = U(L (pH—ME U(L(p)) lpssau s )  

_1 21M“ _. 
=U(L (P))—M_ElP=OSsal-l€) 

= 6 sign u IDSsau 6) (39) 
From the above equation we see  that the vectors I P S S a u  e )  are the 
positive and negative energy solutions of the "Dirac equation.  " We 
want to restrict ourselves to  the physical case of only positive energy 
states a = 1 . If we make this restriction, we still have all  the solu- 
tions of the Dirac equation: the states I p s s a u  =é‘) are the usual 
positive energy solutions and the states IDS‘SaH = -%) correspond to 
the negative energy solutions. The usual reinterpretation by the Dirac 
hole theory is no longer necessary. 

The transformation property of the  canonical bas is  under a 
Lorentz transformation A is the usual  one 

s=§ c 
U(A)|psss u) = z I (Ap)ssa'u) 95 , s (R) (40) 

I 3 3 

5 3  

where R is the Wigner rotation 

-1  R = L(I\p) A L (p) = R(I\,p) (41) 

The canonical basis is defined in such a manner that the basis vectors 
and  their conjugates  are  or thogonal .  

S (42) 
I I I 

( D ’ S ' S a ’ u l p s s a u )  = 2P0 63 6I_3)  5 “  U- 6 5 3  $ 3  6 3  

However, this is not the case for the spinor basis . By expanding 
the spinor basis in terms of the canonical basis (which is possible 
since we know the canonical basis bra and ket are orthogonal) we 
calculate5 

1,0 ,  I 1C a " I  -' 0 ’ 9  j l j  1 "‘ " f f .  = 2 6 - 6 6 - - s i  n c -o  . (13 '  (p )l Ja(p)) 130 (p p) m [po 9 p 113,13 

.. (43) 
The c are the usual 2 x 2 Pauli spin matrices.  Using the above r e su l t ,  
the canonical basis can be expanded in terms of the spinor basis . 
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= iii. 0 l I " ." Ipssau) i f  2%: Ifi’” mEpo +signcpl 011313' 

13:0 

13' 
of, <d pssm (44) 

Evaluating the matrix element yields the result 

Ipssau) = 2 nits» in +1W)TT(c) at? or."1 (p)) (45) 
13° 

def 1 for C = %  
where MC) = def (46) 

signu= TT forc=-§- 

and arise" (I...1 (130)) is the representation matrix of the "boost. " 
3 8 

Explicit expressions for sigi'c (L‘1(p)) are tabulated in H. Ioos .7) 
3 

The quantities 3 
def = _ 

U: (porr) = fi-(l + in)11(c) 8:3 to (L 1(p)) (47) 

which are just the transition coefficients between the canonical basis 
and the spinor basis will be shown to be the usual Dirac spinors in 
the next section. 

At this point we introduce the conjugate spinor basis 

(fifip'fl = 2  im®0’+ sign (3’ I)” .6318 ,L(f}:’(pl
)' (48) 

is 

which, of course, satisfies the relation 
_ I I _, _. I I I (it? (p')lf§:(p» = 210063 (p'-p) 5‘ 1 6° ° 5’3 ’3 (49) 

Section IV. 
We define 

a ,_ ‘é'E dgf -a.' , 1?: 2poa (p mum (2’3 (p )lzrulfAuo» (so) 
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~ 4 0  

and will now verify that the YHZAC are the usual Dirac gamma 

matrices. As a first step we will show that the defined quantities 
obey the Dirac equation. 

U- ~ I ~  ~ 
Zpo 63(p’-p)%n- Y C c UC (p011) 

”BA A 
$

2
 

[
V

J
 

'4 ~ I  ~ ~ =2 8; <fjge')|2ru|f;°(p)> ugh") 

213%“l 
” I  fife» U:(pcrr) 

2PM“H 
From (39) we already know the action of the operator on 
the canonical basis . By expanding the spinor basis in  It/érms of the 

canonical basis we readily calculate the action of E R  on the 
spinor basis  . The result  of  the calculation is 

21% ————L‘- IfA (p)>— = life» (51) 
Using this re sultLl 

3 , _ "  L Y  0'75 '5 >2pa <3 mm ”BA UA(p01T) 

g‘
L 

I <35 (punfj'c (p)> U; °(pon) = )  

EA 
By expressing the vectors If]: (p‘)) in tame of the spinor basis 
If’:(p)) , using the expression (43) fer the scalar product of two 
spinor bests vecters, and the explicit expression for U :(pon),We 
calculate 

= 2100 63 (p’- p) Tr U: (pow) (52) 
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Multiplying both sides of (52) by m and integrating both sides by 

c 
If we arrange UA as a column matrix and y 

we finally obtain 

Ua(po'rr) = rrm Ualbon) 
A B 

U(pcrrr) dgf 

1/2 3/2 3/2 3/2 
Y1/2 1/2 Y1/2 -1/2 

3/2 3/2 3/2 3/2 
Y-1/2 1/2 Y—l/Z -1/2 

—3/2 3/2 —3/2 3/2 
Y1/2 1/2 Y1/2 -1/2 

—3/2 3/2 —3/2 3/2 
Y—1/2 1/2 Y—1/2 -1/2 

- —  

Equation (53) may be written 
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(53) 

'é’E': as a 4 X 4 matrix 
“BA 

7 3/2 ' 
U1/2 

3/2 
U—l/Z 

—3/2 
U1/2 

-3/2 
-U—1/2_ 

3/2 —3/2 3/2 flan—1 
Y1/2 1/2 Y1/2 -1/2 

3/2 -3/2 3/2 -3/2 
Y-1/2 1/2 Y-1/2 —1/2‘ 

—3/2 -3/2 —3/2 —3/2 
Y1'/2‘. 1/2 Y1/2 —1/2 

—3/2 -3/2 -3/2 —3/2 
Y-1/2 1/2 

PMYL1 U(pOTr) = nmU(pon) 

which is simply the Dirac equation. If we define 

6:: (port) = 6“" (pofi) 
is 

Y-1/2 -1/z 
.J 

(5 4) 
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we can obtain the following additional relations involving U and fl: 

Adjoint Dirac Equation: fi(pc1'r)puyu = fi(pcn)1'rm (55) 

o N I I = Orthogonality. U(po n )U(po11) "500'511'11 (56) 
E '6’ _ 'é'é’ Completeness. Z17 UA(poTr) UB (Parr) — 6 6A8 (57) 

011 

Pro'ection Relation- fl +1)  = 2  U(p ) {up ) (58) J ' \ m 2 U" 011 
c 

From Eqs.  (54) through (58) we see that U(pcrr = 1) is  the 
u_sual positive energy Dirac spinor U(p,s )  and U(pcrr = 1) i s  the spinor 
U(p,s)  . Since we have restricted ourselves to  positive energies 
(e = 1),  U(po-rr = - l )  is the usual Dirac spinor V(p,s) after it has been 
reinterpreted by the Dirac hole theory and U(pcm = —l) is the usual 
spinor V(p , s )  after reinterpretation by the hole theory. 

Once again it should be emphasized that the advantage of 
obtaining the Dirac formalism from such a mathematical structure is 
that the structure can readily be generalized (by dropping the Dirac 
representation relation) so  that, for example, all half integer or all 
integer spins are allowed. It seems very probable that such repre- 
sentations will be useful in describing baryons and mesons . 
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7% denotes an‘algebraic cture that is a gene 'izationof 
an algebra which I had called ' . That the algebra 121 might also 

have something to do with the Az-meson is rather accidental, though 
I have to admit that I was already under Maglic's influence when the 

possibility of this generalization occurred to me while I was working 
on a quite different problem. This problem was the infinite dimen— 

sional generalization of the 4-dimensional Dirac representation for 

baryons , which was :1 dad for ome other urposes. The essential 

difference between 2 and is that 2 contains an infinite 7 
dimensional generalization of the Dirac representation of Y or SO(3,2“)‘, 
whereas contains the Majorana representation of so(3 .2) instead. 

From the talks of Mainland” and IaffeS) the basic concepts. 
that I will need should be known, and I shall just briefly remind you 

of their properties: 

The relativistic symmetry y is essentially the enveloping alge— 

bra of the Poincaré group PPHIIHV adjoint by a Lorentz—vector opera- 

tor I‘ , which together with the spin part SW of the Lorentz group gen— 

erators = Mm, +s form the Lie algebra of so(3 ,2)s Y 15 uv'ru' the ease iative algebra generated by 

P,M=(PPH)%,L = M  +3 ,3 ,r;v.u=0.1,2.3 
u u uv uv uv W H 

in which the multiplication is defined by the relationslo) 

TPresented at the Symposium on de Sitter and Conformal Groups, 

University of Colorado, Summer 1 9 7 0 .  
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[PU' Pv] = 0 (a) 

[Luv’ Pp] = i(gvLl - guv) (b) 

[Luv’ L90] = i(gMpLv0 + nup - 9%v - gvpLuO) (c) 

[Muv’ Spa] = 0 (d) 

ileWWP‘NF’O = 0 (e) 

[PW spa] =O[Pu,1“v] so (f) 

= _  + ... _ [SW.SpO] 1(9WSVO @IWSup gumsvp gvW) (g) 

pLIFO) (h) L , r  = s , r  =1 F —  [ W  n] [ p U  u] (gcmp g 

fro, 1‘0] = -iSpO (1) 

Where “-1 V I  9: U = 00511213 and g 0 = l l  9 1 = 922 = 933 = ‘1- 
An irrep (irreducible representation of Y is determined, among others, 
by the irreducible representation of SO(3 ,2) I‘ that it contains . 

V I 

The irreducible representations of SO(3 ,2) and therefore also the irreps 
of y are for our purpose most conveniently characterized by the mul— 
tiplicity pattern. This is a pattern of n,s which displays the content 
of irreps of the maximal compact subgroup SO(Z)I‘O X SO(3)SW , where 
n = eigenwlue of To and S‘(S+I) = eigenvalue of #811811 . Examples of 
such multiplicity patterns have been given by Iaff . 3) Fig. 1 shows, 
the multiplicity pattern of the Dirac representation and two of the 4 
Majorana representations. And Fig. 2, Fig. 3 , and Fig. 4 show the 
multiplicity pattern of the representations , which we shall consider 
here, and which we call (R,%), (R,0), and (R=2,0) respectively (where 
R is the eigenvalue of the second order Casimir operator). The two 
irreps in Fig. 4 are the limiting cases of the irrep (R,0) for R -’ 2. 
From comparison of the pattern for the (R ,%)—representation and the 
Dirac representation we see already that (R,%) is in a certain sense 
an infinite generalization of the Dirac representation and (R,0) is just 
the integer spin analogue . 



mm o M. 

fi 

«mm 

1. v, 9 arm I 

2% am 

3». m3  

‘-  ll %.4  

9 \ 

Fig .  1 . Multiplicity pattern for the following representations 
of y or SO(3,2). 
a )  Dirac representation 
b) Maj orana representation with half—integer 

spin (ko = § ,  c = 0) 
c) Majorana representation with integer spin 

(k0 = 0 ,  c = i )  . 
The numbers in the boxes give the values of m s  ; 
the letters in Figs .  1a and 1c give a possible particle 
assignment.  



364 A. BbHM 

-1; 1,3 
2 2 2 2 

_ + - 

3 l 3 3 3 
'2'? ”5': ~ 2': " 5'? 

.3 21-2.5 __.I_,_‘ l,2*_ 2.2L 1 2“ 
2’2 2 2 z 2 2 2 2 2'2 

Fig. 2. Multiplicity pattern of the "generalized Dirac" 
representation (R, i) of SO(3,2) or . The number 
in the boxes give the values of . 

4-.) .J 1.3 0.3 L 3  3.3 1.3 

. , . . 
.4 4.4 - 2.: — m H 0,4 '- '.o —z.4 3.4 ~4.4 

Fig. 3 . Multiplicity pattern 'of the integer-spin 
representation (R,0) . 
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4.: 0.: a 2 

.3 4 I I. a 3.: 

Flgfia 

0.1” 

4.: u 

‘ an i... I. I 

FIMb 

Fig. 4 .  Multiplicity pattern of the representations (R=2,0) 
(Fig. 4a) and (R=2,l) (Fig. 4b). This is the direct 
sum of irreducible representations of SO(3 , 2 )  that 
are obtained from the irreducible representation 
(R,0) in the limiting case R -0 2 .  
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To see how physics can be put into these patterns , we have 
t o  induce the representations of SO(3 , 2 )  t o  representations of the 
whole relativistic symmetry y .  This will be done for the represen— 
tations (R, ' )  in complete analogy to  the case for the 4-dimensio ' 
Dirac representation a s  it was described in the talk by Mainland.2' 
The result will then be a representation space , which is the "infinite 
dimensional" generalization of the space of solutions of the Dirac 
equation. (R . )  

LetIiC ' denote the irrep space of Y . Then we obtain the 
canonical basis for K m '  ' in a completely analogous way to  the well 
known procedure for the Poincaré group: 

For the states at rest we take the basis vectors |p=0,Sa , s , n )  
with the properties 

S8 I ) = s(s+l) |  ) 

S i a l  ) = 33 I ) 

I‘ol ) = n  I ) (1) 

The operations of SO(3 '2)SHV’FH act only on the indices 83 , s , n  and 

leave p = 0 unchanged, and a t  res t  these states correspond to the 
basis states of SO(3,2) in which SO(3) x 80(2)  is diagonal. Then we 
boost these states into states with momentum p: 

Ip.ss.S.n> =U(L'1(p))lp=0,ss.s.n) (2) 

(where L(p)p = (m,0,0,0) , rotation free) and find that these have the 
usual properties of the canonical basis states of P:  

U‘1 (MM) (”3 U(L(p))lp.sa . sm) = msalp.s3 .S.n) 

W I p , s 3 , s , n )  =mzs ( s+1) |p , s s , s ,n )  (3) 

where 

_ vpo _ u - e  PL a d  w—- "’u ’3“v n mum 
and the additional property 

PHI‘HIp.sa.S.n) =m-nlp.s3.5.n> (4) 
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From this it follows that s and 3a are the spin and its 3rd component. 
11 is a new quantum number. As the only new object that was adjoint 

to the enveloping algebra of P, 663), is 1" and this commutes with 
P it is of course clear that m2 must be an invariant of Y . Howaver 

"does not commute with S“ and therefore not with W so that I‘ 
transforms between states with different Spin, and the Spin is no 
more an invariant. 

For SO(3 ,2) to each box of the multiplicity pattern 
corresponds the set of states 

{Isa.S.n)l-sss3ss} (5) 

For Y we let, because of the above properties, the set of states 

{|p.sa .s,n>l-S S 53 S s. PHP“= m3} (6) 

correspond to each box l g  and obtain in this way an extension of 
the multiplicity pattern 0 3,2) for Y . But as (6) spans the irrep 
space of the Poincare group 3C(m,s), we obtain a correspondence be— 
tween each box of the pattern m s  and an irrep space of P 3C(m,s,n) 
where n is here an additional label cistinguishing between equivalent 
irrep spaces of P. 

o the multiplicity pattern gives us the reduction of the irrep 
space 3C R' ' of Y with respect to the irreps of the Poincaré group. 
Now physics has entered into the multiplicity pattern because an irrep 
space of P is the mathematical image of an "elementary particle. " 
So each box in the pattern corresponds to an "elementary particle" and 
the pattern of (R,%) gives us a spectrum of baryons and the pattern of 
(R,0) gives us a spectrum of mesons . 

Unfortunately this hadron spectrum is still quite unphysical, 
because it consists of particles which have all the same mass and are 
distinguished from each other only by their different spins s and by a 
new additional quantum number m4) To obtain a realistic mass spec- 
trum we will have to reak the relativistic symmetry Y; this "suitably 
broken" Y we call% 

I cannot give here a detailed description of the properties of 
7% and the reasons for the choice of this structure; this would also 
lie outside the subject of this conference. I will just let you know 
the relation that breaks the symmetry and describe its consequences 
so that you can compare the physical content of these representations 
(R, ') of Y or SO(3 ,2) with the experimental data. 

We define 
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= -1 p Bu P u + A M  H P  ,Lpu} (7) 

P 
l -  PEEP). x1 and X; are 

Jgtermined to be i f  = 
where M:1 = P P“ and A3 =x19- i f (  
two constants whose values are empirl‘il‘a y 
(0.30 e 0.01) rsev"3 and x2 =1}... 

Then one can show that [F1 and 111V obey the c.r .  of 
SO(4,1) .  The second order Casimir operator 

=‘9BBH-L “V a Q A “ tWL ( )  

commutes because of the construction (7) with the generators P and 
IW' We require now that in addition ‘1 

[0 :  Tu] = 0 (9) 

so  that the eigenvalue (1.2 of Q i s  a n  invariant of the whole algebra 
and characterizes a physical sys tem.  This relation i s  the symmetry 
breaking relation that gives rise to a non-trivial mass spectrum. In 
accordance with the O'Raifeartaigh theorem this is  not a c . r .  be en 
generators but a complicated algebraic relation and the algebra is 
not the enveloping algebra of a group. The resulting mass  spectrum i s :  

“1225 n, = 013 - x: (s(s+1)-n2))(a2 - %)+(xf-x;‘ (<s(s+1)—na ))s(s+1) 
' (10) 

where the spectrum of s , n  is given b y  the multiplicity pattern of P ig .  2 
and 3 .  We see that for x92 = 0 this gives the old rotator spectrum 
m2 = const + x13 s(s+1). In the realistic case has << x13 (2% of 113) 
s o  that he gives the fine structure splitting between resonances of 
the same spin. 

The comparison of the above predictions for the hadron spectrum 
are shown in  Fig.  5 ,  F ig .  6 ,  Fig.  7 and Fig.  8 for the mesons .  (For 
Fig. 6 the values of the constants x13 and if were slightly different 
from the ones given above: 113 = 0 .298  BeVQ , kg? = 0 .005  BeVB . )  
Fig.  5 shows the final compilation of the CERN Missing Mass Spec- 
irometer experiment. In the meantime many more resonances have been 
found at higher masses by the CERN Boson Spectrometer5) but as  our 
predictions have a big error a t  those high masse s -—due  to the error of 
the constants I1 ,xancomparison above the U—mass becomes meaning— 
less a s  long a s  one does not know anything about the spin-parity of 
those higher resonances . It is by now clear that there are  a t  least  
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mum) atlas) 1min) ' 

1 I‘I"“’ l” mil 1 J +¢ 
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.. .i l J l 'Ir-Lu‘ d In El t In ‘ 
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Fig. 5 . Meson  mass spectrum observed by the Missing 
Mass Spectrometer. 

I': m t as ‘u m 
m; m: ' um 

I" III I“ 
H ”I in ~ I: I. I.‘ 

> I.“ ' I ” .  "II I” 

I‘ u: u- uu m .1 _ _ 
ms ‘ mu m ' m 

(R , 0) Fig. 6. Multiplicity pattern of y with the possible 
particle assignments and predicted masses . 
The number in the right upper corner of each 
box is the predicted mass squared in BeV’a and 
the number in the right lower corner is the pre- 
dicted mass in MeV. 
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Fig. 7. Predicted particle spectrum for the representation 
ya“ '0) The left corner of each box gives the 
spin-parity, the numbers on the right are the pre- 
dicted mass squared in BeV2 and the predicted mass 
in MeV. For this figure only we have used slightly 

different values for the symmetry breaking constants: 
A13 = 0.298 BeVQ , x33 = 0.005 13ev2 . 

0+0 

1- ,w 

2*, {L 2+1? 
3-,cp(1965) 3‘,? 

Fig. 8. The predicted particle spectrum for the I = 0 meson 
tower with the possible particle assignment. Only 
the right half of the multiplicity pattern of Fig. 4a 
has been given here . 
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two SP  = 2+ mesons in  the A2 region; whether there are also some 
mesons  with other sp in  parity in this  region is  not yet  c lear .  We s e e  
f rom Figs . 6 and 7 that  th is  point i s  well  described by the m o d e l .  We 
a l so  see  that there is a lmost  a one-to-one correspondence between 
the bumps  in the  Miss ing Mass Spectrum and  the boxes in  the pattern 
of F i g .  6 ,  the only problem being the p ’ It should be remarked that 
the M .  M .  Spectrum does not contain a l l  I = l mesons ;  e .  g .  f rom the 
backward elastic pp cross section it has been inferred5 that the S 
is split into two bumps of opposite parity, which is well described 
by the pattern of Fig. 6 , (R,0). but not by  the pattern for (R=2 , 0 )  of 
Fig.  7 .  F o r I  = 0 mesons however the representation (R=2 , 0 )  seems to 
give a better fit (Pig. 8 ) .  We remark that the constants x1 and R e  
are universal; therefore we have taken one and the same value for 
M and k g  for a l l  meson and all baryon towers, only the value of (13 
that characterizes the representation is a n  adjustable parameter. 

For baryons the situation is similar a s  is shown in the follow- 
ing P i g .  9 ,  F ig .  1 0  a n d  F i g .  1 1 .  F ig .  9 shows the predicted masse s -  
square for  nucleon and I=§ nucleon resonances,  F i g .  10  and Fig .  11 
show the same for  the Z-resonances and  A—resonances respectively. 
The symbol below the value of 1113 gives the partial wave in which a 
resonance with the right SP and with a mass in agreement with the 
predicted value has been found. We see that, except for the SP 
3/2+ ca se ,  the agreement is good .  

For the  s tates  with negative n the mass  formula predicts that  
they  have the s ame  mass  a s  the one with positive n .  For the baryons 
we would interpret these states a s  the anti-particle s ta tes  of the 
states with positive n .  In the following we will derive that this is in 
fact true and the states with quantum number —n are the charge con- 
jugated of the states with quantum number + n .  What the interpretation 
of the states with quantum number —n should be for the mesons , we 
don't know a s  yet .  

A very nice property of the Dirac representation is that it is 
a l so  a representation of the discrete operators C ,  P ,  T; this is  e . g .  
not true for the Majorana representation Where parity leads to  repre- 
sentation doubling . 

Let me first consider the parity operator U . Because of the 
relation p 

UpLipfl = - L o i  i = 1 , 2  , 3  (11) 

one can prove that 1“Ll must fulfi l l  the following relations with Up: 
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s = 1/2 

s = 3/2 

s = 5/2 

5 = 7/2 

s = 9/2 

A. BCSHM 

n=1/2 P=+ n=3/2 P=- n=5/2 P=+ n=7/2 P=- n=9/2 P=+ 

0.88 Bev" 
(input) 

1 .67  BeVa 1 . 7 7  Bev9 

D13 
2 .69  BeV‘3 2 . 8 4  BeW 3.12  BeV‘a 

D15 F15 
3.68 BeVB 3.92 Bel/9 4.35 BeVB 5.02 Bev'3 
I’17”) G'17 F17") G17 

4.07 BeVa 4.39 BeVB 5.04 BeV 6.04 BeV 7.36 Beva 

Fig. 9. The predicted particle spectrum for the nucleon 
resonances I =4} , Y = 0 .  The numbers are the 
predicted mass squares in BeVQ , the symbol below 
the number gives the partial wave in which a reso— 
nance in agreement with the predicted mass and 
spin-parity has been found. Only the right half of 
the multiplicity pattern of Fig. 2 has been given 
here . 
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n=1/2, P=+ n=3/2, P=- n=5/2, P=+ n=7/2, P=— 

1.24 
(input) 

2.05 2.13 
D03 

2.98 3.16 3.46 
F05 D05 F05 
4.04 4.28 4.71 5.38 
F07 G07 F07 G07 
4.43 4.75 5.40 + 6.40 

A(2350)9/2 

Fig. 10.  Predicted particle spectum for the Z: resonances. 

n=1/2 p=+ n=3/2 P=- n=5/2 P=+ n=7/2 P=- 

1.41 
input 

2.20 2.30 
P13 D13 
3.12 3.31 3.63 
F15 D15 F15 
4.21 4.45 4.88 5.55 
F17 G17 

Fig. 11. Predicted particle spectrum for the A resonances. 
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Either 

Case A: or Case B: 

‘1 = ‘1 = .— Up I‘o Up To Up To Up To 

'1 = _ -1 = Up I‘1 Up I‘1 Up 1"1 Up Ti 

(12a) (12b) 

We shall restrict ourselves here to. case A, because then 1‘ P“ 
can be simultaneously diagonalized with U , which will not be pokin- 
ble for case B. and is therefore in accordagoe with the Dirac repre~ 
sentation. Then 

iTrI‘o 
UP = n e on states at rest 

and the phase factor n is chosen such that 

for y(R,%): has P = +1 (nucleon) and 

for y(R,0): has P = +1 (0 = state with quantum 
numbers of vacuum) 

Then it will turn out that 

for Y(R’0) 71 = 1 (mesons) (13a) 
11 

n = e_:l .2- for Y(R’%) (baryons) (13b) 

One obtains that in general parity on the canonical states will be 

[n] ' Up|2.5.Sa m) = (-1) -p.s.s3.n> 

where [h] = largest integer which is smaller or equal n. (-l)[ n] is 
given in the upper right corner of the boxes in the figures. 

There are 16 extensions of the unitary irreducible represen- 
tations of the Poincare groups) by the discrete operators U (space 
inversion), AT (time inversion, anti-unitary) and Uc (charge conjuga- 
tion). They are characterized by the four numbers 

= = 3 = 3 = 8 "c (UCUPP, 6T AT , GI (UpAT) , Sc (UcUpAT) 
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which may  independently assume the values +1 and —l . Of these 16 
groups only two appear to be relevant for the description of massive 
particles and one can conclude from some physical arguments6 that 
bosons are described by the extension characterized by 

(wax—1)“ eT, (4)25 e1. (4)25 so) = (+.+.+,+) (14) 

and fermions are described by the extension 

25  2 5  Zs 
( ” C l ( _ 1 )  3 T 1  ( ‘ 1 )  € 1 1  ( ‘ 1 )  6 C )  = ( _ I + I + I + )  ( 1 5 )  

1. 
Therefore we have to choose for the baryon representation Y ( R ' 2 ) a n  
extension 1) C P ,  T for which (15) is valid and for the meSon repre— 
sentation Y R,0  0’ an  extension for which (14) is valid. IPram this 
difference and the difference of the phase factor n for y 111%) and 
Y(R.0) given ( b i )  (13) it follows that the action of the operators U 
U ,  AT inIK (R ) and  ECG? 0) are quite distinct. We cannot give 
derivation here but describe onlé aha results:-6 
For the baryon representation v U transforms from states 
belonging to. m to states belonging go ; this leads to 
the particle-an particle interpretation. . does no transform out of 
the subspace of1C(RI%) correspanding to . 
Pm‘ the meson re resentation The s ospaces corresponding 
t o  are Uc eigenspaces with C-parity +1 or -1; s o  each box 

corresponds to  a meson state with definite C-pari ty or definite 
' -par t y  (G = ( - l ) I C ) .  AT transforms from states of into s tates 

of  ; th i s  gives u s  the interpretation of  the states with nega- 
tive quantum number 11. But this also leads us to the unexpected pre— 
diction that to  every meson state there exists a T—conjugated state,  
which is  distinct from the original state . The question remains open 
with respect to  the physical  realizability of these  states . As they 
are T-conjuga tes  of each  other t h e y  can only be d is t inguished b y  
observables that d o  not commute with T and a re ,  therefore , degenerate 
in a l l  the well known quantum numbers. 
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BREAKING OF THE SCALE SYMMETRY 
AND THE DE SITTER ROTATOR'H 

Akira Inomata 
Department of Physics 
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Albany, New York 12203 

Introduction 
In this talk I would like to discuss a specific breaking scheme 

of the symmetry under scale h‘ansformations and its possible relation 
to a hadron model. In the very beginning of this symposium, Profes- 
sor Barut pointed out the three topical branches of application of the 
De Sitter and conformal groups; namely, symmetries of space-time in 
the large, the scale invariance problem in strong interactions, and 
the theory of dynamical groups for composite systems . These are by 
no means mutually exclusive. What follows is an example in which 
all come together one way or another. 

Construction of field theory in space-time of higher symmetries 
has been attempted by a number of authors with the hope that the 
divergence difficulty may be resolved in a natural way. 1) A trivial 
question may arise, however, as to where such symmetries are sup- 
posed to manifest themselves in space—time. The Poincaré symmetry 
is not suited for the observed curved structure of the universe in the 
cosmological scale. Modification of the symmetry is certainly needed 
for the large scale. The De Sitter symmetry, which allows for the 
possibility of an expanding universe, would perhaps be a better ap- 
proximation. Nevertheless , in local phenomena, the Poincaré sym- 
metry is very precise at least up to the dimension of 10'“3 cm. The 
divergence seems to occur when the same symmetry is extended to 
the extreme dimension (~ 10"53 cm in QED). If space-time is homo— 
geneous everywhere and in every scale, the equations of motion may 
be described in terms of appropriate global coordinates . It would 
then be expected that the space -time structure in the large will 
directly affect the singular character in the small dimension. On the 

tPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1970. 
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other hand, one might think of a hierarchical structure of the universe. 
Suppose the De Sitter approximation is good in  the large. Then the 
same could be considered true in  the small. In any  event, the struc— 
ture of our universe i s  not s o  simple as  to be described by a single 
set of coordinates; it  i s  homogeneous only on the average in the cos— 
mological s ca l e .  It would not be surprising that space-time of the 
micro—domain smaller than 10—13 cm is rather different from the world 
Of special relativity. 

As is well known, the group SO(4 ,  1) resolves the mass degen— 
eracy inherent in the Poincare group,” the resultant mass  spectrum 
being characterized by a contraction parameter k ,  

m8 = moa+ x3 I(I+1) . (1) 

The algebra of S O ( 4 ,  1) reduces to  that of the Poincaré group a s  l 
tends t o  zero.  If the SO(4 ,1)  is the space—time symmetry, the Ryd— 
berg energy 1 in Eq. (1) should be related to the radius of space-time 
by x = l/R with h = c = 1 . Use of the radius of the cosmological 
universe (~ 1037 cm) yields a value for i too small to be, responsible 
for any physically conceivable mass splittings. To be compatible 
with the empirical hadron mass spectrum, the radius R must be of the 
order of 10'13 c m .  This can hardly be interpreted a s  a n  effect  from 
the space-time structure in the large; this would rather suggest  that 
we either consider the micro—domain relevant to  the hadron strongly 
c'med, or give up the idea of counting the SO(4,  1) group as  a space- 
time symmetry group. The group SO(4,1) has been treated as a dyna~ 
'mical group in flat space—time.” The dynamical group for a compo- 
site system is in general to contain as  its maximal compact subgroup 
a symmetry group from which degeneracy of energy results , and a s  its 
limiting noncompact group, a kinematical group which describes the 
composite system a s  a point particle. Since the SO(4,1)  group is not 

..a symmetry group of space-time in this case, the parameter 1 in Eq. 
(1) remains to be determined phenomenologimlly. A feature of the 
dynamical group theory is that the equations of motion are realized 
on the infinite component basis . Under certain circumstances , how- 
ever, i t  would be establ ished that the infinite compenent theory d e -  
fined i n  f la t  space-time is equivalent t o  the curved space-time for- 
mulation describing the small  domain for a composite s y s t e m .  

Let  u s  now look a t  the  m a s s  spectrum (1) from t h e  symmetry 
breaking point of view. In the broken SU(3) scheme , breaking of the 
symmetry  takes place in a ra ther  simple way ;  very strong interac— 
tions are invariant under SU(3) and medium strong interactions Meek 
SU(3) symmetry, yet remain invariant under SU(2) . Schematically, 
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Broken SU(3) D SU(2) . (2) 

In a similar fashion, we consider the scheme in which the conformal 
group SO(4,2) breaks down into SO(4, 1); 

Broken SO(4,2) D SO(4, l) . (3) 

It has been known that conformal symmetry is the maximal space— 
time symmetry of massless free field equations . Apparently, the 
presence of nonvanishing masses breaks such invariance. In turn, 
its breaking could be considered to have contributed to their presence. 
As the broken internal symmetry (2.) has resulted in the Gell—Mann- 
Okubo mass formula, the mass spectrum (1) may reasonably be re— 
garded as a consequence of the broken space—time symmeiry ( 3 ) .  If 
the SO(4,2) symmetry breaks down in such a way that the Poincaré 
symmetry is always preserved, the mass splitting (1) does not occur; 
the mass spectrum remains to be degenerate. In the scheme we con- 
sider, the conformal symmetry reduces to the De Sitter symmetry by 
breaking and the De Sitter symmetry becomes the Poincaré symmetry 
by contraction; i.e . , in the limit when the mass splitting disappears. 
In this respect, it is essential to ascribe the spectrum generating 
group SO(4, l) to the De Sitter structure of the micro-domain for a 
hadron.4 

Breaking of Scale Symmetry 5) 
Let us start with the conformal group on flat space -time , 

which consists of the Lorentz transformations L, the translations T, 
the dilations or the scale transformations D, and the special confor- 
mal tansformations K. This group has the SO(4,2) structure 

Uab’ c1=imadIbc nbdlac +nbcIad ' nacd) (4) 

Where 7111 = T122 =1'laa = ‘04:; = T155 = "Tlse = 1 and ”flab = 0 for a 7! b 
(a, b ,c, . . . = l, 2, 3, 4, 5, and 6). The four dimensional transforma- 
tions L, T, Dand Kare generated by 11 11 (1, 1 =  1, 2, 3, and 4), 91: 
$1051 + I5.) D =  -Isa and 19 =50!” ~16j), respectively. Thex 
appearing. in the definition of P is the contraction parameter. 

With the usual realizateon Pj = --1 8‘5 and It,“ - xi- x5216“, 
we haves 

D = xJPj +11; (5) 

K = 3  (xa Pj + 2x111]. + Zil.) (6) 
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where X, i s  the scale dimension of the fields on which these operators 
work. The local currents associated with the dilations D and the 
special conformal transformations K can be expressed in terms of the 
improved stress—energy tensor 611 of Callan,  Coleman and Iackiw 

J Dk = x 6 1k (7) 

__ k k Kij — (ix 51 x2) i (8) 

provided that the Lagrangian L(CPA, BigoA) is s o  chosen that 

+._§.I-_. = 1 
EC A aa «2A “’A +33i 811 (DA) a 0ij (9) 

Where 611715 some tensor. The divergences of these currents are 
@1311t ) 

i = j 
3 D j  6‘1 (10) 

J _ J' a Kij— 2x1 e j  (11) 

Apparently, with the choice (9) , breaking of scale symmetry neces— 
sari ly implies failure of conformal symmetry;  the symmetries gener- 
ated by D and K are simultaneously broken. In other words, breaking 
of conformal symmetry i s  a s  minimal a s  is induced by that of scale 
symmetry. This is the minimal breaking scheme considered by Mack 
and Salam in a slightly less general form. 6 )  Since the :ymme’tries 
generated by  I” and  P- can be retained under the minimal breaking 
condition (9), the Poincaré symmetry m a y  be preserved; 

Broken SO(4 , 2) D Poincare (12) 

the scheme on which most  attention has been focused.  
There i s  a n  alternative scheme in which SO(4,2) symmetry 

is broken under the condition (9) . The alternative is that transla- 
fienal symmetry, in addition to D and K symmetries, ceases to be 
good, while the symmetries generated byIM and 151 = + 1 ) A  are 
preserved. This is indeed the aforementioned schejme ( w i c h  
results in the mass spectrum (1) .  The second scheme is a s  Wminimal 
a s  the first in the sense that satisfying the condition (9) it admits 
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the same number of good generators as those of the first. The first 
allows the 10 parameter Poincaré group and the second the 10 para— 

meter De Sitter group. In the second scheme, translation invariance 
does not exist, so that space-time is no longer flat. The symmetry 

generated by 15 requires a uniform deformation of space -time. 
Under SO(4, 2), a sphere 8(4, 2)= SO(4 2)/SO(4,1) remains 

invariant. The isotropy group SO(4, 1) of SO(4, 2) may be considered 
as a group of rotations about the sixth axis on the surface S(4,2) . 
Now the symmetry is broken in the directions of 16 and 1 6  but the 
symmetry about the sixth axis is retained. The sphere S 46 2,) is thus 
deformed so as to be , for instance , an onion shaped surface with the 

sixth axis as the symmetry axis . Each slice of the onion cut perpen- 
dicular to the symmetry axis indicates a De Sitter space—time. The 
subgroup SO(4, 1) carries a sphere S(4,1) = SO(4,1)/SO(3,1) into 
itself. The Lorentz group SO(3,1) may be taken as a group of rotations 
about the fifth axis. Then 15 generates the displacements of the fifth 
axis On the surface S(4,1) . f‘he stereographic projection induces on 
the sphere the conformally flat metric:8 

=¢261 i . 13 gm) u V711 ( ) J 
where 

= (1 + iiaxzrl . (14) 

It is easy to show that the space-time with the metric (13) is of con— 
stant curvature 

x 2  _ Ruvpo= X(gupgv0 gucgvp) . (15) 

The divergences of local currents previously defined in flat space—time 
can be re-expressed in terms of confonnally flat coordinates. How— 
ever, insofar as local properties are concerned, such modification is 

unnecessary. So much for the minimal breaking of scale symmetry. 

General Relativistic Considerations 

As is seen in Eqs. (10) and (11), conformal symmetry is mini— 
mally broken by the presence of fields whose stress-energy tensor is 
of nonvanishing irace. Since the breaking scheme we are concerned 

with requires a deformation of space -time, the stress—energy tensor 
with a nonvanishing trace may have to be considered to serve as the 
source to the geometry. A general tensor equation of the lowest rank 
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linking a conserved matter distribution with the space-time geometry 
is in fact the Einstein equation in general relativity: 

GW 2 RW - lgWR = MW , (16) 

where T v 2-15 the usual symmetric stress —energy tensor and the term 
corresponding to the cosmological term in the theory of gravitation 
is ignored from the Machian view-.9) Callan, Coleman and Jackiw 
have modified the Einstein equation (16) in the fan-1'17) 

_ = _ -1 RW igWR M1 at) am) (17) 

with the improved stress-energy tensor 

"v i (18) = T  + V V § - g  X 9 V 
UV ”V V L1 ”V 

where Q is a function of scalar fields. In the absence of scalar fields, 
5 vanishes and the modified equation (17) coincides with the Einstein 
equation (16). 

As a result of the broken SO(4,2), we have obtained the De 
Sitter geometry (15). For this geometry, the Einstein tensor in Eq. 
(16) takes a specific form, 

= _ 8 Gm) 31 gW . (19) 

Thus , if Einstein's formulation is appropriate for linking any matter 
distribution to a geomety or space-time, the matter fields allowed 

in the geometry (15) must have the stress-energy tensor 

SW = - (1 - M) 99W (20) 

or 

Tux) = -9 91W (21) 

where 

up = 3x2 . (22) 

The divergence of the local dilation current is now given by 

61 D i = — 4 ( 1  —n§)p (23) 
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which does not vanish unless the matter distribution disappears . This 
indicates that the symmetry breaking agents in the present scheme are 
not the scalar fields but some other fields which have the stress— 

energy tensor of the form (21) altogether. Since the scalar fields are 
quite free from space-time geometry, they can be independent agents 

of breaking scale symmetry even in the limit where SO(4, 1) reduces 

to the Poincaré . Such scalar fields could therefore be thought of as 
the Nambu—Goldstone bosons associated With a spontaneous break— 
down of scale symmetry. As space-time is curved, however, confor- 
mal symmetry is broken as a consequence of matter concentration, 
responding in a sense to Mach's idea. 

Let us now play a cabalistic game with Eq. ( 2 2 ) .  Take appro- 
priate values for the coupling n , the matter density p , and the Ryd- 

berg energy X or the corresponding radius R = 1/). . Then find com- 
binations of interest. The following is a list of some combinations 
which seem to make sense a bit: 
Universe: 

n = KG, R~1027 cm, p~ 10"2891/cm‘3 

Neutron stars: 

u =uG, R~ 109 cm, p~ lows/cm3 

H-atom: 
n = 1037KG, R~ 10“1 cm, p~ 1 g/cm3 

0. ~ Rydberg 
Energy RH) 

Hadrons: 
n = 1039 KG, R~ 10-14 cm p~ 1015 g/cm3 , 

0. ~ 0.5 Bev) 

Here “G is the gravitational coupling constant. In the example of the 
H-atom, the coupling u is taken to be of the order of the electromag- 
netic coupling. The radius R differs from the Bohr radius and does not 
have a particular physical meaning, but its inverse gives the Rydberg 

energy R consistent with the observed value . It may be noted that 
the De S tter symmetry is not the space-time symmetry of tle H-atom. 
It is perhaps an effective radius of a geometry which the H-atom 
would form as a relativistic composite system. In the case of hadrons, 
the coupling 11 is taken to be of strong interaction and the mass dis— 

tribution is of the nuclear density. The Rydberg energy x in the mass 
formula (1) then becomes ~ 0.5 Bev which is a desired result. If the 
results of this type of games are taken seriously, use of the Einstein 



3 84 A. INOMATA 

equation (16) should not be limited to the gravitational processes. 
The Einstein equation would have to be looked over from a more flexi- 
ble stand . 

Model for the De Sitter Matter 
Historically, the De Sitter universe is believed to be an empty 

space-time just as the Minkowski space—time provides only a frame- 
work of the world. The reason for this is as follows . Matter disti- 
buting in the universe may reasonably be approximated by an ideal gas 
of the form 

= - + 2 TW p 9W (9 p) uL1 uv ( 4) 

where p is the pressure and is the four—velocity. In order to obtain 
matter of the De Sitter type ( l), we must assume that 

p+p = O . (25) 

Since p 2 0 and p 2 0 must be required from the physical grounds, Eq. 
(25) leads to p = p = 0. Consequently, we have Tuv vanishing. The 
Maxwell field is another reasonable field for filling in the universe , 
but cannot be of the De Sitter type. Furthermore, if the cosmological 
term is introduced in the Einstein equation (16) , no matter disu'ibu— 
tion is actually needed for the De Sitter geometry (15).  Thus one is 
led to a belief that there is no reasonable matter in the De Sitter 
universe. 

Despite this old belief, the symmetry breaking scheme we 
have considered urges us to hunt out a De Sitter matter. 10 Let us 
then consider the case of the Dirac field . The stress-energy tensor 
is now given by 

Tm) = toivuvvi - vviwutlt + ivvvui - vutlTYViI) (26) 

where 

+ = 2 . 27 Yuvv Yv‘h 9W ( ) 

The Dirac equation 

YuVuW + mt: = 0 (28) 

admits a solution 4. satisfying the condition 
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_ A. v — - m . 29 pt]; 4. Y“\)' ( ) 

Since the adjoint field 1 obeys 

v ' = m ' so “(I % Wu . ( ) 

it is straightforward to show that the scalar bilinear 4711; is constant. 
Under the conditions (29) and (30), the stress—energy tensor (26) 
reduces indeed to the De Sitter form (21) with 

.
l
 

p = m M - (31) 

Thus we have found a matter that can serve as a source to the De 
Sitter geometry. As m, the mass of the field 11;, tends to zero, the 
matter density p vanishes and the dilation current conserves. In this 
respect, the Dirac field 11; under the condition (29) might be considered 
as aNambu-Goldstone fermion associated with a spontaneous break- 
down of conformal symmetry. However, since space-time is not flat 
in the presence of the field and hence the vacuum state cannot be well 
defined , such an interpretation remains open. 

The integrability condition of Eq. (29) , 

—vv)¢r=%R Ypyoth. (32) (vvvu u v uv pg 

together with the given geometry (15) yields the relation 

m = 2). (33) 

which implies that the mass of the Dirac field filling up the De Sitter 
micro-domain is of the order of l Bev. Recall that the De Sitter 
space—time of the radius R = 1A corresponds to a slice of the broken 
SO(4,2) onion. Because of the mass splitting (1), each De Sitter 
space-time must be characterized by one of the values XBI(]+1) re— 
placing )? . 

Breaking of the De Sitter Simmer! 
So far we have assumed that the SO (4, 1) symmetry realized 

as a result of broken SO(4,2) is exact. As the mass formula (1) ig— 
nores mass differences among particles of the same spin, the De 
Sitter symmetry is insufficient for the hadron model. How one can 
relate the internal symmetry with this external symmetry is an open 
question. An ambitious program would be to seek the source of the 
fine structure of the mass spectrum out of the broken Symmetry mecha— 
nism as B'dhm did in the purely algebraic aspect.11 For this purpose, 
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the SO(4, 1) model is obviously too rigid. Moreover, if the micro- 
domain is of the exact De Sitter structure , space-time has to have a 
double structure; the De Sitter feature inside and the Minkowskian 
character outside. There is a singular surface which cuts off any 
communication between the inside and outside worlds. Fluctuation 
of some kind in the matter distribution near the surface would circum— 
vent this barrier. In these contexts , breaking of SO(4, 1) seems 
necessary. 

To see the behavior of the singular surface, let us again make 
use of the ideal gas model (24) which is this time allowed to have a 
negative pressure. Suppose the distribution is spherically symmetric 
in the spatial region of radius r0. Then we adopt the following solu— 
tions: For r > r0, 

dsa = _ <1 _ %>_1 clrz - ra (deg +sin3 edges) +<1 '1?) (its (34) 

where p = 0, p = 0 and a = a? is Schwarzschild's radius; and for 
r < r , 

0 

ols'a = -(1 — xsrzrl are -r3 («2198+ singedcpg) + [A-BW ta 
(35) 

‘A - E m  , 

up = 3x2 (37) 

with 

where A and B are constants to be determined by boundary conditions. 
Making a connection of these solutions at the boundary surface r = r0, 
we obtain for ro > a, 

a=x3 r0a . (38) 

(A—BJl—xarj)3 =1-a/ro- (39) 

With another condition p(r=ro) = O, A and B can be determined. As a 
result, the inside solution (35) is fixed in the form 

dsz = -(1 — ism-1 are — r2 (dez +s1nzedcp3) + 

+ ids/1 -x3r°3 —./1 -i3r3)9 d? (40) 

with 
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up =,\a[3J1 — x5? , - 35p 43$] . - (41) 
3./1 —).3roz -,,/1 - wars 

The De Sitter solution is 

ds3 = —(1 - xzrarl drz- :3 (d63+ singedwg) + (1 — xgra)d13 (42) 

with 

up = — 3).2 (43) 

which is a limiting case of Eq. (40) where the distribution radius r0 
approaches Schwarzschild's radius a. Thus the exact De Sitter sym— 
metry imposes a singular surface at r = r0. 

In order to avoid the singularity, we wish to suppose that the 
radius r is extended outside Schwarzschild's radius a; that is, we 
wish to modify the De Sitter solution minimally. Since the require— 
ment (25) must be satisfied, the pressure inside has to be negative. 
Thus we look for an approximate solution for which the negative pres- 
sure is possible. In fact, Eq. (40) admits a negative pressure solu— 
tion if we chose ro such that 

9 
a < r 0 < 8 a  . (44) 

The solution of this type may be considered as a broken SO(4, 1) 
solution. Further details will be given on other occasions. 

References 
1. See, for instance, papers of B6rner, Castell, Ingraham, Kastrup 

and others presented at this symposium. 
2. A. O. Barut and A. Bm, Phys. Rev. £9, 31107 (1965); 

P. Roman, Non-Compact ggups in Particle Physics , edited by 
Y. Chow (Benjamin, New York, 1966), p. 89. 

3. See, for instance, A. O. Barut, Lectures in Theoretical Phfiics 
Vol. XB, edited by A. O. Barut and W. E. Brittin (Gordon and 
Breach, New York, 1968), p. 377. 

4. A. Inomata and D. Peak, Prog. Theor. Phys. 4_2, 134 (1969). 
5. T. Fulton, R. Rohrlich and L. Witten, Rev. Mod. Phys. E, 442 

(1962). 
6. G. Mack and A. Salam, Ann. Phys. (N.Y.) _§_3_, 174 (1969). 
7. C. G. Callan, S. Coleman and R. Iackiw, MIT preprint CTP 713 

(1969). 



388 A. INOMATA 

8. F. Gfirsey, Group Theoretical Concepts and Methods in Elemen— 
tarx Particle Physics (Gordon and Breach, New York, 1962), 
p. 3 6 5 .  

9. A. Inomata, Prog. Theor. Phys. 3_9, 1370  (1968). 
10. A. Inomata, Nuovo Cimento :16, 132 (1966). 
11. A. Bb'hm, a paper presented at this symposium. 



LORENTZ INVARIANT ALGEBRAIZATION 
OP VERTEX FUNCTIONS . 

DYNAMICAL GROUP SO(3 , 1) ® SO(4 ,3) 1‘# 

Milan Noga 

Department of Physics 
Purdue University 

Iafayette, Indiana 47907 

I. Introduction 
' The hypothesis that the dynamics of a given quantum mecha— 

nical system can be completely described by some dynamical group 
as well as by the Schrodinger equation has been verified for almost 
all interesting and important quantum mechanical problems . In quan- 
tum mechanics we postulate a HamiltonianZK‘. which is usually a com— 
plicated differential operator and then a solution to the SchrBdinger 
equation 

m, =E 11: (1.1) 

determines the energy levels En and the set of the quantum numbers n 

of a given quantum mechanical system, which is completely described 
by the wavefunctions ‘Vn' In the approach using dynamical groups 
one starts from a chosen dynamical group G and phenomenologically 
identifies its generators with operators of physical observables 
rather than postulating the Hamiltonian. In addition, the quantum 

mechanical wavefunctions ‘l’n are assumed to form a basis for a single 
unitary irreducible representation of the group in question and in such 
a way measurable physical quantities can be straightforwardly calcu- 
lated. The same idea was consequently generalized and used in parti- 
cle physics. 

Over the last few ears the relativistic framework of dynamical 
groups proposed by Barutl); has been successfully applied to strong 

TPresented at the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  
$Work supported in part by the U. S. Atomic Energy Commission. 
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decays of mesonz) and baryon3) resonances as well as to the study of 
mass spectral and form factors of hadrons.” The essential assump— 
tions made in such studies may be summarized as follows: 

a) Hadron states are assigned to unitary irreducible represen— 
tations of some noncompact group G which contains the Lorentz group 

as a subgroup (in order to guarantee relativistic invariance of the 
theory). A priori, suitable candidates for G are, for example, the 
groups SO(3,1), SO(3,2), SO(4,2), SL(2,C), SL(6,C), etc. The ulti- 
mate selection, however, is only to be dictated by results which agree 
with experiment. 

b) Once the group G has been selected then its generators 
(which are self—adjoint operators in the Hilbert space of physical 
states) are phenomenologically identified with physical observables 
such as , for example , momentum, angular momentum, electromagnetic 
current, etc. In this way matrix elements representing measurable 
quantities may then be easily calculated by group theoretical consid— 

erations . 
It is amazing that physical consequences following from the 

above set of assumptions agree quite well with experiments for suit- 
able choices of the group G. 

In fact, even the simplest possible dynamical group, SO(3 , 1), 
has been able to describe very well the pion-baryon decay rates of 
many resonances3 by making use of only two free parameters which 
are an effective coupling constant 9 and an eigenvalue v of one of the 

Casimir operators of the SO(3, 1) group. Of course, the parameter v 
is adjusted phenomenologically by requiring a best fit to the experi— 

mental data. However, if one wishes to avoid the freedom in the 

choice of v one is then naturally led to the study of larger dynamical 
groups such as, for example , SO(4,2) , which was proposed by Barut 
and 'Tripathy.5) This group has received a great deal of attention in 
the series of excellent papers by Barut et al.6) Nambu,” and Yams) 

Although all the calculations mentioned above show good 

agreement with experiment, it is of course not at all clear whether 
other choices for G might be more suitable . Furthermore, if one really 

expects the study of a given dynamical group to be physically mean- 
ingful one should be able to derive its Lie algebra from general phy- 
sical assumptions . 

It is the purpose of this talk to show that the dynamical group 
which describes the hadronic world may be rigorously derived start- 
ing from the following usually accepted physical hypotheses: 

a) Relativistic and isotopic invariance of the theory, 
b) Validity of the Lehmann-Symanzik—Zimmerman (LSZ) reduc- 

tion technique ,9) 
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c) Either an effective interaction Lagrangian xx of the typelo) 
(1-31)“1 “(x) a“ §“(x) (where P" e- 190 Mev is the pion decay am- 

pIitude, “(x is the axial vector current, Q “(x) is the pion field, and 
c. = 1, 2, 3 and u = 0, 1, 2, 3 are isovector and space—time indices res— 
pectively) or the validity of PCAC (i.e. the assumption that the soft 
pion technique may be employed whenever (‘mw2 )‘16p'A0L (x) is chosen 
as an interpolating pion field), 11 L1 

d Validity of the usual equal-time commutators between axial 
charges, 2) and 

e) Absence of exotic states having isospin I = 2. 
From the above assumptions it is then easy to reduce the dyna— 

mical problem of calculating decay amplitudes involving pions to the 
study of representations of a certain noncompact group. In fact, we 
show in the next two sections that the above assumptions lead us to 
conclude that hadron states form unitary representations of the non— 
compact group SO(3 , 1) ® SO(4,3). In addition we show that the phy- 
sical interpretation of the generators of this group is unique and un- 
ambiguous and that the relativistic transition amplitude is written as 
a sum of matrix elements of a certain class of generators of the group 
in question. 

II. Reduction of the Dynamical Problem to the Algejra of Matrix 
Elements ' 

We start by considering a general pion transition process 

a(p) -’ b(p') +Tr(q.ct) , (11.1) 

where a(p) and b(p') denote arbitrary hadron states with momenta p 
and p’ respectively while n(q,c) denotes a pion with momentum q and 
isospin index on. The S-matrix for this process is defined by 

_out 
m’<b2 'hlsaISIalcz) <b2';ga|a2>in . (11.2) 

(where a and b denote all other quantum numbers) and is related to 
the invariant Feynman amplitude Ma(p’ ,q; p) by 

My .gal sl a2>m = - (znrer (p’+q-p)<2n)'9/2 
oop)-,o -1/2 x (8qp Ma(p’q: p) . (11.3) 

By use of LSZ reduction techniqueg) one may then write 
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1 '1 in in <b2':.qalsla2> =—— —— (211)3/2 (29‘5”2 

Id‘x e-iq - mfia) (bp' I @“(xnam . (11.4) 

where the states lap) in and Ibp’ )in have been normalized to 

in<b2’|ap>1n = aab 53 (p -2')  . (11.5) 

We can then proceed f her either by making use of a n  effective 
interaction Lagrangianlo of the type 

= -1 a L1 Q“ SI (PW) Au (x) a (x) (II. 6) 

and its corresponding equations of motion 

_ a (I. = _ -1 H a (III In” )§ (x) 0:") a Au(x) (11.7) 

or PCACll) ( i . e .  (Pfinha)4a¥:u:bc) is chosen a s  a n  interpolating pion 
field and the soft pion techni e is then employed) and rewrite” E q .  
(11.4) in the following form 

5/2 
“1019' 1.904 Slat?)1n = Fwd1 33‘“)? 54 (p'+q-P) 

(2c: ) 

x (p-p’)“ (bg’ |A:(0)|a2> . (11.3) 

(In the derivation of the last equation we have also used translation 
invariance, 1 . e .  

(b2' lAzbcflam = exp[ -i(p’-p)x] (bp’lA3(0)la2)). 

Comparing Eq.  (11.8) with (11.3) we note that the invariant 
Feynman amplitude Ma(p’ q; p) may be written as  

M (p',q; p) =I-‘ -1 (2n)a (4p°p'°)1/2(p-p')“<b2'IA“(o)|a2> . 
a " u (II.9) 
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From the above equation it is now evident that Ma(p’ ,q; p) may be 
obtained by calculating the matrix elements of “(0) between two 
hadron states lbp') and lag) . It should‘also mentioned at this 
point that the state lap) representing a hadron of momentum 2 may 
be obtained from the state I a )  at rest by means of a homogeneous 
Lorentz transformation, i . e  . 

lap) = e151!“ a) , (11.10) 

where M denotes the boost operator and 5 is  a vector in the direction 
of B with magnitude given by 

Isl 
tanh|5| = ?  , (11.11) 

use of Eq. (11.1.0) sin‘aplifies extremely the calculations of the 
matrix element (bp’ I '0' (0)Ia_p) . In fact, since the invariant ampli- 
tude (11.9) is Lorentz variant, we may assume without loss of gen- 
erality that the initial state Iap) is at rest. The final state Ibp’) is 
then obtained by boosting the state lb) at rest to momentum 2’ . The 
calculation of the invariant amplitude is then reduced to the determina- 
tion of matrix elements of the type 

(Jole‘iillI A:(0)|a) . (11.12) 

Since the matrices of finite Lorentz transformations 

-1 M Bba E (b l e  So—Ia) (11.13) 

can be found in the literature 13)  the invariant Feynman amplitude may 
be written a s  

q' .q: p) = Pfi'l (21m (4p°p'°)* (p-p')“ abn<nIA:(o)1a> 
and the problem of determining it is then reduced to the determination 
of the matrix elements of Aa(0) between two states at  rest ,  i . e .  to 
the calculation of ‘4 

(blA:(0)Ia) . (11.14) 
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In order to determine these matrix elements we start by assum— 
ing the validity of the usual equal—time commutation relations between 
axial chargesp) i . e .  

[IdsxAgQg,t) IdayAEQ,t)]=i e‘my 1Y , (11.15) 
where IY denotes the generator of isospin transformations . 

Let us  next consider the matrix element of the commutator 
(II. 15) between hadron states l’) and lag) . We obtain 

(bg’ IUdax 11065.0). IdayAgwmfllag) =1€aBY(IY)ba 53 (212'). 
(II. 16) 

To evaluate the left-hand side of the last equation one inserts a com— 
plete set of intermediate states Ingn) and uses translational invari— 
ance to carry out the spatial and momentum 2n integrations . This 
yields 

(a Z {(b2|p%(o)|n2)(nRIA%(O)IaR> - (bglASwHn2><n2|A°5(0)|a2>} 
n 

= o(BY Y i s  (I )ba , (II.17) 

where we have cancelled a common factor of 63 (lg-2’ ) on both sides.  
It should also be siressed that the above relation can only be derived 
for states Ibg)  and lag) with the same momentum 2 .  Therefore, we 
shall restrict ourselves to  hadron states at  rest without loss of 
generality. a. 

To proceed further let us define three matrices x001 = 1 , 2  , 3 )  by 

6:3)bn=<b|A°5(0)|n) (2rr)‘5 , (11.13) 

where b and n denote the bth row and nth column of the matrix 35%. 
With this notation Eq.  (II. 17) may then be written i n  matrix form’as 

a B _ B on = «By y xoxo xoxo 1 6  I , (II.19) 

where a lso  IY is a matrix. Introducing the usual abbreviation 

a. B = o. B _  B a. [ x 0 , x 0 ]  —x0x0  xoxo , (II.20) 
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Eqs . (II. 17) and (II. 19) may then be written as 

[x‘gmg = 1 cash" . (11.21) 

The above equation will play an important role in the rest of our dis— 
cussion. In fact, we proceed in the next section to make use of this 
equation along with Lorentz invariance and absance of exotic states to 
study relations among the matrix elements (bIAHwH a) and show that 
they form a closed algebra which is isomorphic to the Lie algebra of 
the group SO(S , 1) ® SO(4,3) . 

III. Derivation of the Dynamical Algebra 
Any reasonable theory describing strong interactions of pions 

with hadrons must be Lorentz and isotopic spin invariant. This then 
implies that the invariance symmetry group K is the direct product of 
the isospin group SU(2)I and the Lorentz group SO(3,1), i.e. K = 
SU(2)I ® SO(3 , l) . Clearly the group K is generated by the following 
Lie algebra 

[1“, 13] = 1 95W. (111.1) 

NW. 1pc] = “n1“, - gwlup - guvo + guUv) , (111.2) 

and 

[1“. 1W] = 0 . (111.3) 

where ($.81)! = 1,2,3 are isospin indioes, u,v,p,c = 1.2.3.0 are 
space-time’ indices, and 10‘ and I” are the generators of the groups 
SU(2)I and 80(3) 1) respectively. ¥he metric tensor 911v is defined by 

900 :1 '  g11=‘9‘22=g33='1' guv=0 HM!" ' 

The most important operator in our theory is the axial vector 
current ‘3' (0) taken at the origin of a reference frame. This operator 
is , of course, an isovector and a Lorentz four-vector and therefore 
obeys the following set of commutation relations 

[1“, 113(0)] = 1 swirl/1(0) (111.4.» 

and 



3 9 6 MILAN NOGA 

c _ . on a, 
UW. Ap(0)] — 1(gvu(0) - gupAv (0)) . (III.4b) 

We next consider the sum rules obtained by  taking matrix ele-  
ments of the commutators (III. l)—(III.4) between two hadron states I f )  
and I1) at  rest. Thus we define twelve matrices x3 by 

on _ a (x11)f1— (flAu(0)li) (e)‘5 . (111.5) 

where the subscripts f and 1 denote the f th row and 1th column of the 
matrix xa' . The matrix relations following from the commutators (III.4) 
then takg the form 

B = “BY Y EI“, xu] 1 e xL1 (111.6) 

and 

on = or _ c. 
Unv’ xp] 11(95p guv)  , (111.7) 

where we have used the abbreviation defined in Eq.  (II. 20). It should 
also be mentioned that the symbols 10L and I v occurring in the last 
two equations are not operators but matrices. However, we have used 
the same symbols for the linear operators 1“ and Iuv as  for their alge— 
braicai realizations since these matrices will, Of course , satisfy the 
same algebraic relations a s  those given by Eqs .  (III. 1)—(III.3) . To 
avoid a n y  confusion we stress that from now any  commutator which 
will be derived must  be understood a s  a matrix relation. 

If we were now able to  construct uniquely the set  of twelve 
matrices 01. then we would be finished and the invariant Feynman 
amplitude II.9) would then  be uniquely determined by 

I . = —1 0 0 ,  _ , ' J .  a. Mu(p .q ,p )  F1T (4pp )(pp) Bxl‘l 

where the matrices B and 0' are defined by Eqs. (11.13) and (III.5) 
respectively. To proceed her in this construction we next write 
the most general form for the commutators Ex“, xB ] . In order to do 
this we note that this quantity is antisymmetl‘lic with respect to the 
interchange of pairs of indices (cu) and (8v). Therefore the most 
general decomposition of this commutator i s :  

+ 1 ZionB} [LN] , (III . 8) a. B = a B y  Y 
E X ” ,  x v ]  1 € Y{IJV} 
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where Yflfv} and Z3533 are matrices and the symbols [ - -] and { - -} 

are abbreviations for antisymmetricity and symmetricity in the corres- 

ponding pairs of indices . It is now a simple matter to prove t 

YER} is an isovector and symmetric Lorentz tensor while Zfifi? is a 

reducible symmetric isotensor and an antisymmetric Lorentz tensor. 

This proof can be found in Appendix A. o. B 
‘ The decomposition of the commutator [x , 1%] given by Eq 
(111.8) reminds us very strongly of. the algebraicJ structure of Weim 
'berg's sfirerffinvergence conditions10 analyzed in a series of 
papers . ' 5 ' ) In these works the left hand size of Eq. (ELS) 
is interpreted as the s and u-channel contributions to a supercon— 

vergence sum rule while the right hand side correspond to t-channel 

meson exchan e ontributions. In accordance with this philosOphy 
the matrices Z :3] are only related to the exchange of mesons with 
isospin I =‘ 0,2 since 2&3 is a symmetric isotensbr. It is usually 

assumed that isospin two states (which belong to the class of so— 
cal .d exotic states.) do not exist. Therefore We require that the part 
of ' as} which transforms under SU(2‘)Iras an irreducible symmetric 

tensor with I = 2 must vanish. This implies immediately that 433% 

is only an isospin scalar, namely, 

{a3} = _ as Ztuv] 5 Tuv , (111.9) 

where the minus sign is only a convention and TM is a matrix which 

transforms as an antisymmetric Lorentz tensor and) obeys the follow- 
ing set of matrix relations: 

= '  - - + Unv’Tpo] 1(gvuo gWTup gupTW guoTVp) 
(111.10) 

and 

[1“, Tuv] = 0. (111.11) 

We stress that the application of Eq. (111.8) to the time 
components 

OLBY on B _ Y , [x0, x0] — i 6 Y{ 00] (111. 2a) 
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must give the same result a s  E q .  (11.21), L e .  

[:63, x3] = 1 e"LBY 1Y , (111.1210) 

and which follow from the equa -time commutator algebra which the 
axial vector charges satisfy. 

Comparing the last two equations we obtain 

Y _ Y 
Y{00} " I  - ( I I I . 1 2 C )  

Since IY is a Lorentz scalar it follows immediately (by making use of 
the commutators Y = 0 ;  A dix A th t A Y UHV' Y{ 001*] see ppen ) a {LN} is a 

symmetric invariant Lorentz tensor  and therefore we conclude 

= Y t}  gm) I . (III. 13) 

Using the results given by Eqs . (III.9) and (III. 13) we rewrite the 
important relation (111.8) as  follows: 

a B = may v_ as [ x u ,  xv]  i g u v e  I 15 TLN . (III .14)  

From the last equation it is now simple to express T v in terms of the 
xu ' s  and make use of the Jacobi identity to determine the commutators 

[ T  Tl-W’ x p ]  and [ T  THV’ Too]  . These calculations can be found in  

Appendix B ,  where the following results are  derived: 

01 Tu x = 1 xq, x III.15 [ V '  p] (gvp 1 1 n  V) ( ) 
and 

T Tp =1 ' T - T + T I 
E 11w 0] (gv us gvo up gun W 9” W) (III-15) 

The commutators (III.1)~(III.3), (111.6), (111.7), (111T 10), (III. 11) and 
(III.14)-(111.16) show that the 27 matrices 10‘, and x“ form a 
closed algebra which may be identical to the Lie uvalgg’bra of 5% me 
dynamical group G .  If we are able to  find the structure of this  group 
G then our dynamical problem will be completely reduced to  the study 
of unitary representations of this group. 
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In order to find the structure of G we find it convenient to 
introduce 6 matrices Fm) defined as follows: 

It is then a simple matter to verify that the matrices F v commute with 
all the 21 matrices I“, f and 267‘, and that they satisfy the Lie a1- TW, may, gebra of the SO(3,1) group 

P F = 1 F - F ‘ F + F '  [uv’ pa] (gvp L10 gvo up 9H9 W 9““ VP) (IIIo18) 
This implies that the group G is the direct product of SO(3 ,1) with a 
group G0 which is generated by the Lie algebra given by commutators 
(111. 1), (111.6), (111.11), and (III.14)-(III.16). Thus the problem is 
now reduced to finding the group structure of Go. This can be done 
quite easily if we define a metric tensor gab for 

a,b=u,v,p,o...=1,2,3,0 and 

a,b=d,B,y...=5,6,7 by 

911 = g22 = 933 = '1' 
goo = g55 = 966 = g77 = +1' and 
g a b = o  ifa7-‘b, (111.19) 

and introduce in addition matrices 

Lab 8 -Lba defined by 

d L68 2 - e BY IY, 
= a' 2 La.“ — x” _, (III. 0) 

and 

L E T . 
uv uv 

With the above definitions the commutators (III. 1), (111.6), (111. 11) 
and (III. 14)—(III. 16) may then be compactly rewritten in the form 
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[Lab' Led] = 1(gbcLad - gdac — gacLbd + gadLbc)' 
(III . 2 1) 

The above commutation relations define the well known Lie algebra 
of the noncompact rotational group SO(4,3) . 

To conclude this section we would like to stress once again 
that the dynamical problem of determining the Feynman invariant 
amplitude for processes involving pions has been completely reduced 
to the study of the algebra of the noncompact group SO(3 ,1) ® SO(4,3). 
Since operators. representing physical observables operate on the Hil- 
bert space of physical states this then implies that hadron states 

must form a representation space of the dynamical algebra of obser— 
vables, i.e. of the Lie algebra of the group SO(3 ,1) ® SO(4,3) . From 
this it then follows that any unitary (reducible or irreducible) repre- 
sentation of this group may correspond to possible physical states. 
Of course , there is no reason at all to demand that physical states 
transform according to unitary irreducible representations of this 
group, since the required Lie algebra relations are also fulfilled if 
one considers unitary reducible representations . 

IV. Connection With Dynamical Grggps PrOposed By Barut 
We have proved that matrix elements of physical observables 

form the closed algebra of a dynamical group which combines in a 

nontrivial way internal (isospin) symmetry with space-ti e symmetry. 
Originally the dynamical groups proposed by Barut et a11 '6 were 
only restricted to the external (space -time) properties of hadrons 

While later these groups were combined with internal symmetries by 
taking their direct products.” '3) 

We would next like to discuss what happens if we restrict 

ourselves to matrix elements of physical observables describing 

external properties of hadrons, i.e. to sets of hadrons with the same 
internal quantum numbers. This is equivalent to considering hadron 

families with the same third component of isospin and thus implies 
that we rule out all matrices I“ connected with internal symmetries 
as well as the matrices x1 and which change the charges of the 
hadrons under consideratibn. Thus we shall only deal now with the 
16 matrices I v' TLW and ‘=‘ T . It is then simple to verify that 
they form a c'llosed algebra which is identical with the Lie algebra of 
the group SO(3 ,1) ® SO(3 ,2) . This result tells us that hadron states 
with the same third component of isospin must transform according to 
unitary (reducible or irreducible) representations of this group. 

The d namical group SO(3,2) was proposed by Barut, Corrigan, 
and Kleinert4 in order to calculate mass spectra and electromagnetic 
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form factors of hadrons . In their framework hadron states are assumed 
to transform according to unitary irreducible representations of this 
group and the matrix I‘ introduced above plays the role of their so— 
called algebraic current. They then consider one class of represen- 
tations of the group SO(3 , 2 ) ,  which, of course, are also representa— 
tions of the group SO(3 ,1) ® SO(3 ,2) which we have derived here by 
identifying the matrices T v with the matrices I . Thus we have 
shoum that' the assumptions made by the preceding authors on the 
basis of an excellent physical intuition can in fact be uniquely de- 
rived making use of usually accepted dynamical assumptions. 

V. Summary and Conclusions 
Several dynamical models for the description of hadron states 

which lead naturally to relations identical to the algebra of certain 

Lie groups have been proposed over the last few years. Among thesn 
we start by mentioning the popular Chew static bootstrap model, 17 
which was completely rewarded in group theoretic language by Cook, 
Goebel, and Sakita. 8) Next we mention the work of Capps1 ) who 
has shown under fairly general assumptions that if one saturates 

superconvergence sum rules with single particle states one is natu- 
rally led to models in which hadron states are associated with unitary 
representations of certain Lie groups . More recently, algebraic 
superconvergence conditions for the forward scattering OS massless 
pions with hadrons have been derived by Weinberg10 '20 making use 
of the effective chiral Lagrangian formalism. 

All the preceding treatments led to the conclusion that hadron 

states form a basis for unitary representations of certain Lie groups. 
On the other hand, in the framework of dynamical groups one usually 
makes the ad hoc assumption that hadron states form unitary irredu— 

cible representations of some noncompact group. Since this approach 
has been rather successful one is then led to conjecture that these 
dynamical groups might in fact be derived from generally accepted 
physical assumptions . We have shown that this is actually the case . 
In fact, we have derived relations identical to the Lie algebra of the 

group SO(3 , 1) ® SO(4,3) merely by assuming isospin and Lorentz 
invariance , usual equal-time commutator algebra between axial 

charges , absence of exotic states , and either an effective interaction 
Lagrangian or PCAC. Since physical observables are self—adjoint 
operators in the Hilbert spacelc of hadronic physical states it then 
follows thatJC is the representation space of the Lie group SO (3 , 1) ® 
SO(4,3). Thus hadron states must form a basis for unitary (irreducible 
or reducible) representations of this group, which is a nontrivial com- 
bination of the isospin group SU(2) with the Lorentz group SO(3 , 1). 
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The generalization to larger internal symmetry groups (for example 
SU(3)) is straightforward and may be done along the lines discussed 
in this paper. 

The dynamical groups proposed by Barut and his collaborators 
were SO(3,1), SO(3,2)and SO(4,2), which are all subgroups of 
SO(3 ,1) ® SO(4,3) so that all representations of the latter are also 
reducible representations of the former groups . If we only re strict 
ourselves to the external properties of hadrons we have found that 
hadron states with the same third components of isospin are classi- 
fied according to unitary representations of the group SO(3 , 1) ® 
SO(3 ,2). Note that the group SO(3 ,2) is exactly the one proposed by 
Barut et al4) in their calculations of electromagnetic form factors and 
mass spectra of physical states. 

To conclude this discussion we stress that the dynamical cal— 

culation of the pion-hadron vertex function was reduced to a set of 
algebraic relations which turned out to be the same as the Lie algebra 
of the group SO(3 , 1) ® SO(4,3) . Finally, it should also be mentioned 
that an algebraic treatment to the dynamical problem of pion—hadron 
coupling constants has also been extensively developed in a series 
of papers by Sugawara who makes use of the LSZ reduction technique 
and the assumption that the dispersive part of the three point function 
may be completely saturated by single particle intermediate states. 
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Appendix A {0L6} 
' In this appendix we show that the matrices Y Y and Z 

{Liv} [uv] 
introduced in Eq. (III. 8) transform as tensors under Lorentz and 150— 
spin transformations. We start with the matrix relation (III.8) , which 
is of the form 

on B _ aBY Y {a8} Ex“, Xv] — i s Y{uv} + iZEHv] . (A. 1) 

Our first step is to express Y{ Jv} in terms of x3. This can simply 

be done and one obtains the following result 

v = _ i  may a B Y{uv} 2 6 Ex“, x v ]  . (A.2) 
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The commutator 

Y = _i_ GBY on B 
[ 1 0 0 " ,  YIHV}] 2 € [ 100" ,  E X H I X V 1 ]  (A.3) 

can t h e n  be rewritten by making use of the Jacobi identity as 

Y _ i or[BY B 00 0t B 
I '_ _ I I + I I - - [1W Yam} 2 e {t Um xun [xu [xV Ipoll} (A 4) 

Carrying out the algebraic reduction using the commutation relations 
(III. 7) and (III. 8) we finally obtain the result 

Y _ - Y Y Y Y , Y — 1 Y + Y — Y — Y . 
Ups {w}1 (gm {pv} gov {cu} gou {0v} gm) {0%) (A 5) 

From the above equation we see that the matrices Y{ Y } transform as 

a symmetric Lorentz tensor. The same proced a can be used to prove 
that Y{ Jv} transforms as an isove'ctor while Z‘FSEI transforms as a 
symmetric isotensor and an antisymmetric Lorentz tensor. 

ligands: 'B 
The purpose of this appendix is to derive the commutators 

[Tuv' 35;] and [Tuv' Too] . We start from relation (111.14) and obtain 

1 a a = —  . . .1 TW 3 Ex“. XV] (B ) 

By making use of the above equation we may then write 

B _ i_ B d on 
[TU/VI X9] _ _ 3 [ x p l  [xul X V J J  . (B.2) 

We next apply the Jacobi identity to the double commutator given 

above and obtain 

B _i_ on B a on on B MW. X0] — 3 {[xv .  [xp' XHJJ +[xu’ [xw Xpll} - (B.3) 

Making use of Eq. (III. 14) we then carry out the algebraic reduction 
of the double commutators on the right hand side of Eq. (B.3). This 
yields the result 
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B = fl  B _  B _ l  5 
[Tuv 'xp ]  3£gvpxu guv} 3[ [Tpu’xv]+[TV ”EIXNOB. 4) 

The pre ding commutator is then used to calculate the sum 
[ T p  H '  V] + [ T v p  , x3] . After some simple algebra we obtain 

B =1_ B _ _  B 
[ T o  WIX1+ET pACE] ”{gpui- g x p v u l z  luET , x p ] .  (3.5) 

Inserting the last result into E q .  (B.4) we then obtain the relation 

3 =.  B_ s [TuV'XP] 1(gvpxLJl g p v ) .  (B.6) 

which has been used in Section III. 
We can now proceed further and calculate 

_i_ CL 0. 
[ T u v l  TpO'] " 3 E T H V I  E x p o  x01] 0 (3 .7 )  

In order to do this we once again make use of the Jacobi identity for 
the double commutator and obtain upon using E q .  (B. 6)  the result  

ETW. Tpol =%{gvx: .xu o‘1-91 [351,291+ 90H}: . x  “VJ-g GapEx #:11- 
HD 0 V 

(B- 8) 
Combining the above relation with E q .  (B. 1) we then find 

T T = 1  T - T + T . B . 9  [ u v ' p  0] (<3v “0 ' n  up gun W cm W) ( ) 

Thus the matrices TH form a closed algebra identical t o  the Lie a1— 
gebra of the group SO(3 , 1 ) .  Relation (B. 6) then tells u s  that the 
matrices x“ transform a s  four-vectors with respect to  the group in 
question. 
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MASS‘ZERO PARTICLES IN DE SITTER SPACE‘I‘ 

Gerhard Bornert 
Max-Planck-Institut fiir Physik und Astrophysik 

Munich, Germany 

Introduction 
If in Einstein's equation with a zero energy—momentum tensor 

we al low a nonzero cosmological constant A ,  then we find a s  a solu- 
tion the curved but empty De Sitter spacetime. There are essentially 
two models With different global topology, which can best be visual- 
ized a s  hypersurfaces in a flat 5-dimensiona1 Minkowski space M5:  

8 a a 3 2 3 
3-) g o ' § 1 ‘ § a ' § a ' § 4 = ‘ R 2  (AER-5) 

The group SO(1,4) acts transitively on this manifold. 
2 a a 3 2 

b) go “ ' 5 1  - § 3 - § 3 + § 4 = - R 3  

This space has SO(2 ,3 )  a s  a transitively acting symmeu'y 
group. 

In the following we shall  be concerned with model a ) .  1)  
Obviously the infinitesimal generators of SO(1 ,4 )  are the oper— 

ators of angular momentum lab in  M5 . There are two Casimir operators 

_ _1_ ac bd 
I1 _ - 2R2 J a b ”  Tl c 

_ a b a _  abode Ifa —+v nabv , v —e c Jde 

(nab: metric-, eabcde completely antisymmetric 
tensor in M5) 

+Presented a t  the Symposium on De Sitter and Conformal Groups,  
University of Colorado, Summer 1 9 7 0 .  

*Address from Sept.  1970 t o  June 1971: City College of C.U.N.Y. , 
New York ,  NY 10031 . 
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The contraction R ~ °° gives back the generators of the Poin- 
care. group. and I, go over into the operators of mass and spin 
respectively.1 1% In De Sitter space we characterize a particle by its 
eigenvalues with respect to I, and 12. , which in view of the above 
mentioned correspondence to the flat space quantities we might call 
again "mass" and “spin." 

I. Spin ' Zero Particles 

A. Klein—Gordon Eg nation 
Under x’ = 96:) a scalar field transforms as follows 

ep'(X') =Cp(X) (1) 

Introducing a convenient coordinate system on a):1) 

* 
dsa = X'9(R9d)\3 - (dx)3) (2) 

_ w < ) \ ' < a  ) ‘ f o  

1) we calculate the generators using (1) and get 

_l__3_ 2x a = + R  + I1 aRkax aX i as" 

The field equation is 

Ilcp = “Eco (3) 

We solve this equation as in Ref. 1 under the condition that 11 must 
be a self—adjoint operator defined on the Hilbert space of square- 
integrable functions with respect to the invariant measure on a). Thus 
we obtain irreducible representations of the De Sitter group which are 
decompositions of the quasiregular representation of the De Sitter 
group on a), defined on this same Hilbert space. 

*Here g0%0‘_1_)\_1)E1li;y2,)\_1,_;1_,2,3 ”“1 1,2, 3 

E4 = - '2‘(X+X_1)+*2—;yal:'1 . For R a a we require K ~ (1 +-Rg), then 
ds2 -' (dx (3)3 - ($923 . 1 X 
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The spectrum of eigenvalues Rana = 9/4 - V3 consists of a 
continuous 

V = 1 p l  0 < p < °  (4) 

and a discrete part 

v=(n+%)3, n=0,1,2,... (5) 

(this is the so-called “most degenerate" spectrum”). 
For R -° ea a whole bunch of eigenvalues us goes to zero, as 

if the curvature of spacetime has removed a degeneracy present in 
flat spacetime. 1) 4) 

To each value of “2 belongs a definite eigenfunction: ' 

/4 Im (em h +dp< I ma» 
Re ( II ) 

cp i = N9 x3 e131 {em i 6(4)} (6) 
p 

Np: 'nOImaliza-timi factor, ' : spherical Hankelfunction 
(:t indicates the 3—parity: ) mpg-1.x = dippiox . 1); where 3: k 4 -x . 
1 ~ y is the discrete symmetry transforming antipodic points of the 
De Sitter space into each other, commuting with every group element) 

con =- N n X8 61.15.! jno‘. ‘ 1 i )  (6) 

_ n 

3 Cpn _ (—) cpn 

4) 
We have two completeness relations, one for each system of functions 
with a definite 3—parity: 

-. * I . * I 
fd3k{2JapZn (A .x’hp2n 0»:X)+Jdpcppi0\’:1)tppioul)} 

n 2n+1 2n+1 

=§£emv>i emwnaw-x') (7) 

B. Mmm Theory of the Scalar Field 
The commutation function [cp (x), cp(y)] for real fields must be 

an invariant two-point function which is 
i) a solution of the homogeneous equation (3) 
ii) constructed from cpp+ , cpp_, cpn 
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iii) antisymmetric 
iv) causal, i.e. zero for spacelike distances 

s mum-ms— (z -x’)’3} 
For a fixed value of 14.3 out of the continuous s ectrum we can con— 
struct a function meeting all the requirements1 

lowing) =1jd3krp:+(x',y)cpp_(x.x) 
* 

'CPp+0~:X) cpp_(x’. 1'» cothnp 
_ i = _ , Aha, — o (Raxamfl, iaaaw x )  (8) 

We see that this function gives rise to a canonical quantization of the 
free scalar fields in De Sitter space. The above construction made 
use of the fact that to each value of p there exist two eigenfunctions 
of 3-parity +1 resp. —1. In the case of the discrete spectrum the 25- 
parity of the eigenfunctions is (-)n, i.e . the eigenvalue of the Casi- 
mir operator determines the 3-parity. Therefore we have only one pos— 
sible candidate for an invariant two—point function solving (3) , and it 
turns out that thisz is the acausal function. Let us look more closely 
at the state as = (n = O) This is the conformal invariant state , 
because the equa on 11m =§r¢p can be tansfomed into 

a a 
X_)~ _ = 

The equation is formally conformal invariant, but the solutions of (9) 
in De Sitter space are 

_ 2 ik'y 2 E cp —x e W JOMJSIR) (10) 

which do not form complete basis for an irreducible representation of 

the conforinal group SO(2,4) . The invariant function constructed from 
(10) is ~ —, the causal function D~eb (s)cannot be obtained. 

We have to conclude that the conformal invariant solution in 
De Sitter space does not possess a causal commutation function, and 
can therefore not be interpreted as a particle. Since it seems rea- 
sonable to ascribe mass zero to the conformal invariant state, which 
does not feel the curvature of spacetime , we may state that there are 
no spin zero, mass zero particles in De Sitter space. The condition 
for the physical state space is n3 > 9/4R’3 . 
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C. Goldstone Particle 
There is no Goldstone particle in (1+4) De Sitter space. A 

formal transcription of the original (not guite rigorous) proof of the 
Goldstone theorem into De Sitter space indicates that the additional 
state appearing in case of a spontaneous symmetry breakdown has to 
have a mass u3= 0 (n=1) . This state belongs to the discrete Spectrum, 
has only the acausal invariant two—point function, and can therefore 
not be interpreted as a particle. 

It may be interesting to note that the conformal invariant state 
and the Goldstone state have different quantum numbers . 

II . Photons 

A. Transformation Properties of gields 'with Spin 
To define the transformation properties of fields with spin“ we 

use the fact that SO(1, 3) is a subgroup of 30(1, 4) and that it is the 
stability group of the point x0 =(0, 0, 0, O ,-R) (in 5— dim. M5 coord. ). 
Defining 9x E SO(1, 4) as the group element transforming x into x0, we 
find that to each group element 9 (x' = g(x)), there corresponds a rota- 
tion around x0: gx ” 9 9  The fields are representations of this group 
{gx1ggx} which leaves x° fixed, i. e. the homogeneous Lorentz group: 

iI’GC’)=T(gx',1xgg)¢(X) (11) 

To determine the infinitesimal generators for fields with spin, 
we have to add the local variation to the displacement operators de— 
rived for the scalar field. These spin Operators are uniciuely deter— 
mined by writing (1 l) for an infinitesimal transformation, )and we 
find for the generators 

B0 = o (Bu = % I4“) 

B0. = — 1 80. +11; Ioa, 

IOd=L00L+ks +YRESBO. 

IOLB=L0LB +SdB d , B =  1,2,3 (12) 

Hare-g , v are the generators represented on a space of scalar 
functions . The spin matrices Suv satisfy the commutation relation 
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1s, Sn] =n - n + n“ sxH - ”ML v (13) 
l-lx SM) vx SM; 

Fields of spin 1 transform like vectors under the rotation group. To- 
gether with (13) this determines Suv to be 

(S ) = " i ( n  ) P I V = 0 : - - 1 3  as pv 0»a - noi‘Bv 

(Sm)p\) ' 1(navnop +Tlap’rl0Y) “ 1 8 : 1 1 2 1 3  

n (+---) (14) 

Then 

2 a z 
312 + 3 2 3  + $31 = 

C
O

N
D

O
 

O
N

O
O

 

O
O

O
O

 

O
O

O
N

 

B. Field Equations for Spin 1 
Using (12) and (14) we calculate the Casimir operator I1 and 

end up with the field equations 

V _ 2 I A — A (1)H K L1 
V 

0 2 2i _ a = —  
(II +RB + K  )Aa R aaAo 

0 2x 2 : —  (I1 +n )Ao R 3a A“ (15) 

where 

o a 
=—)‘ ———2)\' — 3 

Il R9 ax ax R2 ax K 60. ad. 

For the second Casimir operator Ie we obtain 

I2 = 211 + B (16) 
V .. where Bu 1-‘\J 0 is equivalent to 

k 3 
Eao-EA0_)‘BQAU.=O (17) 
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(17) is the Lorentz condition generalized to De Sitter space. 
To solve (15) and (17) we make the following ansatz: 

ik-x .L ikon 
Aa=e~ a“H1(W)+DE|'H2(W) 

A0=H3(w) w =  lglm (18) 

where act-k‘1 = 0, (afl’)2 = 1 (we omit the explicit construction of aé) . 
Inserting into (15) we get three equations 

2 3R3 z (awaW—Vvaw+1+“—w:—)H1(w)=o (19) 

a ‘ (aWaW—gvaw+1+“—R%) Hg(w)=%vHa(w) (20) 
3 

(aw—naw+1+nw§3)H3(w)=-V£VHS(W) (21) 

The general solutions of (19) can immediately be written down 

w3/ H1 (w) = N; Zoum + a; 1mm» 

L12 = %  - a a  (22) 

I”: Bessel function, NH: Normalization factor 

(20) and (21) can be solved by the ansatz 

H3 (W) = wp Iu(W) H2 (W) = wv(o. + Bw aw) Iu(W) (23) 

p = V + 1 1  V = 3 / 2 ,  q = é l  B = _ 1 ;  Us = % _ K 2 R 2  (24) 

So the general solutions of (15) have the form A 

A =e1~]—"4‘5w3/2(al NIH +c11 } +14“ Ngé-wa ){1 +c91 }) a a u u u -u lsl u w u u #1 

ik-x 5/2 
A = e ~ w N"5 +c3 25 o no” u 1-11) ( ) 

Inserting (25) into (17) we obtain the additional conditions 

NH: circa <26) 
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C. SE. ctrum and Eigenfunctions 
Let us make an attempt to proceed in analogy to the scalar 

case. The main difficulty initially is the indefinite norm. We are 

interested in solutions for which 

0<IAT'A dfl<o° u u 
with the measure d0 being the invariant measure on the De Sitter 
hypersurface induced from Ms . In addition we require these solutions 
to form a manifold on which I1 and I,‘3 are simultaneously"se1f—adjoint ." 
Just as in the case of the scalar field these conditions determine a 
spectrum of n3 and give a definite form for the eigenfunctions . By 
investigating formally the self—adj ointness condition we find that 
there is a continuous spectrum 3‘ < n3R3< 09, where to each value x3 of 
the Casimir operator correspond two eigenfunctions of opposite 3’- 
parity just as in the scalar case: 

R9n3=pz —% 0<p<°° 

3/2 ik-y , J. 1k 
oiAG(w)=x e~ (mum—x» (N paa+rfiN:(%—waw)) x 

mew/431:.)(lnu 
X 

Raft 

Im(Hip(|wI) err/4) 
p i A°(w) = x5” ei-‘S 1 N260) i em»; 

Re( " ) (27) 

+1 x > 0 
where H. : Hankelfunction of first kind; 6 (x) = 

19 —l x < 0 

And there is a discrete spectrum, where the eigenvalue of the Casimir 
operator I1 determines the 3-parity of the functions: 
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mag =l-(n+t)3 n=o,1,2,... 

niAa(W) =t(1i HMS/2 e“~‘¥{(Nna; +—,§IN2&- -w6 w»: n+gm} 
niAo(W)=%(1i (anus/2 eil‘IXN; In+%(W) (28) 
These functions can of course be only "improper" eigensolutions. By 
looking at the integrals 

M31 a: Au(w1»*-<pg : Anna» 13; may = sails-Em (pl-050mg) 
and 

InlA;(w1)'naAu(w2) % away = 6111112 53 $1 -5) (30) 
we find that only the normalization factors Np of the continuous part 
of the spectrum can be determined as finite quantities , while the dis- 
crete spectrum does not allow the determination of finite factors Nn' 
because the norm of these functions is infinite. The solutions (28) 
do not belong to our"Hilbert space 1' The physical state space is built 
only upon the solutions (27) , with the spectrum condition :8 > %R3 . 

This is an indication that wavefunctions with infinitely many 
spin components are needed to give rise to unitary representations of 
the symmetry group for Rana = 2  - (n+ii)3 , just as it is the case in 
Minkowski space for imaginary mass . We see that the discrete part 
of the spectrum again corresponds to the imaginary mass states of 
Minkowski space as in the case of spin zero. 

D. Conformal Invaria ce Gau e Invariance 
The conformal invariant state, invariant under the transforma- 

tion of a covering group of the conformal group SO(2,4), is contained 
in the discrete part of the spectrum: It is the state with us = 0: With 
the help of (17) we can bring (15) for n3 = 0 into the form (Ana xAu) 

as all 
eefigl-aBaBMu — —amaBAB+ac3t R A0 

a s  a 
-_ =_1_ __L aBaBMo R33 3 A R 33A,a (31) 
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which explicitly shows the conformal invariance. Note that the term 
a (a vAv) does not vanish, because the auxiliary condition still does 
n%t have the usual conform invariant form, but reads 

I _E _ = 123o RAD xaaAa o (32) 

From (31) it is clear that n2 = 0 gives also the field invariant under 
gauge trans-formations . Indeed, the substitution AH -v + auf (80 E 
l/R 3,) leaves (31) invariant and (32) gives for f the condition 

a 

(is akax — xzaqaa — % axh': = o (33) 

which is , by the way, not the conformal invariant scalar equation. 
Our previous investigations have shown that the state with 

n3 = 0 does not belong to the space of physical states for which n2 > 
iRa . So the states for n 3 =  0 cannot be interpreted as particles, the 

usual characterization of the photon as the conformal invariant and 
gauge invariant particle cannot be kept up in (1+4) De Sitter space. 

The remaining possible candidates for the photon come from 
the continuous spectrum M3> %R3 . As has been shown for the scalar 
field a causal commutation function can be obtained , if for each value 
of the Casimir operator there are two eigenfunctions of opposite 5— 

parity. The arguments given there hold true in the spin 1 case too. 
In fact, the calculations are almost identical, so that we can omit 
them here . on 

One can now arbitrarily choose a state withnz = 'R's' , a > i 
which gives zero for R - 0°. This undesirable arbiu‘ariness carries in 

it also some inconsistency: The light cone is as usual described by 
the classical propagation of lightwaves , corresponding to the confor- 

mal invariant value 142 = 0. Now we have the paradox situation that 
the quantum particles cannot travel along their classical path, that 
photons do not run along null geodesics . 

III. semi- Fields 
Afiimilar analysis as in Sec. II can be carried out for the spin 

I; fields . The second order Casimir operator is 

o 
11% = 11 3 — —  a . - 4R2 +)\.O' 8 a  Y5 (34) 
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I 0 
a“: Pauli matrices Y5 =( ) 

0 —I 

I} can be factorized into 

I*=(iy° L a  + i X Y a a  + 1 y °  -2§§)3+—- (35) 1 R x 0. 

Hence 

(I1 +n3) 1|: = 0 (36) 

is equivalent to the De Sitter invariant Dirac equation 

oi a 03. = (1y R a x + i x Y  a q + i y  2R”, mill (37) 

with 

K2 = 1113+ + %  (33) 

for- p’hysioal states x3 >‘2%s . “So the conformal invariant state m21 = 0, 
or x3 = , again does not belong to the physical state space, but 
its mass2 5 the lower bound for. spin 5‘ particle masses. 
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TO ELECTROMAGNETIC INTERACTIONS'H 
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I .  Introduction 
Here ,  we d i scuss  a new (group—theoretic) approach to  electro— 

magnetic interactions . The method used assumes that the interacting 
particles are each separately described by a De Sitter momentum 
space a s  discussed in the author's f i rs t  lecture a t  this sympOSium and 
in a recent publication.1 Our aim is to  give a reason, from group" 
theoretic arguments,  why the particular force pattern 

—0 no no no 
F = q s + q v x 3  (1) 

should occur in nature. The second term c a n ,  of course ,  be  obtained 
from the first b y  transformations from the rest frame where the first 
term holds . Conventionally, one could take this first term a s  a n  a 
priori fundamental property of the electric field and charge or one can 
construct a n  appropriate Lagrangian (or Hamiltonian) and reobtain the 
experimental form (1) from extremum equations . 

Our procedure for describing the interaction patterns i s  to  
s tudy the composite group representation for  the two particles and how 
it changes a s  the two extended particles move closer together (or 
apart) in the background X—space.  As will be seen below, the particu— 
lar nature of force patterns such  a s  ( l )  is determined (in this picture) 
by "how" the composite representation makes a transition between the 
uncoupled and vector-coupled limits a s  the two extended particles 
come together .  

tPresented a t  the Symposium on De Sitter and Conformal Groups , 
University of Colorado, Summer 1 9 7 0 .  

$Research sponsored in  part by  the National Science Foundation 
Grant N o .  GP-7901 .  
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The two geometries describing the two finite particles are not 
part of the background Minkowski space. We use small symbols with 
prime and double prime to label the components for the two particle 
geometries, i.e. (p’ , x'), (p”, x”) etc. , and a large symbol X to label 
the background space. Large P’ and P” symbols are also used to des- 
cribe the two average (observable) momentum spaces for the two par— 
ticles . The averaging is over the finite extent of the two systems. 
The centers for the finite particles have “positions" in the background 
space, and an x-space interval in the particle's geometry may corres- 
pond to some interval in the background X-space. However, we will 
not need to explicitly give a mapping between intervals in these two 
spaces in order to obtain force patterns . 

II. Two Extreme Limits for the GrougRepresentatiOn 
We first describe two extreme limits for the composite group 

representation for the two particle-geometries. The first is the un— 
coupled limit (independent particle limit). This limit corresponds to 
the case where the two particles have a very large (or infinite) sepa- 
ration in the background X space. The two geometric particles are 
described independently of one another in this limit. We have for the 
prime system the eigenvalue equations. 1) 

II I 

I; \y' =.;a§§_a.§. Y' (2) 

r I _ I I4, ‘1’ - W é  W; ‘1’ (3) 

M4 ‘i" = IE4 ‘1" (4) 

“‘{2 Y, = H 2  Y, (5) 

and for the double—prime system, the equations 

I” 1" . 
I; ‘1‘” =————abé ab ‘1’” (6) 

1’; w = W é  w; w" (7) 

mér ‘Y”=J’é4 Y” (8) 

mi? Y”=]{’2 \r” (9) 
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In keeping with the physical interpretation of the first lecture , we 
refer to Is" , 124 as the charge generators and H2 , 11’s as the spin- 
projection generators . In this uncoupled limit, the charge and spin 
projections for the individual systems are good quantum (labeling) 
numbers . The wavefunction ‘1’(UC) for the composite representation 
in this limit is written as a kronecker product 

me) = vzgp') argue") (10) 
where c. and 8 represent the labeling numbers for a given solution 
and UC refers to this uncoupled limit. 

The second limit corresponds to the case where the two geo- 
metric particles have come together in the background x—space to 
form one system. We represent this limit by the vector-coupled rep- 
resentation with composite generators given by 

= I 
Jab Jab + 12b (11) 

This corresponds to the conditions 

= I = II 
eab _ 6ab 8ab (12) 

Le . the two systems transform together in the same parameter space 
{eab} . We have the folloWing eigenvalue equations for this case 

I 
IQ‘NVC)= =lé—bz-lb r(vc) 

Y b  1” I” g[____ a h a  + a_b_2ab +1lioIabJ‘NVC) (13) 

LYNC) = wa Wa YNC) (14) 

"154" (V0) = IE4 YWC) (15) 

mlz‘i’WC) = 1'19 YWC) (16) 

Here , the condition 

"112 = This + "his (17) 
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corresponds to Spin projection addition, and the condition 

"‘54 = "15,4 + "‘34 (18) 

corresponds to addition of electric charge in this picture. This inter- 
pretation is in keeping with the interpretation in the first lecture of 
15'4 and 1:4 as the charge generators. In this vector—coupled (VC) 
limit, we write the wavefunction TWO) in the form 

_ I II II YWC) — E cw Yoga: ) YB‘P ) (19) 
dB 

where 

(X. E mléal mifg): B E “71:41 mafia (20) 

The sum over In.54 is replaced by an integral for the 4+1 group. Here, 
we make no attempt to evaluate the generalized Clebsch-Gordan coef- 
ficients Ca , but just treat them as constants . In this limit, we can- 
not say that? mg,‘ and "11,2 are good quantum numbers, i.e. the prime 
system does not have a good charge and spin projection. 

III. Interaction Representation 
We assume that as the two particles are approaching one ano- 

ther in the background X-space , the composite representation is 
undergoing a transition from the uncoupled to the vector-coupled limit. 
In this in—between case, neither the uncoupled, or the vector—coupled 
representation is valid. We as sume that the wavefunction for this 
transition region can be written, however, in the form 

um) = Z wagon wgp') rgb”) (21) 
GB 

where the coefficients '1'“ 00 are functions of the separation of the 
two particles in the background X—space. As the two systems come 
completely together in the background space, we require that 

TaB 00 —~ 0‘1L MIR) —’ MIC) (22) B I 

so that the representation reaches the vector-coupled limit. 
To obtain equations for the transition region, we assume that 

the interaction representation corresponds to the path (set of equa- 
tions) which minimizes the structural difference between the uncoupled 
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and vector—coupled limits. This minimum structure-difference 
approach is somewhat analogous to the extremum path approach of 
general relativity, and the Lagrangian approach of classical mechan- 
ics and field theory. The two limiting representations differ from 
each other in several structural aspects . For instance, the labeling 
numbers mg, , and mfg are not good labeling numbers for the vector- 
coupled limit, but In 54 is. One structural difference measure be- 
tween the two limiting representations then, is the value for the 
commutator 

[@9. 15'4] (23) 
since IabIab is diagonal in one limit and 154 is diagonal in the other. 
We assume that the coefficients TaB (X) in (21) are chosen to mini- 
mize the structure—difference measure 

Wm) [fig—“’3. In] Wm)! (24) 
To see the patterns which are contained in these structure-difference 
measures , consider the commutators 

I 
IbIb H_[a__a2 

' 15u3=21[105b1bu]5b1bu] (25) 
where we have used (13) and carried through the indicated commuta- 
tion relations using 

I _ I I 1 
[II ab’ I c=d] ”[ac I1051 6ad The 6be Iad +6bd IacJ (26) 

Consider the commutation measure 

GB 
Mam mm] =| 2 T  as TY:5 <1”) I (27) 

as ”Y6 
yfi 

where 

(In):[15b1bu I5b 1,5,] W “IE; (28) 
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To obtain an x’ and x” space version of these structure-difference 
measures , we take Fourier transformations over the particle momen— 
tum spaces p’ and p’ Since the coefficients T M300 are independent 
of p’ and p”, we obtain the form 

2 1  a8 TY6 Pubs; v 6) (29) 
“3 
Y6 

where 

0-3 
_ I II I I II II _ J'd'r J'd’r exp(ipv xv) exp(ipp xp) (1“)y5 (30) 

To bring some of the terms in (30) into recognizable form, consider . 
the diagonal terms of (30), (y,6) = (05,8) for the scalar representation 
where 

= I I = II 
ab Lab' 135 Lab (31) 

For this case, (28) becomes 

0L8 

an)“; =f; YB [s bu 5510534] Wu ’8 (32’ 

Using (32) in (30) and the interpretation (and definitions for the elec- 
tromagnetic current densities and field tensors) given in the first lec- 

ture, we have 

= I II II I I _ I, I I II II 21[M lb(x )Fbu(x) M lbbc )Fbu(x )] (33) 

where M’ and M” are the respective radii of curvature for the two De 
Sitter momentum space geometries} In (33) ’ represents only that 
part of the current-densities that involves the enerators Lg”, i.e. 

.1’ (X’)=fd'r’ exp (1p x ’)‘F’ L’ “To? (34) 

The physical patterns of (33) are easier to recognize in conventional 
vector form. We define the vector components in the usual way, i.e. 
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l = -  I l = I Ek 1F4k' Bk Pij cyclic 1,2,3 (35) 

E3; = iFZlk' 133" = s cyclic 1,2,3 (35) 

For p, = 4, (35) and (36) in (33) gives 

F 
_f1_= _ 1-51.“! _ II": ,"I/ 21 Z E M l  E M l  E ]  (37) 

For H = 1,2,3 we combine the three terms of (3 3) into a single vector 

[air1 + @2132 + éaFa] 

fi
l

m
l

 

i 
21 

= - 21[M’(1J[E" +jj' x 3') 
_ M” (114%,, +31 X 3/1)} (38) 

Comparison of the form (38) with (1) indicates that (3 8) is the usual 
total electromagnetic force density minus the self-force terms 

115:" , 1g? , :1" x E' , j” x E” (39) 
Likewise, no self terms like 

—. 1"- E’ and 3- E” (40) 
occur in (37). Prom our earlier arguments , we can only require a 
minimum on the measure (27) for p. = 4. This involves the terms (3 7) , 
but not those of (38). 

We recall that the above terms are only the diagonal parts of 
the structure-difference measure (29). The off diagonal terms involve 
states of different charge and spin. This suggests that one should 
perhaps try and relate these terms to charge and spin exchange, be- 
tween the two particles . An exchange interpretation is supported in 
another way by the form (and nonzero value) of the quantities 
Fuhfi: Y ,6) in (30). Inspection of the diagonal terms (37) and (38) 
indicates that the quantities 1’“ measure the deviation away from the 
action-reaction symmetry between the two geometric systems in the 
transition region. One very suggestive interpretation then, involves 
associating the quantities F with exchange impulse densities be- 
tween the two particle geometries . 
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For the non-s calar representations , one will obtain patterns 
identical to  the above , but with the orbital generators replaced by  the 
total generators 15b etc.  The patterns in the structure-difference 
measures then involve intrinsic (spin) terms a s  well  a s  cross terms 
between the orbital and spin parts . One cross term of interest arises 
in the form 

'3" x ('f”)I and '3’” x 6")1 (41) 
where G" ) I  represents the intrinsic part of the current density a s  
discussed in the first lecture. From experiment, one has the (mag- 
netic field)-(magnetic dipole) force form 

E XE (42) 

Oomparis on of (41) and (42) would suggest that one try and interpret 
the intrinsic part of the currents (which arise from spin operators S51) 
in terms of magnetic dipoles . Analysis of the above patterns in terms 
of‘geomet‘ic inversion behavior (e.g. p,’ -* -p’ , M’ .. -M’) would he 
a step towards finding possible physical interpretations for the extra. 
terms. The sanctum-difference measure, involving 1;, and the fourth 
order Casimir invariant, should be minimized simultaneously with (24). 

IV. Concluding Remarks 
The above algebraic approach to electromagnetic interactions 

has three important characteristics. First, the same field distribu- 
tions (e.g. Ff“, bc’ )) which occur in the free (non-interacting) case 
also occur in the force patterns. The interaction then (in this picture) 
does not give rise to the functional fun: (like ) for the electro- 
magnetic field tensors. Rather, the interaction force patterns are 
involved in structure—difference measures which we minimize . By 
minimizing these measures ,  we are attempting to keep the free parti— 
cle structure (field disn'ibutions) intact,  a s  much a s  poss ible ,  while 
approaching the vector-coupled representation. The underlying phy-V 
sical assumption is that the change of relative motion ( i . e  . forces) 
between particles is nature's way of minimizing the difference be- 
tween two mutually incompatible structures; that of the individual 
particles on the one hand,  and that of a n  "in—unison" structure (des— 
cribed here by the vector-coupled limit) on the other. The second 
characteristic i s  that one does not have any  self force terms in the 
structure-difference patterns. Third, the particular force patterns 
which result depend explicitly upon the structure of the free parti- 
c les- ( i .e  . upon which generators are diagonal).  If one took a n  
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alternate set ( e .g .  a linear combination) of the generators and dia- 
gonalized in this se t ,  the interaction—force patterns derived, a s  well 
as  the field distributions , would be different. 
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ELECTRODYNAMICS AS PROPERTIES 
OF DE SITTER MOMENTUM SPACE‘TIF 

B. I. Dalton 
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In this paper, we consider the possibility of describing an 
elementary electromagnetic system such as a photon, or an electron 
as a geometry. By this, we mean to relate particle and field entities 
(e.g. currents and field tensors) to pure geometric quantities such as 
group generators of motion. The aim is lot to read in Maxwell's equa- 
tions relating the currents and field tensors, but to find a geometry 
which gives rise to these equations. 

In this geometric picture , the particle is not viewed as a local 
deviation away from (twist in) the background Minkowski space. 
Rather, the particle is viewed as a geometry (little universe) itself 
which is independent of (pinched off from) the background space. The 
center of the particle's geometry is assumed, however, to occupy 
some position on the background space, but just where, does not 
matter to the particle's structure. 

In order to obtain non—trivial structure , one must use for the 
particle's geomety a meuic significantly different from the Minkowski 
one . In general relativity, deviations of the metric away from the 
Minkowski picture are usually important over large intervals . For 
elementary particles, however, one has large intervals in momentum 

space. Because of this, we study the particle's structure as a Riel-i 

mann geometry in a momentum space p, rather than in an X space . 
We wish to consider a momentum space whose invariant line 

element admits a Lorentz transformation subgroup. One well known 
line elemfint with this property is that of the conformally flat De Sitter 

space ' 

TPresented at the Symposium on De Sitter and Conformal Groups, 
University of Colorado, Summer 1970. 

tResearch sponsored in part by the National Science Foundation 
Grant No. GP-7901. 
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- dqz = 02d c113“l (1) 

P P -1 cuts) <2) 
where M is  a constant which will appear in a mass  spectrum d i s —  
cussed later in this lecture. The ten generators of motion which keep 
(1) invariant are 

= _ '  _ § — _  _a.— 

Luv 1 < p u a p v  pv 8 p ” )  (3) 

P 
_ —1 B \) _ _ — + _ x, 5n iMQ a lo” 2M 2cm (4) 

This model  corresponds to  a free (non-interacting) extended (finite) 
particle. For each Lorentz frame, the particle is spread out over the 
subset of points Uo which are reached from a given point by the four 
non—Lorentz transformations whose generators are defined in (4). 
Later in  this paper, we average the little pL1 over U0 ,  i . e  . over the 
particle's extension in the little p space for  each  Lorentz frame. 
These average quantities are assumed to give a measure for the ob— 
servable momentum components Pu (indicated by large Pu symbols), 
i . e  . 

PM = (pu)U (5) 

The set  of points {PH’ p=1—4] are reached from one another by  the 
Lorentz subgroup of transformations. In this way ,  we obtain for the 
free "finite" particle a 4—momentum space which is spanned by the 
Lorentz group of transformations . 

In  a recent  article , 3  it was  shown that equations identical to  
those of electrodynamics are realized a s  relations between the above 
ten generators (3) and (4). There, ten p-space densities were defined 
by 

— - _ BY = + 1M 1 .— KH ‘1’ {,q Y Q 810” (6) 

1 Km) = - 2 M  ‘1' «Luv ‘1‘ (7) 



DE SITTER MOMENTUM SPACE 433 

where ‘1' is an eigenfunction of the two Casinlir invariant operators 
and a choice of two commuting generators. Y ‘1’ is a De Sitter scalar 
in a given representation. Using (3) and (4) in (6) and (7), one can 
show that the densities Kl-l and Km, satisfy the relations 

Ku=1vuv (8) 

K + K + K = 0  9 90 W 9V 9“ pH vp . pi‘ui‘v ( )  

K = 0  (10) 
pu u 

Corresponding functions in a little x-space for the particle's geomety 
are introduced via a Fourier transformation, i.e. 

Ink) = fd'r exp(1 ppxp) Kuhn) (11) 

Fw‘ec) = Id'r expu ppxp) m) (12) 
where dr 5 Q4dp1, dpgdpa dp4 is the invariant volume element. This 
little x-space for the particle's geometry should not be confused with 
the background Minkowski X-space in which one may have transla— 
tions. Using (11) and (12), equations (8), (9),  and (10) become 

at (x) 
=_H¥_' Iu(X) 3x; (13) 

v 

B F  \) B F  613v 

EL+§§E+3x—9=0. pi‘ui‘v (14) 
p v u 

al 6:) 
.451... = 0 (15) 
ax“ 

respectively under the Fourier transformation. Equations (13) and 
(14) are identical in form to Maxwell's equations of electrodynamics , 
and (15) corresponds to the charge conservation, or continuity equa- 

tion. In order to obtain these equations in terms of the large X back- 
ground space, one must assume some mapping between the large X 
and small x spaces . This topic will be treated by the author in a 
future publication. 
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For non-scalar representations of the De Sitter group, one has 
ten intrinsic spin operators, or matrices S and 35 corresponding 
to the ten orbital generators at v and :L . Lfile orbitgl generators 
appear in the current densitie'él and fieflil tensors above. The orbital 
and spin operators usually appear on a parallel basis a s  parts of a 
"total"  sp in  operator,  i . e .  , 

= + = + luv Luv SW, 15” 4,5“ SSu (16) 

The idea of having intinsic contributions t o  the current densities and 
field tensors then occurs. Following in analogy with (6), (7) , (11) 
and (12), we define intrinsic components by  

I _ . — IL1 (X) - IdT eXp(1 :90 xp) ‘1' Sim Y (17) 

I = i — Fuv(x) 2M Id'r expCl pp x0) ‘1’ SW ‘1! (18) 
If the S _ and S are just? linear representation atriees (or opera- 
tors) in the reguigr Sense (e.g. like in the Dir-ac‘l case, SW: — V q I  
35$ ~2- ysy then one has no inhomogeneous field equations fog the 
intrinsic components in analogy to (13 ) .  However, consider the case 
in which one has a linear representation for the Lorentz subgroup, 
i . e .  the SW satisfy 

= ' - - + 19 
[suwsm] 1‘: 5uksvp taupsv)» 6\fltsup vsux] ( ) 

If we define the four operators 85;; by”  

his 85;; = 2 M  (20) 

then one can show that the ten "total" generators I and 15 satisfy 
the usual commutation rule "W U 

Uab’c] = iEfiacd ' sadIbc ‘ Shel-ad + 6MIac] (21) 

In this case ,  one has inhomogeneous field equations for the intrinsic 
components a l so ,  i . e .  

. I as  is) ifs) =—§L— (22) 
V) 
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where (20) has been used in (17). For this latter case, one has a 
continuity equation for the intrinsic 4-currents, i . e .  

I a]  (x) 
Ask—ax“ = 0  (23) 

s o  that the inirinsic charge is conserved independent of the orbital 
charge. Using (16) , one may form "total" current densities and field 
tensors . However, only i n  the latter case will the total quantities 
f u l l y  obey the inhomogeneous f ield equations . For the intrinsic field 
components , the usual homogeneous field equations (14) d o  not hold,  
i . e .  one has magnetic charge and current densities Ia(mag.) defined 

by I I I 
BF v BF BFv 

Ja(mag.) -—“—3x + 458x + —Eax (24) 

P V L1 

It should be made clear that these magnetic charge—current densities 
above arise only from the spin part and are defined by (24) in analogy 
t o  (13). The inhomogeneous equations (13) are due to the nonlinear 
(With respect  to  t h e  p ) transformations whose generators have the 
particular form given in (4). HoWever, the intrinsic current densities 
in (22) with S given in (20) are similar in form to  the magnetic 
charge densitigs (24). 

Let  us  consider for example a particular 2-dimensiona1 repre— 
sentation of the latter type discussed above.” 

1 _ _ =— - 2 Suv 4 ( t‘crv cvcu) ( 5) 

S : 3 2  

Su 2 M  uv 

51 = _ O i l  64 = 04- I 6 4 3  = _ 1  (26) 

The magnetic charge density 14 (mag.)  defined by (24) is given by  

= _ L _3._ " 14(mag.) 4M 6X1 Id'r Y o i  ‘1’ exp(i puxu) (27) 

in th i s  representation. The intrinsic part of the charge density 
defined in (22) becomes 
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I =_i__3__ - It (x) M 3x1 d Y 01‘1’ exp(1pu x”) (28) 

Thus , the intrinsic part of the charge density is just proportional to 
the magnetic charge density (in this  particular representation), L e .  

1416:) = - i I,(mag.) _ (29) 
Since we have operators (group generators) appearing in the 

charge-current densit ies,  one might a s k  if the nature of charge could 
not be explained in terms of the De Sitter eigenvalue spectrum. The 
operator 154 appears in the total charge density. Consider a repre— 
sentation for which 154 is diagonal along with In , the spin projection 
operator, i . e .  

IE4 ‘1’ = "15,1, Y (30) 

1 1 3 Y = m 1 2 Y  (31) 

The eigenvalue "‘54 can take both positive and negative values . The 
positive and negative nature of charge could possibly be explained in 
this manner. However, before this possibility can be realized, 0 e 
must satisfy another physical condition. One has (for large r) a g 
electric field for charged particles. Since the wavefunction ‘1’ de ned 
above depends upon the labeling numbers m “  , m12 and the two 
Casimir invariants IQ and I4 , the x—space form for the field likewise 
depends (via (7) and (12)) upon these labeling numbers. A particular 
representation (and magnitude of T1154) must be found which will give 
the proper 7;; distribution for large r .  If a solution ‘i‘ (representation) 

can be found which satisfies this  condition, then one i s  left  with the 
problem of finding a physical interpretation for the other solutions 
( e .g .  for different values of "154).  By using the continuity equation, 
one could probably Show that a number of these solutions d o  not have 
stable charge distributions in the Lorentz re st frame, and hence are 
non—phys ical . 

Next, we discuss the average momentum components P which 
we define by H 

P=<pu>=f  d'r‘l’p r (32) 
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The subset U0 over which we integrate is chosen to satisfy the two 
conditions 

U03 {pu_= o, u = 1-4} (33) 

I is flansitive to U0 (34) 

where I represents the non—Lorentz transformations whose generators 
are defined in (4). These average components have the following 
properties 

Under 1: U0 -' U0. (pu) - (pp) (35) 

Under L E Lorentz Subgroup: 

, = I = ppl TW pV . (Pu) T“N (pv) (36) 

In the subset U0, the components p and p4, have the following limits 

pa 5 p13 +p33 +1233 (37) 

0s |p| s M 
4 + 1  case, Real M, (38) 

O S  | p 4 |  S o n  

0 5  IplSco 
3 + 2  case, Imaginary M, (39) 

OS lptl 5 WI 
The cutoff in p for the 4+1 case may be of physical interest with 
regard to possible singularities in conventional electrodynamics as 
the radius goes to zero. 

Because of the definition (32) and the choice of U0, the com- 
ponents P do not change under the non-Lorentz transformations , but 
transfer-m like a Lorentz 4-vector under the Lorentz subgroup. The 
Lorentz rest frame is defined to be the case for which 

(p1 = o, 1 = 1,2,3 
(P4) 7‘0 

5 Rest Mass (40) 
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For any representation for which one can form a scalar (and have 
finite integrals) one can show from dimension analysis that the rest 
energy has the form (for diagonal 154 and 11 2) 

(p4) = [ M I  F ( m 1 g r  "7'54: I2: I4) (41) 

where the function F depends upon the particular representation. The 
radius of curvative M appears as an overall constant in the mass 
spectrum (41 ) .  

In summary, one has in this picture one means by which to 

introduce non-compact Lie groups in describing elementary particles . 
For the De Sitter geometry, one has a realization of Maxwell type 
equations for each representation (in both the 3+2 and 4+1 cases) of 
the De Sitter group for which one can form a scalar. By averaging 

over the internal momentum subspace U0, one can obtain final momen- 

tum components whose space is spanned by the Lorentz group. For 
this free (non-interacting) finite particle model, the mass spectrum 
(41) results from the integration over the finite extent of the particles 
and depends upon the labeling numbers for the representation con— 
sidered. The composition and interaction of two geometric particles 

with each separately described as above is dis cussed in the author's 
second lecture presented at this symposium. 
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