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FOREWORD

This Volume contains the lectures presented at a week-long
Conference on De Sitter and Conformal Groups and Their Applications
held at the University of Colorado, June 29-July 3, 1970. The lec-
tures were both on the mathematical theory of the representations of
a general class of non-compact groups, and also on their various re-
cent uses in many areas of theoretical physics. Correspondingly the
Volume is divided in two parts, and each into various Sections. The
interest in the representations of many non-compact groups is rapidly
increasing among physicists who, unlike mathematicians, need the
actual construction of these representations. Perhaps the most impor-
tant non-compact groups in physics, the Lorentz and Poincaré groups,
were the subject matter of a similar Conference here in Boulder about
six years ago.T Since then muchhas been learned about the represen-
tations of groups like O(3,2), 0(4,1), 0(4,2),... and their inhomo~-
geneous and euclidian counterparts. At the same time, the applica-
tions of new group theoretical techniques--which go much beyond the
customary use compact symmetry groups~-have brought new results
and new insights to a number of physical problems. We believe there-
fore that it is timely and useful to bring some of the existing litera-
ture, the new results and the unsolved problems in the area of De Sit-
ter and Conformal Groups to the attention of physicists and mathema-
ticians. This is what the present volume intends to do.

I wish to thank the lecturers and the participants for their
effort for a lively Conference, and to Mrs. Marion Higa for her invalu-
able contributions in the organization of the Conference and in the
editing of this Volume.

Boulder, December 1970, A. O. Barut

t+Lectures in Theoretical Physics, Vol. VIIA. The Lorentz Group
(Univ. of Colorado Press, 1965).
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INTRODUCTION TO DE SITTER AND CONFORMAL GROUPS
AND THEIR PHYSICAL APPLICATIONSY

A, O. Barut

As a prelude to the contributions in these Proceedings we re-
view in some detail the general properties of De Sitter and Conformal
Groups and the areas of their physical applications.

Contents
I. The Role of De Sitter and Conformal Groups in Particle Physics
II. Mathematical Results
1. Group Properties
2. Realizations and Representations (Linear and Nonlinear)
3. The Lie Algebra
3.1 A New Basis
3.2 Group Contraction
3.3 Two Other Parametrizations of the Conformal Group
4, Homomorphisms Between SO{p,q) and SU{m,n)
5. Representation Theory
5.1 FPinite Dimensional Representations
5.2 Explicit Form of the 4-dimensional Representations of
"O(5)" and "O(6)"-classes In Terms of Dirac Matrices
5.3 Labeling Operators, Choice of Bases
5.4 Representations in Terms of Boson Creation-Annihila-
tion Operators
5.5 On Infinite-dimensional Representations
ITII. Physical Applications
1. Conformally Invariant Theories and Broken Conformal
Symmetry
2. Dynamical Groups
Theories in Curved Spaces
4, Other Applications

w

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.



4 A, O, BARUT

I. The Role of De Sitter and Conformal Groups in Particle Physics

Although the largest exact symmetry group used in particle
physics is still the full inhomogeneous Lorentz group, extended with
discrete symmetries (e.g. charge conjugation, baryon and lepton num-~
bers), larger simple groups containing the Lorentz group play more and
more an important role. Of course, the symmetry group of the general
relativity theory is much larger, but there is not yet a theory which
combines the gravitational and the strong, electromagnetic and weak
interactions of fundamental particles. How do these large groups
enter into the theory, and in what sense are we using them? We will
answer these questions for the De Sitter and the conformal groups.

There are three major areas of physical applications:

(1) Theories Invariant Under Dilatations and Special Confor-
mal Transformations in flat space, in addition to inhomogeneous Lo-
rentz transformations.

The dilatations are associated with the change of scale of
measurements, and the special conformal transformations may be as-
sociated, roughly speaking, with the change of scale from point to
point. With this interpretation the independence of the physical laws
from the scales used should lead to an exact 15-parameter conformal
invariance of the theories.t Except for free electromagnetic fields
and other wave equations for mass zero particles of arbitrary spin
such invariant theories, however, have not been formulated. Instead
the usual Lorentz~-invariant Lagrangians of interacting massive scalar,
spinor and tensor fields with mass terms are obviously not exactly in-
variant under conformal group; they are only approximately invariant
under certain conditions (e.g. at high energies). One speaks then of
a "broken scale invariance.”" This does not mean that we cannot for-
mulate exact conformally invariant theories, e.g. field theories. We
shall come back to this question in Section III.1.

(2) Geometrization of Dynamics of Interacting Systems.

The De Sitter and conformal groups are also used as dynami-
cal groups, generalizing the concept of symmetry. If the standard
symmetry group gives us the states of a system of a given energy
(multiplets), the dynamical group gives all the states of the system
(infinite multiplets). It may also be denoted more precisely as the
group of the quantum numbers, or group of all rest-frame states. The
concept is particularly useful in the relativistic theory of composite
systems. In these applications, these groups are interpreted as
O(4,1) and O(4,2), respectively: they contain the physical homoge-
neous Lorentz group O(3,1) as subgroup, but not the translations.

In physics, we are not using abstract Lie groups, but groups whose

WkThis is by no means the only interpretation. 1)
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generators have definite physical interpretation. Thus, the same
group may occur in entirely distinct situations and distinct interpre-
tations. Details about O(4,1) and O(4,2) dynamical groups are given
in Section III.2.

(3) Theories in Curved-Spaces in the Large (and in the Small)

According to Mach's principle, local inertial frames and local
isotropy of space (i.e. rotational invariance) are due to the distribu-
tion of distant galaxies. If the shape of the distant space is impor-
tant for phenomena in the small, we should from the beginning start
with a curved or closed universe, rather than the flat space-time. Of
course, we have to give up the usual energy-momentum vector and the
conservation of the total energy-momentum; instead of the transla-
tions, we have new displacement operators. It has been conjectured
that although the deviations of the space fromflatness is very small,
it is in principle essential that a consistent theory be formulated in
the curved space.z) Along the same line, the introduction of gravita-
tion, so it is hoped, may supply the necessary cut-off factors for a
finite quantum field theory.3) At any rate, gquantum field theory in a
curved space-time is one of the important, if not immediate, goals of
theoretical physics.4) (Sec. III.3).

All the above three points of view being valid we can imagine
a super-theory in which the conformal group occurs at least three
times in three different interpretations: scale-changes, curved space
and internal dynamics !

‘We begin with a review of the necessary mathematics.

IT. Mathematical Results

1. Croup Properties

We shall be interested in the Lie algebrasand in non-compact
Lie groups O(3,2), 0(4,1) and O(4,2) [0O(3,3) and O(5,1)], also in
E(3,2), E(4,1) and E(4,2). The notation here is that O(p,q) is the full
real non-compact orthogonal group with the invariant form x,® + x° +
arie Halwe xi’jﬂ—. vem x:f;_,_ , and E(p,q) is the corresponding pseudo-
euclidian group, i.e. O?p,q) plus translations,

We assume a knowledge of the Lorentz and Poincaré groups,
(0@3,1) and E(3,1)), and their representations .5)

The group O(p,q) has four pieces, as in the case of the Lorentz
group. The notation SO, (4,2) will be used for the component continu-
ously connected to identity element (i.e. det = +1).

The De Sitter and conformal groups belong to the complex sim-
ple groups B; and D; in Cartan's classification (Table I). Different
non-compact groups may have the same complexification. Conversely,
for every simple complex group we get a unigue compact real group,
and a number of distinct real non-compact groups.
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Table I. Complex Simple Groups and Their Real Forms

Real No. of Some Real Non-
Complex Cartan Group Compact Parameters Compact Forms
Form r
B, 0O(5) 10 0f4,1), 0(3,2)
Dy 0(6) 15 o(,1), 04,2), 0(3,3)
C, Sp(4) 10 Sp(2,2), Sps
A, SU(4) 15 Su(,l), su(z,2),
SL(4,R), Q,

The isomorphisms between the groups listed in Table I are shown in
Table II.

Table II. Isomorphisms Between Non-Compact Groups

Complex Isomorphism Real Isomorphisms

0(5) ~ USp(4)

Ds ~ B, 0(4,2)~8sUu(2,2)
0(3,3)~ SL(4,R)
o(6) ~SU(@)
o(5,1)~ Q,

Ds ~SU@3,1)

Two groups that have the same Lie algebra are related to each
other by G’ = G/D where D is a discrete group; i.e. the groups G’
and G are locally isomorphic, but not globally. Among all such
groups having the same Lie algebra there is only one which is simply
connected; it is the universal covering group. In this sense SU(4) is
the covering group of SO(6); SU(2,2) is one of the covering groups of
SO(4,2), but not the universal covering group. (The explicit corres-
pondence is shown in Sec. IV.)




DE SITTER AND CONFORMAL GROUPS 7

2. Realizations and Representations (Linear and Nonlinear)

Most groups used in physics may be defined as the groups of
transformations, linear or nonlinear, acting on a space with a rela-
tively low dimension. Thus, the groups O(p,q) are defined as the real
linear transformation groups on the p+q = n-dimensional real space;
the groups U(p,q) as the complex linear transformation groups on the
p+q = n-dimensional complex space. The conformal group has there-
fore a 6-dimensional real linear representation as O(4,2), and a four-
dimensional linear representation, by 4 x 4-complex matrices, as
SU(2,2). There is, however, another possibility: We can realize the
conformal group on the 4-dimensional real Minkowski space-time by
real, but nonlinear, transformations in such a way that the inhomoge-
neous Lorentz subgroup is again linearly represented as before. That
is besides the usual transformations

x"=A Yx +a (2.1)

we have the new ones

and

X =-cCx°
w ! = 5 )

L 2c\)x\) + x>

(2.2)

(2 =x2 - %°)

altogether a group with 15 parameters. Egs. (2.1)-(2.2) represent
the most general group which transforms ds® = 0 into ds’® = 0 in the
Minkowski space (i.e. light cone into light cone).

In quantum theory we need the representations of the group
(defined, say, on the Minkowski space) on the linear space of quan-
tum states. For symmeiry groups this means the linear unitar y repre-—
sentations in the Hilbert space (because of Wigner's theorem ) For
groups which are not symmetry groups other realizations may also be
important.

3. The Lie Algebra

Quite generally, the pseudo-orthogonal groups Of{p,a), p+q=n,
are generated by the r =11 n-1) generators which can be written as an
antisymmetric tensor Igp = - Lpg,a,b=1,2,...,n. The group
element elPablab generated by Lap is a rotation (or a hyperbolic
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rotation) by an angle 8ap around an axis perpendicular to the a-b-
plane. For this choice of the generators {e.g. choice of basis of the
Lie algebra), the group is parametrized by r angles B5p-

The commutation relations of the generators (i.e. Lie products)
are given by

(Lobr Load = 9% lpa * Ipalac ~ Ibclad ~ Jaglbelr @1
where ggp = (H++. ..+ ~==—- ).
St N,

p-times qg-times
The quadratic, third and fourth, etc.-order (invariant) Casimir
operators of the Lie algebra are (for n = 6, for example)

. - _ _ ac_db
Q) = ~2TrGLG) = ~(g,,.9 4 = 9uqIp) L L
_ ab_cd_ef
Q(3) B 6:abcdefL s
_ bc da
Q(4) = LabL Lch (3.2)

Note that lowering and rising of the indices in Lab is carried out with
g.1-
ab

3.1 A New Basis
Quite generally for O(p,q) groups, we can define

T T
Ky=Ly g+l 1 AB=1.2,..02
D = Ln_1’n (3.3)

Then the commutation relations (3.1) become

[PA, Pp] =[KA, KB] =0

(L 1=

AB’ PA P

19y, Ppi [Lpps Ky = -igy, K0 ILyp, D] =0

(equation continued)
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(p.,K1=ilg__-g )L

A’ B nn ~ 9n-1,n-1’ Iap ~ 219350

[D, PA] =-i{g L )

nn A,n-1 n-l,n-lLA,n

I (3.4)

[D, KA] -i(g_ L 1~ 9

nn A,n- n—l,n-lLA,n
which show that Pp and KA are (n-2)-vectors whose components com-
mute, and D is a scalar.

As a special case, n =6, p—4 g=2 (l.e. gpn = ~Un-1,n 1)
we get in this basis the two Poincaré subalgebras of the conformal
group: {Lu\)' } and {L, _, g Ku} with the commutation relations:

(P, P =K. K]=

[Lu\), Pu] = —iguuPV, [Lw, Ku]=—i guu K\); [LW, D] =0
[Pu’ k) = Zi(Luv - ng)

[D, Pu] =+ Pu,

[D, Ku] = - KLl (3.5)

In the nonlinear realization (2.2), D is the generator of dilatations
and are the generators of special conformal transformations. To
see these commutation relations directly, we may use the group law
in the -gpace and the corresponding composition of representations:
For example, consider XM =x'xy+ay, xu” =1"xy +ay" =A% +
a, +ay” =ax + a,, and correspondingly the representations

G = 1(1D+P a“)' Then from the group property G =G"G’' and the
compc>51tion law of the parameters » =1"3)' a, = Aa/ +a ", we
obtain the commutation relations [D, Pu] .\.P“ . The other commuta~-
tion relations in (3.5) can be obtained in a similar way.

3.2 Group Contraction

We show here a relation between the simple O(p,q)-groups
and the corresponding pseudo-euclidian E(p,q-1) or E(p-1,q) groups.
Let us denote, referring to the basis (3.1), the generators LA n by
cPA, and the remaining generators by Laps A,B=1,2...n-1. The
commutation relations can be written as
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L

[Py PRl =l AB

L =ig (3.6)

nB AA PB

Ql~ Q“’l'_'

(Pyr Lyl = -9,

Now we let ¢ = «, In this limit 1. B and Pp are generators of the
pseudo-euclidian group in (n-l)—%mensions determined by Iap’ i'e"LAB
generate the homogeneous transformations and Py, (which is'a (n-1)-
vector operator) generate the translations. Depending on the sign of
9pn We get E(p,a-1) or E(p~1,q). These groups are also written as
T,-1 X)O(p,q-1), a semi-direct product of translations with the ortho-
gonal group, Tp-1 being an invariant subgroup.

Thus , the contraction of both O(3,2) and O(4,1) can give the
inhomogeneous Lorentz group.

The quantity PAPA is an invariant of the contracted inhomoge-
neous group, but is no longer an invariant in the original group.

3.3 Two Other Parametrizations of the Conformal Group

(@) The U(2,2)-parametrization: We consider the complex
four~dimensional space with the invariant form

|2y |7+ [22 |7~ | 25 P - |24 1% = invariant, (3.7)

and parametrize the pseudo unitary infinitesimal transformations as
follows
’ Vv A
zZ =z +@ +i z 3.8
NRETEICAES RS (3.8)

where ¢, v and BHV are real parameters. The group elements can then
be written as

i(-2a™VM  +318%Vk B
G=e KV e o (3.9)
with
M =-M , K =K . (3.10)
oy va' By v

9)

The commutation relations of these generators are then
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. = - +g, M _-g M -
[MIJ«V MUP] l(gUG MVD g\)p Mo gVU Me gU—D MVG)
= = + K + K +
[ Kuv' Ko p] l(guc K\)p gvp uo o ue gup K\)c)
M , K 1= K - K - K + K
L (PAY op (gHU vp g\)p ) gVU up g}-lp \)0)(3 11)

The U(2) ® U(2) subgroup of U(2,2) is generated by (My2; K3, Kz,
Koo) ® (May: Kea s Kag s Kgy). For SU(2,2) there will a relation be-
tween the four-diagonal elements KIJIJ’ u=0,1,2,3; only three of
them will be independent.

(b) Cartan Parametrization: Because the set of generators
i}l commute among themselves, they form the Cartan~subalgebra {H;}.
ext we define the 12 generalized lowering and raising operators
E =M +iK
3 #( - uv)
E =%M -iK
s 3( Wt uv)
pu#v: a=1,2,...6. (3.12)

In terms of these new generators, the commutation relations are in-
deed in the canonical form!0

[E JEB]_NG’B Eq'+B’ a;‘_B
[Eq. E_q] =r)-H . (3.13)

Let

Y = (3.14)
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where YAA are again linear combinations of KHM'S . Then we have
simply

(Yapr Yop! = 98¢ Yap ~ 9ap Yae (3.15)
and the Casimir operator becomes
BA
Q(2)=YABY (3.16)

4. Homomorphism Between SO(4,2) and SU(2,2)

In this section we derive the relation between the six dimen-
sional real coordinates m, ...ns and the four-dimensional complex
coordinates z, ...z, . The discussion parallels that of the well known
homomorphisms between SL(2,C) and 8SO(3,1) [or SO(3) and SU(Z)].H)

Define the anti-symmetric matrix

0 myting natin, mnstine
0 Ns ~INg  MNa=in,
A= (4.1)
0 My ~ing
0

and the metric tensor
G = 922 ! (4.2)

Then
TrAGA G) = 2L (93 955905 Gea) 12 57 + (011 Gas+955944) (2 +1°)
+ (91, 942%955933) (e +ne) ] (4.3)
This expression is invariant under the transformations
A -A’ =UAU" (4.4)

1f UTGU = @, that is, if U € SU(,q), p+q = 6, then
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r@a’ca’ Te) = r(aca’q) (4.5)

Lemma: If A is antisymmetric and of the form given by Eq. (4.1),
then A’ = UAUT, U € SU(p,q) is also antisymmetric and of the form
(4.1). This follows from the property:

(GAG)CD; A,B,...=1,2...4 ,
(4.6)

where the bar indicates the complex conjugation. (Example: Ay .=
GasJsaPas). Thus, the matrix A’ has the same form (4.1) in terms of
six new coordinates n,’,...ns" . The transformation A’ = UAUT in-
duces therefore a transformation in the n-space with the invariant
Tr(AGATG). It follows from Eq. (4.3) that this invariant is that of
(pseudo)-orthogonal transformations in the 6-dimensional space only
in two cases:

(@) All gpp have the same sign: then we get the homomor-
phism SU({4) - O(6).

(b) Two of the gpp are positive, and the other two negative-
then we get the homomorphism SU(2,2) ~» O(4,2).

In both cases +U correspond to the same O(p,q) transformation,

If we clefine the antisymmetric tensors Zp (generalizing the
Pauli matrices),? we can write

A . /A A B

A _=-A =%e

AB BA ABCD

A=n ZA’ A M ZA ;oon O g " (4.7)
Hence
A _ B += A B
Z, =N U U =0 n 5, (4.8)
or
o”‘B =imwz, v P (4.9)

The inverse formula is left to the student as an exercise. To my
knowledge these formulas are nowhere in the literature.

¥ 0 1 0 0 01 0 0
/1 0 0 0 [4 0 0 0
Ze=to o o olft 2= o o o Ju St
00 0 0 00 0 0
2 == 1 -
£2=1, T(Z,)=0
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5. Representation Theory

5.1 Finite Dimensional Representations

The finite dimensional irreducible representations of the simple
group B, ~ C, are also the unitary irreducible representations of the
compact group O(5). These same representations are non-unitary for
O(4,1) and O(3,2). These representations are well known and can be
characterized, as usual, by the weight diagrams (or Gel'fand-Zeitlin
patterns). 10),12),13) The dimensionality of these low-lying finite
dimensional irreducible representations and their reduction with res-
pect to the O(4)-subgroup is shown in the following Table:

Dimension of Representations

0(5) 1 4 5 lAO 14 16
/N /N /I\ (5.1)
O(4)-reduction|1 2 2 41 343 .

There are general formulas for the dimensionality of the finite dimen-
sional representations of classical groups in terms of top weight and
roots (Weyl's character and dimension formulas).

Similarly the finite-dimensional representations of D3 ~ A, are
the unitary representations of O(6). The irreducible ones and their
reduction with respect to the O(5)-subgroup is as follows:

Dimension of Imeducible Representations

O(6) 1 4 6 10 15 20 36
/\1 /\ \ /\
O(5)-Reduction 1 4 5 105 16 4 20 16
(5.2)

5.2 Explicit Form of the 4-dimensional Representations of
"O(5)" and "O(6)" Classes inTerms of Dirac Matrices
This very useful representation is given in the Lie algebra
the following matrices

=] =% . =i =
Lab_{'ab glyayb, a<b; a,b=1,2,3,4,5=0,6

Ya = (Y]_ tr Yz : Yar ~Ys5 s YOI _iI)

o : +
Y =y ytyEy®, yo® =1, yP =y82=-1, yOT =0

vit=yl, yet=oy® (5.3)
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1
The matrices L3, satisfy the commutation relations &) (3.1)
with 9ap = (++++-=). This particular representation is pseudo-unitary
with respect to the metric v©:

(5.4)

There is another inequivalent irreducible 4-dimensional representation
of the Az —groups, namely

= *

LaLbE _}Lab ) (5.5)

If we restrict in the above representation the indices to a,b =
1,2,3,4,5 = 0, we get the four-dimensional representations of B, ~C,
~-groups, which are also irreducible. We shall see later also infinite
dimensional representations of O(4,2) which when restricted to its
various subgroup remain irreducible.

In the above representation, the homogeneous Lorentz sub-~
group SO(3,1) is generated by

. i
Luv —El(Yqu = gw) 5 (5.6)
and with respect to this Lorentz group the remaining nine generators
can be grouped into a vector G yu) , an axial vector (-—12- Ys YH)' and
a pseudoscalar (-4 Ys).

The four—dizmensional representation can also be characterized
by the representation relation

g =2 .7

{Yu v} v (5.7)
. 15)

or, by the relation

Laa = 2455 Lyp (5.8)

5.3 Labeling Operators. Choice of Bases
In the following Table we show the enumeration of the com-
plete set of commuting operators (CSCO):
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Group No. of No. of No. of Additional Operators
Parameters Casimir Cartan Needed to Label the
Operators Generators States Uniquely

B, ~ C,

"ol 10 2 2 2
A ~ D
("0(63)") 15 3 3 3

For irreducible representations, the choice of the 4 operators for B, ,
or the 6-operators for A, (beside the Casimir operators) depend on the
physical applications (i.e. which quantum numbers are diagonalized
and interpreted physically). That the additional operators can always
be found is seen by the following general solution for the group O(2n).
Consider the chain of subgroups:

O(2n) © 0(2n-1) 2 0(2n-2) © -—==—-- (5.9)
®) ®B_) (@)

In O(2n) we need besides the n Casimir operators, n° -n other
operators. If we diagonalize O(2n-1)-subgroups, this one needs pre-
cisely (n® -n) total labeling operators. We choose the (n-1)-Casimir
operators of O(2n-1), the remaining (n° -2n+1) operators are just the
total labeling operators of O(2n-2), and so on down the chain.

A similar construction holds for the chain

U 2 Ul-1) 2 UMm-2) D ——-

in the case of unitary groups. 16) Thus, for O(4,2)-representations
we need 9 labels in general, but for special representations fewer
labels are sufficient.

5.4 Representations in Terms of Boson Creation-Annihilation
Operators. Tensor Methods.
Consider n pairs of boson creation operators: ai and ai*,

* =
(a a1 =8,.

We form the bilinear combinations
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=a,a s J_)n ntl

F.. . a, in number
1) 1 ] 2
2 " mn
Gij a, aj+%6 s n
R nfptl) 4
i =a, aj i 2 (5.10)

These 2n° +n operators span the Lie algebra of Cp: the unitary sim-
plectic group in 2n-dimension which leaves the forms

n
§iyi and y_

~|8

~Xin yi) (5.11)

L

.

invariant.
The linear combinations of Gyy give the usual basis of the Lie
algebra of the unitary groups (Ap-] W1th (n®~1) parameters). Note that

> aIai commutes with all the Gij' A subset of the G represents

i=1
the Lie algebra of the orthogonal groups (B,.j with E(-r;—-—ll

parameters,

or Dp also with r-l%;ll parameters), namelyzthe terms aIa:i ;i<j, in
2

the combinations aI (Lab). aj, where (L are the matrix elements
of the n-~dimensional représentation of I?Ee generator Lab It is inter-
esting that the Lie algebras non-compact groups SO(p,q) and SU(p,q)
can also be represented by the bilinear combinations (5.10), even for
unitary representations. We first represent the maximal-compact sub-
algebras SO(p) ® SO(q), or SU(p) x SU(a) x U(1), by the G; j-terms of
(5.10) as outlined above. The generators of these subgroups act on
the states

g az C!n
al &l a;“1 oy (5.12)

where the powers o4 are real or complex numbers. The remaining so-
called noncompact generators are formed by Fi] 2;84 and H = ai1 a}‘
Because these are made out of two-annihilation or two creation opera-
tors, they change the value of the Casimir operator of the compact~
subgroup. An example of this method for conformal group can be found
in my contribution later in these Proceedings. The method is in fact
equivalent to the tensor method of building the higher-dimensional
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representations out of fundamental representation. The new feature

for non-compact groups is the use of formal complex powers in Eq.
(5.12).17)-20

5.5 Infinite-dimensional Representations

The classification of the infinite-dimensional representations
for the De Sitter and conformal groups is complete only for SO(4,1).
For SO(3,2) and SO(4,2) there is not yet a complete list. This is due
to the multiplicity theorem, that for SO(n,1) and SU(n, 1) every uni-
tary irreducible representation contains each representation of the )
maximal compact subgroup, SO(n) or SU(n), respectively, only once.
Note that non-unitary representations need not be completely redu-
cible. There are a class of non-unitary representations which are
reducible but indecomposable .22
0f(4,1)

The continuous unitary representations of SO(4,1) in infini-
tesimal form were studied by Thomas%:” by Newton,z‘lj and most rig-
orously and completely by Dixmier?5) and others.26) These represen-
tations are constructed on a basis of the compact subgroup SO (4)
which is isomorphic to SO(3) x SO(3) which makes the construction
particularly simple. [In fact, all inequivalent continuous unitary
representations of SO(n, 1) and SU(n,1) have been given.27 ] One can
also relate, by analytic continuation, the representations of SO(4,1)
to those of SO{S),Z8 +29) ags is known from the case of 0(2,1)-0(3)
analytic continuation. 17),30) In physical applications, we often
need the representations in global form, i.e. the matrix elements of
finite group elements. For SO(4,1) these global forms have been giv-
en first by ’I‘akahalshi?’”*32 using the theory of induced representa-
tions .33 The explicit form of a special clags of discrete representa-
tions of SO(4,1) in terms of boson-creation and annihilation operators
can be found in my contribution in this volume, as a special case of
the representations of SO(4,2).

S0(3,2)

Special infinite-dimensional representations have been known
for some time,34) ,35),16) but there is no complete list. We refer
further to contributions in this volume by A. BShm and L. Jaffe.
50(4,2)

The literature on the representations of SO(4,2) is exten-
sive,18) +37)-46) but again there is no complete list of all unitary
irreducible representations, unfortunately. The simplest representa-~
tions are the so-called most degenerate representations; in the con-
formal group interpretation these correspond to the states of mass-
zero spin j particles, in the dynamical group interepretation to the
rest-frame states of composite particles with lowest spin jg.
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These representations have also very remarkable reduction properties
with respect to the subgroup SO(4,1) and SO(3,2) ,45} and also with
respect to the Poincaré and Weyl subgroups A (The Weyl group
consists of the Poincaré group plus dilatations (11 parameters); it is
also called the causality group, because according to a theorem of
Zeeman,48) it is the largest group of one-to-one mappings of the Min-
kowski space into itself that preserves the causal order of pairs of
vectors.)

The infinitesimal method is used most often in the construc-
tion of the representations. Note that it is sufficient to determine
the representations of the generators L,,, Log, Lasa s Lys and Iee;
the others are determined by the commutation relations.

Finally, we should like also to mention some results on the

most-degenerate re};resentations of groups of the type SO(p,q) and
SU(p,q).27),49)-53

III. Physical Applications

1. Conformally Invariant Theories and Broken Conformal
Symmetry

Historial references to early physical interpretations and
applications of the conformal group can be found in the review of
Kastrup. 1) we adopt the interpreiation that the conformal invariance
expresses the change of unit from one frame to another which moreover
depends on the space-time point. The physical laws are expected to
be invariant under these transformations. The orthedox point of view,
however, has been to look at the present Lorentz-invariance theories
and see whether they are also conformally invariant. The radical
point of view would be to rewrite the theory in such a way that it is
conformally invariant. Of course, the concept of mass must also be
modified.

In order to compare the physical phenomena at different space-
time points a correspondence of units must be established. Thus the
physical laws must be invariant under coordinate-dependent transfor-
mations of units.54) Although there should be not much doubt about
this point, the problem is to obtain experimentally verifiable and
meaningful new consequences of this larger invariance principle.
This step apparently has not vet been achieved. Mathematically,
conformal invariant wave equations can be written in some cases.
Diracl) has written such equations for the electromagnetic field (in-
cluding the current density terms), and for spin-* fields. It is inter-
esting that he obtains an additional degeneracy of solutions which
has not yet been interpreted physically.
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Some properties of the conformal-invariant scattering ampli-
tudes have been given by Castelll) and Bali et al.ssc)

In the orthodox interpretation of conformal invariance, on the
other hand, we have first the (trivial) case of the invariance of free
wave equations for massless particles of arbitrary spin.56) The prob-
lem of conformal invariance for interacting fields is much more com-
plicated,57) /58) notably due to renormalization questions .59)-60) In
this usual interpretation, the hope is that conformal invariance is
valid at very high energies when the effect of mass terms are small.el)
The so-called "scaling" phenomenon in the inelastic electron-proton
scatteringﬁz) (the fact that the form factors are functions of a dimen-
sionless quantity) has been interpreted in this way.”

2. Dynamical Groups

No definite connection is known at the present time between
the use of De Sitter and conformal groups as dynamical groups or
spectrum generating groups and their use as "space-time-scale”
groups. A deeper connection might perhaps exist, because the dyna-
mical groups have been interpreted as the "symmetry" group of the
"gsystem + interaction"GS) (for example, a H-atom plus the external
electromagnetic field). Perhaps it is not the individual particles or
systems but only systems together with the measuring devices that
have conformally invariant Hamiltonians. At the moment, however,
dynamical groups together with a cwrent operator describe the proper-
ties of non-relativistic or relativistic composite quantum systems,
such as mass spectrum, form factors, magnetic moments. The con-
formal group in the O(4,2)-interpretation has been found to describe
the Dirac particle, the H-atom and a model for proton interpretable in
terms of magnetic charges (see my contribution in these Proceedings
and the references given there). The relation of the dynamical groups
to other models of strong interaction such as the current algebra frame-
work can be found in a recent review, 64

3. Theories in Curved Spaces

The invariance requirements give us important information
about the possible states of elementary particles and their possible
interactions, although these latter are not uniquely determined by
these requirements. The origin of these invariance considerations
goes back to the isotropy and homogeneity of the space and the time,
such as the rotational invariance or more generally the Lorentz invari-
ance. These, according to Mach's principle, are determined by the
mass distribution of matter in the universe. [According to the same
principle, the inertial mass of a body, or the inertial forces in an ac-
celerated frame, are determined by the distant matter of the universe.]
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Thus, we are led to consider the shape of the universe in our consid-
erations. The space-time is not flat according to Einstein's equa-
tions, and the simplest curved universes are the uniform universes
both in space and time which are the Riemann spaces with constant
curvature. These types of 4-dimensional spaces can be imbedded
into a five-dimensional space, either of positive curvature (SO(4,1)),
or of negative curvature (SO(3,2)) [i.e. spaces on which SO(4,1) and
SO(3,2) act transitively]. Little is known about the theory of parti-
cles formulated in curved spaces, except the form of the free field
ezuatiens , and questions like localizability and position :.ﬁi,;:;erator‘.1 ’
44),65) Both De Sitter groups can be contracted to the Poincaré
group, so also the field equations to the usual Poincaré invariant
equations, as the radius of the universe tends to infinity.

4, QOther Applications

There are undoubtedly other applications of these larger non-
compact groups. I mention one which is not really an invariance ar-
gument. Consider a scattering process involving one or more mass-~
less particles. The Hilbert space of one-~particle states of the mass-
less particle is also the carrier space of the conformal group, in other
words we can perform conformal transformations (scale changes) on
massless particles without enlarging the Hilbert space, or introducing
new quantum numbers. The S-matrix for the process is an isotropic
tensor operator under the Poincaré group. If we make the further re-
quirementﬁs) that the S-matrix be an isotropic tensor operator for con-
formal transformations (scale changes) on the massless particles only
--because these transformations act on the same Hilbert space--we
are led to specific dependence of the S-matrix on the momenta of
massless particles. In particular, the vanishing of the amplitude for
mass zero, spin zero particles, as p, = 0 follows from this require-
ment. (This result is equivalent to "pion gauge condition," or the
so-called Adler's self consistency condition.67))

There are also some interesting applications of the inhomoge-
neous De Sitter groups, 10(4,1). This group arises as additional
symmetry group of Lorentz-covariant wave equations .68) Also, if the
mass term in the wave equations is interpreted as the fifth coordinate:
psp° = m® , the Lorentz invariant wave equations are then formally in-
variant under 10(4,1).69)
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ONE-PARAMETER SUBGROUPS OF THE CONFORMAL GROUP
OF SPACETIME AND IN GENERAL OF UNITARY GROUPS
WITH AN INDEFINITE METRIC?

Johan G. Belinfante
Mathematics Department and Physics Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

My talk today will be about some preliminary work on the sub-
group structure of the conformal group SU(2,2) and related groups.
This work was carried out in collaboration with P. Winternitz, who
has in his own talk already explained that part of the motivation for
this type of study comes from certain applications of the theory of
harmonic analysis on noncompact groups. 1) In this, as well as in
many other applications of group theory to physics, of course it is
useful to know something about the lattice of subgroups of the groups
of interest. Here we shall only study the conjugacy classes of one-
parameter subgroups of the groups Ul(p,q) and SU(p,q) as the first
step toward finding all the connected analytic subgroups.

The approach considered here may be described as an applica-
tion of geometric algebra.z) Qur study leads to a complete classifi-
cation of hermitean operators with respect to an indefinite metric,
which may well have some interesting applications to quantum field
theory with an indefinite metric. However we must point out that
many of the theorems obtained apply only to the case of finite-dimen-
sional vector spaces, whereas the Fock spaces considered in quantum
field theory are usually infinite dimensional.

In the special case of the conformal group, we have the local
isomorphism SU(2,2)~ SO(4,2; R). Thus another approach to this case
would be through a study of orthogonal groups with indefinite metric.
Most of our methods apply equally well to orthogonal groups as to
unitary groups. The conjugacy classes of subgroups of orthogonal
groups with indefinite metric have been studied previously for special
cases, the best known case being the study of the Lorentz group by
E. P. Wigner in 1939, His method can be generalized to the case of

+Presented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
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SO{n,1; R), but since it depends on a certain triangle inequality, it
does not generalize to groups with index greater than one .3) The
simplest case of an index two group, SO{2,2: R), was studied in a
series of papers by H. Zassenhaus. Finally we mention that the case
of SO(3,3; R) comes up in connection with the Petrov classification of
Einstein spaces.

Since most of the remainder of my talk will lean heavily on
general results of vector space theory and the general theory of linear
operators and hermitean forms, it may be useful to quickly review
some of this material and to agree on the terminology.4

When dealing with indefinite metrics, it is important to make
a careful distinction between ideas related to linear independence and
ideas related to orthogonality. For the moment we shall consider vec-
tor spaces in general without any hermitean structure. Subspaces
Sy,....,5n of a vector space V are said to be independent iff for all
¥, €8y ,...,4, €8, the only solution of the equation ¥, +...+4, =0
is the trivial solution r(1 = .= yfn = 0. Inthe case n = 2 this is
equivalent to the condition S; N1 8, = 0, and in general, this is equi-
valent to a collection of n - 1 conditions, a typical one being (S, +...
+ Sk) N Sy4+1 = 0. A sum of independent subspaces is usually called a
direct sum, denoted by S; & ... ®S,.

We use the language of invariant subspaces to describe the
structure of a linear operator as exhibited in its Jordan canonical form,
in accord with the common view that this theory may be regarded as an
application of the theory of torsion modules over a principal ideal
domain. We recall that a subspace S of a vector space V is an invari-
ant subspace under the action of a linear operator v on V iff yS< §,
that is, if y§ € S for all § € S. Two invariant subspaces S; and S, are
isomorphic iff there exists a one-one and onto linear transformation
a: S, 8, which commutes with y in the sense thata .y, = vy -q,
where v, and y, are the obvious restrictions of y to S; and S, res-
pectively. An indecomposable invariant subspace is defined to be
one which cannot be written as the direct sum of two nonzero invari-
ant subspaces. If V is finite-dimensional, then V can be written as
the direct sum of a finite set of indecomposable invariant subspaces,
the decomposition being unique only up to isomorphism.

The essence of the Jordan canonical form theorem is that we
can characterize the indecomposable invariant subspaces as those
which are both cyclic and primary. We shall hereafter for simplicity
restrict our attention to vector spaces over the complex number field.
A generalized eigenvector 4 € V of a linear operator vy on V is any non-
zero vector which satisfies (v ~ ¢ 1)® £ = 0 for some complex number
¢ and some positive integer p. For p =1, this reduces to the ordinary
definition of an eigenvector. For any complex number ¢ we may define
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the primary component V$ C V to be the subspace consisting of the
zero vector and all generalized eigenvectors of y corresponding to c if
any. It is then true that ¢ is an eigenvalue in the ordinary sense iff
the corresponding primary component is nonzero. An invariant sub-
space S is said to be a primary invariant subspace iff all its members
are generalized eigenvectors corresponding to a single common com-
plex number ¢, that is, iff S< VS for some value of c. In particular,
of course, the primary components are themselves primary invariant
subspaces, and V is the direct sum of all of them. An invariant sub-
space S is said to be a cyclic invariant subspace iff there exists a
vector ¢ in S, called a gyclic vector, such that every vector § in S

can be written as a polynomial in vy acting on the cyclic vector: | =
p(y) o.

We shall be applying these results to hermitean linear opera-
tors. In the case of a positive definite metric, of course, the ordinary
eigenvector theory suffices, and we are all familiar with this theory
from its application to elementary quantum mechanics. What we shall
find is that by using the more general concepts, we can set up a par-
allel theory even in the case of an indefinite metric. Actually, there
is one case of an indefinite hermitean metric with which we are all
familiar already, namely the Dirac spinor space, which we may cha-
racterize as a four-dimensional complex vector space C* equipped
with the metric (++--). For convenience we shall use the same nota-
tion that is used in the Dirac theory, namely ¢, for hermitean forms
in general. The bar notation will be henceforth reserved for this use,
and for clarity we shall use an asterisk to denote the complex conju-
gate c* of a scalar c.

To be precise, we define an hermitean form ¢y on a complex
vector space V to be a complex-valued function of two vector varia~
bles, linear in ¢ and antilinear in ¢, and satisfying the condition

GN* ¥ .

We shall use the term hermitean space to mean a complex vector space
equipped with an hermitean form. 1If § is @ vector in an hermitean
space, then its norm ¥ may be positive, negative or zero. It is cus-
tomary to call a vector with zero norm an isotropic vector. Two vec-
tors ¢ and | are said to be orthogonal iff ¢y = 0.

The subspaces of a hermitean space can be characterized by
their metric signature. Two subspaces S; and S, of a hermitean space
are said to be orthogonal subspaces iff every vector in S, is ortho-
gonal to every vector in S, . Note that orthogonal subspaces need not
be independent, and independent subspaces need not be orthogonal.

A hermitean space V is said to be the orthogonal direct sum of the
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subspaces S;,... 'Sn' written V=5, + ... ¢ Sn' iff V is the direct
sum of pairwise orthogonal subspaces. Thus the subspaces in an
orthogonal direct sum decomposition are required to be both independ-
ent and mutually orthogonal. Every subspace of a hermitean space
can be written as an orthogonal direct sum of lines: S =1L, L...1 Ln'
There are three possible types of lines, because the norms of the non-
zero vectors in a one-dimensional subspace all have the same sign,
namely either +, -, or 0. Each subspace then has a unique metric
signature, which indicates how many lines of each type there are in
any decomposition of the subspace as an orthogonal direct sum of
lines. Two subspaces S, and S, of a hermitean space are said to be
isometric iff there exists a one-one onto linear mapping a: S; = S,
which preserves the metric in the sense that (up) (x4) =y for all ¢,
in 8, . Two subspaces are isometric iff they have the same metric
signature.

The orthogonal complement S* of a subspace S of a hermitean
space V is the subspace consisting of all vectors in V which are ortho~
gonal to every vector in S. A subspace S of a hermitean space is said
to be nonsingular iff its radiecal S N St is zero. Nonsingular sub-
spaces may be characterized as those whose metric signature con-
tains only +'s and -'s, but no 0's. For example, the Dirac spinor
space C4(++—-) is a nonsingular hermitean space.

There are several important standard results about nonsingular
spaces. If S is a nonsingular subspace of a hermitean space V, then
V=8 1 8. IfVis nonsingular and if V =8, L...L 8, then 8, ,...,
Sn are also nonsingular. Finally, if both S and V are nonsingular,
then we have (S8+)+ =8.

A subspace S is totally isotropic in the sense that every vector
in 8 is isotropic iff S< St. Totally isotropic subspaces may be cha-
racterized as those whose metric signatures consist solely of 0's. All
maximal totally isotropic subspaces of a given hermitean space V have
the same dimension, called the index of V. The index may be com-
puted from the metric signature as the sum of the number of 0's plus
the number of (+-) pairs. In determining the possible metric signa-
tures of the subspaces of a given hermitean space, one must observe
among other things the requirement that the index of a subspace can-
not exceed that of the containing space. Thus, for example, there
are fourteen possible types of subspaces of the Dirac spinor space
ct (++--). These are listed below.
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dimension index —
1} 0 1 2
0 0
1 ). ) (0)
2 (++), (--) (+-), (+0), (-0) (00)
3 (++-), (+--) (+-0)
4 (++--)

The general structure of a hermitean space may also be des-
cribed in the following way. Any hermitean space may be written as
an orthogonal direct sum of its radical, which is totally isotropic,
and a nonsingular subspace. Here the radical is of course uniquely
determined, but the nonsingular subspace is only determined up to
isometry. A subspace is said to be anisotropic iff it does not con-
tain any nonzero isotropic vectors. Anisotropic subspaces may be
characterized as those whose metric signature consists solely of +'s
or solely of -'s, but not both. A hyperbolic plane is a plane with
metric signature (+-). Hyperbolic planes may be characterized also
as nonsingular planes which contain at least one nonzero isotropic
vector. A hyperbolic space, defined as any orthogonal direct sum of
hyperbolic planes, is clearly a space with a balanced metric signa-
ture consisting of an equal number of +'s and -'s. A nonsingular her-
mitean space may be written as the orthogonal direct sum of a hyper-
bolic subspace and a subspace which is anisotropic, this type of de-
composition again being unique only up to isometry.

Unitary and special unitary groups with indefinite metric arise
naturally in the study of the geometry of hermitean spaces ) An in-
vertible linear operator & on a hermitean space V is said to be a uni-
tary operator iff @{¢){xp) =Y for all vectors ¢, ¢ in V. The set of all
unitary linear operators on a hermitean space V forms a group called
the unitary group on V. The subgroup consisting of all special unitary
operators, that is, of unitary operators with determinant one, is a
normal subgroup of the unitary group, called the gpecial unitary group
on the hermitean space V. In particular, we may then characterize the
conformal group SU(2,2) as the special unitary group of Dirac spinor
space.6)

It is often more convenient to deal with the Lie algebras of
these groups rather than with the groups themselves. The real Lie
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algebra of the unitary group on a hermitean space V may be identified
with the set of all antihermitean linear operators on V, that is, those
linear operators B which satisfy (By)p = - (Bp) forall ¢, ¢ inV. Any
real linear combination of antihermitean operators is again antihermi-
tean, and if B, and B, are antihermitean, then their commutator

[81 . 82] =B, ° By, - B, °B, is also antihermitean. The Lie algebra
of the special unitary group on V may be identified with an ideal in
this algebra, consisting of all traceless antihermitean linear opera-
tors on V. Instead of working with antihermitean operators, however,
we prefer to work instead with hermitean operators, that is, linear
operators y which satisfy the condition FT)p =T (yp) forall §, ¢. We
can obtain hermitean operators from antihermitean operators by multi-
plying by i =/-1. If v is a nonzero hermitean operator, then the set
consisting of all the operators eltY, where t is a real number, is a
subgroup of the unitary group, called the one-parameter subgroup
generated by y. If two hermitean operators differ by a nonzero real
factor, then of course they generate the same one-parameter subgroup.
Thus, one-parameter subgroups of a group correspond to one-dimen-
sional subalgebras of the corresponding Lie algebra. More generally,
exponentiation of various subalgebras of the Lie algebra yield various
connected analytic subgroups of the unitary group.

Two subgroups H, and H, of a group G are said to be conju~
gate subgroups iff there exists an element a in the group G such that
H, =a H, a™'. If two hermitean operators y, and vy, are conjugate in
the sense that there exists a unitary operator o such that v, =« Ylu'l,
then they generate conjugate one-parameter subgroups of the unitary
group. If @ here can be taken to be a special unitary operator, then
we shall speak of special conjugate hermitean operators. To obtain
the conjugacy and special conjugacy classes of hermitean operators,
we study their invariant subspaces. We are thus led to study also
the notion of conjugate subspaces of a hermitean space.

Two subspaces S, and S, of a hermitean space V are said to
be conjugate subspaces iff there exists a unitary operator o on V such
that S, = a8, , and if this operator can be taken with determinant one,
then we speak of special conjugate subspaces. The Witt theorem says
that if two subspaces of a nonsingular hermitean space are isometric,
then any isometry between them can be extended to a unitary operator,
so that the subspaces are also conjugate.7 Thus for subspaces of a
nonsingular hermitean space, the question of conjugacy can be settled
simply by examining the metric signature of the subspaces. An iso-
metry between subspaces of a nonsingular hermitean space can even
be extended to a special unitary operator, so that the subspaces are
special conjugate, in the case dim S + dim (8 N 8t) < dim V, which is
certainly the case for nonsingular subspaces. The proof of the Witt
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theorem for general subspaces can be reduced to the simple special
case of nonsingular subspaces by using a result known as the hyper-
bolic enlargement theorem. The hyperbolic enlargement theorem says
that if S is a totally isotropic subspace of a nonsingular hermitean
space V, then there exists another totally isotropic subspace T with
the same dimension as S such that SN T = 0, and the direct sum S®T
is a hyperbolic subspace of V.

We are now ready to study the invariant subspaces of a her-
mitean operator. If S is an invariant subspace of a hermitean linear
operator y acting on a hermitean space V, then the orthogonal comple-
ment S* is also an invariant subspace. Sums and intersections of in-
variant subspaces again yield invariant subspaces.

We can say quite a bit about the primary components of a her-
mitean operator on a nonsingular hermitean space. If v is a hermitean
linear operator on a nonsingular hermitean space V, then the primary
component vE is nonsingular when c is real. Two primary components

v® and v°2 'of a hermitean operator are orthogonal to each other if

Y Y
c, and c, are not complex conjugates of each other. In particular,

the primary component vC is orthogonal to itself, and hence totally
isotropic, when ¢ is not real. On the other hand, if ¢; and ¢, are
complex conjugates of each other, and if in addition V is nonsingular,
then the primary components V$1 and V$2 have the same dimension.

If ¢ is not real and if V is nonsingular, then the direct sum Vc@\f$*
is nonsingular, and being the direct sum of two equidimensional
totally isotropic subspaces, must be a hyperbolic subspace. All of
these assertions follow as corollaries of the following theorem, which
generalizes the familiar arguments about orthogonality of eigenvectors
of a hermitean operator to the case of an indefinite metric.

Theorem.

If v is a hermitean linear operator on a finite-dimensional
hermitean space V, and if ¢; and ¢, are two complex numbers which
are not complex conjugates of each other, then the corresponding
primary components VYi and V$’9 are orthogonal to each other.

Proof.

The kernels of the various powers (y - ¢, 1)p for increasing p
form an ascending chain of subspaces which eventually terminates so
that for sufficiently large p we obtain the primary component Vol as
one of these kernels. We shall show by induction on p that the ker-
nel of (y - ¢, 1)P is orthogonal to the other primary component vCz,
For p = 1, the argument is simple because if (y - e, 1)y =0 and
(y - c, l)qcp =0, then 0 = §(y - c, 1)4 o= (c, * - calq ﬂ;qp, implying
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that gl_rcp = 0. Suppose now that the kernel of (y - ¢, l)p is orthogonal
to VC2. If § belongs to the kernel of (y - Gy l)p+l, then (y = ¢; 1))
belongs to the kernel of (y -~ ¢ 1)P and is therefore orthogonal to vea,
For any vector p in vC2 there exists a smallest integer g such that

§ly =c, )% =0. If'g> 0, then we have Ty - ¢, (y - ¢, 131
=0, and it follows then that (¢, * = ¢,)i(y = ¢; 1)97p =0, so that
Iy - c, 1}"‘1‘1{9 = 0, in contradiction with the assumed minimal prop-
erty of d. ence q = 0 and {p = 0, showing that the kernel of

ly - Gy l)p+ is orthogonal to the primary component V$2 and thereby
completing the inductive argument. Q.E.D.

We now introduce the important concept of an elementary in-
variant subspace, which will bear the same relation to orthogonal
direct sums that the concept of an indecomposable invariant subspace
bears to ordinary direct sums. An elementary invariant subspace of
an hermitean space is an invariant subspace which cannot be decom-
posed as an orthogonal direct sum of two nonzero invariant subspaces.
If V is finite-dimensional, then it can be written as the orthogonal
direct sum of a finite set of elementary invariant subspaces, V =
S, 1...48 .

This raises the problem of studying elementary hermitean oper-
ators, that is, hermitean operators on a nonsingular space V such
that the space V is itself elementary. Since we can alter the trace of
a hermitean operator by adding a suitable multiple of the identity oper-
ator, it is sufficient to study the structure of traceless elementary
hermitean operators. If y is a traceless elementary hermitean operator
on a Einite—dimensional nonsingular hermitean space V, then either
V=V" orelse V=Vis@ V218 for some real s # 0. Hence such oper-
ators are either n_ilggtent, that is, Yn ={) for some integer n, or else
they satisfy the equation (y* + s®)P = 0 for some integer p. At this
point it is appropriate to state some relevant theorems about nilpotent
hermitean operators. For the moment we may drop the assumption that
they be elementary.

Lemma.

If a hermitean operator y on a hermitean space V is nilpotent
with Ym = 0, then the cyclic invariant subspace S generated by any
vector ¥ in V is a nonsingular m-dimensional subspace iff \Eym‘lq; #0.

Proof. -1
Since S is spanned by {, vy, ..., Ym i, any vector ¢ in the
radical § N S* can be written as a linear combination ¢ = (o + ¢, v +
o st iChu vy, and we have |y p = 0 forall k. Since y™ =0,
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we have 0 = llTYm_lcp = coﬁym_lq;, and if {l}ym_lnp # 0, then we have
¢ = 0. By a similar argument we can also show thatc;, = ... =
Cy-1 = 0, so thatp = 0 and S is nonsingular. Moreover, this same
argument shows that the vectors §, v¥, ... , ym'ltb are linearly
independent, and hence S has dimension m.

Conversely, if q—fym_lq; = 0, then any vector ¢ in S can be
written as some polynomial in y acting on | and hence satisfies
™ ey = o 1y™~1y = 0, and hence it follows that y™~ 1y belongs to
the iadical SN 8+. If S were nonsingular, this would imply that
yI- i =0, and hence S would have a dimension less than m. Q,E.D.

The above lemma allows us to prove the following theorem,
which has as a corollary the result that elementary nilpotent hermitean
operators are indecomposable.

Theorem.

If v is a nilpotent hermitean operator on a finite-dimensional
nonsingular hermitean space V, then V is the orthogonal direct sum of
a finite set of nonsingular cyclic invariant subspaces.

Proof.

Since vy is nilpotent, there exists a smallest integer m such
that yM =0. If m =1, theny = 0, and every subspace of V is invari-
ant, and hence any orthogonal direct sum decomposition of V into non~
singular lines does the trick. If m> 1, then by the assumed minimal
property of m, we have Ym—l #0. If ﬁym"lsp =0 for all  in V, then
by polarization, we obtain @ym‘ltp =0 for all 4 ,ip in V, and since V
is nonsingular, this would imply that ym: = 0, a contradiction,
Hence there is a vector § in V such that qjym”lq; # 0, and by the lemma
it follows that the cyclic invariant subspace S generated by {§ is a
nonzero nonsingular subspace. Then we may write V=8 L S*, and the
argument may be repeated with St replacing V. This process must
finally stop somewhere because V is finite-dimensional. Q.E.D.

We may prove a similar type of theorem for the case of a her-
mitean operator y when ya + g® is nilpotent.
Theorem.

If v is @ hermitean operator on a finite-dimensional nonsingular
hermitean space, and if ¥° + s® is nilpotent for some real s # 0, then
there exist nonzero totally isotropic indecomposable subspaces Sﬂ:
such that 8 +@S_ is a nonsingular invariant subspace.

Proof.

Since the nonsingular space V is the direct sum of the totally

isotropic primary components V#s and V\'(is , it follows that for every
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nonzero vector in V{,S , there exists another vector in V -1s such that
these two vectors ; are not orthogonal. If there is a vedtor 4 in Vis
such that {y - is) o, # 0, for some integer m, then there is a vector
w_ in V 8 such that & o_ly - is)™ P, # 0, and hence (y + is)™y # 0.
Now let P be the smallest integer such that (y> +s2)P = 0. If

{y - is} is zeroonV'3, then (y + 1s)P~* ig zero on V*3, and hence
(y +5 )p 1= 0, a contradiction. Hence there must exist vectors P
in VX8 guch that @_(y - is)P~ . #0. The cyclic subspaces 8, gen~-
eratdd by tpy. are totally isotropic and primary since S, © vEis , and are
hence indecomposable. Finally one may verify that the raﬁical of the
dJ.rect sum Sl*'@ S_ is zero by using the fact that ¢, satisfy

¢_(y - is)P cp+7£0 Q.E.D,

These results show that there is a rather simple relation be-
tween elementary invariant subspaces and indecomposable ones. An
elementary invariant subspace of a hermitean operator on a nonsingular
hermitean space is either a nonsingular indecomposable invariant sub-
space, or else is the ordinary direct sum of a pair of totally isotropic
invariant subspaces which are indecomposable and have equal
dimensions,

We next study the possible metric signatures for elementary
invariant subspaces. A nonsingular hermitean space is said to have
maximal index iff the number of +'s and -'s in its metric signature
are either the same, or else differ only by one. An even-dimensional
maximal index nonsingular space is just a hyperbolic space.

Theorem.
Elementary invariant subspaces of a hermitean operator on a
nonsingular hermitean space are maximal index nonsingular subspaces.

Proof.

If v is an elementary hermitean operator on a nonsingular space
V, then V is either itself indecomposable, or is the direct sum of two
totally isotropic indecomposable subspaces. In the latter case Vis
hyperbolic, while in the former case we can subtract a real multiple
of the identity from v to obtain a nilpotent operator. If y is a nilpo-
tent hermitean operator, and if ¥ is a cyclic vector for V, then every
other cyclic vector is of the form p(y)y, where pfy) is a polynomial
in vy whose constant term is nonzero. By explicitly constructing a
spitable polynomial, it is p0551b1e to show that there exists a cyclic
vector ¥ in V such that yy 1]; =0 for all k except for k=n -1, wherc
n =dim V. We could multiply ¢ by a suitable factor to make qw 1]r =
+ 1. If m =[n/2] is the largest integer not exceeding n/2, then the
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vectors §, YU, «+., ym—lxy span an m-dimensional totally isotropic
subspace of V, and it follows that V has maximal index. Q.E.D,

These results have a direct bearing on the problem of finding
conjugate classes of hermitean operators. LetV=8; 1 ... 18
an elementary decomposition of a nonsingular space V with respect
to a hermitean operator y. Suppose that V=T, 1...1 Tn is any ortho-
gonal direct sum decomposition of V into maximal index subspaces
such that S; is isometric with T; for eachi=1,...,n. Then by the
Witt theorem, there exists a special unitary operator & on V such that
T,=aS; and V=T, 1...r T, is an elementary decomposition of the
hermitean operator ayot'l . The classification of the special conju-
gacy classes of hermitean operators thus reduces to two problems.
The first problem is to find the possible ways of decomposing a given
nonsingular hermitean space as an orthogonal direct sum of maximal
index nonsingular subspaces. The second problem is to find the
special conjugacy classes of elementary hermitean operators on a
given maximal index nonsingular space.

The maximal index decompositions of a nonsingular hermitean
space are readily found in each case by inspection. For example,
there are six such breakups for the Dirac spinor space C~(++--).
These six possible maximal index decompositions of Dirac spinor
space are the following:

Case 1. (++--)
2. (++=)(-)
3. (HE--)
4. (+-)(+-)
5. (=) (=)
6. HHEE)

Our approach to the second problem was based on the expecta-
tion that special conjugacy for hermitean operators would reduce
pretty much to the determination of the metric signatures and Jordan
canonical forms arising in their elementary subspace decompositions.
By the use of explicit canonical forms we find that it is almost but not
quite true that hermitean operators are special conjugate iff their ele-
mentary invariant subspaces are isometric and isomorphic.
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To obtain the canonical forms we make use of the theorems
stated earlier. For the case of a nilpotent elementary hermitean
operatorsf we obtain a canonical form by using the vectors §, vi,

R  as a basis, where { is the cyclic vec'ior found in the
proof of the last theorem, normalized so that q;y j =€, where e =%1.
In this basis, the matrix of the hermitean operator vy is fa1r1y simple,
but the hermitean metric form is not diagonal. It is therefore con-
venient to introduce a slightly different canonical form by using
another basis, chosen to make the metric diagonal so that its signa-
ture can be easily read off. The final canonical forms obtained are
slightly different for the cases of even and odd dimensional spaces,
so that in all we obtain four canonical forms for nilpotent elementary
hermitean operators. By restoring a real multiple of the identity, we
thus also get four cases for any elementary hermitean operator with a
single real eigenvalue. In the odd-dimensional case, the quantity ¢
just determines whether the metric has one more + or - sign. In the
even-dimensional case, however, the two cases with ¢ = +1 and ¢ =
-1 represent examples of hermitean operators whose elementary in-
variant subspaces are both isometric and isomorphic, but still not
special conjugate.

A similar procedure is used to obtain canonical forms for ele~-
mentary hermitean operators with a pair of complex conjugate eigen-
values, that is, the case V=V @Vc . In this case we can find a
pair of vectors @, in V such that §_(y - ¢ 1)* ¢, = 0 unless k = p-1
where dim V = 2p. We can normalize these two vectors so that
oy -c 1)p“1 @+ =1, so that no ¢ is necessary here, and we get
just one more canonical form for even-dimensional maximal index
spaces.

We thus get a total of five cases in all for canonical forms.

Case Metric Eigenvalues Other Parameters
1 c?P* i1, p) r e =+l
n ¢, o) r e = -1
2p
111 C™(p, p) r e =+1
2
Y c“Pp, p) r e=-1

v czp(p,p) r+ is
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Canonical Elementary Hermitean Matrix With A Single

Real Eigenvalue r In The Odd Dimensional Case

r 1 0 0-1 0
1 r 1 -1 0 1
0 1 r . 0 1 0
r 1 0-1 0 .
1 r ¢ 0 1
0 1 r 1 O
1 0-¢ r 1
0-1 0 1 r
0 1 0 r 1 0
1 0-1 1 r 1
0-1 0 0 1 r

43
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Canonical Elementary Hermitean Matrix With A Single

Real Eigenvalue r In The Even Dimensional Case

1 0 Ol
r 1 -1 0
1 r . 0 1

r 1 0 0 -1 0

1 r 1 -1 0 1

0 1 r+e +e 1 0

0 1 -¢ r-¢ 1 0

1 0 -1 1 r 1

0 -1 0 0 1 r
1 0 r Il
0 -1 1 r

[ I
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Canonical Elementary Hermitean Matrix With A Complex

Conjugate Pair Of Nonreal Eigenvaluesr + is

1 0
r 1
] r
1 s
is -1
-1 0

= O O = B

0 -1
-1 is
is 1
r 1

1 r
0 1

0 -1 is
-1 is 1
is 1 0
5 1 0
1 r 1
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In the three tables listing the actual canonical matrices for the
five possible cases, we have combined those cases which differ only
by the value of the parameter ¢. The significance of these canonical
matrices may be summarized as follows. A set of vectors {;,...,¥,
is said to be an orthonormal basis for the nonsingular hermitean space
Cc™p,q) iff szin|r. is 0 wheni #j, +1 wheni=j =< p, and -1 when i =
i> p. If vy is an elementary hermitean operator on a nonsingular her-
mitean space V, then there exists an orthonormal basis for V such that
the matrix of y with respect to this basis has one of the five canonical
forms listed. These canonical forms actually represent nonconjugate
classes of hermitean operators, except that in the fifth case, the
canonical forms differing only by the sign of the parameter s are spe-
cial conjugate to each other. Thus we obtain distinct special conju-
gacy classes of elementary hermitean operators only if we restrict the
parameter s to be positive, (say).

It is instructive to illustrate the general theory with some spe-
cial cases. The simplest illustration is the application of the general
theory to the case of hermitean operators on the two-dimensional non-
singular hermitean space Cz(+—). In this case, the most general her-
mitean matrix is of the form

A+D B +iC
-B +iC A-D

where A, B, C, D are real numbers. The eigenvalues of this matrix
are given by A % JDB - B®- C7. There are thus three spectral cases,
depending on whether IF - B® - C® is positive, negative or zero, cor-
responding respectively to a pair of distinct real eigenvalues, a com-
plex conjugate pair of nonreal eigenvalues, or the degenerate case of
a single real eigenvalue.

There are only two possible breakups of the hermitean space
Cz(+—) as an orthogonal direct sum of maximal index subspaces: (+-)
and (+)(~). The detailed correspondence between the three possible
spectral cases and the two maximal index subspace breakups is clearly
as follows: The spectral case of a real pair of distinct eigenvalues
can only correspond to the maximal index subspace breakup (+)(-),
while the spectral case of a complex conjugate pair of nonreal eigen-
values can only correspond to the breakup (+-). On the other hand,
the degenerate spectral case of a single real eigenvalue could cor-
respond to either the breakup (+-) or the breakup (+)(-). In terms of
the parameters A, B, C, D, the degenerate spectral case occurs when-
ever B2+ C? = I?, but this leads to a maximal index breakup of the
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type (+)(=) only in the very special case B=C =D =0, and to (+-)
otherwise.

In all cases here we can give prescriptions for writing down
the canonical form corresponding to the original hermitean matrix in
terms of the parameters A, B, C, D. There are six such prescrip-
tions, depending on the values of the parameters. These six cases
can also be given a geometrical description in terms of the cone
B®+ C® = I? in (B, C, D) space. (See following page.)

In determining the conjugacy classes of one-parameter sub-
groups of the group U(l,1), we have to remember that two matrices
which differ by a nonzero real factor generate the same subgroup.
We then obtain the following conjugacy classes of one-parameter
subgroups of U(1,1), listed by generator:

r+1 0
—oL r<w
0 r-1
1 0]
0 1_]
[v 1]
—oLr< ®
i rJ
a+1 1
a=0, x1.
-1 a-1

For the subgroup SU(1,1), only traceless generators are per-
mitted, and thus we obtain only three special conjugacy classes of
one-parameter subgroups for SU(1,1), generated respectively by the
three matrices:

e
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Prescriptions For Writing Down The Canonical FoEms Of

Hermitean Operators On The Hermitean Space C

Inside the Upper Cone

D>/B*+C? >0

Inside the Lower Cone

D<-J/B*+C* <0

Vertex of the Cone

D=B=C=0

Surface of Upper Cone

D=,/BR+C?>0

Surface of Lower Cone

D=-./B+CE <0

Exterior of the Cone

D? < B*+ C?

i 0

0

i,/ +C?-DP

A+,/DP-B-C? 0

A-/DP-B-C2 0

(+-)

A-JD?-B?- G2

A+ /PP

+) (=)

(+)(-)

)

(+-)

(+-)
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CLASSIFICATION OF THE IRREDUCIBLE REPRESENTATIONS
OF THE O(4,1) DE SITTER GROUP*

Fritz Schwarz
Center for Particle Theory
Department of Physics
The University of Texas
Austin, Texas 78712

Abstract

By M® we denote the vector space of real 5-tupels (%, ...Xs)
in which the quadratic form x5 +...+x3 -x2 is given. The De Sitter
group O(4,1) is the group of linear homogeneous transformations of
the M® which leave this form invariant. At first we determine the ir-
reducible representations of the identity component. These irreduci-
ble representations are extended in all possible ways to inequivalent
representations of the whole group.

I. Introduction

Let M® be the 5-dimensional vector space whose elements are
the real 5-tupels x; ...xs) and in which the quadratic form x§ +...+
x5 -x2 is given. By O{4,1) we denote the group of linear homogeneous
transformations of the M® which leave this form invariant, i.e., the
elements of ©(4,1) are the real 5 by 5 matrices g which obey the
equation thg = G. Here G is the diagonal matrix with the nonzero
elements {+1,+1,+1,+1,-1}. The group O(4,1) consists of four dis-
connected pigaces, which are characterized by det g =+1 and ggs = +1
Oor ggg < —1. 1) we choose the following notation:

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
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Notation det g|sign ggs Representative
+1 0 0 0 ]
r 0 +1 0 0 0
o (4,1) +1 + Es = 0 0 +1 0 0
0 0 0 +1 0
0 0 0 0 +1
+1 0 0 0 0
o 0 +1 0 0 0
o (4,1) +1 - R = 0 0 +1 0 0
0 0 0 -1 0
0 0 0 0 -1
+1 0 0 0 0
. 0 +1 0 0 0
o (4,1) -1 + s = 0 0 +1 0 0
0 0 0 -1 0
0 0 0 0 +1
+1 0 0 0 0
__ 0 +1 0 0 0
o (4,1) -1 - T = 0 0 +1 0 0
0 0 0 +1 0
0 0 0 0 -1

++ :
Evidently O (4,1) denotes the identity component of O(4,1) and the
other three pieces are the cosets with respect to it, There are three
other subgroups which we will use frequently:

+ ++ + ++ -

o"@,)=0"@,)urR0 T4, ) =0T, Hu 04,1 (a)

++ e +=
o*(4,1)=0""(4,1)USO  (4,1)=0""(4,1) U0 (4,1) (ib)

++ -—
@, n=0"@,nuroTE,n=0"@,nU0 @1 ()
The identity component is a normal subgroup of index 4 in the whole

group O(4,1) and a normal subgroup of index 2 in each one of the sub-

groups defined by Egs. (1). Further, each one of the subgroups de-

fined by Eqs. (1) is a normal subgroup of index 2 in the whole group
0f(4,1).
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The group O(4,1) is not simply connected. The universal cov-
ering group of the identity component Ot*+(4,1) is isomorphic to the
group SL(2 ,Q).z) This group consists of the 2 by 2 matrices, whose
elements are quaternions, and which leave the form xx - yy in the 2-
dimensional vector space of quaternionic 2-tupels invariant. Let® be
the homomorphism from SL(2,Q) onto O"H'(4, 1) and e be the unit ele-
ment of SL(2,Q). Then we have p(te) = E5. The situation is more
complicated for the group O(4,1); for this discussion see Ref. 3. Let
r, s and t be the elements of a covering group which correspond to R,
S and T respectively, i.e., oltr) =R, ¢s) =S and ¢&t) =T. Thena
covering group of O(4,1) is uniquely determined as soon as the square
of a representative of each coset is fixed. If we take as representa-
tives the elements r, s and t we may have r° = +e, s®=+e and 2= te.
According to the different choices of the signs, there are 8 different
covering groups of O(4,1), which we denote by CjO(4, 1) with 1<j<8.
We fix the notation in the following way:

-:r,s,t commute

r2 2 2
Cjo(4'1) s L +:r,s,t anticommute

=1 +e +e +e =
j=2 +e +e -e +
i=3 +e -e +e +
j=4 +e -e -e 5
i=5 -e +e +e +
j=6 -e +e -e =
i=7 -e -e +e =
j=28 -e -e -e

The elements +e, +r, +s and +t combine differently in the different
groups CjO(4, 1); their multiplication schemes are given in Table 1.

The identity component has a basic set of 10 one-parameter
subgroups. For 6 of them we take the rotations in the xi—x-—coordi—
nates planes with 1 £ i< j £ 4. The rotation in the x, -x; -plane, for
example, is described by a matrix of the form

cosa sina O 0 0
-sin o cosa O 0 0
g1 (o) = 0 0 1 0 © (2)
0 0 0 1 0
0 0 0 0 1

The matrices 9ij (@), which describe the rotations in the other coor-
dinate planes, are similar., The remaining 4 one-parameter subgroups
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are the pseudorotations in the x;-xg~coordinate planes with 1 ¢ i < 4.
The first one of them is described by the matrix

cosha O 0 o sinh o
0 1 0 0 0 ,
g5 (@) = 0 0 1 o0 0 (3)
0 0 1 0
sinha O 0 O cosha

The matrices for the other pseudorotations are obtained from Eq. (3) in
an obvious fashion. We denote the Lie algebra of the identity compo-
nent by so(4,1). The basis elements Aij with 1 £ i< j <5 are defined
by

d
A.=—g9._@) (4)
ij  do “ij =0
A simple calculation shows that they obey the following commutation
relations:

CAyr Bl =9l + 0y ~ 9y ~ IR O

with g;, =+l for 1 £ i< 4, ggs = -1 and g;; =0 fori #j. Later we

will need also the commutation relations of the infinitesimal genera-

tors A, .,, for 1 < i< 4 with the elements S, T and R, and therefore
il = \

we givéd them here. It is easy to see that they have the following

form:

(A2, R]_=[A23: R]_=[A34: R]+=[A45: R]_=O (6)
(A1, 8] _=[hza,8]_=[Rg,, 8] =[As,8], =0 (7)
(Ao, T]_=[Rs, T)_=[Ra,, T]_=[Ass, T], =0 (8)

where we used the notation [X,Y], = XY + YX. To classify the irre-
ducible representations (IR's) of the group O(4,1) we proceed as fol-
lows: At first we determine in Section II the IR's of the identity com-
ponent. Then we extend these representations in all possible ways,
which lead to inequivalent representations, to the group O(4,1) or its
covering groups. This is done in two steps. In the first step the IR's
of the identity component are extended to the groups defined by Egs.
(1) or its covering groups. In the second step the IR's of these sub-
groups are extended to all four pieces. This has the advantage that
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we need only the connection between the representations of a group
and those of a normal subgroup of index 2 contained in it. The gen-
eral case, where the normal subgroup is not restricted to the index 2,
has been treated by A. H. Clifford.4 However, the special case we
need is considerably simpler and therefore we describe it in Section
III. In Sections IV and V these results are applied to the De Sitter
group for mg, integer or halfinteger respectively. The label ms, will
be introduced in the next section.

II. The Irreducible Representations of the Identity Component

In this section we classify the IR's of the identity component.
We do this by determining a set of irreducible matrices which obey
the commutation relations (5). As a special case we recover the uni-
tary representations, which are already known (see Refs. 5 and 6).
We denote a matrix, which represents the infinitesimal generator Ajj.

Mgy 1259 . ,
by D (Ajj). The labels mg, and zg, will be explained later
in this section.

It is easy to see that a representation is completely deter~
mined if one knows the matrices which represent the generators
Ai,i+1 for 1 £1i < 5, because the other generators can be expressed
through them with the commutation relations (5). We define a new
set of generators Bij by

By TV933 V955 By )

Putting these new generators into Eqg. (5) one sees easily that they
obey the commutation relations of the Lie algebra of the 5-dimen-
sional rotation group, i.e., an equation, which results from Eq. (5)
by replacing the 9ij by the Kronecker symbol bjj- In the reduction
SO(2) © SO(3) © SO(4) = O**(4,1) a vector within a representation
space is completely specified by the labels my, , mg, , my; and my,.

Mg, ,2
The matrices D( sLe 52)(@&

vectors:

., ,) act in the following way on these
i,i+1

(mg, ,255) .
Dre1rTeR (A12)'m41 /Myp Mgy Mgy ) =1m21|m41 /My 5, Mgy My )

(10)
(ms 4 ,252) -
D1 78R (A23)|m41,m42,m31,m21) =

n A(m21)|m41 JMyp Mgy ,Myy+1) - A(mz,_-l)lm41,m42,m31,m21—1)

(11)
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(my, +2s2) .
Dbl 2 (A'34)|m41 /My p, Mgy ,Myq ) =1cz|m41 /My, May Mgy ) +

B(m31)|m41 My ,m31+1,m21)—B(m31—1)|m41 /Myg Mgy —-1,my,)
(12)

(msy ,252)

Dy = (et (A45)|m41 Map M3y :mg],) =
=A(m4_1)lm41+l,m42 yM3q Mgy ) -A(m41—1)|m41—1,m42 /Mgy Mgy )
+A(m42)|m41 /My p+l,mgq My ) -A(m42-1)|m41,m42—1,m31 /Mgy )

(13)
From the commutation relations it follows for the matrix elements

Almg,) =% \f(mg, B P - (my, ) (14)

Alm,,) =% J(m:u"'%)g - (mg, 1P
[(zs. 45 - Mmay 2P 10 (25,+3)° - (myy +2)7]

[ea 1P - m2, 10 (apt 1P - (mgy 11P] ()
Alm,,) =3 J(_mq-g"'%)z ~ (m31”’":2‘}§
E{zal'%‘)a = (m4g+:?§}2][{25;1+%)3 = {ma-F%)a]
(16)

[mi, = (my,+1)°10mg, - (mya+2)%]

m3 1 —(mg, +1)7 ][ (g, +1)7=(mg , +1)7 ]

B(ms,) = J;ﬂ"éi = (mg, +1) (Mg, +1)7 [4(mg, +1)7 1]

(17)
my; Mgy (myp+1)

C, = (18)

myy (mgq +1)
These expressions are taken from the appendix of Ref. 6. There also
the occurrence of the complex labels zg, and zs, is explained. The
labels my,, my,, mg; and my, are integer or halfinteger at the same
time and obey the inequalities

lm4-1‘ S May <My, (19a)

,me1l < M3y (19b)
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The complex constants zg, and zgs, are restricted by the requirement
that the SO(4) labels m,, and m,, obey the condition (19a) and that
the representation specified through them is irreducible. We deter-
mine now the restrictions for zs, and zs, which follow from these
requirements.

Eq. (19a)means that my, < m4mlax_ mf;m £ my,. For this to
be true the following equation must be valid:

AT = A" - 1) = 0 (20)
From this equation we get the condition
(52 B P = 3P = (3P (21)
The solution of this equation is zg; = mg, = m4mlax = m4mzin with the
condition
[myy ! < Mgy < Mgy (22)

If the SO(4) labels are integer, the range of mg, is 0,1,2,...; if
they are halfinteger mg, has the range %, %,5,... .

The irreducibility requires that there is no su?space which is
invariant under the action of the operator D m51 1253 . If the
SO(4) labels are integer, this is certainly the case if 2521452+iy52
is an arbitrary complex number except an integer mg, which does not
fulfill ms, = mg,+1. To avoid having the same representation occur
more than once, we restrict the imaginary part of z5, by 0 € y55,. If
ms, is an integer together with ms; and mg; # ms,+1, the represen-
tation splits into the direct sum of two IR's, which differ only by the
SO(4) content. For mg, £ mg, the two IR's are

'm41| <mgy € Myy < My (23a)
| my ., | <msy, Mg+l < myp (23b)

For 0 < mg,+1 < mg,; there are 3 possibilities, one of which is al-
ready contained in (23b):

'm4ll < mgp+l, mgy < Myp (24a)

Mg, +2 < +myqy < Mgy

A

My 5 (24b)

m52+2 <= —My 4 é Ms 4,

A

My (24c)
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Analogous considerations can be made for the case where the discrete
label mg, is halfinteger and we do not repeat them here. The results
for mg, integer or halfinteger are collected in Tables 2 and 3 respec-
tively. It is easy to derive the additional conditions which the labels
ms, and zg, must obey so that these IR's are unitary. However, they
were already derived in Ref. 6 and we include the results in Tables 2
and 3 without further discussion.

ITI. Some Results From A Paper by A, H. Clifford 4)

In this section we describe the results of A. H. Clifford * for
the special case where the normal subgroup is of index 2; see also
Refs. 1 and 7. We give only the results we need. The interested
reader can find the proofs in these references. Let G be a group,

H< G a normal subgroup of index 2. By h, h; we always denote
elements of H, by g, gi elements of G which are not necessarily in
H. However, let always 9o # H, then goH 1s the coset with respect
to H and we have G = H + g, H. If D(h) is a representation of H, then
also D(g™? hg) = D*(h) with fixed g € G is a representation of H, be~
cause always g"thg € H. The representation D*(h) is called a repre-
sentation conjugate to D(h). It may happen that the representation
D*(h) is equivalent to D(h) for a subset of G, in this case it is called
selfconjugate in this subset. Trivially this is the case for g € H, be-
cause then D(g "t hg) = D(g~*)D(h)D(g). However, in general the sub-
set of G for which a given representation of H is selfconjugate, may
be larger. It can be shown that this subset is always a subgroup of
G, called the little group of the representation D(h). If H is of index
2 in G, the little group of an arbitrary representation of H is either H
itself or the whole group G.

Let D(g) be an IR of G. If D(g) is restricted to H there are
two possibilities which can occur. If D(g) remains irreducible, the
representation D(h), subduced by D(g), is selfconjugate in G. The
other possibility is that D(h) is reducible. In this case the little
group of H is H itself. D(g) splits into the direct sum of two IR's
D, (h) and Dy (h) of H which are conjugate to each other.

‘We want to describe now how the IR's D¢(h) of H, which are
supposed to be known, can be extended to those of G. Such an ex-
tension is determined if we know the operator which corresponds to
one representative 9 of the coset. At first we consider the case
where the representation D(h) of H is selfconjugate in G. There
exists an operator C with

D(g;l hg) = C*D(h)C (25)

for all h € H, and consequently
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D(g;° hg?) = D(g?)D(M)D(g3) = C™ D(h)C? (26)

because g2, € H. It follows that D(g3) =a”C?, i.e., D(gy) is deter-
mined up to a constant and we have

D(go) =+0.C (27)

where o is an arbitrary complex constant. It is fixed by the require-
ment that D(g%) has a prescribed value. The two possibilities of D(h)
corresponding to the different signs at the right hand side of (27) give
two inequivalent representations of G.

The other possibility is that the little group of D) is the
group H itself. In this case the extension of D(h) to an IR of G can
be induced from D(h). We take the unit element e and the element 90
as representatives of H and the coset respectively. The representa-
tion D(g), induced by D(), is irreducible and given by

_ D(g) D(gg,) (D(g’) =0if g'€ H, g" =9, 99,
D(9) = ,
=1 =1 -1 =1
D(go ) D(go ggo) g, 9 org-tgg respectively)
(28)
where g is an arbitrary element of G. For g € H it follows from (28)
_ D(g) 0
D(g) = (29)
-1
0 Doy ggo)
and forg £ H
_ 0 Digg,)
D(g) = ‘ (30)
D(g;'q) 0

From (29) and (30) one sees that the representation space of D(g) is a
system of imprimitivity for G. For g = go one gets from (30)

N 0 D(g?)

D(g) = > (31)
Dle) 0

The extensions of the IR's of H to the whole group G, described in

this section, exhaust all possibilities which lead to inequivalent
representations of G.



62 FRITZ SCHWARZ

IV. Extension to the Whole Group If mg, Is Integer

If the discrete label mg, is integer, the results of Section III
can be applied to the group O(4,1) itself. At first we extend the IR's
of the identity component O*%(4,1) to the three subgroups O%(4,1),
O'(4,1) and O° (4,1).

We begin with O*(4,1). As representatives of the identity
component and the coset we take the elements E; and R respectively.
If an IR of O7F(4,1) is selfconjugate in O¥(4,1), there exists an oper-
ator B with

_ (m51lzsg) -1
)B =D ® Ai,i+1

= D(m51 ’ZSQ)(A1,1+1) (32a)

B—1 D(m51 IZSQ)(A.

i,i+l R) =

fori=1,2 and 4, and

p-1 D(m51 '252)(A34)B - D(m51 lz52)(R—lA34R) — _D(m51 :zsz)(A34)
(32b)

The calculations which lead to the operator B are similar to those for
O(5) and can be found in Ref. 8. Therefore we do not repeat them
here. Egs. (32) determine B up to a complex constant & with the result

m.
Blmgq /My Mgy ,my, ) =a(-1)"2 (-1)™1 | -m,,my 5, msy,my,) (33)

There are no conditions for the labels mg, and z;,. However, from
Table 2 one sees that the operator B does not exist for the represen-
tations of the classes IVa and IVb. B exists only in a representation
which is the direct sum of two IR's of the identity component, one of
which is from class IVa, the other from class IVb, and for which the
labels ms, and zs., have the same values. We call the representa-
tions of this type simply the class IV. The requirement D(Ms1 /Zs3 (RR)
= D(mﬁl 1Zs2) (B ) fixes the value of the constant & in Eq. (33) toa=1.
According to Eq. {27) the two possible extensions are

Mg, ,Z
D( S 52)(R)lm41 My o Mgy :m21> =
m, m
+ (-1)7°1 (-1) 41|—m41 (Myp ,May My (34)

The extensions to O (4,1) and O° (4,1) follow from similar considera-
tions and we do not repeat them here. The results are as follows:
The IR's of the classes I...IV are selfconjugate in O (4,1). The two
inequivalent extensions are
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(msy ,2s55)
IhesER Sl (S)|m41,m42,m31 Myy) =

m
("1) 31(_1)m42|_rn41 1My o , M3y :m21> (35)
Contrary to these results, all IR's of the classes I...III, IVa and IVb
are selfconjugate in O° (4,1) and the two 1nequ1valent extensions by
D(m51 125 "}(T) are

(ms, ,2s55)
10) e K (T)lmzu /Myp Mgy Mgy ) =

= (-)™(-1)™2|my, ,my,,me; myy)  (36)

Now we determine the IR's of the whole group O(4,1). To do this we
can start with one of the subgroups O%(4,1), O* (4,1) or O (4,1) and
extend their IR's in all possible ways to the whole group O(4,1).
Clearly the results are the same in all three cases, and we choose
0%*(4,1). As representative of 0" (4,1) we take the unit element B
and as representative of the coset with respect to 0*(4,1) the ele-
ment S. If an IR of O (4,1) is selfconjugate in O(4,1), there exists
an operator C which obeys the following commutation relations:

-1 (msllzsz) (ms, 1252) -1 _
GRS (Ai,i+l)C = (s Al 1+ls)
(ms, ,Zs2)
D i,i+1) (37a)
fori=1and 2,
— (m5 Zg ) (m z ) —
1 17 2 51 1452 1 —
Cc™D (Al 1+1)c = (8 Al 1+ls)
(m51 1252)
D 1,141 (37b)
for i =3 and 4, and
c-t D(m51 1252)(R)C — D(m51 1252)(8—1 RS) = D(m51 1252)(R) (370)

From Egs. (37a) and (37b) it follows that C has the form

m m
Clmgqy ,myp,mg1,myy) =a(-1) 21 (-1)"*? | -myq,my,,mzqy,my,)  (38)
A simple calculation shows that (37c) is automatically fulfilled. The
condition DMs 1 1252)(82) = plms, 1252)(E5) leads to o = 1 and the two
inequivalent extensions are again given by Eq. (35). The operator,
which represents the element T is determined by the equation
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D(m51 1252)(T) - D(msl lzsz)(R) D(f1151 1252) (39)

Let us summarize the results which we have found in this sec-
tion for ms, integer. Each one of the IR's of the classes I...III given
in Table 2 can be extended to an IR of the whole group O(4,1). How-
ever this is not true for the IR's of the classes IVa and IVb separately.
Only the representations of the class IV, which were defined previ-
ously, can be extended to the whole group O(4,1). In each one of
these representations the elements R and S are represented by the op-
erators (34) and (35) respectively. The operator, which represents
the element T is determined by Eq. (39). The representations of
O(4,1), which belong to the classes I...III are irreducible under res-
triction to O*(4,1), O (4,1), O? (4,1) and the identity component it—
self. The representations of the class IV remain irreducible under res-
triction to Ot (4,1) and O (4,1). However, restricted to O° (4,1) or
O++(4, 1) they are reducible and decompose into the direct sum of two
inequivalent representations.

V. Extension to the Whole Group If mg, Is Halfinteger

If the discrete label mg, is halfinteger, the extension is more
complicated. This is a consequence of the fact that the group O(4,1)
has eight different covering groups CjO(4, 1). That means if ms, is
halfinteger we have to determine the IR's of these eight covering
groups. We proceed in a similar way as in the case where mg, is in-
teger, i.e., at first we extend the IR's of the identity component to
the groups ¢,0%(4,1), C4O" (4,1) and CjO° (4,1).

We begin with C;O"(4,1). If an IR of the identity component
is selfconjugate in CJ.O (4,1) there exists an operator B with

B—1D(m51 lzsg)(A' )B=D(m51 '252)(!'_1A

i,i+1 r) =

i,i+1

- D(m51 '252)(A. ) (40a)

i,i+l

fori=1, 2 and 4, and
B‘l D(m51 1252)(AG4)B = D(m51 '252)(r_1A34r) = _D(m51 1252)@34) (40b)

From these equations it follows that B exists in the classes I...IV and
is given by Eq. (33). The constant a is fixed by the requirement that
D{ms, ,25.)¢?) has a prescribed value. It follows that the two ine-
quivalent extensions for r* = +e are
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D(msl :Zsa)(r)lm“ /My, Mgy (Myy) =

= £1(-1)"1 (-1)™2 | cmyy ,my, ,mey My, ) (41)
and for r* = ~-e
D(msl 'zsg)(r” Mgy Myp, Mgy Myy) =

= 0T DT gy g ey sy ) (42)
For the extensions to CjO1 4,1) an& C 0O® (4,1) we give only the re-
sults, because the calculations are completely analogous. The IR's

of the classes I...IV are selfconjugate in C O (4,1). If s?= +e the
two extensions are

D(m[51 'Zsz)(S” Mgy ,Mgp Mgy, Mgy ) =

= £(-1)™2 (-1)™2 | -myy ,myp Moy mgy)  (43)
and for s® = -e
D(msl :Zsa)(s)l Mgy /Myp,May ,Mpy) =

n i('l)mal (_1)m43 | -mey smaz Mgy, may ) (44)

The IR's of the classes I...IHl and IVa and IVb separately are self-
conjugate in CJ.O3 (4,1) with the extensions

(mg, ,2z
DUEL 52)("-)'“141 /Myp,Myy My ) =

1)1 (-1)™2|m,, ,mez ,may ,mgy)  (45)

D(rnS:l IZEQ)(t)I Myq Mgp ,Myq ,rne1> =
i(-l)m41 (_1)m42 | Mgy ,Mgp May ,Myy ) (46)

for ¥ = +e or £ = -e respectively.
Finally we determine the representations of the groups
C:0(4,1). As in the case where mg, 15 integer, we can start with
Il%s of each one of the subgroups C o*@4,1), c;0*(4,1) or (3'_10z (4,1),
and we choose C;0"(4,1). As representative ofj the normal subgroup,
which is now C "'(4,1), we take the element e, and as representa-—
tive of the coset with respect to it the element s. If an IR of
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CjO+(4,l) is selfconjugate in CJ-O(4,1), there exists an operator C
with

(g, ,255) (ms, ,255)
1 51 1252 — s1¢2Z52) . 1
5L (Ai,i+l)c = (s B

) =

o= D(msl 1252)(Aili+l) (473)

fori=1and 2,

-1 (m51 +Z532) — (nsq ,2s55) 1 -
Ol (Ai,i+1)c D (s Ai,i+ls)
- (m51 1Z53)
i (Ai,i+l) (47D)
for i =3 and 4, and
cipMs1iZea) o o pMsaizea) ) _ plis1izea) )

The +-sign at the right hand side of Eq. (47¢) is valid ifr and s com-
mute, the --sign if they anticommute. From Egs. (47a) and (47b) it
follows that C is given by Eq. (38). A simple calculation shows that
Eq. {(47c) is automatically fulfilled if r and s anticommute. In this
case the operator which represents the element s is given by Egs.
(43) and (44) for s® = +e or s® = -e respectively. From the discus-
sion in the introduction we see that r and s anticommute in the cover-
ing groups CJ-O(4,1) with j =2, 3, 5 or 8. That means that the IR's
of the classes I...IV can be extended on the same representation
space to an IR of these covering groups. The operators which repre-
sent the elements r, s and t in these representations are given in
Table 4.

The representations of the covering groups CjO(4, 1) with j =
1, 2, 4 and 7 have to be induced, because for these groups there
exists no operator C which obeys the commutation relations (47). We
denote this induced representation by Blms, rZ'az)(A). For the matri-
ces which represent the infinitesimal generators we get according to
Section III

(msy ,2s52)
DUeLeTERAA L ) 0
=(mg, 1Zsz) — 1,141
D RIS
i, i+l
0 D(mSIIZSQ)
i,i+l
(48)
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fori=1and 2, and

(m51 IZEQ)
4] (Ai,i+l) :

(m51 125 ) -
P ) (mes +223)
\0 -D 51 1452 . )
i,i+1 (49)

for i =3 and 4. The elements r and s are represented by the matrices

D(m51 1252)(r) 0
B(m51 lzsz)(r) i (50)
0 D(Hlsl '252)(r)
D(m 0 :I:D(m51 :Zsz)(e)
B(m51 lz52)(s)= (51)
D(m51 lzsz)(e) 0

The +-sign at the right hand side of Eq. (51) is valid if s = +e, the
--sign, if s° = -e. In the former case we transform D(mg, :zaz)(z.\)
intEO ag equivalent representation Dms, fzﬁa)(lx) withothe matrix
E

0 B/ . inthe second case with the matrix (o _jg| . where B is
defined by Eq. (33) with oo = 1. The result has the following form:
The operators which represent the infinitesimal generators Ai j+] are
always given by !

D(msl,zm) ) 0
i, i+l
5(m51lzsg)(A
i,i+l

) =

O D(m51 1252)(A )

(52)

The matrices which represent the elements r, s and t in the represen-
tations DWs1 +Zss (a) and D51 +%52/(A) are given in Table 5.
At the end of this section let us again summarize the results
which we have found for mg, halfinteger. We distinguish two cases.
1) An arbitrary IR of the classes I...IV, which are given in
Table 3, can be extended to an IR of the covering groups CjO(4, 1) for

i,i+1
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j=2, 3,5 and 8 on the same representation space. The operators,
which represent the elements r, s and t, are given in Table 4. If the
IR of the identity component belongs to the classes I, II or III, the
corresponding represgentation of the whole group remains irreducible
under restriction to each one of the subgroups C,0"(4,1), C o*(4,1),
C,0%(4,1) and the identity component itself, I} it belongs to the
class IVtherepresentation of(ﬂ 0(4,1) remains irreducible under res-
triction to CjO+(4 1) and C{O" (4,1). However, under restriction to
GjO3 (4,1) or CjO'H'(tL 1) it is reducible and decomposes into the di-
rect sum of two inequivalent representations.

2) The IR's of the groups CjO(4,1) forj=1, 4, 6 and 7 can-
not be constructed on the representation space of a single IR of the
identity component. They are induced from a subgroup. The matrices,
which represent the elements r, s and t, are given in Table 5. Under
restriction to C; o*(4,1) or CjO1 (4,1) these representations are redu-
cible and decompose into the direct sum of two equivalent represen-
tations. Under restriction to CjOE‘ (4,1) or CjO"'"'(4, 1) they are also
reducible, and they decompose either into two equivalent representa-
tions of one of the classes I, II or III, or into four representations,
two of which are from class IVa and two from class IVb.
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Teble 2

Class | Conditians for ngy sd Zgy 80(4) Omtent
0= Bgy § Zg, complex mmber,not integer,0 3 Y52 gy S L 3 g,
In the following 3 cases these IR's are unitary:
")05'51;152"752 ;o<ysz The seme
B 13 mg b agy wxgy 0 S xgpd <] The sem

<
€ 0mgy i 2= xgp 1 0 S xgpd < §

ny = 0mg Iy,

< <
IT | 0= mg) ; zg; = mg, Integer with mgy = m, logy 1% mgy Smg S,
These IR's are finite dimensional and therefore
not undtary
a1 | 08mg i 2y =g, tntegerwith 0 S o1 Smyy  fjmyy S mpe1 Smgy S my
Thase IR's are wnitary if the follaring candition
is fulfilled
13mg 18,0120 2y =0, mg S
< <
Ma | 1%mg i 25~ ng, Integer vith 1 SngyeZ Tmgy [ mg02 Smyy Tmgy S myy
‘These IR's are all unitary
™ (13w 2y - mg integerwith 15 ng2 Sy | g0z Sy Smyy Sy

‘These IR's are gll unitery
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Table 2. Classification of the IR's of the identity component
if ms, is integer.

Table 3.

Teble 3

Conditions for My and zg,

SO(4) Content

% S Bryi Zgp COMlex number,not halfinteger,0 N Y52
These IR's are unitary if the following condition
is fulfilled:

2 " brgp 0 <vg

<
Imgy | & mgy Smgy

The sama

1z n - 3 H N s

II 3 = gy 2y = Mgy halfinteger with mg, & m,, Ll By S My, S mgy
These IR's are finite dimensional and therefore
not wunitary
1z s - 1s K & S

I | 33mg 2y = mg, halfinteger with § & mgyrl O fmgy | & mg*1 S mgy N L
None of these IR's is unitary

va :zl N B, i 2z, = g, halfinteger with ; Smgp2 § mgyfme 42 $my) S me, S n,;
These IR's are all unitary

T | 35 ng ;25 = g, halfintoger with Yoz s Mgy

< <
mgy*z S-my ¥ ngy Imy,

‘These IR's are all unitary

Classification of the IR's of the identity component
if mg, is halfinteger.
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Table 5.
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The operators which represent the elements r, s and
t in an IR of the covering groups CjO(4, 1) forj = 2,
3, 5and 8. The expressions in the second and
third column have the following meaning:

Dimgy lzsz)(r) and D\sy 1252)(5), applied on a
vector |m4,_ /My, ,Ma1 ,My1 ), give @ new vector
|-myq ,myp ,mg, ,my, ) times a scalar factor. This
factor is given in the respective columns. In the
last column the.right hand side of the equation
D(m51 1252)(r)D(m51 1252)[5) = -_{:D(msj_ rzsg)(t) is
given.
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The operators_vtrhich repgesent the elements r, s and
t in the TR's D'MS1+Zs2) (3) and DWs1 Zs2)(a) of the

covering groups CjO(4,1) forj=1,4, 6and 7.
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THE MATRIX ELEMENTS OF FINITE TRANSFORMATIONS
IN THE DE SITTER GROUP Sp(2,2)t

Wayne J. Holman, III
Theoretical Physics Department
Middle East Technical University
Ankara, Turkey

Abstra cr\g

Spinor basis states for the irreducible representations of
Sp(2,2), the spinor covering group of the de Sitter group SO(4,1), are
obtained by analytic continuation from those of the compact group
Sp(4). An algorithm is established for the determination of matrix
elements of finite transformations from the form of these basis states,
and they are written down explicitly for all the unitary irreducible
representations of Sp(2,2).

1. Introduction

In previous papersl)'z) the basis states of irreducible repre-
sentations of Sp(4) and the matrix elements of its finite transformations
were determined. Also, the analytic continuation of these basis states
to those of the irreducible representations of Sp(2,2), a complex ex~
tension of Sp(4) was performed. Ref. 2 contains a short bibliography
of previous work on the representation theory of Sp(2,2). In the pres-
ent work we shall consider the analytic continuation of the represen-
tation functions of Sp(4) to those of Sp(2,2). It is evident that such a
method is possible, i.e., that the representation functions of Sp(2,2)
may be obtained from those of Sp(4) by suitable analytic continuation
in the coordinates of the group manifold and in one of the two para-
meters which label the irreducible representations of Sp(4), since the
matrix elements of the Sp(2,2) generators may be obtained from those
of the Sp(4) generators by such an analytic continuation. The matrix
elements of finite transformations are obtained simply by exponentia-
tion of the generators, hence the representation matrices of Sp(2,2)
must be analytic continuations of those of Sp(4).

The representation functions of Sp(2,2) are of interest in parti-
cle physics even if we do not make the physical assumption of a de
Sitter universe, since the representation functions of the Poincaré
group are all asymptotic forms of those of Sp(2,2). E.g., the matrix
tPresented at the Symposium on de Sitter and Conformal Groups,

University of Colorado, Summer 1970.
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elements of a Lorentz transformation along the z-axis in de Sitter
space is an analytic function of the invariant which we here denote

as ®. The matrix elements of this transformation in the Poincaré group
may be found for all irreducible representations as different asympto-
tic forms of the de Sitter function. The different representation func-
tions of the Poincard group cannot be obtained from one another by
analytic continuation in the complex planes of mass and spin, but they
may be found as different asymptotic limits of a single analytic func-
tion, the matrix element of the Lorentz transformation in the de Sitter
group. Thus this latter function constitutes an "analytic medium"
within which all the irreducible representation functions of the Poin-
card group may be connected by analytic continuation and contraction.
Strom3) has investigated the Lie algebras of both the de Sitter and
Poincaré groups and found which representations of the former yield
any given representation of the latter under Wigner-Inonl contraction
and how the appropriate asymptotic limit is to be taken. In the limit
of the contraction the SO(4) subgroup of the de Sitter group passes
over to the E(3) subgroup of the Poincaré group, and so we obtain
representation functions of the Poincaré group in infinite-dimensional
matrix form, with states labeled by momentum and helicity.

In crossed-channel momentum-helicity amplitudes of which we
perform a harmonic analysis by means of these infinite dimensional
representation functions of the Poincaré group, a pole in the complex
mass plane will be given as the asymptotic limit of a pole in the plane
of the complex parameter & which labels the irreducible representa-
tions of the de Sitter group Sp(2,2). strom?) has also found the form
of the matrix which transforms an irreducible representation of Sp(2,2)
from the basis in its maximal compact subgroup Sp(2) x Sp(2) to a basis
in one of its Lorentz subgroups SL(2,c). In the limit of the contrac-
tion, then, this matrix will transform an irreducible representation of
the Poincaré group from its E(3) to its SO(3,1) basis and show how a
pole in the complex mass plane of the Polncaré group generates a
family of Lorentz poles which in turn generate families of Regge poles.
We shall then be able to study the behaviour of these Lorentz poles
for scattering through arbitrary angles. The possibility of such a for-
mulation is sufficient to motivate the study of the explicit structure of
the Sp(2,2) representation functions.

In Section II we shall review the construction of the represen-
tation functions of Sp(4), and we shall dbtain two forms for these func-
tions, Egs. (II.14) and (II.16). Eq.(I1.14) provides us with the most
convenient expression both for the analytic continuation to the Sp(2,2)
case and for the subsequent contraction to the matrix ¢lements of time
translations in the Poincaré group. The analytic continuation of (II.16)
is extremely difficult since prescriptions must be found which specify
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a unique continuation of the (9-j) symbol, and such prescriptions do
not immediately suggest themselves. In order to obtain such a con-
tinuation we shall presumably have to obtain the representation func-
tions of Sp(2,2) in the form (II.14), then apply the Burchnall-Chaundy
identities to obtain the form (II.16).

We first perform the continuation of the spinor basis states for
irreducible representations of Sp(4) to those of Sp(2,2). In so doing
we are given the parametrization of these basis states in Sp(2,2). We
obtain two equivalent forms of this parametrization (Eqs. (III.9) and
(I11.10)), which are given by the two linearly independent analytic
continuations of the hypergeometric function which occurs in the semi-
maximal basis state. These two forms of the Sp(2,2) basis state are
related by unitary equivalence. We then establish an algorithm for the
determination of matrix elements of finite transformations from the ex-
plicit expression for the basis states: We apply an operator of a finite
transformation to the basis state, expand the resulting expression in
powers of the elementary spinors ajl-, then perform the commutations
with the spinors of the final state as if the inner product were being
taken between Sp(4) states. At this point we perform the analytic
continuation in & and obtain representation functions of Sp(2,2). We
must verify that in the limit of infinitesimal transformations we obtain
the correct matrix elements of the generators. Having done so we have
verified the parametrization of the spinor basis states. The parame-
trization of the remaining structural units of the general representation
function, i.e., the four Wigner rotation functions in (II.14), is then
uniquely determined by the condition of regularity at the origin. The
results are expressed in Eqs. (I1I.18), (III.20), and (III.22), which
give the matrix elements of finite Lorentz transformations along the
4-axis in the continuous, positive discrete, and negative discrete
irreducible representations, respectively.

II. The Basis States and Representation Functions of Sp(4)

In Ref. 1 the basis states and representation functions of Sp(4)
were derived by a lowering operator method in the realization of the
Sp(4) irreducible representations in terms of a calculus of boson opera-
tors. The generators of the group are:
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#(E1, - Egp) #(L12 + Loa)
Bz Bl (Lhs + 1ps) +i(lgy + Lpy,)]
Ez1 #(Lyy + Los) - i(lay + 1g,)]
#(Ess - Eas) 2L, - Lea)
~Eas B[ (Los - Lue) +ifley - Lo4)]
=Es3 # (los - Lyg) - i(lay = La)]
/%(Exs +Eap) /E(Lsp +1iLy5)
/%(Eyy + Eg3) Vi(ls, - 11y5)
/#(E15 - Euz) /E(Lys +iles)
/#(Ea1 - Epa) /A (Les ~ilss) (II.1)

where E,; represents a four-dimensional matrix with unity in the (ij)
place and zeros elsewhere. The corresponding generators of the
locally isomorphic group SO(5) are given in the right column.

The irreducible representations of Sp(4) are labeled, in accord-
ance with Cartan's Main Theorems, by the maximal eigenvalues of the
generators of the Cartan subalgebra, #(E,; - E,g) and $(Ess - E,,),
which we denote Tm and A, respectively. We may take o Ap to
be half of a non-negative integer without loss of generality. The
space of the irreducible representation (Im, A ) is reduced by the
representations of its Sp(2) X Sp(2) subgroup generated by the first
six generators in the table above. The representations of the Sp(2)
subgroup generated by & (E;; - Ezz), Ey,, E»4) are labeled by the
angular momentum states IT ,M;>, and those of the subgroup generated
by & (Eas — Esa)s ~Eay s ~ Eus) by the states |A, M,). The states of
the Sp(2) x Sp(2) subgroup which occur in the irreducible representation
(Jm, Am) are those which satisfy the conditions

T Az T+AZT -A 2 [T-A ,  (@2)

where these quantities are all either non-negative integers or half-
integers.

We realize the generators E,, in terms of the boson operators

1
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. P -p
Eij z a; aj i (11.3)
p=1,2
where
-i kq _
[ajp a&] _611( éjﬂ ’ (11.4)
and we define the vacuum states
-i _ k_
3 [0y = (O]a& 0. (I1.5)

In terms of these boson operators the general semimaximal state of an
Sp(4) irreducible representation may be written as

(2]m—2;\m+1) ! (Im+/\m+]-1\+1) ! (]“m+j\m+]+1\+2) 1(2M+1) 1

X
(Im—l\m—I+A) ! (Im+l\m-I-h) ! (21m+21\m+2) ! (Im+[\ —J+A+1) ]

\Im.Am;I.I;A,A)=[

o 8

1
X
(_]'m-[\m+]'+[\+l) | (;rm—/\m+]—/\) ! (]+/\-]m+1\m) 1(2]+1) !]

ay5 Im"'/\m-l -A T+A -Im+Am
2F1(1+/\_Im_1\mlI'A"Im-Am_l'2]‘+2|_a:a_4)(a34) (3-13)
T -A_+T-A T -A_-JHA
@)™ " @)™ ™ o, (11.6)
in which
a, =at
i i
— 2l 22 _ ol .2
ai], =aj aj aj aj . (11.7)

We may obtain the most general state by operating on (II.6) with the
normalized lowering operators:
%

U+MI) ! Lﬂ+Mﬂ) !
20! U~M]) 12n)! (ﬂ—Mﬂ) !]

J-M AM
(Esa) (-Ea) Mx

|7 AT Mpih M, ) = [(

X T oA T JihaAY (1. 8)
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and we may then project out the angular momentum state of the sub-
group of rotations in the dimensions (1,2,3) by means of the standard
coupling:
Z CIALII A_TeMUA M) =T A T,AL, M) (11.9)
M].MAM m’ m’” m' m” * ’
M]+MA=M

The result may be written in the form

(27 =20 +DIT +A_+T-A+D) !
. . _ 2] m m m - m
| AT Mpsh o M=) ), D E[qn—rxmﬂ-rr\)!(z}m-rzaerZ)!
Ja N =Im m1+m2=MI
j2+)\2=Am “1"1-12=m/\

X(Im-r\mﬂﬂ'\ﬂ) LI+ «;ﬂﬂ\") ! (1;n+n m+I+/\+2) ! (Im +Am-I—A) ! (]m+Am—I+/\+1) ! )
0 -A -0 12T+1) H2A+1) !

i
MM

(-1)

(I+Jl "'jg) ) (A+)\.1 -)\2) !

A
J+is=ig )1 Gy +ip =) 1 (G, Hi, +T41) ! (A+x2—x)!(x1+x2-/\)!(x1+x2+1\+1)J

.. j.+m. -m jotm j o=
Bidn T Ae A [ )i fa2)atMe (g2 )am e

C T
my M M be My \ 1 )10, -my) 1%/ \DGz+mg) ! G,mm)t 15

T VI S VP Agtls  ApHp
(@3) @%) @3) @3)
[()\1"'!-11)!0\1 _IJ-]_)!] [()\2"'}-12)!()&2'“2)!]—
A-M L
Ji oed J1 127 Aido A
(-1) ) Y B0 TN ) O oy, St M,
=T m1+m2=MI
Jath 2=Am My t,=M A

(;aa}"f’ml(a;}jfm% ((a‘f)fzmﬂta%}ffma) ((aé)“*“l(a&)“'“l )
Gt 0,-m) 02 7 \[6,4m) 1Go-m) 1%\ [0se) 10y ) 05

Aotz 2 yh o Us
((aﬁ) (3) %) loy . (I1.10)
[0 ) o) 1]
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In order to find the matrix elements of finite rotations we first
note that we may parametrize the general rotation operator as

(R) eﬂ“e(R) - (I1.11)

where (R) denotes a rotation in the manifold of the Sp(2) x Sp(2) sub-
group (locally isomorphic to the SO(4) subgroup of rotations in the
dimensions (1,2,3,4)). Hence we need investigate only the matrix
elements

(T AT M M| olles?) SISO AY:

I :/\,MA> (11.12)

J
where i i
. 50(E1atEs,) =50 (EpatEy,)
oilas® _ 2 o 2 . (11.13)

This relation prescribes that we treat the bosons in (II.10) as forming
angular momentum states in the pairs (af ag) and aP aP). The result
is that we may express (II.12) as

A-M! A-M

). ) ). Yoen My Mo

il

3 . — R ' —
IGT {ﬂ 1:—Im m1+m2—MI mi+mlé —M,f
ISR JTA I-“1"'“2:1\/[]\ U1+H2=MA

/ / i1 iz 17/ A AgA! J1 -y Fig =iz

VY -
%(j1+x1+m1+u1) 30, My -my —y)
d; ,. , 0) dy ,, , -8
207 AL +md ) Rty )@ %62 mln) # 6 pmy ) Y
%(jg-'-)\g-,-mgmg) %(j2+)\.2_m2_u2) ( )
d, ,. , 0) d, ., , -0
562 brmimud )3 gty -1,) @ % 62 fminad) & amhsmyy)

Jp Ja T Xihg A

C C i=1,2. (I1.14)
m, szI ulugMA

30 IA ;IA;jljg) & L4 r o 1
mem My e,

‘We now note that
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o) 6) g i (-0)
B0 fm ) # 0 4m )T TG mi ) #0hm )

LA Ry ‘ - -
fidyrmprmy G mp) B0 -mmuy) K

= (-1) 11 Zc ] X
R AV A ol Ny
K, B0, -njm-uh G\ miu)i
L+ +)\ ~m, -
§ dKi - Cé(ji Aptmo) G m ) K
Y A Ly 4 - s 3 o s
IS A 30,2 #m-u,) 15‘(1jL Apmot) Joh
j!-m/-j +m, ia! K, K, A, K
=(_1)1 i1 12011 i dl’ (6)011 i )
m/u/ mHu! 3l m,u, m,Hi
O L S e T S R T A S (1. 15)

where we have applied the Regge symmetries of the Sp(2) Wigner
coefficlents. Projecting out the angular momentum state of the sub-
group of rotations in dimensions (1,2,3) and combining the Wigner
coefficients into (9-j) symbols we obtain:

, I| 11.4,56| ImAm
(J_.0_:T AL M e T AT, AL, M) =8 (8)
m m m m ]'A';I/\;L
-— ' 'V
S Z z z (2K, +1) @K, +1) FT_A_iT' A3 35)

j1"'7\1'_']'m j{"')‘{:]m K /K
j2+)\2=Am jatng= o

ALK
S s K 25-2i,
Cer+)@A+1)I (i, K ) d (®) da (-9) (-1)
7' AL j{ '7\{ J17h jé ')\é Ja=\2
" Ji M Ky
gumﬁm:m:hjg)[(zlﬂ)(2:\+1]]" Jaha Koy By Bpps (I1.16)
T AL
Yo Y
where the phase (—1)ZJa LE is canceled by similar factors contained

in the monomials . It is interesting to compare (II.16) with the
matrix element of a finite rotation in the (2,4) plane:
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40

iL, '
AL
(J.AL0 .M |e |7.0:L,M) = z 01\{{' M’ M’
- T A
MM =M
M =M
M; M, =M
J J AL
d,”, (G)d ’ (-8) C (I1.17)
My MI M; M, M; M, M

In the matrlx element (II.16) we also have a factor of the form

dh (e)d 2(-0), but the coupling is accomplished not by means of the
Wigner coefficient but by means of the (9-j) symbol. That is, the
(9-j) symbol acts as a generalization of the angular momentum vector
coupling coefficient, in which one column denotes the angular momen-~
ta being coupled and the differences between the other two columns
denote the magnetic quantum numbers. This is a phenomenon of Regge
symmetry and has been observed in connection with the construction
of SU(3) Wigner coeff}cieinti 5)  In fact, Jucys and his collabora-
tors and R. T. Sharp have found the following remarkable
expressions for doubly and singly stretched (9-j) symbols which bring
out their analogy to the (3-j) symbol quite clearly:

a
[ (2a) 1(2b) ! (2d) ! (2e) ! (@+d+bte=~j) | @+d+bte+j+l)!
(2j+1) @+b=c) ! (d+e-f) | @+c+b+1) I (d+f+e+1)]
a+d b+e j

1 2 ¢ f j
X Gat2arl)l @brzer)1J Ca-b d-e atd-b-e ¢ WH-18)
a b ¢
q £ (2b) ! (2e) ! (a+c-b) ! (d+f-e) ! (@+d-h) ! (b+e+h~j)! oo
s (2j+1) @+b-c) | (b+c-a) ! (@+b+c+1) ! (d+e—1) !
h bt+e j 3
(b+e+h+j+1)! ]
(e+f-d) ! (d+e+f+1) 1 (d+h-a) ! @+h-d) ! (@+d+h+1) ! (2b+2e+1) ! s
(—l)x (d+h-a+4x) ! (2a-x)! 1 (b+c-a+x)! (@+e+f-h-x)! %
z x ! @+d-h-x)! (a+c-b-x) ! (f +h-a-e+x)!
c °© ; J ; (1. 19)

a-b-x h-a-e+x h-b-e
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When we consider the fact that the (9-j) and (3-j) symbols have iso-
morphic symmetry groups of 72 elements, it becomes evident that the
analogy between them is quite proi?uﬂd

We note that the function 19 (6) is pure real (pure
imaginary) if A-A’ is integral (half an odd integer). Tt has the follow-
ing symmetry properties:

T A T_A T A
g @) =" @)=s" T (9)=
TP A TAL AT AL JAT AL
Im Am* 27! =27 T Am
=9 (-9) = (-1) 9
/A TNL A INL
]- AI,IA,L ' I .
and the orthogonality property
i T A J! AL %
j‘ sinede 8™ ™ @ 8™ " (0)
T A TAL I'A';IA;L
I I
= " . (1m.21)

1
3 27 m+21\m+3) (21 m—zl\m+1) (2/\m+1) (21 m+2)

III. The Analvtic Continuation of Sp(4) Basis States and Representa-
tion Matrices to Those of the de Sitter Group Sp(2,2)
We now adopt the following notation for the state labels and
invariants of the irreducible representations of Sp(4):

T HA +1=3
m m

Im_[\m ks
J+A+1 =
oA =6
]_MI =P
A-M =Q. (I11.1)
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We may now obtain the spinor basis states for all the irreducible
representations of the de Sitter group Sp(2,2), which is the spinor
covering group of SO(4,1), by the analytic continuation of (II.10) in
the complex plane of the parameter ¢. This is essentially the method
of master analytic representations discussed by Kuriyan, Mukunda,
and Sudarshan, 8 except that we are now treating an explicit realiza-
tion of the spinor basis states rather than their abstract representation.

In order to treat (II.10) as a spinor basis state for representa-
tions of a complex extension of the Lie algebra of Sp(4), we omit the
vacuum state ] 0> and regard the operators al as abstract spinors,
i.e., as arbitrary complex numbers. Simultaneously we express the
generators Eij as

2 b 3

E. - ) TI1.2

ij Eal 3aP (2
p=1 i

in place of (II.3). We must also establish an algorithm for the evalu-
ation of inner products of our new basis states as analytic continua-
tions of the inner products of states of the form (II.10), which we can
evaluate by means of the commutation of boson operators. Our method
will be essentially the following: We shall first determine a para-
metrization of the states (IT.10) such that we obtain the correct matrix
elements of the generators of Sp(2,2). We perform the commutations
of the spinors aJl. in Sp(4) according to the rule

in i’\n’
= !
((aJ.) . (aj,) ) (n)-6nn, by éjj, ; (I11.3)

then perform the analytic continuation in those parameters which are to
be continued, then perform the internal summations which occur in the
matrix element, and obtain the monomial result. When we have found
a parametrization of the basis state (II.10) which under this algorithm
produces the correct matrix elements of the Sp(2,2) generators, then
we have also found the parametrization of the basis state which pro-
vides us with the analytic continuation of the representation functions
(II.14) to those of Sp(2,2). That is, the analytic continuation of the
oF1 functions contained in the Wigner rotation functions is uniquely
specified by the requirement of the regularity of the total function at
the identity element of the group manifold, and that of all other struc-
tural units is prescribed by the parametrization of the basis states.

In this manner we may uniquely specify that analytic continuation of
(I1.14) which transforms this function into the matrix element of a
Lorentz transformation along the 4-axis in an irreducible representation
of the de Sitter group Sp(2,2).
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We note that we may obtain the finite-dimensional non-unitary
irreducible representations of Sp(2,2) immediately from (II.14) or
(II. 16) simply by the continuation 6 - i{, where { is real, - < ( < +w,
Then ¢ is simply the hyperbolic angle which parametrizes a Lorentz
transformation along the 4-axis in de Sitter space. In order to obtain
matrix elements of irreducible unitary representations we must perform
a further analytic continuation in the & plane.

We give now the matrix elements of the generators of rotations
in the (i5) plane, 1< i< 4:

I 2 A%

. . - A
(Eg1+Ez5)| 84;TMAM, ) = -A_ C Mk CMA_% MA-'k

J
T77A JA Ml—i

|ea:7-4 M Ain4, M, &)
T & 7% A & M
B]ACM + M4 CMA 4 M4
|M;I-%,M]-§;A+i, M,

+CJ%J+J; A oE oA
CIM—QM-%M-%M—%

| 8a;7+% ,MI—;‘;A-‘E . MA-'D

| 20748 MEind My B
(14 +Es )| 2:TMpAM,) = CM gl\ﬁé CM gM-é_%

|28:78, MR, M)

{equation continued)
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ol I A+
TA M%M-& MéM+§

HYE .MI+'L‘;/\+Q M, )

T # T+ A 2 A
-D_.C C
TA MI% M]-l% MA;y MA&
l A ;I"'é IM]--% ;A& IMA&>
L _ ] #7% A %2 AR
(B s ~Ea)| 20 IMpinM, ) = POmd Mo Omy 4 M
| 8a I-é,M]'*iH\-%,MA-%)
] &4 A B A
-B_. C C
TA MIQ MI+E MA-é MA—Q
IM;I—LM]&:A&, M, 4
] & T+ AR A%
+C_C C
IATMpE M UMy 4 M A
IMJ&.MI&;A—%,MA—b
T #7144 A ¥ A
'DIACMIQ MI+§ CMA % MA—%'

| 8074  Mosdinsd M, )

(equation continued)



86 WAYNE J, HOLMAN III

- = = ] 2714 A% A%
(Es1 Eg4)|§A,IMI,/\MA) = +AI/\CMI 4 MI_% CMA% MAJ'%
l@A,I-%,MI-%;A-%.MA%>
T % J% A% M
+B.. C G S )
T M % M4 UM, & M4
| MJ-%,MI-% Mg, M )
-q, c] 214 A2 A%
ATM 4 M UM, M
IM,I%,MI—%;A—%,MA&>
T % 74 A% A
+D. C c
IA My & MI—% M, % M
IM:I%.MI—%;A%,MA%> _ (I11. 4)

where

a, ~[Etloinleor-1)n) E
TA (p+5=-1) p-6-1)

B =[m—a+1){@~a+ D(3+6)(A+5) g
JA p+5-1) (p~5+1)

o = [B=8)(@F5+1)(E-5) (r+5+1) 3

JA L lp+s+1) (p-5-1)

1
_ (8 =0) o+A+1) (+ep+1) o=p) f

AL to+6+1) (p-5+1) (It 5)

We have given here the matrix elements of the generators in Sp(4).

We obtain the matrix elements of the Sp(2,2) generators by multiplying
each of the four relations (I1II.4) by i =/ =1, i.e., we multiply the
last four generators in (fII.1) by/ -1, and we identify
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iLK5=LK0, l<kgA4 (I11. 6)

as the generator of a Lorentz transformation along the K-axis. That
is, the 5-axis becomes the time axis in the space of SO(4,1). The
four quantities (III.5) are then multiplied by /=1, and we obtain uni-
tary irreducible representations of Sp(2,2) for the following values
of (3,A):

I. The continuous class:
@ A=1,2,3,...; -%(@+1)>0.
(b) A=’J§:%:—g‘:---? —§(§+1)>%'-
(c) A=0; -8(3+1)> -2.

II. The discrete class:
(a) A=.%:lll%lzl%l~n~; §=A—11A_21--O,0 or "']E-;
AZ—6§@+1
(b) A %111%121%1--°; §=A-11A—21-0-:0 or "%;

A +8 > 841
(¢) A=1,2,3,...: 8=0 (111.7)
The representations II.(a) are designated as positive discrete by
StromS) and 11. (b) as negative discrete.

We must now perform the analytic continuation of the spinor
basis states and verify that our parametrization of this continuation
yields the correct matrix elements of the generators. Let us consider
first the semimaximal state (II.6):

(2A+DIT @ -5 1) (1) o #0) | f )
[m—a) IT (8 —p+1)" (28+1)T (@45 +1) (p+a) L (A+6)  kp—-a=1) ! (p—5) !

(-1)®7 ZFI(—@w.—@-élcp-éﬂl-—li)(alz)w(aw)cp 81, )08 @, P8,
2

a
(111. 8)
We note that we may continue (III.8) in the & plane in either of two
ways. We may use the expression (II.6), in which the 2F1 function
has the form
dyp
e (I11.9)

- -348 |t +1{ = —
oF (-itp, -3 5 | pt5+1| =
or we may reverse the series before performing the analytic continua-
tion in % away from its discrete lattice on the positive real axis., In
this latter case we must replace (III.9) with the expression
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% a
C(a-8+1) o)1 , 212 57 o 24
T(8+6+1) (p-5) ! (- 334) oy (-otp, -2 5o 6+1|-a12) . (II1.10)

It is more convenient to use the form (III.10) and discard an invariant
phase (—l)Q'A before the analytic continuation. This alternative gives
us the basis state (III.8). If we were to perform our continuation from
the expression (III.9) we would find that the matrix elements of the
generators, evaluated for arbitrary complex $, would include a mean-
ingless factor of the sort

2

sin (% - &
[EE?(%,?TEH : (I11.11)

which is simply unity for & on its initial discrete lattice but undefined
for & at an arbitrary point in its complex plane. Hence we use the
expression (III.10) and discard the invariant phase in advance. The
resulting expression for the general semimaximal state is given by
(I11.8).

In order to obtain the general state of the Sp(2,2) represen-
tation (3,A) we apply the normalized lowering operators

1
e ] — - ) = g
|:{(CD t6-1-P) =61 Q)i:\ (E21)P(‘E43)Q (111.12)

p+6-1) P! (p=-5~1) Q!

to the state (III.8). We note that this operator commutes with the
double spinors a; , and az, , so that we have

A-8

@g)" "—

i
[E;D-I—ESO:}.)_FIZ : &}:g:i)—'%; : ] (Ez l)P(_E43)Q(a13)Cp'A - (al )A+6

Qlpts=1-P) ! (p-5-1-Q) ! 3 o [e~0=1\ /P 0
(-1) [&iﬁ-].)!P!&;—;-l]!Q!] z(—l) <

r X y
r,x,y

fots -1 )Ir!(a=s+ ) ! fp-pA-1=<)! 1
(p+5 ~1-r=P4x) Hr-x)1 (A =6 +r-Q+y)!  (p-A-1-r=-y)!

@D T )P @2)" T @) @) O @)

@)PBLry g2y (I11. 13)
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whereupon we expand the double spinors by means of the binomial
theorem:

()P ) (-1)€<
g

d-p-L

@2)° @)ttt

L 1 i
) @)Y @) @2)" @)Y . (11I.14)

@aa)® =Y (1
Ul

n
The resulting spinor basis state may be written as:

. 1 aneesopAy = [ 2AF1) T (B-p+1)T (3-5+1)T (S+p+1)
M) = [80072Q) = | TG T Rw0) v

| 8a T

Llpo+ 1) fo=p=1) 18 -8 oto-LP) L p=5-1-Q) 1" (_, omt+Q
T(23+1)P!1Q!

i (_1)*4"'”@”‘ (ots-1-r)t (A=g+r) !

L @-n) 1 {a-p=2=C) o= +0) 1 (@+8~2) IC InIr Hp+5-1-P-r)l(A=8-Q+r ) !
L

C

3

1
on1or)1 a2 (P eTemee Al | Ol ore-Por|1)
oF, Qo -p+atlir, ~Linln+l, a-8-Qir+l|1)

3+6-1-P-L-r- +P r+ d—p—£, -

(a}) C @)t @)t @)ttt

~8 -Q+HL,+r— + -pA-1- -
(a1)2 8T (3 )HQ oyl o (111. 15)
This expression, then, is the parametrization of (II.10) which we shall
use for the analytic continuation in the complex & plane. We must
establish an algorithm for the evaluation of inner products of the type

(Baxp’8:P'Q"|F| 8A:p6:PQ)Y (III.16)

where F is some polynomial or transcendental function of the de Sitter
group generators {III.2), and ¥ is taken at an arbitrary point in its
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complex plane. We do so by first performing the operation

I-‘I A ;qnG;PQ) , writing the result in an expansion in powers of single
spinors aj, then commuting the spinors of the initial and final states
in (III.16)j as if 3 had its Sp(4) values, i.e., according to the rule
(I11.3), then performing the analytic continuation in ¢ back to our
chosen point in its complex plane, then summing the internal series
which remain after we have eliminated the Kronecker delta functions
&+ which result from commutation of the spinors and which are
indicated in (III.3). In case the power n in (III.3) involves +§, as is
the case for the powers of aj and a3 in (IiI.15), then the Kronecker
delta 8.,/ in (111.3) is to be interpreted as § . We shall form
inner products of the type (III.16) only when%o%ﬁ 1n1t1a1 and final
states have the same values of the invariants & and A.

When we perform the summations which remain after the eli-
mination of the Kronecker deltas, we will in general find that some
will be divergent. These may always be regularized by application
of the identity

1
P(p) Clg) _ p-1. .,a-1
o) {)dt tT T (1-t) . (I11.17)

with substitution of the appropriate Pochhammer contour for the line
integral on the right, then performance of the summation before the
integration.

With this algorithm we find that we obtain correct matrix ele-
ments for the generators of the de Sitter group; hence, necessarily,
the correct matrix elements for finite transformations. The condition
that we obtain correct matrix elements of the generators determines
the admissibility of a parametrization of the basis state (III.15), and
the parametrization of the basis state determines a unique analytic
continuation of the maitrix elements of finite transformations, since
we must apply the condition of regularity at the origin to these matrix
elements.

We obtain, then, the matrix elements of Lorentz transformations
along the 4-axis:

. r_r_
<M;cp’6';P’Q'|e1L°4g|M;cp6;PQ> = (—1)6 AR

(2p+] )IP(@—m + 1) (8-5"+1)
h-5")1{p+5")! X

T34/ +D)T @+ "+ 1) (0" ~pA-1) 1" +8 ") (" -6 ") (o "+8 '~1-P)I’'-8 '-1-Q
b’ +A) IT(28+1)P7 1Q" ]
(equation continued)

ny &
)T
]
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r
(-1)" (/6 =1=r") 1 (A=5"4x") !
7 )" T =’ ) IT (@ ==t "=zt +1) (p /=6 "+ 1) 1T (848 =4, "+1) fp—cp "+z—x )1
rxz
Llrix?
1

! +8'~1-P’r")1(a-8"-Q"+r") L (p’ -A-1-r")!
3Fz(_PI '_rl ,_§+Qp+&'+z—xl |Cp-cp'+Z-X'+l, Cpl+6,_PI-r’ I 1)
3F2(—Q' s’ FAHLHY , —p ! )M 4L, A-8-Q 4t +1| 1)

T(348 "p*ep=P " rz+x’) (A8 Q-+ +r %) p~c0 ~P 4z ~x )1 (x+Q) Hep=co 4r %4z ~x *)!

(Q"+5 Q-8 -4 —r'+x o +rx)Q-Q Hx=x) lp~op ~r+x+r=x Nt -x -4 tx ') !
7 ol . ’_
(o=t ~1-r450) ID (8 p2 z4x"+1) (L -x) | (cosh 5) 2T ¥8 +O 7@ =20 720

__r_ _op 2

.1 (-048 +Q7 -1 ~r4x" 848 '~P Hp -4 -1 -z 4x |

| 6 4Q"-5-Q-1 '~ +x "+ +r-x+1| ~sinh? % )
Fp(x"-Q’ wp=p P Hz-x/+1| Q-Q +x-x"+1| ~sinh? % )
oFp (o +a+14r x" yp—op '+t Hz—x"+1 {ep=ep/+r f-x '~r4x+1] ~sinh? % )
21‘=1(—x;'+x' (Bt -z 1| 4 - x4+ -sinh2 %)

r lots-1-r) 1 (A-5+r)!
K =N (@=L ~2z+%+1) =8 R )T (3+8 -2 +1) (z-x)!r ! {p+5-1-P-1) !

(-1)

1
(b-6-0) p-a-1-11 352

(-P,-r,-8+pHi+z—x| z-x+1,p+5-P-r| 1)

F2A+L) IT (F=p+1)0 (B-5+1)
L (a-8)!(a+s)!

3Fy (-Q ~p+a+14r, -2 +x|x+1,A-5 -Q+r+1]| 1)

T (@+o+ )T (8+8+1) (p=A=1) ! kp+8) (p=3) fp+5-1-P) ! (p=5-1-Q) ! ]%_

+A) IT (23+1)P1Q! (I11.18)
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We now find that the sum over z asymptotically approaches the form

of a divergent generalized hypergeometric series of unit argument.

The sum over 4 {¢’) is convergent for finite ¢ and fixed £’ {¢). For
infinitesimal ¢ the sum over £’ is eliminated by Kronecker delta func-
tions of the form & The remaining sum over 4 is diver-
gent. We may remove the éivergences very simply by making the
replacements

-1 (&) (1+)

s
= ] - -
1 _1)"rle du u d+p+L l(l_u)é-cp

@-x)1(z-x) IT (3 —p-t-z+x+1) ~ 2mi{L- )!T(@—cp+1)'ro

(- l)z = e_m@_(p_“ ‘f‘l-’c-i) ~3+ep L +z-x~1 (l—t)é-w £,

Cud 5 (ITI.19a)

I » ’
I ) (1)*‘ e i (@-p’)
(0 =x"Mep—prz—xNT (3—p~t ~z4x 1)  2mi(t'-x") I (@—p"+1)

(1+) Yy ’ p-p+z=x" ~im(3-p’-L)

C gt -1 B! (<1) e

Jodu u (1-u’) e
(14) - ¢ r_ 1_pt
[ U AR ) L (III. 19b)
(o]

We perform first the sums over x, x’, r, and r’, which are all finite,
then the sum over z, then the contour integrals over t and t’, then the
sums over £ and 4/, then the contour integrals over uand u’. In
(III. 19) all the contour integrals are taken as starting at zero, circling
unity once in the positive (counter-clockwise) direction, then ter-
minating at zero. Other replacements of factors with Euler-Pochham-
mer contour integrals which achieve the convergence of all series in
(III. 18) may easily be found.

We may perform the analytic continuation of (III.18) to the
representation functions of the positive discrete series (A > 2 -6z
$+1> lor %), obtaining in this case
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i ’ T L Y
(anip’ 8% :0° Q" X046 [aa 1 :pQ) = (-1)F TLHE (B HpHpb)-

(A+L=5"+8) Lo’ +8) ! (pA-1)Mep ™6 Vo’ ") o'+6"~1-P W "~5 '—l—Q’)!]%
(h=5")1(a+6")! (-8 "-3-1)1p ™2 -1)1Gp "+A)(28)! P/ 1Q"!
L S
) il )
o °  Zxx!

I
(1) @o+5%=1-x’) 1(a=5"+r") I (-5'=8-1+2") 1
xI 1@ - ) L -8 407 ) 1! L +8'=1-P ") 1 (A =8 '~Q 41" ) | (p’~A=-1-x") !

31=2(—P' , !, =t Hzx! oo +z-x"+1, 0’ + 6'-P' /| 1)

3Fo Qs o+l M4’ |x'+1, a-8'-Q"r’+1| 1)

(A=6=Q++r=x) Mo—n /1P +z-x") | (x+Q) ! (o~ "+r'+z~x") |
(p=p'+z—x") 1(-6"-8—p +p+P 4t Hr'+zx") 1 Q46 Q-6 - "l 4p +r-x) |

lp~A=1-rt+x)!
(Qtx-Q'-x") L lp—p r+x+r -x) I (L -x-¢"+x") |

(cosh g_)z 8+6 '+8—p ' —p~24"-22
2

_, r_ _opt

2F1 (_A+6 I+Q '~J{,’—r'+x' , §+6 I_Pl_l_cpl_cp_*ll_rl_z_l_xl

|6'+Q'-6 -Q—{,’—r’+x'+1t,+r—x+1| -sinhz 52- )
2
2I-‘l(—x'—Q' , @t +P +z-x'+1] Q-Q'+x-x'+1| -sinh %)
2I—‘l(-cp'+A+1+r’-x’ . ptp’Hriz—x+1 - Hr ' -x-r+x+1| ~sinh® %)

oF1 (-2 %4x!, d—p—-2 ~z+x"+1|L -2 ~x+x"+1| ~sinh? %)

(equation continued)
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31:‘2(—P,-r,—§?+tp+)(,+z-:>c| z-x+1, p+6-p-r|1)

3Fp Q. pra+14r, -p4x|x+1, A-5-Q+r+1| 1)

(—leJrTH’ t_§+°p+&+z_x_1( l—t)"@ -CP-L(—H =8-+0= 1) fpt= L=r) (A-8r) (= S +p+a,-1) |
X p=5+2) Ir ! (p+5-1-P-1r) 1 (A =6 -Q+r) H p-A-1-¢) !

(24+1) 1(8-5) L (p+8) ! gp-A-1) L {p+6) (o=6) (p+5-1-P) ! (p-5-1-Q) ! s
(a-8) 1 (a+8) ! fp+A) ! {p-3-~1) 1 (-5-8-1) ! (23) IPIQ! ] !

(111.20)

where the order in which summations and integration are to be per-
formed are explicitly indicated. We may observe that the condition
for the convergence of the series

o Fp (-840, -3-8 |@-6+1|1) (II1.21)

is that Re (&) > -&; hence the sum over z is the only one which we
need to regularize by means of an Euler-Pochhammer contour. We
consider the discrete representation ¢ = -2 to be merely the limit
point of the continuous series of representations & = —2+ip,

-0 < p< 4o,

The negative discrete series (A >8> &+ 1> 1 or %) is most
conveniently obtained by use of basis states expressed in terms of
the hypergeometric function (III.9) instead of (I1I.10). We obtain
the result in this case:

(805 0’8" ; P1Q |elT04C an; gb; PQY = (-1) P BT ot HQIEH

g oot eliesenie ) 6t 6 )
L 2m L. A+ )-8 ) +a) (6 -8-1)!
L'r'er zx?!
1 P !
' 45'-1-P) 1 fo'=8'-1-0") 117 (<1)* % ot l=1-r’) 1(a=5"4r")1
bp’-3-1)1(23) P’ 1 Q! x' 1"+ +07) Lep'+p -1-r"-P") Ir" |

(=845 +2 -1) ! (=34 "+ /-1) | | \-B+pHh/+z-x"-1 -’12’
(A—6'+r'—Q')!(cp'—A—l—r')! (t) (l‘t)

3F2 (_{’I+xl , _PI ; -r’lx'+1, cpl+6 I_rI_PI | 1)
3F2(-@+cp+)z,'+z—x’ r Q7. ~pHAF1H! |p=p Hzx+1, A-6"4r/-Q7+1] 1)

(equation continued)
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o 46 P4 —r'—x"-1) 1 (x+P7) 1 (QF+z=x) | (0 “+x) L (p=p -1 -r+z-x) |
(=8 -A+p+o+Q P -r+2-x-1) 1 (Q'~Q+85 -8 "+ -r "% '~L+rx) | (P/~P+x"-x) !

1 G\ =28 +ptp+8+8 +20 428
P 1@ =) cosh )
(sinh g_)cp'-cp+6 -8 '+24-24,
2

zFl(-Q'—cp-ltp'-z+X' , Plx/+1| P/-P4x/-x+1| -sinh2 %)

oFq (F3-DpHd QM -rrz-x’, o'+ -PIHLrf-x!

| Q7-Q+6 =5 "+ '~ —x '~ +r+x+1] ~sinh? %)
oF (cop#p+ldr’-zdx", r’+x'+1lr’+'x'—r—x+l|—sinh2 52_)
zFl(—@—i-cp+L’+z—x’ . zt,’—x'+1|/t,’—x'—J(.’,+x+1l—sinh2 %)
5Fp(-24%, =P, —r|x+1, +6-r-P|1)

3F2(-—§+cp+)f,+z—x, -Q, —p+a+lir|z—x+1, pA-8+r-Q+1|1)

(=1)* Go+5=1-r) I (A=5+r) ! (=d+5+0-1) !
x!-x) ! (z-x) Lt +) L ip+6 -1-1-P) Ir L (A -8 +r-Q)  kp-A~1~1) !

(2a+1) 1 (5+8) L (p+8) L (p-A—1) ! {p+6) (p~5) fp+6 ~1-P) | (p~6-1-Q) ! ]%,
(a=8) 1 (n+8) Hip+n) 1 (5-3-1) ! (p-3-1) ! (23) IPIQ!
(111,22)

In both (III.20) and (III.22) we have defined our phases simply by
straightforward application of phase conventions in Sp(4), inverting
the gamma functions wherever necessary.

We use (III.18), then, for the representation functions of the
continuous class, & = ~3+ip, -» < p < +o for the principal series,
and 3 = -% 40, 0 <0 <2 for the representations in the supplementary
series £ > -3(3+1) > -2, We may then study the forms of this function
under the Legendre reflection & = -¢-1 by applying the Euler transform
to the hypergeometric function in the basis state (III.8):
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Qa4 a,pt a5, 2%+l
oFq (80, ~2-8|p-6+1] -gl:) = (T)
Qaq
,Fq(8~8+1, B4p+1| -0 +1| _E)
a
-28-1 85
= (a,5) s F,(3-5+1, d+p+l|op-s+1] - —) .
271 a,
(111.23)
We may set
25+1
@12 *aay) o, (I11.24)

since this combination of spinors is invariant under all the generators
of the group. We may then apply our algorithm for the construction
of representation functions from spinor basis states to determine the
resulting form of the matrix elements.
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ON THE INDUCED REPRESENTATIONS
OF THE (1+4) DE SITTER GROUP
AND THEIR REDUCTIONS+

Staffan Strom
Center for Particle Theory
Department of Physics
University of Texas at Austin
Austin, Texas 78712

I. Introduction

The present contribution to this symposium is aimed at giving
a survey of those aspects of the representation theory for SOg(I,4)"
which are obtained from the induction procedure. 1In the course of this
survey we will advocate the use of a 2X2 quaternion-matrix descrip-
tion of SO,(T,4). This will allow us to display the induced represen-
tations of a group of 2x2 quaternion-matrices, isomorphic to SO_(1,4),
in a way which is very similar to the SL(2,C) description of -S@TJO(ITHT:
A restriction of the quaternions to complex numbers will give us the
corresponding SL(2,C) relations. We will construct the unitary repre-
sentations of SOo(L,4] belonging to the principal continuous series in
a form where they are explicitly reduced with respect to a maximal
compact subgroup. A more general reduction procedure from the theory
of induced representations will then be applied to the problem of re-
ducing the previously constructed representations with respect to
representations of a noncompact subgroup, isomorphic to 505(T,37, a
reduction which has obvious applications in the theories which use a
global SO, (T,4) space-time group, replacing the Poincaré group.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,

+We denote by m the universal covering group of the group
SOy(1, n) of rea) linear homogeneous transformations of [ S .xn}
which leave the quadratic form xj - x,%-...-x” invariant and which
are continuously connected to the identity. Similarly SO (n) denotes
the universal covering group of the identity component of the n-
dimensional rotation group SOq(n).

97
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In Section II we briefly review some structural properties (of a suffi-
ciently general class of Lie groups) which will be used in the con-
struction of the induced representations. In Section III we introduce
the quaternion matrix group and in Section IV we give some details of
the induced representations of SOg(l,4). The alternative way of de-
composing the representations is given in Section V together with the
transformation connecting the two basis systems involved.

II. Some Structural Properties

In this section we give a brief review of those decompositions
of a certain class of groups and their Lie algebras which are of rele-
vance for the induced representations. The structural properties of
SODII,Bi and SODII ,4) which we will need are actually only those
which they have in common with a much larger class of groups.
Therefore we let, for the time being, G denote a real, connected
semisimple Lie group with a finite center and we introduce the follow-
ing notations:

3: The Lie algebra of G.

K: A maximal compact subgroup of G (all maximal compact
subgroups in G are conjugate to each other).

k: The Lie algebra of K.

K(X,Y) = trace {ad X, ad Y} (the Killing form), where ad X,
X € § is the transformation defined by ad X; Y ad X [X,Y] forall Y € §.

D: The set of all X € § such that KX,Y) =0 forall Y € k.
We then have the following properties: (@ denotes the algebraic
direct sum)

3=k ® P (the Cartan decomposition). (11.1)
X#0,Xek=KEX,X)<0. (I1.2)
x#0,Xep=KEX,X)>0. (11.3)
[k,p1<p (The "k-vector" property of the

elements of the set B.) (11.4)
(8,8 c k. (I1. 5)

We further introduce:

d: An abelian subalgebra of § which is contained in P and
which is maximal among those having these properties.
'éa: The set of all elements X € § such that for all h € & one
has [h,X] =a ()X ({i.e. the "root" a(h) is in the dual space of & and

it is independent of the elements in §%).
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We then have
1, 5™, (11.6)
atg = 0= KE, §) = 0. (I1.7)

which are the main tools used in proving the various decompositions
mentioned below (note that we are here considering real Lie algebras;
notable differences between the roots of real and complex Lie alge-
bras are (i) if a # 0 is a root, 20 may also be a root, and (ii) the mul-
tiplicity of a root & (i.e. the dimension of §%) can be greater than
one). The basis of the decompositions used in the construction of the
induced representation is the result

O

g=) @3 (I1.8)

Q |~

and we therefore consider it in more detail. It is easy to show that
~0 ~ ~ ~ ~0 ~
g =a ® m wherem=g 0Nk,

In order to simplify the following exposition we now restrict ourselves
to the case of SO,(1,n)f. Then it is easily seen that & is one-dimen-
sional (P is then spanned by the n "accelerations," any one of which
can be chosen as 8) and consequently the roots are just numbers. We
introduce

i.e. (II.8) now reads

o7 RN ~ =

§=n®38 & i ©fH . (II.9)
The root property (II.6) furthermore gives

~ ot - ot
(m,an]jci, [a,ni]Cn

+We do this only in order to avoid the more involved definition of
"positive roots" in the general case. In fact, many of the properties
given below for SOg(1,n) are also valid in the more general case
considered up to now,
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FT-iFeoisen (11.10)
is a subalgebra of § and &t is invariant in fi (actually 'ﬁi are nilpo-
tent and 8 @ ht are solvable, facts which will not be of immediate
use for our present purposes). It is easy to see that the structure of
the Lie algebra of SOoll ,n) can be summarized in the following way:
i) 8 is a one-parameter Lie algebra.

il) 1 is isomorphic to the Lie algebra of SO4(n-1).

iii) % are (n-1) parameter abelian Lie algebras.

iv) The roots are +1 with multiplicity (n-1).
The last two properties are clearly demonstrated e.g. by the following
choice of & and of bases in i ¢

~ _ ok ok .
8: Ay =ejgteg i Nim=etep + (e -ey)
i=2,3...n
where e,, is the matrix e., = {8ij}.

i ) i
]iesides the aboveJ mentioned decompositions of § we will also

make use of the Iwasawa decomposition
6o ~F .
g=h ®ad®k (I1.11)

which is easily derived from (II.8). Concerning the corresponding
decompositions cn the global, group level we will need only the fol-
lowing result: (II.11) has a complete analogy on the group level, i.e.
we have (A,Ni,M,Ti are the groups which have &,%f,[,T as Lie
algebras)

SO_(T,m = N'AK (where K =50_n)) (II.12)
whereas (II.9) can be used to derive that the set of elements
g=namn”, neN", meM,aca (.13)
form an open dense set in m . In the next section we will give

the quaternion matrix form of the decompositions introduced above, for
the special case of SOOZI,Zi .
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ITII. Quaternion Matrix Description of SOnfl L 4)

The SL(2,C) description of SO,(1,3) is widely used and appre-
clated as a simplifying device for performing explicit calculations
concerning 80011,3). The possibility of using an analogous 2X2 qua-
ternion matrix description of SOo(l ,4) seems to be less widely known.
By giving the relevant formulae in a form which is closely related to
the SL(2,C) formalism for SO(1,3) we hope to convince our audience
about the advantages involved.

Let Q and R denote the real quaternions and the real numbers
respectively. For an element x € Q we write

X =X +Ix; 4 jxa +kx4inER

where ij = -ji =k etc. 1? =3 =k® = -1. Tt will be convenient to
use the notations

X; =X, - ix, - jxs - kx,
® = -ixj =x, +ix, - jxs + kx,
x| = &-)?

and we note that (xy) = y+x,&y) = vexx -yl = x| ]y]: %,y €Q.
The set of matrices f of the form

()

- -~ o . ~
&y = @y), Bs = (Bs), a6 -vB8=1 (1I1.1)

can be shown to form a group which we will denote §. 1) According to
(III. 1) we have imposed six real conditions on the original sixteen
real parameters in 7 i.e. G is a ten-parameter group. Consider
furthermore the real linear homogeneous transformations of the real
variables x5, Xy .. .Xs induced by/ € G according to

where a,,B8,v,8 € Q satisfy

xe’ =7X/T (I11.2)

where
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xo-l-x3 X —ixg -kxy

ko]
]

(111.3)
Xl +iX2 +k}{4 I} XO-X3

and
(.=
7 'rs Fsr

From (III.1) it then follows that this transformation leaves the quadra-
tic form

X2 =xXP= ... %2
invariant and just as in the case of SL(2,C) and SOOZIV,SS one finds
that G is isomorphic to SOOII,?H . By omitting the coordinate x, and

restricting &,8,v,8 to complex numbers we get back the usual SL(2,C)
formalism. We may remark that if

gt g § )
(nl) _/(n) €,E8%,n./m €Q, 76 G

gt - el =En -ng .

it follows that

a relation which is reminiscent of the local isomorphism between
SOo(1,4) and Sp(1,1).2)

By considering similarity transformations C G C™ of G with
nonsingular quaternion matrices C we can obtain other realizations of
800(1,4) . Here we mention only one such example: the choice

]'l —j

cws(%ﬁ( )
_J' 1

gives the group, denoted G, of matrices
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where
ab=cd, |al?-|c|?=1, |d|?- |b|?=1

In this case, one considers the transformations

g ‘
X=X’ =gxg;'r
where
% , X
- o]
X=CXC = X €R, x€R .
X 2 X

(o]

The realization G is particularly conveni?nt if one wants to make use
of the SQ(3) x SO(3) structure of SO(4).1

The subgroups mentioned in the previous section have the fol-
lowing realizations as subgroups of G: we start by choosing G as
the group of accelerations in the 3-direction, i.e.

et/z

o 19
0 2 eft) = t€R
0, e—t/z
Then o
u , 0
m 2w = u €U where U is the
0 , u setofxEQwith|x|=l.
i)
+
N5 2 )= HEZ
0 1
1 0
N> (2) = Z €7
Z 1

where Z is the set of x € Q for whichx =%
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=N

XoL= where|r|3+|n|2=1,nf=m

r o n

The general result that the elements of the form (II.11) form an open

dense set in the group can inthe present case more specifically be

farmulated as follows: all 7= L g with 8 # 0 can be written
Y

+ -
7 = 2 (W) elt)rer (z).! We note that a first step towards this decom-
position is obtained as follows

[0} ’ 8 8—1 7 B 1 r 0 + -
= . =T
Y , 8 0 ; 8 5_1Y ’ 1
where # €Nnh” and T € II+ = h+(ITn (6*y € Z as a consequence of
the conditions (III.1)). Again, by restricting the quaternion matrices

to complex matrices we get the familiar analogous SL{2,C) decompo-
sitions.

IV. Induced Representations of O

We start by giving a short review of the main steps involved
in the construction of the induced representations. For further mathe-
matical details we refer to the very readable survey given by W. H.
Klink3) and to the original work of Mackey.4)

The representation space will be a certain function space.
What are the natural candidates? Obviously various spaces of func-
tions defined on the group constitute such candidates since then the
operators representing the group elements are naturally defined (by
left or right multiplication of the argument). However it is obvious
that by taking the space of all square integrable functions f(g):

(£, = [ |f@)|?dag < = (v.1)
G

and defining the group transformations by multiplication of the argu-~
ment we would arrive at a representation which is not irreducible (the
left or right regular representation). Our aim is to construct unitary
irreducible representations (UIR's) and we could now proceed in two
different ways: one would be to try to reduce the regular representa-
tion into its irreducible parts; another would be to make suitable res-
trictions on the function space from the beginning, while retaining the
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desirable feature that the functions are defined on the whole group,
and thereby try to obtain irreducible representations. The induced
representations may, for our purposes, be looked upon as an elabora-
tion of this second approach (cf. the earlier development of the theory
of multiplier representations by Bargmann®) and by Gel'fand and Neu-
mark® ). We note in passing that the first approach would take us
out of the framework of the induced representations: in the reduction
of the regular representation into irreducible parts there occurs repre-
sentations which are not realized as induced representations (the
discrete representations).

In the regular representation we have in the scalar product
(Iv. 1) the ordinary preduct f (g)-f(g) of the functions. Consequently
this product varies over the whole group. We could then say that our
problem is to find a product other than f -f, which is a function over
some set which is smaller than the whole group while the functions
are still defined on the whole group. One way of achieving this is
the following: consider a (closed) subgroup H of G and a UIR pl) (h)
of H (h € H) and consider functions f(g) which satisfy

f(hg) = D(“)(h) f(g), heH, geG (Iv.2)

(sometimes called the covariance condition), i.e. we then ass?m}e
that the (f(?)'s are vector functions in a representation space H'%
1

where DY (h) is realized, i.e. in more detail (IV.2) reads
)(hg =Z' ( )(n) (h) f(n)(g) (IV.3)
(n)

where (m)((n)) is t]}e set of indices which characterizes a basis vec-
tor for the UIR D¢ (h), characterized b¥ the set of indices (a).
o)

DE”“)J( )(h) are the matrix elements of D\®/(h) in this basis, The scalar
m) (n
product in H{ @)

(@), Py, =) Ta@ £,,0 . (1v. 4)
(m)

From the unitarity of D( )(h) it follows that (f* (), £° (g))(a) depends
only on the right cosets in G with respect to H:

(fl (hg) ‘ £ (hg)) @) = (fl (9), i (g))(q)
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In the above D(a) may be finite- or infinite-dimensional. However, in
OLkr application we will only consider the case of a finite-dimensional
D c) We then define a Hilbert space }C(OL), later to become our repre-
sentation space, by completion with respect to the scalar product

.= @, (g))(q) du(z) (1v.5)
H\G

where du(z) is the quasi-invariant measure (i.e. it sends sets of
measure zero into sets of measure zero; it will be enough for us to
find one such measuwre cf. e.g. Ref. 4; on the set of cosets. We can
now define a unitary representation pla (g) of G on 3@) in the follow-
ing way:

(@) _ 5
8% (g) f(go) = (z,9) (g 9) (Iv.6)

where z and g, belong to the same coset and where o(z,q) is the
function which appears in the transformation of the gquasi-invariant
measure du{z): multiplication from the right with the element g € G
induces a transformation

22 2’ (q)
in the set of cosets and then
du(z) = du(z’(g)) = o(z,9) du(z).
It follows that s(q)(g) in (IV.6) is unitary. The group property
8“6:) 8%g,) = 8% 6,6,
requires that o(z,g) satisfies (the "multiplier condition")

0(z,9:92) =0(z,9,) oz’ (g,), 9) (v.7)

a relation which follows from the very definition of the cosets of G
with respect to H. The representation o () (9) obtained in this way is
called an induced representation and it is said to be induced from the
representation D%/ (h) of the subgroup H. We note that in the above
procedure the choice of H and du(z) fixed the general framework but it
does not provide us with numbers which characterize the representa-
tion. These numbers, i.e. (0), come exclusively from the covariance
condition, i.e. the choice of D) (h). By choosing the subgroup H
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"sufficiently large" we may hope to obtain a representation (@) (g)
characterized by "sufficiently many” indices (1) so as to ensure its
irreducibility.

We now consider the class of groups SO il n) treated in Sec-
tion IT and choose H = Tt = NtAM. We define the principal continu-
ous series of representations of SOg(1,n) as those which are thainecl
by mducin% from T+ and by choosing D(fl} i+ = D) @) DO2)(m)
where D o (@) and D ap)(m} are arbitrary UIR's of and M res ec-
tively (we recall that Nt is invariant in T, i.e. p@1) @) plos (m) is
a UIR of T1). We note that D “‘1}(a)D(‘-"-z)(m) is finite—dimensional and
the index (,) characterizing the UIR's of the abelian group A is "con-
tinuous, " hence the name.

The coset space of interest for the principal continuous series
of representations is thus Ti'\SOOU n). From (I1.10) and (II,11) it
follows that TH\SO 11 n) is isomorphic to M\ ¥, i.e. it is compact.
Furthermore, according to (II.13) there is a one-to-one correspon-
dence between "almost all" elements of TT\3 Ooil,ni and the elements
of N7, i.e. we expect a compactification of N~ to be isomorphic to
TS0 il n) (cf. below). From now on we restrict ourselves to the
case of il 4) and we use the notations of Section IIT. There is
then a one-to one correspondence between the elements of N* and Z
and we simplify the notations slightly and use p and z to denote both
elements in Z and the corresponding elements in h*and n~ respec-
tively. The observation that we can describe the coset space of in-
terest as W \¥ is important since in physical applications we are in-
terested in decomposing the representations with respect to UIR's of
X . The realization of 3"'\(} in terms of Z is, however, most conveni-
ent in some contexts and therefore we will develop both to a certain
extent. We therefore now consider in some detail the various steps
involved, for the case of the group G, in the construction of the prin-
cipal continuous series of representations (further details are found in
Refs. 1 and 7).

An explicit formula for the transformation of the cosets under
multiplication from the right is easily obtained by considering the ele-
ments z € N~ as representatives of the cosets. If

7= <‘1 B> with 6 # 0

Y 8
and if we introduce the notation
zg = T(z./) where Z,2.9 eEn”

it follows that
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z.g = (2B +3)7 (za + ) (Iv.8)

which should be compared with the corresponding fractional transfor-
mation obtained in the case of SL(2,C). Note, however, that the order
of the quaternion factors in (IV.8) is important.

Consider next the description of 3*\G in terms of W\G. This is
obtained by considering elements £ € X and z € n~ which belong to the
same coset with respect to 51, 1.e. % and z for which

. R=T2 . (Iv.9)
Obviously all other elements in ¥ which differ from % in (IV.9) by a left
factor~z€  also belong to the same coset as z. The relation (IV.9)
can be used to obtain the desired relations, for any suitable parame-
ters in m\¥, which correspond to (IV.8) (cf. Ref. 7). We denote by
du(k) and du(m) the normalized invariant measures on X and h respec-
tively. Then du(k)/du (72 is a suitable quasivariant measure on m\X
and by direct calculations one finds

du ) = du(z) du)

where
_4 dz
du(z) —sz.(].'l"z :sl)"é (IV.].O)
(i.e. j' du(z) = 1; actually we compactify Z by the addition of a point
h—
Z» corresponding to 718 with 8 = 0. Since

(o A < 0 1 8
v 00 k1 , of €3

these elements constitute only one coset). Since du{) is normal-
ized we can therefore write

] o) dute) = [o(p) dut) (Iv.11)
n- X

ifcp(/) is a class function with respect to !I+: cp('rf) =Lp£y), TC ‘J+.

We also need the transformation properties of the measures.
They are most easily expressed in the Z-formalism: from (IV.8) and
(Iv.10) we get immediately

du(z.2) =o(z.2) du(z)
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where

L+ |z]° ]a (Iv.12)

O(Z/) _I | zaty |2 + |Zﬁ+61_3

Our representation space is to be constructed from functions
in a representation space for a UIR of m*(G. Since A is one-dimen-
sional and n is isomorphic to SU(2) the UIR's of G+M are characterized
by a, = p and o, =4 where p is an arbitrary real number and £, is a
non-negative integer or half-integer. Thus we shall consider vector
functions L with components ?;n,m=—& . A+1...4-1, &, which satisfy

!
ffn(T/) = ¢ift ) Dfnn(m) fﬁ(/) (IV.13)

n=-4

where 7 = uya(t)»z and Df’nn(//z) are Wigner matrices, and we write

£ —
A e
€1y =)

m

m=-{,

he representation space for the representation (p,t) is de-
noted 3P +4) and it is obtained from the scalar product

O T A 7 P A ) MY
Z

From (IV.11) it is clear that I}C(p’{’) can equivalently be characterized
as the Hilbert space which has the scalar product

27 £
(", t >=3rﬂ(ft</>,f (PN yy @) (Iv.14)

A unitary representation (p,4) of G is then defined in }C(p’{') by

RV ARN T P A P B R

It can be shown that for p # 0 and 4 a non-negative half-integer and
for p arbltrary real and £ non-negative integer, (p,4) is also irre-
ducible.!) The representations {p,2) and (-p,4) are equivalent.

In physical applications the decomposition of (p,%) with res-
pect to UIR's of ¥ is often of immediate interest. We consider this
decomposition in some more detail. It will then be convenient to
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rewrite (IV.15) in a form where only functions on X appear. We write
8 (f) to denote that § is the (22) element of and we use & (g) to de-
note an element in ¥ which belongs to the same right coset of G with

respect to 3% as 7 i.e.if g=rz thenﬁ(f) =1'z. Using

a B
|5 pa= 17 = [v[*+ 1512, f=< )
Y &
and (IV.12) the defining relation (IV.15) can be rewritten

(0.2) LA A

3

fn(fof) (v.16)

Fo =702

Next we choose a representative gg = ?to € X and in analogy with the
notation z. d7 introduced above we write fi (&09) = *‘o-f l.e. kg g =

Ty _9) and & is defined only up to a left factor #z¢ . Further-
more if T = ua?t)/m we write t = t(r), ##=#¢{r) and also in general
t= t(7) if g= Ma(t)s, & € X. Then

_t)
15()] = 16 Geeett))] = |602)| - |62tt)] =[5 (elt))] = °
With these notations and using (IV.13) we get the following final
expression from (IV.16)
P m ) =1om gk, .91 3
i Dﬁmw;(ho?(ﬁo.y)_l)) ffl(ﬁo.y) (v.17)

n=-{

which explicitly defines the representation (p,%) on functions defined
on ¥. The indefiniteness in the element £ ..¢ was a left factor 22€ .
Equation (IV.17) still defines (p,%) uniquely: from (IV.13), the repre-
sentation property of DY (72 and the fact that |ﬁ 9] =1 itis easily
seen that the r.h.s. ofrrt?\/ 17) is independent of the choice of fig
The UIR's of ¥ can be characterized by two numbers p and g

which are both integral or half-integral and where p = |q| . The re-
duction of the representations (p,2) with respect to UIR's of ¥ is well
known.8 According to Ref. 8 the representation space }C(p'*f) can be
constructed as an infinite direct sum of representation spaces 1 (p,q)
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for the UIR's (p,q) of X, where p takes the values 4, 4+1, £4+2,...
and g takes the values -4, -4+1,...4-1, 4 for each value of p and
each representation (p,q) occurs with multiplicity one.

In our realization of 1\P %) the spaces }C(P'Q) are spaces of
functions defined on X and, according to (IV.13), satisfying

n
e £ L
= * S
£ h)= ) D i (R) (v.18)
4=-n
Once we have chosen bases in the spaces }C(p'QJ and thus in J{{p’&),

the definitions (IV.17) and (1V.14) of the operator 9(0:&)( ) and the
scalar product immediately give an integral formula for the matrix
elements of an arbitrary finite transformation. A convenient choice is
the following: we choose an angular momentum basis for the UIR's (j)
0%9‘ and construct }C(PfQ) as a direct sum of representation spaces

%Y’ of the UIR's (j). Then the values j = |q|, |q|+1...p-1,p all
occur once. The mafrix elements inthis basis of a transformation

i’

# € ¥ are denoted RJn'J\m' (#; p,q). If we parameterize & according to

k=2 by 272 (v.19)

where#z; 72, € hand ks, = h“’(qr) is a rotation of an angle {,
0< § <m in the (34)-plane, Ril" , t; p,q) decomposes as follows
mm

jjl r=min(,j’) j 10 ]
R *; p,a) = z Dm,r?fﬂi)RiJ (V:pa) Dr]m, pz) (1v.20)

r=-min(,j’)

Y
where R;].J (§;p.,q) are well known functions. Any fixed row in this
general matrix is again an angular momentum basis now realized in
terms of functions defined on ¥. By considering the row £ ,m we
obtain a set of functions which furthermore satisfy the covariance
condition (IV.18):

L. N L3’
R erip@= ) D AR, kip)  (V.21)

m,m

i

7
The dimension of a UIR (p,q) is (p+1)°~- &, i.e. the R satisfy
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jljz jaj4 ;
Q et -
[w@ R, @ip R, ke, Q)

+1R-g°) 1 -5 & 8. .6, .6 5
(E+1)° - %) mymg; myMy jiis Jaja PP aq’

and consequently the functions

, a_ .22, ot (a.
where N(p,q; p,L) is a phase factor and where p,q,j’,m’ take the
above-mentioned values, constitute an orthonormal basis in 3o, ’L)
We consider bnefly the general matrix elements in this basis. They
are denoted quf’ q (‘7 0,4). In order to obtain the simplest possible

form for these elements we use the decomposition

g =t (hy, hy, Ry €X, 120

(valid for all € (). The only new functions to be determinad are
then the matrix elements of the "boost" 4 (t), which we denote
APAP Q" (t; n,4) (they are diagonal in the j and m indices and inde-
ptndent of m). Thus the general matrix elements are

N2l

i”=min(p,p’) m” =j .,
fﬁf gr(_y p,L) = Z Z Rylm” (hy : PG)
i"=max(|q|,|a’|) m"=-5"

T/ 2
pqp tt: 0,0) B i eteip’, a) (1Iv.23)

and the integral formula for qup a (t; p,2) which one obtains from
(IV.14) is

qup Vs o) = NG90 N'a’ s 0, 0) (+1P-) ((p'+1)*-a’ P )F

i :
-(Zj+1)_%'zf %sin2 llell!'Ri'J (¥ ;pq) (Cht-cosySht) = 1pRLJ ':p'a’)
k (o]

where
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cos §' = cos | - Tght

1 - cos | Tght
The differential properties of qup a’ {t; p,1) are obtained from a con-
sideration of the action of the generator of the boost @3 (t) on the gen-
eral matrix element (IV.23). We refer to Ref. 7 for more details.
Other properties of these functions may be studied by using analytic
continuation from corresponding matrix elements in a UIR of SO(5).9
The advantage of using bases and matrix elements in which the covari-
ance condition takes a simple form will be seen again in the next sec-
tion where we consider a different decomposition of the representa-
tions (p,4).

V. Decomposition of the Representations (p,f) with Respect to UIR's
of a Noncompact Subgroup

In the present section we illustrate further the power of the
theory of induced representation by applying it to the problem of de-
composing the representations (p,?) with respect to UIR's of a non-
compact subgroup which is isomorphic to 80031,35. As is well illus-
trated by contributions to this symposium, there is presently a vivid
interest in exploring the assumption that the apparent Poincaré invari-
ance is in fact only approximate and should be replaced by an exact
50, (1,4) invariance, i.e. we should use a 80, (1,4) invariant particle
classiflcation and SO il 4) covariant field equations etc. The de-
composition we are gomg to consider here will in such a framework
replace the decomposition of the UIR's (m,s) of the Poincaré group
corresponding to a positive m® and spin s with respect to UIR's of the
Lorentz group. 10) particular cases may also be of interest in special
dynamical models where SO(1,4) appears as the dynamical group (or a
subgroup of it).

The decomposition treated in Section IV was relatively simple
inasmuch as the representation space i(p+2) could be constructed as a
discrete direct sum of representation spaces }\P+?) | When we con-
sider a decomposition with respect to UIR's of a noncompact subgroup
we expect that }f(p ) has to be constructed as a direct integral of
representation spaces. Before entering upon the details of the problem
at hand we give first a very brief review of some relevant results from
the theory of induced representation. The use of these results will
enable us to give the solution of our problem in global form.

The problem we are considering is thus of the following kind:
suppose we have two subgroups H, and H, of a group G; suppose fur-
ther that L, (5, ) is a UIR of H, and that a Tepresentation 8L1 () of G
has been construced by induction, how is then oLy (Hy ) decomposed
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with respect to UIR's of H, ? The key to the resolution of this problem
is provided (under some weak conditions on H; and H,, see Ref. 4)
by the double cosets of G with respect to H; and H,, i.e. the sets

SY of the form

S =H,q H,, fix, g €G.
y~ 9y Fee 9y Iy

By considering sufficiently many g, we get all elements in G, i.e.
there is a minimal set of indices I, v € I such that

G=U ngsz
vyel

Correspondingly we split up a function f(g) defined on G into com-
ponents fv(g) according to

flg)=f for g €S of
Y(c_:r @ g€S8,
fy(g) =0 otherwise
i.e., the representation space }CLl (H,) for the representation ;9L1 (H,)

is decomposed into the direct sum (in a generalized sense, depending
on the structure of I) of subspaces }C\:(Ll H1) formed by the functions

If g, € Sy then obviously g, h, € Sy for hy € H, i.e. 1( h
is invariant under right translation éy an element in H,, i.e. ’}CYLl H,)
is the representation space for a (usually very general) representation
of H,. Thus once the set I has been determined the remaining task is
to decompose the representation of H, acting in .’}{JYLl Hy , and denoted
Dy Hy)  into irreducible parts. Now it can be shown (Mackey) that
the D H;, J's can be constructed as induced representations, induced
from particular subgroups HY of H, defined by

H, = g;l H, gYﬂ H, v.1)

In order to make this plausible we define
Y _
f'(hy) = fY (gYhz), h, € H,

Let hye Hy. Then, with hY = gY‘l h, 9 h, €H,,
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== Y7 -1 = = —
fY (thg) ==f (QY h]_ gth) - fY (h‘l gth) e Ll (hl )fY(gYhz) -
- Y
=L, (gh g ™) f'h
1(gY Iy ) £'(h,)
i.e. the fY(hz)'s satisfy a modified covariance condition:
£ (b h) = i (b)) £¥(h,) (v.2)
where L, completely determines 11Y:
Y = -1
L.h)=L h
Al Y) 1(gY ror )

L, (H,)

The norm in }CY is (cf. Section 1V)

[au@E@I

where

Y = A = = A
@1y, =1 Eapally =11t ) =116

ARSI

which according to the above is a class function with respect to H,,,
i.e. we may consider it as a function defined on HY\H2 . Thus, after
a correspondjng factorization of the measure, the representation
spaces ¥, 1 Y"1/ are seen to carry an induced representation of Hy,
induced from HY and the norm in :’:CYLI H) s given by

[el13 = [ aw @11 ma) gy (v.3)
HY\HE 2

In our application we shall consider the subgroup & of G which
is isomorphic to Sooil ,3) and which acts in the (0,1,2,4) space. Its
maximal compact subgroup is then m and all elements /G ® can be
written

£ =mo, 2 () 72, (v.4)

The representations (p,1) of G were constructed by induction
from the subgroup 3%, i.e. we need the double cosets of G with
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respect to 3t and 8. Using e.g. the parameters =/&+[u} 2t with
£ parametrized according to (V.19), one finds that any element of G
can be writteninone of the following ways

Wg=1e€&, (ii)j=T&'¢f , (111)7=T¢°/

+
where T €3, fE B and where &+ =g, (0) (i.e. the unit element)
e =hy, ), ° =t,, 1/2).
The three classes can also be characterized as follows

(i) The g¢°‘s with |s| > |v]
(if) The ¢'s with 8] < |vl
(if) The ¢'s with [5] = Iy

From this it is clear that class (iii) consists of elements character-
ized by one parameter less than the elements in (i) and (ii). There-
fore this class will not contribute to the integral formulae below and
we will omit it completely in the following, i.e. the indices (y) are
taken as (+) and (-) and we write

f/f/:l:(f) - ffn(&if)

m

Both the groups HY i.e. Hy and H_ are isomorphic to m and there-
fore we may write the modified covariance condition as

L
L+ _ £ L+
b =) D, @) {4 (v.5)

n=-¢

+
wheresz< I, Ke f and/m:‘: = &im(& )~' . It remains to express the
measures in variables relating to the new subgroups. We recall that
the formula

£
e =6, =1 ) 1E@1Pwe

K ey,

for the norm inf}C(p 22 was obtained from the fact that 3T\G and m\¥
were isomorphic and since M is compact we could write the norm as an
integral over X . The norm of the functions f‘&ifﬁﬁ is now given by an
integral over m\® (c¢f. (V.3)), i.e. it can be writien as an integral
over 8. The explicit relation between the parameters and measures

is obtained e.g. from a comparison between the parametrization j=T+‘¢
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and cases (i) and (ii) with /parametrized according to (V.4). One
finds:

) 0<y<Z, hasl) =72, v €37, cos y = (Ch)™

ii) %> V2, g, 0) =Ty (), T € 3+, cos § = (Cht)™?

After introducing the new variable t into du (k) and denoting by du (A
an invariant measure on 8 (i.e. with a suitably chosen constant) we
get

1€ = Y ? f (ch t@)= |V A|* auf (v.6)

v+, - n—%
With
x;i(f)_ (Ch t@&))" -3/2 “(&ﬁ M“MHQ (é&d:m hu {)[
2]
equation (V.6) reads
HEP =Y [ wd o)
” 8 L]

Next we determine the action of the representation .ﬁ(p ) on the func-
tions hfﬁ(ﬁ. From the general formula (IV.16) it follows that

L w.et L)y |

(p:&) 7 A+ _ 5 o] O + ’

2P hit gy = 2L w.8)
NS f.(e#&zf(ﬁ.&i&;ﬁ_l) b

i
One finds that lé(e/iaf(’h.&if)'l[ = (Ch t(#))?, i.e. (V.8) can be
written

(p.2) e _ L
8 A N (L) =h (L) (v.9)

We denote by }C(p'{’)i the Hilbert spaces of functions h (ﬂ defined
as above and with the norms

Y = @ |t (v.10)
W12 = T |1 10
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Thus we have

(prﬂ) =3_C(0 I’L)+ (DI{/)—

e @K (v.11)

We recall that the general theory gave us information about the
existence of induced representations of 8 on % {P:4)% (and how these
could be constructed) but it did not give the decomposition of these
re(pre?entations into irreducible parts. Equation (V.9) shows that

is closely related to the regular representation in both

1C(p /0)"' and 3c(p /Y It is not the whole regular representation since
the functions ht (fﬁ are not general square integrable functions on ii;
they must further satisfy (V.5). However, the relation to the regular
representation will be important for oug purposes since its decompo-
sition into irreducible parts is known and the restriction given by the
condition (V.5) is furthermore easily introduced into that decomposi-
tion. As is well known the regular representation of 8 can be decom-
posed into a (generalized) direct sum of UIR's of B characterized by
two real numbers (\),X, ) where v = 0 and where Lo 1s an integer or half-
half-integer (the representations (v,%,) of B all belong to the principal
continuous series). This decomposition is most conveniently express-
ed in terms of the generalized Fourier coefficients with respect to the
UIR's of 8 of the functions hﬁ*—{f] (1.e. rather than just writing down
the relevant relations in operator form, we give explicitly the expan-
sion and transformation coefficients). In order to define these Fourier
coefficients we need the matrix elements of a general element KEB in
a UIR (\),Lo) . We choose to consider the matrix elements ).n a stan-
dard angular momentum basis and they will be denoted %m’ ({:q 0,\))
(the properties of these functions are well known). The Fourier coeffi-
cients of h{'ﬂ:(ﬂ are thus defined by

AN (g )—J’D JET L T ) w.12)

mm'n

An important consequence of (V.12) is now that many of these coeffi-
cients are zero. With

) K=min(j,j’) _
ol enenm) = Y DlLem)d e D)
k’=-min(,j’)

and using (V.5) it follows that the r.h.s. of (V.12) will contain
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8y Bt Skt

[Dr o @57) DL ™) ) = L2

and thus we may write

[ o) ,Kw ) b du ) W ) w.19)
B

—5'&mnmn

This result provides the restriction on the possible values of {, that
can occur in the decomposition of (p,%). The possible values of j’
are |{, |L |+1,... , i.e. the Fourier coefficients are nonzero only
if 1. 2 f&ol : lees for fixed L only a finite number of £o-values contri-
bute. A transformation # — f,fl in h“;;f (ﬂ induces a transformation

A0 AT ) = faud DY 1, ) hEE )
i

s/

33’ . S
i-‘ Dmml(g]_ l’?/ol\))ém,n ('{Iol\)) (V. 14)

)

T
£

j,=“’o|r| o|+1l°°° =ik

We introduce the notatlon'K‘ (L ,v) for the Hilbert space of
the coefficients

<
o) il
tm| <j,j=le,]
with the norm
e ]2 = ) Y Y %ju Ik
o Lo i k- mn [o)
J'2|&O‘ | m] In|

The Plancherel formula for the UIR's of 8 then states that

Y12 = @2 ) [ ege Il Se alP w.19)
(9]
£

o

where the sum goes over the values +4, +(2-1),.. :I:% or 0 for )Lo.
This formula together with (V.11) expresses the desired result. In
analogy with (V.15) we may formally write
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@

sc® A =Y fe2+?) e v
Z‘ o

where the range of summation is the same as 1n (v.15),

Above we have shown how functlglps rl('Pi), square integrable
over ¥, are associated with functions hy ( ) square-integrable over
B. In physical applications more exp1101t results are needed such as
transformation formulae referring to specific bases. We therefore
derive the relevant results in the angular momentum basis for the UIR's
of ¥ used above, i.e. we shall consider the Fourier coefficients of
those particular functions hr‘f(tf} which are associated with the ortho-
normal basis (IV.21). In general we have

-3/2 JL

B (s (1) = (ch )72 £ (1 e 61)

where we have put | = ¢+ for 0 < § <T and y=q for = > 2. llli
and t are related by cos {* = (Ch t)* . From (IV.13) itfollows that

b (2, () = (00 072710 £ g, 1))
and in general we get
h&ﬂ: _ -3/2-ip A
m(#&j_%(t)/flé)—((:h t) f (%1 34(11; Yres) (v.16)

Thus we choose to consider the basis functions

& e 2o o V) =161 - NG, a2, 0) Rf;fm,(»zf fyo (12s)

The corresponding hfn -functions are denoted/?/ m’ (ﬁ :p,q;p) and
according to (V.16) we have

/&Er;f(é;p,q:p) = (Ch t)_s/z_ip[(pﬂ)z -qz]iN(p,q; Lip) -+

ot i) R 6% b0 D)

l

~ >~

For the Fourier coefficients we write
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jlljlll . L'+
ﬂ‘ardu(é) Dm//m///(g & ; 'Eiol v) Wn,fmt (&'PCHD) =
783!+
L ].///' 6m m//l Rin”rjnm' (Lolv;plq; p)

Integration of the compact variables yields

&Jr.:frj;l;t, (&O,v; P.d; 0) = 8, m” éj, R ﬁfrf;f (Jco,v; p.q; p)
where
0 _ cut Y aenp -t
Rom’ (Lo,v; p.d; p) = N(pg; 2p)

m(20+1) (25" +1)

L @ _ - ) )
T )™ [en ™2 W e e 0 'Y 0% piaon Pt
i )
k

where the integrand contains only well known functions. The
7
Rﬁm:}:(&d\):p,qm)'s may formally be looked upon as the matrix elements

in the unitary transformation which connects the "¥-basis" |jmpq)
and the "8 basis" |jmt,v).

{3 4
,The decomposition formula relating the DI_}QIEJ’;I" (8:2.,0)'s and
the DI, (& £5,v)'s is L

’
qup a

’ bl
imj 't (& a0} = @r*)E )
Y

I'4 - 1 &-I
i;m,(é; Loev) - ) R;i: (t. Vi PG 0) Rnin,Y (&o,v;p',q'; o)
;‘ V.17)

It is obtained as follows:
written

€, ¢ =N [ s &), £

I 2

w7 T
Yy 4

(o]

a general scalar product in }C(p’{') can be

o< 8

2 2 i T /j’f/\( jLy
wZ+v)v) Y ) ®O @ ) % @)
j m

= [
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(V.17) is now obtained by substituting

qzé u&

£ N, LA (p+1)? % p,0)

1,4t
£t - 64 (8) Nolak, AL+ -0 TR a; p7a’)

m nm

where the latter element according to (V.14) has the Fourier coeffi-
cients

//

j

D ,,(K £ ) w’ ” Sl viplhalie)

B[~

Conclusion

We have given a survey of a class of induced representations
of SOoil ,4) and their decompositions. The theory of induced repre-
sentations has been shown to provide a suitable framework for the
introduction of and detailed investigation of various bases of particu-
lar interest from a physical point of view.
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GENERALIZED DIRAC AND MAJORANA REPRESENTATIONS OF SO(3,2)+

Leon Jaffe
Center for Particle Theory
Department of Physics
University of Texas
Austin, Texas 78712

Abstract

We consider the use of the Gel'fand-Zetlin formulae for SO(5)
to obtain those unitary irreducible representations o:f_SO(S ,2) which
have a discrete singleton reduction with respect to SO(3,1) [ the "dis-
crete Lorentz" representations]. These discrete Lorentz representa-—
tions can be regarded as generalizations of the Majorana and Dirac
representations in certain cases, The method used also generalizes
easily to discuss an analogous class of representations of S_5{n,2) o

Introduction .

. The unitary irreducible representations (UIR) of S = SO(3,2)
[SO(p,q) denotes the universal covering group of SO(p,q)] have been
considered in Ref. 1 for those UIR which have a singleton reduction
with respect toits maximal pseudo-compact subgroup K = SO(3) ® SO(2).
[A singleton reduction of a representation of group with respect to a
subgroup means that each irreducible representation of the subgroup
occurs at most once in the reduction.] These will simply be referred
to as "singleton" UIR of S.

However, for many physical applications we are interested in
5, for example, because it contains Ly, the covering group of the
proper Lorentz group (L+3‘ 80(3,1)) as a subgroup. It therefore be-
comes useful to know the reduction of representations of § with res-
pect to L_,_. .

We consider those UIR of SO(3,2) which have a discrete single-
ton reduction with respect to SO(3,1). [A discrete reduction of a
representation of a group with respect to a subgroup means that when
restricting the representation of the group to a representation of the
subgroup we obtain a direct discrete sum of irreducible representations
of the subgroup.] These will be referred to as "discrete Lorentz" UIR
of S.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
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We arrive at the remarkable result that all the "discrete
Lorentz" UIR are nothing but "singleton" UIR of S.

We thus independently arrive at many of the singleton UIR
obtained by Ehrman. In fact, we obtain all those singleton UIR in
which for each value of the angular momentum the eigenvalues of the
generator of SO(2), As,, are bounded.

Section 1

The real Lie algebra of S = SO(3,2) is given by the following
commutation results [ CR]:

(A Asl =gus Boy * 9%y Pas " Yy Pas T I8s Pay (1)

where the metric ga 5 is given by:
=+1 fora =p=1,2,3
g(LB or B
= -1 fora=p=4o0r5

=0 otherwise.

+
are the basis elements of the Lie algebra, with AOL =-A

A =-A
1&Pa oIS B a8

Section 2 _ . ' 2) .
I UIR for SO(3,1) is specified by:”’ [In the notation ofRef, 3
myy =m, mg, =4, |m41| =4Lo, (m-;z"'l)z =1,°]
Aoy myq Myp Mey My = 1mgy [myy mey mpy) (2)
Agp|ma; mup mgy myy) =A(my,)|my; myy mgy mpy +1)
—A(m21—1)|m41 Myp My, Mzp-1) (3)
‘1A43!m41 Mgy Magq m21>
=B(mg,)|my; my 5 mgy+1 my ) - Blmg, -1)| m,; my, mg -1 my,)
+Cy Mgy my, myy myy) (4)

where:

Almg,) =3[ (me, 43)° — (my, 432 1% (5)
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[my 2 =(mg ;1P 1[0 (my+1)2 =(mgy, +1)°] %

B(ms,) =#[my °- (my, +1212
{m31+1)a [ (m31+1)3 "'J';’]

(6)

Mgy My (mg 5+1)
C, = (7)
(m31+1) m31

The actions of the remaining Aoc are specified by the CR.

The above basis is analogous tg that of SO(4) where the
ranges of m,, , my, are specified by |my, | < mgy; |my,| < mg, <m,,.
Finite dimensional representations of SO(3,1) have the same range,
but for unitary representations m,, is no longer the maximum value of
mg; and to satisfy unitarity m,, has the following ranges:

A. myy =0; |my+1| =1
[ The identity representation]
B. my, =0; 0< |mgp+1]|<1
C. 2|m,,| integral or zero; m,,+1 =0
D. 2|m,,| integral or zero; m,,+1 =iy, y real and
#0.

N.B. [mg,, (m,,+1)] specify the same UIR as [ -m,, , =(m,,+1)].

The ranges of m,, , my, remain: |my,| < mg,, |m,, | < m,,, except
for the identity representation where m,, = my, = 0.

Section 3
Since we consider UIR of S with a discrete singleton reduc-

tion with respecttoS0O(3,1) we may write
e et sy QT
my,y m,t m;,' ! m;’)C

, 41 42 31 21 m41m2m31m21
m

41 lmlzl (8)

Vs
Mgz, ,Mgy

Ag,lmy, my, my, my, ) =

I

In determining these UIR of S it is sufficient to determine the
action of As, ona SO(3,1) basis as the action of Agj [i=1,2,3] follow
from the CR. g , , '

The matrix elements C™41 Maz Ma1 M21 are determined from

Myq Myg Mgy Mpy

the CR, the pertinent ones being:

[Azll A54] =[A321A54] =0 (9)
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[A4.3 ’ [A54 r A43]] = -A54 (]-O)
[Age, [Agas Aypl] =4y, (11)

the remaining CR following from the Jacobi identity.

There are several ways to proceed now:
(@) The above commutation relations can be used to obtain recurrence
relations for the matrix elements which then have to be solved. The
solution of the recurrence relations following from (9) and (10) has
been given by Gel'fand et al.3 and hence it remains to solve those
following from (11).
(b) The above approach is tedious and can be somewhat simplified
by using the CR of A, with the Casimir operators of SO(3,1), obtain-
ing the same recurrence relations. This approach was used in Ref. 4,
(¢) The solution of the CR for SO(5) obtained by Gel'fand and Zetlin®)
can be used to obtain the matrix elements for SO(3,2). This approach
lacks rigour but as the solution has been obtained for SO(n+2) in gen-
eral it has the advantage that it can be generalized to discuss SO(n,2).

Section 4 3
If we put Ay _i[gocon g B] Byg We see that By g satisfy the CR
of the Lie algebra o? SO(5). e can thus write down the matrix ele-

ments for By, from Ref. 5 and obtain in addition to Eas. (2) to (7) the
following:

Bsy|myy mgy) =Almg,)|my, +1 myy) - Alm,, -1){m,, -1 m,,)

+A(m, ;) |myy my,+1)-Alm, ,-1)[my, my,-1)

where labels which do not change have been omitted and:

]% L(ms 1"‘%)2—(m41+%)2] L(mg g+3§)2'(m41+15}?' ¥

A(m,,) =_32:[(m31+%-)2_(m41_,%)2 .
[lmy g+1)P-m, 21 [(my o+1)P-(m,y1 +1)? ]

(13)

3 [[om1#2)P=(m, o +971Lms 43P~ (m, #97|°

A(m42) = %[(ma 1+??,_-)2"(m4 2+3§)2]
[m, ®-(m, ;+1)°1[m, - (m, +2)7] (
14

For SB(S) the Gel'fand-Zetlin representation is obtained via
the following reduction procedure:
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SO(5) @ SO(4) > SO(3)

where each reduction is a discrete singleton reduction. The use of
their results for our class of UIR of SO(3,2) remains valid since these
UIR are obtained by the following reduction procedure:

SO(3,2) 2 50(3,1) 2 SO(3)

each reduction being again a discrete singleton reduction.
For SO(5) we have:

|mgy | < mgy < my,
|m41| Smgy S My, < Mey

and

mg, =max |my,| =minm,,
mg, = max m,,

However for SO(3,2) m,, and hence mg, , mg, have completely differ-
ent ranges for a UIR.

Now the use of the Gel'fand-Zetlin formula poses some prob-
lems:

(1) When a zero occurs in denominator of either of expressions (13),
(14), then for SO(5) there are at least two zero factors in the numerator
and the entire expression is zero. For SO(3,2) this does not hold true,
and we have the following set of rules:

(@) If a zero occurs in the denominator, then the part of the
numerator independent of mgz, must be zero.

(b) There must be at least as many zero factors in the numera-
tor as there are in the denominator.

{c) It is sufficient {though not necessary) for a matrix element
to be =zero if there are more zero factors in the numerator than in the
denominator.

(2) When m,, (myJ+1) =0 thenm,, =m,,’, my,+1 =m,/+] specifies
the same representation as m,, = -m,,", m,; +1 = -(m, . +1) and this
gives rise to the following problems:

@) Emy, =(myy+1) =0then |my,+1, mu,), |myy my,+1)
specify the same states as |m41-1, m,,) and {m,,, m,,-1) respec-
tively and Eq. (12) is no longer meaningful. In this case it should
read:
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Bsa|may myp) =aAlm,,){my,+1, my ) +BA(M, ;) |m,, my +1) (15)
where
Algy) =30 Gng, B0 - (me, 48P 17 16)
Almys) =3[ (my #0° - (m, ,79° 17 a7)
(b) Ifm,, =m, =+, myp,+l =0 thenm,, =m,, ¥ 1 respec-
tively specifies the same UIR as m,, =m,, . Taking my, =% Eq. (12)

remains valid if we put |my,-1,mu,) =Y|my, ,my,).

() Ifm,, =0, my,+l =+ thenm,, =m,, F 1 respectively
specifies the same UIR as m,, =m,,; . Taking m,,+1 =% Eq. (12)
remains valid with [my, m,,=1) =&|my, my,).

o, B, vy, d have to be determined from the CR, which is never-
theless a simpler task for these special cases than for the general
case.

These rules can be justified by examining the recurrence rela-
tions from which (13) and (14) are derived. 6

Section 5

Since A;, = -Bg, and A54+ = -A5;, for a UIR we have the condi-
tion that A(m,,), Alm,,-1), A(m,,), Alm,,-1) are real,

A. Suppose m,, =0; Im,,+1|] =1. We may take my, =0 as my,+1 =
+1 specify exactly the same UIR. Since m,, =0, m,, =*1 speci-
fies a non-unitary representation we must have A(m,,) =A(m,,-1) =0,
and we must have, for example, mg, = 0. [This usesrule 1.] Also
m,, =0, my, =1 is non-unitary and hence A(m,,) = 0, giving mg,= 0.
A(m, ;-1) is now undetermined by (14), but it must be zero for other-
wise we have the UIR (m,, , m,,+1) = (0,0) and A(m, ,-3+%) are singu-
lar (mg,# 0). .

So the identity representation of SO(3,1) can only occur in the
reduction of a UIR of SO(3,2) if the latter is the identity representa-
tion of SO(3,2).

So here we have:

Mgy =Myy =07 mgy =mg, =0

B. Suppose my, =0; my, =my,, 0< |m,, +1| < 1. We may take
0< m42’+1 < 1. With this range for m,,, m,, =*1 is non-unitary and
hence A(m,,) =A(m,,-1) =0, giving ms, = 0. mgy, =0, my, =my+1
is non-unitary and hence A(m“ )= 0 giving Mg, = mé,;. Hence
A(m, . -1) # 0 and it is real. Now m,, =0, m,, = m,. -2 is non-
unitary and hence A(m, g' -2)=0 ?iving (mg+ 2P = (mdé—%}‘a . Hence

ry 8 o ’ =
Maqa +53 =8 -my, andmg, =m,, =-%.
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So finally we have that m,; =0, m,,+1 =% and:
Bsa|mey myp) =8A(M,;-1)|myy my ) (18)

From the CR we obtain 8% = -1 and & =#i specify inequivalent UIR.
So here we have [ for both these UIR]:

m,, =0, mg+l =%; mg;, =0, mg,+3 = 1.

C. 2|m,,| integral or zero; my, = m42' , My, +l =0. Herem,, =
m,, *1 is non-unitary if my, # 0. If my, = 0 thenm,, =m,, £1 is the
identity representation which does not occur in any SO(3,2) UIR apart
from the identity UIR. So in both cases A(m,,) =A(m,,-1) =0, giving
mg, = 0.

Let m,, be the minimum value of |m,, | occurring in the
reduction.
@) m,, 21. When |m,,| =m,, we may take m;, =m,,. Clearly
A(mg, -1) =0 for m,, to be the minimum of [m41| in the reduction.
Hence mg, +%=m,,~%. [If m,, =1 we have in the denominator of
A(m,, -1) the factor (m,,+1)? - (m,,~1)® = O®, requiring two zero fac-
tors in the numerator.] The reality condition is satisfied.

So the range of m,, , m,, and the values of mg, , mg, are
given by:

- N = 3
mg,+2<m,,, m,y+l =0; mg, =0, %< mg, +3

(b) m,, =%. We can take m,, =mg, =% and then:
Bs4lrﬁ41 104 ) =A(@41)‘rﬂ41+1 m4z>+YA(Ill41'l)|m41 My, ) (19)
The CR give Y° = -1 and vy = *i specify inequivalent UIR. The
reality of A(m,,), Alm,, -1) gives 0= (mg,+2)°> < 1. So we have the

following:

= — N = 3 —
1. my, =3, mu+1=0; mg, =0, mg,+2=1

2, 3<my,, myytl=0; mg; =0, 0= mg,+5<1

remembering that each case specifies two inequivalent UIR.

(¢) m,, =0. Inthis case we have Egs. (15), (16), (17).Clearly B =10
for A(m,,) =A(m,,-1) = 0. From the CR we see thata =/2. So we
have:

= 0; = 2 =
0<m,,, my+l=0; mg, =0, mg, +2 =%,
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D. Supposem,, =m,,, m,,+l =1y, y#0. Thenm,, =m,, * 1 is
non-unitary and hence A(m,,) =A(m,, -1) = 0, giving: mg; =m,, =
mg, and

Alm,,) =3[ (m 4~ (m,, 9P 1? (20)

This gives the following UIR:

]

1. 0= |my,|, m+l =iy, y>0; mgy =my, =my,

%< |m41|, mg o+l =iy, y>0; mg, =mg, =m,,

We thus obtain the UIR indicated diagrammatically in the
column under the Ly reduction in the appendix (@,B) denotes an L,
UIR with m,, =a, mao+l =f. (,8) - @',B’) indicates that there
are non-zero matrix elements of By, mapping states in (a,£) into states
in (&/,8’). @&,B) indicates that there are non-zero matrix elements of
Bs, mapping (x,B8) into itself.

We obtain a very restricted class of UIR of SO(3 2), the con-
finement to a discrete reductionwithrespect toS0O(3,1) being the main
restrictive factor. For example none of these discrete Lorentz UIR
extend to a UIR of SO(4,2). For SO(n 1) one obtains all the UIR using
this method?) as all the UIR of SO(n 1) have a discrete singleton SO(n)
reduction. But all the UIR of SO(n 2) do not have a discrete singleton
SO(n, 1) reduction.

Section 6

The reduction of these "discrete Lorentz" UIR has been done in
Ref. 4 and the results are included here in diagrammatic form in the
appendix.

The following is the connection between the notation used
above and that in Ref. 4:

I‘O = 1Bg,
m=m,,
J = Mg,
k =m,,
c =my,+l

, NS
|D ke jm) = (1) |my, my, mgy myy)
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The relationship between D, , Dy and mg, , mg, is given by:
D, =% - [mg, +1° - [msg"'ag]z
D, = - {[mg, #7° £} { (ms 5)° %1

[a,8] specifies a UIR of SO(3) ® SO(2) with mg,=a and B being the
eigenvalue of l"o. Solid lines indicate non-zero matrix elements for
Bys -

The method used to obtain the SO(3) ® SO(2) reduction in Ref.
4 is roughly as follows: .

The subspace of an SO(3,2) UIR space with m,, fixed is finite
dimensional and we can effect a similarity transformation in this sub-
space which takes the basis |m41 my, Mg, m,, ) into a basis
& u mg, m,,) which is diagonal with respect to By, , and

Bsg o pmay mpy) =dpfonmgy myy)
|a u my, m,,) then specifies the SO(3) ® SO(2) basis. We then show

that the SO(3) ® SO(2) reduction is a singleton reduction, the label a
being redundant. Putting:

N V)
f My, My, ) = > |m41 my, Mg, My, )C
4 Mgy Mygp
My, Myp
and
= ; . w! mg
A43|H Mg, Mg,y ) = > l,Ll mgy my,) C t
s M Mgy

4 '
M Mgq

we obtain recurrence relations for the expansion coefficients C; m,
7 14

When these are solved the matrix elements of 4,5, cH Mar can4elas41fy
be determined. My

This method has the advantage over merely comparing the
Casimir operators with the singl_eton UI_R Ehrman obtain in that it can
be generalized to discuss the SO(n) ® SO(2) basis of the UIR of SO(n,2)
analogous to those obtained above for 8_5(3 .2).

Conclusion

The discrete Lorentz UIR include the four Majorana UIR. Class
Cfa), C®)2, C(c) can be considered as generalizations of the Majorana
UIR given by C(b)1.
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Class D1, D2 UIR provide a natural generalization of the finite
non-unitary Dirac representation to a unitary representation for integral
and half-integral spin respectively. To see this note that the Dirac
representation has the following reductions with respect to SO(3,1) and
SO(3) ® SO(2) respectively:

("%’:%) i @: %)
L%, 3] -[%, 4]

Clearly class D2 UIR is a unitary generalization of this and class D1
UIR is the integral counterpart of D2. It may be useful to investigate
these UIR as representing an infinite tower of particles with the same
internal quantum numbers, but different s pin.7 The expansion coef-
ficients connecting the L, basis to the compact basis are explicitly
determined in Ref. 4 for these generalized Dirac UIR, and also the
matrix elements of A, , [which are omitted in Ref. 1].

Mathematically the above is interesting as a prelude to dis-
cussing SO(n,2) in order to see what happens to the ambiguities in
using the Gel 'fand-Zetlin formulae in a simple case.

Acknowledgments
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Appendix
m.uo%| M+ %, L,Reduc’rion K Reduction
Blh| 1 ©, ) (n (i) -g.o}
]I 41’; 4
aﬂl j’a
etc. etc
L, 0
Cu) J'2 i-l/z (ioll,o) l,ﬂti
[Zlintegrul]
Ls1 (L; ‘,20 0) lqa.b Z,Li
| [l (i) (i) 45@
Co| %2 1 1
1 (42,0 lﬁ
z% jetc
[0} (ii)
Cw) % Tl W
2 (i)o<m5§g<l (|/2'0) th im M«J.% Ml
o=me+% . (%;0) (9,01 IM'G' M '?r'*z..l\
%,0) (35,0
[M= 3 ("ég'%il | | etc.

etc. alc
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me+k |ms% | L, Reduction K Reduction

Cal % | o (0,0 0,0
(|{0) =i 11
|
e!c- efc.

D1 c-'/g ct/p

|"°-°’—| 0,0
1,0 (1,¢c) =L Ao
l
(-2,| ¢) (2,¢) J_—z.z -i,2Ho,2H 12 2.2L
| |

etc. etc. efc

th, e o, c) i I

D2| c-lp| et (32% o (%.: 9 fz-’fa [ lb% ﬁzﬁ
-5'0 5,c ' lbll 3':
e oo | Ralhullollalpalfl]

etc. etc. ofc.
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SOME CLASSES OF UNITARY IRREDUCIBLE
REPRESENTATIONS OF THE GROUP SOO(4,2)T

Fritz Schwarz
Center for Particle Theory
Department of Physics
The University of Texas
Austin, Texas 78712

Abstract

The identity component SOO(4,2) of the group O(4,2) is usually
called the conformal group. We determine the following unitary irre-
ducible representations (UIR's) of the group SOp(4,2):

a. The UIR's which contain only the discrete series of

SOO(4 1)

b. The UIR's which change the discrete label of the SOO(4, 1)

representations only.

¢. The UIR's which remain irreducible under restriction to

SO, (4,1).
We begin always with the Lie algebra of the conformal group and con-
struct an irreducible representation of antihermitian operators of it.
All representations obtained in this way can be extended to a UIR of
the conformal group.

I. Introduction

We denote by O(4,2) the group of linear homogeneous trans-
formations of the 6-dimensional real vector space, which leave the
quadratic form x‘f +x2 +x2 +x3 -x2 -x2 invariant. The identity
component SO, (4,2) of this group is usually called the conformal
group. By 5081,2) we denote the Lie algebra of SO_(4,2).

The conformal group has been of considerab(ie interest in theo-
retical physics, see for example Ref. 1, and has been studied there-
fore by a number of authors .2} 1In these references the unitary irredu-
cible representations (UIR's) obtained are either reduced with respect

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,
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to the maximal compact subgroup, or a basis in a Cartan-subalgebra
is diagonalized. The representations given in this paper are reduced
in the chain SO(4) € SO4(4,1) © 80,(4,2) and we derive the following
classes of UIR's:

a. The UIR's which contain only representations of the dis-

crete series of SOo(é,l).
b. The UIR's which change the discrete label of SO,(4,1)
only.
c. The UIR's which remain irreducible under restriction to
SO,(4,1).
The group SO4(4,2) contains 7 subgroups of the type
|_1 1
*.cost...sint l<i<jc4
gij {t) = . . (1)
igint ...cost. 5<i<j<6
L "1
and 8 subgroups of the type
1
‘cosht...sinht l<ig<4
-sinht . .&osht. 5<i<b
1

The matrix g; (t) corresponds to a rotation or pseudorotation in the

Xq=X -plane respectively. The basis elements Ai' of the Lie algebra
]

so(4,2) are defined by

_d
Ay = 9] 3)

and obey the commutation relations

CAj e Ayl =9 A + oAy — 958y — 958y,

with g, =+1 for 1 <i< 4, g3 =~1fori=5,6and g;; =0 for j # k.
From 11(4) it follows that a representation of the Lie’algebra is com~
pletely determined, if the operators Ai i+ with 1 <1< 5 are known,
because the other operators can be ‘expressed through them with
the relations (4). We denote an operator of a representation,
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corresponding to the generator Ajj. by the same symbol. In an UIR of
the group SOO(4,2) the operators Aij are antihermitian, e.g.
+

Aij = - Aij (5)

All representations of the Lie algebra so(4,2) derived in this paper
can be extended to a UIR of the conformal group. This follows imme-
diately from Ref. 3, see especially the end of page 572. Further we
assume that each SO,(4,1) representation occurs at most with mul-
tiplicity one. Actually, we believe that this is not an additional
restriction.

We want to use as far as possible the results of Ref. 4 for the
special case SO(6), which are given in the appendix. For that reason
it is convenient to define new generators By; by Ay; = Ve @1 By
see Ref. 5. A simple calculation shows that if the A, obey the rela-
tions (4), the B;; obey the commutation relations (A.T) of the Lie
algebra so(6). iIowever, the condition (5) for the unitarity of the
group representation has to be replaced by

+
Bij =-cy 13ij (6)

where

{+1 for 1§i,j§4or5§i,j_<__6

S
1)
-1 for 1§i§4and5§j§6

This means we can take from the appendix all those results for the
derivation of which only the commutation relations are used, and then
we impose the new condition (6). In Section II we derive the UIR’s of
the SO,(4,1) De Sitter group, instead of changing the notation of Ref.
6 to ours, because this is a good example of how easy is to derive
also a wide class of UIR's of non-compact pseudorotation groups by
suitable use of the results of Ref. 4. In Sections III, IV and V we
come to our main task, the determination of the classes of UIR's of
SOO(4,2), specified under point a, b, and c respectively. All results
are collected in some tables at the end of this paper.

II. The UIR's of the De Sitter Group 8O, (4,1)

For the generator By we have A, =iB,5 and B,5 =B,5. From
the appendix we get the following expression for B,5 as a result of
the commutation relations
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Bys|msy myp) =A(m41)|m41+ 1, mgp) +A(ma)|ma, my 5+ 1)
-A(m41— 1)]11’141— 1, m42>_A(m42—1)|m41 ’m42_1>

(7)

with the matrix elements

Alm,,) =3./tmg, +3)° ~(m,, +3)°

‘/[(251 +3)2 - (my +3)P) [(zs ,+2)7- (my, +3)? ]

[ (m42+ 1)2 _m412][ (m4e+ 1)2 "(m41+ 1)2]
(8a)

Alm,,) =3./(mg, +%)? -(m, ,+2)°
‘/ [(zsq +3 ) = (my o +3 P (255 +2)% - (m, ,+2)7]

[my,®-(my,+1P ] [m, - (my,+2)%]

(8b)

The labels m,,, ms, , m,, and m, , specify an irreducible represen-
tation of SO(2), SO(3) and SO(4) respectively, and zs, and zg, are
complex numbers Zi; =Xyt 1yl They have to be chosen in such a
way that the SO(4) 1abels my 4 and m, , have the region defined by
(A.4) and that B,s is hermitian. )
Equation (A.4) requires that |m,, | <m,, ™ =m, Ml <m, .

For this to be true we must have A(m41max) = A(m min_ 1y = 9, and
we get a condition for one of the two constants 251' and we choose

Zgq o

(B, + 3P = (my, "+ = (m,, " +EP ©
From (9) it follows that z5, =mg, = m41max = m42m1n’ so that we
have |my; | <ms; < m,,.

Now we have to determine the restrictions for zg, which result
from the hermiticity of B,s . The hermiticity means that the square
roots in (8) are purely imaginary, i.e., the expressions under the
square roots have to be real and negative. The requirement of reality
restricts zz, to one of the following two possibilities:
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Zsz +% =1¥sy (10a)
Ze iR (10b)

The fact that the expressions under the square roots in (8) have to be
negative gives the additional requirement:

(zZs5 +3)P < (myy +3)P (11)

We discuss now the condition (11) for the two possibilities (10)
separately.

In the case (10a), inequality (11) is evidently satisfied for
arbitrary real y,,. However, to avoid having the same representation
occur more than once, we make the further restriction 0 < yg, and call
these representations D(ms, , iys,). The equality ys;, = 0 will be in-
cluded in a later case. The SO(4) content is |m,, | < mgy € my,. For
(10b) there are different possibilities. If X5, = mg,, integer or half
integer together with the SO(4)-labels, it may happen that m,, is fur-
ther restricted, i.e., my, ™% < m,, for m,, positive and m,, <m,,M8X
for m,, negative, because for

(Mep +2P = (my, ™ - 2P = (m,, "2 +3) (12)

one has

m max )

Almy, ™ - 1) = Afm,, ™) = 0 (13)

A solution of (12) is m41m1n = _mMmax =mg,+ 2 and we have two
cases mgy+ 2 < tm,, < mg, < m,, for m,, positive or negative res-
pectively, with mg, and mg,+2 =%, 1,%,... . We call these repre-
sentations Dﬂs(m!51 R msa) corresponding to the sign of m,, .

Let us now assume mg, # 0 and integer. Then the smallest
value at the right hand side of (11) is evidently ¥, so that xg, is
restricted by

0< (xgp v <% (14)

Again, we replace (14) by the stronger inequality
0< X, +5 <% (15)
because we want every representation to occur only once. If the

<-sign on the right side of (14) is valid, the SO(4)-content is Im‘,=l | <
mg, < m,,. These representations are called Do(m51 : Xgp). In either
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case the range for the discrete SO,(4,1) label is mg, =1,2,3... .
If mg, =0, the right hand side of (14) can be replaced by §, and by
the same arguments following equation (15) we get

ngsz +% s—a- B (16)

If the <-sign at the right side is valid, we have my,y =mg, =0< m,,
with the class D*(xg,); the = -sign leads to the trivial case A(m,,) =
A(m,,) = 0. The results of this section are collected in Table 1.

III. The UIR's of SO _(4,2) Which Contain Only The Discrete Series
of 80,(4,1) -

In this section we want to determine those UIR's of the group
SO _(4,2) which contain only representations of the discrete series
D'k?xrnEl » Mg,) of SO(4,1). The generator Age is connected with Bgg
through A, = -B.s , and (6) gives in this case B:,g =dBas: §48., Bgg
is antihermitian. As a result of the commutation relations, we get
from the appendix the following expression for Bgg

Bse Im51 § Mgy) = B(m51)|m51+1, mg,) + B(msz)l Mgy . mg,+1)

+1i C4|m51 ) Mgy) = B(m51—1)|m51-1, m52>-B(m52—1)|m51 /Mg 5=1)

(17)
with the matrix elements

B(mg,) = ‘\/[m412" (mg , +1)? 1[0 (my , +1)% = (mg, +1)7 ]

‘ftzsf (g, +1)? ][ (26 o +1)7 (Mg, +1)2 1[ (22 +2)° ~ (mg , +1)° |

(mg, +12 [4(mg, +1)? -17[ (mg , +2)? - (mg ,+1)2 W (mg , +1)2-(mg ,+1)? T
(18a)

B(mg,) = Vmy,%~ (mg,+1P 0 (m, ,+1)7 —(mg , +2)7 ]

(25,2 -(mg+2)2 ][ (26, +1)? =(mg . +2)? 1[ (253 +2)° - (mg , +2)? ]

(mg , +2)2 [ 4(mg ,+2)7 =17 (mg, +1)? - (mg ,+2)? J[ mg, ® ~(mg ,+2)2 ]
(18b)
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my, (M, ,+1)2e 4 (25 5+1) (265 +2)

C, = (19)

mg, (Mg, +1) (mg 5 +1) (g 5 +2)

The labels mg, and mg, specify a representation of the discrete series
D:t(m51 , Mg,) of SOO(4,1) and have the range given in Table 1. Re-
sulting from the commutations alone, the labels zs, , zZz, and zz3 are
complex numbers. They are strongly restricted by the requirements
that the SOO(4, 1) labels are limited to the right range, that By, is
antihermitian, and that the matrix elements contain no divergences.
From Table 1 it is clear that we must have mg, < mg,M3¥ < m MM <
mg, . For this to be true we need B(mg,™3¥) = B{mg, ™B-1) = 0, and
we get a condition for one of the constants zgy we choose zg, @

mi
max . oye_ iny,

2512 = (mg, (mg, (20)
That means, 2zs, =mg,, |mgy| =%, 1, %..., integer or half integer
together with the SO, (4,1) labels, and we have mg, + 2 < | mg 4 | <
ms, . Evidently different representations belong to +mg, because mg,
occurs also in C, . The antihermiticity of Bs4 requires that the matrix
elements (18) and (19) are real. The reality of C, restricts the re-

maining labels zs, and zgs to one of the following two possibilities:

Zg ;1 = Xg,+1 and zga+2 = x55+2 (21a)
Zg Tl = i¥s, and zg3+2 = iyg, (21b)
Zeptl =0, 25342 = Xg,+2 Or iyg, (21¢)

The reality of the matrix elements (18) requires in addition

[(zg,*1)? ~(mg, +1)? 1[ (255 +2)° =(mg, +1)?] >0 (22a)

[ (2zg o +1)° —(mg,+2)° [ (24 3 +2)° - (m5 ,+2)° 1 > 0 (22b)
Now it is easy to see that the matrix elements (18) and (19) contain
divergencies if z,, and zg, are arbitrary, and mg, is not suitably
bounded from below. A simple consideration shows that these diver-
gencies can only be avoided in one of the three cases which are pos-
sible according to (22), i.e. if

(zg o, +1)7 < (mg,+2)? (23a)

(zg 2 +2)°

A

(mg ,+2)° (23b)
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Egs. (23) show that mg, has to be bounded from below, and this ex-
cludes also (21b). To limit the range of mg,, we choose Zgy = Mgy,
integer or half integer together with ms, . We have B(mg,~1) = 0 for
Mg, = Mgy, i.€.,

mg,+2 < Mg, +2 < Mg,y < Mgy (24)

It remains to determine the range of mg 2 and the conditions for zg, .
Let us assume at first that mg,+1 =1, 3, 2... . Then from (23b) and
(24) it follows that x4, is restricted by

0 < (a3 +2)° < (mg,+2) (25)

Again, we want to avoid having the same representation occur more
than once and replace (25) therefore by the stronger inequality

0 < X312 < Mg ,+2 (26)

If the <-sign at the right side of (26) is valid, there are no further
restrictions on my,. However, if X53+2 = m,,+2, it is easy to see
from (18b) that mg,+2 is fixed to the single value mg,+2 = mg,+2.

Now we assume mg,+ 1 =%. In the matrix element (18a) the
factor [ (mg,+1)? —(m52+1)2] cancels with the same factor in the deno-
minator, and similarly in the matrix element (18b). This means mg,+2
always has the range mgz,+2 = -mg, . ..+mg,; with mg; half-integer.
From (8) we see that mg, occurs in the SO _(4,1) representations only
in the form (mg,+%2)?, and a simple consir?eration shows that the
SOO(4, 1) representations occurring in this case are actually labeled
bymg,+2 =%,%,... mg, . From (23b) we get the condition

0< Xga+2< % 27)

for xg5 . If the <-sign is valid at the right side, there are no further
restrictions for the other labels. If Xg342 =%, either mg,+2 is fixed
to the single value % and |mgs, | =%, %,..., or§ < mg,+2< | mg, |
with |may | <%, 5,... .

The last possibility we have to consider is mg,+1 =0, The
whole discussion is similar to the case mg,+1.=% and we don't repeat
it here completely. However, this case is different from all the other
cases in that mg, is always positive, because C, = 0. The second
possibility given in (21c¢) has to be excluded, because in this case
the matrix element (18b) is not always real.
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IV. The UIR's of SO (4,2) Which Change The Discrete SO (4,1)
Label Only . i
Now we determine the UIR's of SO, (4,2) which contain only
those 800{4, 1) representations which differ by the discrete label mg;.
This is evidently the fact in the following two cases:

Zgz +2 = constant (28a)
Zg, +E =% 3 (28b)

To determine the generator Bgg we start again with the matrix elements
(18) and (19). However, the label z5, is not necessarily discrete
now and is, therefore, replaced by zg,. Clearly zg, is restricted
from the beginning to one of the values in Table 1. In the case (28a)
we need evidently

B(zs,) = B(zg,- 1) =0 (29)
This requires (zg,+1)° = (z5,+1)° and (zea +2)° = (25, +2)? with zg,+1,

Zgo,+2 # 0. With these restrictions the matrix elements (18a) and (19)
simplify to

B(mg,) = /[ my,? ~(mg, +1)2 1[ (my +1)? ~(mg, +1)2 ]

2612— (m51 + 1):3

(30)
(m51+1)2[4(m51+1)2 _1]
m41 (m4_2+1)zsl
C, =& . 31
“ mgy (mg, + 1) BL
In the case (28b) the conditions for the matrix elements (18b) are

B(zs,) =0 for Zo 2=

B(zs,-1) =0 for Zgs +2=0 (32)

To cancel the divergencies in (18) and (19) we must have zg,+1 =0,
and the conditions (32) give immediately (zss+2)°= 1. With these
special values for z;, and zg; the matrix element (19a) simplifies to
(30), from (18b) we get
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B(2zss) = /[may® = (e 2P J[ (e +1)P = (25, +2)2] -

J [2g:2 - (252 #2101 - (z55+2) ]
[4(zg,+2)7 - 1][ (mg, +1)2 - (25,427 1 ms,® - (25,+2)° ]

and C, = 0, If the operator Bgg with the matrix elements (30), (33)
and C, = 0 is applied to a vector with z5,+2 = +1, the result is a new
vector with zg,+2 = 0, multiplied by a factor which is given by the
right hand side of (31), the value of B(zg,-1) for z;,+2 = 1. A vector
with z;,+2 = 0 is transformed into a new cne with z5,+2 = 1, multi-
plied again by the factor (31). Now, SO,(4,1) representations which
differ only in the label zs, with z;,+2 = 0 or 1 are identical, and a
simple consideration shows that the case (28b) is included in (28a) if
we admit the values zg,+2 = 0 and 1.

Considerations similar to those in the last section restrict zg4,
to mg, with the condition l Mg, | = mg, , integer or half integer at the
same time as mg, .

From Table 1 we get the ranges for mg, , Zg, and zgz . For
Zs,+3 =1iys, we have |mg,| =0,%, 1..., for zg, =xgp, 0 < Xg, +
2 <% the range of mg, is |mg,| =1,2,3... with the SO(4) content
my, =0, mg, <my,. If 25, Is fixed to a value that specifies one of
the discrete series Dﬂt(m51 ; m52) , the resulting representations are
already contained in Section ITI. The results of this section and
Section III are collected in Table 2,

V. The UIR's of 800(4,2J Which Contain Only A Single SOC(4,1)
Representation
In this last section we determine those UIR's of 50,(4,2)
which remain irreducible when restricted to 800(4, 1). This is the
fact if, in addition to (28), one of the following two conditions is
fulfilled:

ms, +% = constant (34a)
Mgy +% =% (34Db)

For the possibility (34a) we have ,
B(ms,) =B(mg,- 1) =0 (35)

If msl2 = (m51+1)2 and mg,+1 # 0, the first matrix element is zero,
and the second simplifes to
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Bmg, 1) = /(me1? - e, )L (my2+1P- my ‘/——1—** (36)
mslz (2m,51 -1)

The only possibility that (36) is zero is my,? = mg,?® with mg,® # 0.
The second case (34b) has to be treated in the same way as (28b).
The discussion is exactly the same with the result that this possibi-
lity is included if we admit in the first case the values mg; +1 and
mg, equal to zero, and in addition z;53+2 = 0. From Table 1 it is
easy to see that the requirements we need can be fulfilled only if
either the SOO(4,1} representation belongs to one of the discrete
series DY (mg, , ms,) with mg,+2 = |my, | =mg, , or if it belongs to
the series D*(xg,) with Xg+ % =%.

The operators B,z and Bgg are in this last case considerably
simpler than the general expressions (7) and (17), and we give them
for that reason in the simplest form:

B45|m411 m42> =%'\/(m31+%,')2_ (m42+%)2 'm41: m42+1>

_% (m31+é.\)2" (m42+%)2 |m411 m42—1> (37)

Bsslm41: myg) =i(m41+1)|m41, my ) (38)
The results of this section are given in Table 2.
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Appendix
At first we give in this appendix the results of Gelfand and

Zetlin4) for the rotation group SO(6). The notation has been changed
slightly in agreement with Ref, 7. The infinitesimal generators
Aij (1 <i<ij< 6) obey the commutation relations

(A 1 =5,

130 Prd T Opk Bt 0q Ay T Oy Ay 8y Ay @.1)

and they are antihermitian

=-A. @a.2)



150 FRITZ SCHWARZ

An irreducible representation of SO(6) is determined by three numbers,
mg, , Mz, and my5 . We denote a vector in a representation space by
lmij> ., where my is an abbreviation for a complete set of labels,
which determine an irreducible representation and specify each vector
in the representation space uniquely. The complete scheme is

|mij> = | myq My, (*.3)

All labels m,, are integer or half-integer at the same time and obey
the conditions

|m61| <mgy Mgy < Mgy € Meg
| myy | <mgy <My < Mgy

(Ar.4)
Im41I <mgy <My,

|m21| < Mgy

We denote the operators in an irreducible representation, which cor-
respond to the infinitesimal generators Aij , by the same symbols.
They are given by

A12|m21> =im21|m21) (a.5)
Aza |m21> =A(m21)|m21+1) —A(m21—l)|m21—l) (a.6)
Ae4|ma1> = B(m31)|m31+1> + iCzlm31> = B(mal‘l)lmsl"D @a.7)

A45|m41: myp) =A(m41)|m41+1, Mmyy) +A(m42)|m41, m,,+1) 08)
.8

- Alm,,-1){my,~1, my) - Almyo~1)|my, , myy-1)
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Ags |mgy, mg,) =B(ms,)|[mgy+1, mg,) + B(mg,)|ms, , mgy+1) +
+1iCy |mgy , mgp) - B(msy -1)|msy -1, mg,)
"B(msz_l)lmsll msz—]-) (Aa.9)

The labels in the state vectors which do not change have always
been omitted. The matrix elements are

Almg,) =% /(ma, +3P - (my, +3)° (.10)

Almg,) =% -\/(m31+%)2 ~ (my, +%)

[(ms;+3)P - (mg,+ %P (mgo+2)° - (my, +%)2]

(a.11)
[ (map+1)® - my,? 10 (myp+1)° - (myy +1)% ]
A(myp) =% /g, +3) = (myo+ )
J [lmsy+ 2P~ (myp +3P 10 (mso+ 5 - (mep+35)°]
. (a.12)

[(my,? - (mgo+1)210my 3~ (my,+2)° ]

Jf my,° = (mg, +1)2][ (my ,+1)° - (my, +1)°]

(Mg, +1)% [4(mg, +1)2 - 1]

B(ms,) =+/mgy,? - (mg, +1)*

(A.13)

B(ms,) =J[m412— (mg, +1)2 ][ (myp+1)° - (ms, +1)7 ]

[mg 1° =(ms,+1)° J{(mg ;+1)7~ (m5 1 +1)2 1L (s 5+2)° - (mg, +1)7 ]

(ms 1+1)2[4 (m5 1+1)2" 1][ (ms 2"'2)2_ (ms 1+1)2:|[(m5 2+1)2_ (ms 1+1)2 ]

(a.14)
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Bms,) =[my,? - (mg,+2)2 1 (my 5 +1)° ~(ms 5 +2)7 ]

Emﬁ 12_ (ms 2"'2):3 ][(ms 9,+1)3' (ms g+2)2 ] [(ms 3+2)E_ {ms 2+2}3 ]

(m5 2+2)2[4 (m5 g+2)2—1][(m5 1+1)2_ (ms g+2)2 ] [m5 12_(m5 2+2)8 ]

(a.15)
my, My, (m,,+1)
Cg = (A']'G)
My, (Mg +1)

my 4 (my5+1) mg, (mg ,+1) (Mg +2)
Cy = @a.17)
mg , {mg, +1)(mg ;+1) (mg .+2)

Let us now describe by an example how one derives these results for
SO(n+1) if they are already known for SO(n). We choose n = 4, the
general case is a straightforward generalization. Evidently the prob-
lem reduces immediately to determining an antihermitian operator A,
which obeys the commutation relations (A.1l) with 1<i,j,k,1< 5,
Now it can easily be shown that the commutation relations for - SO(5)
are equivalent to those of SO(4), which are given by (A.1) with 1<
i,i, k,l < 4, and the following ones:

(A} 417 Res] =0 for 1< i< 3 (A.18)
(Asy, [Asg, Banl] =Ass (a.19)
(Ays, [Ass, Bs,]] = - Ray @.20)

From these commutation relations one gets the expression (A.8) for
the operator A, , and a set of recurrence relations for the matrix
elements. A solution of these recurrence relations is given by (A.11)
and (A.12), with the labels mg, and mg, replaced by complex numbers
Zs, and zg,. The requirement of antihermiticity (A.2) restricts them
to mg, and mg, with the range (A.4).
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Table 1
Representations |Conditions for Mgy & Zgy 50(4)-Content
; -0 1
Dlmgy, dygy) [ mgy =0, 3, 1 ... Imyy | 5 mgy < my,
3 n m,
2523 g 0 Y5 @
1 1 [} [}
)
D (mg;, xg,) My =1, 2, 3 ... : : v
- 3.1 é é
257 = %520 02 X55*5 < 3
T e eo+0 o
D" (x5p) Mgy = 0 Msi
3.3 ; -
Zey™Xeoi 0 $Xcyt5 < 5 _ 1
52 752 522 2 m5' +m5{ IT]"
o
D (mSImSZ) Mgy = 1, 2, 3... my = o, mey '-_i LY
m
- 42
25 Mgy Mg * 2= 1
SI
' m4|
D (mey, mey)  |me, = 3,1, 3 Meo + 25T, § Mg S M
51" 752 51 2 2 52 = 741 = 751 = 742
mo| § 1o
Jd o3 ol 10} 1|
25 Mggs Mgp*2%5, 1, 5 oon b bdé
< <
1=m524'2=m51 or m.'ﬂ o o 00
Finggezing, for mg,,
Moy integer or half- |— '
integer respectively ma,2  mg My
D ("'51'"'52) The same as for Mg, * 2g-my; $mgy €My,
& [ | m
D (mgy» ms,) P |
d bbb 4
® 060 O
m —I'i'l - Ii
4 s T J

Table 1. Classification of the UIR's of SOg(4,1). In the
diagrams the coordinates of each dot, my, and my,,

specify a SO(4) representation.

given by

(7) and (8).
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The operator B,s is
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Table 2
q Conditions for the SO(4) Content
Representations S0,(4,2) and S0_(4,1) (4)
Labels
+ 2 = 2 M, ,+2=m, ., ="m éIT\
D (mg,,mg,) Mgy = (mgq+1) 52 41751 I42
2 2
(262*1) = (252+1) LIPS :
z ., 2 ®
(2g5+2)" = (25,%2)
Ezat [z °
Mg p*2=mgy U
M5p*2=Mgy) My
<
D (mg,mg,) The same as for the Mg2*2=-My1"M51" M2
case D+(m51,m52)
Mgy C(mgp*2)=-mgy
! mi = (mg +1)° myy=0my,
D7 (xg,) 61 51
7 P
(262*1)7 = (255*1) M2
2 )
(263%2)" = (25,%2)
mgy = 0
25y X5y X5p*1=0
o Mgy

Table 2. The UIR's of SOq(4,1) which can be extended to a
UIR of 8O,(4,2). Each dot in the diagrams determines
a SO(4) representation. The operators By g and Bgg
are given by (37) and (38) respectively.
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Table 3
Conditions for the SO°(4,2) Labels 800(4.1) Content
261"Me1* Zg2 2Nd Zg3

g q a1,2 . M
Tga"Mgy § Mgatlml 3,2, 000 iMg 42 |m61|
< < < <
Zg3"Xg3  8:) 0=xggr2<mg,+2 mgp*2omg, 028 gy L omg
b.)  xgyr2emg,*2 Mgy +27mg 425 |mg 1 | Smg g

LS} is always positive for x63¢2=0

I J1.1¢%
2637Mez i Mgz*1m 7 i 7 *Imgyl

_ < 1 1< < <
263"Xg3  8:) 0=xggr2<y 7emgp*2% Imgy [¥mgy s
< < < < <
b xgge2ei Fomg2* 25 Img g 1 3mgy or Emg,ezing S

mg, is always positive for xg3*2=0

<
262 Mgz 3 Mgp*1=03 1%mg,

2z, =M < g .8
63 763 a.) 0 x63*2<1 1 m524'Z Mg 15 Mg 5
b.) Xy ,%2=1 - 13 <
63 1 m52+2-m61 My
2627%63" %52
1 1 q
a) Imgy[=0,7:1,... 2527 = 1¥525 0¥gyilmgy |3 mg,
=01 . oS 3.1
b.) |m61|-0.7,1.<“ 25,%Xgy § 0FXg,43<y
c.) Mg 4 =1,2,3,... Zgp"Xgqh m52+2-1, m61=m51and m41-0

Table 3. The representations of-SOo(4 ,2) which are determined
in Sections III and IV. The operator Bgs is given by
(17), the matrix elements by (18), (19) or (30) and (31).
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UNITARY IRREDUCIBLE REPRESENTATIONS OF SU(2,2),
REDUCTION WITH RESPECT TO
AN ISO-POINCARE SUBGROUP*T

Tsu Yao
Department of Physics
University of Pittsburgh
Pittsburgh, Pennsylvania 15213

The noncompact group SU(2,2), which is the covering group of
the conformal group, or O(4,2), has attracted some attention in recent
years among particle and relativity physicists. 1) In this talk we shall
restrict ourselves to the study of the unitary irreducible representa-
tions of 8U(2,2), and their reduction with respect to a subgroup E(3,1)
which is isomorphic to the Poincard group.z)

I. Commutation Relations and Subgroups of SU(2,2)
The generators of O(4,2), Ly}, obey the following commutation
relations,

l:Lab’ Lcd] =i gachbd - gadLbc - gbcLaol * gdeac} ! (.1)
a,b,¢c,d=0,1,2,3,5,6
with the metric 9ab chosen to be

911 7 922 7933 T 955 = 900 " g6 T 1

Let us concentrate on the 1,2,5,6 space (iso~-Minkowski
space) and define

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
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SQ:B = LUB
(Poincaré transformations)
= +
2 LOG, L3a
ﬂa = LOa- qu (special conformal transformations)
L03 (scale transformation)
«,8=1,2,5,6 (1.2)

Equation (I.1) now becomes

[Po,’ PB] =0

[Su\)l PG] = 1{gH.Q,P\) = g\)QPIJ.}

= = o+
[‘r’uv' . ] 1{gucn£v8 uﬁs\aa gvon'v‘uﬁ ng'guq}

[Suv' Ro,] - i{guaﬁv - g\)aﬂl-l}

(R, . &B] =0

[Py Rgl = -21LL 5 + 9. gT05}

(Log- SoaB] =0

[Lyg. P, = -iP

L OS,R]-iR (.3)

7/

Next, we introduce several noncompact subgroups of SU(2,2).
We begin with

(1) E(2) subgroupa)

The generators of E(2) are @ i and £5, with
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P, =Py 1P,

s =815
The commutation relations are
(e .p 1=0

[£5' Pi] ='-HP:|:

and the Casimir operator of E(2) is P We now introduce the basis
vector |e,m), and

P+P_|e,m) =¢?|e,m)
£s|e,m) =m|e,m)

Pile,m)=e|e,m:t 1) (1.4)

with €®> 0,m=0,+%,z1...
(2) E(3) subgroup . .
The generators of E(3) are P, and £, with
P = (Pl J Pg ’ PB)
3 = (5:15, Y £51)

The Casimir operators are 6_3.2 and_:%-P. Let the basis vector be
|€,e; t,m), and £, = £5 * ifs;. We now have

53|§.e; t,m) =E%|g,e; t,m)
$Ple,es tm) =tElE,e; t,m)
Pe | e; tom) = (€2~ &)F[,e; t,m)
£, ]8.ci timy = {72 o) 2 ige- )T it menl
1.
x (8%~ e’a)?} |e,e;t,m= 1)

where the unitary condition has been implemented, and %> 0, t = 0,
+%, £1,... .
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(3) E(3,1) subgroup

The generators of E(3,1) are ©,,, and 'EU-FJ' u,rx,ﬁ, Eb
The Casimir operators are ¢ pH and V\J‘LW“ where W,, =%¢ va B P I-b'
Let the basis vector be |n,E,¢ t msl For "time-like" unitary irre—
ducible representations we have ’ n*>0,s=0 & 1.,3/2,.
-s<t<s,

Pupul’f]:g:e; Sltlm> i "nal'n,,E,m s,t,m)
Wuwul'ﬂlgle; Sltlm> =n25(5+1)|1’]:§:€? S:t:m>
Pe|n,E,e; s,t,m) = (Eamz)%ln,g.e; s,t,m)

Sea|n.8,05 8 ,t,m) = -if (P +° (2 _ez)‘]é’% %

+ 3 - @)t
+§(§3-e3)%(€2+n2)%}|n £,e; s,t,m)
+§1 {(s-t)(S+t+1)} [M.E,e; s, t+1,m)

-éi%% {(s+t) (s-t+1)}2 | .8 €5 5 ,t-1,m)

8, n2ies s,tm) = 1@+ P S+ g (gump)

aag ae

o
+ (mtl) = ﬂFt—(Ea ¢®)?|n.g,e: s,t,mel)

Tal —2-{ E & (E°-¢ )%}{ (s-t) (s+t+1)}%

X |n €,¢; S,t+1,m+1) 3F§i {e (G )%}

X {(s+t)(s-t+1)}é|n,§,e; s,t-1,mtl) (I.6)
where we have normalized our states to be
<T1' ,E’ e’y s’,t! ,m! 'ﬂ:glei s,t,m) = 5("']”a -n?) 5(5'2 ~E2)

12 _.2
X 5{e’?-¢ )as,sst %80t
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So far our approach has been simple and standard. All six
parameters have simple "physical" interpretation. n is the "mass,"
€ is the magnitude of "momentum," € isthe projection of "momentum"
in the 1-2 plane, s is the "spin," t is the "helicity," and m is the
component of "angular momentum" along the 5-axis. We remind the
reader that all quantities are referred to in the 1,2,5,6 space.

II. Reduction of Unitary Irreducible Representations of SU(2,2) with
Respect to "Time-Like" Representations of E(3,1)
The effect of a finite scale transformation is simple. We have

-‘3€ | —Q -C "Q

ne ~, Ee 7, ce °;s,t,m)

el€L03‘n,§,e; s,t,m) =e
and

LoglniBeesi s, tm) = 1{na §—§+e—+ 3}|n,E,e; s,t,m) (I1.1)

Next, and finally, we come to the lengthy determination of R 2
3% ¥ 2 d
ﬂE'nlgIE;sltlm>={(§2 2)2'[_ 2 +a—-§—2__ga€—2_+2gan aag]
+ [n(gz -62)-%- .l(gz _€2 )%:] % +%[4(g2 _62 )*_‘_ €2 (gz _62)—%6_3_
+ [e(gz _ez)-% _(gz - )%] i + m2 iz.(gz _62)% i zmt_%
d¢€ € €
2 rLl, , L 1. 2 _ oy
+ t2 (g2 —€®) [ +2€2+ ] s(s+1) (g e?)
2tz - P a6s) - 20 - P ) + Ay
+ni2<s;2 &) a(s)} |n.8 5 5,8 m)
e, 1 zra 1 =
U=t (s+t+1)}™ o [- 24P )7 5 + De+1) + (67 4n7) ™ ]
+%B(S)} n.g,e: s,t+1,m)

# Lo F L () I - -0 + 3nE )]

+%B(S)} In.E,e; s,t-1,m)

(equation continued)
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+{(s+t+1)(s+t+2)}‘b En y(s)ln E,e: s+1,t+l,m)

+ { 1) (-0} 2 2o E P F y(oIn g e st m)

1
- { (s-t+1) (s-t+2)}® ﬁ v(s)|n.E,e; s+1,t-1,m)

- {(s-t- 1)(s-t)}é —’fl_ Y(s-1)|n.E,e; s-1,t+1,m)

+ e+t (s-01F 2 (e ) (@422 y(s-1)|n,2,e7 s-1,t,m)

+ { (s+t-1)(s+t)}7Js -gin y(s-1)|n,e,e; s-1,t-1,m) (i1.2)

where a{s), 8(s), and v(s) are functions of s only, and depend on the
eigenvalues of the Casimir operators C,, Cs, and C, of 8U(2,2).

The expressions for R, R_, and Rg can be similarly written
down.

R, In.E.ei s,t,m)

az 2% 3% nd 2 E D 2 nd
= = o t+m+ -———+2———+ =S
tel aaz ae E andE e 3 Ak ]

n[2(m+1) -;]—- 2t = (F;z ez)% B

+5[2(m+1)+3 £ -Zt—(Ee-ez)%]§€+(Zm+7)%

g
1 1
+m2—+6 e tze[—+ZE—2—"e—2']—S(S+l)g—g-t';‘(§2—e2)-%
1 i
- A 2 __2\F _ £ _ (=2 2 51,5 ¢ 2_.2)-1
1o (2-2) - 2t T @) Ble) + 5 L g (2 e?)

~ZTe(E+?)t -%e(gz-ez)‘l +-= a(s)}|n.E.e; s,t,mtl)
n 1

+ {(s-t) (s+t+1)}% é{g+(§2 -¢? )‘3‘}%(52 +n2 )2l a_aﬁ +% (t+1)

+En(e?+n?) 7] —%B(s)}ln,a,e; s,t+1,m+1)

+ s+ (s-t+1)} —é—{e-(az-ez)%}{é-(ﬁw)*[g% - 2-1)

+En(E2 )] + ﬁB(s)}lnﬁ;,e: s,t-1,m+1)

2)F

- {(s+t+1)(s+t+2)}% E—; {g + (% -c?)*} v(s)In,g,e; s+1,t+1,m+1)

(equation continued)
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+ {e+t+1) s-t+1))% 2 £ # v(s)|n.Eaes s+1,t,mtl)
- {(s-t+1)(s-t+2)}% % {g - (g° -ez)%} v(s)|n.8,e; s+1,t-1,m+1)

+ {(s-t)(s-t-l)}é %{§+(€2 -c® )%} Y(s-1)|n,&,e; s-1, t+1, m+1)

2

+ {(S-t)(S"‘t)}% 2 g,;z (gz 'Prls Y(S-l)l’ﬂ Ig 1€7 s-1 ,tlm+1>

+ {(s+t)(s+t-1)}% é{g—(gg —62)%} v(s-1)|n,E,e; s~1, t-1, m+1) (1I.3)

Rlnge;stm)

i az n 23 3 5_ 3 na 2
= = I - T N o + 2 3 L
lel n 36 T3 T 2% 3n 3¢ 2 3e5g T2% 3¢ an]

+12men - Sande-e it 2

+2[-2m-1) +3 5 gg +2t—(§3 2)%‘131 - 2m-7) =
+m2%—6m—+t3e[—+2g2—€—12] s(s+1) +t—(g 2)_%
+ 4t€€—:(€2 -? )ék -2t gng (€% +n? )% B(s) +% % % g:—(gz -e2)™t

- ge(@HP) - JelE®-e) + T ale)ln,Siei 5,tme1)
- { (s-t)(s+t+1)}E He-( e )%}{é e (2 %(m)

+3n(E2+P) ] -%s(sn In.E,e: s,t+1,m-1)

_ _ 31 2 _.ay8yqliea@rd _ Lo
{ (s+t)(s-t+1)} g{§+(§ e)}{g(gm)[an n(t 1)

+dn(E2+P) ] +ﬁs(s)} In.2,e: s,t-1,m-1)

+ {(s+t+1)(s+t+2)}% g—lﬁ {e-(e2-¢? )%‘} v(s)|n.g,e; s+1,t+1,m-1)

(equation continued)
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+{ (S+t+1)(s—t+1)}% 2 #(Ez-mz)% v(s) |n.E,e: s+1,t,m-1)

+ {(s—t+1)(s-t+2)}é —1 {g+(®-¢? )’3} v(s)|n.,€,e; s+1,t-1,m-1)
- {(s-t) (st~ 1)}%—{5 (22 -c* ¥} y(s-1) |, 8,61 5-1, 641, m-1)
+ {-0(s+01® 2 %5 @ 4m?) y(e-Dn.g,e5 s-1,8,mo)

- {(S+1)(S+t-1)}é En {e+(e? -eg)é} v(s-1)|{n,E,e; s-1,t-1,m-1) (II.4)

Re |n,E,c: s,t,m)

= (- [ 5+

d? 32 € 9 29
=tz +2E = =
d€ 258586]

2 "% = (g2 3‘% ___1_ g%‘ 2 (3 -% -
- (g +) +n(€+n)]an S L4 +)° - (g2 ) ]

-[e(@amz)"} +§(§3+n3);"] =
# P @) - 2me o o F g2 oot
v (@)t [n%—z gi—

+ 5(s+1) Elg@zﬂf)*

+'€—2']

= 2t.n£2- B(S) +% (ge +‘]’]2 )%(gz _62)—1 —,%(ga _mz)‘%‘
+n—13- (€242 a(s)}n,g.ei s,t,m)

# 0w} D-Lee 2 v ) L - de o))

+m é} In.E,e; s,t+1,m)

e et Dt @ (2 - e L-de@ o))

+ m%} |nlgle: s,t-1,m)

(equation continued)
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+ 2 {(s+t+l)(s—t+1)}%- a%— v(s)|n,E,e; s+1,t,m)
<5 ) {(s—t)(Sﬂ)}% fg- y(s-1)|n,g,e; s-1,t,m) (11.5)

Equation (II.5) for R is relatively simpler since it is the sum
of five states. Equations (II.2)-(II.4) all contain nine states where
As=0,+1, At=0,%1.

III. The Casimir Operators of SU(2,2)
(1) The second rank Casimir operator is

— ab _ v ) 13 v
C, =31 ,L %.cw.é‘ + 4L, - LS, R“P (111. 1)

and if we substitute Eqs. (I.4)-({I.6), (II.1)-(I1.5) into
Colcas cascuim,Eress,tm) =cy|cy, G, cuimEe;s,t,m) (II1.2)

where ¢, , ¢;, and ¢, are the eigenvalues of the three Casimir opera~
tors of SU(2,2), we obtain

a(s) =c, - 2s(s+1) + 4 (I11. 3)

(2) The third rank Casimir operator is

Cs = - 4—18 eadeefLab iller (I11. 4)
and
Ca
B(s) =~ 3G+ (111.5)
(3) The fourth rank Casimir operator is
G =%LabLbCLC dea SN Gh (i11.6)
and

(25+1)(2s+3)(s+1)® ¥3 (s) = [ (s+1)2 - A2 ][ (s+1)® - B2 ][ (s+1)2 - C?]
(111.7)

where
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C, A*+B*+ C® -5
c; = ABC
c, =3[ A2 +B?+C? -17° - [ AP B? +B° CP +CP A2 ] (1. 8)

It has been shownz) that for degenerate UIR's, C = B+l. In general,
A is discrete, 0,%,1,3/2,...; B and C may be discrete or continu-
ous, or even complex. The determination of A, B, and C has been
studied in a separate publication.

IV. "Space-like" and "Light-like" Representations of E(3,1)
(1) "Space-like" Unitary Irreducible Representations of E(3,1)
To change from "time-like" to "space-like" UIR's of E(3,1) we
simply replace n by iw, s(s+1) by rc~1) in Sections II and IiI.

PuPulw,E,e; rltlm> =UJ2 |wl€l€; r:tlm>

WuWulw,E (€5 r,t,m) =-o0rk-1)|w,g,e; r,t,m) (tv.1)

The little c);roup involved here is O(2,1)~ SU(1,1), and according to
Bargmann5 has the following four classes of unitary irreducible
representations:
a) -rfr-1)> 0, t =+ integer
b) -r{c-1)> %, t=+ half-integer
cyr=1/2,1,3/2..., t=r, r+l,... . ,
d) r=1/2,1,3/2..., t=-r, —r-1,...Edls°rete series

continuous series

(2) "Light-like" Unitary Irreducible Representations of E(3,1)
a) UIR's with discrete "spin"

Puﬁllg,e; t,m) =0

wuwulg,e; t,m) =0 (Iv.2)

where the basis vector |§ .¢; t,m) depends on four parameters only.
The representation of the generators is as follows:

Pil E,e; t,m) =¢|g,e; t,ml)

Ps |2 ei tom) = (€2 -c2 ) [, t,m)
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Pe|E,e;t,m) =E|E,e: t,m)
Es|8,e;t,m) =m|E,e; t,m)
g5 tum) = (7 -2)F 2 s he(e2 )
+t2 - me @ h]e e tmey
foeltier tim) = -t {(2-2F 2 43 L)
+% g(iz—ez)‘&}li,e;t,m

4l80ei tum) —-1{e—g+§— +3Es (m1) =

F tz (gz—ez)%}lg,e; t,m+l)

L03|E,e, t,m) =1{a£ +<-:— + 2} €,e; t,m)
s |2,e5 t,my = {(€2-e2)? 2 -2 ][ +g(§3-e2)'%‘]ag
tleE-)? Lt 2 @t S 51 - m

r@-)F s} |g,ei tom)

= 22 20 3
Ry|8.cit,m) {G’ZBgQJ'ae:"2+ e de dF

e g 1,a_aB12
+!:g:1:2(mzl:1)e =F2t€ (R ]ag

1

+ (2m5) 5% - F teitg(ga -eg)-% +%(gz -¢? )%] +el(m9i4m+%)

2
+% f;"(%z-eg)‘l -%g - e(8%-¢?)™ 8(t)} |5, ei t,mEL)

2
Re |E,e;t,m) ={- E[E +aaT+2§ % 2 ]—4%—[%+§]a—a;+t3§§

- g(e?-c2) o) |g,e; t,m)
(1v.3)

v = 0}

- 2mt -6:—3(5’3—6:2 )§+ m? fg + '2"5(%8 e

W on
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where the function & (t) is related to the eigenvalues of the Casimir
operators .

Cp, =3t3-% - 26(t)
Ca =t[6(t) -2 —%

Co =-2{3t* - B[ 1 +45@)] +12[s(t) - 113 (V. 4)
It can be shown that 6 (t) =3

b) UIR's with contifiuous "gpin”

It can be shown that in the reduction of SU(2,2) with respect
to E(3,1), the continuous "spin" representations of E(3,1) do not
contribute .

¢) The null representation of E(3,1): P =0.

Similarly, the null representations of EH’; . 1) with P'J = 0 also
do not contribute.

V. Brief Discussion of the Maximal Compact Subgroup SU(2) x SU(2) x
Ufl!
The maximal compact_subgroup of ST)I(Z,Z) is SU(2) x SU(2) x
U(1), which is generated by J, K, and Ro.z The basis vector is
|j,u;k,u;x) , and (for simplicity for the moment we drop the extra label
o which removes degeneracy),

g JG+1)

Ja o

r Piows kovin) = k(k+1) Viows k,vi ) v.1)
Ka v

R, i

The other eight generators of SU(2,2) are Pﬂ:' Qi, S:l:’ T:i:' with
P13 koviny = [0l vt DIF 2, 6,k 348, st

k& ) V"%:' A1)

(equation continued)
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# L0 ()12 ag 6,k ) |54, us kb, b A+
+ LG kvt I® 2 G, k0] 5B, usds kb, v A1)
PO 0T a0 B, wd kb, v aHD)
Pl kovn) = -[(J'-u+1)(k+v+1)]é by 0,k )i+, udi kg, viin-1)
+ L0 (o By 0,000 |34, pds kb, v A-1
+ L) (vt ))1E by 0,k 0) |58, wods ki, v A1)

ST K-TE by (k) |5k, uds kB, vk A1)

etc. The functions a;(i,k,\) and bi(j .k,\) have been given in pre-
vious publications 2

Next, we discuss the p-\ diagrams, p = J+k, which are con-
venient to the study of the various types of representations.

(@) Finite-dimensional (nonunitary) representations

allowed states of SU(2) x SU(2) x U(1)
are inside or on the boundary
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S

allowed states are inside or on the boundary

h-p\ / =p+1

(c)

allowed states on the boundary only

b

(@) 4#

PERS

allowed states are inside or on the boundary

(e) 3 is unbounded.
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VI. Matrix Elements (Overlap Functions) of SU(2,2)

We are interested in the calculation of the matrix elements
(j us k,vi \|In,E,e; s,t,m) which in general turn out to be confluent
hypergeometric functions. Here we shall present only a simple exam-
ple to illustrate the general technique involved.

We study the "ground state" of the E series, |j = Pgr U = PQ;
k=0, v=0; x =pg+l) which satisfies the following relation,

£1i=pgiu=py k=0, v=0i1=py+l)

= -1(J,-K)|py. pyi 0,0; py+1) =0 (VI.1)
Since we are dealing with unitary representations, we have

(pgr Pyi 0, 0; py+1[£_[E €5 t,m) =0 (vi.2)

where "light-like" representations of the iso-Poincaré subgroup have
been used. (This choice is dictated by the eigenvalues of the Casimir
operators.) If we define

f(§,ei t) = (py, pyi 0,0; p0+1\€,e; t, m=p,) (VI.3)
eq. (VI.2) with the use of Eq.(IV.1) becomes

(-2 é% “ele2c)F 4 f— Py -i—(gz P fee ) =0 (vIL4)

with the solution
p.—t

fe,est) =ole,t) ¢ 0 (2-e®) " [ + (2 -c2)P 1t

(VI.5)

If, in addition, we also use the expression for Rg in Eq. (IV.1) we
can determine the function c¢(¢,t) in Eq. (VI.5) and obtain

- -+ p
£ .5 tmpg) mc e T £ (-2 (g + (262710 w1.6)

Other more general matrix elements can be obtained through the re-
peated use of Eq. (V.2).

We shall not present all the results we have obtained for the
various types of unitary irreducible representations of SU(2,2). The
interested readers are referred to a forthcoming article for all the
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details,4) which are sufficiently complicated to prevent us from giving
any meaningful summary here. They all involve Whittaker functions
and their derivatives.

The rest of this talk presents a summary of our results on the
reduction of SU(2,2) with respect to the iso-Poincaré subgroup E(3,1),
together with the allowed eigenvalues of the three Casimir operators.
Summary of results:

a) UIR's reducible with respect to "light-like" representations

of E(3,1
The EF series, Py = 0,2,1,3/2,...

Co =3(3 - 1)

= 2 -
Cy = - %(p% S

b) UIR's reducible with respect to "time-like"” representations

of BE(3,1
bl,b2) B‘f series, jm,km=0,%,1,3/2,..., Am = I tkpts

=-1,0,1,2,... (if either ip or k,, equals 0, s can also be 3)

Sm

Cs ij(jm+1) + ka(km+1) + )\m()\m+4)

Cs -(xm+2)(jm-km)(jm+km+1)

=1 2 - 4] i 2. + =
Co =300 +207 - 45 G_+DIL0._+2)°-4k_(k +1)]
- 2>
0, +4)
and the s =0,%,1,... representations of SU(2) are used here.

b3) The most degenerate principal continuous series: p > 0

Cp =-4-¢°

o

Cs =

and the s = 0 trivial representation of SU(2) is used.
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b4) The most degenerate complementary continuous series:
0<o<1

-4 + 02

Gz

Ca=0

and again the s = 0 representation of SU(2) is used.
c) UIR's reducible with respect to the "space-like" repre-
sentations of E(3,1)
cl) Principal series: pg = 0,2,1,... , p>0

9
=ns - 2 _ =
C, p0 20 2

Cs =% py(e® +3)
Ce =% P + pp (0 -2)

where the principal series of SU(1,1) is used here. (See diagram b.)
c2) Complementary series: Py =0,1,2,..., -l<o<0

C; = p% + 2(c-1)(o+2)
Cy == Py o(o+1)
Ca =% D - PRl +a +1)
where the complementary series of SU(1,1) is used.

¢3) For pg = half-integer, the p = 0 limit of cl) splits up into
two inequivalent unitary irreducible representations, with

-2 _2
C2 =P -3

andp-x=20,p+X=zpg +%. Here, the D+ series of SU(1,1) is used.
c4) This is the other half of the split representation, with
p+x=20, p-\=pg+%. Here, the D™ series of SU(1,1) is used.
c5) For py = integer =1,2,3,..., the g = 0 limit of c2) splits
up into three inequivalent unitary irreducible representations, with
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Cg = pzo - 4
Cs =0
C, =zpg - P}

andp-2=0, p+) =2 Pg + 1. Here, the D+ series of SU(1,1) is
used.

cG) This is the second part of the split representation, with
p+A =20, p=-)=pn+ 1. Here, the D series of SU(1,1) is used.

c7) This is t(%le third part of the split representation, with
p~X=pg, bP+x=pg. Here, the trivial one~dimensional represen-
tation of SU(1,1) is used.

c8) For pg = 0, the o ~ 0 limit of c2) remains as a single uni-
tary irreducible representation with

C, =-4
Ca =0
C, =0

and p -2 =20, p+1=0. Again, the trivial one-dimensional repre-
sentation of SU(1l,1) is used.
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COORDINATE TRANSFORMATIONS THAT FORM GROUPS
IN THE LARGE*t
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Abstract

One generally takes geometric symmetry group as motions
{metric automorphisms). We show that both in nonrelativistic and
relativistic mechanics there exist (well known) examples where the
physical symmetry is larger than the group of motions of flat space
into itself. Similar situations exist in general relativity. It is
pointed out that there exist a wealth of coordinate transformation
groups (both linear and nonlinear realizations of groups used in ele-
mentary particle theory) in both flat space and curved space-time
which arise as automorphisms of some geometric entity such that the
distance is left unchanged. Various possible approaches for applica-
tion to elementary particle theory are suggested.

Since the inception of relativity and quantum hypothesis a
great deal of progress has been made in understanding of those pheno-
mena that are related to electromagnetism. The successes of the
quantum theory as presently understood have been so far less than
spectacular in the field of elementary particles (strong and weak
interactions) and almost nil in the field of gravitation. In fact the
foundations of the theory of general relativity (G.R.) as a theory of
gravitation appear to be quite distinct from those of the quantum
theory. In its motivation, elegance and beauty the theory of G.R.
is rarely to be surpassed. In spite of what we have said above,

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 13970.

*Present address: Institute of Mathematical Sciences, MATSCIENCE,
Madras, India.
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there have been several efforts to quantize G.R. One of the view-
points taken is that the present difficulties in the application of quan-
tum theory to elementary particles would somehow disappear if gravi-
tation is also quantized. Among the attempts to quantize G.R. are:

1. B.S. Dewitt1 uses the concept of infinite dimensional
groups (connected with coordinate gauge) to set up a generally covari-
ant field theory in curved space.

2. J.A. Whee:]sar2 uses topological considerations to identify
the possible elementary structures in space-time which could then be
put in some kind of correspondence with elementary particles,

3. P.A. M. Dirac® formulates new type of bracket expres-
sions (called Dirac brackets) to introduce Hamiltonian structures in
theories where there are gauge groups: e.g. the gauge groups in elec-
trodynamics and coordinate gauge in G.R. On the negative side we
mention the work of Salecker and Wigner4) who point to the great dif-
ficulties involved in giving any meaningful concept to quantum mecha-
nical measurement of length and momenta when applied to curved
space. The difficulties involved in the structure of quantum field the-
ory even in flat space make it doubtful whether the essential point in
the process of quantization is yet understood. It appears that the
difficulties originate in the very concept of canonical quar.tization.

The recent great proliferation of groups in various branches
of physics such as classical mechanics, nonrelativistic quantum
mechanics and G.R. seems to offer some hope that one can after all
put the various offshoots of physics on a unified basis. The hope is
founded on the fact that the symmetry groups offer a coordinate free
description so crucial to G.R. In the following we attempt to show by
simple, well known examples how coordinate transformations that form
groups in the large are associated with the symmetry group of the
problem, even though these transformation groups are different from
what one usually takes as the "geometric" symmetry group5 (the
"motions"). In this way we try to isolate the essential point involved
in quantization and suggest a possible method of quantizing G.R. and
application to the particle theory.

Nonrelativistic Mechanics

One can describe the trajectory of a particle in three-dimen-
sional space in two different ways. One can conceive of this tra~
jectory as a trajectory in curved space to be described by a geodesic
equation; if one further assumes that the space is Riemannian, one
can determine the parameters of the curve in terms of the metric ten-
sor components. The maximum number of linearly independent com-
ponents of the Riemann tensor in this case is just 6. In mechanics,
on the other hand, one considers the trajectory to be in absolute




TRANSFORMATIONS THAT FORM GROUPS 179

(flat) space and in absolute time together with the concept of force.

If this force is derivable from a symmetric stress tensor (the symmetry
follows from the isotropy of space in the usual way), then the two
descriptions are equivalent, Tor instance, for a spherically symmet-
ric potential, the equivalent curved space metric is

ds® = f(r) dr’ + r® (402 + sin? 0de?) , 1)
fe)=-a(k ~r=+2%42)1 ; (2)

where £ is related to the angular momentum and &,k are constants to
be determined by the boundary conditions. For the Kepler problem

=-MG/r, @>0, and k=2E/mZ20

according as E 2 0. TItis known7) that 3~dimensional spherically
symmetric metric such as (1) can always be conformally represented
in a Euclidean space as follows:

ds® =H? (R) [e dR®+ R2(dA®+ sin®6 d 2)], (3)

where ¢ = +1 denotes the sign of f{r). Since (3) represents a space of
constant curvature, its group of motions is a 6-parameter group. In
fact it is SOy for E< 0 and SO(3,1) when E > 0. These happen to be
the symmetry groups for the Kepler problem in 3-dimensions. How-
ever, note that we would obtain the same symmetry for any spheri-
cally symmetric potential. Generalizing to n-dimensional space with
metric of the type (3), the symmetry will be SO(n+1). People have
obtained®) such results by using the canonical formalism. In this
formalism more than one type of symmetry groups arise.

A. The Conjugacy Group

This arises from the very definition of a Poisson bracket (P.B.)
which requires the existence of a momentum conjugate to each coor-
dinate

{a, pj} =5, ] (4)

For a system with n-degrees of freedom these are n-equations. Each
of them corresponds to the 3-dimensional?) noncompact group d‘.f of
rank 1 with elements q, p, and identity. The conjugacy group is thus
a 2n+l parameter noncompact semisimple group of rank n:

A ®d;®...®d ®d n-times. (s)
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The importance of this group lies in the fact that its elements
are the building blocks of all other canonical variables.

B. "The Infinitesimal Canonical Group"

This arises from the symplectic structure of the Poisson
bracket. If v.ve put My Mge.efp = 9y +Gz « -+ Api Np+l®**M2n = P1e+ Py
the Hamiltonian equations take the form

i
d ij d3H
Wy ©
on
and the P.B. is
{f,g}=€”a—fi j‘% 0 (7)
3N~ ¥

For given nl, fixed in a small neighborhood, the set of transforma-
tions Kij =3n 'Y/ ?mj leaving the antisymmetric numerical matrix e
unchanged constitute the "infinitesimal canonical group";lo) i.e.

XeX =e . (8)

It is clearly isomorphic to the symplectic group in 2n dimensions and
on the reals; the rank of this group is n. It has two important sub-
groups which are also s%rﬂnetry groups of H (i.e. have vanishing
P.B. with H); these are SO(n+1) and SU(n). Since all these
groups are local symmetry groups they do not, in general, give the
true symmetry group which is necessarily a subgroup of these groups.
For a true (physical) symmetry group it is essential that the transfor-
mations form a group in the large. 1 Tor instance in the case of
Kepler problem and the harmonic oscillator these transformations
arise as nonlinear realizations (in coordinate space) of SO(4) and
SU(3) respectively (one can use the generators of SO(4) and SU(3) to
explicitly evaluate these transformations). It would therefore be of
interest to have a method of obtaining global symmetry group of a
problem without having to solve the problem first. However, there
does not seem to exist (at least it is unknown to the author) a general
method of determining a "global symmetry group."

The system of equations (4) which are the basic building
blocks of all canonical transformations have a direct physical signi-
ficance only if the coordinates gq; are cartesian. In this case the p{
are translation generators in %1] In transition to quantum mechanics
only these are carried over, ! Even in that case, as was first
shown by Wigner, 14) given Heisenberg's equations of motion the
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canonical commutation relations do not uniquely follow from it. 15)
Furthermore, Wigner in a careful analysis of relativistic invariance
and quantum phenomena has shown how an unsatisfactory situation
results in quantum theory if one insists on treating coordinates as
observables. Even in classical relativistic Hamiltonian framework
there exist "no interaction theorems”17) unless one is ready to aban-
don position as a canonical variable (or the existence of world
lines). 18) Thus we conclude that in transition to quantum mechanics
what is carried over is not the structure (4) or the symplectic struc-
ture of phase space, but only the physical symmetry group, charac-
terized by the coordinate transformations that form groups in the
large. This is more in keeping with the spirit of G.R., i.e. a coor-
dinate free description. Before we proceed to consider the relativis-
tic case we review some well known material on continuous trans-
formation groups to show how coordinate transformations that form
groups in the large arise naturally in the context of various geometri-
cal objects. 19),20

Coordinate Transformation Groups in the Large as Geometric Entities
In the 1870's F. Klein2l) suggested a program of character-
izing various geometric entities in terms of the group character of the
coordinate transformations as automorphisms of space into itself.
But soon mathematicians realized that the group of automorphisms will
then be an abstract rather than a transformation group. This was con-
sidered as a natural step beyond Klein's own formulation of the pro-
gram and interest in the studies of transformation groups subsided.
But there is an alternative viewpoint. One can consider the coordi~
nate transformation groups as a realization of the abstract group
through transformations in the field of coordinates. But since we live
in space to which we endow coordinates for convenience, it is essen-
tial to know which of our deductions on natural phenomena are depen-
dent on a particular coordinate system employed and which are due
to the intrinsic geometrical properties. In this manner the concept of
coordinate transformation groups arises naturally in the study of dif-
ferential geometry and physics, and hasrecently been used extensively
in general relativity. Both in the study of flat and curved space one
finds a wide variety of transformation groups which could be of interest
in elementary particle theory. With this motivation we summarize in
the following some of the well known results on the field of contin-
uous transformation groups and show how coordinate transformations
that form groups in the large arise in the context of various geometri-
cal quantities. The principal references used are Eisenhart,zz)‘z‘l)
Robertson and Noonan,24 Yano 6) and a recent work of Katzin et al.




182 K. MARIWALLA

Given an n-dimensional space, if there exists a set of map-
pings of space into itself such that:

1. The product of two such mappings belongs to the set.

2, The identity map exists.

3. For every map there exists an inverse map, such that
these two maps taken in any order give the identity map, then the
space is said to admit an automorphism.

The set of all such maps constitute a group. For an r—-parameter
group one may represent a coordihate transformation as

x’1=f1(xj,aa), a=1,2...r; 9)
and possess '"generating vectors”
§a(x) ——'a—a:““-" (10)

alla =0
o

The necessary and sufficient condition for the existence of these
automorphisms is that

axi_ i, j,.B
32 = g0 A @) (11)
o

If we introduce the operators

X =¢ a_l , (12)

then
x't= [exp(a(a) X(a))]%i 0

i i 2
AR +a(a) _)_((q) ®+ 0@%) . (13)

For this reason Xq are called the infinitesimal generators of coordi-
nate transformations. For the set of r-linearly independent functions
g; satisfying (11) one can write

o i

g (14)

k _i k i _
gé E‘y,k-'-gy gﬁ,k—CGY o

where comma denotes differentiation. The constants Cg are
given in terms of A, by Y
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0 _p®% B0 _ A0
Cyf) BY BG(AOHB AB'a). (15)

where B is a matrix inverse to the matrix A. It is then easy to see
that C's satisfy
o M o

9) V)
+ + =0,
CQB coY csycm cchos (16)

In terms of the operators Xa one may re-express (14) and (16) as

X ., x1=c°

~a B aB ')"(0 ! )

(X, - D”CB' L(Y]] + [XB[Q_(Y. 2-(@]] o [’}S‘y' D%x' XB]] =((1)8)

Also we find that

¥ B°=c B¥ . (19)

)
B -
(33 e A SN

v
h.p :
The three fundamental theorems of Lie are

1) The set of transformations fi'(x;a) form a group if they satisfy (11)
with det A(0) # 0 and fi(x;0) = xI. _

2) If we are givena set of r linearly independent functions £% and the
set of consFants 9, such that (14) is satisfied, then there exist
functions (@) such that (11) is satisfied and yields the solutien
f1(x,a) which defines our r-parameter group of automorphisms.

3) If a set of constants ¢ _ satisfy (16), then there exist functions
g;(x) such that (14) is satisfied.

This set of theorems can be applied to a wide variety of
systems to determine their global groups of automorphisms. One may
therefore apply these to a classical canonical system or to a Riemann-
ian space. In order to apply it it is necessary to decide which geo-
metric object (a set of quantities which transform linearly under coor-
dinate transformations)zz):23) is under consideration.

Let us apply this to a general Riemannian space. Here the
fundamental object is the metric tensor, in terms of which the infini-
tesimal distance along a curve is given by

ds® =g, dx" dx’ (20)
Let us take gij as the components of the geometric object whose auto-

mo;phi;ms we are interested in finding. The set of transformations
x’1 -+ %! such that
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’ 7 = r
95 &) 95 &) (21)

when they exist are called the metric automorphisms or group of |
motions of space into itself. In terms of the generating function 51(00
the condition for the existence Df) motions may be expressed by the
vanishing of the Lie derivative

£9
g

(killing equations), where the semicolon denotes covariant differen-
tiation. If the equations (22) have r solutions, then the space is said
to admit an r-parameter group of motions. The equation (20) is a first
integral of the equation of a geodesic

== = + =
4 By S By TR T O 22)

#d 1 dx dd
as® "k s as "9 (23)

The l"jlk are the christoffel symbols and are called affinities. The
automorphisms which leave affinities unchanged in form are called
affine-automorphism (or affine-collineations). The condition for their
existence is that

j' = .
£ rjk =0 ; (24)
or equivalently
hij;k =0 (25)

has solutions. Similarly one can consider Ricci, Einstein and curva-
ture automorphisms. For curvature automorphisms the necessary con-
dition is the existence of solutions to

e (26)

One can also consider transformations that are based on a different
geometric concept than distance. For instance the mappings which
preserve angle (conformal correspondences) and those which map
paths (geodesics) into paths (geodesic or projective correspondences).

By projective correspondence we mean those changes in T
which leave the system of geodesics unchanged; however the metric
is changed. One therefore defines a projective affinity (1) and projec-
tive curvature tensor (W). The condition for the existence of a
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projective automorphism then is that the &7 = 0 (which implies that
£W =0) or

" -
(n+1) 1'lij;k Zg g mmk + 9 k ,m] E[?ml g 27)
where n is the dimensionality of space.
For conformal correspondences
20
g9y~ 9y (28)

and one gets in this case a hierarchy of three automorphisms. Let g =
det(gij) . Then for the existence of conformal motions the condition is

£(g'lgij) =0; or

h,,=20g,.,, 0= n~? (29)

k
ij ij g;k

has solutions. When ¢ is a constant, these motions are called homo-
thetic. One can similarly define automorphisms arising from the
vanishing of the Lie derivative of conformal affinity and the conformal
curvature tensor. The various possibilities are summarized by Katzin
et al.27

Thus we see that there exist a wide variety of coordinate
transformations that form groups in the large; these arise as coordi-
nate transformations which leave a given geometric object unchanged
in functional form. Since most of the coordinate transformations that
form groups in the large (apart from motions and affine automorphisms
of flat space) are nonlinear, they are of intrinsic interest as they
could possibly be used in a nonlinear theory of elementary particles
in which fields act as coordinates thus achieving a true democracy of
all the fields. This could be connected with general relativity in two
possible ways.
1) Given a cosmology and a geometric object determine its automor-
phism in the form of nonlinear coordinate transformations. Construct
a Lagrangian invariant under these coordinate transformations, where
now coordinates are the fields themselves.
2) Given a cosmology and some group of automerphisms associated
with it, find the group space19 of the parameters. The automorphism
of the group space of the parameters gives the elementary particle
group. The group space is in general Riemannian where the coordi-
nates now are the parameters of the group of automorphisms of the
original space. If one identifies the fields and the coordinates such
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that the Lagrangian has the symmetry of automorphisms of group space
we get another possible theory.

Special Relativity
2 n ,
The relativistic invariance group is the Poincare group. These
transformations leave the expression

ds? = T]ijdxl dx’ = dx?- dxP- dx2-dxZ  (30)

unchanged in the form. That is, the Poincaré group is a group of
metric automorphisms. From a physical and geometrical viewpoint

it would appear that the only requirement should be that ds® remain
unchanged. A possible reason (apart from simplicity) for assigning a
preferred role to metric automorphisms is that the Poincaré generators
have physical interpretation familiar from the Galilean group. But in
the investigations of the past fifty years we have come a long way
and have at our disposal more conserved quantities than one can com-
fortably account for on the old picture. (We remark parenthetically
that in general relativity the familiar conservation laws arising from
Galilean and Poincaré invariance do not seem to have any relevance,
any way.) Some of the possible candidates for larger groups in flat
space are:

1. The affine group in flat space. This is the inhomogeneous linear
groupl. GL{4,R)& T,; Lorentz group and the group SU(2,1) are its
subgroups. Its generators are

ERTp Bij . (31)

2. The group of projective transformations of flat space. This in-
cludes the affine group as a subgroup. It is a 24 parameter group with
generators22

@'1 - OL1 " Blj X] n Yk Xk X1 (32)

3. Conformal transformations of flat space. These may be deter-
mined as follows. A space of constant curvature can always be
brought into the form23)
ds? =y 1 dx dx (34)
AT =ax®+ 2xb+c (35)

ac=k+2IK. (36)
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Since we are interested in flat space, let us put K= 0. Now the
following cases arise

a. b =0,a=0, ¢c=1: this gives motions;

b. M =0,a=0, ¢>1: this gives dilations

x't=axt . (37)

c. WM =0, a#0; it follows from (36) that ¢ = 0. Hence after
a dilation, A™ =x°. These transformations can be realized as inver-

sions in a unit hypersphere
x'= &) x (38)

d. p= 0,a=c=0; by (36) B is then a null vector and has
therefore only one independent component, which can be made unity
by a dilation. If we take b4 = (1; 0,0,1), then A™* = (x-b) = (xg- Xa)
and for the transformations we get

x/ =HGE-1) % =R D)

[ - 4

Xz" = Ay ' X T Ax . (39)

Fora = 1, we get (38) combined with translation as

s (51j + bixj)(1 +2bex + PR)t ¥ (40)

The set of coordinate transformations consisting of motions, (37) and
(40) constitute the so-called "conformal group."” Tts Lie algebra is
isomorphic to the Lie algebra of SO(4,2), or SU(2,2). The Lie algebra
of the group of motions of De Sitter space (space of constant curvature
# 0) is isomorphic to the Lie algebra of SO(4,1) or SO(3,2). This has
led to the belief that De Sitter group is a subgroup of the "conformal
group."” However the above analysis makes it clear that the "confor-
mal group” is related to the flat space.

‘We now turn to an application of the "conformal group” to the
problem of irreversible loss of radiation by a charge in acceleration.

The equation of motion of a particle in uniform acceleration is

vl
_da__ 2M -
ar a®v 0, (41)

where Vu and a"l are velocity and acceleration 4~vectors, a® = a.uau =

constant. Equation (41) integrates to give

~
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M_ M, _—ag M
x"=x "+a~ (@ aou). (42)

where x Mand a H are position and acceleration four-vectors in a
given momentary rest frame. If we put

=t M M )
W =x X AV =% a (43)
we get from (42): A (y“+ YQAW = 0; or the equivalent set
'“—x(A y) (' + A, Ay’ =o,

which defines a coordinate transformation in yu . On squaring we get
y'? = y*2\3(1 + 2A°y + A2y?), so that the inverse transformation is

- W
gty [y 1+2;. yriizyg ]

In order that these transformations form a group, the direct and inverse
transformations must have the same form; this determines )\ uniquely
as

ATAY) =128y + AR
Thus transformations from an inertial frame to a uniformly accelerated
frame

! s
MY+ PN
Y TTv2ay+ny ! (“44)

together with (43) and the conditions
Ay’ =0, AU’AM=O ) (45)

We see that these transformations are defined for a region around a
given (but arbitrary) momentary rest frame. This region is defined by
A"tz 0. As)~'- 0, the velocity of the particle approaches the velo-
city of light. These transformations when applied to the Coulomb field
yield the correct Bondi-Gold fields28) for a charge in uniform acce-
leration. It is known that a point charge moving with uniform velocity
or with uniform acceleration does not radiate.28),29) In this connec-
tion it is amusing to note that only for these two motions (viz. uniform
velocity and uniform acceleration) there exist transformations, con-
necting these frames with inertial frames, that form groups in the
large. Consequently the direct and inverse transformations are of the
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same type and the frames of reference so related are equivalent.

On the other hand, in flat space, there exist no transformations con-
necting an inertial frame to one in nonuniform acceleration such that
the direct and inverse transformations are of the same type. Thus a
frame of reference in nonuniform acceleration is in no sense equiva-
lent to one in uniform motion (or uniform acceleration) and hence
irreversible loss of radiation in this case is to be expected.

In the above we have seen an example of a coordinate trans-
formation group in the large, to wit the "conformal group," which is
bigger than the Poincaré group and is a symmeiry group in the physi-
cal sense as far as classical relativity is concerned. Therefore it
must also be the symmetry group in quantum theory.

Discussion

We have discussed the role of coordinate transformations that
form groups in the large as physical symmetry groups. We saw that
in nonrelativistic mechanics (classical and quantum) and in classical
special relativity there exist examples of such coordinate transforma-
tion groups which though not motions (of space into itself--metric
automorphisms) are symmetry groups of the problem. In general rela-
tivity, in the absence of the usual conservation laws of energy and
momenta one is led to take seriously the conservation of such geo-
metric entities as curvature. In this case again one has to consider
the coordinate transformation groups that are not motions. Further-
more the group of metric automorphisms of a curved space (or the
metric automorphisms of the "group space of the metiric automorphisms
of the given curved space") is in general obtained as a group of non-
linear coordinate transformations unlike the transformations of the
usual Poincaré group.

We therefore conjecture that such groups of coordinate trans-
formations are of relevance also to elementary particle theory. More
specifically they can arise in elementary particle theories in any one
of the following ways and their variations.

1. In a nonlinear theory of elementary particles, an elementary parti-
cle group can arise as metric automorphisms of curved space with
fields playing the role of coordinates.

2. The elementary particle Lagrangian has the same symmetry (and its
realization) as the automorphisms of a geometric entity such as cur-
vature tensor in a given cosmology.

3. The symmetry group of the elementary particle Lagrangian is iden-
tical to the metric automorphisms of the group space of the metric
automorphisms of a given cosmology.

It would appear that this is possibly the only way of bringing
G.R. and short range interactions within the same fold. The point of
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view adopted in making this assertion is that in transition from the
classical to quantum theory what is carried over is the structure of
the symmetry group and its relevant realizations rather than the cano-
nical commutation relations.
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NONCONTINUQUS REPRESENTATIONS OF LIE GROUPSt#
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Section I

If we want to describe a physical system by means of group
theoretical methods, we do two things: (i) We choose--because of
physical or formal reasons--a certain Lie group G, and (ii) we iden-
tify the physical system or certain properties of it with a (a) faithful,
(b) unitary, (c) irreducible, (d) linear, and (e¢) continuous represen-
tation of G.

The relation between the physical system and the representa-~
tion is given in the following way: The generators of the representa-
tion are identified with observables and a rule is given on how to ex-
press all observables by these generators.

This is the way one usually proceeds, and the reasons for the
choice of such a representation are the following:

(@) The transformations should be observables, and therefore the
representation ought to be faithful, since different observables should
correspond to different operators.

(b) If one examines pure symmetry transformations, then the invari-
ance of the theory enforces the (anti-) unitarity by the theorem of
Wigner. Nonsymmetry groups contain in general the symmetry group
as a subgroup. Thus at least this subgroup has to be represented
unitarily, and this unitarity is carried over to the representation of the
whole group.

(c) One should suppose that reducible representations contain dyna-
mics which one can only describe in the frame of group theory, if one
embeds G into a larger group which is represented irreducibly, then
one obtains the physical contents, if one reduces this representation
with respect to G.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
$+Part of a paper to be published by H. D. Doebner and B. Pirrung.
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(d) The linearity of the representation is desirable, as nonlinear
representations are more difficult to handle.
(e) Now let us consider for example the 3-dimensional rotation group.
An experimentalist can realize every rotation; hence the continuity of
the 3-dimensional representation of the rotation group. If one uses
noncontinuous representations, one loses the properties which dis-
tinguish Lie groups, since there are no generators.

But this is not the whole story!
(a) The faithfulness is violated in very simple and often used exam-
ples. Consider the unitary, irreducible representations of the n-
dimensional translation group Tp. They are characterized by an n-
vector k and have the form: x - exp i(k*x). These representations
are not faithful because of two reasons: exp i(k-x) has a period of 2m,
and the scalar product (k-x) has the same value for different values
of x. Therefore also the often used representations of the Poincaré
group in the Hilbert space are not faithful. A faithful representation
of Tn-—which is of course reducible--is for instance:

And obviously this representation is unitary.
(b) The unitarity is--as mentioned above--not always enforced by
Wigner's theorem, and the most important argument for the unitarity
is the fact that it is very difficult to classify nonunitary represen-
tations.
(c) The reasons for the use of irreducible and linear representations
are similar, namely of mathematical kind.
(d) In fact one cannot realize transformations which are infinitesimal.
Thus the experimentalist cannot verify the existence of generators,
and one can prove the continuity only approximately by showing that
the mean values, which are measured for a small but not infinitesimal
interval, are continuous functions of the group parameters. We shall
prove later that these mean values exist for one class of noncontinu-
ous representations. I want to stress that one should avoid noncon-
tinuous representations in any case; there are too many of them. But
we shall see later that they appear in some constructions which are
reasonable from the physical point of view.

Now we have seen that the choice of faithful, unitary, irredu-
cible, linear and continuous representations is a simplification,
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which cannot always be justified by physical arguments. We have
seen that these properties are sometimes not even compatible, and
therefore one should not disregard representations, which do not have
these properties.

Section II

Now we shall investigate the continuity of representations.
Let us first recall the definition:s)

Consider a Lie group G and a representation x — Ve of G in

a Hilbert space H.

The representation is weakly continuous iff (V.f, g) is a con-

tinuous function of x for all f,g € H.

It is strongly continuous, iff the mapping x - Vy is continu-

ous for all £ € H.

It is weakly A -measurable, iff (fo, g) is a )\ -measurable

function of x for all f,g € H.

Of course one can construct noncontinuous representations by
changing the topology of the group. But we do not want to do that;
we always use the normal (Euclidean) topology.

The global properties of noncontinuous representations csf
locally compact groups are described by the following tl‘1e0renr1:l +6)10)

Every weakly continuous, unitary representation of a locally

compact group in a Hilbert space is strongly continuous.

Every weakly )\ ~measurable, unitary representation of a locally

compact group in a separable Hilbert space is strongly con-

tinuous.

That means: If we want to construct noncontinuous represen-
tations in a separable Hilbert space, we obtain only representations
which are not weakly A -measurable. And if we want to obtain mea-
surable, noncontinuous representations, we have to consider non-
separable Hilbert spaces, and that is the thing we shall do first.

A simple example for such a representation is given in Ref. 4 in con-
nection with a model of a ferromagnet. Another example is given in
Ref, 8, §22.20.

Of course there are many nonseparable Hilbert spaces, but we

now consider one which is well known and applied in physics, namely

[+
the infinite direct product H® = 1 . ® HOL of Hilbert spaces Ha' which
(x =
1-

was defined and investigated by John von Neumann in Ref. 11.

tHg 1s the closure of the pre-Hilbert space HQ; ., where

(footnote continued on bottom of
next page)
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Now consider a Lie group G with a ¢, f, u (continuous, faithful, uni-
tary and linear) representation x - VS‘C in Hyr0 = 1,2,3... and define
X = Wx in the following way:

-] -]
o . _
W = i mev, falv,lfco—i mef
v=1 a=1 v=1 a=1

and chp = lim chp if = lim ?,

U= o Yo

We can then prove the following statements:
a) x - Wy is a linear representation of G in Hg (this repre-
sentation is called ®-representation)

b) The ®-representation is faithful and unitary.

c¢) The ®-representation is weakly A -measurable.
Proof:
Obviously Wy is a linear operator in Hg. If x and y are two elements
of G, then

@© B © &
w (i I ®f >=> 1ev: f =§ Tevv* £ =
Xy a,Vv A Xy a,v i X v a,v

v=1 a=1 v=1 a=1 v=1 a=1
W(iﬂ@Vf)WW(ZH@f)
v=1 a=1 v=1 =1
( P o o
‘=4 = . < o © = -
H. =1{ole 2 Mot sp<e MIl5, H<oforv=1,...,p
v=1 o=1 a=1

o

el
=) ) 0 g )

v=1l =1 ¢g=1

@©
It is necessary for this construction that one defines 1T 2z =0, if
- . o=l @
Iz | converges and Il z_does not converge. Here z , a=1,2,
a— a=1 @ a
are complex numbers. That means, for example, H (—l)c' =
o=1
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i.e. Wx = Wx Wy on Hé As a similar calculation can be performed,
if © is a’limit element of Hé,, we obtain a). b) is obvious. As x ~ Vg‘c
is continuous, it is weakly A -measurable, and therefore by theorem
(11.18) in Ref. 9 (chp,‘i') is measurable for allg,¥ € Hg, i.e. the @-
representation is weakly A -measurable. Obviously x- Wx is faithful,
if x = Vz is faithful for one o, Therefore we define:

x = Wy is completely faithful (cf) iff x -~ Vy, is fatthful for
a=1,2,3,... .

‘We have seen that the ®-representation is faithful and unitary,
ifx- V;xc is faithful and unitary for all a.. But a similar theorem cannot
be proved concerning continuity. Let us consider a simple case:

Let G be a nondiscrete topological group and x - Vi a
c,f,urepresentation of GinHy, a0 =1,2,..

Suppose that Hy = Hg and Vgg = Vﬁ for all @ and . Then the
®-representation x ~ W, is not continuous.

Proof:
We show that (W, ,¥) is a noncontinuous function of x, if
© © a
o) =<xlll® foo ¥ =ar=11® V, fys f, =fg foralla,s, and ||fa|| =1.

In an arbitrary neighbourhood Uy of x we can always find an element
y such that (VOL fy0 Vi fa): =a #1foralle. Ial < 1, because x~ V
is ¢, f, u. Y =

Thus:
B T/ a ol o _
W, ¥) - Wep, 0] = | 00 £,V £) - 0O £, V)=
a=1 a=1
© <«
=| 0 1- nal=|1-0|=1,
a=1 a=1

as either the absolute value of amis less than 1 or a = exp(i ) and in

both cases the infinite product ] 161 is zero. Therefore in every neigh-
a:
bourhood of x there is an element y such that

l(WXCDI Y) - (VVYCPI Y)l = ll

which completes the proof.
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Thus we have found a new method to construct noncontinuous
representations of every nondiscrete topological group.t

Section III
Now we shall prove the following general theorem for non-
solvable Lie groups:

Let G be a non- solvable Lie group with a ¢, f, urepresentation
x - V™ in H =1,2,3.
Then’%he ®—representaiion x -+ Wy of G is not continuous.

Proof:

It is well known that every semisimple and therefore also every
non-solvable Lie group contains SO(3) or(and) SO(2,1) as a subgroup 3)
Therefore we have only to prove that the ®-representation of SO(3),
resp. SO(2,1), which is given by the representation of G, is not con-
tinuous.

Let us consider first SO(3): According to Ref. 5 we can choose
f € Hy, with [1£,1] = 1, such that

o

o
(V f,f)=V (Cp1:9,CPg)=
X o o )La&a

= exp(- i, 1) 274 (1 + cos e)’%ﬂexp(—i)cOt ), X € SO),

({,a is a positive integer or half 1nteger, ©y ., 0, @, are the Euler

angles). Now let us take & =y = T[l® f.  and investigate the conti-
nuity at x = e (e denotes the identity).

[ws, ¥)-was, v|=| 006 c,6)- 0(,£)=
yl el yd' a, _ 7
a=1 a=1
=|E 2%“(1+cose)*’°°-1|=|o—1|=
=1

because y may be chosen such that 6 # 0 and¢,; = - p,. Then

a=1:2" (1 + cos 8) is less than 1, and therefore ﬁla’f’a =0,
q:

11f we do not demand complete faithfulness, then it is of course easy
to construct continuous ®-representations. Take V* =V and = .
a=2,3,4 * X x
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In a similar way one can prove that the ®-representation of
S0(2,1) is not continuous (by using the matrix elements given in Ref.
2), which completes the proof.

Section IV
This result cannot be generalized, because abelian groups and
even the Heisenberg group may have ¢, cf, u ®-representations:’
This can be easily shown for the translation group T_, by taking as
representation in Hq n

X1
ia;—
e xn 0
. 1=
.eoc4
a, , X
Xx—V_ = in—
X o
e
. X
) i —2
. 2
0 ‘o a

The proof for the Heisenberg group affords a lengthy calculation.
That is all that we want to say about noncontinuous representations
in the infinite direct product of Hilbert spaces.

tIt is very probable that a Lie group G has a ¢, ¢f, u ®-representa-
tion, if G has the following property:

For every § > 0 there existe,,.. -€p” 0, g =& such that
4 I 4 i
gy reeea) gy, eeea) =gl ,..a )
implies
gle,aq,.. .enc,;l) * gle,ay ... .ena;fl) =gles0tys0. .enqn)

forallg € G (@ ,...0p are the group parameters).

It is obvious that groups with this property--we call them contractible
--may be treated in a similar way as the translation group T,. Itcan
be proved that if a group is contractible, it must be nilpotent (and
therefore solvable).
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Section V

Now we shall discuss noncontinuous representations in sepa-
rable spaces.

The 3-dimensional representation of the 3-dimensional rota-
tion group may be written inthe following form:

. 0 -V =V v Y g
9@1 r ©0z2) g as bpy) 'a; (8) 'ag o)
where, for example, Va ) has the form

3

v

Clp) -8 (p) 0

vas o) = S ) Clo) 0
0 0 1

Here the functions C and S have to fulfill the functional equations:
Clpy+ 93) = Cloy) Clos) - Sp1) Spz)
Stpy +vz) = Slpy) Clpo) +8bp2) Clpy)
C®fp) +S%@p) = 1.

These equations have of course the solutions cos ¢ and sin ¢ for C(cp)
and S{p), but also cos flp) and sin f(p) are solutions if flp, +p,) =
flp,) + f(cpg).lz) Hamel has shown in Ref. 7 that there exist noncon-
tinuous functions f which fulfill these equations. And if we use these
functions and replace cos ¢ by cos f{p) and sin ¢ by sin f(p), we ob-
tain a noncontinuous finite dimensional representation of the rotation
group.

In the same way one can construct arbitrary dimensional repre-
sentations of SO(3), which are not continuous, and thus one can even
obtain noncontinuous representations of each group, which contains
SO(3) as a subgroup.t
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GENERALIZED O(2,1) EXPANSIONSt

C. Cronstrom #
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Abstract

We give a brief review of the O(2,1) expansion for a square-
integrable scattering amplitude and its relation to the Sommerfeld-
Watson transform. The conventional O(2,1) expansion is then gen-
eralized to cover the case of asymptotically growing but power
bounded functions. Certain ambiguities inherent in the generalized
0O(2,1) expansion are discussed in detail.

For simplicity we discuss only the case of two-body ampli-
tudes with equal mass kinematics and no spin.

I. Introduction

The material presented in this talk is to a large extent based
on unpublished work by W. H. Klink and myself, which is still in
progress.l One of the objectives of this work is to generalize the
0(2,1) expansion for square integrable scattering amplitudes, which
was first discussed by J. F. Boyce,z) to asymptotically growing scat-
tering and production amplitudes. Here I will only discuss the sim-
plest possible situation; namely the expansion of a two-body scatter-
ing amplitude with equal mass kinematics and without spin. The ex-
pansion formula we arrive at has also recently been derived by
H. D. I. Abarbanel and L. M. Saunders,3) and by C. E. Jones et a1.4)
The derivation of the generalized O(2,1) expansion formula given here
is slightly more complicated than the derivations given in Refs. 3 and
4, but exhibits clearly an ambiguity inherent in the generalization of
the standard O(2,1) expansion to non-square integrable functions.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.

$0n leave from the Department of Theoretical Physics, University
of Helsinki, Finland.
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This ambiguity is quite essential in establishing the connection be-
tween the generalized O(2,1) expansion and the Sommerfeld-Watson
representations) of the amplitude.

The group theory underlying the standard O(2,1) expansion
has been given in Ref. 2, and in the review articles by P. Winter-
nitz,6 +7) and also in the talk by P. Winternitz at this conference.
Let me therefore only briefly mention the relevant arguments in arriv-
ing at an O(2,1) expansion of a square~integrable amplitude.

We consider a scattering amplitude F(s,t) (s and t are the
usual energy and momentum transfer variables, respectively) for a
fixed value of t in the physical region of the s-channel. In the
general mass case the variable t can be positive for a range of values
of s in the s-channel physical region, provided the masses satisfy a
certain inequality. We shall, however, only consider negative fixed
values of t. The momentum transfer vector is then space-like, and
the little (or stability) group corresponding to a fixed momentum trans-
fer is given by O(2,1). This can most easily be seen by considering
the amplitude in the brick-wall system (in which the momentum trans-
fer vector has a component along the third space axis only). In this
system the amplitude is parametrized (for fixed t) in terms of a hyper-
bolic angle 8, which is related to s and t as follows (for equal masses
m),

xEcoshB=:1—Ii§—_jE— -1 (T.1)
F(s,t) = £{t,x) (1.2)

Any amplitude which is square-integrable (in x) can be expanded in
terms of the unitary irreducible representations of O(2,1).

The expansion formula, which is known in classical analysis
as the Mehler-Fock representation,g)' 10) takes the following form

£62) =£ dgafe) Py, &) (r.3)

(=]

a(g) = gtanh (qw)‘lj' dx f{x) P—-%—+iq () (1.4)

Here we have suppressed the dependence of the functions involved on
t (this will also be done in the sequel, whenever expedient). The
function Py (x) in Eqs. (I.3) and (I.4) is the Legendre function of the
first kind., An account of this and related functions can be found e.qg.
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in the first volume of the Bateman Manuscript Projectll) (references
to this work in what follows will be given as B followed by the appro-
priate page number).

The representation (I.3) is very similar to a Sommerfeld-
Watson background integral (taken along Re £ = -%). There are two
important differences, however.

In the first place the range of integration in Eq. (I.3) is (0,«)
and not (-=,») as it would be in the case of a SW background inte-
gral. However, since Eq. (I.4) defines the expansion coefficient
a(qg) as an even function in q (because of the symmetry of the function
PJL (x) under the substitution £ = -£-1) we can simply extend the range
of integration in Eq. (I.3) to (-=,»). In so doing, however, we
create a possibility for introducing ambiguities in the integral repre-
sentation, since one may now add any "reasonable" odd function of g
to the expansion coefficient a(g) without affecting the integral repre-
sentation. This fact will be very important in the sequel.

Secondly, in applying the expansion formulae (I.3) and (I.4)
to an amplitude f(x) we are not a priori forced to split up the ampli-
tude into two parts, corresponding e.g. to even and odd signature.
However, the splitting of an amplitude into an even and odd signa-
ture part in conventional Regge theory is not really a logical neces-
sity but rather a matter of choice,12) A detailed account of Regge
theory without signature has also been given in a recent paper by
T. K. Gaisser and C. E. Iones.13) We shall therefore proceed with-
out introducing signature although one could do so albeit in an ad
hoc manner.

The rest of this paper is organized as follows. In Sec. II we
show in detail how the expansion formulae (I.3) and (I.4) can be
brought into a form in which they coincide with the Sommerfeld-
Watson transform of an amplitude which is assumed to satisfy a fixed
t dispersion relation. Sec. III is devoted to the generalization of
Egs. (I.3) and (I.4) to non-square integrable functions. It is shown
that the generalized O(2,1) expansion can still be made to coincide
with the SW transform, provided one makes effective use of the am-
biguity mentioned above.

The final Sec. IV gives a summary of the results obtained.

II. Comparison with the Sommerfeld-Watson Transform
By introducing a complex variable

L ==%+ig (1r.1)
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by dividing Eq. (I.4) by g tanh (gr), and by extending the range of
integration in Eq. (I.3), we can rewrite the Eqs. (I.3) and (I.4) as
follows,

&+
£ix) = J' dL(tZ::Ir;&a(x P, &) (1I1.2)
—-joo
alt) =% [ dx £x) P, () (11.3)
1

The Eq. (II.2) can be recognized as a Sommerfeld-Watson background
integral, provided the expansion coefficient a(t) can be related to the
partial wave amplitude a, (t) as follows,

a, (t) = -a() cos ML . (11.4)

We shall assume that the (square-integrable) amplitude f(x)
satisfies a fixed t dispersion relation,

» ds’ A (s’ ,t)
£i) = Fls,t) =— | smemmpBe—— (II.5)

[ s
e =i
4m® B -85l

Since the presence of a u-channel contribution to F(s,t) plays no
decisive role in what follows, we simply neglect it for ease of

writing. Inserting Eq. (II.5) in Eq. (II.3) we obtain, using the
formula B. 140,

2 -1
By = -8t L op g 60y
cosmt T y
-ima, 2s’ . it £_28’ . o~
{e Q&( P '1€>+e -1\ ¢ H)r
(I1.6)

where Qq (x) is the Legendre function of the second kind. Eq. (II.6)
defines a(t) as manifestly even in gt = -%+iq). However, the even-
ness of Py (x) in Eq. (II.2) guarantees that only the even part of the
integrand in Eq. (II.2) contributes to the integral. We can thus add
any reasonable odd function of g to a(t) defined by Eq. (II.6). In
particular, we may replace the expression (II.6) by the function
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(t-4m2)~ = - '
8'(1) =2 {edm [ ds’A_(s'.t)e oo 22 Silg= ie)
T e s A\ 4Am? -t
m (11.7)

We shall now turn to the Sommerfeld-Watson transform of the
amplitude defined by Eq. (II.5). We shall then temporarily consider
the variable t fixed in the interval

0<t< 4m® (11.8)
and
0< s<4m? (1. 9)
We can now define a variable 2y
_ 28
2 = AP +1 (11.10)

with values in [ -1,1]. The amplitude F(s,t) can then be expanded
as follows

F(s,t) =Z (2+1) &, ) P,(z,) (II.11)
with
+1
3L(t) =3 !‘l dz, P}L(zt) F(s,t) (11.12)

Inserting Eq. (II.15) in Eq. (II.12) we obtain

a — __2_ - 2y-1 ® ’ ’ —imd, 7 25’ _
8,0 =-=(-4m2)> [ as’ A", 0 e Q (- 1) (m.13)

4m?

For t fixed in the interval (II.8) the series (II.11) converges in a Leh-
mann ellipse with semi-major axis (4m®+ t)/(4m® - t}). We can then
perform a slightly unorthodox Sommerfeld-Watson transform of the
series (II.11), retaining the factor e~Imt i Eq. (II.13) even for com-
plex values of #. The result is
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4He dr(e+1) 8 ) P, (-z)

sin il

F(s,t) =15 (I1.14)

i

We note that the argument -z of the Legendre function in Eq. (II.14)
is defined in terms of s and t by the same expression (I.1) that de-
fines x = cosh g in Eq. (II.2).

Let us also remark that the unorthodox step from Eq. (II.11) to
Eq. (II.14) could have been avoided by using £ = -z, as an expan-
sion variable instead of z,. However, the final result, Eq. (II.14),
with &; (t) defined by Eq. 1iII. 13) would still have been obtained, the
unconventional factor e~ now being a result of the analytic con-
tinuation of Py(-E) to PL(F_:) =Py (-zt).

We can now (trivially) continue the representation (II.2) in s
and t to the ranges of values given by Egs. (II.8) and (1I.9), with
the symmetric expansion coefficient 3 (¢) replaced by the equivalent
expansion coefficient 8’ () given by Eq, (II.7). Comparing the ex-
pressions (II.7) and (II.13) we see that the functions &,(t) and a’w
indeed satisfy the relation (II.4), i.e.

3)6 (t) = -8'() cos mi (II.15)

There is thus a perfect agreement between the O(2,1) result, Eq.
(I1.2), and the Sommerfeld-Watson representation, Eq. (II.14).

III. The Generalized O(2,1) Expansion
As a natural generalization of the Mehler-Fock representation

(I.3) we consider the following ansatz,
-]

i) =] dqAlp,q) P

-0

el x) (I11. 1)

with
-#<spsp,<0 (111. 2)
For p =-% Eq. (III.1) reduces to Eq. (I.3), with A(-%,q) given by

Eq. (I.4). Let us now invert Eq. (III.1) for p fixed in the interval
(III.2). We use the integral representation B.156,

/_Zfdcp cosh [ & + p +iq) v

Pp+iq(cosh B) = = (111.3)

0 J/cosh g - coshm
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Inserting Eq. (III.3) in Eq. (III.1l) and inverting the order of integra-
tion we obtain
dm E(p r‘-"ﬂ]
J/cosh g - cosh o

(I11. 4)

f(cosh g) =QIB
T

with
©

A,o) =] dqAp,q) cosh [ & +p + iq) o] (I11.5)

-0

Eq. (III.4) is essentially Abels equation}‘l)which can be inverted,

with the result,

d ® dg sinh g f(cosh 8)

(111.6)
o 0 +2(coshop - cosh g)

Alp,0) =

Let us now split up Eq. (III.5) into its real and imaginary part,

respectively,
(-]

- +
AR(p ,0) =2 cosh rcpf dq AR(p,q) cos gy
O .

~ 2 sinh 1y j' dgq AI— (p,qa) sin qp (I11.7)
0

@0

5‘1 (Psw) =2 sinhrp [ dg A (P,q) sin ap
0

[=+]

+
+2 coshry [ dg A; (p,q) cos ap (111. 8)
0

Here the subscripts R and I denote the real and imaginary part of the
function, respectively, the superscripts + and - denote the even and
odd part (in q), respectively, and we have introduced the abbrevia-
tion

r=%+p . (IT1.9)
The problem that remains is now to invert the Eqgs. (III.7) and (III.8).

It is not difficult to verify that the following expressions Satisfy
these equations,
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[--]
+ _l =tep <
Apg,a) == j;) dp e " Ap(p,o) cos ap
(o]
= i 1 _rCD ~ ,
A l,a)=-= [dpe " A .0 sinqy (I11.10)
i 0 R

and
-]

A, (p,q) =Tlr [ dp e & (pw) sin av

o

+
A (p,q) =

b= [

J' dop e @ Kl(p,cp) cos qp (II1.11)
0

We then recover the function A(p,q) as

AP, q) =AL(P,q) + A (,q)

+1 A;’ (p,q) +1A7(,q) (I1.12)
i.e.
A@,q) =ni [ dep o ®HEHAD g ) (II1.13)
0

Before expressing Ap,q) in terms of the function f(x) by using
Eq. (III.6) let us consider the question of uniqueness of the solution
(III. 13). We then have to specify in more detail what we require of a
solution A(p,q). It is reasonable to require that A(p,q) should in fact
be a function of the complex variable 4 = p + iq,

A(p,q) =F(p + iq) (III. 14)
where

(i) F() is analytic and regular in a strip contained in -3< p< 0
(i1) F(¢) vanishes to the appropriate order as |Im 4| ~ «
(iii) F(t) reduces to an expression equivalent to Eq. (I.4) in
the limit Re 4 ~ -%.
Let us now assume that there are two functions A(p,q) satisfying Eq.
(I11.5) (or Egs. (III.7) and (III.8)) and the conditions above. Then
their difference A(p,q) has to satisfy the equations,
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<
cosh ryp £ dq A;(p,CI) cos gy

@©

- sinh rp ‘f dq AI_(p,q) sin qp = 0 (1I1.15)
0

and

oo

sinh rep j‘ dq A;(p,q) sin qo
0

o

+
+ cosh j' dq Ay (i,9) cos qp =0 (I11. 16)
0

Egs. (III.15) and (III.16) are satisfied e.g. by the choice
[-<]

+ —_
[ da AR(p,q) cos qp = ¢ (p) sinh np
0

[~

J"O dq a7 (P,a) sin ap = ¢ (p) cosh rp (II1.17)
and

[ dq A;(P,CI) sin qp = d (p) cosh ryp

OCD

g dq A;(p,q) cos qp=—d (p) sinh rp (111.18)

The functions ¢ (p) and d—(cp) in Eqs. (III.17) and (III.18) should be
real, odd, independent of p, and such that ¢ (p) exp rp and
d=p) exp re have Fourier transforms. The requirement that ¢™(p) and
d” () be independent of p follows from the analyticity condition via
the Cauchy-Riemann equations.

Let us consider the example

C_(Cp) = @ e‘%lq)l

4ol

d@=-20e (I11. 19)
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where )\, and )\, are real constants. From Eqs. (III.17) and (III.18)
we then obtain

_A 24,41
A(p:CI) —TT [L(}L+1)]2

(I11.20)
where )\ =), +1i), and £ = p+iq.

We have thus demonstrated by means of an example that the
solution to the Eqgs. (III.7) and (III.8) is not unique.

A little consideration and abstraction from the example (III.20)
allows us to infer that we may in fact add any function A (), which is
analytic in the strip - % < Re 4 < PQ . whose boundary value on Re {, =
- % is antisymmetric in g, and which is such that A(f) P (x) is inte—
grable on Re £ = -% and Re £ = p to the expansion coefficient A(p,q)
in the integral (III.1) without affecting the value of this integral.

Having established the fundamental nonuniqueness of the ex-
pansion coefficient A(p,q) in the ansatz (I1II.1), let us return to the
expression (III.13) which gives one solution for A(p,q). Inserting Eq.
(III.6) in Eq. (III.13), integrating by parts and changing the order of
integration we find

=) © - ,g,+3=)
+ ( 2/
Alp,q) =-(L—ﬂ2) \r dg sinh g ‘[' e f(cosh g)
0 B +/2(cosh g - cosh g) (111.21)
The term within brackets in Eq. (III.21) can be recognized as
an integral representation (B.155) for the QL—function. The final
result is thus

1 (-}
Alp,q) =£’%-€) j' dg sinh g Q, (cosh g) f(cosh g) (I11.22)
0

Let us introduce the notation

_2m
blt) =551 Ale.a) (I1. 23)
The pair of formulae, Eq. (III.1) and Eq. (III.22) then take the form

ptie

£x) =§11—1T p—iwd{,(ZJ(,H) b) P, ) (I11. 24)

bi) = [ dx Q, k) f(x) (II1.25)
1
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It should be observed that all the steps in the derivation of the inver-
sion formula (III.25) are valid for functions which (in addition to sat-
isfying certain smoothness conditions) behave asymptotically as

£(x) = 0P %) (I11.26)

where p is fixed in the interval (III.2) and ¢ is an arbitrarily small
positive number. It should be emphasized that the result given in
Eqs. (III.24) and (III.25) does not mean that we have shown that func-
tions behaving asymptotically as given by Eq. (III.26) can be expand-
ed as in Eq. (III.24) with the expansion coefficient b(t) given by Eq.
(I11.25). What we have done so far is to assume that the functions
f(x) we consider can be represented by the expression (III.24), and
then shown that a suitable candidate for the expansion coefficient
b(#) is given by Eq. (III.25). We have also shown that the expansion
coefficient b(t) in the formula (il1.24) is not uniquely determined by
the function £(x) so that the particular choice given by Eq. (III.25) is
but one member of an equivalence class of coefficients b1} (the mem-
bers of this equivalence class differing by functions A (1) of the type

discussed previously).
On this level of sophistication it is not difficult to justify

the validity of the Eqs. (III.24) and (III.25) even for asymptotically
growing functions. A "rigorous” argument would be somewhat leng-
thy, so we shall merely give a plausibility argument. The expansion
coefficient b(t) defined by Eg. (III.25) is analytic in 4 in the whole
right-hand £ -plane. We may therefore shift the contour of integration
in Eg. (III.24) to the right as far as we please. The formulae (III.24)
and (III.25) then make sense for functions behaving asymptotically
as given by Eq. (I1I.26), where p now is any finite positive number.
Let us stress again that the derivation of the Egs. (III.24) and
(III.25) does not constitute a complete proof of the generalized O(2,1)
expansion theorem. What remains to be done is to formulate condi-
tions on the class of functions that are to be represented by Eq.
(TI1.24), which would ensure the convergence of the representation.
The most general conditions of that kind are global conditions on the
functions to be expanded, which would ensure the convergence of the
representation (III,24) in the mean (in the sense of a suitably defined
norm). For physical applications it is, however, of greater interest
to find global and local conditions on the functions to be expanded,
which ensure point-wise convergence of the representation (II1.24).
Considerations of this kind will be left for future communications. 1
Let us finally examine the connection between the formulae
(III.24) and (III.25), and the Sommerfeld-Watson representation of
the amplitude considered in Sec. II. At first sight there appears to
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be a contradiction between Eq. (III.24) and the Sommerfeld-Watson
representation. We can for instance move the integration contour to
the right at will in Eq. (III.24) without changing the form of the repre-
sentation, whereas in the SW-representation we pick up discrete
terms (due to the term cosec T4 in the integrand) when we move the
integration contour to the right. This contradiction is only apparent,
as can be seen by using the freedom of adding non~contributing func-
tions A () to the integrand in Eq. (IIT.24) (or to the integrand in the
SW-representation). Let us for simplicity demonstrate this fact only
for the case when p satisfies the condition (III.2).

We shall then again assume that the amplitude f) is given
by the fixed t dispersion relation (II.5). Inserting Eq. (II.5) in Eq.
(II1.25) we obtain

9 = 1 & dxQ, )
= — ’ 4 = ——-..—
b) t - 4m® \r zds As(S 't)rr\r x+§
4m’ 1
E=1-—28_ 4 g (111.27)
h 4mP -t :

From the analytic properties of the Q —-function follows the
dispersion relation

o dx Q. &) +1 dx P, (x)
ke e 4] —3==—-q 6} (m.28)
11

)

1 x+Eg sin 14, g

However, the first term on the right-hand side of Eq. (III.28) does
not contribute to the integral (III.Z24) since this term (together with

the factor 24+1) is of the type A () discussed previously. We may
thus replace the expression (II1.27) by the equivalent expression,

2(4m® - 1) J.

’ , ,
b™) = sin Tr)(, ds As(s .t) Q&(E) (I11.29)

Using the relations (B.140) we get,

©
7 — Z{t - 4]’1’[z )_1 “i’ﬂ'& ’ 7 _ s
b ()(,) sin T4, e ‘r s ds AS (S t) Q&\4mg & 1 1€>

4m' (I11.30)
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Comparing Eq. (III.30) with (II.13) we see that there is perfect agree-
ment between the generalized O(2,1) expansion and the SW-represen-
tation also for Re £ # - % The argument outlined above can be
carried through for a general positive value of p as well, with unim-
portant changes in detail.

IV. Summary
The main result of this paper is the derivation of a general-

ized O(2,1) expansion formula for asymptotically growing amplitudes.
It was shown that the generalized O(2,1) expansion coefficient is not
unigue, but that to each function to be expanded corresponds a whole
equivalence class of expansion coefficients. Conditions which would
ensure convergence (pointwise or in the mean) of the generalized
0(2,1) representation are not given, but will be elucidated in forth-
coming communications.

We have further shown that the generalized O(2,1) expansion
agrees with the Sommerfeld-Watson representation of the amplitude,
defined without signature, in the sense that the expansion coefficient
in the SW-representation (which is essentially the partial wave ampli-
tude) belongs to the equivalence class of O(2,1) expansion
coefficients.
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EXPANSION THEORY AND THE LORENTZ GROUPS
IN NON-CANONICAL BASES+*

N. W. Macfadyen#
Physics Department
Carnegie~Mellon University
Pittsburgh, Pennsylvania

I. Introduction

There are several reasons for studying the reduction O(3,1) >
0(2,1): the intrinsic interest of the topic; the elucidation of the role
of "second-~kind" functions;” the possible application to Regge
theory; and, most pertinent to this symposium, the study of how
things can go wrong if we choose an unusual basis. Since there are
so many reductions of SO(4,2), it may be of interest to examine the
unexpected behavior of such a well known group as SL(2,C) in an
SU(1,1) basis.

The results I shall pregsent are by no means all new: the
reductions SL(2,C)> SU(1,1)2) and SL(2,R) 20(1,1)3) have been
treated by many people, and I cannot mention them all here. As far
as I am aware, the actual use of the matrix elements of finite trans-
formations in this basis to expand functions defined over the group is
new, as is also the brief summary I shall give of the chain SL(2,C) D
SU(i,1)> O(l,l).4) This is not the place to give explicit proofs or
detailed arguments, and so these will be almost completely absent.
They can be found in the references.

II. The Reduction SL(2,R) © O(1,1)

Because this problem displays so many features of the higher
dimensionality without also having its complexities, I shall go into
most detail here and simply give an umbrella as suraslce that proofs
for that more interesting case follow the same lines.l I apologize to
all those to whom this is quite familiar.

Consider then a representation j of SL{2,R). Instead of letting
the operators act on special functions defined over a homogeneous
space of the group--i.e.,

+Presented at the Symposium on De Sitter and Conformal Groups,

University of Colorado, Summer 1970.
+Present address: DAMTP, University of Cambridge, England.
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m,, . m
T: v, =y "0 | M

it is much more convenient to carry the j-dependence in the action of
the operators T, and let the basis functions be simple. Following
the Russian school, we set up our representation on a space of func-
tions defined over a hyperbola we shall parametrize by g.: the T-label
specifies the sheet, and B € (-, =) the position thereon, and the
operators TrJ are specified by

[z} 0" @ = 1% Gien ) € 60) @)

where the parameters are defined uniquely by

1\" /ch 8/2 sh 3/2> 1y T
(-1 )(shs/z chs/2< ) E

fa1 Ta2

’
x'l u 1\ ,chg’/2 shg'/2
CALY G
b -1 shB’/2 chp’/2
14
or, in matrix notation, epsr = kep B' . The parameters T and p are
discrete; T =1 only and p =%(1 - t). The label v is either O or 1,
depending on whether the eigenvalues of J, in the given representa-
tion are integer or half-integer.
It is easy to check that this is indeed a representation of

SL(2,R), and clearly we have diagonalized the generator Kl' conju-
gate to the boost B: that is,

[T’él:fﬂshfﬂe +8l) . @)

The new feature is the appearance of the label 1. We can look at
this in two ways, of which the simpler is algebraic: the operators
A=7T 2.x.2 - 2 and K. do not form a maximal Abelian set but
can 3be augmem?“ed by a reflection R which in the standard homo-
morphism of SL(2,R) and O(2,1) has the significance of a change of
sign of the 2-axis:

R: (xol xll xz) = (xol xll —xz)- (5)
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The other way of regarding this is as a corollary of Gel'fand's horo-
spheric method--it is exactly analogous to the two terms required4) .5)
to expand a function defined over a hyperboloid with a hyperbolic co-
ordinate system. In either case, (2) tells us that provided the repre-
sentation j is irreducible, each representation i of SO(1,1) is doubly
degenerate therein. We shall treat principal series representations:

if Re j = —% , we can introduce an inner product
1 .
(E.9)=5-) [ @) ') as (6)
-0
T

and then provided f(g) belongs to a certain space of functions .;S) the
representation is both unitary and irreducible.

Having thus set up a representation, we must choose a sét of
basis functions. Since the 1 are discrete labels, these are obviously
also 2-vectors, and a convenient choice is just

eiLlB 0
cp:(s) = @ 6) = : (7)
0 eiLlB

Obviously many other choices are possible: a different one with some
advantages (particularly for the supplementary series of representa-
tions) is to take the sum and difference of these, gorresponding to
eigenvalues of the reflection R. Clearly, (cpM ’ cplz,) =0 _ s8u-p’).

The vectors actually do not belong to §; because they are not square-
integrable, but we can regard them as members of the dual space in
the usual way.

III. Matrix Elements

Let us first consider what we have to calculate. It is found
that the parametrization r = BbR’ covers SL(2,R) only with three
choices of b: convenient ones are:

bl = g = bg = ge =
~e2 52

£/2

e

cos 8/2 sin 6/2
bs =8 = ®)
-sin 6/2 cos 8/2
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with —=® < E< e, ~2m < 8 < 2. The first double coset class is
exactly the analogue of the single one in the canonical parametriza-
tionr =0E 0', and we calculate its matrix elements in a straight-
forward manner. Clearly these will have a pair of T-labels attached;
indeed, by (2) we find

J

[Tg-m+]+(8)= @76 ot® 8/2 - &% st® 8/2) T (")

tﬂ:wﬁ'@)=o

[T E 10 1 () = (e ch® B/2 - e 5 o 8/2)j o (8”)

=g

i 10717 ) = (-sign 8)” (e° sk B/2 ~e " ol B/2) o (") (9)

g
where
thB’/2 = % th B/2
th 8" /2 =e"5 th /2
th B”/2 = ¢ 5 coth B/2 . (10)

Notice that although the subspace v =+ is invariant, its complement
T =~ is not so; for £ < 0 the situation is reversed. Inserting the
basis functions we find

@7 ) =r(_j1:(if;j))”"j+i“’) + L e/ g/

X F(=j+iu, -i+in’; -2j; -1/sh® §/2) (11)

J++ (g) I (j-Hp1) T (G=ip+1) —j—l——@) (12)

(W +1) T-ip”+1)

j-+ -

@, @ =0

&**@)
um

cos ﬂ(j+\)/2)df:;;(€) cos T (iy’ ~v/2) dil () - cos ™ (Hu-v/2)
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All this is valid for§ > 0; if § < 0 we find

Tt _ J-rl-r _qd-lrie
dw,(lél) A (e d (el . (14)

Now notice what effect this decomposition has had upon the
matrix elements. Consider in particular the integral defining (11):

jm 1, -in's E -t 5 " A’
a’ (e) = ‘f e M P e ch?p/2-e " sk B/2) e dg .
Wi 2m g (15)

The term in parentheses is always positive; and since it has a mini-
mum value of unity, the asymptotic behavior in the complex j-plane
(or the E -plane) comes entirely from the ends of the integration, at
both of which it has behavior eJ5, This agrees with (11). Similarly,
(12) has specific and simple behavior of the opposite kind: only (13)
is of mixed type. Closer examination shows that (12) and (11) are
exactly the classical "second kind" functions for the group SL(2,R),
analytically continued to imaginary values of m = iy (that is, modulo
irrelevant phase factors). The significance of (13) we shall see
shortly. Notice that forg = 0 the first two matrix elements degen-
erate into 8 (u-u’).

We just mention that the matrix elements of the other double-
coset classes can be calculated similarly. We find

ol 141) o=t
o7 (ge) = (VT ST (16)

and QH.:F (8) turns outl) to be just a representation function of SU(2)
after gn%lytic continuation in j, u, p’. The discrete series kt, t=4%,
of representations of SI(2,R) behave similarly; but O(1,1) is not
degenerate in any of these representations and consequently all the
matrix elements vanish if sign (tu) #t. Those remaining are exactly
the continuations of the principal continuous series matrix elements.
Now let us return to (12) and (13). Since these relate expres-
sions involving j and -j-1, which label equivalent representations,
we expect that a study of the intertwining operator will be useful.
Recall that this is an isometric operator A: ;ﬁ)j - 39_1-_1 , which satisfies

A Vv r€SL(2,R) . (17)
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We ask how A transforms our pseudo-basis states, and find that the
only possibility is

iT T =j-lr7 =j=1-7

A: =q afT 18
A ® u % (18)
with the relations
au=a =q
S 1
+ v o_,-
a’ =(¢1"a’ =a’ . (19
v - v )

Further, we know an integral representation of A in the reduction
SL(2,R)> EZ:

[A:£] &) = [ |x=x'| 272 gignY ex) £’ dx’

Together with the requirement of isometry, this specifies the intertwin-~
ing coefficients o up to a pure phase; carrying out the integrations
we finc’zl)l

qu =1'r_1 T (j+ip+1) TG-ip+1) cos m(iL -v/2)

a’u = —Tr_l T (+ip+1) TG-ip+1) cos m(i-v/2) . (20)

In the canonical basis SL(2,R) 2 O(2) we should have found A:\lrin =
-j-1 4)

%m qu

, where with this normalization

-1 —i
a_ =7 T@+m+l) T@-m+l) sinwlm-j) e v/2

- (21)

Now return to (17) and calculate the matrix elements when r
belongs to the first coset class; we obtain two equations

v dt ey =qr q7il 22
qu’ LHJL(<;) of d 7 (@) (22)
PR P J++ —j-1++
’ =a ,d . = d -,
o udu " © o d Ll(C) Sy ©) (23)

which upon inserting the values of o, o’ are just (12) and (13).
Clearly an analogous result holds for the second coset class—--we just
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use (16); but it fails for the third, which we called 8, since then
none of the function is of simple behavior in the j-plane and none
vanishes--and it was precisely the vanishing of ai~+ (€ > 0) that
gave the usefulness of (22). Therefore this class, which has no ana-
logue in the decomposition SL(2,R) ® O(2), has no meaningful second-
kind decomposition at all. This is of interest.

IV. The Reduction SL(2,C) = 8U(1,1) 2 0O(2)
Everything here follows exactly as in the last section; we
define a representation by

. —jo—c-l _jo-o-l P
[TZ: o] &) =X A @' (v') (24)
where ,
€pVa=k€p VI XE{jO’ 0'} ]

v € SU(1,1), a € SL(2,C), k is the complexification of the k of the
last section, 210 is integral and g imaginary. The complicating fea-
ture is that e T(v) must now be expanded in terms of the representation
functions slfj ’m(v) of SU(1,1)--i.e., in shorthand notation

o)

£ () = [am0) Y ﬂijo,m(") B (25)

where J'dM(j) stands for summing oxr/rér the discrete and integrating
over the continuous principal series. There are exactly the same
double coset classes as before, except for an important caveat we
shall mention shortly, and we can calculate the matrix elements
exactly as before. Thus, for € > 0 we obtain

F(J‘O%)T(m-&)l“(i+jo+l)1“(j+m+l) 1
&m; ;8 = ('1) {T“(—J'D—L)I‘(—m-L)l"(j-jo+1)1"(j—m+1)

(L-0+1) @ sh gyt o ~Bmjp-otL=j+1)

(m+J ) !

(m"H’.-*I"l)t (j()—i-»i’,+l)t

* ) TmH SO A2H)t] (26)

X P(m+j0+{,—j+t+l, L-o+1: m+jo+)z,-o+2+t; e—2§)

Co . . . 1. A28
P3(m-J,JOJ,-m-JO t, -t ~4-m-t, -0-j -t, m¥j _+1;e )
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and

X+, —X--
MO R N @7

Many more relations and identities can be found in Ref. 1; they all
bear a strong similarity to those of the last section, although like
(27) some are simpler because of the normalization of the basis
functions. We need not give them here. Let us proceed at once to
examine the asymptotic behavior of (26) as £ » «; from the defining
integral we see thatthis is just e 0, with no term in e‘gc, and so we
can just sum the leading terms of the series to obtain

E(E @) ~ {}% T (L-g+1) T (-4 —o) o B+ mo+1)

i ,~o+ 1L (m-o+1) (m+j ) ! (28)

As we expected, this is exactly the form of a classical second-kind
function, and once again closer inspection shows that is just the
analytic continuation (in £ and j) of that function. Therefore (26) and
(27) play exactly the role for SL(2,C) that their sisters (11) and (12)
played for the real group. We can of course find the function d¥*-(g)
directly by integration, but the result is very complex and it is better
to use equivalence. Now the representations x = {jo,c} and -x =
{3 O,—c} are equivalent, and we can define intertwining coefficients

+ =
a ,=a ,=aqa,
] ] J
-1 1T =N
(-1) o j=a]
and deduce
= _X——
al, drri(e) =a’ 47" (@) (29)

X++

Xt=,
% (€) = B&(-X) a (i) - By (-x) el ( ) (30)

where B o x)/0’.(x). The coefficients are very difficult to cal-
culate djlrectly but can be found by examining the asymptotics of the
d-functions:

a =17 DG+o+1) (o)) stn @ - )

OL'J. =TT—1 T({+o+1) T(o-j) sinm(o - J'O) . (31)



EXPANSION THEORY 227

Knowing these, we can express all of the matrix elements of the
first two classes by means of (26). Only the third double coset
class 6 remains, and it seems impossible to calculate its matrix
elements in this basis.

V. SL(2,C)>su(1,1)> 0(1,1)

But in this reduction?) only the third coset class is amenable
to calculation. The problem reduces to the previous reduction with
different basis vectors, which are specified by the covariance condi-
tion arising from the ambiguity in the phase of A in (24) together with
the requirement that K be diagonalized: this implies that the basis
vectors o' (v} satisfy

T oK) - Hora T e (32)

which means that cp is a "cross-basis" matrix element of SU(1,1)
which we can label schematically as {O(2)|e igK, |o(1,1)y. Because
0O(1,1) is degenerate in a representation of SU(1,1), we actually
need another label t = +1 to specify which particular subgroup we
mean, as_in Section II, so that our pseudo-basis elements can be
labeled .ﬂJth u(\.') . These functions are properly defined and dis-

cussed elsewhere4)-—here we only note that they are complete and
orthogonal in all labels. The representation functions of SL(2,C)
therefore have two pairs of discrete labels onthem, corresponding to
the pair of discrete operators

g (xo.z) = (xo, X1, Xg, —Xa)

R: (xol _?5) = (XOI X1+ KXoy —XB) ? (33)

and can conveniently be written 8 1yt (@). These can be calcu-

)Lut ju
lated explicitly for a belonging to the third coset 8, and bear dis-
tinct resemblances to (26), but of course are not of "second-kind"
behavior at all. The reduction has the interesting feature, however,
that apart from the matrix elements of the third coset classes in both
SL(2,C) and SU(1,1), all the other d-functions are of simple behavior
in the group elements. This would seem to be the ultimate that we
can hope for in the way of second~kind decompositions.

Vi. Expansion Theorems
At last we mention applications--which means expansion the-
orems over the group. For SU(1,1) D O(1,1) everything is well
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behaved, although we do of course obtain two terms, exactly as we
do in expansions over a hyperboloid. For SL{(2,C) =2 SU(1,1) > 0(2),
however, unexpected complications occur: specifically, we find that
we must introduce new functions, that are not representation func-
tions, for the coset class 6 if we are to obtain orthogonality and com-
pleteness relations. The new function occurs only in the generalized
partial wave projection formula, not in the inversion; for we still find

f@) = Y Jameame)) Jax 8T @F (34)
T mm’
but now
F=faun@ BT @) 1 (35)

where $(z) = 8(a) if a is in the first two cosets, but is our new func-
tion if it is in the third. The cause of this remarkable phenomenon
is easy to find: it lies in the parametrization of the group. We set
a =v bv’, and this is in general a seven parameter set, but reduces
to six if b is € or Ee. Therefore a straightforward integral over v, v’
and 8 will cover some cosets more than once, and so in deriving (35)
we find at one point that a measure enters that is not the invariant
measure over SU(1,1l)--and that therefore the projection function is
not a representation function. Clearly the difficulty does not occur
for SL{2,R) @ O(1,1); but it shows that the orthogonality of represen-
tation functions is not something to be taken for granted, and such
problems may be expected to occur for SU(2,2) in at least some
reductions.

Finally, let us note the suggestive similarity this has to the
resultb) that a second-kind transform formula exists only for SL(2,R),
whereas the inversion holds for both this and SL(2,C).
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TWO-VARIABLE EXPANSIONS
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Abstract

A review is given of a scattering theory based on two-variable
expansions furnished by the Lorentz group. Arguments are given for
using the conformal group in such a program, in order to make as
much use as possible of relativistic invariance and crossing symmetry
simultaneously.

Introduction

The aim of this paper is to give a short review of the present
status of a scattering theory, based on two-variable expansions of
scattering amplitudes, furnished by an application of the representa-
tion theory of the homogeneous Lorentz group O(3,1) and to indicate
how further developments of this approach to particle scattering lead
us to a consideration of the conformal group of space-time, or rather
the group O(4,2).

Much of what is conta%nec] in this report was published in a
series of original papersl = but was reviewed ag a whole only in
unpublished lectures,la) since which there have been further
developments.

The reason for writing two-variable expansions has been dis-
cussed in the above publications. Let us just repeat the main argu-
ments which are essentially the same as for performing any type of
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University of Colorado, Summer 1970.

¥0On leave from Nuclear Research Institute, Czechoslovak Academy
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direct channel or crossed channel partial wave analysis. Namely, by
using group theory to capitalize on the symmetries of the space-time
and momentum framework, in which the reactions occur, we wish to
treat as much as possible of the kinematics in a general fashion, to
transfer the dynamics to the expansion coefficients, which then serve
as a tool for making physical assumptions (similar to the reggeized
partial wave amplitudes in complex angular momentum theory). The
fact that all the dependence on the kinematic parameters (e.g. the
Mandelstam variables s, t and u) is contained in known function
should make it possible to describe a large amount of data in terms
of a few parameters. Further, such expansions can serve as a tool
for imposing general principles, like Lorentz invariance, crossing
symmetry, unitarity, etc.

We call the coefficients in the O(3,1) two-variable expan-
sions "Lorentz Amplitudes" and the hope underlying all attempts to
develop such a theory is that these Lorentz amplitudes are an ade-
quate tool, having reasonable, and in some sense simple, properties.

In Section I we give a brief exposition of the O(3,1) expan-
sions which have so far been considered and mention some of their
implications. Section II is devoted to a comparison between our ex-
pans 1or35 an)d other two-variable expansions, existing in the litera-
ture, 19)-21) which are based on an SU(3) group. In Section IIT we
show how the group O(4,2) appears in the context of two-variable,
or more generally, multi-variable expansions and give some prelimi-
nary discussion of O(4,2) expansions.

I. Lorentz Group Expansions

A. Subgroup and non-subgroup type expansions
The general way in which we obtain expansions of scattering
amplitudes consists of three steps:

1. We construct a mapping of the physical region of
the Mandelstam plane (for two-body reactions) or its generalization
(for many-body reactions) onto a homogeneous space of a certain
group, in such a manner as to be able to consider the scattering
amplitude to be a function of a single point in this space.

2. We choose convenient coordinates on the homo-
geneous space and find a complete set of generalized harmonic
functions of the group.

3. Making use of completeness and orthogonality
relations (or of a generalized Plancherel formula), we expand the
scattering amplitude in terms of these harmonic functions.

The first step depends on the frame of reference in which we
consider the scattering and of course on the group and homogeneous




TWO-VARIABLE EXPANSIONS 233

space which we choose. The second step--choice of harmonic func-
tions--isalsoin general far from unique. Indeed, givena group there
are many different bases in which we can consider the group represen-
tations. We obtain basis functions by considering complete sets of
commuting operators, containing the invariant operators (Casimir
operators) and other operators lying in the enveloping algebra of the
group algebra and possibly also some further ones. The basis func-
tions are then obtained as the common eigenfunctions of such a com-
plete set of operators. If we limit ourselves to second order operators
in the enveloping algebra then we find®) that for any given Lie group
only a finite number of such sets of commuting operators exists and
that there is a one-to-one correspondence between these sets and
coordinate systems, allowing the separation of variables in the La-
place operator on the corresponding homogeneous space. Further,

it was shown that the simplest types of separable coordinates each
correspond to a set of operators consisting of the Casimir operators
of all subgroups figuring in a certain reduction of the considered
group to its subgroups, whereas more complicated coordinate systems
of the elliptic type correspond to other second order operators.

In the following paragraphs we shall consider the O(3,1) ex-
pansions, obtained by considering individual chains of subgroups and
also a "non-subgroup" type of O(2,1) expansion. We shall limit our-
selves to the two-body scattering of spinless particles, so that we
have only one scattering amplitude, depending on four momenta p, ,
... by, satisfying

Py t Py =Ps + Dy p°> =m? m,>0 (1)
i=1,...,4

and the dependence on the momenta is restricted by the requirement
of Lorentz invariance. Instead of momenta p; it is convenient to con-
sider the relativistic velocities vy = pi/mi, which for arbitrary masses
satisfy

VEv? mv® -vR -l w2l
()

and this upper sheet of a two-sheeted hyperboloid is the homogeneous
space under O(3,1) which we shall be using.

B. The O(3,1) 2 O(3) o O(2) Reduction

This chain of group reduction corresponds to an introduction
of spherical coordinates on the hyperboloid (2), so that the momenta
can be written as
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pi = mi(cosh ai, sinh ai sin ei cos cpi, sinh ai sin Gi sin cpi,
sinh a, cos 8,)
i i
OSai<<’=>‘r OSGiSTr, Osapi<21'r (3)

In order to construct a mapping of the Mandelstam variables s, t and
u onto the hyperboloid, it is convenient to make use of the center-of-
mass frame. Thus, we fix a time-like vector, the total energy mo-
mentum, to be p1+ py = (/s, 0,0,0). Further we choose the coordi-
nate axes so that p1 and p2 are parallel to the third axis and the
first and third axes lie in the scattering plane.

Imposing these conditions, together with the conservation
laws, we find that the components of p, , p,, and p, in (3) can be
expressed in terms of a, and 8, (p, = 0) so that the scattering ampli-
tude can be written as

f(s,t) = fla;, 85) = £(v) (4)

i.e. a function of a point on the hyperboloid v* = 1 (or a function of
one of the four momenta). It is easy to see that given the above
choice of a frame of reference the above parameter § = 8, is simply
the c.m.s. scattering angle and a = a, is related to the total energy.
The relation of a and 0 to s and t for arbitrary masses was given
previously.s)lls) For equal masses m, = ... =my =% the formulae
simplify to

2t

cosha =/s, cos 8 =1 +—_I- . (5)

The basis functions can now be obtained as the common set
of eigenfunctions of the Casimir operators of the group O(3,1) and the

subgroups in the considered reduction, i.e.

A m(a.e ) =olo+2) ¢0Lm(a.e )

L¢
2 =

L ¢0_{’m(ale ICP) L()L"'l) ¢0_Lm(aleltp)

La ¢O’Lm(a'e,q)) =m¢o)(,m(a'e'®) (6)

Here A;, 17, Ls can simply be realized as the Laplace operators on
the hyperboloid v = 1, the sphere v, = const and circle v, = const,
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va = const. Using spherical coordinates we can separate the vari-
ables in (6) and explicitly find the eigenfunctions. To normalize them
is a somewhat more difficult task, performedl) by using the methods
of integral geometry. Finally, for scattering amplitudes, depending
on a and 8 only, we obtain the expansion:

= §+iw ™ -t
f@,0) = ) (24+1) [ (o+1)? do |‘(| {f:-lx),) A, (o) ~—p ' %F(cosha)  x
)L;-'O b-im = J/sinh a %+
X P, (cos 6) (7)
A (o) =L Le=l) J"w sinh® ada J‘nsin 6 do f(@,8) X
L 4 T(-0-1-1) A A g
1 -4-%
X————— P (cosh a) P}C(cos 8) . (8)
Jsinha 3+o

Strictly speaking, these formulae are only valid for functions
satisfying

°° m
[sinh®ada [ sin 6 do|f@,0)[® < = (9)
0 0

i.e. for amplitudes corresponding to total cross-sections limiting to
zero as s = ®, Such functions can be expanded in terms of the basis
functions of the irreducible unitary representations of the principal
series,zz) corresponding to ¢ = —=1+ip in (7) and (8). In order to in-
corporate more general amplitudes, the expansions must be general-
ized to non-unitary representations, e.g. by considering more gen-
eral integration paths ) in formula (7). Let us note that the reason
why only one of the two invariant operators of O(3,1) figures in the
set (6) is that the other one is identically equal to zero for particles
with spin zero.

C. The O(3,1)> 0O(2,1) D O(2) Reduction
This group reduction corresponds to hyperbolic coordinates
on the hyperboloid, in which the momenta are

p; = mi(cosh a, cosh Bi’ cosh o, sinh Bi cos @,
cosh o, sinh Bi sin o, , sinh q,i) (10)

-esa < Ossi<w OScpi<21T
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Let us now consider the scattering in a brick wall (or Breit)
frame, obtained by aligning a space-like vector--the momentum trans-
fer p, -ps with the third axis p; -ps = (0,0,0,/-t) (we are considering
t < 0 only). Further, let us choose the space axes such that 31 and
Ps are parallel to the third axis and the first and third axes lie in the
scattering plane. Such a choice of the reference frame is again suffi-
cient, together with the conservation laws, to enable us to express
all the momenta (10) in terms of one of them and thus to obtain the
scattering amplitude as a function of a single point, i.e. f(s,t) =
f@,B) =f(v). This time the parameter ¢ will be related to the momen-
tum transfer and 8 will be related to the c.m.s. scattering angle in
the crossed channel (in our case in the t-channel). The general rela-
tion betwsleer) a,B and s,t was given for arbitrary masses else-
where, form; = ... =m, =% we have

28

1-t (L)

sinha =/-t coshB =-1+—

The complete set of commuting operators, determining the
basis functions, again consists of the Casimir operators of all groups
in the reduction, supplemented this time by a discrete operator, cor-
responding to a reflection of the third axis. Diagonalizing these four
operators as in (6), separating variables in hyperbolic coordinates,
solving the equations and normalizing the obtained functions, we
arrive at the expansion:

Y+1m &-Fieo
f@,B) = lelfz j' (2? #1) cotmt db [ (o+1)° d 5L (0—1{:4(-;4)_21;(0+4’..+2)
b=iw
cosh - {A (6 ,2) [IP Y-tanh a) + P;" (tanh o) | +
+A (0,2) [[P ( tanh o) - (tanh @)]} P (cosh ) (12)
NG F(U}g'l}()_g)('“’“’) [ cosh? ada [ sinh pdB f(a,B)
- 2

{!PCH_1 -tanh o) £ p° *+1 (tanh on)} P (cosh B) . (13)

cosh Q -4 -
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Again, if the amplitude f{o.,B) is square integrable with res-
pect to the invariant measure over the hyperboloid, then only the
unitary representations of the principal series will figure, i.e. £ =
-% +1iq, o = -1+ip, p,q are real. The functions P%(x) are Legendre
functions on the (-1, +1) cut.

D. The O(3,1) =2 Ey 2 O(2) Reduction
Let us now introduce horospheric coordinates on the hyperbo-
loid, putting

=m (coshvy, +&r Be_Yi r e_Yi cos r e_Yi sin o,:
Py Ty Vi & ¢ N Py Ty Py
sinh 0 +%"rize h (14)
—m<y. < <r. < <@ < .
DS s 0 r<e 0 Q 2m

We shall consider the scattering in a frame of reference which
we call the "light-velocity system." Since it should be adequate for
the reduction into Ey, the group of motions of a Euclidean plane,
which is the little group of a light-like vector, we wish to obtain a
scattering frame by standardizing a light-like vector. A convenient
choice, satisfying K (s,t) =0, K(s,t=0) =p,~p, is:

me _a mp +mj -t
K(s,t) = pa 2 S cosh A =*m—-— (15)

Putting K(s,t) = @,0,0,w), where w is an arbitrary scaling
constant, choosing OlBﬂas the scattering plane and putting the third
axis parallel to P, and p, , we find that we can again express all Y
and ry in (14) in terms of say y, and r, , thus obtaining f(s,t) = f(y,r)
= f(v). This frame of reference was so constructed as to be meaning-
ful particularly for nonequal mass scattering, when m, # my and/or
m, # m,. The relation between s,t and v,r 1s quite complicated and
is given in previous references.®/: 18) The complete set of commuting
operators consists of

bys @ = (K, +L)°+ (K - L, )P, L,

where K; are boost generators and L; rotation ones. Writing eigen~-

function equations similar to (6), separating variables, normalizing,
etc., we finally obtain the expansion formulae
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© §-+iw
=L 3= Y Y
fly,r) =5- [kdk [ (@+1F do Torg) A0k ek kel) T (k) (16)
(¢} 8 —im
N & 2 <o
_ i -2y Y v
Ao, k) o) L,e dvy ‘fo rdr f{y,r) e K—o—l(ke ) ]o(kr) (17)
where again g = -1+ip, p real for square-integrable amplitudes. Here

Io(x) are Bessel functions, K\)(z) Macdonald cylindrical functions.

E. Discusgsion of the Subgroup Type Expansions

The maximal subgroup in all three above expansions plays an
important role. Beyond simply being a subgroup of the O(3,1) group,
which acts as the group of motions of the space of independent kine-
matic parameters and thus generates the expansions, the subgroups
also appear as little groups of the Poincaré group, leaving a certain
timelike, spacelike or lightlike vector invariant--namely that vector,
the standardization of which determined the frame of reference. Due
to this dual role of the subgroups our two-variable expansions incor-
porate the 0O(3), O(2,1) and E, little group expansions?3)‘2531ndeed,
formula (7) can be interpreted as the standard direct channel partial
wave expansion, supplemented by an integral expansion for the partial
wave amplitude a, (s). Formula (12) similarly represents an 0(2,1)
expansion, i.e. the integral of Regge pole theory, together with an
integral expansion for the reggeized partial wave amplitude a(t,,t)

(for t < 0). Finally the expansion (16) can be viewed as the Eg little
group expansion fort =0, (m; #m,, my # m,) and as its generaliza-
tion for t # 0, again supplemented by a further expansion of the cor-
respondin% partial wave amplitude. The O(3,1) little group expansion
of Toller? )for t=0,my;=m,;, my, =m, (elastic forward scattering) is
also contained in the two-variable approach, namely as a special
limiting case of expansion (12). The relation between these two dif-
ferent O(3,1) expansions is considered in Refs. 9 and 18.

Thus, the O(3,1) two-variable expansions incorporate the
Poincaré little group expansions completely, so that they do make
full use of relativistic invariance and in particular should be useful
for solving problems connected with various types of kinematical
constraints upon amplitudes. For particles of spin zero the only prob-
lems of this sort are connected with nonequal mass scattering at t=0.
For a discussion of these problems we refer to previous publica-
tic:ns.9 +18) In particular, a consideration of nonunitary represen-
tations makes it possible to incorporate Regge poles, branch points




TWO-VARIABLE EXPANSIONS 239

and cuts, etc. in the expansion (12). The expansion for the regge-
ized partial wave amplitude

§+ie <
- __lilcosml 2, Ulo=t+1) I'(g++2)
2.t = - §72 cosh o Jz;-(f:l) T G2)

. {A+(o,&)ﬁ>f‘1(-tanh Q) + [p;"l (tanh o) | +

+ A'(c,u[u:f‘l (~tanh a) - Pf'l tanh o) [} (18)

following from (12) makes it possible to relate the singularities of
a(t,t) in the complex ¢ plane, i.e. the divergencies of the g-integral
in (18), to the behavior of the Lorentz amplitudes AT (o,4). In this
formalism Lorentz poles, i.e. singularities of AT (5,4) at finite values
of IO‘I can only lead to fixed singularities in the {-plane whereas
moving singularities, e.g. Regge trajectories depend on the behavior
of the Lorentz amplitudes for Im g = +», Re ¢ =& = const.

Let us just mention that if we add Mandelstam analyticity to
the assumptions about f(s,t), then the O(3,1) © O(3) expansion in one
channel and the O(3,1) © O(2,1) expansion in the other can be proved
to be analytic continuations of each other and the Lorentz amplitudes
in the two channels will have definite analytic properties. 15

F. Expansions of the Elliptic Type

All three two-variable expansions considered above were of
the subgroup type and the stress was on the incorporation of the little
group formalism, i.e. on the utilization of relativistic invariance. In
this paragraph we shall mention a different approach in which we make
use of group representation theory in an "elliptic" basis, not related
to any subgroup.

The motivation for going into such complications is that we
wish to write crossing symmetric expansions, i.e. expansions which
converge in at least two channels and which have particularly simple
properties with respect to crossing symmetry. Thus, let us consider
a crossing symmetric reaction--one that coincides in the s and t
channels. To ensure properties like

f(s,t,u) = £f(t,s,u)

we shall first construct a specially symmetric mapping of s,t onto
some coordinates ¢, 8 on a hyperboloid and then expand the ampli-
tude f(n,B) into such basis functions of the group representations,
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that they have the same type of dependence on ¢ and 8. For all
details we refer to the original paper.

For mathematical simplicity instead of using an O(3,1) hyper-
boloid as above, we shall make use of the fact that with our usual
choice of the scattering plane, all momenta have zero components in
the direction of the second space axis, so that we can consider the
velocities as lying on an O(2,1) hyperboloid & *-v,?-v2=1. Let us
parametrize this hyperboloid using elliptic functions26

Vo = - onfa,k) en(B,k), v, =1 snfa,k) dn(,k), v, =idn(x,k)sn(g,k)
(19)

where we put the modulus of the elliptic functions k = 1//2 and take
the variables in the region

a € (iK, iK+2K) B € (iK, iK+2K) (20)
where K =[T&)]?/4/m is the real and the imaginary period of the
Jacobi functions.

We shall construct a frame of reference, in which an inter-
change o, = 8, B8 » 2K-q corresponds to p; = -Pa, P3 = —P5, P1 ~ P1.
P4 = Py . Such a frame turns out to be a specifically oriented brick-
wall system, in which we have (form, = ... = m, = 1);

p, = (-enfa,, isna, dna, , 0, idna, dno,)

p, = (-cno cng, isna dng, 0, idna snB)

ps = (-cna eng, -i dna sng, 0, -i sna dnB)

p, = (~er’a,, -i sna, dmoy , 0, -i sna, dna,) (21)

where

i 1
dna, =‘/_L2 {I:l _ (sna, dnp +2dna Snﬁ)jﬁ_ 1}2 -

The scattering amplitude is now a function of the variables o
and 8, i.e. of a point, say p, on an O(2,1) hyperboloid. It is a
simple matter of algebra to show that
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1
2
S
2 % x=snqdng + dno snp
3r=1-24y0-%)
y = cng, cnf
Fu = x° (23)

and

s (24)

s(a_ (s+t)?+ 2st(2-5-1) , ;1 [stu(s+t-st)
cn{g}_ 4 (s+t) i?’: s +1t

The s-channel physical region now corresponds to a € (iK, iK+2K),
B € (iK, iK+2K), the t-channel to a € (iK, iK+2K), B € (-iK, —iK+2K)
and the u-channel, which does not enter symmetrically, toa €
(iK, iX+2K), B € (0, 2iK).

The Laplace operator for the O(2,1) hyperboloid allows the
separation of variables in the coordinates (19) and the separated
eigenfunctions will be eigenfunctions of the operators:6 /16

Ay = (la®- K% - Ko®)y = -2 (+1)y (25)
Ly = (K °-3Ls%)y = hy

Xy = py
b= vope.p)
Yy =aqy (26)

where p,q = +1 and ¥X,Y represent reflections of v, and v,, res-
pectively. Upon separating the variables in (25) and (26) and solv-
ing the obtained equations, we find

p

pq -
'I’Lh(d'ﬁ) AL

@) A @) h+ 8 =1(+1) (27)

. 27
where Aih(z) are Lame functions, symmetric or antisymmetric with
respect to z = iK + K for p = +1 or -1 and standardized as

g =1 A aReR) = 0

A (iK+K) = 0 A (K+K) = -1 . (28)
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Expansions in terms of these functions can be obtained by
(essentially to obtain
normalization and completeness relations). Leaving out all the
details,lﬁ] we finally obtain an s-channel expansion (for square

making use of the method of horisphereszs)

integrable amplitudes):

1 &+
£0.8) =gy [ AL+ come VY Npy A (2w X
%-ie =
P4
Pa p aq ap,, ¥y A P q
x {aP%w,m 4P, @ 2% 6) + AR P @, @)
o € (iK, iK+2K) B € (iK, iK+2K)
with
fq(f,,h) =-%[[da dB(cnzoc +cn®B) A (on) (B) £° (., B)
iK+2K
)Lh] 'f |y (Z)|3d-z‘
iK+2K
X,__,_(&,h) =——12— ) Azh(z) (icnz)—}f’_1
iK
iK+2K
A (@,h) =2UALI+2) () tienz) "t~ snz dnz dz
- 2 i «E,h
iK+2K
)\+_ = (&;1 i[' &h(z)(lcnz) 1-2 snzdz
iK+2K
-&—ﬂl A (z)(icnz)_L-z(idnz)dz
Lh

(29)

(30)

Again, performmg a lot of algebra, we can show that the cor-

responding t—-channel expansion is

B+

o) =5 zj idel) cotn&L ZqNth

h pg

{Flm 1P ) a%exB) 4B 510%

.,h|?

gy, x-B)}

o € (K, 1K+2K) B € (-iK,~1K+2K)

(31)
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o iK+2K iK+2K R
(¢h) = 2%q [ da [ dp(ena + on®p) /\ p @) A 7 (B8) £'(a,2K-g) (32)
iK iK

Note that the sums over h in (29) and (31) are over a discrete infinite
set of eigenvalues, determined by the orthogonality conditions for
f\p (z). It is crucial that (29) and (31) are expansions over Lamé
{unctlons defined over the same intervals, so that they both converge
simultaneously.

For a crossing symmetric reaction we must have

£5(s,t) =+ (t,s) i.e. £(1,B) = +fi(x,2K-p)

Thus, we shall have "term-by-term" crossing symmetry, if we simply
put

qB®3 @ ,h) = +aP% 1n). (33)
Let us stress that so far no use has been made of any analytic con-
tinuation in s and t or ¢ and B. This is a problem currently under

investigation.

II. Two-Variable Expansions Based on an SU(3) Group

A. The Expansions and Crossing Symmetry

Completely different two-variable expansions of fcat?aring
amplitudes have been suggested by Balachandran et all and by
Charap and Minton. 21) Both of these expansions were written for
amplitudes in the nonphysical region, namely the inside of the Man-
delstam triangle, and originally for reactions involving four spinless
particles of equal mass (recently they have undergone much further
development--see Ref. 29 and references contained therein).

The main purpose of theie expansions (we shall mainly follow
Balachandran's approach} is to write expansions by means
of which crossing symmetry, i.e. symmetries of f(s,t,u) with respect
to permutations of s,t and u, can be imposed in a simple and general
manner,

Similarly as the O(3,1) expansions, these expansions are
generated by a second order differential operator & in the variables s,
t and u, which is specifically so constructed as to be symmetric under
arbitrary interchanges of s,t and u to commute with the angular mo-
mentum operator L‘; in the s-channel (and hence in all channels).
Such an operator is determined uniquely to be
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=12 2 2
6 LS + Lt + Lu (34)

It is now a simple matterl9) to find the common set of eigenfunctions
of 6 and L%, putting

6 sfl (s,1) = (n+L) (n+0+2) sf1 (s,1)
L’Z Si(s,t) =4(+1) Sﬁ(s,t) (35)

Solving (35) in the nonphysicalregion 0<s< 1, 0<t<1,0<u=<]1
(m,=.. .=m4=%) we find that a complete set of solutions can be writ-
ten as
L (2¢+1,0)
87 (s,t) = (1-s) P (2s-1) P (z ) e = ] s o

i.e. a product of Jacobi and Legendre polynomials (n,4= non-negative
integers). Any scattering amplitude, square integrable over the Man-
delstam triangle with the measure (1-s)dsdz can be expanded as

oo

f(s,t) = 5 2(n+)(,+l)(21(,+1)a:;8f;(t) (37)
n,4=0

Loy 11 d ld £(s,t) (1~ (@L+1,0) 5 4

a §£( -s)ds jl z £(s,1)(1~s)" P (2s-1) P,z )  (38)

The important feature of (37) is that the "partial wave cross-
ing matrices"” for such an expansion will be block-diagonal. Indeed,
if Ye write a similar t~channel expansion in terms of the functions

(s,1) obtamed by interchanging s and t in (36), we find that any
coefficlent a_? in the s-channel can be expressed in terms of a finite
number of coefficients bNL in the t-channel expansion, because
8 ql.”(s,t) and T L(s ,t) are both eigenfunctions of the operator ®. It is
precisely this block~diagonality of the crossing matrix which makes
it possible to impose crossing symmetry simply. 20)

Further, let us note that from the group theoretical point
view the operator ¢ can be interpreted as the second order Casimir
operator of SU(3) and the functions (36) are basis functions of irre-
ducible representations of SU(3), corresponding to the reduction
SU(3) > 8sU(2)> u().

of



TWO-VARIABLE EXPANSIONS 245

Generalizations of thse results to physical regions were
suggested using the group SU(2 ,1)19) or a transformation from sums
to integrals in (237) along the lines of the Sommerfield-Watson
transformation. 1)

B. Comparison of Lorentz Group and SU(3) Expansions

The simplest way to make a direct comparison between the
0O(3,1) and SU(3) expansions is to consider both for equal masses
and inside the Mandelstam triangle. Indeed, consider the O(3,1) >

O(3) © 0(2) expansions for m;=...my=% and 0< s,t,u< 1. We can
put
= - 2t
cos a =/s cos 8 1+s_1

and identify a and 8 with the spherical coordinates of a point on a
sphere, instead of a hyperboloid. We then obtain an O(4) © O(3) >
0O(2) expansion

® %
_ O (2441 T(N+L+2)
fls,1) = ? ) { 4m T (N-L+1) (N“)} Bt
n=0 £=0
) -1-%
'_HsN/_iTﬁ—? P%+n(cos a) P}L(cos 8) (39)
) m m
_ 24+1 T (N+HL+2) % . 3 1 .
A, A F(N-L+1) (N+1)} j'osm ada j; sing do
) -1,
f(s,t) ek P_%+n(cos a) P&(cos ) (40)

The O(4) and SU(3) expansions can now be directly compared
and it is possible to expand the two sets of basis functions in terms
of each other.13 The results are quite complicated and we shall
not repeat them here. The partial wave crossing -matrices can also be
calculated once and for all and expressed in terms of generalized
hypergeometric functions. However, since the Laplace operator on
the O(3,1) hyperboloid or O(4) sphere, generating our expansions, is
not symmetric in s,t, and u and is thus a different operator in each
channel, the O(4) crossing matrices will not be block diagonal, so
that no simple relationship between the Lorentz amplitudes (or O(4)
amplitudes) in the two channels is obtained.
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To summarize: The O(3,1) expansions make full use of rela-
tivistic invariance by completely incorporating the little group for-
malism, they are written for arbitrary masses and for s,t,u in the
physical regions. Crossing and analyticity can be incorporated
either by using "elliptic" expansions, or by making use of the con-
nection between the O(3) and O(2,1) reductions.

The SU(3) expansions have particularly simple properties
under crossing; however they are in general not related to little
group expagg}ons . They have been generalized to arbitrary masses
and spins, however at the price of giving up their group theoreti-
cal interpretation. Most of their useful properties were obtained
inside the Mandelstam triangle and a continuation into the physical
region involves new complications.

It would obviously be of interest to write expansions, incor-
porating the useful features of both approaches. If these are to be
based on group theory, then the corresponding group must contain
all the little groups of the Poincaré group as subgroups on one hand
and should have a second order Casimir operator, identifiable with
the symmetric operator 6, discussed above, on the other.

Two remarks are in order at this point. First--the group
SU(2,1) cannot be used in such a program, since it does not have an
Ez subgroup,12 so that it cannot incorporate the complete little group
group formalism. Second--a second order operator 6, commuting with
angular momenta in all three channels, or even in two of them, exists
if and only if all four masses are equal.

III. Remarks on Possible Conformal Group Expansions

A. General Remarks

In this section we present some arguments indicating that the
conformal group or the group O(4,2) can be used to generate expan-
sions of scattering amplitudes and that these are of interest for sev-
eral reasons:

1. The group O(4,2) is a candidate for the two-variable
expansion program discussed above. Indeed, since it contains the
whole Poincaré group as a subgroup, it obviously also contains all
the little groups, including O(3,1). Further, as we shall show below,
the symmetric operator 6 can be related to the Laplace-Beltrami oper-
ator A, on an O(4,2) hyperboloid.

2. Two-variable expansions should also be developed for
reactions involving particles of zero rest mass. Proceeding along
lines analogous to Section I we would obtain the scattering amplitude
as a function of a point on the cone vo2 = vlz— vy 2 - vs® = 0. Scale
and pure conformal transformations in this space
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N , Viy ¥ auv)\v)\
\Y =AV \Y

i i vl =1+2c:cv\’+ov,a\’vv)L (41)
v voA

do not leave any hyperboloid invariant; they do, however, transform
the cone vuv“ = ( into itself.

Thus for zero mass particles and possibly even for massive
particles at very high energies it would be of interest to write expan-
sion in terms of the basis functions of the irreducible representations
of the conformal group.

3. The third possible application of O(4,2) expansions which
we have in mind concerns five point functions, i.e. production ampli-
tudes for reactions of the type

1+2—23+4+5 (42)

Indeed, if it was possible to map a physical region of a two-body
process depending on two variables, onto an O(3,1) or O(2,1) hyper-
boloid, a similar mapping for reaction (42) depending on five inde-
pendent parameters, would require at least a five dimensional space.
A homogeneous space of the O(4,2) group would obviously serve this
purpose and the Laplace-Beltrami operator on such a space would
serve to generate five-variable expansions (or expansions of any
lower dimension, if desired).

B. The Reduction O4,2) > O(4) x O(2)
Let us introduce spherical coordinates on the hyperboloid

Vol H VR - 1P - v R - v - vt =1 (43)
putting
vo = cosh A cos § v, = sinh A sin a sin § cos o
vs = cosh A sin | v, = sinh A sin a sin A sin @
vas = sinh A sin a cos A
v, = sinh A cos a (44)
With

0<A<ew, O<asmn, 0<f<smw, O0<y<2rm, 0<p<2n (45)
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these cover the whole hyperboloid.
The Laplace-Beltrami operator can be written as

A = e, O cosh A sinh®A == +—l—a—2
c cosh A sinh®A 3A d3A  cosh?A 3¢°
1 [ 1 3 2. 2 Lo 3 o
sinthisinza da s aaa * sin®a sin A 238 2Ll G 28 *
1 22
T i a sir? 0 dp? } (46)

The basis functions corresponding to the considered reduction are the
eigenfunctions of the set of operators A AS ( the Laplace operator
on the sphere v,2+ v 2+ va®+ v ? = s1nh A, 12 (the angular momen-
tum) and the generators of one parameter rotations Lip and Lgs. They
can be written as

@a,a,0,0,0) = tanhNA cosh_L_ A

LN& mk LNJLmk

« F{} (-k+N+L+4), & (k+N+L+4); N+2, tanhA}-

-L-5 . .
e P (cos a) le(cos g)e @ e1k ¥ 47)
J/sina #+N

where L = -2-iA, A real corresponds to unitary representations of the
principal continuous series and L=-1,0,1,2,... to discrete series.
These functions, their normalization, range of parameters, etc. have
been discussed by Limic et al.30

Let us now compare the operator A, of (46) with the symmetric
operator ® of (34). Introducing the usual s-channel c.m.s. variables

cos F)—1+2—t1 coshA =/s (48)

it is easy to check that

1 3

3 .._
L= 4 cosh A sinh®A 3A CoshyNEinhigt dA +
1 1 3 .2
* Sink?A sina a0 S A3TS (22)

Thus, we have
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Ac = - 46

provided that we keep a, ® and | constant in (46) and put sina = z.

Only a certain subset of the basis functions (47) will also be
eigenfunctions of the operator ®, namely these satisfying N(N+2) =
42 (2 +1), i.e.

N = 2% or N=-24-2 . (50)

These functions will constitute a complete basis for a Hilbert
space of square integrable functions, depending on the variables A
and 6 only.

The O(3) subgroup of O(4) in this reduction chain, producing
the angle 8, identified with the c.m.s. scattering angle, will figure
as the little group of p, + p, in the corresponding two variable
expansion.

C. The Reduction Q(4,2)> 0(2,2) x 0(2)

Let us now introduce coordinates on the hyperboloid (43), cor-
responding to a reduction into O(2,2) x O(2) and to the further reduc-
tion O(2,2) > 0(2,1) 2 0(2):

Vo = cosh A cosacoshpB vi =coshA cosa sinhB coso
vs = cosh A sina v, = cosh A cos a sinh B sin o
vy = sinh A cos |
v, = sinh A sin | (51)
With
-®<pA<® 0<a<2m 0sB<® OQ0<p<?2m Oy =< (52)

these coordinates cover the whole hyperboloid. The Laplace-Beltrami
operator in these coordinates is

A =-—————1-———3 < Sinh A cosh®h = - 1, ik
c sinh A cosh®A 3A d3A  sinh®?A 3y
L 1 _»® .2 ____+ 3 2
* cosh? A { cos®a ja COSNE da cos®a sinh 8 o8 Einass oB
1 3
" cos®a sinh® B Bcpz} 22
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The basis functions in this reduction will be the eigenfunctions
of Ao, Ay (Laplace operator on the space vo? + V52 - v = v,2 =
cosh?A), H? (Laplace operator on the space vo®~ vi? - w2 =
cosh®A cos®a), of the rotation gener ators Lygs Ly, and of two addi-
tional discrete operators R and S, where R corresponds to an inversion
of vs and v, and S to an inversion of vs .

Let us compare Ay of (53) with the symmetric operator 6. This

time we use the t-channel brick-wall system variables

sinh A =/-s cosh g = -1+ 1%2 (54)
and transforming @ to these variables we get
- 1 D, -
E 4 sinh A cosh®A 3A sinh A cosh®A A +
1 3 . 3
f—— . 3.
cosh®A sinh B 38 sinh g 38 (55)

We now see that (53) and (55) satisfy A, = -46, if we keep a, ¢ and §
constant in (53) and put cos®a =%.

Thus, with similar restrictions as in the previous paragraph we
can write O(4,2) expansions for functions depending on A and g only,
in terms of the eigenfunctions of operator 8. The O(2,1) subgroup in
the reduction figures as the little group of the momentum transfer
py - ps (for t < 0) and will thus furnish a Regge-type expansion in
terms of the Legendre functions Py (cosh g).

IV. Conclusions

We have given a brief exposition of some recent and older
work on two-variable expansions of relativistic scattering amplitudes.
In particular we have shown how the desire to make maximal use of
relativistic invariance and of crossing symmetry leads us to a con-
sideration of the conformal group, which in this approach also comes
up in other connections (zero mass particles, production amplitudes).
Thus, to the many reasons why the conformal group is of interest, we
add a further one--an interest in harmonic analysis on this group. As
we have stressed, the specific form which the harmonic analysis takes
depends crucially on the parametrization of the homogeneous space
under consideration, and is of greatest physical significance. Since
each different reduction of a group, say in our case the group SU(2,2)
leads to a different parametrization and thus a different expansion, a
detailed study of the subgroup structure is necessary. Indeed, a
classification of all subgroups of SU(2,2) has been initiated175 and
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such a classification of one parameter subgroups of general U(p,q)
groups will be presented by J. G. Belinfante at this conference.
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Summary

The conformal invariant quantum field theory of massive parti-
cles uses tensor fields defined on the 5-dimensional manifold of
“spheres" in space-time, which allows the usual T-exponential defi-
nition of the S operator. These irreducible unitary representations
have continuous mass spectra, typically (0, =). Tt is suggested how
the "mass selection rules" given by the Feynman diagram rules might
pick out certain values of the incoming and outgoing masses in a
dynamics~-dependent way, and thus explain the observed quasi-
discrete mass spectrum. Exactly the same mathematical mechanism
is responsible for avoiding causality troubles coming from the fact
that time-like and space-like intervals can be exchanged by the con-
formal group.

I. Preliminary
In my opinion, in spite of its many tantalizing promises of

physical relevance, the conformal group on space-time has not yet
made contact with physics. The central problem is mass. It has
been known for a long time that the theory of a massless fieldadmits
conformal invariance. But so do massive particles, provided they are
grouped into one of the massive conformal IUR's (irreducible unitary
representation), each of which has a continuous mass spectrum
(either 0< m < o or —» < m < 0 or both) in full accord with O'Raifear-
taigh's Theorem. It is just these continuous mass spectra which pose

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,

259



260 R, L. INGRAHAM

the central problem: granted that the conformal group is physical,
how is the observed, apparently discrete, mass spectrum to be recon-
ciled to it?

Massive conformal IUR's can be treated in momentum space
without introducing new physical concepts. But to treat them in posi-
tion space, space~time alone is inadequate, one must enlarge it to
the 5-dimensional space of all "spheres" in space-time, character-
ized by their centers x4 and radii ». That sphere space is the natural
domain of the conformal group is old mathematical news, dating from
the classical work of Felix Klein, Sophus Lie, Liouville, and other
geometers about a hundred years ago. What is meant is that if one
treats the spheres as points X2 (@ =0,1,...5) in a 5-dimensional
projective space, then the conformal group is characterized as that
subgroup of the projective group which preserves a certain quadric

GabXaXb =0 (T.1)

The 4-dimensional locus (I.1) represents the null spheres ( = 0),
i.e., space-time itself. Non-null spheres are carried into other non-
null spheres such that the angle under which they intersect is pre-
served. The new physical concept so introduced is the fifth coordi-
nate ).

One can solve for IUR's of [} (the conformal group) as tensor
fields ¥4 .. (x,)\) comprising a set of spin values over this 5-dimen-
sional manifold. The main virtue of these objects is that one has a
natural way to build the C-invariant S operator out of them, namely
as the T-exponential of an interaction Lagrangian polynomial in these
(quantized) fields integrated over the whole 5-dimensional manifold.
This permits a study of C-invariant particle theory in perturbation
theory via the battery of Feynman diagrams. The problematical nature
of ) then gives no trouble since it is integrated out; the external
lines of the diagrams bear the familiar five labels Py (4-momentum)
and m (mass) connected by p?+ m®= 0.

I do think that this 5-dimensional sphere space will eventually
find a physical use. The fifth "degree of freedom” is sort of a gauge
space, or space of all lengths, and } should mean something like the
ratio of the length unit one has chosen to some standard meter stick
chosen once and for all. The dilatation subgroup

xu-'oxu, A = o\ o = const. > 0 (1.2)

then means a uniform change of unit over all space-time, while the
subgroup of special conformal transformations represents a non-
uniform, or local, change of unit restricted only by the demand that
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light propagation in the new, regauged coordinates continues to be
governed by ¥*= x°- t#= 0,

In view of the popularity of studying "scale invariance" at
the present moment, it is worthwhile to make a few distinctions
which are usually lost in the current brouhaha. First, the group (I.2)
is a change of unit. We know this because for example the field
equations for the ¢5... (x,\) have the mass operator 3) in place of
the various fixed masses of ordinary (Poincaré-invariant) field theory.
Thus (I.2) induces the change m - 0 *m on all masses (and corres-
pondingly for any dimensional guantity, where we always hold h = ¢
= 1), Again, the explicit solutions of these field equations show that

and m are conjugate to x" and )\ respectively, and one can expli-
citily verify that (I.2) induces the transformation Py o™t Py, m-
o m.

Secondly, change of unit is an exact symmetry of all our phy-
sical laws; i.e., every physical field has a definite dimension, and
dimensions balance on both sides of an equation.

Thirdly this exact symmetry leads, a la Noether's Theorem,
to a conserved current?) % (x,\) @=1,...5)

3,/g 8 =0, (1.3)

which yields a detailed constraint on the behavior in x and \ of mas-
sive fields.
Consider now the different group

o gxt moom (i=1,2,...) (1.4)

(mi any dimensional constants) which underlies the current "scale
invariance" investigations. Tirst, it is clear that (I.4) does not
mean change of unit. Only in the case that all m; = 0 does it mean
that.3

Secondly, the group (I.4) is not a symmetry of our physical
laws. Whether it is an approximate symmetry (in some sense) and
thus can yield physical information (e.g., in high energy scattering)
is far from a priori obvious and remains to be demonstrated.

Thirdly, since (I.4) is not a symmetry, Noether's Theorem
can only yield the nonconservation law

M = terms involving the m, #0 . (I.5)

3 9
o
This is less information than (I.3); for whereas (I.5) gives no way of
building a conserved quantity in the case of massive fields, accord-
ing to (1.3)
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D= [ &xd™ g*(x,)) (1.6)
x*=t

in time-inde pendent4) for a system of interacting massive fields.

Therefore in view of these differences in the two types of
"scale invariance," we urge that they be clearly distinguished, for
clarity of thinking on the subject, and furthermore that the first kind,
which is an exact symmetry and is guaranteed to give a conserved quan-
tity in C-invariant QFT, be not so thoroughly ignored.5

To return to the subject of this talk after digressing on the phy-
sical meaning of \ and the consequent symmetry under changes of unit,
the C-invariant QFT of massive particles made possible by the use of
sphere space tensor fields contains families of conventional particles
with all masses from 0 to ®. The central problem, unsolved to date,
is then by what mechanism the observed quasi~discrete spectrum is
picked out. In the following sections I want toremind you of two con-
sequences of this ) -dependence (equivalently: the continuous mass
spectra) which look physically promising. One bears on the mass
problem noted above, and one, on the causality problem for the con-
formal group. They both spring from the fact that the elementary wave
functions contain the m and ) dependence in Bessel functions J (m).\)
just as the Py and x* dependence is contained in exponentials etip-x,

II. Conformal Tensors on Sphere Space

If one looks for conformal IUR's as tensor fields over the mani-
fold (x,)\), i.e., if one chooses the generators of the "orbital” plus
"spin" form

— o =
Mab—Mab+Sab @,b=0,1,...5)

o

ab

—i(Xaa/BXb - xba/axa) (I1.1)

a
where the homogeneous coordinates X are connected to xH and 3\ via

a well known formula and the spin part Sz}, is some finite-dimensional
(matrix) representation of the C-Lie algebra, then the solutions take
the form

T&A) =UTR §&,), Uk =exp iSSLféJl (II.2a)

—ikx

y&N) =e o O:k) (I1.2b)
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1) = 8tc
o O ;K) E TR ) ) Uy () (II. 2¢)
B

S

AU, (k) = 18, U, (k) = 6U6(k) (11.23)
8§ =a +m(m=0,1,...m );

max

K+m® =0 (II.2e)
n@) = n,, meven; =n,-Sgnny, modd

n, = nf), |n0| <1 (11.21)

and the spin wave functions Ug (k) satisfy a set of Dirac type momen-
tum space wave equations in the space of the matrices Sa]?- Us (k) is
a direct sum of parts each of definite spin. The solutions ) of these
wave equations will fix the values of the various parameters c, o,
m o oxr g (which include the values of the three invariants) for any
given IUR. To summarize: the "reduced" wave function ¥ (x,\) has
the momentum dependence in exponentials exp(-ik*x) and mass depen-
dence in a linear combination of cylinder functions Zn(mx) of just two
orders multiplied by various powers of \. (We know m is really the
mass by Eq. (II.2¢).)

I remark in passing that the x-dependent change of spin frame
(I1.2a) is a vitally important practical aid in solving the field equa-
tions. For it reduces the original translation operator Pu = MSu to
the familiar one without a spin part:

P‘; = U™ (x) (1au+ Ssu)U(x) = iau (11.3)

This has the result that the transformed field equations now involve
only differential operators independent of xM and therefore of a rea-
sonably familiar, manageable type. Proof: the field equations are
QI = qilh[x,'.\) {qi = eigenvalues of the invariants Qq, i =2,3,4)
wi‘lere the transformed invariants Qi’ commute with the P/ =1i3,, and
thus are x-independent, Q.E.D. In addition, Qf, Qf and Q4 are dif-
ferential operators of orders only 2 and 1, respectively.

Particular examples of these equations have been solved in the
literature ,9) for example the scalar (8,3, = 0), "spinor" (Syp, =
(297 PraPp)» Where BaBy + Bpfy = 2Gypl) and “vector" ?Sab =
adjoint representation of the C-Lie algebra) IUR's.
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III. Causality
Consider the "vector” IUR for definiteness; after quantization

the causality of the resulting QFT will be determined by the field com-
mutators in position space. (This is typical of any of the conformal
IUR's discussed in Section II.) It comprises (in the inhomogeneous
formalism) a Lorentz vector A {x,\) and Lorentz scalar As (x,)) field.
One finds M

J

[AE (Xl I)\l)l As (xa IXQ)J = i)\_l)\ng 0\1 l}\-z ,(_XZ) ) (III-]-)

where x = X, - x, and
©

Ao = [ dmmJ, (mh,) Jo(mi,)a Geim) (I11. 2)
0

where A(c;m) is the usual commutator invariant function for mass m:

peem) = @)= 5 e 6 [m(=@F11, 3< 0

= 0 , X*> 0 (I11.3)

For Ap(x,x) + Ag = A, defined with two Bessel functions J; (m)\), while
1-\.1‘1 and Ag commute, 1
Thus the commutators are determined by the gn()\l,)\g , (&2,
n=0, 1, where we define the function
(=~
9, (21 1224%) = g dyyl (y2,) T (v22) Jo (y2s) (111.4)

These integrals were evaluated, in the classical age of analysis, by
McDonald10) in 1909. One gets

%

go()\ll)\gl(-xa) )= L

AL A,

csc 8, |cos 8| <1

= 0 , lcosp|>1
(111.5)

in terms of the fundamental finite invariant, the angle 6 under which
the two spheres intersect:

cos 6 = [(x; - %, P+ 1,2+ 2,21/20 0,

(111.6)
g, has csc § = cot 9 in (III.5). Thus the flelds commute at two points
if the corresponding spheres do not intersect at all ( lcos 9| > 1),
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while if they do intersect (8 a real angle), the commutator is a simple
trigonometric function of 8. The supports of these commutators for
fixed "gauges" \,,\, are crescent shaped regions inside the light
cone, as shown in the figure.

This shows that for the conformal QFT acausality troubles do
not arise, even though conformal transformations can take space-like
into time-like intervals and vice versa. The clarification of this
puzzle lies in the compensating behavior of \ under C. Even though
(x, - x,)° > 0 may go into (x," - x,')? < 0, the formulas (III.1) to (III.5)
show that the causality depends not on (x1 - xz)2 but on the extended
quadratic invariant cos 6, Eq. (III.6), and this indeed is invariant
under C. Or, said another way, one has the whole set of Poincaré
fields for 0 < m < @, not just those for a few isolated mass values.
These arrange to interfere in just such a way that for those time-like
intervals which can be transformed to space-like intervals (namely
%, s\, and X, ,\, such that (x, - x,)°< 0 and |cos 8] > 1) the commu-
tator is zero anyway. Those time-like intervals for which some signal
is possible (|cos 6| < 1) can never be transformed into space-like
intervals (see figure).

IV. Selection Rules on Mass

Consider a typical case of conformal quantum fields in inter-
action, the Yukawa coupling of the "vector" and "spinor” fields de-
fined in Section II. The general form (II.2) shows that at a vertex
there will be the 6 (k1 +k, ~ka) of momentum conservation, while the
masses of the three lines will be constrained, not by a § function,
but by the product of three Bessel functions integrated over ). 11)
But these are just our functions gn(m1 .M, ,my) already defined in Eq.
(I1I.4), which here crop up in a new context.

Rewriting e.g. go in a form more suitable to the present argu-
ments, one gets

2
9o (m, ,m, ,mg) =1;[{m33— (m; =mz )} { (m, +m, —maz}]'%
my +m, > mg > |my -my |,
=0 otherwise. (v.1)

These curious "continuous Clebsch-Gordan coefficients" therefore
restrict the coupling between Poincaré fields of various masses: if
the outgoing mass m, is too different from the ingoing masses m, , m,
(precisely, if it does not lie between their sum and difference) the
coupling is zero. Note that the coupling is maximally strong at the
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1
Support of the functions gnb\l Mg, (=) for typical values
of Ay #Mz.
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endpoints of the interval: if my = |my -m, | - or (m,+my )+, go is
actually infinite.

Another interesting feature is that the "coupling constant" for
a second order process is not simply the product of the "coupling con-
stants” for the first order processes. For if the two vertices are con-
nected by an internal line, the integration over the internal line mass
in Eq. (III 2) produces an effective coupling of the four masses m,
My , m1 . mz

--]
9o pelmy omps my” myf) =£ dmmgo (m, ,m, ,m) g, (m;" ,m,’ (Ir\nl) .

where the integration is actually over the finite overlap between
(|my-my| , m,+m,) and ({m,"-m,"|, m,"+m.’). Thus a theory of
"matrix coupling constants” results.

These elementary observations suggest that the conformal QFT
at least has the mechanism of emphasizing some configurationslz) of
initial and final masses over others. For example, the amplitude may
have tremendous resonances, even blow up, at some sets of mass
values., And it is clear that this depends on the dynamics, i.e., the
topology of the Feynman graphs. One might then guess that these
particular values of the masses should be those observed in nature.
Of course, there are technical problems to settle first, e.g., how is
one to treat a discrete mass value in a formalism with continuous
mass spectra.

In any case I feel that the dynamical mechanism afforded by
interacting conformal QFT gives a hope of solving the central mass
problem alluded to in Section I, and is worth pursuing to a definite
conclusion.

References and Footnotes
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Abstract

We define the conformal-invariant S-matrix for elastic scatter-
ing of spin zero particles with mass m = 0 and with mass m> 0. For
the S-matrix a partial wave exgans('l%n is given. The comparison with

. 164 (s)_ i
the usual scattering phases (e 1) allows us to make definite
predictions about their s dependence and certain angular momentum
correlations.

I. Phvsical Representations of the Conformal Group for Scalar
Particles

In this paragraph we introduce the unitary irreducible represen-
tations of the conformal group which describe spinless particles with
mass m > 0 and mass m = 0.

It is well known that the identity component of the conformal
group SO, (4,2)/C, contains the identity component of the Poincaré
group SOO(3 ,1)x)T, as a subgroup. Furthermore it contains the dila-
tations

™ o=p ¢, 0<p<am, (1a)

and the special conformal transformations
o=

Ll_bIJ

=1} = + 4
s b) o(y,b) =1 - 2by + b®y® , metric +++-,

—o<b <+ ; 1b
3 h o ( )

tPresented by L. Castell at the Symposium on De Sitter and Conformal
Groups, University of Colorado, Summer 1970,
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The Klein-Gordon equation for massless particles
Dely) =0, (2)
and also the scalar product
(p,4) =i Ico*(y) AV ey, (3)

are invariant under the conformal transformations; the wavefunction
transforms like

o' ly) = L w(y/p)  under dilatations
P (4a)

and
e+ BMy?

* __ 3
R o(y,-b) ®\" ofy,-b) under special

conformal transfor-
mations. (4b)

From this (and from the Poincaré transformations) we find the
infinitesimal operators of the conformal group for zero mass particles:

L4

=1l 3
Iy

=_< —-yay“ u

1713 17 ) p_2
D=,—<y —+1>, K =,—&—y2—+2y y——+1>>.
1 ayu u 1 ayu l—l< ayp
The Fourier transform c'[)(B) in momentum space is defined by
_ -3/2 Sipy a*p o e
oly) = (2m) fo®) e ?. p* = |pl|, (6)

and the corresponding infinitesimal operators in momentum space are
given by

o4 1 4 _
Mij—i(piaj pjai), My, =7 P23, Pu P,
i LBy NS _ j
D =i(p aj+1). Ky =p; 973, 2(paj+1)ai, Ke =P,

3, =2~ , 1i,j=1,2,3. 7)
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For the scalar product we obtain in momentum space
ey~ 30D
) = [*® 16 G - (8)
We normalize the improper eigenstates |B) of the three momentum B to
el el - — -
(olp’y =2|p|s* (@ -p") . (9)

Which representation of the conformal group shall we use to
describe scalar particles with mass? Let us make the assumption
that a particle with mass transforms in the same way as a certain
state of a system of two massless particles. (One could even go so
far as to describe a particle with mass as a scattering state of two
massless particles, but we do not want to make such a specific inter-
pretation at the moment.)l) What we have to do is to take the direct
product of two representations (7) and to pick out the representation
with relative angular momentum zero.

Particles one and two have the four-momenta p and pu2
respectively. Moreover, we have p > 0,:p%:>0 ancl p (1 3 2)

0. Therefore, there are 6 independent varmbl{eg }'or tl[1
time being, we are only interested in that part of t e pro uct repre-
sentation with the relative angular momentum zero. So we can assume
that the functions in the product Hilbert space depend only on the four
components of the total momentum p* = p(l) + p‘( 2)*

i_ i i . .
PEPu) TP ot =Byl 18l (0
i i
i) _ 9 N p(l] D 3 :a_ 2 lp(2 N
f i Dol ap* ! i i D 3p*
ap(;y P (1) dP(y) OP (2) (1)

The infinitesimal operators of the product representation are then
found to be

M =M(1)+M(z)=.l(pa = Dl 2 =P(1)+P(2)=p '

TV B T T T T Ve Ve T TR
p=p 4 p@ - e +2)

kK =k +x® =p P 2% +2)5
uowu %% p u

u,v,p=1,2,3,4. (12)
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From Lorentz invariance it follows that the measure in the
scalar product must have the form g(m®) d*p. Because the represen-
tation (12) is by construction self-adjoint, g(m®) has to be a constant,
which we chose to be one. Therefore

(ol = i o*(p) ¥ (p) d*p , (13)
p=>0
m?>0

where the integration has to be performed over the forward cone. We
will normalize the states |p) with four-momentum p according to

(plp’) =86*( - p") . (14)

Actually, the representation (12) of the conformal group, which is
supposed to describe particles with mass, is only the first member of
a whole series of similar representatimns2 of the group SOO(4,2).
Each of these representations is characterized by an integer v = 0,
and its infinitesimal operators are

1
=(P3d -p?d P = y
Muv l(puv p\)u). el

D=i(" +2),

v
K =p (3 2°+%) - 2% +2)3 (15)
booup p° P T

The scalar product is again given by (13).

Representations with v =1,2,3... are obtained if one studies
the transformation behavior of two-particle states, where each parti-
cle is massless but is allowed to carry the same helicity v/2 or -v/2.
Therefore the quantum number vV contains the information which pair of
massless particles has to be used to build up a certain scalar particle
with mass. As the m° couples electromagnetically to 2Y it has been
suggesteds) that the m©° should be described by the massive represen-
tations (15) with the conformal quantum number v = 2. (A massless
particle cannot couple conformal-invariantly to two mass zero parti-
cles.) It should be mentioned that a generalized Goldstone argu-
ment3) +4) leads to the same representation for a conformal Goldstone
particle. Therefore this massive Goldstone particle can be identified
with the m0, After having assigned the mass zero particles like the
neutrino and the y-quantum, and the massive ° to definite irreducible
unitary representations of the group SOy(4,2) or its spin-covering
group SUO(Z,Z) the question arises, under which conditions could
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conformal symmetry be physically relevant?a) A preliminary answer
to this problem is that in an extremely relativistic situation, where
the energy and the momentum transfer are high compared with the
masses of the incoming {and perhaps outgoing) particles s, -t, -u >>
¥ m.?, the scattering matrix may show conformal symmetry. We shall
see that the result of the limit s, -t, ~u - «® will turn out to be dif-
ferent, if we are dealing with a mass zero ora 0 < m® < « representa-
tion of the group SOO(4,2). The additional assumption which some
people have proposed that one can neglect all particle masses right
from the beginning (in this introduction we have already given some
comments which do not justify this assumption) is much more specific
and would restrict conformal invariance far too much. Even in the
limit of asymptotic high energies phase shifts for massive particle
scattering behave quite differently from the phase shifts for mass zero
scattering.

II. Clebsch-Gordan Coefficients and S-Matrices

A. Group Theoretical Preliminaries

We start the analysis of the S-matrix elements by the descrip-
tion of the ingoing (or outgoing) two particle states. They will be
51mply a direct product of two one—partlcle states with three-momenta
p1 and D , positive energy p? (1) >0, p > 0, with real masses m;
and my , and with conformal quanlurn g.u%bers v, andvVs, , respectively.
(For mass zero particles there is no new conformal guantum number.)5)
Therefore the incoming states are labeled by |\)1 s PLi Vo, pz) and the
outgoing ones by (\)1, o ';\)2 : B ’ | for elastic scattering.

The two-particle product representation will always be redu-
cible, its irreducible components will be specified by one or several
guantum numbers &. In our examples we shall always find that a is
discrete and that one of the a's is given by the maximal spin of a
spin multiplet.

Within an irreducible representation o of the direct product
the basis states will be labeled by the quantum numbers 4, 15, p*,
where £ is the value of the relative angular momentum or total spin
(usually more than one £ occurs within one irreducible representa-
tion) and ¢, is the value of the third component of the angular momen-
tum. Therefore the basis states can be written as |_0L, p, L, )(,3) and
the normalization can be chosen to be

(16)

R TR A AN A M A A R 8% (p-p’) & 8
{a, p al | M A AN .67 (p-p’) Lo Ot ks’
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Using the completeness relation, the matrix element of the operator
S-1 is given by

C(viopy'i Vpu g 8711 vy ,py iV, ip,) = [d*p atp! )

a,a’
A A B A

Cvy by ivg,pala’,p’ 07 280 ¢a’ 0’ ' 22 18-1la,p, 0 ,43)
(@,p, 4,23 [Ve 1Pys Ve D) . (17)

From the assumption that the S-matrix is invariant under conformal
transformations, and from the fact that there is no degeneracy in our
examples, follows that

(@’,p" i’ g |S-1]a,p.t L) = (E6)-1) 8* (0-p' )0, 5

8
2 Tha s’ Ta,a
(18)

Unitarity means in this generalized framework that the energy-inde-
pendent reduced S-matrix elements f(x) obey the relation 1:@)| < 1.
The Clebsch-Gordan coefficient in (17) has the form

<alpl{/l’t’3 l\)]_ P17 Vg lp2> = ga (Mz l‘tlmf lmga)Y @)64 (p-pl_pg)l
Vi V2 L.la (19)

where M? = -(p,+p,)? and the unit vector & specifies the dirgction of
p, in the center of mass system. Our task is to determine g~ g
The two other factors in (19) follow from Lorentz invariance. *’ ?
Inserting (18) and (19) into (17) we obtain

vy 01 V2 405 |8-1|Vy Dy Ve, pe) =

1 *
), €@ sam? m?) o) | (s.4,mi® mi?)(2eH])

Vo 1 V2
a,l
P&(cos 8) 8* (p, +p5~pP1 -pPs) (20)
where we have used the relation S‘Y (E)Y* (g') = 2}Z’—HP (cos 8)
U 8 e B am Ch g

- *'3
cos 8 =e-e’. The conpection between the f(a) and the usual reduced
S-matrix element e216;¢ (s will be treated in the examples. Now we
shall present the results in detail.
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B. Calculations
In this paragraph we determine the Clebsch-Gordan coeffici-

ents3) for two spin zero representations. The product Hilbert space
for the two particle states is given by

3 Bz 1
d Py d Pa R .+ )\‘E o s
*f — —— = [y* 3
I‘U b 20,5 2p2 dm; dmg J'xh ¥ d*p TV d®e dm,® dm? ,
+ my® - my?

S 1CEvoa D I

+
P =p, tpy, M>=-(p ), q
A

— - 4+, =+ —,
e=qg-(@*/M+p*)p , a2 =1,
X =M* - 2M® (m,® + m?) + (m? -mZ)P . (21)
In case m; or m, or both are zero, we have to omit the corresponding
integration in (21).

In order to calculate the Clebsch-Gordan coefficients we have
to diagonalize the Casimir operators of the product representations.
In all the cases we shall consider, it is sufficient to deal only with

the first operator C;, because this operator already distinguishes the
representations. Tﬁe operator Cg is given by

— MY 1 M =]
— +— -— .
CI zMVM = (P KH+KP) D

We shall not give the details of the calculation in the first two cases
where the results can be checked directly.

1) First we consider the case where m; =m; = 0. The norm
(21) is now simply given by

+ -
& lyxy d*p e . (22)
The Casimir operator Cy of the product representation turns out to be

CI =28 (L+1) - 4, (23)

Each angular momentum state belongs to a different irreducible repre-
sentation of the conformal group. The Clebsch-Gordan coefficient is
given by
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3/2

(C)spits [PriBe) =277 Y, | @) 8% - py - py) (24)

4,2

It is easy to check that this Clebsch-Gordan coefficient obeys the
completeness and orthogonality relations with respect to the norm (22).
For the S-matrix element we obiain finally

2
{p, ;p2'|S—1|p1 390 =T y(fL'l)(ZL‘l‘l) P{/(COS 8) 8* (py+p, P, -p7 )(2 )
- 5
L

The reduced S-matrix elements f}(’ = ezm& are constants |f| < 1.

2) Next consider the case where m; > 0 and m, = 0. If we
introduce the variable x = m,* /M® , we can express (21) by

3 [y*y d*p” MPdPe (1-x)dx . (26)
The Casimir operator CI is given by
cI = 2(n+L) (n+L+y, +2) + (v, +1)° -4, (27)

and the Clebsch-Gordan coefficient has the form

- 1 LAY + v
(C+L),p 4 ha | Vg 1Py iPy) =—— (1-x)"x 1/2 P e 1)(Zx—l)
/N n
o s4
Y&'La(e) Vi (p-p; -Ps)
n=0,1,2,... . (28)

The normalization factor is given by

- 278 (n+24+1) ! (ntvy) !
(@n+ 20 +v, +2)nln+2¢ +v, +1)!

N (29)

The important point is that one irreducible representation is described
by the quantum number n + 4, which equals the maximum spin which is
contained in one irreducible representation. This has to be proved
separately and does not follow from (27).
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The S-matrix is given by

2 1 1 y Y{L 1 Pr(leL’vl)(Zx—l) PI(11+24,,\)1)(2X,_1).

W i 0 BELY

£

+

{19 LW ) 172 5 (g2 - my 72) (24+1)P, (cos ©) -

° 64 (p]_ +py _pll_ pzl) Q (30)

In this expression we have replaced M? by the total energy s. Corres-
pondingly we have x = m,” /s, x’ = ml'a/s From the irreducibihty of
the product representation follows f{' = fr’ 2 = f .. etc.

In order to compare the matrix element (3?)) with the usua& S-matrix
elements for elastic scattering where the one-particle states are nor-
malized to 2p*6° (p’ -p), we have to form a wave packet with respect

to the mass. We integrate the incoming and outgoing states over
[D(m,? - m®)dm,® and [Dm,’? - @ )dm, "? , respectively. The function

D(m® - n?) is different from zero only near m® , the actual mass of the
particle, and is normalized to one.

[ID(m? - m2)|2 dm? = 1. (31)
Instead of
Y Lo p V) ) p V) (1 1
n
bee’) 1% b mg? - my?) (62)
we obtain

Y € -1) | [Dmy? - 72 ) ——p U2 V) 1y oyt V172 g |2
n

J/8sN I

2184 (s ,m?) _ 1) . (33)

= (e
From the generalized unitarity condition |ng| < 1 we derive
that the usual necessary condition for unitarity |e218¢| < 1 holds.
This follows from the absolute convergence of the sum

o Ty (428 91) e 1y P P V172 g 12 = 1
2 | D(my? - i ) o= P @x-1)(1=x)""" x m? | o

n=0
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If €® is the half width of D(m® -m®) we can approximate the expression
(33) 2184 - 1 for the phases by by

id
621'{ -1l

s/e? . . )
€2 i (fle _ 1) ﬁ(Pfll'FZ’f/lVl) (z Lns__ _ 1))2 (1 _ %_)2{,+1 (I’[],?2 )\)1
n=0 (35)

216{,_

The high energy limit of this expression is given by e 1~

me,v, , €*
(?) L (-S—) for s -+ ®, Here we have assumed that the sum (35)
converges uniformly. Quite unexpected is the fact thgt_in the expres-
sion fgr the phase shift (35) the threshold behavior (%0 - 1) ~

(1 —%} +L tor s = M turns out to be correct. Thig suggests that
one determines for each partial wave the constants fn; o=l L2 ..
from the experimental data. If conformal invariance is satisfied the

relations
_ A+l _ -1
o) e = e ote

have to hold.

3) Now we consider the case where each of the two incoming
particles has mass different from zero. The norm in the product space
is given by (21). In the variables pu"' and pu- the Casimir operator
CI is given by

2 2

= Y Va +
Crv=[ 6™ -p®)6 >+ F P Foomy) - 2070 )

i (p
+2(073 )2 +6( > )+ v +v;] V. (36)

In this case we shall not give the exact solution of theproblem, be-
cause it is very cumbersome to separate the variables of the first
Casimir operator. Instead we shall give only the high energy, and
the threshold behavior of the Clebsch-Gordan coefficients. If we
introduce the variables x = m;®/M? and y = mz?/M° and solve the
equation (36) for x,y << 1, we see that the solution is independent
of Cy- The condition that (36) is a self-adjoint operator selects the
square-integrable solutions. We obtain
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Vo (_, .
Y&’&3 e)8%(p-p,-p,) .

(37)

Ta)

1, m M
(C:pl&l”tal\)llp]_;Vzrp2>%T\'/IE(_NT) (M

From this we can calculate the high energy behavior of the phase
shifts under similar conditions than in the case 2), and obtain

2i8 (s,m?) S 2V, =2V o3 3
t S (2 By P iy (L | 3g)

S S s s

(e

To calculate the threshold behavior we transform (36) into the center
of mass system, and solve the eigenvalue equation for small values of
|~ /M. The first term in the expansion gives us the threshold beha-
vior of the Clebsch-Gordan coefficient. We obtain

, 1 aF o
<Clpl'f‘l&3l\)1 1Pq7 Vs lp2>""\"'1\?('ﬁg) Y{,,{,a(e)G (D‘Pl‘pg):
A= M- 2M? (m2+ m2) + (m2- mS2)2. (39)

From this follows for the phase shifts for elastic scattering

216&(s,r?112,r'n§) = 2

612 eaz I7112 m,
(e - D (21 - 2R
r_nlz ﬁlzz . f,'l"%‘
(- )} . (40)
. g ) - 24+1
Equation (40) exhibits the correct threshold behavior |p| in a

relativistic invariant form. This result gives the hint that a conformal
phase shift analysis might also describe some aspects of low energy
scattering.
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RESTRICTIONS ON INELASTIC CHANNELS
FROM CONFORMAL INVARIANCE®T

L. Castell
Max~-Planck-Institut flir Physik und Astrophysik
Miinchen, Germany

Abstract

It is shown group-theoretically that conformal invariance res-
tricts all final states of two incoming mass zero particles very strong-
ly. We apply these results to a conformal-invariant scalar field the-
ory and to y-y scattering, and conclude that there could be at most
elastic scattering. The paper ends with a comment on deep inelastic
electron-proton scattering.

I. Mass Zero Representations of SU(2,2)

Let us consider all irreducible unitary mass m = 0, positive
energy pr> 0 representationsl of the spin-covering group SUD(Z,Z) of
the identity component of the conformal group 800(4,2}/02 . All these
repres%slta_Eions are contained in the exceptional degenerate discrete
series®™ E Fach irreducible representation in this series is com-
pletely characterized by a certain value of the helicity A, where A =0,
+%, +1, £3/2,... etc. The states of one irreducible representation
can be specified by the quantum numbers of the maximal compact sub-
group of SU,(2,2), namely SU(2) x SU(2) x U(l). The quantum numbers
are given by S(1) s(l) 3¢ 5(2) 31 and n. The most important relation
between these quantum’numbers are

+s +1, (1)

R O B )

and

X=s(l)—s(2) . (2)

+Presented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,
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This leaves three discrete integer or half-integer quantum numbers
8(1),3" S{ZJ 3¢ and n = 1 to describe the states of one irreducible
representatlon. They correspond to the three-vector p in the momen-
tum bas:,s'?'). We can represent the structure of these irreducible rep~-

resentations in a j - n diagram, j = 5(1) + S(Z)’

j J .
A . T s
A =0 '/ * A =i _ s
/"’.I'I A ..
,/. o
v ~
/ — 3 Tl Z —»n
IA /
! '
A= +1 ‘/_/
.n"’.
.’..I
WA 4 } ) —‘% n

Fig. 1. Mass m = 0, p*> 0 representations.

II. The General Structure of the Direct Product of Mass m = 0, p*> 0
Representations

For simplicity we now omit S(),3+ i=1,2, and describe the
states of the representations by the quantum numbor (S(l)' 3(2) ,n), or
more conveniently by [j,x\,n], where j = @ 5(1) ~ 52
For mass m = 0, p*> 0 representations we Illave i=n —l and x is Jch@:
helicity. The general product state is given by
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n

(521)' SEZ)’ n’) x (5(1)' 5?2)' n”) =? (3(1)' S(z)" n) ,

s(i)=szi)+s’éi), szi)+s'zi)-l,... Iszi)-s'zi)l, n=n'+n".

€)

Note that for all states in the product of two mass m = 0, p*> 0 repre-
sentations the maximum j obeys the equation

max j =3’ +3" =n’ +n” -2=n-2. (4)
Differently expressed
nzj+2 . (5)

For the direct product of oo mass m = 0, p* > 0 representations the
general structure is given by the relation

nzj+a . (6)

This equation is expressed in Fig. 2.

jﬁ /

4 4 /I —» n

&
Fig. 2. The direct product of @ mass m =0, p* > 0
representations.

The restriction of the representations of Fig. 2 to the Poincaré
group shows that they are characterized by 0 < m? < ®» and p* > 0,
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III. The Physical Massive Representations of 8U(2,2)

We define the physical representations of SU (2,2) by their
restriction with respect to the Poincaré group. The physmal represen-
tations are characterized by the mass spectrumm =0 or 0 < m® < ®
and by the sign of the energy p* > 0. In the discrete basis (for more
details see Section IV) this corresponds to n> 0, where n is the
eigenvalue of M,s . We have seen that for physical m = 0 represen-
tation n = j+1, and that for the direct product of two m = 0 represen-
tations n=j + 2, Ya02 has shown that for all degenerate represen-
tations of SU4(2,2) for which n> 0 we have either the mass m = 0
case, orn = j + 2 for the massive representations. Tor this we are
led to the following conjecture.

All irreducible unitary representations of SU,(2,2) cha-
racterized by a mass spectrum 0 < m® < =« and positive energy p* > 0
are contained in the direct product of a finite number of mass m =0,
p* > 0 representations of SU,(2,2).

In a scattering process of mass zero particles the investiga-
tion of all inelastic massive channels is thus reduced to the investi-
gation of all inelastic mass m = 0 channels. And this is the problem
we are going to solve.

IV. The Direct Product of Two Mass m = 0, p* > 0, spin 0 Represen-
tations
The irreducible representations of the direct product4) of two
mass m = 0, p4 > 0, spin\ = 0 are specified by the mass spectrum
0 < m® < @, and by the fixed angular momentum £ =0, 1, 2, 3... .
This follows from dilatational invariance, and from the value of the
first Casimir operator

CI=ZJ(,(J(,+1)—4. (7)

Por the following we shall use the local isomorphism SU (2,2) ~

0O.(4,2), and correspondingly for the maximal compact subgroup
SU 2) x SU(2) x U(l) ~ SO(4) x SO(2). If we use the metric +++-+-
the first Casimir operator is given by

=é- - +
Cp =% My My + M, - (MM, + MM, ),

ik=1,2,3,5. (8)

Or if we introduce the rising and lowering operators Mk M
with respect to the eigenvalues n of the operator M46’ we oEtal
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_ + -
Op =% My My + Mo~ My My - 4M,. (9)
The lowest eigenstate with respect to the eigenvalue n is defined by

MJ;(O, 0, 1) =0. For the direct product Muv is given by

MW =ML'N+M:N . W,y =1,2...6. (10)

The question is now what is the minimum eigenvalue of Myg
for each irreducible representation of the direct product characterized
by the angular momentum £. Consider the product state with maximum
j for each fixed n. These states are of the form [j, 0, j+2]p, j=0,
1, 2,... . The index p specifies the j + 1 fold degeneracy. If we
apply the lowering operator to the j + 1 linear independent combina-
tions of these states, we get in general states of the form
(j=-1,0,3j+1]; for one certain linear combinations we get zero,
as there are only j linear independent combinations. Now we calcu-
late CI for this state. From (9) we obtain

C, = j(+2) + (+2)° - 4(G+2) = 2j(j+1) - 4 . (11)

This is the state with the lowest value of n for the irreducible repre-
sentation characterized by the angular momentum £ = j. We exhibit
the reduction into irreducible representations graphically in Fig. 3.

IA J'¢

I IA

e, I + " N I
o - e

Fig. 3. Reduction of the direct product of two spin 0, mass 0,
p* > 0 representations into irreducible components.



286 L., CASTELL

If we compare this reduction with the general structure of the
direct product of o mass m = 0 representations & > 2 we see that the
direct product of two mass m = 0, p* > 0, spin 0 representations is
not contained in them. Two mass m =0, p* > 0, spin 0 representa-
tions (initial state) can couple conform-invariantly only to two mass
0, p* > 0 representations. It will turn out in Section V that the "in~
elasticity" consists in a helicity transfer. The possible final states
in each angular momentum channel £ are given by two mass m = 0,

p* > 0 particles with helicity A =sand A’ =-s,s=0,%, 1, 3/2...4/2

I1V.1l Application to a Conformal Invariant Scalar Field Theory

Consider a conformal-invariant quantum field theory which
contains for simplicity only a scalar fieldip(y), e.g. the ¢* (y) theory.
The one-particle wave function {(p|¢p(y)] 0) transforms®) like the direct
sum of a mass 0, p* > 0 representation, and of a physical massive
spin 0 representation characterized by the Casimir operator CI =V -4
= -3. This massive state can only be interpreted as the lowest angu-
lar momentum £ = 0 component of the direct product of three of the
mass 0, p* > 0, spin O states in the sense of Section ITI. From these
restrictionsof the basic states and the previous results follows that
there can be only elastic mass 0, spin 0 scattering. The reduced S-
matrix elements exp 2if; are constanis .4) for which le 16’¢|= 1. This
is the group theoretical result. If we impose in addition unitarity and
crossing, we find that there is no scattering at all.

V. The Direct Product of Two Mass m = 0, p* > 0 Representations of
Helicity A and )’

The direct product of two mass 0, p* > 0 representations of
arbitrary helicity A and A’/ contains representations of the Poincaré
group characterized by 0 < m® < », p* > 0 and spin

t=x-N+k, k=0,1,2,... . (12)
7)

Each representation occurs once. The first Casimir operator of

SUO(Z,Z) is given by
cI=(x +ATP + 2000 + 1) - 4, (13)
Therefore one irreducible representation of SUO(Z ,2) is characterized

by 0<m? <ew, p* > 0,4 and A +1’. In Fig. 4 we give the lowest
weights of each irreducible representation for the case A= 0 and \’< 0.

+It remains to be proved that there are no states withm = 0 and A=t 1,
+2,... in the scalar theory.
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In parentheses we denote the quantum numbers (s, , sy ) for the lowest
weight.

i A (A+1, ="+1)
(A%, A+k)
( (A, =\')
ISEIN
- e e

e
Fig. 4. Lowest weights for the irreducible representations of
the direct product, » =2 0, A< 0.

In Fig. 5 we treat correspondingly the case where A = 0, 3/ = 0.

A

(41, 1)
(4%, 3)

(A1, 0)

t (27, 0

[x-x]

I+ i
Fig. 5. Lowest weights for the irreducible representations of
the direct productx =0, A" = 0.

From the comparison of Fig. 5 and Fig. 4, or more abstractly
from the value of CI follows that for conformal-invariant mass 0
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particle-scattering there is no helicity-flip A » 3, A" » -\’ . The cor-
responding result has been obtained in field theoryg) for spin 0 scat-
tering off spin # and spin 1 massless particles,

V.1l. Application to Photon-Photon Scattering

If at high energy a photon-photon scattering becomes confor-
mal-invariant our analysis shows that the inelastic channels are
highly restricted. A final state which consists of two mass m = 0
particles with helicity A #+1 is not a realistic possibility, as we are
dealing with electromagnetic interactions. Moreover, only if the
helicity of the incoming photons is the same (e.g. A =\’ = +1) we
can expect inelastic channels. In the angular momentum £ = 0 chan-
nel we can obtain: 1) four mass 0, spin 0 states (which can combine
to two massive states), 2) two neutrinos, and one mass 0, spin 0
state, 3) two antineutrinos, and one mass 0, spin 0 state. In the
2 =1 channel the only inelastic final state is given by two anti-
neutrinos, and a mass 0, spin 0 state. From the assignment of mas-
sive elementary particles to irreducible representations‘l) of the con-
formal group, we can conclude that none of the inelastic channels
corresponds to any state, which contains a massive elementary par-
ticles. So there remains only elastic scattering.

V.2, Comment on Deep Inelastic Electron-Proton Scattering

We should like to show that the following approximation (ske-
leton-theory) which some people propose, in order to explain scaling
of deep inelastic electron-proton scattering does not lead to reason-
able results, If one replaces the incoming e and p and the outgoing e
by neutrinos and studies the conformal-invariant reaction

V+veyv +x,

we obtain again only elastic scattering x =v.

The only inelasticity, which is in the £ = 0 channel (three
mass 0, spin 0 states), is excluded as one v has to be in the final
state. This shows that massive elementary particles have to be as-
signed to massive representations of the conformal group. 9)

Finally it should be mentioned that a corresponding analysis
for the two~dimensional Thirring-model shows very elegantly that
there is no scattering.
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CANONICAL AND NONCANONICAL
SCALE SYMMETRY BREAKING+

R. Jackiw#
Massachusetts Institute of Technology
Cambridge, Massachusetts

We have undertaken a study of scale symmetry breaking both
on the formal, canonicallevel, and in detailed perturbative calcula-
tions. Our main result is that in perturbation theory mass terms are
not the only objects which break scale symmetry, even though this
might be the conclusion of a formal canonical investigation. Most
probably, this state ofaffairs persists in the complete theory as welll.)

We first summarize here the consequences of the formal theory
of scale symmetry breaking. It is shown how one may derive theo-
rems about, e.g. the high energy behavior of Green's functions.
These theorems are then demonstrated to be false, and their failure is
explained by showingthat (1) scale dimensions of fields are affected
by interaction an% (2) mass terms are not the only objects which break
scale symmetry.2

I. Formal Theory
Consider a renormalizable field theory. It is possible to

introduce a new, improved energy momentum tensor 64V, such, that the
scale current DM and the conformal current X*™ have the form

Mt =x "™ 1)
AY)
&H = 2x°°x\) gV - @ g @)

It is assumed that only masses break dilatation invariance, on the
Lagrangian level.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,
+Alfred P. Sloan Fellow

291



292 R. JACKIW

a“ ot = e“u = mass terms (3)

> M =235 D! (@)
u u

To extract the consequences of these hypotheses, we derive
Ward identities satisfied by matrix elements of 6%V, In order to do
this, we need to know the commutator of 64V with a renormalized field
@ of scale dimensionality d (d = 1 for Bosons, 3/2 for Fermions).
Under very general hypotheses, one can show that

£6°°(0.%), o0 =3°%(0)8 @) + =% ©(0) 3, 5 () s)
6% (0,1, 0] =2'08 () - S0(0 3" 80
+1 2% 0(0) 2, 5 (©)

(Z“V is the spin matrix appropriate to the field ¢.) These are the for-
mal, canonical commutators. No statement is being made concerning
their validity in perturbation theory. Since the commutator of e“" with
tp necessarily contains gradient terms, the T product of Huv with ¢ is
not covariant. In order to arrive at the covariant T* product, a covar-
iantizing seagull S'u\) must be added. Hence we are led to consider

Py @, = [d'x d*y &' &PY (0] Tx 8 6 gy (y) y(0)] O

= [d*x d*y ol o 1PY (o|T oY ) cpi(Y) P (0)] 0y
+8%0,q) (7)

Fyj (p,q) = [d*x d*y 1 1PV (0| Te“u(x) o (¥) ®; (0)] 0y (8)

In the above i,j label the fields; the labels may be space-time or
internal indices. It is assumed that matrix elements of e“u require
no seagull. The covariantizing seagull S%V may be explicitly con-
structed from the known commutators (5) and (6). Hence a Ward iden-
tity may be derived. Its form is
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q, PLl.ljv(p.q) =1ip’ Glp) - ilp+q)’ Glp+q)

+1 g v +q) + L
2 9, Py Gy (p a) +5 qLl ” Gy .+ (p) (9)
Also a trace identity is obtained, from the explicit form of SLile
g Fp,q)=F,(0,q) -idG, (p+q)-1d G, (p) (10)
(VAVERS § M i ij ij

In Eq. (9) and (10) Gij is the renormalized propagator
— [qe ipx
Gy @) Ja*x e (0| T o, ) o, )]0y (11)

The formulae (9) and (10) contain all the restrictions that the
various space-time transformations (Lorentz, scale, and conformal)
impose on the propagator. (Had we wished to study the n particle
Green's function, we would consider the matrix element of 6"V with
n fields.) Once a model for scale symmetry breaking, e.g. mass
terms, is adopted, then one may deduce theorems about G(p). We
now show explicitly how these restrictions are contained in Eq. (9)
and (10),

1. Lorentz transformations Differentiate (9) with respect
to Ay and set q to zero. This gives

[eAY) L., [sAV) g \)a_
‘F1j ,0)=-ig Gij(p) ip apaGij(p)

i_av i _ov
+ Tyr Gy@) + 55 Gy @) (12)

a
Since Fij\) is symmetric in o and v, we learn from (12) that

2 _ a3 .
[p 5p_ P ap\)] Gl.j(p) Y Gi;j(p) I Gij,(p) (13)

This is the trivial and well known constraint of Lorentz covariance.
2. S8cale transformations Form the trace of (12). We have
(suppressing indices)

a

g ™(p,0) =-4iG)-ip 2 G(p) (14)
MY 3p
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Combining (14) with (10) at g = 0 leaves

Flp,0) = 1(2d-4)G(p) - 1 0" ~-Glp) (15)
op

This provides a constraint on G(p), once F(p,0) is known, i.e. once
we have a model for scale symmetry breaking.
3. Conformal transformations Differentiate (9) by

9 d ) ) e}

o v o 9
3¢ g vV oag® 29

and set g = 0. This gives

o) S} 3 d
O _ 5 o 9 2i 9 9
Zaq 950 Fi] (.q) - 81ap G; (p) 1pg 3o %, G, (p)
o 0 B
S aB _9
+ip H apr G (p) +21Zii, apB Gi'j(p) (16)

The left hand side of (16) may be evaluated from (10)., After a rear-
rangement of terms, we are left with

3
2.—.
e Fﬁ@,m

. 9 2.3
- =i (2d -8)ap @) 2ip @)

q=0 - BBPB ap 1

+ipa—§E gi—c;J@)+212“B——§-c; (o) (17)
3p” °Pg 3p

This equation may be simplified by using (13) and (15). Firstd is
eliminated between (17) and (15). This gives

3

2 - .
zachL F..(p,q) T Fi®.0)
1j—|:p 2-Gy(e) - p %Gl © + 255 G, ()] (18)

Ps
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Next we use (13),

o) o) . O af aB

9O - =2 =1{-—|3% -

2 3q Pij(p,q) ~ 5P Fij (p,0) =1i 5D [ 10 Gi'j(p) ij, Gij' (p)]
o q=0 a B (19)

Eqg. (19) determines the constraint on G which follows from a model
for conformal symmetry breaking.

II. False Theorem

It is now shown that the constraint equations for scale and
conformal transformations cannot be interpreted naively. Consider
for definiteness the propagator for a theory of spin zero fields with
mass | and a quartic self-interaction. The propagator may be written
in the form

G ) =# 96 /i) (20)
‘We find from (15) that g satisfies
L 6,0 =B o' AR + -0 a6 A2) @)

Consider the limit as y*— 0. One might expect that the left hand
side vanishes, since F is the matrix element of B“u which formally is
?p® . On the right hand side, this limit is equivalent to p®- .
Hence we find

Lim gl AP) = (02 /?)0 (22)
pF- =

Since d = 1 for Boson fields, we further conclude that the Boson pro-
pagator goes as 1/p® for large p°®.

This result, a weak form of Lehmann's theorem, is manifestly
false in perturbation theory where it is known that logarithmic terms
are present in the asymptotic domain. Thus we must abandon the
steps which lead from the true (by definition ) Eq. (21) to the false
result. Specifically we cannot conclude that d = 1 and that F van-
ishes with the mass.

IIT. True Theorems

Detailed calculation in perturbation theory in lowest non-
trivial order of the interaction yields the following conclusions. It
remains possible to assert that F vanishes with the mass. However
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d changes from its canonical value of 1. To exhibit the change in d,
we consider the definition of that object

iLD0), 0] = 1 [d®x x, [6°(0,%), 9(0)]

d (0) (23)

The commutator is evaluated by the Bjorken-Johnson-Low prescription.
Specifically an application of this technique to F*Y(p,q), gives by
definition
oi

lim <25 q Fp,q) =idGok) (24)

o
Hence the true value of d may be computed from the high energy beha-
vior of F*V, Explicit calculation in lowest order gives

d=1+c\® (25)

where c is a well defined numerical constant, and A is the coupling
strength of the quartic self interaction. Substituting this value of d
into Eq. (22) (which remains valid to lowest order, since F does
vanish with the masses), we find

2
lim g®®>/AP) <@ AR) ~ 1+ logpP A2 (26)

pz-u:o

Explicit calculation of the propagator to the same order verifies (26)
with precisely the same coefficient. Perturbative calculations for
several models have been performed, and the conclusion is always
the same, in lowest order: although the scale breaking term van-
ishes with the masses, the dimension changes, and the resulting the-
orem about high energy behavior is verified by comparison with a
calculation of the propagator.

Although perturbative calculations beyond lowest order have
not been performed, it is possible to obtain answers by another
method--that of the renormalization group. The crucial question is
whether or not the propagator, in the high energy domain, behaves as
a power of (p° /1%). In this case one could say that scale breaking
effects disappear with vanishing mass, but d changes from its cano~
nical value. On the other hand if a power behavior for the propagator
is not found, then the scale breaking effects do not go away as the
mass goes to zero. The renormalization group indicates that the latter
behavior is true.
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From the renormalization group for the ))cp4 theory, one can
deduce the asymptotic form of the propagator

g(® NP ) —— DLQOJ + log p° A% (27)
pPPo o DM\

D and Q are two undetermined functions. Q(.) is related to the Gell-
Mann-Low eigenvalue function ¥ (\) by

1

TN =a_ QhK) (28)

According to the renormalization group, ¥ () has a zero at ) =\, if
the unrenormalized coupling constant is finite and equal to Ao From
(27) it is easy to deduce the followirt% equation, which forms the
basis for our subsequent discussion.

f}— g’ /i) = BO) 907 AP )+w>— g(0® /?) (29)

p—t@

Here B(\) is an undetermined function of \. It is evident from (29)
that power behavior for g is in general not obtained due to the pres-
ence of the second term on the right hand side. Only if §(\) has a
zero and ) is chosen to be the zero of this function, does (29) yield
a power law for g. Thus we conclude that if the unrenormalized coup-
ling is finite, then scale invariance becomes exact as masses go to
zero, but the dimensions change. On the other hand if §(\) has no
zeros and the unrenormalized coupling constant is infinite (as it is in
perturbation theory) scale invariance remains broken when the masses
go to zero. Since therenormalization group can be formulated indepen-
dently of perturbation theory, this analysis applies to the complete
theory, as well as to perturbative approximations.

A comparison between (21) and (29) shows that g(\) = d-1,
while § () 3/3Ag(p®/u®) is the residual scale breaking term when
masses go to zero. We can understand the presence of these "ano-
malous," noncanonical scale breaking terms in the following way.

In calculating matrix elements of gHV it is necessary to insure their
conservation. However in specific calculations these matrix ele-
ments are not conserved, and conservation is achieved for example
by Paull—Villars regularization. One dcflnes @Lﬁ =gtV = ﬂu\“
where ﬁu is formed from regulator fields cp carrycigg mass M. Phy-
sical, conserved matrix elements are obtained by letting M = .
Consider now the trace of eﬁ , which according to (3) breaks scale
invariance., Evidently we have
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o

Thus if matrix elements of éf)z behave as M™ for large M, the regu-
lator contribution to (30) survives, even in the physical limit M - o,
Specific calculation shows that EBQ does indeed behave in th}s fashion.
Therefore even when y? is zero, g  AHY does not vanish,

Uuv Reg
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A NEW IMPROVED ENERGY MOMENTUM TENSOR¢t

R. Jackiw*
Massachusetts Institute of Technology
Cambridge, Massachusetts

In order that the energy momentum tensor be an observable, as
surely it is due to its weak coupling to gravity, it is necessary that
it possess finite matrix elements. We have shown that for any renor-
malizable field theory it is possible to fBid an energy-momentum
tensor whose matrix elements are finite.’ Howewver this object 1s not
always the conventional Belinfante tensor, although the total energy
and angular momentum of course remain unchanged.

Before exhibiting our tensor, we turn to the topics of scale
and conformal tifinsformatiens, since our tensor arises very naturally
in this context.’ A Poincaré covariant Lagrangian theory is scale in-
variant when the following relation is true:

6%

58 w88
(@+1) 2" + 5 do . (1)

)

48 =

Here £ is the Lagrangian function of the theory, assumed to depend on
a set of fields ¢, and on single derivatives of these fields a%p. The
quantity d is the scale dimension of the field ¢, chosen to be 3/2 for
Fermions and 1 for Bosons. Moreover a Poincaré covariant Lagrangian
describes a conformally invariant theory when two conditions are met:
(1) Scale invariance must hold; i.e. Eq. (1) is true.
(2) The field virial, W, defined by

8 Vi
VUE—‘\'-E—(g d-sMe , (2)
60 ¢

must be a total divergence:

t+Presented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,
t+Alfred P. Sloan Fellow
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v Y
V =9 © 3
" (3)

{In Eq. (2) =" is the spin matrix for the field ¢p.) It is remarkable
that for all renormalizable theories Eq. (3) is true, though of course
for none of these theories is scale invariance exact. (Condition (3)
is also true for theories involving fields of spin not greater than one,
without derivative interactions.)

Once (3) is satisfied, we may introduce our tensor 64V by the
following procedure; Form the Belinfante tensor e%\’ in the usual way.
Form also the object

by
xMPUY QXpOuv i g)Lquv _ g)\\)chl-p

+ +
v v N
+ VP - 20 gy + 56V (4a)
TAVENS . iy
where 05~ is the symmetric part, and ¢ the trace of ¢ ". The new
improved tensor is now given by
BV _ glV APV
8 0% $23. o X (4b)

In terms of GLN the dilatation current DLl and the conformal current
K™ are given by the simple formulas

pH=x "V (sa)
Y
Km'l = 2xmx\)9\)Ll - x° e““ (5b)
> pt=¢" (6a)
m W

> &=y D (6b)
3l )
Eq. (6) exhibits the fact that for the theories under consideration,
i.e. for theories where (3) is true, conformal invariance is broken by
the same mechanism as scale invariance.
Explicit computation shows that oMV is identically zero except
for spin zero fields.
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UV
MY _ 2
MV=L— ) 9 (7)
spin
Zero
fields
Hence
MV _ auv 1 \ MV MY 2
F =gtV -2 ) (%Y -¢7VD)o (8)
spin
Zero
fields

(The unique role of spin zero has not as yet been understood.) In
renormalized perturbation theory, it is 64V, as given by (8), rather
than G%V which has finite matrix elements. (For scalar particles, it
is also necessary to shift the scalar field ¢ by an 1nfinite constant.)

Since in the usual Einstein gravity theory o4V rather than oMY
is the source of gravity, it is necessary to find a new theory of grav-
ity in which 6"V is the source, at least to lowest order in the gravi-
tational interaction. This modification must be consistent with the
usual tests of general relativity. It will depend only on spin zero
fields, since the difference between MY and e“" inv 3a:}lves only these
fields. Such a modified field theory has been found It is derived
from the action

I=I&X/”r1we mw +£m] )

In the above R is the Riemann curvature, g is the determinant of the
metric tensor, G is the gravitational coupling strength, and £m is the
matter Lagrangian. We have assumed that only one spin zero matter
field ¢ is present. The field equation for gravity is

e
'%%WR=—TTE“Q*“§ 8 (10)

Ruv /3 Go )

and to lowest order in G, our tensor 1s indeed the source of gravity.

If £  refers only to the field ¢, with a mass u and a -\P* self-
interaction, then the matter equations are

O = ~-u2e® - 0o —'—ch (11a)
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R can be eliminated between (10) and (11a), so that the final matter
equation is

Do =-p20® - 40 +37GU%) o (11b)

Hence the only effect of our new gravitational theory is to change, in
a universal way, the strength of the quartic self-interaction; this is
obviously consistent with the principle of equivalence.
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SU(3) x SU(3) AND DILATATION INVARIANCE
OF STRONG INTERACTIONS*

P. L. F. Haberler#
Department of Physics
Duke University
Durham, North Carolina 27706

After many lectures on the more formal group theoretical cha-
racter of the conformal and De Sitter groups it seems worthwhile to
look into the dynamical consequences of the conformal group, espe-
cially its implications for hadron physics.

Stimulated by the fundamental work of Wess, 1) Kastrup, 2)
Macka) and W1130n4) recently much works) has been done on the
possible application of the conformal ?roup to strongly interacting
particles. One first important result® whlch has been established
is that for a wide class of Lagrangian theories, which include all re-
normalizable interactions except o coupling, scale invariance im-
plies invariance under conformal transformations.

The fundamental quantity in the study of scale invariance is
the local energy momentum tensor, @ (x) With its help, one can
construct the generators of translatwns and Lorentz rotations in the
well known way. Now a dilatation, or change of scale, obviously
changes coordinates by xu = \xy. The generator of the dilatation, D,
can by analogy with the Lorentz generators be written as

D=[dx0oux ~ -ix"3pu.

It generaties scale transformations on fields. For a finite scale
change, x = Ax, a field transforms as

o) = 1% 0x)

tPresented at the Symposium on De Sitter and Conformal Groups .
University of Colorado, Summer 1970,
$Supported in part by the ARO(D) and N. S. F.
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where d is the dimension of . As is well known for free fields at
least, d = 1 for spin 0, d = 3/2 for spin 1/2, and so on.

Now we can define?) a current Oy = 8,yx” such that D is the
space integral of its time component. Then time independence of D
or scale invariance of the theory corresponds to § being divergence-
free. The divergence of ‘@M is easily seen to be just @uM, the trace of
the energy-momentum tensor. We want the limit of scale invariance
to correspond to the vanishing from the Lagrangian of terms having
dimensional coupling constants, since a theory with only dimensional
coupling constants should be scale invariant. Therefore, Fﬂu“ should
be proportional to those terms in the Lagrangian having dimensional
coupling constants. However as we heard from Professor Jackiw he
and several other peoplea)'g)' 10 have found that due to divergences
which are inherent in all nontrivial field theories a formally scale in-
variant interaction term may give rise to terms which break scale in-
variance unless the expansion parameter (unrenormalized) of perturba-
tion theory has a fixed value. We will return to this point later on.34)
Besides this very serious problem wilson!1? remarked that the dimen-
sion d of a field may change due to the interaction (@anomalous dimen-
sions). Another important point which has been dealt with quite often
in the literatures)concerns the question whether conformal invariance
can be realized in the Goldstone way, i.e., whether there exists a
zero mass scalar particle which couples to the vacuum through e
This would allow some masses to remain nonzero in the symmetry
limit. This possibility has led many people5 to look for a combined
scale and chiral invariance of strong interactions, because of simi-
larities which I shortly sketch below.5)

Although a detailed theory of strong interactions does not yet
exist it is reasonable to suppose that SU(3) x SU(3) is nearly a good
symmetry, We write the energy density 8 in the form

@00 =®00 +u (1)

where @y is invariant under 8U(3) x SU(3) and u contains SU(3) sing-
let and octet components. From the work of Gell-Mann, Oakes and
Rennerlz it seems plausible that u has the simple form ug +cu with
c near -/2 (so that the pion mass is nearly zero), the u; being scalar
components of a (3,3)@® (3,3) representation. Under standard®) as-
sumptions
i

a“‘uu=i[1ﬂ15,u] i=1l-—m 8 (2)
and the axia_l current divergences are dominated by a pseudoscalar
octet in (3,3) + (3,3).
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When u goes to zero the axial vector currents are conserved
and the pseudoscalar octet becomes massless. However other parti-
cles apparently remain massive in this limit. The numerical analysis
of von Hippel and Kim13) indicates that the nucleon mass remains
essentially unchanged as u= 0. It also seems that the N’ remains
massive in this limit. Thus it is reasonable to assume that @00 con-
tains a scale breaking (scalar) operator § in addition to a part of
dimensiond = -4, @00

~

&]]]

®90 =@ *®

@Il

+8&+u (3)

§ is to be SU(3) x SU(3) invariant, as is @00. It was Wilson4) who
first advocated the existence of §. Mass shifts of the order of 1 GeV
are to be attributed to the operator §, while u causes shifts of a few
hundred MeV.

In the limit where § goes to zero we distinguish two types of
theories. In the first, all masses vanish in the limit of scale invari-
ance and the vacuum is normal under scale transformations. The
second alternative is that of spontaneous breakdown of scale invari-
ance, in which case the vacuum is degenerate.

Recently cloubts14 have been raised whether scale invariance
can be realized through the Nambu-Goldstone way. We will come to
this point later. For the moment we note that the vanishing of all
bare masses and dimensional coupling constants is one necessary
condition for a combined scale and chiral invariance of strong inter-
actions.

In the following we are going to investigate the condition of
vanishing of all bare dimensional quantities in the framework of ILa-
grangian field theory. To accomplish this we have to choose a model
field theory which supposedly is capable of describing strong inter-
actions. A promising candidate is the field theory of mesons and
baryons with pseudoscalar Yukawa coupling. In this framework Drell,
Levy and Yan15) and others!%) were able to derive useful results for
inelastic electron-proton scattering. Also Padé-approximant calcu-
lation based on this field theory yields results which agree very well
with the data.17),18)

The Lagrangian of the pion-nucleon system is given bylg)
(SU(2) case):

®00 = ®oo
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= - ﬁ—‘ - - -
L=¥%(iyd - MV +%(un)? - 5 rrz-ig0 Yy Tep ¥
- 2
+6 M ¥ +§2“—112

8M =M - M, 6u2=u2-u02 4)

where M and p® are the physical masses of the nucleon and pion res-
pectively, MO and Lloz are the comresponding bare masses, 99 is the
unrenormalized 7 - N coupling constant and ¥ and ¢ are the unrenor-
malized nucleon and pion fields respectively. 20)
The interaction Lagrangian in the SU(3) case is given by

L, =~2ig, EYSEaDa + (1 - a)F°] BP_ (5)
plus the selfmass terms which we do not explicitly write down. « is
the mixing parameter which measures the relative strength of the sym-
metric and antisymmetric couplings (D and F types respectively). B
and P, are unrenormalized baryon and mesons fields respectively.

In the framework of this theory one can derive the following
exact relation for the bare masses 21

Nucleons:
M0=M22 + Z, I alr,@@-r,(-a)Jda (6)
(M+n)
Baryon Dctet:zz)
Moi = Mizai + Zzi [ a[rli(a) - rli(—a)] da (7)
(M+1)

where Z, (Z, 1] is the wavefunction renormalization constant for the
nucleon (baryon octet) and r; (@) (r;*@)) is the renormalized spectral
function of the fermion propagator

Mesons:
-]
By =W +Z5 [ a?pl?)da? (8)
4MP
Meson octet:zz)
21 21 i ia i
Mg =M Za + Zg j' a® p (@) da? 9)

4P
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where Z; (Z; 1y and p(@®) (pi(az)) are the corresponding quantities for
the pion (meson octet). Now let us discuss these equations from the
point of view that the bare masses have to vanish in the limit of scale
invariance. We start with My. From Egs. (6) and (7) we learn23

that there are two possibilities for Mg to vanish

[+

I. Z, #0, M+[ alr, () -r(-a)lda=0 (10)
(M+)
or
M. Z,=0, I[M+[ aln@) -r(-a)ldal<e (11)
(M+u)

Case I, which one could interpret as the case where the nucleon is a
fundamental object, has been dealt with in the literature24) to calcu-
late the pion-nucleon coupling constant without much success.

Case II leads to the conclusion that when the wavefunction renormali-
zation constant vanishes, the bare mass has to vanish. The condi-
tion Z, = 0 is known as the condition for compositeness of a particle
in field theory.25) Salamze) conjectured that

6M=M—M0=0 (12)
2
when Z, = 0 and Hagen 7) later on made this statement more precise
in showing if the vacuum is nondegenerate actually

M= M0 =0 (13)
from Z, = 0 follows in a y5 invariant theory. Hagen also noted in
this case that a spontaneous generation of symmetry emerges. There
is still another possibility which has to the best of the author's know-
ledge not yet been reported in the literature, namely that from Z, = 0,
Mp= 0 follows but M # 0. In this case the vacuum has to be degener-
ate and we expect that the Goldstone-Nambu theorem28 applies, in
that there exists a spin zero, mass zero particle. In view of the work
of Ref. 13 it is very important to know whether such a possibility
exists. Therefore we have investigated this question in our chosen
field theory for strong interactions.

Before I tell you the results I should point out that usually you
expect27) M{J to be infinite when Z; = 0. Also straightforward pertur-
bation theory gives you always M, = - = and therefore we introduce a
cutoff to make the integrals well defined. Later on we will see that
the cutoff plays a special role ,34)
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First let us see what lowest order perturbation (unrenormalized)
gives. For Z, we find

NPl
_ dz(l-z) z[ M? (1-2)%+ Lz]
and for &M
2ol
dz z(l - z) (15)

oM =M£dL£ [MP (1-zF HiPz + Lz)

From Egs. (14) and (15) we learn the following

1. For M = 0 (physical mass of the nucleon) indeed § M =
M - M, = 0. But letting M - 0 in the expression for Z, we find that
Z, diverges (infrared). Therefore it seems that Z. has nothing to do
with 8 M in this case. This observation is confirmed when one looks
at the rainbow approximation29) (summing up the rung-diagrams) and
in the Zachariasen30) version of this model.31

2. For M #0 one readily sees upon comparing Eq. (14) and
Eq. (15) that for y = 0 (physical mass of the pion) indeed Mg = 0 from
Z, = 0 follows. This relation can be written inthe beautiful form

- M
CHE Y

Z (16)

or
M, =2,M

The validity of this relation is confirmed in the above mentioned
modelszg)' 1) and I think that it is frue in general32) for theories
where the limit boson mass = 0 exists.

When one looks at the SU(3) case these results do not change.
One finds in this case31) an octet of massless pseudoscalar mesons
emerging while the masses assume the value of the nucleon mass in
the symmetry limit.

These findings suggest that the condition Z;, = 0 (and all Z's =
0 in generalzs)) lead to a spontaneous generation of SU(2) x SU(2)
(SU(3) x SU(3)). But the emergence of massless pseudoscalar Gold-
stonous is not yet enough to have a chiral symmetry. One has to
show that the axial vector current is conserved when the wavefunction
renormalization constants are zero. Following Gell-Mann and Levy33)
we perform the following chiral transformations on our Lagrangian
equation (4):
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¥ (L+1T°Vys) ¥

Tow (17)
. ] . 33)
The axial current is given then by
i = i
A =¥ ¥ 18
n Y\J Ys T (18)
and its divergence
Wil o = i e i
d zuu 21M°‘1’y57 Y+go‘l"i’f.0 (19)

where all quantities are understood to be unrenormalized. We have
calculated (N| %! |N) and (N|aK 9" |NY, | N) fixed physical nucleon
state and found tlFLlat in the limit wl#«:re u=>0

<N|91Lil!N> =My, v o (20)
and
(n|a¥ milm =72 (Z+ Ze%) M vs 21)
35)

for zero momentum transfer squared. If one formally renormalizes

Eq. (19) one finds34

oo i , = i 2 = i
= - <+
o} Mu 2(M - §M)i Z, ‘YR Ys T YR goza %y ‘VR ‘YRCPR (22)
R

which has essentially the same Z-factors as Eq. (21) when one uses
the condition (16). (The additional Z, factor in (21) comes from the
sandwiching between physical states.) Therefore we conclude that
Eq. (20) and (21) are in general true. Therefore we find that if Z,= 0,
indeed, the axial current is conserved provided that the pion mass is
zero. Also the equation Z, = 0 does not mean that the axial current
itself vanishes identically when Z, = 0. It is an easy exercise

to convince oneself (in lowest order) that

Lo} i_
a3t Qs =0
where

o =[x ate . (23)
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Therefore we conclude that the condition Z, = 0 indeed leads to a
spontaneous generation of chiral symmetry (SU(2) x SU(2) in this
case), which at the same time turns out to be spontaneously broken.
Although the connection Z's = 0 (bootstrap) and the emergence of
higher symmeiries has been noted a long time ago35) the simultane-
ous breakdown of the emerging symmetry has to the best of the know-
ledge of the author not yet been reported in the literature.

Although many people may argue that this result seems to hold
only in a special model, I would like to emphasize again the rele-
vance of this field theory for what is going on in nature: these results
again support the work of Ref. 13. Further, although one usually be-
lieves that the o -model33) is a better model for strong interactions
these results suggest that the advantages of the ¢ model {(chiral in-
variance) are actually hidden also in the simpler ys theory.

Now let us turn to the bare mass of the mesons. At first sight
it seems that again pcf= 0 when Zs= 0. But one has to be very care-
ful in this case. Hagen27) actually claimed that the opposite is true:
if Zz=0, u? is infinite. But other research workers in this field36
have found %he condition

Zg 812 = 0 (24)

i.e. §y® is not infinite. This was confirmed recently by Kang and
Land3”) who reexamined this problem very carefully. They showed
that condition (24) is indeed necessary for a complete bootstrap. Fur-
thermore they showed that the complete bootstrap condition imposes

a restriction on the propagator, namely that the propagator requires a
subtracted Lehmann representationZI) in this case.

Since (24) is compatible with u$= 0 we conclude again that
from Z;= 0 a vanishing of the bare mass yf in the symmetry limit
results, Indeed calculations based on perturbation theory confirm
this.31

Now after we have made it very plausible that the vanishing
of all renormalization constants leads tothe necessary conditions for
chiral invariance, we still have to investigate whether these condi-
tions also lead to scale invariance. There the big question arises
whether as in the case of chiral symmetry or Goldstone-Nambu reali-
zation is possible. It was claimed in the literature38) that the o-
model provides an example for a Goldstone solution, the g-meson act-
ing then as a Goldstone. But a recent careful renormalization of the
o-model39) ,40) shows that when the physical mass of the ¢ vanishes,
all4l) other masses, including the nucleon mass, vanish also. Also
on general grounds Genz and othersm) have provided indication that
the Goldstone situation cannot arise in the case of scale invariance.
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But let us look into meson-nucleon theory when all the wavefunctions
renormalization constants vanish., Following Ref. 7, the divergence
of the dilatation current is given by
95 N~ o B e

a@u—eu—Mow+uoq> (25)
Formally renormalizing this expression introduces Z-factors. How-
ever, taking matrix elements between physical nucleon states or phy-
sical pion states shows31) that, only if all physical masses vanish,
a-“ﬂu = 0 follows. However we still want to be cautious because this
emerges only in a lowest order calculation. Nevertheless we feel that
it is a strong indication against a Nambu-~Goldstone realization of
scale invariance.

So let me sum up. You have seen that there is a strong con-
nection between the bootstrap apprach and the way symmetries arise
and how they are realized in the symmetry limit. We found that chiral
symmetry has to be realized in the Goldstone-Nambu way, while scale
invariance seems to demand that all physical masses go to zero in the
limit. Trom this immediately follows that a quantity 8§ must exist, as
introduced by Wilson8) who claims that Glashow was the first who
_g_onsidered it. Therefore this suggests the following picture for 900 =
fgp tu+s in the symmetry limit:

When u goes to zero, the pseudoscalar masses go to zero and
the baryon masses stay finite. 1In the limit § - 0 all masses go to
Zero.

Furthermore, our findings strongly suggest that Abdus Sa-
lam's26) original hypothesis is right, namely that all Z's = 0 is the
field theoretic equivalent of the bootstrap hypothesis.
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COMMUTATION RELATIONS
FOR THE BROKEN CONFORMAL INVARIANCE
IN QUANTUM FIELD THEORY't#

F. K. Cheung
Department of Physics
University of Notre Dame
Notre Dame, Indiana 46556

The interestl) in conformal invariance has recently been
greatly revived by G(ell—Mann2 and others3) in connection with SU(3)
X SU(3) as applied to hadrons.‘” Like SU(3) x 8U(3), the dilatation-
conformal symmetry is badly broken by the strong interaction as is
evidenced by the nonvanishing masses of hadrons. There are, how-
ever, at least two basic differences between the conformal symmetry
and an internal symmetry such as SU(3) x SU(3). First of all, the
conformal generators do not commute with the Hamiltonian even in the
limit of exact symmetiry; and secondly, the conformal symmetry is a
geometric symmetry induced by space-time transformation. We shall
here mainly make use of the latter property of the conformal invari-
ance, which enables us in Lagrangian model field theories to define
the infinitesimal generators in terms of the field operators through
the Noether's theorem independent of the manner in which the sym-
metry may be broken. We shall later also consider a direct geomet-
rical definition for the dilatation-conformal generators. But we shall
see that in all renormalizable Lagrangian models containing fields of
spin 0, 2, and 1, the Noether's generators and the corresponding
geometrical ones are in fact equivalent. The commutation relations
among these generators will be obtained. We shall demonstrate that
the breaking is completely determined by the divergence of the dila-
tation current and that the broken algebra involving only the Poincaré-
conformal generators and the divergence of the dilatation current is
model independent. At the end, we shall also give a direct geometri-
cal meaning to the breaking terms of the conformal invariance.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.

tResearch supported in part by the U. S. Atomic Energy Commission
under Contract No. AT(11-1)-427.
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The infinitesimal scale and special conformal transformations
are defined by their action on a space-time point xu in the Minkowski
space,

€eS: x - x' =x +ex
M 1) u M

o AM:ix ~x' =x +a ¥ -2x (@°x)
Tl TR "

4
vl
where we notice that the special conformal generator A‘I-l acts non-
linearly on ). i i

For a given Lagrangian £{p, ©o ) which depends on through
the space-time dependence of the fiele and their derivatives, S and

will induce a corresponding change in these fields and hence the

Lagrangian, very much like what happens under the Lorentz transfor-
mation. One demands on physical grounds that under S and Ay the
action integral

W =[x £67 ), 9, 6))

be invariant up to an integral of a divergence so that the field equa-
tlons will remain unchanged. This gives rise to a current which be-
comes divergenceless when S and Au is a symmetry of the dynamics
described by -E(cpi, ). This is the content of the Noether's theorem,
in accordance with which we may now write down, for a given lagran-
gian M;Oi; ), the infinitesimal generators of the Poincaré-conformal
generators even if the symmetry is broken,

Pu = Idsx Tou x)

M =Id3x(x T -x T )
) v ou W ov

S =j'd3x (x)‘ T, —z&. A coi)

i i
1 - %%,
3 A _ _ A of i
Au j‘d xI:qux T ngou Z(Ziixuﬂx ou)\)‘*"“i P
A a{po
- 1 2—
ta, ) 46 6] &)

boson
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where we have used the metric (1,-1,-1,-1), o =22 and
38 i e
Tv_z gk Py " v &
L 9%,

is the canonical energy-momentum tensor.s) The last term within

the integral for A!P1 is summed over boson fields only and is necessary
in order to make A“ divergenceless when the symmetry is exact.

4, 1is the dimension of the field cp such that under an infinitesimal
scale transformation, a boson fleld of dimension £, for instance, will
transform as,

S: ol) =o' x') =op&) +1e o)

But
o' x') =’ k+ex) =’ &) + ex a—ax:l olx) + o(c?)
and
o' ) = (1 - 1e8) plx) (1 + ieS)
= &) - ie[S, p&)] + ole®)
Hence
(S, o&)] ='11-[ &+x>\a_)‘ o) @)

Similarly, under an infinitesimal special conformal transformation,

~Ar N2 _ =2 D
[A“,Cp(x)] i[ 2%+ 2x x = 2 axu]Cp(x) 3)

We see that the dimension 4 of (%) is not determined by these trans-

formations, but rather by the transformation property of the canonical

momentum of o (x), m(x) =:a—5- , Wwhich in turn depends on the equal-
o

time canonical commutation relation,

lob), mly)], _, =i6°G&-7) (4)
(o]

(o}
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Thus, using this equation, one gets from Eq. (1)

1|-x 3

s, m&x)] = +3+L]1'T(x) (5)

Bx

However, when the dilatation symmetry is exact, dS/dt = 0, we may
also get the commutator by direct differentiation of Eq. (2),

(8, mx)] =il[x)‘ L}\+ 1 —L:\n(x) (6)
dx

Hence, to be consistent the boson field must have a scale 4 = -1,
Similarly, the unrenormalized fermion fields are limited to the scale
L=-3/2.

To derive the commutation relation for the conformal genera-
tors, one needs to make use of the equal-time canonical commutation
relations such as Eq. (4) and

_ l —a_ W -
0— iay.é (x - y)

(n&), v, Cp(y)]Xo=y

However, for reasons to become clear later it is better to use, where-

ver possible, the Schwinger's6 equal-time commutator among various

components of the energy momentum tensor,

i & D 53 k) - 700/00 2
x), T = x)+ T == -y) - R

Tob) T, 0L, =TT 8 k)] T (.

00,01
¢

[Too0) Ty 0], oy =17, 8 + TOO(;)éik]gi—kéaa-;) - %% %, y)

oi,oj ~ =
oi ] x,y)
o A% X

s _____ 3
ifT, &), Toj (y)]xo=y SIS (x)—+T (y) 18° &-y) -
where the 7's are the Schwinger terms; they are in general g-number
quantities but each of them involves at least two three~divergence
such that our result will be for most part independent of Schwinger
terms. We will neglect their presence in the following discussion.

Now using these commutators, it is not difficult bat exceed-
ingly tedious to verify the following relations,



BROKEN CONFORMAL INVARIANCE 319

[Pu. Pv] =0

EMIJ\)', P)\] =1 gm P\) -1 gv)\ Pp.

. =i -1 + i M _ - M
Mp\) MXU] N gm\ Mvo = guc va lgvc P igv)\ [81s)

[s,8]1=0

. N
S,P1==-1iP +1 d®x>"8
(s, 2] " guof ,

=i g3 - S
[s, MHV] 1Id x (gp.ox\) g\)oxu) d S)\

. A

= - + 3

[Au, P] 21(gws Mw) 2; 90 [d®x xua S,

A,M J]=ig A -1
E)\ W] 19,8 ~ig

o
+2i[d® -
A A\) Zl‘j'd X (guox\) 90 XU-) an S(j

MA

. . A
A ,S]=-1A + Ex PFa" 8
(8, 81 =-iA 1guoj'x 3

, A
’ = 2 3 -—
(A, a]=2 Jx ©,0% ~ 90 X LSRN (7)
We would like to remark that:
(@) All the breaking terms come from the divergence of the
dilatation current aks)\ . With the definition given by Eq. (1), we have

as—-4.£ y[:; cp+()l,—l)——la cp_|
acpLl

which means that those terms in the Lagrangian having dimensionless
coupling constants such as the kinetic energy terms, interaction terms
like )\cp& ' dJYuQJA“, or Jys o will not contribute to the divergence of
the dilatation current. Furthermore, all the breaking terms are simple
moments of als P ‘I‘he commutators [S M,,.,] and [A,, A\,"[ contain
only odd moments of 3 S)i_‘ Aﬁ 51 only even moments of als, , while
[ALI' P ] and [ ave both even and odd moments of 3
Hence, it is 1te posmble to construct a model where all the odd
moments of 3"S) say vanish, so that the commutators [S, M, ] and

E Av] are the same as in the exact symmetfry limit. In any case,
the bteaking of the symmetry is completely determined by a’*sh.
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In specifying a)LS}k , we have also specified thf model of breaking.

In particular, in the limit of exact symmetry 8*8, = 0, the above com-
mutation relations reduce to the closed algebra of the conformal
group. We notice once again that S and do not commute with the
Hamiltonian P, even in the limit of exact symmetry.

(b) All the breaking terms in the above relations carry a fac-
tor gy o with one zero-component subscript. This means, for
instance, that only the zero-component of P and Muv induce an
explicit time dependence on the generators §l and Ay in the commuta-
tors [S, PH] ¢ 184 1. [Au, Pv] and [ Myy]. Similarly, only
the zero-component o¥ can induce a time dependence on S and A,,.
This implies in particular that the commutators [8, P;], [8, Mij] »
[a , Pi] , [Au M7, [A;, 8] and [Ai, Aj] with i, i =1,2,3 are not
changed by any conformal breaking.

{c}) Inside a three-dimensional integral in the above equa-
tions, a term like xua’\sl may be replaced by - % E‘:"A)t , Since these
two expressions can differ at most by a total divergence. 7) In this
sense, the special conformal generator Au is not independent of the
dilatation generator §. In other words, knowing Sy, &, may be ob~-
tained by taking moments of the dilatation current S“. This will be-
come even clearer when we consider the geomeiric definitions of 8
and AH .

(d) In deriving the above equations, partial integrations are
quite often performed and what have been integrated out are dropped.
This means that we have assumed the fields and the energy-momen-
tum tensor to be so localized spatially that for instance,

_Lim X Tuv(x’ xo) =0
X = ©

~ (e) There are terms of the form ‘fdax £ {L+1) ¢? (x) on the
right-hand side of the last two of the above equations. The simple
form given holds only if we have assumed that the boson fields have
the dimension ¥ = -1,
(f) The commutation relations for the exact conformal sym-
metry are invariant under the following transformation,

A =-A

H 3

P -—1-P

ML Cc

S-S
and

M - M
uv MV
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for any constant c.

This is no longer true for the broken algebra; we may say that
the above symmetry transformation is also broken by the existence of
the divergence of the dilatation current.

The above considerations based on lLagrangian models suffer
from one serious drawback, namely, the canonical equal-time commu-
tators used to derive these relations such as Eqg. (4) are for bare fields
and their canonical conjugate momenta only. Even for renormalizable
Lagrangians, the canonical equal-time commutators for the renormal-
ized fields and their conjugate momenta will be multiplied by some
cut-off dependent and hence scale dependent renormalization constant.
Quite possibly, the renormalized fields will no longer transform under
S with a definite dimension.s) This prompts us to consider the new
definition of S and Au given by (3“e11—l\/Iarm,2

= A
JR G

§=[dax" 6,

A =jd3[2x)‘x 6. -%x*6 ]

) L oA ou

P =[d® 0

v I op.
=) 3 -

- Jd [x, Oy "X, 8.,] (8)

These definitions coincide with our geometrical intuition on these
generators; they depend only on the physical quantities 0 y but not
on the Lagrangian, and hence are model-independent. The divergence
of the dilatation current § , =xM 0 A is now simply given by the trace
of the symmetry energ'y momentum tensor 0%, . It follows that unlike
the canonical T, is traceless in the limit of exact scale invarl—
ance. For renormahngle Lagrangians containing fields of spin 0, &,
and 1, Coleman et a1%) had shown that 8 - differs from the symme-
trized canonical T,,,, only by the Huggins term10) =l( 3= Ty o°
for each scalar or pseudoscalar field . It is then easy to check that
for all the renormalizable Lagrangians considered in Ref. 9,

a¥g =M
W

38 i i i
fli[—icp +cpucou]
o)
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so that
a¥s -a¥s =-Z[cp1|:|cp +1, 0 3——]
i
; dep
1 K
from which we immediately obtain
aMs =aM§ )
! M
and hence
aMa =aMa =-2x 3%3 (10)
v v v vl
provided that
S L B (11)
W i acpl
K

which is true if there is no derivative coupling in £ and the dimen-~
sion of spin zero bosons is -1. Note that if we only want to preserve
the Poincaré generators, the Huggins term is far from unique. For in-
stance, multiplication with any polynomial in the Klein~-Gordon opera-
tor, P(OJ), to the Huggins term will not affect P, and . The coef-
ficient ~1/6 is again required by the canonical dimension of the
bosons. After renormalization, the dimension of the boson field will
in general change; this coefficient must then be changed accordingly
in order to preserve Eq. (9) and Eq. (10).

Tt now follows from Eqgs. (9) and (10) that

§=8§
A =A 12
H M (12)
which together with P and P, and show that the geometri-

cal generatorsg defineél by Eq. (8) are 1n facl"tl identical with those de-
fined through Noether's theorem as given by Eq. (7).

Having demonstrated their equivalence in Lagrangian models,
we may now discard the Noether's definition in favor of the geometri-
cal one. Since the geometrical generators of the conformal group
depend only on the energy-momentum tensor CITINY all we need to ob-
tain the commutation relations for these generators are the equal-time
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commutators among components of 0 NG Now since the Schwinger's
equal-time commutators among various components of the energy-
momentum tensor follow from locality and Lorentz covariance alone,
they are the same for §,,,, and T . ; furthermore, they are not affected
by renormalization. 11) "With this reasoning, it is straightforward to
show that the generators §, Ku, P,, and M, . again satisfy the com-
mutation relations of Eq. (7). We conclude that the broken algebra
involving only the Poincaré-conformal generators and the divergence
of the dilatation current is model-independent.

In order to give a direct geometrical meaning to the breaking
of the conformal algebra, let us consider the well known represen-
tation of the Poincaré-conformal generators by differential operators
acting on a Hilbert space of L(p®)

= )
P =i——
ox
K M
7, iC 252)
MY EaxM - ox
- A
§=1x 2
dX
]-_\.=i<xaa—-2x x a—)\) (13)
axt M ax
where we have omitted some constants in S and which are neces-

sary to make them hermitian differential operators. Such omissions
are justified since they play no role at all in the commutation rela-
tions. The form of the differential operators follows directly from the
action of the infinitesimal generators on a space-time point X Thus,
when the infinitesimal scale generator operates on a squared inte-
grable function, we have

§[f(x)] =flx +ex)

= f(x) - ic <i X)\aaj> £(x) + 0(c®)

hence
A 9

§=ix
ax}‘
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Similarly, under A , we have
u

Ku[f(x)] = f(x +cxux3 - quo.-x)

[1-1& i xz———Zxx —-—>+00, )]f(x)

which gives
A =i(—=2 -2x x =i
W ax 3x

If we form commutation relations for the generators given by Eq. (13),
we get just the Lie algebra of the conformal group. Now if the sym-
metry is broken, the generators S and will be explicitly time-
dependent. To obtain the broken algebra, we first assume the time-~
dependent Heisenberg equations of motion for S and Au,

== ds
(s, PM] = iPu + 1guo It (14)
. . dA
— o _ , U
[Au' Pv] i (ng Muv) 905 (15)

We next postulate the commutator,
i [xu. Sk )] = 0
We then have

(s, Mw] =1 (gLl - 9,%) & (16)

and
[S,8]=0 (17)

If we now also make use of the fact that for the representation given
we have the following simple relation among AH' PH' and S,

A =x®P -2x § (18)
W wo

one can then verify the following relations,
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[lel\—ﬂwlﬁ(gvi -g A)+ilg x -g x)—=

A M )Y LO VvV vo u° dt
- = ds
[AM'S]_ 1AL1+lng}J.0 at
= = N _ . G d§
[Au,Av]—lez(xvgu x,9.0) 3t (19)

plus the usual Poincaré algebra which is not affected by the conformal
breaking. Taking into account the relation that 3™ = -2x_ aH§
there is a one-to—-one correspondence between these relations and
those given by Eq. (7). Indeed, it is easy to show for instance,

dS d i
dt dt Ida (X 9 o-xl eoi)
=‘fd3xe —Idaxx -

ij

=[x & = [a*xd’s (20)

X

We see that the breaking of the conformal invariance is directly given
by the time variation of the conformal generators dS/dt and dA  /dt.

The above discussion strongly suggests that the broken con-
formal algebra we have obtained is not only model-independent but
also more general than the particular representation we have chosen.
We think that quite generally, for any satisfactory definition one may
give to the conformal generators S and Au, their commutation rela-
tions will take the form given by Eq. (7).
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CLOSED ORBITS AND SO(4,2) SYMMETRY
IN RELATIVISTIC TWO-BODY THEORYT

C. M. Andersen and Hans C. von Baeyer
Department of Physics
College of William and Mary
Williamsburg, Virginia 23185

Many of us have been fascinated for some time by the special
symmetries associated with the nonrelativistic spinless hydrogen
atom, or, as it is often called, the Kepler problem. In this problem
we have one particle bound to a second particle, treated as infinitely
massive, by a 1/r potential. From the classical point of view, this
problem is very special because all the bound orbits are closed: in
fact they are ellipses. From the quantum point of view the special
feature is the presence of the so-called "accidental degeneracies. "
In either case we have an SO(4) group of transformations (an invari-
ance group) which may be applied to the trajectories or to the states
resulting in a family of trajectories or states with the same energy.
The six generators of this group are the three components of the con-
served angular momentum and the three components of the conserved
Runge-Lenz vector. 1

We may even extend this group to the noninvariance group
SO(4,2) which in the quantum mechanical case has a single irreducible
representation whose basis vectors are in one-to-one correspondence
with the entire set of bound states and wherein the several basis vec-
tors associated with any one of the various representations of the
SO(4) subgroup correspond to states of the same energy.

The problem just described is a nonrelativistic one-body prob-
lem. We now ask how to formulate a relativistic one-body problem
with the same symmetry. We impose three conditions.

(1) It should reduce to the Kepler problem in the nonrelativis-
tic limit.

(2) Tt should have the relativistic energy-momentum relation
in the free particle limit, i.e. as the potential goes to zero, the
energy-momentum relation should become E° = p® + m?.

tPresented by C. M. Andersen at the Symposium on De Sitter and
Conformal Groups, University of Colorado, Summer 1970,
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Examples of theories satisfying these first two conditions are
given by the following sets of equations:

(@) dp/dt = -9V(r), V= -kA
- -
p = myv
which implies
E=my +V = const
(B ~-VPF =p®+m?,
This is a vector theory in the sense that V is treated as the fourth
component of a vector. It is familiar to us because it properly des-
cribes the Coulomb electromagnetic interaction. The space-like com-
ponents of the 4-vector Au are set equal to zero and V is the time-like

component AO 0

(b) dp/dt = —y™* IV(); V = -k/r

ol
1]

t

N

t
I

= (m + V)y
which implies
E = const
E? =p® + (m + V)?
This is a scalar theory, and the potential V is now more closely asso-
ciated with the mass m than with the energy E. In fact the "effective
rest mass" is now (m + V) and, for an attractive potential, may go
through zero and become negative if the particle comes sufficiently
close to the origin.
(c) dp/dt = -(m/E) YV{); V = -k/r

- -

p=Ev; E=my./1+ 2V/m
which implies

E = const

E® =p® +m® + 2mV.
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This again is a scalar theory with an effective rest mass which
depends on the position coordinates.
In addition to these three examples, there are numerous theo-
ries in which V{r) is a component of a tensor of rank two or higher.
Now we state the remaining condition.
(3) There should exist closed orbits in the classical theory
or "accidental degeneracies"” in the corresponding quantum theory.
Allthree conditions are met in Example (c) wherein the bound or-
bits not only are closed butare ellipses as inthe nonrelativistic problem.
Note that in Example (c) the equations of motion

dp __ (m) =
Lo (3)a

d_;:r_n_ﬁ
dt E/ m d

apart from the presence of the quantity m/E, which is a constant of the
motion, are the same as for the nonrelativistic Kepler problem. On the
other hand in Examples (a) and (b) factors of y are brought into the
equations of motion and vy is not a constant of the motion. Because of
the similarity of Example (c) to the Kepler problem we may expect a
conserved Runge-Lenz vector to exist there. It is given by

- -

pX]J

L= mk

==

with 'I—'= r X B and has exactly the same form as in the Kepler problem.

For bounded trajectories, A is closely associated with the
eccentricity of the ellipse of the orbit. The distance from the center
of the ellipse to one of the foci is given by

=y mk -
€= 3 - —E‘?A'

For unbounded trajectories, that is, in the case of scattering,
the existence of the conserved quantities energy, angular momentum,
and Runge-Lenz vector allows us by means of a three-line calculation
involving no integration or differentiation to determine the scattering
angle 0:

ran & =k _ k(1 - +?)
2 p°b mvbh
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where b is the impact parameter and v is the velocity of particle long
before and long after the scattering. Note that as v = 0 this becomes
the Rutheriord formula.

The relation between (c) and a classical theory of point parti-
cles with interaction mediated by a scalar field has been discussed
by the authors elsewhere.

For the correspon_giing Schrodinger theory, i.e. in a wave
equation in which E and p are treated as operators and the Hamilto-
nian is H = p?+ m®+ 2mV, the energy spectrum is just that for the
Dirac hydrogen atom with quantum number k set equal to the principal
quantum number n, i.e.

En =m,/1 - (k/n)? .

where the principal quantum number n takes on the values 1,2,... .
Of course the degeneracies are the same as for the nonrelativistic
hydrogen atom. E, is independent of the other quantum numbers £ and
m satisfying 4 =0,1,...,n~1 and -, =m<4.

Now we want to look for a relativistic two=body theory.
Djracs) tells us that we may try to do this using a "point" form of
dynamics, i.e. using 4-vectors and manifestly covariant equations or
by using an "instant” form of dynamics in which we work with 3-
vectors. However, even using the instant form we can have Poincaré
invariance. The particular instant form we have turned to is due to
Bakamjian and Thomas.4) For the two—bodg' problem one makes a con~
tact transformation from the coordinates %, %, and momenta p, p, of
the particles to new coordinates R, r and new momenta P, p. The
total momentum of the system is P = El + _p'e , and R may be thoughL of
as tlle position of the center of mass. The upper case variables, R
and P, are referred to as "external variables." r is related to the dif-
ference in positions of the two particles, and B is related to the dif-
ference in their momenta. The lower case variables, r and p, are re-
ferred toas "internal variables.” The center of mass energy M is taken
to be a, s_s:al_a}r function of the internal variables, i.e. we have M =
ME, r'p, p°). The total Hamiltonian is given by

g =(|BlP+ v @, 70, 2P
total g s

and is independent of R. Our freedom of choice consists in selecting
the functional form of the center of mass energy M. We need to apply

three conditions
(i) We recover the Kepler problem in the nonrelativistic limit.
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(ii) The energy-momentum relation should reduce to
E= /BT + o

in the free particle limit. Examples of the choices open to us at this
stage are the forms:

@) V=Y AN ) At i)

This form was given by Bakamjian and Thomas. With the proper choice
of V(r) one gets Hamiltonians invented by Breit and by Darwin which
correctly give the first few relativistic correction terms for the hydro-
gen atom problem.

(B) M= /PP+ (m,+VE)P + J/ p?+ (m,+ V)P

which is patterned after the first scalar interaction.

(©) M=p+m?+2mVE) + /p*+ m;®+ 2m V)

where m, is the reduced mass m,m,/(m,+ m;). This is patterned after
the second scalar interaction.

Condition (iii) is the existence of a conserved Runge-Lenz
vector. This we can accommodate as well. We use form (C) with V =
:k/r. _The Runge-Lenz vector is a function of the internal variables
r and p and has the same form as before

v 3 S nt.
AG Ip) =_r = m k
r
with 7™ =T x p.
Let us explore a few of the properties of this theory. We de-
fine a "little" Hamiltonian

hE,p) = P /2m - k/r,

and "imbed" this little Hamiltonian into the full Hamiltonian in the
following way

1

E=HR,Br,p)={|P[>+ (/m,?+ ZmThE,BJ +/m2+ erh(?.s?) P

From this relation, we obtain the Hamiltonian equations of motion
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dt ! dt & '
& _B ap_ MK
dt E’ 1 -

where in the center of mass frame the reduced energy € has the form

. =,\/m19+ amh - Jm, 2+ 2m h
J/m®+2mh + /my®+ 2mh

Note that the equations of motion for the internal variables
have just the same form as in the relativistic one-body problem except
that we must distinguish the reduced energy € from the total energy E.

The proof that Mr, } is conserved is simple, namelyA com-
mutes"” with P and with hir, p) and thus with H.

So far we, have not related the canomcal variables T p,R B to
the coordinates x1 . x2 and momenta p1 , p2 , other than to say that
this relation is a contact transformation, i.e. that the Poisson brack-
ets { '}1’1?23132 and { ,}'f{’P";‘B are equal. Thi)relation has been

worked out in detail by Bakamjian and Thomas ° in such a way as to
explicitly give Poincaré invariance. These relations are quite com-
plicated so we give them here only for the special case of total
momentum equal to zero. They look as follows:

- > -
Wmy 24+ Zmrh X, + Jm?+ Zmrh Xy

R =
,\/m12=2mrh + J/mg2+ Zmrh
- — -
P=p, +p; =0,
~ -d hat ]
r =%, -X; ,
/m.2+2mh p Jm.2+2mh D
my mr p; = my mh p,
p= -

Jm 2+ 2mrh + Jmg2+ Zmrh

The total angular momentum ]tOtal ﬁ X f; + ? X 'f)' is a conserved

quantlty. Using the generalizations of the above relations for the
case P # 0, one obtains a Hamiltonian
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— - - -
H=H,, D1/ Xz, D)

with the desired symmetry properties. In the case that one particle
is infinitely massive we recover the relativistic one-body problem
that we discussed earlier as Example (c).

The discussion of the SO(4,2) noninvariance groupl) goes
through unscathed by the imbedding of h(?,p) into the two-body Hamil-
tonian. The SO(4,2) Poisson bracket re_}ationf are among quantities
formed only from the internal variables r and p.

The existence of a conserved Runge-Lenz vector allows us to
find the scattering angle. We find

0 _mk _ mk

tan o = @b  bvie: °

However, €2 is related to the initial velocity v by an algebraic equa-
tion which is quartic in €2 and in v® .

Summary
First we have displayed a one-body theory with relativistic

kinematics and SO(4,2) symmetry. This theory can be made quantum
mechanical simply by interpreting the energy and momgntum variables
as operators. The Hamiltonian is H = (p®+ m® - 2mk/r)? .

Secondly we have generalized this theory to a Poincaré invari-
ant two-body theory with the same symmetry. The device we used
was Bakamjian-Thomas theory and this can also be quantized easily.

Pronsdal,s) starting from an approximation to the Bethe-Sal-
peter equation, has obtained a relativistic classical mechanics which
also has closed ellipses. However, he has put the particle with mass
m, on the mass shell and kept the other one off, whereas in our theory
the particles are treated symmetrically. In the potential theory limit
(m,/m, ~ 0) his mechanics coincides with ours.%) our hope is that
the quantum version of our theory can also be shown to be a well-
defined approximation to a Bethe-Salpeter equation. 6
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REPRESENTATIONS OF THE DYNAMICAL GROUP 0O(4,2)
REALIZED IN THE DYONIUM ATOMT*t#

A, O. Barut
Institute for Theoretical Physics
University of Colorado
Boulder, Colorado 80302

I. Dyonium and Its Energy Spectrum

We consider the bound and scattering states of two massless
particles having both electric and magnetic charges. The usual H-
atom is a special case of this new class of atoms, called dyonium.
Let m; and m; denote the masses of the particles and q, = (e; ,9,)
and q, = (e; ,9,) be the charges, where ej represent the electric and
9; the magnetic charges. Let the particle 2 be at the origin of the
coordinate system, and particle 1 to move in the field produced by
particle 2. The electromagnetic field of the particle 2 can be des-
cribed by two vector potentials

= (AOI "_é) and AIJ. . (A ¢ _:'A_) ’ (1)

o

where, in our coordinate system,

e - b
o=t B=7, A=5, DO, A=-e DO @
with
DE) =r x n-n)/Ir@ - €021, (3)

where 1 is an arbitrary unit vector.

Note that Au is a vector under parlty, and 131_1 an axial vector
(under parity: E=-E, B~ B, e ~e, g = ~g; Note
also the singularity line in the vector potential D(_) in {3) at [.2 = (r- n}a,
i.e. along . Nevertheless we have v X D) =r/r°, independent of f.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
}$Supported in part by the Air Force Office of 801ent1fic Research under

Grant AF-AFOSR-30-67.
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The relativistic Lagrangian for particle 1 in thz field (1) is
given by

€, M9~
= +-—— —=
L ch/ug1 . Au u o+ Auu1 i ()
which leads to the canonical momentum
e gy =~
P = +—L + —
L Tmew ) o Au = ALl (5)

and the Minkowski force

_ & She & v
Ku \\c Puv i © va) U (6)
wheredr
— % _ ~ = AP
F =A -A and T =A -A =%ec F (7)
MV TV, T,y MY TV, TRy VA P

The Eqs. (4)-(7), as well as the Maxwell-Dirac equations (Gaussian
units)
Vv 4Anm e ~ v _ 4 .m

Fiv = o Fuv =% (8)

and all equations that will follow, are invariant under the two-dimen-
sional chiral rotation by any angle 0 in the e-g plane (or j-j™ plane),
and simultaneously in E-B plane (or F,,, T’LW plane).

From Eq. (5), because LL“uLl =1, we have

(p -—A ——AQ—mc 9)

Hence the Klein-Gordon Hamiltonian is given by

1 (KG)

1
2

=cp = elA0 + gllh-io +[m?ct+ (cp-e, A- glA)zj (10)

If we expand formally the square root and subtract the rest energy we
also obtain the Hamiltonian in Schrodinger form

.‘-

0 E, E: Fa
- 0 -Bs B,
v 0 -B !
0

€01.23 = +1
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()

HY =eA +0K +—<;_>-— -%{\.)2 (11)

The last step is, in principle, no longer meaningful if the field is
very large. If we insert (2) into (10) and (11) we get

- (KG) _©18: +y O
r

+[mgc4+[cg—(elgz-ezgl)Q(Q]z J% (10%)

Here the dependence of the Hamiltonian on charges is through the two
chiral invariant combinations

-

-(erey, +9,9:) = —q; "qz (12)
W=1(e10, —ex0) =q; Xdg , (13)

[

only, as it should be. We shall see presently that u is of the order
of one (in units of hc). Thus, the passage to the Schrddinger form
does not break down because g; is large (see below), but for small
r because of the factor 1/r in Dfr).

Finally, introducing the new momentum

n=p-udl ., (14)
we have the Hamiltonian

H(KG) 'r‘ 4+ (7" + m 04] (10”)

with its formal Schrédinger counterpart

(S) _ ‘|T2 _o "
“2m r (L)

These Hamiltonians are characterized by a new invariant
parameter u, Eq. (13). For i = 0, we get back the same Hamiltonians
as that of the ordinary atom but with a dlfforent o in general (4 = 0
does not necessarily mean g, =~ g,= 0, but _1. —_L) Each value of
characterizes a new system. The possible valu‘és of 4 can be ob-
tained from the quantization of the angular momentum.

The conserved total angular momentum satisfying the commu-
tation relations is given by

I=IXm-ur . (15)

We have
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The component of J along iis equal to -, which can take only inte-
ger and half-integer values. Hence

w=0,+%,+1,+2,... . (17)
For a fixed 11, the values of j range as follows:

i=lul, ful+l, [wl+2,... (18)
We shall see these results also in another way.

In order to solve for the spectrum of (10”) or (11”), we first
notice that the following 15-operators:

T=rqg-i . (18)

satisfy the commutation relations of the ILie algebra of SO(4,2). The
Casimir operators are calculated to be

Q=L .1%P=302-1)

ab
- ab_cd_ef _
Qe abedefs L L =0
- be da _
Qs LabL Lch = const. (19)

From (19) we see that the operators (18) realize a particular class of
most degenerate oscillator-type representations of SO(4,2): The para-
meter || has the meaning of lowest spin, and for each discrete
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eigenvalue n of T, the spectrum of ° is indeed
=\u}, lul+1, Ju]+2,...0-1 . (20)

This is because the operators I'g, T’y , T form an O(2,1)-Lie algebra
commuting with J:

[TgrTal =iT; [Ty, T =-C; [T, T ] =1T, (21)
[T, 01 =[T%,J) =[T,7]=0 (22)

Hence T, has a discrete spectrum, and, because
QF=r-F-T=p, (23)

we have a discrete representation of O(2,1), D ( -j=1) and the spec-
trum n of I, has the range

n=j+l, j+2, ... . (24)
In the other discrete representation D_(-j-1):
n=_(j+1)l _j_zl _j_3l s e (25)

We shall see that n is precisely the principal quantum number.
Now we discuss the spectrum of H for various cases:

@) pu=0, H(S) Zin p° - %' we introduce the following operator,
JEPS ) S S .
®=r(H E) = o TP Er - a;

then from (18):

® =5 +Ta) ~EC_ ~T,) -a , (26)

which 1s thus a simple linear combination of the group generators in
(18). The problem of finding the spectrum of H(S is equivalent to
solving the equation

CZL +P4)-E¢‘0-I‘4)—G>E=O (27)

= i0
By the so-called tilt operation ¢ = e1 T@ we can then diagonalize
either I'g or T, , and we get, in the standard fashion, the bound states
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as the discrete eigenstates of I'y, with eigenvalues n and the scat-
tering states as the continuous eigenstates of I', with eigenvalues X\ .
This gives the well-known H-atom solutions:

o ma®

_ 1 ma” i
E = % 7+ and E 2 "3 (28)

B) u#o, H(s) =$n2 - %: In this case we introduce three new

operators

1"0' =%(me+r), T,/ =3@m*-r), T'=T (29)

which also satisfy exactly the equations (21) and (22). But instead of
Eq. (23) we now have:

QP =Pr-2 . (30)

Consequently, the eigenvalues of 1"0' are

n’ =—cp', —cp'+ 1, -0+ 2,...
with of =-5 =-J/(+)2 -2 . (31)
Hence, one findsl)
- -2
B, =-#me® [s +3 +./G+EF -\7 |
s=0,1,2,3,... (32)

(C) u#o, H(KG) =[m2+ m? ]%— %: In this case, we define the new

operators

’ % 2 r
= + — —
1_‘ (I r )

T =T (33)
which again satisfy Egs. (21) and (22) with
Q=P - - (34)

For positive values of Q” , we have then the same results as before,
except for the change



O(4,2) IN THE DYONIUM ATOM 343

’

o ~of =3 - SEP- P . (35)

For the treatment of

(@) the Dirac equation,

(b) the case of large coupling constant a,

(c) the O(4)- syn)lmetry and its breaking,
we refer to other work.

The theory presented here is parity and time-reversal invari-
ant. But because under P and T: u ~ -u, we solve the dyonium prob-
lem for +u and -4, and then construct parity eigenstates of the form

lu) + |'1J.>.5)16)

Conclusions

The quantum states of the dyonium atom for a given y (H-atom:
u = 0) are in one-to-one correspondence with the basis of an irredu-
cible representation of the dynamical group SO{4,2) with the value of
a particular invariant equal to u. (See next section.) Both bound and
scattering states can be obtained from the group states by the tilting
operation. The Hamiltonian in Schrédinger, Klein-Gordon and Dirac
forms are exactly soluble, even for large coupling constant. The dy-
namical group SO(4,2) solves the problem even though we have a bro-
ken O(4)-symmetry (except u. = 0, and nonrelativistic case).

II. SO(4,2)-Representations Characterized by u

The representations of SO(4,2)-algebra given by Eq. (18) for
each value of |, form a special class of representations, the so-
called "oscillator-representations.” We now list some of the proper-
ties of these representations:

(1) They are characterized completely by a single representa-
tion relation:

A _ 2
{LAB, L C} = -2(1?) Ipe ! (36)

where Lyp = -Lpp are the 15 generators of SO4,2).
2) The generators (18) can be written in terms of the boson
creation and annihilation operators

]K—% (a oka+b okb) , k=1,2,3
.|.
A =% @ 5.a-bo.b)
1 1l

+ +
M, =-% (@ 0,Cb -aCga.b)
i i . .
(equation continued)
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I‘.=1

+ +
T (@ oiCb +aCoib)

N
T=% (@’ Cb +aCb)

+ o+
Ta =21—. (@ Cb -aCb)
i
+ .+
T =2 (a a+b b+2) (37)
where o4 are the Pauli matrices and C the antisymmetric matrix
Gi= _[1) [13) . These boson operators act on the states

+ i+ + jy -m + j,+m + 4,
|]1m1j2m2>Na1 2 Bt a, h 1 bl]9 2 b, o~y ]0)

N_z w (j1+m1)! (j]_—ml)! (jg+m2)! (jg—mg)! (38)

(3) We can indeed explicitly give the invariant operator with

the eigenvalue p: +
K=%@"a -b'b) ) (39)

which commutes with all the 15 generators. Under parity

P:a’ ~ b+, bt —at (40)

so that u changes sign.
(4) The multiplicity diagram for a general representation is
shown in Fig. 1.

n=|u|+1 n=|ul+2 n=|u|+3
b= lul = 0= It =g 0= Jul o=
i i
JIERIVIES N e DERINESE S

j - Iiul+2<—--

Fig. 1. Multiplicity pattern of SO(4,2)-representation.
Each box is an SO(3)-representation (one spin state).
Each vertical column is an SO(4)-representation.
Solid lines between boxes indicate nonzero matrix
elements of " and M; broken lines the nonzero matrix
elements of Ty, and T (O, is diagonal), and dotted lines
the nonzero matrix elements of A.




0(4,2) IN THE DYONIUM ATOM 345

(5) There are two 4—vzastor operatas ( ](th respect to the ho-
mogeneous Lorentz group) T (1“ I) and 1“ (A, T) satisfying

1) (2) -
2 }=0 (41)

{1“Ll
These representations remain irreducible when restricted to the sub-
group SO(4,1) and to the subgroup SO(3,2), except for the case y =0,
which when restricted to SO(3,2) splits into two irreducible represen-
tations. 2)

(6) These discrete series of representatlons of SO(4,2) remain
also irreducible with respect to the Poincaré subgroug (The g’oincare
subalgebra consists of the generators J, M, P, IJ( Y.r @

Note however that the conformal group O(4,2) has Etj>een used
here as a dynamical group to describe all the rest frame states of the
dyonium atom; it does not contain the physical Poincaré group as a
subgroup. The momenta b, are outside the algebra of SO(4,2) as in-
terpreted in this application. It is however possible to introduce P
addlnona)lly and to construct states of the atom with the total momen-
tum P’..L'

IIT. Dyonium Model In Strong Interactions

The representations of the dynamical group SO(4,2) have been
used in the past four years to describe the rest frame states of had-
rons: u = 0 representations for mesons, and . = & representations for
baryons. The main reasons were:

+

(1) the existence of more than one j =% -baryon states with
the same internal quantum numbers as nucleon (e g. N*(1470)), indi-
cating a new quantum number n.3

(2) the dipole electric and magnetic form factors for the proton
valid up to t = 25 (GeV/c)™®.

These properties follow from the |y =% representation of
SO(4,2). It was concluded that some strong long-range forces inside
the proton must be responsible for the excited states of the proton,
without knowing what these forces could be. The model is more trac-
table and simple than the 3-quark model of the proton, for example,
and so far agrees with experiment.

It was later discovered that the representation u =% used was
precisely identical with the dyonium system with \ = # discussed in
Sec. 1.5) This remarkable correspondence cannot be accidental for
the following reasons:

(1) Proton is identified with the dyonium-system y =% , g, =
-g, (hence total g = 0), thus a. ~ 137/4. At large distances there is
only electric Coulomb force between two protons, because 9tot = 0.
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At small distances there are van der Waals forces which are short-
ranged and strong and are identified with the nuclear forces. Inside
the proton we have superstrong Coulomb forces, plus the vector
potential uf)(—) . Thus the strength and range of strong interactions
comes out correct.

(2) Spinj = |u| =#% of the ground state does not belong to one
of the constituents of the proton, but to the system as a whole. This
is very important for the correct dipole-form factor of the proton. The
bound state of a (spin # and spin 0) system with orbital angular mo-
mentum £ = 0 does not give a dipole form factor.

(3) The fact that one can construct a spin # state out of two
spin zero particles with magnetic charges has been overlooked in the
past. There is no contradiction here. The wave function is double-
valued and not an eigenstate of parity. Under parity u - -u, and pa-
rity eigenstates are constructed as superpositions [u) + |1y .

(4) Because magnetic charge y is an axial charge, the expec-
tation value of it in parity eigenstates vanishes. There may not be a
superselection rule for magnetic charge which may explain why it is
not detected readily.

For further details we refer to the extensive published litera-
ture. 3)'6?

IV. Infinite Component Wave Equations on the Representation-Spaces

of O(4,2)

The states (38) are eigenstates of ' ;. In fact from (37) and
(38) we have

P liimyjzmg) = (u+ip+ 1) |jimyjpmy) (42)

Thus (j; +j, + 1) is equal to n for the O(2,1)-algebra (21), and equal to
n’ for the algebra (29). Because Ty is the component of a four vector
with respect to the Lorentz group generated by Ji and Mi in Eq. (37),

we have

+iE°M . 0 -ifE'M

rpPle = ¥=r p*
(o] L

e (43)

Consequently from (42) and (43) we see that the states (38) also satis-
fy the following covariant wave equation

A i€-M o, L
(P - MO+, ) €=M [gymygomy) = 0 (4)
If we let

M, +i,+ 1) = Mn = & (45)
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and assume K to be a constant, in the simplest case, we obtain
(%) ~
T Pp -k =0 . (46)

This is a Majorana-type equation, written now on the representation
space of O(4,2), rather than O(3,2) as in the case of the original Ma-
jorana equation. The mass spectrum derived from (45) is clearly M =
k/n, by construction.

If, instead of (45), we put

Mn =3 (M° - 6) (47)

we obtain the mass spectrum M = n +./2b + n® which increases with
increasing n. The corresponding wave equation can be written as

u

- H —
(T P, %PuP +b)y =0 (48)

Next we consider the states eleTI jimyjsm,). Then from (21),
el r, o 0T - I cosh @ +Ty sinh g (49)

and,because I', is a Lorentz-scalar, we obtain again from (42) and
(43), the more general covariant equation

iE.M 18T, . :
S e " |iimyiamy)= 0.
(50)
In this way, a class pf general infinite-component wave equations
can be constructed .9 These equations generalize the H-atom and

dyonium equations to the relativistic case and include the recoil
effects.10),5),6)

(T B, cosh § + T, M sinh & ~ M(, Hy+ 1)e
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GROUP THEORETICAL BASIS FOR THE DIRAC EQUATIONt
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The Dirac spinors, which are generally thought of as solu-
tions to the Dirac differential equation, are developed from a group
theoretical point of view. The motivation for this approach is three-
fold: First, by obtaining the Dirac formalism from group theoretical
methods, the importance of symmetries is stressed. Second, because
of the recent successes of group theoretical techniques in physics, it
is significant that the Dirac formalism can be obtained from group
theory as well as from a differential equation. Finally, and most
significantly, the formalism which is developed here can readily be
generalized so that either all half-integer spins or all integer spins
are allowed. It seems very probable that such mathematical struc-
tures will be useful in describing baryons and mesons.

This work is based upon the infinite ccimponent wave equations
which were originally introduced by Iv[r:xjoram1 in 1932 and recently
revived by I\Ta.mbu.2 The use of infinite component wave equations
is intimately connected with the increasing employment of unitary
representations of non-compact groups in particle physics. An exam-
ple is Fronsdal's "relativistic symmetries. n3) By restricting Frons-
dal's relativistic symmetries with the Dirac representation relation,
one obtains the Dirac representation of the relativistic symmetries
which is a non-unitary representation of a non-compact group.

A group theoretical description of leptons has also been
developed by Barut and collaborators.4 : In that work, the four
dimensional irreducible representation of the group O(4,2) has been
used in the description of leptons. While Barut's work is more con-
cerned with lepton interactions, the major objective of this talk is
to fully develop the Dirac formalism. That is, to construct the Dirac

t+Presented at the Symposium on de Sitter and Conformal Groups,
University of Colorado, Summer 1970,
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spinors, the Dirac gamma matrices and so forth directly from the
group theory.

The talk is divided into four sections: In Section I the com-
mutation relations of the relativistic symmetries and the Dirac repre-
sentation relation are given. In Section II the representation of the
"intrinsic part" of the relativistic symmetries is briefly sketched.
Section III is devoted to finding the representation of the whole reta-
tivistic symmetry. The spinor basis and the canonical basis are de-
fined and their properties under a Lorentz transformation are explored.
In addition, the canonical basis is expanded in terms of the spinor
basis. The Dirac formalism is developed in the final part of the talk.
The Dirac spinors are shown to be the transition coefficients connect-
ing the canonical basis and the spinor basis.

Section I.

The restricted relativistic symmetry is essentially the en-
veloping algebra of the Poincaré group &(P) in certain representations
adjoint by a Lorentz-vector operator I',,. The relativistic symmetry is
an associative algebra generated by the operators

+ S 0T (1)

1
P, M=0@P )P, L. =M +8
U W v uv'

MY
where Greek indices range from 0 through 3. The metric tensor g
is given by the expression oY

g, = —— (2)
[VRY) 999 1

The defining commutation relations of the relativistic symmetry are
as follows:

[Pu' P1=0 ®3)

i Rl P - P 4
[uv' p] 1(@1\)D 0" g v) (4)

[Lw.Lpo]=i(g L _+g ) (5)

L = L - L
Mp vo VO up gU-U vp g\)p Ho
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[Mw, SpG] =0 (6)
%ewpop\’l\/{pcr =0 (7)
[Pu, Spod =0 (8)
[Pu, r,]=0 (9)
[SU\)' SDO'] = _i(gupSVO' * g\)O'SU,p_ g}J.O‘S\)D_ g\)ps}.lo') (10)
[LpG,I‘u] = [Spc' I‘u] = i(gcu I‘p - gpuro (11)
[rp, I -i8 (12)

Equations (3)-(12) define the mathematical structure which is
thought to be applicable to particle physics. As a first step toward
exploring the consequences of the above relations, we restrict them
with the Dirac representation relation. As will be shown, the com-
plete Dirac formalism can then be developed from the restricted struc-
ture. On the basis of this success, the Dirac representation relation
is dropped and the complete structure is used to describe hadrons in
the talk by A. Bohm.

The Dirac representation relation is

{l“p. l“c} =%gp0 (13)

P, and are the generators of the Poincaré group; conse-
quently, they represent the usual physical observables momentum and
angular momentum. The splitting Iuv = MPV + S .. is the familiar
splitting of the total angular momentum into the orbital angular momen-—
tum and the intrinsic or spin angular momentum.

Section II.

Since the representation of the intrinsic part of the relativistic
symmetry is well known, it will only be sketched briefly. The second
Casimir operator of SO(3 'Z)F g is

TR

R= -rur“ -8, v (14)
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where all repeated indices are summed over the range of the index.
The second order Casimir operator of SO(3 ,l)S is
Uy

Q=-%=sws“\’=1—ca-ko3 (15)

and the second order Casimir operator of SO(3, 1)1«1’3ij is

= =] - — 2
I‘iI‘i Sisi 1-F-k (16)
where

8, =%€ijk Sjk (17)

and i,j,k=1,2,3. The two numbers ko and c characterize the
SO(3,1) representations. Since SO(3, l)I‘ s and SO(3, 1)S are
ii [SAY)

algebraically equivalent SO(3,1) subgroups, the reduction of an irre-
ducible representation of SO(3 'Z)PH’SU« with respect to either of
v

these subgroups must be the same. As a consequence, the possible
values of k, and ¢ on the right hand side of (15) and (16) are the same.
From the Dirac representation relation (13) it follows that

@) r“ru =1 ()T, =2 ©rj7 =% @C)F=+% 8

Using (18a) and (15) in (14) we obtain
R=-(® + koz) (19)

Since R is an invariant of SO(3 'Z)T‘ S the number ca+k02 is a

1
constant in an irreducible representation of SO(3,2). Using (18b) in
(16) yields

=% =_2 4+ P+ k*?
§;8,=8 2+ kg (20)
Because ¢+ k_° is a constant in the Dirac representation of SO(3,2),
we conclude from (20) that the Dirac representation contains only

one irreducible representation of SO(@)g, , R®. That is, the Dirac
representation contains only one spin s+ Since ko is the smallest
spin

k =s 21)
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From (20)
= =2 2
s(s+1) ko(ko+1) I+ P+ k0 (22)
or

A= k, +3 (23)
To find the values of k, and ¢, we need to use the fact that a finite
dimensional representation of SO(3,1) reduces with respect to SO(3)
according to

s=k0+n-1
Kk )= ) @ R (24)
s=k0
where n is an integer and
2= (k°+n)2 (25)

From the fact that the representation contains only one spin, we con-
clude that n = 1. From (25) we then have

= (k0+1)2 (26)
Solving (26) and (23) for k,, we find two solutions: ko =3 and

k,= -2, The latter value of k. is excluded because of the restriction
ko =52 0. From (26) we then obtain

c=+4§ 27)
Consequently
Dirac oy —
X (50G,2) =2 %k F, =3 @Kk %, o=-3)= R°T@R" ®
S0(3,1) S0(3)
(28)
The basis vector
=% c
| £ ) (29a)
Ia

is introduced with respect to the reduction
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SO@ ,Z)S T 2 SO(3,1)S o> SO(B)S. 2 SO(Z)Ss (29b)
[ MV 1

E
As a consequence of the manner in which the basis vector| fj=% ) is
defined, we have

=% =%
siosilfjs Y =ik c|f Y (30)
Similarly the basis vector
|s =%, 55, (31a)

is introduced with respect to the reduction

SO(?:,Z)S T = SO(3'1)I‘, .S > SO(3)S ) SO(Z)S:3 (31b)

[SAVARNT) i'7ij i
and

I‘iSi[s =%,83,0C) =1koc|s =%,s8,, @ (32)

For physically motivated reasons which will become apparent later,
we would like to introduce a basis system |s =1, Sy, My in which I‘o
and SO(S)S are diagonal.

i

T |s =%, s,,u) =uls =%, s5, ) (33a)

ol

From the Dirac representation relation I‘oz =1, Therefore

Tlls=%,83, ) =1®|s=%,85,0) =%|s=2%, s5, 1)
Consequently we may conclude that
w==% (33b)

Section III.

We now consider the whole relativistic symmetry. An irredu-
cible representation is characterized by the eigenvalue of the mass
operator M® = = PMp u by € =sign P, and by the irreducible represen-
tation of SO(3, 2)S as restricted by the Dirac representation

relation., We 1ntroduce two basis systems into the irreducible repre-
sentation space: The spinor basis is the basis in which the Lorentz
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transformation generated by 9 is explicitly split into an orbital part
generated by M, and a spin part generated by § e The spinor basis
is then the corresponding product of the two basis systems

€ j=%l c e jc
| £ ®) = |£®) x [£ (34)
K} J3

where |fF (p)y is a generalized e1genvector of the “orbital® Poincaré
group generated by P4 and Ml.l\# and |f Y is a basis vector (29) of

S0(3,2) as restricted by the Dirac reprosen‘catlcm relation. The cano-
nical basis is defined by

lpsss 1 ) = U L)) [ ] o @=0)) x |ssam)] (35)

Here L_l(p} is a "boost" and U~ (L(p)) changes the state from one
with zero three momentum to a state with three momentum P " € (p)
is a generalized eigenvector of the "orbital" Peincaré group and
|ssau) is the basis vector (33) of SO(3,2) as restricted by the Dirac
representation relation.

The spinor basis | fJ (p)) is an eigenstate of the complete
set of commuting operators °®

vl —pH - —J2—1q gl
P, M P PH' Sa Si24 Sisi S zsﬁs ) Siosi (36)
, =t c
Under a Lorentz transformation A, | f. {p)) transforms as follows:
€ ]=%= c i=% ¢ i=% ¢
U] £ ©) ‘Z lf e (o)) 8y oy () (37)
Ja Ja
Ja

=% ¢

where 9 /

j (A) is the representation matrix of A in the representation
3

(ko= %,
The canonical basis |pss3u ¢) is an eigenstate of the com-
plete set of commuting operators

P, M =p'p , wM=3Mp 1, w=-wwH, E—
b v oo "

Since P“l"u 1s a Lorentz invariant
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2p"T o, 2PT
——n-l—*i lpssspe) =UL™ D3~ ULE) [pssan e

3 2PT
= U(L (p))—l\TE {p=0 ssau €)

=¢ sign y |pssgu €) (39)

From the above equation we see that the vectors |pss3u e) are the
positive and negative energy solutions of the "Dirac equation.” We
want to restrict ourselves to the physical case of only positive energy
states ¢ = 1. If we make this restriction, we still have all the solu-
tions of the Dirac equation: the states |pss,u =%) are the usual
positive energy solutions and the states |ps gl = -%) correspond to
the negative energy solutions. The usual reinterpretation by the Dirac
hole theory is no longer necessary.

The transformation property of the canonical basis under a
Lorentz transformation A is the usual one

s=% c
UM)|psss wy = ) | (p)sssw) B , ¢ (R) (40)
g 3 3
Sa’
where R is the Wigner rotation
-1
R=L(p) AL “(p) =R(7,p) (41)

The canonical basis is defined in such a manner that the basis vectors
and their conjugates are orthogonal.

S h = ’ ’ )
(p’s’s;'ulpssan) =2P_ 6% ' -p) gH M 552 %3 5575 (49)

However, this is not the case for the spinor basis. By expanding
the spinor basis in terms of the canonical basis (which is possible
since we know the canonical basis bra and ket are orthogonal) we
calculate®

6j’j = [p -signc p-ol
1] o ja'ia

i’cf ic ~ = clc
(£ 7 (e)£°m)) =20 _ 5% (o' -p)s

Ja Ja o
- (43)
The o are the usual 2 x 2 Pauli spin matrices. Using the above result,
the canonical basis can be expanded in terms of the spinor basis.
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= ap’ e sy L I =20ieed
lpsssu) = ) [ T g, ®') lp, "+ stgncp’ o]y ,
ja.C
ia’

<fj.a°, (®')] psssut) (44)

Evaluating the matrix element yields the result

Ipsso) = 3 18°60) 30 +im m() 875 7o) (45)
Jjac
def 1 for ¢ ='3§
where mlc) = def (46)

signp=mn forc=-%
ji=kc
Js Ss
Explicit expressions for §

and ® (L_l(p)) is the representation matrix of the "boost."
=#,C
Bic
a

j 7
Ja s

L_l (p)) are tabulated in H. Joos.
The quantities

def I
UC (om) = 3(1 +1m) m(e) 82 L o)) (47)
Ja ja g

which are just the transition coefficients between the canonical basis
and the spinor basis will be shown to be the usual Dirac spinors in
the next section.

At this point we introduce the conjugate spinor basis

<f'j'czp')| =z L (o "+ sign ¢’ p’-0) (fj~cl(p’)| (48)
ja 4 A m po p ja ’ 2 js

Ja
which, of course, satisfies the relation

iU i -, = i’j 4 5
&) N5 = 2p,0° 6By o) 5° 0 o1 (49)

Section IV.
We define
S 2 def 487, i
2p _8° (p"-p)y = (£~ ()|2r |£, () (50)
H Ba B n A

Q
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~ e

and will now verify that the YHCBAC are the usual Dirac gamma

matrices. As a first step we will show that the defined quantities
obey the Dirac equation.

e e
N c'C C
S 2p_ 5° (p’ = p) By U, (pom)
e BA
CA

R ~ ~
=) I eO |86 U, Gom)
cA

. ZP“r .
=Y (N 1485600 Uy o)
c

"
2P PU

From (39) we already know the action of the operator on
the canonical basis. By expanding the spinor basis in terms of the

2PHT

canonical basis we readily calculate the action of _T/[_E on the
spinor basis. The result of the calculation is

T, e -
— 15 ) =10 (51)

Using this result

VRS S
c' C C
> 2p 63(p'-p)2m— U, (pom)
“BA

g

_ ol -8 e
_>_.<fB (¢ )lfA (®) UA(porr)
TA
By expressing the vectors lf] (p)) in terms of the spinor basis
[ch (p)), using the expression (43) for the scalar product of two

spinor basis vectors, and the explicit expression for U (pon) we
calculate

=2p 8% (p’-p)m UE (pom) (52)
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Multiplying both sides of (52) by m and integrating both sides by
d-’} i

J'E}f_? we finally obtain
o

¢
If we arrange UA as a column matrix and vy

¢’'t

Uom)

[ 32 32 3/2 3/2
Yi/2 1/2 Yi/2 -1/2
3/2 3/2 3/2 3/2
Yo 12 Y-12 -1/2
/N -3/2 3/2
Yi/2 1/2 Yi/2 -1/2
=) AN -3/2 3/2
Yoz 12 Y172 -1/2

A

Equation (53) may be written

U (oom) = m UC (pom)
A B

359
(53)
E'Easa4x4matri.x
HBa
[~ 3/2
Ui/2
3/2
U212
-3/2
U1/2
-3/2
| Vo172 ]
32 -3/2  3/2 -3/2 |
Yi/2 1/2 Yi/2 -1/2
3/2 -3/2 3/2 -3/2
Yaie 172 Y-1/2 -1/2
VN = VoM SNy oN=y)
Yi/2 1/2 Yi/2 -1/2
-3/2 -3/2 -3/2 -3/2
Yoz 12 Y-12 1.2
—t]
(54)

PuYu U(pom) = wmU(pom)

which is simply the Dirac equation.

If we define

ﬁj‘; (o) = U, (pom)

Ja
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we can obtain the following additional relations involving U and U:

Adjoint Dirac Equation: ﬁ(porr)p“yu = U(pom)rm (55)

Orthogonality: Ulpo'm’)U (pom) = TT&O_G p Gﬂ ' (56)

Completeness: ZTI‘ Ui(po‘rr) Ugl (poti) = GNE'SAB (57)
ot

Projection Relation: \p_::’u_ + %) =z U (por) Ulpom) (58)

(o}

From Egs. (54) through (58) we see that U(pom = 1) is the
usual positive energy Dirac spinor U(p,s) and U(por = 1) is the spinor
Ulp,s). Since we have restricted ourselves to positive energies
(e = 1), Ulpom = -1) is the usual Dirac spincr V(p,s) after it has been
reinterpreted by the Dirac hole theory and Ulpom = -1) is the usual
spinor V(p,s) after reinterpretation by the hole theory.

Once again it should be emphasized that the advantage of
obtaining the Dirac formalism from such a mathematical structure is
that the structure can readily be generalized (by dropping the Dirac
representation relation) so that, for example, all half integer or all
integer spins are allowed. It seems very probable that such repre-
sentations will be useful in describing baryons and mesons.
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%denotes an algebraic tﬂlcture that is a generalization of
an algebra which I had called ;‘7/{5 That the algebra ; might also
have something to do with the Ay-meson is rather accidental, though
I have to admit that I was already under Maglic's influence when the
possibility of this generalization occurred to me while I was working
on a quite different problem. This problem was the infinite dimen-
sional generalization of the 4-dimensional Dirac representation for
baryons, which was needed for some other purposes. The essential
difference between %and ## is that %% contains an infinite
dimensional generalization of the Dirac representation of y or S0(3,2),
whereas /% contains the Majorana representation of SO(3,2) instead.

From the talks of Mainland2) and ]affe3} the basic concepts
that I will need should be known, and I shall just briefly remind you
of their properties:

The relativistic symmetry vy is essentially the enveloping alge-
bra of the Poincaré group PPH'ILL\J adjoint by a Lorentz-vector opera-

tor T, which together with the spin part 8, of the Lorentz group gen-
erators L ., = M, +8, form the Lie algebra of SO(3,2)suwru- y is
the associative algebra generated by

= M % - . - 23
= = + S I T v 0 ’ 1 L
PM'M (PHP ) Lu\) Mu\) Su\)' e

in which the multiplication is defined by the relationslo)

tPresented at the Symposium on de Sitter and Conformal Groups,
University of Colorado, Summer 1970.
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[Pu' P1=0 @)
[Luv' Pp] = i(gvaLl = guva) (b)
[Lu\)' Lpo] l(gup vo  9elup ~ guova - gvpLuo) ()
[Mw, SW] =0 (@)
%‘ewa"l\/L"0 =0 (e)
[Pu, spc] =O[Pu, r]=0 ()
[Suv' 8,51 = -i(gLlp vo T BeSup = TusSup ~ gvpsw) (9)
[ch. PH] = [Spo, Pu] = i(@lcml“p = gpuTU) (n)
[rp, IR = @)

where |1, v, p,0=0,1,2,3 andg d9g = 33=-1.

An irrep (irreducible representation of Y is éetermmed among others,

by the irreducible representation of SO(3,2) T that it contains.
v

The irreducible representations of SO(3,2) and therefore also the irreps
of y are for our purpose most conveniently characterized by the mul-
tiplicity pattern. This is a pattern of n,s which displays the content
of irreps of the maximal compact subgroup SO(Z}F b4 SO(S)SM\), where

n = eigenvalue of ', and S(8+1) = eigenvalue of %S j }. Examples of
such multiplicity patterns have been given by Iaffe 3) Fig. 1 shows
the multiplicity pattern of the Dirac representation and two of the 4
Majorana representations. And Fig. 2, Fig. 3, and Fig. 4 show the
multiplicity pattern of the representations, which we shall consider
here, and which we call (R,%), (R,0), and (R=2,0) respectively (where
R is the eigenvalue of the second order Casimir operator). The two
irreps in Fig. 4 are the limiting cases of the irrep (R,0) for R~ 2.

From comparison of the pattern for the (R,%)-representation and the
Dirac representation we see already that (R,%) is in a certain sense
an infinite generalization of the Dirac representation and (R,0) is just
the integer spin analogue.



Fig. 1.

Tlak[ (et

4
a(m¥a0
1% P21
2% Ay %.2
3% e 3
N
& U %4
&

Multiplicity pattern for the following representations
of v or SO(3,2).
a) Dirac representation
b) Majorana representation with half-integer

spin (kg =%, ¢ =0)
c) Majorana representation with integer spin

(ko =0, c=2).
The numbers in the boxes give the values of n,s ;
the letters in Figs. la and lc give a possible particle
assignment.
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iy i W
22 22
a3y 37 |35
2'2 2'2 2'g 2"g
s s|fa s [o s o8 fa,s]]s s
2’2122 22 22|12 2 2'2

Fig. 2. Multiplicity pattern of the "generalized Dirac”
representation (R, %) of SO(3,2) or . The number

in the boxes give the values of

Fig. 3. Multiplicity pattern of the integer-spin
representation (R,0).
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3,3 1.3 ()
7/

Fig.4a

Fig-4b

Multiplicity pattern of the representations (R=2,0)
(Fig. 4a) and (R=2,1) (Fig. 4b). This 1s the direct
sum of irreducible representations of 80O(3,2) that
are obtained from the irreducible representation
(R,0) in the limiting case R~ 2.

Fig. 4.
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To see how physics can be put into these patterns, we have
to induce the representations of SO(3,2) to representations of the
whole relativistic symmetry yv. This will be done for the represen-
tations (R, *) in complete analogy to the case for the 4-dimensional
Dirac representation as it was described in the talk by Mainland .2
The result will then be a representation space, which is the "infinite
dimensional" generalization of the space of solutions of the Dirac
equation. R, ")

LetX "’ ’ denote the irrep space of y. Then we obtain the
canonical basis for }('(Rf *) in a completely analogous way to the well
known procedure for the Poincaré group:

For the states at rest we take the basis vectors | p=0,Ss ,s,n)
with the properties

| Y =s(s+1)| )
Slz' ) =85 I )
rl Y=n | ) (1)

The operations of SO(3 ,Z)S \)'ru act only on the indices s ,s,n and
¥

leave p = 0 unchanged, and at rest these states correspond to the
basis states of SO(3,2) in which SO(3) x SO(2) is diagonal. Then we
boost these states into states with momentum p:

Ip,ss,8,n) = UL™ (p))|p=0,s;,s,n) (2)

(where L{p)p = (m,0,0,0), rotation free) and find that these have the
usual properties of the canonical basis states of f:

U™ (L)) wa ULP))|p,ss,s,n) =msz|p,s;,s,n)
Wlplsa lsln> =ITIZS(S+1)lp,Ss lsln> (3)
where

=) AVl olo) p S}
w =%e PL and W=~
R e i

and the additional property

Pul“ulp,sa.S.n) =m-n|p,s;,s,n) (4)
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From this it follows that s and s, are the spin and its 3rd component.
n is a new quantum number. As the only new object that was adjoint
to the enveloping algebra of P, (), is I‘M and this commutes with
P it is of course clear thgt m® must be an invariant of Y. However
T.‘M does not commute with 8% and therefore not with W so that ru
transforms between states with different spin, and the spin is no
more an invariant.

For SO(3,2) to each box [ n,s | of the multiplicity pattern
corresponds the set of states

{|ss,s.,n)|-5< 553 <5} (5)
Tor vy we let, because of the above properties, the set of states
{|p,ss,s,n)|-s< sass,PuPu=m2} (6)

correspond to each box % and obtain in this way an extension of
the multiplicity pattern of SO(3,2) for y. But as (6) spans the irrep
space of the Poincaré group X(m,s), we obtain a correspondence be-
tween each box of the pattern and an irrep space of ® X{m,s,n)
where n is here an additional label distinguishing between equivalent
irrep spaces of .

?o the multiplicity pattern gives us the reduction of the irrep
space i Ri+) of Y with respect to the irreps of the Poincaré group.
Now physics has entered into the multiplicity pattern because an irrep
space of P is the mathematical image of an "elementary particle."

So each box in the pattern corresponds to an "elementary particle" and
the pattern of (R,3) gives us a spectrum of baryons and the pattern of
(R,0) gives us a spectrum of mesons.

Unfortunately this hadron spectrum is still quite unphysical,
because it consists of particles which have all the same mass and are
distinguished from each other only by their different spins s and by a
new additional quantum number n.4) To obtain a realistic mass spec~
trum we will have t:%reak the relativistic symmetry yv; this "suitably

broken" y we call
I cannot give here a detailed description of the properties of
and the reasons for the choice of this structure; this would also
lie outside the subject of this conference. I will just let you know
the relation that breaks the symmetry and describe its consequences
so that you can compare the physical content of these representations
(R, ) of y or SO(3,2) with the experimental data.
We define
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B =P +AM™ 3{pP°,L 7

LR ™
P TH

where M® =P P* and A® =)\12—)\22(ﬂ3— ( ). 2, and A, are

two constants whose values are empjrl\{[cally c}\gtermined to be )\12 =
(0.30 + 0.01) BeV? and 1, =l7;_.

Then one can show that A'J‘Eu and L, obey the c.r. of
SO(4,1). The second order Casimir operator

=p<p gt -3 1M 8
Q=ATBE -3L (8)

commutes because of the construction (7) with the generators P and
IUV . We require now that in addition H

(Q, T‘u] =0 (9)

so that the eigenvalue &° of Q is an invariant of the whole algebra

and characterizes a physical system. This relation is the symmetry
breaking relation that gives rise to a non-trivial mass spectrum. In
accordance with the O'Raifeartaigh theorem this is not a c.r. betwgen
generators but a complicated algebraic relation and the algebra is
not the enveloping algebra of a group. The resulting mass spectrum is:

mz(s o 012 =252 (s(s+1)-n?)) (@® - %)+(xf—x; ((s(s+1)-n2))s(s+1)
' (10)

where the spectrum of s,n is given by the multiplicity pattern of Fig. 2
and 3. We see that for 132= 0 this gives the old rotator spectrum

m? = const +\,? s(s+1). In the realistic case X,? << A,? (2% of %)
so that 133 gives the fine structure splitting between resonances of
the same spin.

The comparison of the above predictions for the hadron spectrum
are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8 for the mesons. (For
Fig. 6 the values of the constants A,° and \,® were slightly different
from the ones given above: A;° = 0.298 BeV?, A;® = 0.005 BeV?.)

Fig. 5 shows the final compilation of the CERN Missing Mass Spec-
trometer experiment. In the meantime many more resonances have been
found at higher masses by the CERN Boson Spectrometers) but as our
predictions have a big error at those high masses-~due to the error of
the constants A\, ,A,--comparison above the U~-mass becomes meaning-
less as long as one does not know anything about the spin-parity of
those higher resonances. It is by now clear that there are at least
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Fig. 5. Meson mass spectrum observed by the Missing
Mass Spectrometer.

(R,0)

Fig. 6. Multiplicity pattern of v with the possible
particle assignments and predicted masses.
The number in the right upper corner of each
box is the predicted mass squared in BeV® and
the number in the right lower corner is the pre-
dicted mass in MeV.
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Fig. 7. Predicted particle spectrum for the representation
% R=2.,0) | The left corner of each box gives the
spin-parity, the numbers on the right are the pre-
dicted mass squared in BeV® and the predicted mass
in MeV. For this figure only we have used slightly
different values for the symmetry breaking constants:
X% =0.298 BeV®, 222 = 0.005 BeV?.

0+0
1_,w
2*, & 27t
3" ,0(1965) i)

Fig. 8. The predicted particle spectrum for the I = 0 meson
tower with the possible particle assignment. Only
the right half of the multiplicity pattern of Fig. 4a
has been given here.
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two SP = 2+ mesons in the A,y region; whether there are also some
mesons with other spin parity in this region is not yet clear. We see
from Figs. 6 and 7 that this point is well described by the model. We
also see that there is almost a one~to-one correspondence between
the bumps in the Missing Mass Spectrum and the boxes in the pattern
of Fig. 6, the only problem being the p’. It should be remarked that
the M, M, Spectrum dees not contain all I = 1 mesons; e.g. from the
backward elastic pp cross section it has been inferreds) that the S

is split into two bumps of opposite parity, which is well described

by the pattern of Fig. 6, (R,0), but not by the pattern for (R=2,0) of
Fig. 7. ForI = 0 mesons however the representation (R=2,0) seems to
give a better fit (Fig. 8). We remark that the constants )\, and A,

are universal; therefore we have taken one and the same value for

X, and ), for all meson and all baryon towers, only the value of a?
that characterizes the representation is an adjustable parameter.

For baryons the situation is similar as is shown in the follow-
ing Fig. 9, Fig. 10 and Fig. 11. Fig. 9 shows the predicted masses-
square for nucleon and I=% nucleon resonances, Fig. 10 and Fig. 11
show the same for the ¥ -resonances and A-resonances respectively.
The symbol below the value of m® gives the partial wave in which a
resonance with the right SP and with a mass in agreement with the
predicted value has been found. We see that, except for the sP =
3/2% case, the agreement is good.

For the states with negative n the mass formula predicts that
they have the same mass as the one with positive n. For the baryons
we would interpret these states as the anti-particle states of the
states with positive n. In the following we will derive that this is in
fact true and the states with quantum number -n are the charge con-
jugated of the states with quantum number +n. What the interpretation
of the states with quantum number -n should be for the mesons, we
don't know as yet.

A very nice property of the Dirac representation is that it is
also a representation of the discrete operators C, P, T; this is e.g.
not true for the Majorana representation where parity leads to repre-
sentation doubling.

Let me first consider the parity operator U_. Because of the
relation P

UL .U *=-L, i=1,2,3 (11)
p ol p oi

one can prove that 1“Ll must fulfill the following relations with Up:
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s=1/2
s =3/2
s =5/2
s=7/2
s=9/2

A, BOHM

n=1/2 P=+ n=3/2 P=- n=5/2 P=+ n=7/2 P=- n=9/2 P=+
0.88 BeV®
(input)
1.67 BeV® | 1,77 BeV?

D3
2.69BeV?® | 2,84 BeV® | 3.12 BeV?

Dys F1s
3.68 BeV? 3.92 BeV? 4,35 BeV? 5.02 BeV?

)
Fip(?) Gy Fy7(?) Gy
4.07 BeV® | 4.39 BeV® | 5.04 BeV 6.04 BeV |7.36 BeV?
Fig. 9. The predicted particle spectrum for the nucleon

resonances I =#, Y = 0. The numbers are the
predicted mass squares in BeV? , the symbol below
the number gives the partial wave in which a reso-
nance in agreement with the predicted mass and
spin-parity has been found. Only the right half of
the multiplicity pattern of Fig. 2 has been given

here,
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n=1/2, P=+ n=3/2, P=- n=5/2, P=+ n=7/2, P=-
1.24

(input)
2.05 2.13

Dy3

2,98 3.16 3.46
Fos Dos Fos
4,04 4.28 4.71 5.38

07 Goy Fo7 Goy
4,43 4,75 5.40 o 6.40

A(2350)9/2
Fig. 10. Predicted particle spectrum for the © resonances.

n=1/2 p=+ n=3/2 p=- n=5/2 p=+ n=7/2 p=-
1.41
input
2,20 2.30
P13 D13
3.12 3.31 3,63
Fig Dis 15
4,21 4,45 4,88 5.55
Fi7 Gy7

Fig. 11.

Predicted particle spectrum for the A resonances.
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Either
Case A: or Case B:
U T Ul=r UT U ™*=-T
p o p ) p o p )
U T, U_*=-T, U T, U™ =T,
p i p 1 p i p i
(12a) (12b)

We shall restrict ourselves here to case A, because then I pH
can be simultaneously diagonalized with U_, which will not be possi-
ble for case B, and is therefore in accordal?ce with the Dirac repre-
sentation. Then

irrI‘O
UP =ne on states at rest

and the phase factor n is chosen such that

for v(R,%): has P = +1 (nucleon) and

for y(R,0): n=0, s =0 has P =+1 (0 = state with quantum
numbers of vacuum)

Then it will turn out that

n=1 for Y(R'O) (mesons) (13a)
(R,%)

T
n= e 2 for Y (baryons) (13b)

One obtains that in general parity on the canonical states will be

Up|P-:S:S:3 ln> = (_1)[n] I_plslss ln>

where ['n] = largest integer which is smaller or equal n. (—1)[ n] is
given in the upper right corner of the boxes in the figures.

There are 16 extensions of the unitary irreducible represen-
tations of the Poincaré groupﬁ) by the discrete operators U, (space
inversion), Aq (time inversion, anti-unitary) and U _ (charge conjuga-
tion). They are characterized by the four numbers ©

= 2 = 2 = 2 = 2
™. (UCUp) ¢ Cq AT L (UpAT) r € (UcUpAT)
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which may independently assume the values +1 and ~1. Of these 16
groups only two appear to be relevant for the description of massive

particles and one can conclude from some physical argumentsG) that
bosons are described by the extension characterized by

or (0% ey (D¥ e, (0P e = G nn (10)

and fermions are described by the extension

2

o (0% e, (D e, (1P e ) = (k) ()

1
Therefore we have to choose for the baryon representation Y(R’z) an
extension by C, P, T for which (15) is valid and for the meson repre-
sentation vy R,O} an extension for which (14) is valid. From this
difference and the difference of the phase factor n for Y(R,_) and
Y(R,O} given by (13) it follows that the action of the operators U_,
Uc' AT in3(R/3) and 3c(R,0) are guite distinct, We cannot give ?he
derivation here but describe only the resulis:
For the baryon representation y R+ ): U transforms from states
belonging to to states belonging 'E:O ; this leads to
the particle-antiparticle interpretation. A., does not transform out of

the subspace ofK(Rl%} corresponding to T{n_,_sH -
For the meson representation Y(R'O): The subspaces corresponding
to [ n,s | are U, eigenspaces with C-parity +1 or -1; so each box
ﬁ corresponds to a meson state with definite C-parity or definite
—parity (G = (-1)Ic). Ap transforms from states of into states
of ; this gives us the interpretation of the states with nega-
tive quantum number n. But this also leads us to the unexpected pre-
diction that to every meson state there exists a T-conjugated state,
which is distinct from the original state. The question remains open
with respect to the physical realizability of these states. As they
are T-conjugates of each other they can only be distinguished by
observables that do not commute with T and are, therefore, degenerate
in all the well known quantum numbers.

References
1. A. Bohm, Phys. Rev. 175, 1767 {1968).
2. B. Mainland, these Proceedings, p. 349.
3. L. Jaffe, these Proceedings, p. 125,
4, The introduction of a new "space-time" guantum number has been
suggested before by A. O. Barut and Y. Nambu (see e.g. Proceed-
ings of the 1967 International Conference on Particles and Fields,



376

A. BOHM

Interscience Publishers, Inc., 1968); however their quantum
number n differs from our n due to their use of a different repre-
sentation of SO(3,2).

B. Maglic, Rapporteur's Talk at International Conference on
Elementary Particles, Lund (1969).

W. Kienzle, invited paper at the Washington Meeting of the
American Physical Society (April 1970), CERN preprint.

. The derivation of these results is given in A. Bohm, University

of Texas preprint CPT-27,.



BREAKING OF THE SCALE SYMMETRY
AND THE DE SITTER ROTATOR*T#

Akira Inomata
Department of Physics
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Albany, New York 12203

Introduction

In this talk I would like to discuss a specific breaking scheme
of the symmetry under scale transformations and its possible relation
to a hadron model. In the very beginning of this symposium, Profes-
sor Barut pointed out the three topical branches of application of the
De Sitter and conformal groups; namely, symmetries of space-time in
the large, the scale invariance problem in strong interactions, and
the theory of dynamical groups for composite systems. These are by
no means mutually exclusive. What follows is an example in which
all come together one way or another.

Construction of field theory in space-time of higher symmetries
has been attempted by a number of authors with the hope that the
divergence difficulty may be resolved in a natural way. 1) A trivial
question may arise, however, as to where such symmetries are sup-
posed to manifest themselves in space-time. The Poincaré symmetry
is not suited for the observed curved structure of the universe in the
cosmological scale. Modification of the symmetry is certainly needed
for the large scale. The De Sitter symmetry, which allows for the
possgibility of an expanding universe, would perhaps be a better ap-
proximation. Nevertheless, in local phenomena, the Poincaré sym-
metry is very precise at least up to the dimension of 10°*% cm. The
divergence seems to occur when the same symmetry is extended to
the extreme dimension (~ 10722 cm in QED). If space~-time is homo-
geneous everywhere and in every scale, the equations of motion may
be described in terms of appropriate global coordinates. It would
then be expected that the space-time structure in the large will
directly affect the singular character in the small dimension. On the

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.
$Supported in part by the Research Foundation of SUNY,
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other hand, one might think of a hierarchical structure of the universe.
Suppose the De Sitter approximation is good in the large. Then the
same could be considered true in the small. In any event, the struc-
ture of our universe is not so simple as to be described by a single
set of coordinates; it is homogeneous only on the average in the cos-
mological scale. It would not be surprising that space-time of the
micro-domain smaller than 10~*® cm is rather different from the world
of special relativity.

As is well known, the group SO(4,1) resclves the mass degen-—
eracy inherent in the Poincaré group,z) the resultant mass spectrum
being characterized by a contraction parameter A,

m? = m03+ A2 T+1) . (1)

The algebra of 8O(4,1) reduces to that of the Poincaré group as )\
tends to zero. If the SO(4,1) is the space-time symmetry, the Ryd-
berg energy ) in Eq. (1) should be related to the radius of space-time
by » = I/Rwith h=c=1. Use of the radius of the cosmological
universe (~ 1077 cm) yields a value for )\ too small to be responsible
for any physically conceivable mass splittings. To be compatible
with the empirical hadron mass spectrum, the radius R must be of the
order of 10~'2 cm. This can hardly be interpreted as an effect from
the space-time structure in the large; this would rather suggest that
we either consider the micro-domain relevant to the hadron strongly
curved, or give up the idea of counting the SO(4,1) group as a space~-
time symmeiry group. The group SO(4,1) has been treated as a dyna~
mical group in flat space—time.3) The dynamical group for a compo~
site system is in general Lo contain as its maximal compact subgroup
a symmetry group from which degeneracy of energy results, and as its
limiting noncompact group, a kinematical group which describes the
composite system as a point particle, Since the SO(4,1) group is not
a symmetry group of space-time in this case, the parameter ) in Eq.
(1) remains to be determined phenomenclogically. A feature of the
dynamical group theory is that the equations of motion are realized
on the infinite component basis. Under certain circumstances, how-
ever, it would be established that the infinite component theory de-
fined in flat space-time is equivalent to the curved space-~time for-
mulation describing the small domain for a composite system.

Let us now look at the mass spectrum (1) from the symmetry
breaking point of view. In the broken SU(3) scheme, breaking of the
symmetry takes place in a rather simple way; very strong interac-
tions are invariant under SU(3) and medium strong interactions hreak
SU(3) symmetry, yet remain invariant under SU(2). Schematically,
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Broken SU(3) 2 sU(2) . (2)

In a similar fashion, we consider the scheme in which the conformal
group SO(4,2) breaks down into SO(4,1);

Broken SO(4,2) > S0(4,1) . (3)

It has been known that conformal symmetry is the maximal space~
time symmetry of massless free field equations. Apparently, the
presence of nonvanishing masses breaks such invariance. In turn,
its breaking could be considered to have contributed to their presence.
As the broken internal symmetry (2) has resulted in the Gell-Mann-
Okubo mass formula, the mass spectrum (1) may reasonably be re-
garded as a consequence of the broken space-time symmetry (3). If
the SO(4,2) symmetry breaks down in such a way that the Poincaré
symmetry is always preserved, the mass splitting (1) does not occur;
the mass spectrum remains to be degenerate. In the scheme we con-
sider, the conformal symmetry reduces to the De Sitter symmetry by
breaking and the De Sitter symmetry becomes the Poincaré symmetry
by contraction; i.e., in the limit when the mass splitting disappears.
In this respect, it is essential to ascribe the spectrum generating
group 5S0O(4,1) to the De Sitter structure of the micro-domain for a
hadron.

Breaking of Scale Symmetry 5)

Let us start with the conformal group on flat space-time,
which consists of the Lorentz transformations 1., the translations T,
the dilations or the scale transformations D, and the special confor-
mal transformations K. This group has the SO(4,2) structure

[Tapr Tead = 10507 ~ "badac ™ Mbelad ™ Maclbd (4)

where 1,1 =Tgp =Mas = ~Mas =Mss = ~Nge = 1 andngp =0 fora #b
@a,b,c,...=1,2,3,4,5, and 6), The four dimensional transforma-
tions L, T, D and K are generated by Tij (l,i=1,2,3, and 4), P; =
%,\(Isj + ]Ej}' D = Jss and Kj Z%(ISJ - Iej), respectively. The 3
appearing in the definition of P, is the contraction parameter.

\E\fith the usual realization Pj = -1 3 and Jy; = %Py - XjPi+8;5,
we have

D=xJPj +ih (s)

K=\ 6P, + leIij + 21xt) (6)
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where { is the scale dimension of the fields on which these operators
work. The local currents associated with the dilations D and the
special conformal transformations K can be expressed in terms of the
imgroved stress-energy tensor eij of Callan, Coleman and Jackiw

as

D =xje. (7
a k k
Kij = (inx -8, %) ekj (8)

provided that the Lagrangian L(CPA, aicpA) is so chosen that

oL
3 + )
Z A0 A aa TR acyJ ®)
1A i P
A
where 0y is some tensor. The divergences of these currents are
given by 7
i j
3D, =87, 10
] J oy
3k =2x, o', . (11)
ij i

Apparently, with the choice (9), breaking of scale symmetry neces-
sarily implies failure of conformal symmetry; the symmetries gener-
ated by D and K are simultaneously broken. In other words, breaking
of conformal symmetry is as minimal as is induced by that of scale
symmetry. This is the minimal breaking scheme considered by Mack
and Salam in a slightly less general form.6) Since the aymmetries
generated by Jj; and Py can be retained under the minimal breaking
condition (9), the Poincaré symmetry may be preserved;

Broken SO(4,2) © Poincaré (12)

the scheme on which most attention has been focused.

There is an alternative scheme in which SO(4,2) symmetry
is broken under the condition (9). The alternative is that transla-
tional symmetry, in addition to D and K symmetiries, ceases to be
good, while the symmetries generated byI and ]5 (P +M\])/x are
preserved. This is indeed the aforementloned sc,heme (3), which
results in the mass spectrum (1). The second scheme is as minimal
as the first in the sense that satisfying the condition (9) it admits
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the same number of good generators as those of the first. The first

allows the 10 parameter Poincaré group and the second the 10 para-

meter De Sitter group. In the second scheme, translation invariance
does not exist, so that space-time is no longer flat. The symmetry

generated by ISj requires a uniform deformation of space-time.

Under SO{4,2), a sphere 5S(4,2) =50(4,2)/50(4,1) remains
invariant. The isotropy group SO(4,1) of SO(4,2) may be considered
as a group of rotations about the sixth axis on the surface S(4,2).
Now the symmetry is broken in the directions of Jg; and Jg g but the
symmetry about the sixth axis is retained. The spilere S(4,2) is thus
deformed so as to be, for instance, an onion shaped surface with the
sixth axis as the symmetry axis. Fach slice of the onion cut perpen-
dicular to the symmetry axis indicates a De Sitter space-time. The
subgroup SO(4,1) carries a sphere S(4,1) =S0(4,1)/S0(3,1) into
itself. The Lorentz group SO(3,1) may be taken as a group of rotations
about the fifth axis. Then J5; generates the displacements of the fifth
axis on the surface S(4,1). ’f‘he stereographic projection induces on
the sphere the conformally flat metric

- B |
9 =878, 8 Ny (13)

where
¢ = (1 +:3x2)™, (14)

It is easy to show that the space-~time with the metric (13) is of con-
stant curvature

=2 - ] 1
Riveo = (Qrupg\)CT gmgvp) (15)

The divergences of local currents previously defined in flat space-time
can be re-expressed in terms of conformally flat coordinates. How-
ever, insofar as local properties are concerned, such modification is
unnecessary. So much for the minimal breaking of scale symmetry.

General Relativistic Considerations

As is seen in Egs. (10) and (11), conformal symmetry is mini-
mally broken by the presence of fields whose stress-energy tensor is
of nonvanishing trace. Since the breaking scheme we are concerned
with requires a deformation of space-time, the stress-energy tensor
with a nonvanishing trace may have to be considered to serve as the
source to the geometry. A general tensor equation of the lowest rank
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linking a conserved matter distribution with the space-time geometry
is in fact the Einstein equation in general relativity:

= - = 1
GW Ru\) %gwR nTw . (16)

where T, v s the usual symmetric stress—energy tensor and the term
corresponding to the cosmological term in the theory of gravitation
is ignored from the Machian view.9) Callan, Coleman and Jackiw
have modified the Einstein equation (16) in the form?)

= = -8 o 1
Ry %gwR n(l - nd) v (17)

with the improved stress-energy tensor

- A
ew Tuv + vvvu§ gw v V)\é (18)
where ¢ is a function of scalar fields. In the absence of scalar fields,
% vanishes and the modified equation (17) coincides with the Einstein
equation (16).

As a result of the broken SO(4,2), we have obtained the De
Sitter geometry (15). For this geometry, the Einstein tensor in Eq.
(16) takes a specific form,

= = 2
Gu\) 3x guv . (19)

Thus, if Einstein's formulation is appropriate for linking any matter
distribution to a geometry or space-time, the matter fields allowed
in the geometry (15) must have the stress-energy tensor

8 =-(1-ud 20
=" = nd)eg (20)
or
=~ 21
Tuv P9y (21)
where
np = 3" . (22)

The divergence of the local dilation current is now given by

BiDi=-4(1 - u8)p (23)
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which does not vanish unless the matter distribution disappears. This
indicates that the symmetry breaking agents in the present scheme are
not the scalar fields but some other fields which have the stress-
energy tensor of the form (21) altogether. Since the scalar fields are
quite free from space-time geometry, they can be independent agents
of breaking scale symmetry even in the limit where SO(4,1) reduces
to the Poincaré. Such scalar fields could therefore be thought of as
the Nambu~Goldstone bosons associated with a spontaneous break-
down of scale symmetry. As space-time is curved, however, confor-
mal symmetry is broken as a consequence of matter concentration,
responding in a sense to Mach's idea.

Let us now play a cabalistic game with Eq. (22). Take appro-
priate values for the coupling », the matter density p, and the Ryd-
berg energy \ or the corresponding radius R = 1/A. Then find com-
binations of interest. The following is a list of some combinations
which seem to make sense a bit:

Universe:
= R~ 10?7 cm, o~ 10~2%g/cm®
Neutron stars:
n= R R~ 10° cm, p~ 10*°g/cm®
H-atom:
n = 1037nG, R~ 1072 cm, p~ 1g/cm®
(. ~ Rydberg
Energy RH)
Hadrons:
n =107 Hge R~ 107* cm p~ 10*° g/cm® ,
(. ~ 0.5 Bev)

Here n is the gravitational coupling constant. In the example of the
H-atom, the coupling » is taken to be of the order of the electromag-
netic coupling. The radius R differs from the Bohr radius and does not
have a particular physical meaning, but its inverse gives the Rydberg
energy RH consistent with the observed value. It may be noted that
the De Sitter symmetry is not the space-time symmetry of the H-atom.
It is perhaps an effective radius of a geometry which the H-atom
would form as a relativistic composite system. In the case of hadrons,
the coupling » is taken to be of strong interaction and the mass dis-
tribution is of the nuclear density. The Rydberg energy \ in the mass
formula (1) then becomes ~ 0.5 Bev which is a desired result. If the
results of this type of games are taken seriously, use of the Einstein
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equation (16) should not be limited to the gravitational processes.
The Einstein equation would have to be looked over from a more flexi-
ble stand.

Model for the De Sitter Matter

Historically, the De Sitter universe is believed to be an empty
space-time just as the Minkowski space-time provides only a frame-
work of the world. The reason for this is as follows. Matter distri-
buting in the universe may reasonably be approximated by an ideal gas
of the form

= - (pt+
Tw =29, (p+p) ES (24)

where p is the pressure and is the four-velocity. In order to obtain
matter of the De Sitter type (21), we must assume that

ptp =0 . (25)

Since p =z 0 and p = 0 must be required from the physical grounds, Eq.
(25) leads top = p = 0. Consequently, we have T N vanishing. The
Maxwell field is another reasonable field for filling in the universe,
but cannot be of the De Sitter type. Furthermore, if the cosmological
term is introduced in the Einstein equation (16), no matter distribu-
tion is actually needed for the De Sitter geometry (15). Thus one is
led to a belief that there is no reasonable matter in the De Sitter
universe,

Despite this old belief, the symmetry breaking scheme we
have considered urges us to hunt out a De Sitter matter. 10) fet us
then consider the case of the Dirac field. The stress-energy tensor
is now given by

T, =z(ﬁvuvv¢ - V\ﬂwudf + vavuw - VHGTY\,W (26)

where

+ =2 . 27
Yo¥o T YOY, guv (27)

The Dirac equation
¥ -
Y Vu\h +my =0 (28)

admits a solution § satisfying the condition
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1

V § = ~%zm 5 29

u\lr’ 4 Y“\V (29)

Since the adjoint field § obeys

vy =%m lﬁvu ] (30)

it is straightforward to show that the scalar bilinear qTq; is constant.
Under the conditions (29) and (30), the stress-energy tensor (26)
reduces indeed to the De Sitter form (21) with

.

p=zmiy . (31)
Thus we have found a matter that can serve as a source to the De
Sitter geometry. As m, the mass of the field §, tends to zero, the
matter density p vanishes and the dilation current conserves. In this
respect, the Dirac field { under the condition (29) might be considered
as aNambu-Goldstone fermion associated with a spontaneous break-
down of conformal symmetry. However, since space-time is not flat
in the presence of the field and hence the vacuum state cannot be well
defined, such an interpretation remains open.

The integrability condition of Eq. (29),

- -1 p .o
(v\,vLl vav)‘" 4prcv Y U, (32)

together with the given geometry (15) yields the relation
m = 2\ (33)

which implies that the mass of the Dirac field filling up the De Sitter
micro-domain is of the order of 1 Bev. Recall that the De Sitter
space-time of the radius R = 1/A corresponds to a slice of the broken
SO(4,2) onion. Because of the mass splitting (1), each De Sitter
space-time must be characterized by one of the values A\ J(J+1) re-
placing \®.

Breaking of the De Sitter Symmeiry

So far we have assumed that the SO(4,1) symmetry realized
as a result of broken SO(4,2) is exact. As the mass formula (1) ig-
nores mass differences among particles of the same spin, the De
Sitter symmetry is insufficient for the hadron model. How one can
relate the internal symmetry with this external symmetry is an open
question. An ambitious program would be to seek the source of the
fine structure of the mass spectrum out of the broken symmetry mecha-
nism as Bohm did in the purely algebraic aspect. 11) For this purpose,
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the SO(4,1) model is obviously too rigid. Moreover, if the micro-
domain is of the exact De Sitter structure, space-time has to have a
double structure; the De Sitter feature inside and the Minkowskian
character outside. There is a singular surface which cuts off any
communication between the inside and outside worlds. Fluctuation
of some kind in the matter distribution near the surface would circum-
vent this barrier. In these contexts, breaking of SO(4,1) seems
necessary.

To see the behavior of the singular surface, let us again make
use of the ideal gas model (24) which is this time allowed to have a
negative pressure. Suppose the distribution is spherically symmetric
in the spatial region of radius ro. Then we adopt the following solu-
tions: Forr > |

as® = -(1 - %)'1 ar - @07 +sin?0d?) + (1 - ) ar (39)

wherep =0, p =0 anda = _Z?m is Schwarzschild's radius; and for
r<r_,
o)

ds® = ~(1 - \3r2)™" dr® -2 (d6% + sir® 0dp?) + [A-B /1 - A2r° J2dt2

(35)
with
o [3134‘1 i «-A] o
A -ByJl -)31"
np = 3\° (37)

where A and B are constants to be determined by boundary conditions.
Making a connection of these solutions at the boundary surface r = ro,
we obtain for ry > a,

a=)3 ro3 . (38)
(A—BA/l-)Lzroz)2=1-a/ro. (39)

With another condition pfr=ry) = 0, A and B can be determined. As a
result, the inside solution (35) is fixed in the form

ds® = ~(1 - 22r®)~1dr® - 12 (d6° +sin? ody? ) +

+ 3@V -3 - /1932 daf (40)

with



SCALE SYMMETRY AND THE DE SITTER ROTATOR 387

up =)\2[3\/T‘7\3f2 =31 - ?le‘og]
3/1 =232 - /1 =33

(41)

The De Sitter solution is
ds® = -(1 -22r®) " dr® - 2 (d6® + sin® 0dp3®) + (1 - \3r3) di? (42)
with
np = - 3)\3 (43)

which is a limiting case of Eq. (40) where the distribution radius rg
approaches Schwarzschild's radius a. Thus the exact De Sitter sym-
metry imposes a singular surface atr = roe

In order to avoid the singularity, we wish to suppose that the
radius ry is extended outside Schwarzschild's radius a; that is, we
wish to modify the De Sitter solution minimally. Since the require-
ment (25) must be satisfied, the pressure inside has to be negative.
Thus we look for an approximate solution for which the negative pres-
sure is possible. In fact, Eq. (40) admits a negative pressure solu-
tion if we chose ry such that

9
a<r <ga . (44)

The solution of this type may be considered as a broken SO(4,1)
solution. Further details will be given on other occasions.
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LORENTZ INVARIANT ALGEBRAIZATION
OF VERTEX FUNCTIONS,
DYNAMICAL GROTUP SO(3,1) ® SO(4,3) ++
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I. Introduction

The hypothesis that the dynamics of a given quantum mecha-
nical system can be completely described by some dynamical group
as well as by the Schrodinger equation has been verified for almost
all interesting and important quantum mechanical problems. In quan-
tum mechanics we postulate a Hamiltonian ¥ which is usually a com-
plicated differential operator and then a solution to the Schrédinger
equation

Ky =E_ (1.1)

determines the energy levels E, and the set of the quantum numbers n
of a given quantum mechanical system, which is completely described
by the wavefunctions {§,. In the approach using dynamical groups
one starts from a chosen dynamical group G and phenomenologically
identifies its generators with operators of physical observables
rather than postulating the Hamiltonian. In addition, the quantum
mechanical wavefunctions |, are assumed to form a basis for a single
unitary irreducible representation of the group in question and in such
a way measurable physical quantities can be straightforwardly calcu-
lated. The same idea was consequently generalized and used in parti-
cle physics.

Over the last few years the relativistic framework of dynamical
groups proposed by Barutl)g has been successfully applied to sirong

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970,
+Work supported in part by the U. S. Atomic Energy Commission.
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decays of mesonz) and baryon?’) resonances as well as to the study of
mass spectral and form factors of hadrons.4) The essential assump-
tions made in such studies may be summarized as follows:

a) Hadron states are assigned to unitary irreducible represen-
tations of some noncompact group G which contains the Lorentz group
as a subgroup (in order to guarantee relativistic invariance of the
theory). A priori, suitable candidates for G are, for example, the
groups SO(3,1), SO(3,2), sO(4,2), SL(2,C), SL(6,C), etc. The ulti-
mate selection, however, is only to be dictated by results which agree
with experiment.

b) Once the group G has been selected then its generators
(which are self-adjoint operators in the Hilbert space of physical
states) are phenomenologically identified with physical observables
such as, for example, momentum, angular momentum, electromagnetic
current, etc. In this way matrix elements representing measurable
quantities may then be easily calculated by group theoretical consid-
erations.

It is amazing that physical consequences following from the
above set of assumptions agree quite well with experiments for suit-
able choices of the group G.

In fact, even the simplest possible dynamical group, SO(3,1),
has been able to describe very well the pion-baryon decay rates of
many resonances3) by making use of only two free parameters which
are an effective coupling constant g and an eigenvalue v of one of the
Casimir operators of the SO(3,1) group. Of course, the parameter v
is adjusted phenomenologically by requiring a best fit to the experi-
mental data. However, if one wishes to avoid the freedom in the
choice of v one is then naturally led to the study of larger dynamical
groups such as, for example, SO(4,2), which was proposed by Barut
and Tripathy.5 This group has received a great deal of attention in
the series of excellent papers by Barut et al,6 Nambu,ﬂ and Yao.8

Although all the calculations mentioned above show good
agreement with experiment, it is of course not at all clear whether
other choices for G might be more suitable. Furthermore, if one really
expects the study of a given dynamical group to be physically mean-
ingful one should be able to derive its Lie algebra from general phy-
sical assumptions.

It is the purpose of this talk to show that the dynamical group
which describes the hadronic world may be rigorously derived start-
ing from the following usually accepted physical hypotheses:

a) Relativistic and isotopic invariance of the theory,

b) Validity of the Lehmann-Symanzik-Zimmerman (LSZ) reduc-
tion technique, 9)
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c) Either an effective interaction Lagrangian £. of the typem)
= (Fr)™* A% () 9M 8% (x) (where F; = 190 MeV is the pion decay am-
p}itude, Aﬁ(x is the axial vector current, @a(x} is the pion field, and
o=1,2,3anduy=0,1,2,3 are isovector and space-time indices res-
pectively) or the validity of PCAC (i.e. the assumption that the soft
pion technique may be employed whenever (anrrz )‘%“Aﬁ(x) is chosen
as an interpolating pion field),

d) Validity of the usual equal-time commutators between axial
charges, 12) and

e) Absence of exotic states having isospin I = 2.

From the above assumptions it is then easy to reduce the dyna-
mical problem of calculating decay amplitudes involving pions to the
study of representations of a certain noncompact group. In fact, we
show in the next two sections that the above assumptions lead us to
conclude that hadron states form unitary representations of the non-
compact group SO(3,1)® SO(4,3). In addition we show that the phy-
sical interpretation of the generators of this group is unique and un-
ambiguous and that the relativistic transition amplitude is written as
a sum of matrix elements of a certain class of generators of the group
in question.

II. Reduction of the Dynamical Problem to the Algebra of Matrix
Elements
We start by considering a general pion transition process

alp) » b’) +mla,a) , (1. 1)
where a(p) and b(p’) denote arbitrary hadron states with momenta p
and p’ respectively while m(g,e) denotes a pion with momentum g and

isospin index . The S-matrix for this process is defined by

m(bg';,qa| SlaR)m = Out(bg'; galag)in . (11.2)

(where a and b denote all other quantum numbers) and is related to
the invariant Feynman amplitude Ma(pl .q; p) by

in<b_13' g0 | S|ap) In_ _ (on)*6* (o’ +q-p) (211)_9/2
X (8q°p°p'°)-l/2Ma(p’q; p) . (II.3)

By use of LSZ reduction techniqueg) one may then write
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in in i 1
(bp’: go|sfap)™ = -
(2")3/2 @ 0)1/2

[ax (0 -m ) Cop’ | %60 apy,  (1.4)
in oin
where the states |ap)~ and |bp’)” have been normalized to
m<b2’|a2>in=6ab 8°@-p") . (II.5)

We can then proceed further either by making use of an effective
interaction Lagrangianl0 of the type

= (F)™ A1) 2" #%0) (11.6)

and its corresponding equations of motion

(0 -m ?)E" &) = -(F, )2 A () (1.7)

11
or PCAC ) (l.e. (F mn 2)-23t% (x) 1s chosen as an interpolating pion
fleld and the soft pion technicque is then employed) and rewrite Eq.
(I1. 4) in the following form

5/2
F (-(—ﬁ 8* (p’ +q-~p)

x (p-p’ M (bp’ |Aﬁ(0)|a2) . (11.8)

"o’ gu|slap) = 7

(In the derivation of the last equation we have also used translation
invariance, i.e.

<bp_'|Az(x)|aB> = expl ~i(p’ -p)x] <b_g'|Aﬁ(o)|aR>).

Comparing Eq. (II.8) with (II.3) we note that the invariant
Feynman amplitude M (p'q; p) may be written as

M’ i p) = E_" (2m)® 4p%’ ) 2 (o-p" H(bp’ |2 ]ap) -
(11 9)
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From the above equation it is now evident that My (b’ ,q; p) may be
obtained by calculating the matrix elements of A%(0) between two
hadron states |bp’) and |ap). It should also bé mentioned at this
point that the state la_E) representing a hadron of momentum p may
be obtained from the state |a> at rest by means of a homogeneous
Lorentz transformation, i.e.

lap) = eiS—MIa) ) (II.10)

where M denotes the boost operator and € is a vector in the direction
of p with magnitude given by

tanh|E| =—5 ., (Ir.11)

Use of BEq. (I1.10) simplifies extremely the calculations of the
matrix element (bp’ IA (O}Ia,[g) . In fact, since the invariant ampli~
tude (II.9) is Lorentz Lin'.rr-.xriant, we may assume without loss of gen-
erality that the initial state |ap) is at rest. The final state |bp’) is
then obtained by boosting the state |b) at rest to momentum p’. The
calculation of the invariant amplitude is then reduced to the determina-
tion of matrix elements of the type

(b| oM Aﬁ 0)|a) . (i1.12)

Since the matrices of finite Lorentz transformations

Bia = (ble‘isl\-@la) (I1.13)

can be found in the literaturel3) the invariant Feynman amplitude may
be written as

P EVA. R X T a
M @ .qip) =F "' (2n)° (4pp")" (-p’) an<n|Au(0)|a>
and the problem of determining it is then reduced to the determination
of the matrix elements of A% (0) between two states at rest, i.e. to
the calculation of M

<b|AS(0)|a> 5 (II. 14)
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In order to determine these matrix elements we start by assum-
ing the validity of the usual equal-time commutation relations between
axial charges,lz) i.e.

[[ex a7te,t) [y A%(Z:t)]=i Y, (1. 15)

where IY denotes the generator of isospin transformations.
Let us next consider the matrix element of the commutator
(I1. 15) between hadron states |bp’) and |ap). We obtain

(bp’ ||:j‘d3x Ay 6,0, [Py A%(y,o)]la;g) = iec'BY(IY)ba 8% (p-p’).
(I1.16)
To evaluate the left-hand side of the last equation one inserts a com-
plete set of intermediate states In_gn> and uses franslational invari-
ance to camry out the spatial and momentum B integrations. This
yields

() ) { (bpl AT (0)] np) (np| a8 )| ap) - (bp| AP (0) | np) tnp| A% (0) | ap) 3
n

_ . OBY ¥
ie (I )ba o (I1.17)

where we have cancelled a common factor of 6% (p—p’) on both sides.
It should also be stressed that the above relation can only be derived
for states |b2> and |ap) with the same momentum p. Therefore, we
shall restrict ourselves to hadron states at rest without loss of
generality. 3

To proceed further let us define three matrices xo(a =1,2,3)by

(xg')bn=<b|A%(0)|n) @) , (11.18)

where b and n denote the bth row and nth column of the matrix x%.
With this notation Eq. (II.17) may then be written in matrix form as

« B _ _Ba _ . oByy
XX = XXy =ie€ T (I1.19)

B\

where also I is a matrix. Introducing the usual abbreviation

g Bl1_.a B __Ba
[xo,xo] = XXy = XXy (I1.20)
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Egs. (II.17) and (II.19) may then be written as
[x%,x% =1MPYLY (I1.21)

The above equation will play an important role in the rest of our dis—~
cussion. In fact, we proceed in the next section to make use of this
equation along with Lorentz invariance and abseance of exotic states to
study relations among the matrix elements (b[ (0)| a) and show that
they form a closed algebra which is isomorphic to the Lie algebra of
the group SO(3,1) ® SO(4,3).

III. Derivation of the Dynamical Algebra

Any reasonable theory describing strong interactions of pions
with hadrons must be Lorentz and isotopic spin invariant. This then
implies that the invariance symmetry group K is the direct product of
the isospin group SU(2); and the Lorentz group SO(3, 1),i.e. X=
SU(Z)I ® S0(3,1). Clearly the group K is generated by the following
Lie algebra

[, ] =1 *PYYY, (1. 1)

qu’ Ipo] - i(gvpluo B gvo]up - guvao i guolvp) . (IL.2)

and

[, ) =0 (111 3)

where a,8,Y = 1,2,3 are isospin indices, Y,v,p,0=1,2,3,0 are
space~time indices, and ™ and J are the generators of the groups
SU(Z)I and SO(3,1) respectively. The metric tensor S is defined by

9go = 1+ 911 T 9pp 933 = -1, gw=0 ifpu#v.

The most important operator in our theory is the axial vector
current A (0) taken at the origin of a reference frame. This operator
is, of course, an isovector and a Lorentz four—-vector and therefore
obeys the following set of commutation relations

<, Aﬁ(O)] =1 edBYAZ(O) (I11. 4a)

and
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Q - 1 o4 - o
qu' Ap(O)] l(ngAIJ-(O) gupAV(O)) . (I1I. 4b)

We next consider the sum rules obtained by taking matrix ele-
ments of the commutators (III.1)-(IIl.4) between two hadron states |f)
and |i) atrest. Thus we define twelve matrices xﬁ by

(:cfi)fi = <fIAz(0)li> (2m)® , (111.5)

where the subscripts f and i denote the fth row and ith column of the
matrix x*. The matrix relations following from the commutators (II1.4)
then tak% the form

a B . _QBy_ Y
I, x =ie I11.6
L u] X, ( )
and
o o o
X 1 =i X - , 1.7
[Ty %0 =10, % =g, x) (. 7)

where we have used the abbreviation defined in Eq. (II.20). It should
also be mentioned that the symbols 1 and J y occurring in the last
two equations are not operators but matrices. However, we have used
the same symbols for the linear operators ™ and T, y as for their alge-
braical realizations since these matrices will, of course, satisfy the
same algebraic relations as those given by Eqs. (III.1)-(II1.3). To
avold any confusion we stress that from now any commutator which
will be derived must be understood as a matrix relation.

If we were now able to construct uniquely the set of twelve
matrices x* then we would be finished and the invariant Feynman
amplitude %11.9) would then be uniquely determined by

L =7 =1 O Osyyp 1yt Q
Ma(p 9 D) E (4p"p " Mp-p’) Bxl_L

where the matrices B and X are defined by Eqs. (II.13) and (III.5)
respectively. To proceed further in this construction we next write
the most general form for the commutators [ x%, xﬁfl . In order to do
this we note that this quantity is antisymmetric with respect to the
interchange of pairs of indices @u) and (8v). Therefore the most
general decomposition of this commutator is:

O B _ ., OBy, Y . iop}
(%", x\)] =ie Y{u\)} +1Z[u\)]

; (111. 8)
V]



ALGEBRAIZATION OF VERTEX FUNCTIONS 397

where Y{J\)} and Z%S\B)% are matrices and the symbols [ +Jand {--}
are abbreviations for antisymmetricity and symmetricity in the corres-
ponding pairs of indices. It is now a simple matter to provtz that
YfJ\)} is an isovector and symmetric Lorentz tensor while Z[ﬁ'\ﬂ:]] is a

reducible symmetric isotensor and an antisymmetric Lorentz tensor.
This proof can be found in Appendix A.

The decomposition of the commutator [xc', xS] given by Eq
(I11.8) reminds us very strongly of the .':nc_;ebraiél structure of Wein-
berg's suﬁerconvergence conditions !0 analyzed in a series of
papers ), ), 16) In these works the left hand size of Eq. (I11.8)
is interpreted as the s and u-channel contributions to a supercon-
vergence sum rule while the right hand side correspond to t-channel
meson exchange contributions. In accordance with this philosophy
the matrices Z ﬁi are only related to the exchange of mesons with
isospin I = 0,2 since Z{aB}

[uv]

assumed that isospin two states (which belong to the class of so-
called exotic states) do not exist. Therefore we require that the part
of ZE&E% which transforms under SU(Z)I agan irreducible symmetric

is a symmetric isotensor. It is usually

tensor with I = 2 must vanish. This implies immediately that Zéﬁg%
is only an isospin scalar, namely,
{aB] oB
Z SR O T 1I11.9
[v] Y ( )

where the minus sign is only a convention and TM is a matrix which
transforms as an antisymmetric Lorentz tensor anc}) obeys the follow-

ing set of matrix relations:

’ =i T - i +

Uu\) Tpc] 1(g\)p uo gchup gupTvo gucyTvp)
(111.10)

and

o =
[(r, Tuv] =0. (I11.11)

We stress that the application of Eq. (ITI.8) to the time
components

a Bo _. QBY Y :
[xo,x0] ie Y{OO} (I11. ' 2a)
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must give the same result as Eq. (II.21), i.e.
[x%, xg] =1 %Py Y, (111.12b)

and which follow from the equal-time commutator algebra which the
axial vector charges satisfy. 12
Comparing the last two equations we obtain

(IT1.12c¢)

Since IY is a Lorentz scalar it follows immediately (by making use of

Y =0; i
the commutators Uu\)’ Y{ 00}] 0; see Appendix A) that A{ J\)} is a

symmetric invariant Lorentz tensor and therefore we conclude

Y . = Y
= . .1
Y{HV} 9,9 I (I11.13)

Using the results given by Egs. (III.9) and (III.13) we rewrite the
important relation (III.8) as follows:

o _Bq _. aBY [Y _ ..QB
= - 6 . .
[xu’ x,] g,y ¢ -1 (III.14)

From the last equation it is now simple to express T,,,, in terms of the
(o TRV
XHIS and make use of the Jacobi identity to determine the commutators

a
[Tl-l\)' xp] and [Tuv' Tpo] .

Appendix B, where the following results are derived:

These calculations can be found in

o o o
T ,x ]1=1 X - X TI1.15
L - p] (g\)p o v) ( )
and
T T =i = T = T +g T 0
[ v’ ] (gvp Mo g\)o Mp gup VO uo \)p) (II1. 16)

The commutators (III.1)-(I111.3), (I11.6), (I11.7), (III 10), (11r,11) and
(I11. 14)-(I11. 16) show that the 27 matrices I*, ., and x“ form a
closed algebra which may be identical to the Lie alggbra of some
dynamical group G. If we are able to find the structure of this group
G then our dynamical problem will be completely reduced to the study
of unitary representations of this group.



ALGEBRAIZATION OF VERTEX FUNCTIONS 399

In order to find the structure of G we find it convenient to
introduce 6 matrices Fu\) defined as follows:

= - T . .1
PW Iuv N (111.17)

It is then a simple matter to verify that the matrices F,, , commute with
all the 21 matrices 1%, T _ and x%, and that they satisfy the Lie al-
gebra of the SO(3,1) group, name%y,

[Puv’ FDU] l(gvauo gvoFup guvao * gucva) ’ (111.18)
This implies that the group G is the direct product of SO(3,1) with a
group Gg which is generated by the Lie algebra given by commutators
(T11.1), (1ir.6), (1I1.11), and (I1I.14)-(1II.16). Thus the problem is
now reduced to finding the group structure of Gy. This can be done
quite easily if we define a metric tensor gy, for

a,b=y,v,0,0...=1,2,3,0 and

a,b=«a,8,y...55,6,7 by
911 =92 = 933 =1
= = =] = 4
900 ~ 955 ~ Jgg ~ gy - *l.and
9p =0 ifa #b, (1I1.19)
and introduce in addition matrices
Lab = “Lba defined by
af
chB =-e Y IY’
-
LOLLL =X . (111.20)
and
Tt = I [
(VAY) )

With the above definitions the commutators (III.1), (III.6), (III.11)
and (III.14)-(III. 16) may then be compactly rewritten in the form
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1= 1(gbcLad - gdeac - gacLbd * gadLbc)'

(111.21)

(Lypr Leg

The above commutation relations define the well known Lie algebra
of the noncompact rotational group SO{4,3).

To conclude this section we would like to stress once again
that the dynamical problem of determining the Feynman invariant
amplitude for processes involving pions has been completely reduced
to the study of the algebra of the noncompact group SO(3,1) ® SO(4,3).
Since operators representing physical observables operate on the Hil-
bert space of physical states this then implies that hadron states
must form a representation space of the dynamical algebra of obser-
vables, i.e. of the Lie algebra of the group SO(3,1)® SO(4,3). From
this it then follows that any unitary (reducible or irreducible) repre-
sentation of this group may correspond to possible physical states.
Of course, there is no reason at all to demand that physical states
transform according to unitary irreducible representations of this
group, since the required Lie algebra relations are also fulfilled if
one considers unitary reducible representations.

IV. Connection With Dynamical Groups Proposed By Barut

We have proved that matrix elements of physical observables
form the closed algebra of a dynamical group which combines in a
nontrivial way internal (isospin) symmeiry with space-time fxymmetry.
Originally the dynamical groups proposed by Barut et all) .6 were
only restricted to the external (space-time) properties of hadrons
while later these groups were combined with internal symmetries by
taking their direct products.2 '3

We would next like to discuss what happens if we restrict
ourselves to matrix elements of physical observables describing
external properties of hadrons, i.e. to sets of hadrons with the same
internal gquantum numbers. This is equivalent to considering hadron
families with the same third component of isospin and thus implies
that we rule out all matrices I* connected with internal symmetries
as well as the matrices x' and which change the charges of the
hadrons under consideratﬁ)n. Thus we shall only deal now with the
16 matrices J Gt TH\) and =T , It is then simple to verify that
they form a c‘llosed algebra whicﬁ is identical with the Lie algebra of
the group SO(3,1) ® SO(3,2). This result tells us that hadron states
with the same third component of isospin must transform according to
unitary (reducible or irreducible) representations of this group.

The dynamical group SO(3,2) was proposed by Barut, Corrigan,
and Kleinert? in order to calculate mass spectra and electromagnetic
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form factors of hadrons. In their framework hadron states are assumed
to transform according to unitary irreducible representations of this
group and the matrix I introduced above plays the role of their so-
called algebraic current. They then consider one class of represen-
tations of the group SO(3,2), which, of course, are also representa-
tions of the group SO(3,1) ® SO(3,2) which we have derived here by
identifyingl the matrices Tu\) with the matrices T v Thus we have
shown that the assumptions made by the preceding authors on the
basis of an excellent physical intuition can in fact be uniquely de-

rived making use of usually accepted dynamical assumptions.

V. Summary and Conclusions

Several dynamical models for the description of hadron states
which lead naturally to relations identical to the algebra of certain
Lie groups have been proposed over the last few years. Among thesn
we start by mentioning the popular Chew static bootstrap model, 17
which was completelf/ reworded in group theoretic language bg Cook,
Goebel, and Sakita. 8) Next we mention the work of Cappsl ) who
has shown under fairly general assumptions that if one saturates
superconvergence sum rules with single particle states one is natu-
rally led to models in which hadron states are associated with unitary
representations of certain Lie groups. More recently, algebraic
superconvergence conditions for the forward scattering of massgless
pions with hadrons have been derived by Weinl::erg10 0 making use
of the effective chiral Lagrangian formalism.

All the preceding treatments led to the conclusion that hadron
states form a basis for unitary representations of certain Lie groups.
On the other hand, in the framework of dynamical groups one usually
makes the ad hoc assumption that hadron states form unitary irredu-
cible representations of some noncompact group. Since this approach
has been rather successful one is then led to conjecture that these
dynamical groups might in fact be derived from generally accepted
physical assumptions., We have shown that this is actually the case.
In fact, we have derived relations identical to the Lie algebra of the
group SO(3,1) ® SO(4,3) merely by assuming isospin and Lorentz
invariance, usual equal~time commutator algebra between axial
charges, absence of exotic states, and either an effective interaction
Lagrangian or PCAC. Since physical observables are self-adjoint
operators in the Hilbert space X of hadronic physical states it then
follows that¥ is the representation space of the Lie group SO(3,1) ®
SO(4,3). Thus hadron states must form a basis for unitary (irreducible
or reducible) representations of this group, which is a nontrivial com-
bination of the isospin group SU(2) with the Lorentz group SO(3,1).




402 MILAN NOGA

The generalization to larger internal symmetry groups (for example
SU(3)) is straightforward and may be done along the lines discussed
in this paper.

The dynamical groups proposed by Barut and his collaborators
were SO(3,1), SO(3,2)and SO(4,2), which are all subgroups of
SO(@3,1) ® SO(4,3) so that all representations of the latter are also
reducible representations of the former groups. If we only restrict
ourselves to the external properties of hadrons we have found that
hadron states with the same third components of isospin are classi~
fied according to unitary representations of the group SO(3,1) ®
SO(3,2). Note that the group SO(3,2) is exactly the one proposed by
Barut et al4) in their calculations of electromagnetic form factors and
mass spectra of physical states.

To conclude this discussion we stress that the dynamical cal-
culation of the pion~hadron vertex function was reduced to a set of
algebraic relations which turned out to be the same as the Lie algebra
of the group SO(3,1) ® SO(4,3). Finally, it should also be mentioned
that an algebraic treatment to the dynamical problem of pion-hadron
coupling constants has also been extensively developed in a series
of papers by Sugawara who makes use of the LSZ reduction technique
and the assumption that the dispersive part of the three point function
may be completely saturated by single particle intermediate states.
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Appendix A {8}
In this appendix we show that the matrices Y Y and Z
{uvl Luv]

introduced in Eg. (III.8) transform as tensors under Lorentz and iso-
spin transformations. We start with the matrix relation (III.8), which
is of the form

OBY y Y 4 ypleB} @.1)

S JE
[Xu' el {uv} Cuv]

OQur first step is to express Y{J\)} in terms of x&. This can simply

be done and one obtains the following result

Y i apgyr o B
Y{IJ.\J} 7€ [xu, x\) ] : A.2)
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The commutator
Y __i apy a B
[IPG' Y{UV}] 2 € [Ipo_l [xul XV]] (A-S)
can then be rewritten by making use of the Jacobi identity as
Y _i @By B o4 (o] B
’ = ) [ + ) ] . .
[Togr Yoy =20 (e L1001 + [, T, T 103, )

Carrying out the algebraic reduction using the commutation relations
(I1I.7) and (III.8) we finally obtain the result

Y — Y Y Y Y
Y =i Y + Y - Y = Y z
Upo {uv}] (gou fov}” Fovi{our” o fovl T pv {cu}) A.5)
From the above equation we see that the matrices Y{ Y ] transform as

a symmetric Lorentz tensor. The same procedltre can be used to prove
that Y{J\)} transforms as an isovector while ZL.SE% transforms as a

symmetric isotensor and an antisymmetric Lorentz tensor.

Appendix B

The purpose of this appendix is to derive the commutators
[Tu\), x%] and [Tuv' Tpoj . We start from relation (III.14) and obtain

i o a
== [x . .1
Tuv 3 [Xu' X\)] (B.1)

By making use of the above equation we may then write

B, _ 1i..B a 0
[Tu\)l XQ] . 3 [Xpl [xu’ X\)]] . (B.Z)

We next apply the Jacobi identity to the double commutator given
above and obtain

B, _ i o4 B .a a. o _B
[Tuv' Xo] =3 {[xv. [xP, Xu]] +[Xu’ [, xo]]} e (8.3)

Making use of Eq. (III.14) we then carry out the algebraic reduction
of the double commutators on the right hand side of Eq. (B.3). This
yvields the result
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By By oo g o8y -
i, x5 =5 e, b - g Py - gttn L Pyl ,xj}(B Y

The precedmg commutator is then used to calculate the sum
[T 0 be '_] [T\)p’ xﬁ] After some simple algebra we obtain

g i B_ B _1 B
[Tpu,x\)]+[T\)p,xﬁ] slogx, -9 k) -5l %1 (B.9)

Inserting the last result into Eq. (B.4) we then obtain the relation

B

[Tw,xB]—l(g LR x°) ®.6)

STORY

which has been used in Section III.
‘We can now proceed further and calculate

=1 o o
[Tl-l\)' TpO'] i 3[T|J.\)' [xp; xO']] . (Bo7)

In order to do this we once again make use of the Jacobi identity for
the double commutator and obtain upon using Eq. (B.6) the result

1 oA+ 4 o o o _a a _a
= — - + - L
[Tuv' Tpo] 3 {gvp[xa' *x1-9 [xo'xv] gcu[xp’xv] gvo[xp'xu]}

M Mp
(B.8)
Combining the above relation with Eq. (B.1) we then find
T , T T - T -~ T + T 5 .9
L e pc] 1(9\)p R e itc T vp) (8.9)

Thus the matrices T,  form a closed algebra identical to the Lie al-
gebra of the group S0O(3,1). Relation (B.6) then tells us that the
matrices x% transform as four-vectors with respect to the group in
question.
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Section C: Mass Zero Particles







MASS'ZERO PARTICLES IN DE SITTER SPACE*

Gerhard Borner#
Max-Planck-Institut fiir Physik und Astrophysik
Munich, Germany

Introduction

If in Einstein's equation with a zero energy-momentum tensor
we allow a nonzero cosmological constant A, then we find as a solu-
tion the curved but empty De Sitter spacetime. There are essentially
two models with different global topology, which can best be visual-
ized as hypersurfaces in a flat 5-dimensional Minkowski space Mg :

-] 2 2 2 2 3
a) € -8 -E3 -8y -Ey =-R? (/\EF)

The group SO(1,4) acts transitively on this manifold.

2 3 2 2 2
b) 50-51-52-§3+§4=-R2

This space has SO(2,3) as a transitively acting symmetry
group.
In the following we shall be concerned with model a) 1)
Obviously the infinitesimal generators of SO(1,4) are the oper-
ators of angular momentum Jyp in Mg . There are two Casimir operators

1 ac _bd
L= 2@ Jap™ " e
_ .. b a _ abcde
L=ty gy, L Toe Tae
(nab: metric-, eadee completely antisymmetric

tensor in Mg)

+Presented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.

$Address from Sept. 1970 to June 1971: City College of C.U.N.,Y.,
New York, NY 10031.
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The contraction R » « gives back the generators of the Poin-
caré group. I, and I, go over into the operators of mass and spin
respectively.l) In De Sitter space we characterize a particle by its
eigenvalues with respect to I, and I, , which in view of the above
mentioned correspondence to the flat space quantities we might call
again "mass" and “spin.*

I. Spin Zero Particles

A. Klein-Gordon Equation
Under x’ = g(x) a scalar field transforms as follows

e ') =p &) (1)
Introducing a convenient coordinate system on a):l)
*
ds® =172 (RRd\? - (dy)?) (2)

—o< )< ® A#0

- o< ya <
. 1)
we calculate the generators using (1) and get
Xz 2)\ 5
= +
I axa)\ + a X a)\a
The field equation is
Lo =n3gp (3)

We solve this equation as in Ref. 1 under the condition that I, must
be a self-adjoint operator defined on the Hilbert space of square-
integrable functions with respect to the invariant measure on a). Thus
we obtain irreducible representations of the De Sitter group which are
decompositions of the quasiregular representation of the De Sitter
group on a), defined on this same Hilbert space.

Z 1,2, - 1,2,
wiere £0 =B - gy gl fed oy ted,
o
%4 = —"()\ﬂ_l) T yz)\ . For R = » werequire )\ ~ (1 +XT), then
Y- X

ds® - (dx°)? - (d}{)2 .
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The spectrum of eigenvalues R®#x® =9/4 - V® consists of a
continuous

v =ip, 0<p<® (4)
and a discrete part
={n+%)?, n=0,1,2,... (5)

(this is the so-~called "most degenerate” spectrumz)).

For R ~» @ a whole bunch of eigenvalues #® goes to zero, as
if the curvature of spacetime has removed a degeneracy present in
flat spacetime. 1),4)

To each value of #2 belongs a definite eigenfunction:™’’

in/4

Im (e

. h, . (|k|R)
=N X 1o0) £ 6(a)) -+ (6)

p:f: Re ( " )

Np: normalization factor, : spherical Hankelfunction
(+ indicates the &- parity.I) Pp (= ,x\f irppI(J& ,¥): where J: ) » -\,
y = Yy is the discrete symmetry transforming antipodic points of the
De Sitter space into each other, commuting with every group element)

.
o, =N 32 L 5 0|k|R) (6)

., \n
n (- ®n

4)
We have two completeness relations, one for each system of functions
with a definite F-parity:

fdak{ico;n 02V, Oy) + fdo cp:i(k',z')cppi(x,x)}

n 2n+l 2n+1

4
=600 £ 500} 6% (v-x") (7)

B. Quantum Theory of the Scalar Field

The commutation function [ &), @(y)] for real fields must be
an invariant two-point function which is

i) a solution of the homogeneous equation (3)

ii) constructed from cpp+ 0 cpp_, ®,
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iii) antisymmetric
iv) causal, i.e. zero for spacelike distances

s= 0\ YR AP (y -y )R]

For a fixed value of »® out of the continuous spectrum we can con-
struct a function meeting all the requirements1

B0z y) =1 [k 00 Yo 0D

*
- tpp+()n y) cpp_(x’, ¥')) cothmp

Al)\:}\, =0 (%B)\A)P\:,}\, =2%8%(y - y") (8)
We see that this function gives rise to a canonical quantization of the
free scalar fields in De Sitter space. The above construction made
use of the fact that to each value of p there exist two eigenfunctions
of F-parity +1 resp. -1. In the case of the discrete spectrum the %-
parity of the eigenfunctions is (=), i.e. the eigenvalue of the Casi-
mir operator determines the JF-parity. Therefore we have only one pos-
sible candidate for an invariant two-point function solving (3), and it
turns out that thig is the acausal function. Let us look more closely
at the state #® =% (n=0), This is the conformal invariant state,
because the equation Iy == ¢ can be transformed into

Ehen

R2

~3,3, =0 )

The equation is formally conformal invariant, but the solutions of (9)
in De Sitter space are

. 21k

ik*y

oo =2 e —ms J 0kIR) (10)

which do not form complete basis for an irreducible representation of
the conformalgroup SO(2,4). The invariant function constructed from
(10) is ~ l, the causal function D~¢6 (s)cannot be obtained.

We have to conclude that the conformal invariant solution in
De Sitter space does not possess a causal commutation function, and
can therefore not be interpreted as a particle. Since it seems rea-
sonable to ascribe mass zero to the conformal invariant state, which
does not feel the curvature of spacetime, we may state that there are
no spin zero, mass zero particles in De Sitter space. The condition
for the physical state space is x® > 9/4R®.
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C. Goldstone Particle

There is no Goldstone particle in (1+4) De Sitter space. A
formal transcription of the original (not (iuite rigorous) proof of the
Goldstone theorem into De Sitter space3 indicates that the additional
state appearing in case of a spontaneous symmetry breakdown has to
have a mass »®*= 0 (n=1). This state belongs to the discrete spectrum,
has only the acausal invariant two-point function, and can therefore
not be interpreted as a particle.

It may be interesting to note that the conformal invariant state
and the Goldstone state have different quantum numbers.

II. Photons

A. Transformation Properties of Fields with Spin

To define the transformation properties of fields with spinl) we
use the fact that SO(1,3) is a subgroup of SO(1,4) and that it is the
stability group of the point x° = (0,0,0,0,-R) (in 5-dim. Mg coord.).
Defining g, € SO(1,4) as the group element transforming x into x°, we
find that to each group element g (x’= g(x)), there corresponds a rota-
tion around x©: gx"} gg,. The fields are representations of this group
{gx'} g gx} which leaves x° fixed, i.e. the homogeneous Lorentz group;

V&) =Tt e 0) ) (11)

To determine the infinitesimal generators for fields with spin,
we have to add the local variation to the displacement operators de-
rived for the scalar field. These spin operators are uniciuely deter-
mined by writing (11) for an infinitesimal transformation, ) and we
find for the generators

_ =1
B, =8, B, =R T4
B =-i3 ++7
o o R0

3

] =L _+28_+%5s
oo o ) Ba
T = Lag * Sap @,8=1,2,3 (12)

o}
Here B ,, Lm) are the generators represented on a space of scalar
functions. The spin matrices Su\) satisfy the commutation relation
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S (13)

+
[VAVARES 9 WX AV anS

VX SXu

Fields of spin 1 transform like vectors under the rotation group. To-
gether with (13) this determines Suy to be

(SaB)pv == 1(ncwnBp - napnBv) p,v=0,..,3
= =1 + =]
(Soa)pv 1(ncwnop napnOY) «,p=1,2,3
n = (+---) (14)
Then

2 0 0 O
2 2 2 0 2 0 O
Slz+szs+ssl= 0 0 2 0
0 0 0 O

B. Field Equations for Spin 1
Using (12) and (14) we calculate the Casimir operator I; and
end up with the field equations

AY — 2
I A = A
(l)u WA

Y
o 2 2
+ - 2 = e—
(I B )Aa R %aPo
o 2
Ty +x®)A, =—$ 3, A, (15)

where
o 2
=X ) R
I = ¢ a)\a)\ B A TN 242
For the second Casimir operator I, we obtain

I, =2I, +B (16)

where Bu\) A\) = 0 is equivalent to

A 3 B
RO, B, "R A, " A3 A =0 (17)



MASS ZERO PARTICLES 415

(17) is the Lorentz condition generalized to De Sitter space.
To solve (15) and (17) we make the following ansatz:

ik
_ ikey u a
AOL =g ay H, W) + mi H, (w)
A_ = Hs(w) w = | k[ R (18)

where ac';:-k(1 =0, (g"‘)z = 1 (we omit the explicit construction of aé).
Inserting into (15) we get three equations

2 2R+ 2
(awaw—gvaw+1+——" ) Hy(w) =0 (19)
(0.5, 23 +1 bl p o) =2 g ) (20)
ww wWw w? 2 W —WH"SW

) 2 2
(awaw-;’aw+1+”W§2)H3(w)=-;ng(w) (21)

The general solutions of (19) can immediately be written down

H, ) = N, w2 )+ T )

W o=1 -%R (22)

Iu: Bessel function, Nu: Normalization factor
(20) and (21) can be solved by the ansatz
v
Hy (w) =w’ J (w) Hy W) =w (e +Bwd_) T (w) (23)
88 Wi
p=v+1l, v=3/2, a=%, p=-1; ° =% -u2R? (24)

So the general solutions of (15) have the form

ik

_ ik'y 3/2, 3 1 ISP
e~ 4w a NH{IH+CHI_H}+[£|NH@ wa NI T D

A
a

ik ‘Y 5/2 3
A =e~tw N° (] +& 25
i 2q, T ) (25)
Inserting (25) into (17) we obtain the additional conditions

Ng = NG e, (20
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C. Spectrum and Eigenfunctions

Let us make an attempt to proceed in analogy to the scalar
case. The main difficulty initially is the indefinite norm. We are
interested in solutions for which

0<J'AT~A dan <o
VIRV

with the measure dQ being the invariant measure on the De Sitter
hypersurface induced from Mg . In addition we require these solutions
to form a manifold on which I, and I, are simultaneously"self-adjoint.
Just as in the case of the scalar field these conditions determine a
spectrum of #® and glve a definite form for the eigenfunctions. By
investigating formally the self-adjointness condition we find that
there 1s a continuous spectrum = < x®*RP< «, where to each value x* of
the Casimir operator correspond two eigenfunctions of opposite F-
parity just as in the scalar case:

Bu® =p®-32 0<p<ew

+ A (w)=>\3/2 il-"l’(e(x)ie(-x)) (N’ a*+1—k&N2(i-wa ) x
P =5 = pa |kl Tp* w

me™ 5 (lw|))
ip
X
Re( n )
mE. (|w)]) ™%
5/2 ik'y 0
p* Ao(w) =\ e~ Np(e(x) £ 68(-\))
Re( " ) (27)
+1 x>0
where H, : Hankelfunction of first kind; 6(x) =
el -1 x<0

And there is a discrete spectrum, where the eigenvalue of the Casimir
operator I determines the F-parity of the functions:
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Re‘)iz =%-(n+%)2 n=01112:
sa () =31z N2 EE (v L TR G )
B SR A L a [x] “n WwIn-l-%w}

ne A ) =30 s M2 ETN 1) (28)

These functions can of course be only "improper" eigensolutions. By
looking at the integrals

[loq = Au(wl” -(pp £ A (wg)) Ady = 8%(k ks ) 8 (p1-05) 54
and

t R R
[ma @) nA ()53 Py =s, 6% -ks) (30)

we find that only the normalization factors Np of the continuous part
of the spectrum can be determined as finite quantities, while the dis-
crete spectrum does not allow the determination of finite factors Ny
because the norm of these functions is infinite. The solutions (28)
do not belong to our"Hilbert space! The physical state space is built
only upon the solutions (27), with the spectrum condition »® > %Rz .

This is an indication that wavefunctions with infinitely many
spin components are needed to give rise to unitary representations of
the symmetry group for R®4® =% - (n+3)°? , just as it is the case in
Minkowski space for imaginary mass. We see that the discrete part
of the spectrum again corresponds to the imaginary mass states of
Minkowski space as in the case of spin zero.

D. Conformal Invariance, Gauge Invariance

The conformal invariant state, invariant under the transforma-
tion of a covering group of the conformal group SO(2,4), is contained
in the discrete part of the spectrum: It is the state with »® = 0: With
the help of (17) we can bring (15) for »® = 0 into the form (Au- xAu)

o, 0 Fe)
00 = _ A
Cr BBBB) T T
3.2 d
et B e
( 2 BBBB) AO REBXBXAO R aBAB (31)



418 GERHARD BORNER

which explicitly shows the conformal invariance. Note that the term
d (3 \)A\)) does not vanish, because the auxiliary condition still does
not have the usual conform invariant form, but reads

A _2a =
R0\ A, “RA, M3 A =0 (32)

From (31) it is clear that 4° = 0 gives also the field invariant under
gauge transformations. Indeed, the substitution Au - + auf (ao =
1/R ax) leaves (31) invariant and (32) gives for f the condition

2)

A & 2 _
(ﬁgaxax V'3 3, - T8 a)\)f 0 (33)

which is, by the way, not the conformal invariant scalar equation.

Our previous investigations have shown that the state with
#n® = 0 does not belong to the space of physical states for which n? >
IR?. So the states forn®= 0 cannot be interpreted as particles, the
usual characterization of the photon as the conformal invariant and
gauge invariant particle cannot be kept up in (1+4) De Sitter space.

The remaining possible candidates for the photon come from
the continuous spectrumx?> ZR®. As has been shown for the scalar
field a causal commutation function can be obtained, if for each value
of the Casimir operator there are two eigenfunctions of opposite &-
parity. The arguments given there hold true in the spin 1 case too.
In fact, the calculations are almost identical, so that we can omit
them here. o

One can now arbitrarily choose a state withx? = R, o> %
which gives zero for R —» «. This undesirable arbitrariness carries in
it also some inconsistency: The light cone is as usual described by
the classical propagation of lightwaves, corresponding to the confor-
mal invariant value »* = 0. Now we have the paradox situation that
the quantum particles cannot travel along their classical path, that
photons do not run along null geodesics,

III. Spin% Fields
A Similar analysis as in Sec, II can be carried out for the spin
% fields. 1 The second order Casimir operator is

11%

o 3 o
=1, Tl + \o aa-vs (34)
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1 0
gc‘: Paulil matrices Ys =( )

0 -I
Ilé can be factorized into
11%=(iy° La +i>\y“a +iy°—3—)3 s 35)
R\ (3 2R 2R?
Hence
(I, +x®)y =0 (36)

is equivalent to the De Sitter invariant Dirac equation
oA , & , o3
VY Rax ixy a“ iy ZRW my (37)
with

W2 =P s (38)

3
for physical states u® > 7Re - So the conformal invariant state m® =0,
or x® =_i§ , again does not belong to the physical state space, but

its massz%é the lower bound for spin 4+ particle masses.
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DE SITTER ALGEBRAIC APPROACH
TO ELECTROMAGNETIC INTERACTIONSt#

B. J. Dalton
Department of Physics
Florida State University

Tallahassee, Florida

I. Introduction

Here, we discuss a new (group~theoretic) approach to electro-
magnetic interactions. The method used assumes that the interacting
particles are each separately described by a De Sitter momentum
space as discussed in the author's first lecture at this symposium and
in a recent publication. 1) Our aim is to give a reason, from group
theoretic arguments, why the particular force pattern

i =3
F=qE+qV XB (1)

should occur in nature. The second term can, of course, be obtained
from the first by transformations from the rest frame where the first
term holds. Conventionally, one could take this first term as an a
priori fundamental property of the electric field and charge or one can
construct an appropriate Lagrangian (or Hamiltonian) and reobtain the
experimental form (1) from extremum equations.

Qur procedure for describing the interaction patterns is to
study the composite group representation for the two particles and how
it changes as the two extended particles move closer together (or
apart) in the background X-space. As will be seen below, the particu-
lar nature of force patterns such as (1) is determined (in this picture)
by "how" the composite representation makes a transition between the
uncoupled and vector-coupled limits as the two extended particles
come together.

tPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.

¥Research sponsored in part by the National Science Foundation
CGrant No. GP-7901,
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422 B. J. DALTON

The two geometries describing the two finite particles are not
part of the background Minkowski space. We use small symbols with
prime and double prime to label the components for the two particle
geometries, i.e. (p’, x’), (p”, x”) etc., and a large symbol X to label
the background space. lLarge P’ and P’ symbols are also used to des~
cribe the two average (observable) momentum spaces for the two par-
ticles. The averaging is over the finite extent of the two systems.
The centers for the finite particles have "positions" in the background
space, and an x-space interval in the particle's geometry may corres-
pond to some interval in the background X~-space. However, we will
not need to explicitly give a mapping between intervals in these two
spaces in order to obtain force patterns.

II. Two Exireme Limits for the Group Representation

We first describe two extreme limits for the composite group
representation for the two particle-geometries. The first is the un-
coupled limit (independent particle limit). This limit corresponds to
the case where the two particles have a very large (or infinite) sepa-
ration in the background X space. The two geometric particles are
described independently of one another in this limit. We have for the
prime system the eigenvalue equations. 1

’ ]‘!
1y =-S22b ab s )
Loy =wl owlovy (3)
méa Y/ =TJda ¥/ (4)
m{, ¥ =7J{p ¥’ (5)

and for the double-prime system, the equations

(4 ]9‘/
1 v =-2080 v (6)
? o 4 4 ”
I, v Wa w’a ¥ (7)
My Y =Jsa V¥’ (8)

Mz Y =3, ¥ (9)
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In keeping with the physical interpretation of the first lecture, we
refer to J&, , Js, as the charge generators and Ji,, Jiz as the spin-
projection generators. In this uncoupled limit, the charge and spin
projections for the individual systems are good quantum (labeling)
numbers. The wavefunction ¥(UC) for the composite representation
in this limit is written as a kronecker product

¥(UC) = ‘i’(;(P') Yg ") (10)

where o and B represent the labeling numbers for a given solution
and UC refers to this uncoupled limit.

The second limit corresponds to the case where the two geo-
metric particles have come together in the background X-space to
form one system. We represent this limit by the vector-coupled rep-
resentation with composite generators given by

= ’ 4
]ab ]ab N ]Jab (1)
This corresponds to the conditions
9, =86’ =8¢ (12)

ab ab ~ “ab

i.e. the two systems transform together in the same parameter space
{eab} . We have the following eigenvalue equations for this case

|
LY (VC) =—““’—}'324‘—b ¥ (VC)
o[ ablab  Janlan o, ., - .
2 2 Iab Iab
LyVC) = w, W, ¥ (VvC) (14)
Mg, ¥ (VC) = 54 ¥ (VC) (15)
My, ¥ (VC) =T, ¥ (VC) (16)

Here, the condition

Mz =m]’.2 +m:f2 (17)
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corresponds to spin projection addition, and the condition

Mgy = Mgy + mgl.k (18)
corresponds to addition of electric charge in this picture. This inter-
pretation is in keeping with the interpretation in the first lecture of

J4, and Ig4 as the charge generators. In this vector-coupled (VC)
limit, we write the wavefunction ¥ (VC) in the form

= 7 (7 ot
¥WC) = ) Cug ¥ 6") Y6") (19)
oB
where
o = 0“é4-: Myz), B= (mgu mgl.a (20)

The sum over ns, is replaced by an integral for the 4+1 group. Here,
we make no attempt to evaluate the generalized Clebsch-Gordan coef-
ficients CCL , but just treat them as constants. In this limit, we can-
not say tha? mé4 and n{, are good quantum numbers, i.e. the prime

system does not have a good charge and spin projection.

IIi. Interaction Representation

We assume that as the two particles are approaching one ano-
ther in the background X-space, the composite representation is
undergoing a transition from the uncoupled to the vector-coupled limit.
In this in-between case, neither the uncoupled, or the vector-coupled
representation is valid. We assume that the wavefunction for this
transition region can be written, however, in the form

YR) = ) T &) ¥ 07) v ") (21)
o

where the coefficients T, 4 (X) are functions of the separation of the
two particles in the background X-space. As the two systems come
completely together in the background space, we require that

TaB x) - caB, ¥(IR) - ¥(VC) (22)

so that the representation reaches the vector-coupled limit.

To obtain equations for the transition region, we assume that
the interaction representation corresponds to the path (set of equa-
tions) which minimizes the structural difference between the uncoupled
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and vector~-coupled limits. This minimum structure-difference
approach is somewhat analogous to the extremum path approach of
general relativity, and the Lagrangian approach of classical mechan-
ics and field theory. The two limiting representations differ from
each other in several structural aspects. For instance, the labeling
numbers MZ,, and M, are not good labeling numbers for the vector-
coupled limit, but Mg, is. One structural difference measure be-
tween the two limiting representations then, is the value for the
commutator

[iq-*’;—ab, % | (23)

since J3pJap is diagonal in one limit and J¢, is diagonal in the other.
We assume that the coefficients TCLB (X) in (21) are chosen to mini-
mize the structure-difference measu.re

_ J
1¥(w) [—E“”T&‘-@, R | ¥(R)] (24)

To see the patterns which are contained in these structure-difference
measures, consider the commutators

I E[Iabzlab ‘ ISp]—ZIEISb by ™ Tsp I]’;u] (25)

where we have used (13) and carried through the indicated commuta-
tion relations using

[Izlib' Iéd:l - i,:esac Ii)d b 6ad IIIJC h 8bc Ia,ld 3 6bd Iz’ic] (26)
Consider the commutation measure
- - aB
| ¥ (IR) 1Y) = | z Ty Ts <3 (27)
B Yo

Y8
where

<I

[, Tou ~ T5b Ibp.] LA 28)
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To obtain an x’ and x” space version of these structure-difference
measures , we take Fourier transformations over the particle momen-
tum spaces p’ and p”. Since the coefficients T, B(X) are independent
of p’ and p”, we obtain the form

T F @B; vy 5 29
) T T B @8y 6) (29)

ap

Yd

where
M e
— ? " : 7 7 T4 V4

7 —de fd’r exp(1p\) xv) exp(1pp xp) <I“>Y5 (30)

To bring some of the terms in (30) into recognizable form, consider
the diagonal terms of (30), (y,8) = (,B) for the scalar representation
where

= 7 4 = ”
Iab {’ab’ Iab Lab (31)

For this case, (28) becomes

ap

<Iu>y6 7 \y” [&Sb 1 -ty bu]\y A 32)

Using (32) in (30) and the interpretation (and definitions for the elec-
tromagnetic current densities and field tensors) given in the first lec-
ture, we have

F
M5 ol SNy T 1Y _ g T Y DY ”
- 21[1\/1 Ty B, ) - M7 L) By e )] 63
where M’ and M” are the respective radii of curvature for the two De

Sitter momentum space geometries. 1) In (33) ] represents only that
part of the current-densities that involves the generators x,gu, i.e.

J ') =[dr’ exp (1p X )Yo. &éu ‘i’& (34)

The physical patterns of (33) are easier to recognize in conventional
vector form. We define the vector components in the usual way, i.e.
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E]’<=iF:1k, B]’<=F£j cyclic 1,2,3 (35)
Ei’(=iF2’1k, Bi’{=F’i’j cyclic 1,2,3 (36)

For y =4, (35) and (36) in (33) gives

F

4_ _ = VY 2 Y IV
71 2[M’']"-E M7y -E"] (37)

For u =1,2,3 we combine the three terms of (33) into a single vector
T _1l ra n N
ETR ] [8,F, +8F, +8F;]
= - 2i[ M’ (i [/E’ +7" x B')
- M” (G JE +3' x B”)] (38)

Comparison of the form (38) with (1) indicates that (38) is the usual
total electromagnetic force density minus the self~force terms

e, ipE, 3 xB, 3 xE (39)
Likewise, no self terms like
z“ E’ and I':" B (40)

occur in (37). From our earlier arguments, we can only require a
minimum on the measure (27) for w = 4. This involves the terms (37),
but not those of (38).

We recall that the above terms are only the diagonal parts of
the structure-difference measure (29). The off diagonal terms involve
states of different charge and spin. This suggests that one should
perhaps fry and relate these terms tp charge and spin exchange, be-~
tween the two particles. An exchange interpretation is supported in
another way by the form (and nonzero value) of the quantities
Fu(c. (B y,6) in (30). Inspection of the diagonal terms (37) and (38)
indicates that the quantities F,, measure the deviation away from the
action-reaction symmeiry between the two geometric systems in the
transition region. One very suggestive interpretation then, involves
associating the quantities F, with exchange impulse densities be-
tween the two particle geometries.
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For the non-scalar representations, one will obtain patterns
identical to the above, but with the orbital generators replaced by the
total generators Iéb etc. The patierns in the structure-difference
measures then involve intrinsic (spin) terms as well as cross terms
between the orbital and spin parts. One cross term of interest arises
in the form

B x @) ana B x @)! (41)

where (_f 4 )I represents the intrinsic part of the cwrent density as
discussed in the first lecture. From experiment, one has the (mag-
netic field)-(magnetic dipole) force form

Bxn (42)

Comparison of (41) and (42) would suggest that one try and interpret
the intrinsic part of the currents (which arise from spin operators S5 i)
in terms of magnetic dipoles. Analysis of the above patterns in terms
of geometric inversion behavior (e.g. p/, = -p/, M’ - -M') would be
a step towards finding possible physical interpretations for the extra
terms. The structure-difference measure, involving Ji . and the fourth
order Casimir invariant, should be minimized simultaneously with (24).

IV. Concluding Remarks

The above algebraic approach to electromagnetic interactions
has three important characteristics. First, the same field distribu-
tions (e.g. Fy, (x’)) which occur in the free (non-interacting) case
also occur in the force patterns. The interactiqn then (in this picture)
does not give rise to the functional form (like = ) for the electro-
magnetic field tensors. Rather, the interaction force patterns are
involved in structure-difference measures which we minimize. By
minimizing these measures, we are attempting to keep the free parti-
cle structure (field distributions) intact, as much as possible, while
approaching the vector-coupled representation. The underlying phy-
sical assumption is that the change of relative motion (i.e. forces)
between particles is nature's way of minimizing the difference be-
tween two mutually incompatible structures; that of the individual
particles on the one hand, and that of an "in-unison" structure {des-
cribed here by the vector-coupled limit) on the other. The second
characteristic is that one does not have any self force terms in the
structure -difference patterns. Third, the particular force patterns
which result depend explicitly upon the structure of the free parti~
cles-(i.e., upon which generators are diagonal). If one took an
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alternate set (e.g. a linear combination) of the generators and dia-
gonalized in this set, the interaction-force patterns derived, as well
as the fleld distributions, would be different.
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ELECTRODYNAMICS AS PROPERTIES
OF DE SITTER MOMENTUM SPACET#

B. J. Dalton
Department of Physics
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In this paper, we consider the possibility of describing an
elementary electromagnetic system such as a photon, or an electron
as a geometry. By this, we mean to relate particle and field entities
(e.g. currents and field tensors) to pure geometric quantities such as
group generators of motion. The aim is not to read in Maxwell's equa-
tions relating the currents and field tensors, but to find a geometry
which gives rise to these equations.

In this geometric picture, the particle is not viewed as a local
deviation away from (twist in) the background Minkowski space.
Rather, the particle is viewed as a geometry (little universe) itself
which is independent of (pinched off from) the background space. The
center of the particle's geometry is assumed, however, to occupy
some position on the background space, but just where, does not
matter to the particle's structure.

In order to obtain non-trivial structure, one must use for the
particle's geometry a metric significantly different from the Minkowski
one. In general relativity, deviations of the metric away from the
Minkowski picture are usually important over large intervals. For
elementary particles, however, one has large intervals in momentum
space. Because of this, we study the particle's structure as a Riel-
mann geometry in a momentum space p, rather than in an X space. )

We wish to consider a momentum space whose invariant line
element admits a Lorentz transformation subgroup. One well known
line e&eimf)nt with this property is that of the conformally flat De Sitter
space "’

fPresented at the Symposium on De Sitter and Conformal Groups,
University of Colorado, Summer 1970.

¥Research sponsored in part by the National Science Foundation
Grant No. GP-7901.
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-dg® = depLl dpLl (1)
p P -1
0- (-3 g

where M is a constant which will appear in a mass spectrum dis-
cussed later in this lecture. The ten generators of motion which keep
(1) invariant are

(pugp— =P, a-i:) (3)

b = - MO - +oX 4 @)
Su op, 2M Wy

This model corresponds to a free (non-interacting) extended (finite)
particle. TFor each Lorentz frame, the particle is spread out over the
subset of points U, which are reached from a given point by the four
non-Lorentz transformatmns whose generators are defined in (4).
Later in this paper, we average the little py over Uq, 1.e. over the
particle's extension in the little p space for each Lorentz frame.
These average quantities are assumed to give a measure for the ob-
servable momentum components P, (indicated by large P symbols),
i.e.

Pu = <p“>UO (5)

The set of points {PH' p=1-43} are reached from one another by the
Lorentz subgroup of transformations. In this way, we obtain for the
free "finite" particle a 4-momentum space which is spanned by the
Lorentz group of transformations.

In a recent article ,3 it was shown that equations identical to
those of electrodynamics are realized as relations between the above
ten generators (3) and (4). There, ten p-space densities were defined
by

= = 1 3Y

K =¥4,. ¥ +iM¥ Q™ 2L 6

% LSu i Q 55 (6)
1

=-—==%1 v (7)
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where Y is an eigenfunction of the two Casimir invariant operators
and a choice of two commuting generators. Y ¥ is a De Sitter scalar
in a given representation. Using (3) and (4) in (6) and (7), one can
show that the densities KLJ and Ku\) satisfy the relations

Ku=1p\)Ku\) (8

K + K + K =0, 9
pp S8V p\) pUL pu vp D?{U-?é\) ®)
K =0 10)

ERES (

Corresponding functions in a little x-space for the particle's geometry
are introduced via a Tourier transformation, i.e.

6 = Jdr exp(i P, K () (1)
F o) = [dr exp( prp) K@) (12)

where dr = Q*dp;,dp,dpsdp, is the invariant volume element. This
little x-space for the particle's geometry should not be confused with
the background Minkowski X-space in which one may have transla-
tions. Using (11) and (12), equations (8), (9), and (10) become

aF  (x)
_ LY
Iu(x) i~ (13)
W
arw BPM anp
3x. T3k Tax " 0r eFuAV (4)
p v v
2] &)
e
axu 0 (15)

respectively under the Fourier transformation. Equations (13) and
(14) are identical in form to Maxwell's equations of electrodynamics,
and (15) corresponds to the charge conservation, or continuity equa-
tion. In order to obtain these equations in terms of the large X back-
ground space, one must assume some mapping between the large X
and small x spaces. This topic will be treated by the author in a
future publication.
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For non-scalar representations of the De Sitter group, one has
ten intrinsic spin operators, or matrices S % and 85 corresponding
to the ten orbital generators 4 ,  and Ly The Urbitalijl generators
appear in the current densities and fie].cL{l tensors above. The orbital
and spin operators usually appear on a parallel basis as parts of a
“total" spin operator, i.e.,

= -+ = +
Tav =tuy *Suv Tsu = s, SSu (16)

The idea of having intrinsic contributions to the current densities and
field tensors then occurs. Following in analogy with (6), (7), (11)
and (12), we define intrinsic components by

I —
x) = |d i X )¥S ¥ 17
J, &) Jar explip, o) ¥ 85, (17)
I _ i X =
P“v(x) =M J'dfr exp (i pp XO) ¥ Suv ¥ (18)

If the 8 v and Sg  are just linear representation matrices (or opera-
tors) in the regulg.r sense (e.g. like in the Dirac?) case, 5 = L Y'Yy
SS\;=" Y5Y\) then one has no inhomogeneous field equatinn%\ Eo? the
intrinSic components in analogy to (13). However, consider the case
in which one has a linear representation for the Lorentz subgroup,
i.e. the 8 satisfy

uv

=i - - S +8 1
[Suv,skp] ltauksvp 6upsv>\ 6\))\ Mo vpsux] (19)
If we define the four operators SSp. by5)
Py ng
SSu B 2M (20)

then one can show that the ten "total” generators J and J_ satisfy
1 (Y Su
the usual commutation rule

Uab’ch] = itéaclbd - 6ad]bc - Bbcjad i deIac] (21)

In this case, one has inhomogeneous field equations for the intrinsic

components also, i.e.

aF I(x)

I, . _uy
Iu(X)— va (22)
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where (20) has been used in (17). For this latter case, one has a
continuity equation for the intrinsic 4-currents, i.e.

I
3] (%)
N S (23)
EixH

so that the intrinsic charge is conserved independent of the orbital
charge. Using (16), one may form "total" current densities and field
tensors. However, only in the latter case will the total quantities
fully obey the inhomogeneous field equations. For the intrinsic field
components, the usual homogeneous field equations (14) do not hold,
i.e. one has magnetic charge and current densities ch (mag.) defined

by I i I
oF N oF dF

X X OxX
p v [

It should be made clear that these magnetic charge~current densities
above arise only from the spin part and are defined by (24) in analogy
to (13). The inhomogeneous equations (13) are due to the nonlinear
(with respect to the p ) transformations whose generators have the
particular form given in (4). However, the intrinsic current densities
in (22) with S. given in (20) are similar in form to the magnetic
charge densiti€s (24),

Let us consider for example a particular 2-dimensional repre-
sentation of the latter type discussed above .5)

i _
=i . 25
Su\) 7 ( MOV G\)GIJ-) (25)
ALY
S50 2M Tpuv
Ei ==-0ys Ga =04, 0a° =-1 (26)

The magnetic charge density J, (mag.) defined by (24) is given by

I U W .
J. (mag.) = M 3x, Jdr Yo, ¥expl puxu) (27)

in this representation. The intrinsic part of the charge density
defined in (22) becomes
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Iy__i 9
Is (X)—4M ox,

dr Yo, v explip x ) 28)
I 1 Mo (
Thus, the intrinsic part of the charge density is just proportional to
the magnetic charge density (in this particular representation), i.e.

1. M) = - 17, (mag.) (29)

Since we have operators (group generators) appearing in the
charge-current densities, one might ask if the nature of charge could
not be explained in terms of the De Sitter eigenvalue spectrum. The
operator Js, appears in the total charge density. Consider a repre-
sentation for which Jz, is diagonal along with J; , , the spin projection
operator, i.e.

Jsg Y= Mg, ¥ (30)
Jig ¥ =My ¥ (31)

The eigenvalue My, can take both positive and negative values. The
positive and negative nature of charge could possibly be explained in
this manner. However, before this possibility can be realized, one
must satisfy another physical condition. One has (for large r) a ?
electric field for charged particles. Since the wavefunction ¥ defined
above depends upon the labeling numbers Mgy, M,; and the two
Casimir invariants I, and I, , the x-space form for the field likewise
depends (via (7) and (12)) upon these labeling numbers. A particular
representation (and magnitude of Mg,.) must be found which will give
the proper = distribution for large r. If a solution ¥ (representation)

can be found which satisfies this condition, then one is left with the
problem of finding a physical interpretation for the other solutions
(e.g. for different values of Mz.). By using the continuity equation,
one could probably show that a number of these solutions do not have
stable charge distributions in the Lorentz rest frame, and hence are
non-physical.

Next, we discuss the average momentum components P which
we define by H

P =<pu>=j‘ ar¥p v (32)
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The subset U, over which we integrate is chosen to satisfy the two
conditions

U > {pu‘= 0, p=1-4} (33)
I is transitive to Uo (34)

where I represents the non-Lorentz transformations whose generators
are defined in (4). These average components have the following
properties

Under : U _-U_, (pu> - _<p“> (35)

Under L = Lorentz Subgroup:

p' =T

A Py <pu'> =T (p) (36)

VAV
In the subset Uy, the components p and p, have the following limits
p? =p;° +p,® +ps® (37)

0< [p| =M
4 + 1 case, Real M, (38)
0< |p4| < ®

0< lpl < ®
3 + 2 case, Imaginary M, (39)
0< |pa| = [M|

The cutoff in p for the 4+1 case may be of physical interest with
regard to possible singularities in conventional electrodynamics as
the radius goes to zero.

Because of the definition (32) and the choice of U,, the com-
ponents P, do not change under the non-Lorentz transformations, but
transform like a Lorentz 4-vector under the Lorentz subgroup. The
Lorentz rest frame is defined to be the case for which

(b)) =0, 1=1,2,3
{(ps)y #0

= Rest Mass (40)
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For any representation for which one can form a scalar (and have
finite integrals) one can show from dimension analysis that the rest
energy has the form (for diagonal Js, and J, ;)

{ps) = |M| F(nyp, Mes,s L, L) (41)

where the function F depends upon the particular representation. The
radius of curvative M appears as an overall constant in the mass
spectrum (41).

In summary, one has in this picture one means by which to
introduce non-compact Lie groups in describing elementary particles.
For the De Sitter geometry, one has a realization of Maxwell type
equations for each representation (in both the 342 and 4+1 cases) of
the De Sitter group for which one can form a scalar. By averaging
over the internal momentum subspace Uy, one can obtain final momen-
tum components whose space is spanned by the Lorentz group. For
this free (non-interacting) finite particle model, the mass spectrum
(41) results from the integration over the finite extent of the particles
and depends upon the labeling numbers for the representation con-
sidered. The composition and interaction of two geometric particles
with each separately described as above is discussed in the author's
second lecture presented at this symposium.

References

1. Possibilities of generalizing the momentum space have been con-
sidered by H. S. Snyder, Phys. Rev. 71, 38 (1947); V. G. Kady~
shevski, Soviet Physics (JETP) 14, 1340 (1961); Proceedings of
the International Conference on High-Energy Physics (CERN,
1962); Yu A. Gol'Fand, Soviet Physics (JETP} 10, 356 (1960);
16, 184 (1963); A. O. Barut, P. Budini and C. Fronsdal, Proc.
Roy. Soc. London A291, 106 (1966); G. Cicogna, Nuovo Cimento
XLIIA, 656 (1966).

2. The x-space version of this space is discussed in a review
article by F. Glirsey, in Group Theoretical Concepts and Methods
in Elementary Particle Physics, edited by F. Glirsey (Gordon and
Breach Science Publishers, Inc., New York, 1965), p. 365.

3. B. J. Dalton, Phys. Letters 32B, 211 (1970).

. P. A, M. Dirac, Ann. Math. 36, 675 (1935).

5. This type of representation is discussed by G. Borner and
H. P, Durr, "Classical and Quantum Fields in De Sitter Space, "
preprint, Minich, June 1969.

1N



Carl Andersen®*
A. O. Barut*

Johan G. F. Belinfante*

Gerhard Berendt
A. Bohm#*
Gerhard Borner*
W, E. Brittin
L. Castell*
Prakash Chand

Franklin F. K. Cheung*

Sung C. Chung
Herbert C. Corben
Christofer Cronstrom#*
B. J. Dalton*

Harald O. Dogliani
G. Domokos

Susan Kovesi-Domokos

Joseph Dreitlein
Ismail Hakki Duru
J. Elhadad

Jason Ellis
Kathryn Ellis
Gordon N. Fleming
Stephen A. Fulling
F. Gerjuoy
Alberto Giovannini
L. Girardello
Peter Haberler*
Gerhard E. Hahne
Rolf B. Haugen
Wayne J. Holman III*
R. L. Ingraham*
Akira Inomata*

R. Jackiw#*

Leon Jaffe*
Herbert Jehle
Thomas F. Jordan
David W, Joseph
H. A. Kastrup*

D. Y. Kim

*T.ecturers

439

THE PARTICIPANTS

College of William and Mary
University of Colorado
Carnegie-Mellon University
Frele Universitit Berlin
University of Texas
Max~Planck Institute
University of Colorado
Max~Planck Institute

Colorado State University

Notre Dame

West Virginia Tech

Cleveland State University
Institute for Advanced Study
Florida State University
Kirtland Air Force Base

Johns Hopkins University

Johns Hopkins University
University of Colorado
University of Colorado

Taculté des Sciences - Marseille
University of Texas at Arlington
North Texas State University
Pennsylvania State University
Princeton University

University of Pittsburgh

Istituto Di Fisica Teorica - Torino
University of Colorado

Duke University

Stanford University

University of Colorado

Middle East Technical University
New Mexico State University
SUNY at Albany

Massachusetts Inst. of Tech.
University of Texas

George Washington University
University of Pittsburgh
University of Nebraska
Universitdt Miinchen
University of Saskatchewan



440

H. Kleinert

Kaiser S. Kunz

Neil W. Macfadyen¥*
K. T. Mahanthappa
G. Bruce Mainland*
Shimon Malin

K. Mariwalla*
Shigeyuki Miyashita
Milan Noga*

B. Pirrung#*

Kenneth Rafanelli
Budh Ram

Howard R. Reiss
Sebastidn Salamé
Tetsuo Sawada

Fritz Schwarz*

C. S. Shukre
Staffan Strom*
George Thomas
Paul Winternitz*

B. G. Wybourne
Walter Wyss

Tsu Yao*

Freie Universitdt Berlin

New Mexico State University
Carnegie~Mellon University
University of Colorado
University of Texas

Colgate University
Arya-Mehr University
University of Colorado
Purdue University

Inst. f. Th. Physik Marburg
Cleveland State University
New Mexico State University
The American University
University of Colorado
University of Oregon
University of Texas
University of Pittsburgh
University of Texas
University of Western Ontario
Carnegie-~Mellon University
University of Canterbury
University of Colorado
University of Pittsburgh



