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Abstract: We determine the strong coupling αs(mZ) from dimensionless ratios of roots

of moments of the charm- and bottom-quark vector and charm pseudo-scalar correlators,

dubbed RX,nq ≡ (MX,n
q )

1
n /(MX,n+1

q )
1

n+1 , with X = V, P , as well as from the 0-th moment

of the charm pseudo-scalar correlator, MP,0
c . In the quantities we use, the mass depen-

dence is very weak, entering only logarithmically, starting at O(α2
s). We carefully study all

sources of uncertainties, paying special attention to truncation errors, and making sure that

order-by-order convergence is maintained by our choice of renormalization scale variation.

In the computation of the experimental uncertainty for the moment ratios, the correlations

among individual moments are properly taken into account. Additionally, in the pertur-

bative contributions to experimental vector-current moments, αs(mZ) is kept as a free

parameter such that our extraction of the strong coupling is unbiased and based only on

experimental data. The most precise extraction of αs from vector correlators comes from

the ratio of the charm-quark moments RV,2c and reads αs(mZ) = 0.1168±0.0019, as we have

recently discussed in a companion letter. From bottom moments, using the ratio RV,2b , we

find αs(mZ) = 0.1186±0.0048. Our results from the lattice pseudo-scalar charm correlator

agree with the central values of previous determinations, but have larger uncertainties due

to our more conservative study of the perturbative error. Averaging the results obtained

from various lattice inputs for the n = 0 moment we find αs(mZ) = 0.1177± 0.0020. Com-

bining experimental and lattice information on charm correlators into a single fit we obtain

αs(mZ) = 0.1170± 0.0014, which is the main result of this article.
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1 Introduction

The strong coupling αs is the central quantity governing quantum chromodynamics (QCD).

It is a key parameter to all observables computed in perturbation theory relevant for

facilities such as the LHC or future e+e− colliders, which have an extensive program for

determining top-quark and Higgs-boson properties such as their masses and couplings.

It also plays a central role in flavor physics and in the determination of the masses of

charmonium and bottomonium bound states. This parameter is also crucial for searches

of physics beyond the Standard Model since it largely determines the size of the associated

background. For a review on recent progress see e.g. refs. [1, 2].
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A powerful method to determine parameters related to the strong interactions such as

quark masses and αs are QCD sum rules based on weighted integrals of the total hadronic

cross section Rqq̄ (with q = c, b)

Rqq̄(s) =
3s

4πα2
σe+e−→ qq̄+X(s) '

σe+e−→ qq̄+X(s)

σe+e−→µ+µ−(s)
. (1.1)

Particularly important for our work are the inverse moments, MV,n
q , of Rqq̄(s) defined as

MV,n
q =

∫
ds

sn+1
Rqq̄(s) . (1.2)

Using analyticity and unitarity, these can be related to the coefficients of the Taylor expan-

sion of the quark vector-current correlator around s = 0, which can be computed rigorously

in perturbative QCD (pQCD) for n not too large.

A shortcoming of using moments MV,n
q is that, while the integration in eq. (1.2) over

the normalized cross section extends all the way to infinity, experimental data are limited

to a finite energy range. If the energy of the last measured cross section is sufficiently large,

one can safely use the theoretical prediction for the R-ratio in perturbation theory as a

substitute (the region is sometimes referred to as the continuum), applying some penalty

to reduce the model dependence. For the charm cross section the data above threshold

spans a wide range of energies such that even for n = 1 the computed moment is fairly

insensitive to how the continuum is treated [3]. On the other hand, bottom moments with

low values of n do depend strongly on the continuum such that MV,1
b cannot be used for

any competitive determination of the bottom-quark mass [4, 5] — a situation that could

change if data at larger energies became available. Here, since we are interested in a precise

extraction of αs, the continuum contribution must be treated carefully, in a way that avoids

any possible contamination of the extracted values.

Theoretically, the moments MX,n
q are governed by the typical scale mq/n & ΛQCD.

This is easy to understand since large values of n have more weight in the narrow res-

onances such that a non-relativistic treatment becomes necessary. For small values of n

one can compute the moments in perturbative QCD supplemented by non-perturbative

power corrections parametrized in terms of local condensates. This framework is known

as the operator product expansion (OPE) [6, 7]. It turns out that the perturbative term

overly dominates the series (even more so for the bottom quark) and the leading (gluon)

condensate is introduced mainly as an estimate of the size of non-perturbative corrections.

This method goes under the name of relativistic quarkonium sum rules.

An interesting alternative which does not suffer from problems related to the contin-

uum are moments of the pseudo-scalar quark-current correlator, which can be accurately

computed in lattice QCD [8] — although, so far, precise simulations exist only for the

charm quark. Interestingly, the 0-th moment of this correlator is physical,1 and quite in-

sensitive to the charm-quark mass, which makes it an ideal candidate to determine αs.

1The first two Taylor coefficients are UV divergent already at O(α0
s), when no renormalization has been

applied yet. We label moments such that n = 0 corresponds to the third Taylor coefficient, see eq. (2.5).
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On the other hand, it has been shown that the perturbative series of the pseudo-scalar

moments (at least for n > 0) displays a quite poor convergence [5].

A lot of progress has been made in the lattice community for determining QCD pa-

rameters from the pseudo-scalar correlator since the pioneering work of ref. [8], in which

the charm-quark mass and the strong coupling were extracted (the former with high ac-

curacy). Focusing on αs, the follow-up paper by HPQCD [9] already claimed half-percent

accuracy at the Z-boson mass with a value very close to the world average, while refs. [10]

and [11] have somewhat smaller central values and slightly larger uncertainties (0.7 % and

1%, respectively). The latter references introduced an interesting alternative strategy to

determine αs: the use of ratios of moments for which the mass dependence largely cancels;

a strategy that we extend and exploit here also for the vector-current moments.

So far, nearly all lattice analyses with sub-percent accuracy on αs(mZ) estimate the

perturbative uncertainties in essentially the same way: fixing the renormalization scale

to some default value and adding an estimate for the first unknown perturbative coeffi-

cient. The truncation error is estimated by either varying the size of the guessed term or

comparing the values of the strong-coupling constant obtained including or not the next

term (an exception to this paradigm is the analysis of ref. [12]). However, as argued in

refs. [3, 5], the renormalization scale of mq plays an important role in realistic estimates

of perturbative uncertainties. In ref. [12], which only uses ratios of moments, perturbative

uncertainties are estimated performing renormalization scale variation in a manner analo-

gous to refs. [3, 5]. In particular, renormalization scales for αs and the heavy-quark mass

are floated independently within a certain range. Their result is compatible with the world

average, but the quoted uncertainties are more conservative, achieving only 2.2% accuracy.

This shows that, while it can probably be argued that the computation of the moments

on the lattice is fairly under control, one could question some of the estimates of theory

incertitudes found in the literature.

In this article we extract the strong coupling with nf = 4 and nf = 5 from QCD

sum rules analyzing dimensionless mass-insensitive ratios of the moments MV,n
q and MP,n

q ,

denoted RX,nq and defined in eq. (2.6). This type of strategy was originally introduced for

pseudo-scalar moments computed on the lattice [10, 11] and, to the best of our knowledge,

was applied to vector-current correlators, whose moments can be obtained using real ex-

perimental data on Rqq̄(s), for the first time in a companion paper [13]. Here, we provide

further details on the analysis of ref. [13], extend the method to bottom vector-current

moments, and, finally, apply the same strategy to the lattice-determined pseudo-scalar

moment ratios of the charm current.

On the experimental side, we compute the ratios RV,nq using data on narrow resonances

and the total hadronic cross section above the charm and bottom open thresholds, sup-

plemented with perturbation theory in the regions where no measurements exist (and to

subtract the uds background from charmonium data). Since our goal is to perform a rigor-

ous extraction of αs, the value of the coupling used as input in the perturbative expressions

must be kept as a free parameter, such that αs is extracted from the experimental data

without any bias. On the theoretical side, we carefully examine perturbative uncertainties

and conclude that the renormalization scales of αs and the MS quark mass have to be var-
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ied independently within a certain range to avoid theoretical biases. Using this approach,

we also perform a reanalysis of lattice data on the ratios of moments RP,nc and the MP,0
c

regular moment for the pseudo-scalar charm correlator. The method provides a reliable

extraction of αs and, in particular for the vector-current charm-quark ratios, RV,nc , the

values obtained for α
(nf=5)
s (mZ) are competitive given the accuracy of current experimen-

tal data. Finally, results from lattice QCD and the charm vector moment ratios can be

unambiguously combined to obtain an even more precise strong coupling determination.

This paper is organized as follows: in section 2 we provide an overview of the theoretical

ingredients that enter our analysis, both perturbative (section 2.1) and non-perturbative

(section 2.2); we review the experimental and lattice input which is used to determine αs
in section 3; a detailed study of perturbative uncertainties is given in section 4, while our

results are presented in section 5 and compared to previous determinations in section 5.3;

finally, our conclusions are contained in section 6.

2 Theoretical input

In this section we discuss the theoretical description of inverse moments of the vector and

pseudo-scalar quark-currents, as well as the ratios formed from these that we exploit in the

present work. The moments of eq. (1.2) can be related, using analyticity and unitarity, to

the Taylor coefficients of the expansion of ΠV
q at s = 0 as [6, 7]

MV, n
q =

12π2Q2
q

n!

dn

dsn
ΠV
q (s)

∣∣∣
s=0

, (2.1)

with
√
s =

√
p2, the e+e− invariant mass, Qq the quark electric charge, q = c, b, and

(
gµν s− pµpν

)
ΠV
q (s) = − i

∫
dx ei p·x

〈
0
∣∣T jµq (x)jνq (0)

∣∣ 0 〉 , (2.2)

where jµq (x) = q̄(x)γµq(x) is the quark vector current.

Using the notation of ref. [5], we define the pseudo-scalar quark-current correlator as

ΠP
q (s) = i

∫
dx ei p·x

〈
0
∣∣T jPq (x)jPq (0)

∣∣ 0 〉 , (2.3)

with jPq (x) = 2mq i q̄(x)γ5q(x); here we will only consider pseudo-scalar moments of the

charm-quark current (q = c). The additional mass factor in the pseudo-scalar current (as

compared to the vector case) makes it formally scheme and scale independent. Moments

analogous to those of eq. (2.1) can be defined as

MP,n
q =

12π2Q2
q

n!

dn

dsn
Pq(s)

∣∣∣
s=0

, (2.4)

where we use the combination first introduced in ref. [5]

Pq(s) =
ΠP
q (s)−ΠP

q (0)− (ΠP
q )′(0) s

s2
. (2.5)
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The theoretical quantities that will be used in this article to determine αs are mass

insensitive and dimensionless. For the case of the pseudo-scalar correlator one can use the

0-th moment, which has mass dimension zero by itself, and depends on the quark mass

only logarithmically starting at O(α2
s). This moment is an observable, in the sense that it

does not need an ultraviolet subtraction to become finite, being formally renormalization-

scale and scheme independent (although it still retains a residual µ dependence at any

finite order in perturbation theory). The 0-th moment of the vector correlator, on the

contrary, cannot be related to any experimentally measurable quantity. It is related to the

subtraction that renders the sum rule finite, and is therefore scheme and scale dependent.

One can, however, work with ratios of roots of the n > 0 moments, such that the

mass dependence almost completely disappears. The quantities we are interested in are

the ratios of consecutive roots of moments. Specifically, we define the following mass-

insensitive quantities

RX,nq ≡
(
MX,n
q

) 1
n(

MX,n+1
q

) 1
n+1

, (2.6)

where X = V, P refers to vector and pseudo-scalar correlators, respectively. This type of

ratio of moments was originally introduced for the pseudo-scalar correlator [10, 11]; here we

extend their use to the vector-current as well. They are the central objects of our analyses.

2.1 Perturbative contribution

The analytic expressions for the perturbative Π̂X
q (s) functions are known exactly to O(α1

s)

accuracy [14]. (Hatted quantities should be understood as computed in pure perturbation

theory.) As such, moments to arbitrarily high values of n can be computed expanding the

analytic results around p2 = 0. The O(α2
s) contribution to the first n = 30 moments has

been computed in [15–19].2 At O(α3
s), analytic computations exist only for n = 1 [21–23],

n = 2, n = 3, and n = 4 [20, 24, 25]. At this order, values for n > 4 have been estimated

using semi-analytical procedures [26–29].

We write the perturbative vacuum polarization function for vector and pseudo-scalar

currents expanded around s = 0 as

Π̂X
q (s) =

1

12π2Q2
q

∞∑
n=0

snM̂X,n
q . (2.7)

To have a common notation for both currents we use ΠP
q (q2) = Pq(q

2), where Pq is the

twice-subtracted pseudo-scalar correlator defined in eq. (2.5).3

In full generality, different renormalization scales can be employed for the mass and

the coupling in the perturbative expansion of the moments. We denote those scales µm
and µα, respectively. As shown in refs. [3, 5], in order to properly assess the size of

perturbative uncertainties, it is important to vary them independently. However, for the

2In ref. [20] the three-loop vector correlator has been obtained numerically for any value of s/m2 to

arbitrary precision.
3To simplify our nation, here and in what follows, we do not write explicitly the dependence on the

number of flavors nf since it can be deduced from the context.
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i 0 1 2 3

RV,1c 1.5776 1.8639 −2.1994 0.47189

RV,2c 1.0449 0.60030 0.34040 −2.2041

RV,3c 0.98700 0.35944 0.53745 −0.77974

Table 1. Perturbative coefficients rV,ni for the ratios of the charm vector-current correlator. We

show only terms which do not involve logarithms of ratios of scales.

time being, it is sufficient to set both scales to the quark mass µm = µα = mq, employing

the shorthand notation mq ≡ mq(mq). With this choice, the logarithms are resummed and

the perturbative expansion of the moments in powers of αs takes the following simple form

M̂X,n
q =

1

(2mq)2n

∑
i=0

[
αs(mq)

π

]i
cX,ni . (2.8)

The ratios of moments we are interested in, defined in eq. (2.6), are dimensionless

and mass insensitive. Their perturbative expansion in powers of αs with the choice

µm = µα = mq can be written as

R̂X,nq ≡
(
M̂X,n
q

) 1
n(

M̂X,n+1
q

) 1
n+1

=
∑
i=0

[
αs(mq)

π

]i
rX,ni . (2.9)

It is convenient to organize the computation of the coefficients rX,ni taking first the loga-

rithm of the moment, expanded in powers of αs as

log
[
(2m)2nM̂X,n

q

]
= log

(
cX,n0

)
+
∑
i=1

[
αs(mq)

π

]i
aX,ni , (2.10)

with coefficients that obey the following recursive relation in terms of the original ones

cX,n0 aX,ni+1 = cX,ni+1 −
1

i+ 1

i∑
j=1

j cX,ni+1−j a
X,n
j . (2.11)

The logarithm of the ratio is now trivially expressed as

log
(
R̂X,nq

)
≡
∑
i=0

[
αs(mq)

π

]i
bX,ni =

1

n
log
(
cX,n0

)
− 1

n+ 1
log
(
cX,n+1

0

)
(2.12)

+
∑
i=1

[
αs(mq)

π

]i(aX,ni

n
−
aX,n+1
i

n+ 1

)
.

The last step to obtain the fixed-order series for the ratios of moments is expanding

eq. (2.12). This can be done using the following computer-friendly recursion relation

rX,ni+1 =
1

i+ 1

i∑
j=0

(j + 1) rX,ni−j b
X,n
j+1 , with rX,n0 =

[cX,n0 ]
1
n

[cX,n+1
0 ]

1
n+1

. (2.13)
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i 0 1 2 3

RV,1b 0.78881 0.93197 −1.00243 −2.17204

RV,2b 0.82937 0.47645 0.24518 −2.85442

RV,3b 0.87932 0.32022 0.43721 −1.57719

Table 2. Perturbative coefficients rV,ni for the ratios of the bottom vector-current correlator. We

show only terms which do not involve logarithms.

i 0 1 2 3

MP,0
c 4/3 28/9 0.1154 −1.2224

RP,1c 0.96609 1.8186 1.8928 −13.269

RP,2c 0.93905 0.76871 1.1983 −5.6172

Table 3. Perturbative coefficients MP,0
i and rP,ni for the 0-th moment (second row) and the ratios

of moments (rest of rows) for the charm pseudo-scalar current correlator. We show only terms

which do not involve logarithms.

Since we are interested in assessing the size of perturbative uncertainties through renor-

malization scale variation, we need to express eq. (2.6) in terms of αs(µα) and mq(µm). In

a first step to compute the associated logarithms, we set both scales equal and define

R̂X,nq =
∑
i=0

[
αs(µm)

π

]i i∑
j=0

rX,ni,j logj
[

µm
mq(µm)

]
, (2.14)

with rX,ni ≡ rX,ni,0 . Imposing that eq. (2.14) does not depend on µm one can obtain rX,ni,j in

terms of rX,ni defined in eq. (2.9), and the QCD beta function and MS mass anomalous-

dimension coefficients, which are defined, respectively, by

µ
dαs(µ)

dµ
=−2αs(µ)

∑
n=1

βn−1

[
αs(µ)

4π

]n
, (2.15)

µ
dmq(µ)

dµ
= 2mq(µ)

∑
n=1

γn−1

[
αs(µ)

4π

]n
.

They are known to five loop accuracy [30–37], and collected in table 4. In terms of those

we find

rX,ni,j =
2

j

{
i−j∑
k=1

4−k
[
(i− k)βk−1 r

X,n
i−k,j−1 + j γk−1 ri−k,j

]
+

(j − 1)βi−j
4i−j+1

rX,nj−1,j−1

}
. (2.16)

An important feature of this perturbative expansion is that the first non-zero coefficient of

a logarithmic term is rX,n2,1 and, therefore, the dependence on mq starts only at O(α2
s). This

weak logarithmic dependence on mq makes our results rather insensitive to the quark mass.

– 7 –
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The most general formula has in general µα 6= µm, depends on two kind of logarithms,

and contains two nested sums:

R̂X,nq =
∑
i=0

[
αs(µα)

π

]i i−1∑
j=0

logj
(

µm
mq(µm)

)max(i−1,0)∑
k=0

rX,ni,j,k logk
(
µα
µm

)
, (2.17)

with rX,ni,j,0 ≡ r
X,n
i,j and where we made explicit that the first logarithm appears only at order

α2
s. We can easily obtain the rX,ni,j,k in terms of rX,ni,j and the QCD beta function coefficients

imposing that eq. (2.17) is independent of µα. This results in the recursive formula first

introduced in [38]

rX,n`,k,j =
2

j

`−1∑
i=j

4i−` i β`−i−1 r
X,n
i,k,j−1 . (2.18)

For the 0-th moment of the pseudo-scalar correlator MP,0
c , eqs. (2.14) to (2.18) still apply

with the obvious replacement rX → cP . In some occasions it will be convenient to abuse

notation defining RP,0c ≡MP,0
c . The numerical values for the coefficients of ratios of vector

moments are collected in tables 1 (charm) and 2 (bottom). For the charm pseudo-scalar

correlator, the perturbative coefficients are given in table 3.

The total αs correction at order O(α3
s) to the first three charm-quark vector-current

ratios is of about 12.5% for RV,1c , 7.2% for RV,2c , and 5.2% for RV,3c . The bottom-quark

vector-current ratios are less sensitive to αs corrections, which turn out to be almost a

factor of two smaller than in the charm-quark counterparts. The first ratio, RV,1b , receives

a correction of about 7.7%, while for the next two ratios the correction is 4.1% and 2.8%,

respectively. Precise extractions of αs from bottom quark ratios require, therefore, smaller

experimental errors in order to overcome the smallness of pQCD corrections. The 0-th

charm pseudo-scalar moment is again quite sensitive to pQCD, with a total correction of

about 29%. The first two ratios of pseudo-scalar moments receive large αs corrections as

well: 24% for RP,2c and 11% for RP,2c . This higher sensitivity is welcome in the sense that

less precision is required from the lattice computations. The price to pay, however, is that

the pseudo-scalar moments display a bad perturbative convergence which leads to larger

errors from the truncation of the perturbative series.

All the formulas and recursive relations in this section have been implemented into

a numerical python [39] code. We have also written an independent Mathematica [40]

program which is based on a direct derivation of the formulas using built-in Mathematica

functions. Our codes agree within 15 decimal places. This completes the description of the

perturbative contribution to the moments and ratios of moments.

2.2 Non-perturbative corrections

The perturbative contribution presented in the previous section will be corrected for non-

perturbative effects including the most important sub-leading contribution from the OPE,

which is the gluon condensate. Since this matrix element has mass-dimension 4, its contri-

bution is suppressed by four powers of the heavy-quark mass [41, 42]. The renormalization-

group invariant (RGI) scheme for the gluon condensate [43] will be used in our analyses.
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nf β0 β1 β2 β3 β4

4 8.33333 51.33333 406.35185 8035.1864 58310.55397

5 7.66667 38.66667 180.90741 4826.15633 15470.61225

γ0 γ1 γ2 γ3 γ4

4 4 −58.44444 −636.61058 −6989.55101 −114267.75005

5 4 −56.22222 −474.87125 −2824.78624 −42824.14790

Table 4. QCD beta function and MS mass anomalous dimension coefficients for nf = 4 (second

and fifth rows) and nf = 5 (third and last rows), up to five loops.

For the RGI gluon condensate we take the value [44]〈αs
π
G2
〉

RGI
= 0.006± 0.012 GeV4 . (2.19)

As argued in ref. [45], it is convenient to express the gluon condensate Wilson coefficient

in terms of the pole mass to stabilize the correction for large values of n. To obtain a

numerical value for the pole mass m
(pole)
q we follow ref. [3] and use the one-loop conversion:

m(pole)
q = mq(µm)

{
1 +

αs(µα)

π

[
4

3
− 2 log

(
mq(µm)

µm

)]}
. (2.20)

Therefore, in practice the pole mass depends both on µm and µα. For the purpose of this

section (that is, to obtain the non-perturbative corrections to RX,nq ), we consider the series

for the n-th moment only at O(αs) for both perturbative and non-perturbative terms,

which we write schematically as

MX,n
q =

cX,n0

[2mq(µm)]2n

[
1 +

αs(µα)

4π
CX,n1

]
+
cX,n0

〈
αs
π G

2
〉

RGI

(2m
(pole)
q )2(n+2)

[
gX,n0 +

αs(µα)

π
gX,n1

]
, (2.21)

CX,n1 =
1

cX,n0

[
cX,n1,0 + cX,n1,1 log

(
mq(µm)

µm

)]
,

where, for notation simplicity, we do not explicitly show the dependence of CX,n1 on µm and

mq(µm). The gluon-condensate Wilson coefficients, gX,ni , for current-current correlators are

known to O(αs) [46]. The numerical values for the charm vector correlator can be found

in table 5 of ref. [3], while table 6 of ref. [5] shows the values for the bottom vector and

the charm pseudo-scalar moments. Next we take the n-th root and expand in αs and the

gluon condensate up to linear terms, which gives

4mq(µm)2 (MX,n
q )

1
n

(cX,n0 )
1
n

= 1 +
αs(µα)

π

CX,n1

n
+

〈
αs
π G

2
〉

RGI

(2m
(pole)
q )4 n

[
mq(µm)

mp

]2n

(2.22)

×
{
gX,n0 +

αs(µα)

π

[
gX,n1 + gX,n0 (1− n)

CX,n1

n

]}
.

– 9 –



J
H
E
P
0
3
(
2
0
2
0
)
0
9
4

J/ψ ψ′

M (GeV) 3.096916(11) 3.686093(34)

Γee (keV) 5.57(8) 2.34(4)

[α/α(M)]2 0.957785 0.95554

Table 5. Masses and electronic widths [47] of the narrow charmonium resonances and effective

electromagnetic coupling [48]. α = 1/137.035999084(51) is the fine structure constant, while α(M)

stands for the pole-subtracted effective electromagnetic coupling at the scale M .

From this we can take the ratio of two consecutive moments. We define

an = (cn,X0 )
1
n , bn =

an
n
CX,n1 , (2.23)

cn =
an g

X,n
0

(2m
(pole)
q )4 n

[
mq(µm)

m
(pole)
q

]2n
, dn =

an

(2m
(pole)
q )4 n

[
mq(µm)

m
(pole)
q

]2n[
gX,n1 +gX,n0 (1−n)

CX,n1

n

]
,

where, again, we refrain from explicitly displaying the dependence of an, bn, cn, and dn on

the current, µm, mq(µm) and m
(pole)
q . In terms of those, the gluon condensate correction

to the ratios can be finally written as

RX,nq

∣∣
〈G2〉 =

〈αs
π
G2
〉

RGI

[
a2c1 − a1c2

a2
2

+
αs(µα)

π
(2.24)

× 2a1b2c2 + a2
2d1 − a2(b2c1 + b1c2 + a1d2)

a3
2

]
.

For the n = 0 pseudo-scalar moment MP,0
c one directly uses the gluon condensate correction

shown in eq. (2.21) with gP,00 = 4/15 and gP,10 = 1.4086. The relations derived in this section

have been implemented into our python code, while a direct computation is included into

our independent Mathematica program. This concludes the presentation of the theoretical

input. We give further details of our numerical codes in section 4.

3 Experimental and lattice input

In this section we briefly discuss how to obtain the experimental values for the moments

that go into our analyses. For the pseudo-scalar correlator there is, of course, no exper-

imental information available, but several lattice collaborations have obtained numerical

values for low-n moments, as well as ratios of moments, through numerical Monte Carlo

(MC) simulations.

3.1 Charm vector correlator

Regular moments of charm-tagged cross section where already worked out in ref. [3], which

used data on narrow charmonium resonances as given in [49], less precise than what is

available today. In this section we only streamline the procedure, and update our results
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using the values for the charmonium electronic widths provided in ref. [47], which are col-

lected in table 5.4 There are three main contributions to the moments: narrow resonances

(which appear below threshold); threshold (with data collected by different experimental

collaborations [52–66] up to energies of 10.538 GeV); and continuum, from 10.538 GeV to

infinity, with no experimental data available. In ref. [3] a method to recombine all available

experimental data into a single dataset was employed. It was based on the algorithm used

in ref. [67] to reconstruct the total hadronic cross section below the charm threshold, in the

context of the computation of the vacuum polarization function contribution to the g−2 of

the muon.5 The method was generalized to subtract the non-charm background, which uses

αs-dependent theoretical predictions for the light-quark and secondary charm production

cross sections. In the original implementation of [3] this pQCD prediction was re-weighted

by a constant factor determined from a fit to data below the open charm threshold. At

that time, the most precise data in that region was provided by BES [52, 53, 55–57] in-

clusive measurements, which are much higher than theoretical pQCD predictions and data

from exclusive measurements. Newer experimental measurements by KEDR [69–71] are

significantly lower and compatible with pQCD. Hence, in the present analysis of charm

data, we directly use pQCD without any additional normalization. Using this subtraction

ansatz, the perturbative QCD prediction for the charm-tagged cross section Rcc at energies

E ∼ 10 GeV is in full agreement with experimental measurements.

We have re-written our old Mathematica program into a python code, which uses

iminuit [72], the Minuit [73] python implementation. Our updated code exactly reproduces

the results in ref. [3] if the same input is used, but it yields more precise results for the

moments when the experimental values for the narrow-resonance electronic widths are

updated. More importantly, it also computes the correlation matrix among the moments,

which is essential to correctly determine the uncertainties for the ratios of moments.

Finally, since we aim at a precise determination of αs and the moments depend on

this parameter through the non-cc̄ background6 and the continuum, we should obtain the

ratios of moments RV,nc as a function of αs. This allows for an unbiased extraction of the

coupling with the continuum and background contributions determined self-consistently.

We have then computed the moments for multiple values of αs, finding a remarkably linear

dependence on the coupling which allows for an accurate (and simple) parametrization

of RV,nc in terms of α
(nf=5)
s (mZ). We find that the dependence of the moments with

αs is monotonically decreasing, due to the higher weight of the non-charm background

4These correspond to the values used in ref. [50] which is an update of a previous analysis on the

determination of the charm-quark mass. We do not adopt the current PDG average [51] (2019 update),

that quotes slightly different results for Γee: 5.53(1) keV and 2.33(4) keV, which are fully compatible, with

slightly larger uncertainties for the J/ψ. Using these values our results for RV,n=1,2,3
c would decrease by

0.1%, 0.06% and 0.04%, shifts which are 10, 4 and 3 times smaller than our uncertainties on those. The

effect on the fitted value of αs(mZ) would be, in the worse case, a 0.2% shift downwards, 10 times smaller

than the total uncertainty. Furthermore, we have not updated the value of the charmonium masses since

the uncertainty is overly dominated by the electronic widths.
5An alternative treatment of the contribution above the charm threshold can be found in ref. [68].
6The small O(α3

s) singlet contribution [74], as argued in ref. [48], is very small and can be safely neglected

for both charm and bottom analyses.
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RV,1q RV,2q RV,3q

charm 1.770(17)− 0.705 ∆α 1.1173(22)− 0.1330 ∆α 1.03535(84)− 0.04376 ∆α

bottom 0.8020(14) + 0.4083 ∆α 0.8465(20) + 0.14955 ∆α 0.8962(11) + 0.06905 ∆α

Table 6. Experimental values for the ratios of moments of the vector-current charm (second

row) and bottom (third row) correlator, with ∆α ≡ α
(nf=5)
s (mZ) − 0.1181. These quantities are

dimensionless.

subtraction as compared to the continuum contribution. The moments’ uncertainty is

dominated by data and found to be αs independent. We quote the results obtained for

the ratios RV,nc as a function of α
(nf=5)
s (mZ) in the second row of table 6, where we define

∆α ≡ α
(nf=5)
s (mZ)− 0.1181.7 These results were reported for the first time in ref. [13].

Since the uncertainties among the various moments are highly positively correlated,

the ratios turn out to be more precise than the individual moments. While the relative

precision for the first 4 moments is roughly constant and around 1%, the uncertainties for

the first 3 ratios rapidly decrease as n grows giving 0.98%, 0.22% and 0.104%, respectively.

This is partially caused by the fact that the narrow-resonance contribution (with very small

errors) has a stronger weight for larger n. The value for the higher ratios seems to freeze

and we find RV,n→∞c → 1.

3.2 Bottom vector correlator

Regular moments of bottom-tagged cross section where discussed in detail e.g. in ref. [5].

In this case one has to combine the contribution from the first four narrow resonances with

threshold data from BABAR [75], which has to be corrected for initial-state radiation and

vacuum polarization effects. This unfolding of the data induces a correlation among the

different data points, which in turns translates into a stronger correlation for the moments.

We have translated our old Mathematica program that performs the QED corrections into

a fast python code, which allows to take many more iterations in the unfolding proce-

dure using very little CPU time, accurately reproducing the results of ref. [5]. BABAR

data stops at 11.52 GeV, and some modeling becomes necessary at larger energies. The

approach of ref. [5] was to interpolate the last experimental points with the pQCD predic-

tion in a smooth way, assigning an energy-dependent systematic uncertainty to the model,

linearly decreasing with the invariant squared mass s from 4% at Q = 11.52 GeV to 0.3%

at Q = mZ . Here, we tune the dependence of the uncertainty with s in accordance with

expectations from hadronization power corrections based on the operator product expan-

sion, parametrized by the gluon condensate, which predicts a dependence of the type 1/s2.

This results in a moderate reduction of the moments’ uncertainty.

Our updated code also provides the correlation matrix among the moments, which is

used to calculate the ratios’ uncertainties. Finally, since there is some (small) αs depen-

dence left in the moments through the continuum [ this includes the perturbative QCD

prediction and an interpolation between pQCD and a linear fit to the (QED corrected)

BABAR data for energies larger than 11.05 GeV ], we again evaluate the moments for

7The updated results for individual moments MV,n
c will be given elsewhere.
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moment [8] [9] [10] [11] [12]

MP,0
c 1.708(7) 1.709(5) 1.699(9) 1.705(5) —

RP,1c — — 1.199(4) 1.1886(13) 1.188(5)

RP,2c — — 1.0344(13) 1.0324(16) 1.0341(19)

Table 7. Lattice results for the 0-th moment (second row) and the ratios of moments (rest of rows)

for the charm pseudo-scalar current correlator. We show the results for various lattice collaborations

in different columns. These quantities are dimensionless.

many values of the strong coupling, finding once again a linear dependence of the central

value with a constant uncertainty, in this case monotonically decreasing. Except for this,

the results for the regular bottom moments have not changed and can be found in [5]. Our

results for the experimental ratios parametrized as a function of α
(nf=5)
s (mZ) are shown in

the third row of table 6.

The partial cancellation of correlated uncertainties in the ratios of bottom moments is

much larger than for charm. While regular moments with n < 5 are rather imprecise, with

relative accuracy of 1.45%, 1.38%, 1.26%, and 1.20%, respectively, the first three ratios are

below the percent accuracy: 0.55%, 0.23%, 0.12%. Finally, we also observe the behavior

RV,n→∞b → 1 in bottom moments, but in this case the limit is approached from below.

3.3 Charm pseudo-scalar correlator

Although the pseudo-scalar current is not accessible in experiments in the same way as the

vector (i.e. there is no such thing as a “pseudo-scalar photon”), results for the associated

moments can be obtained from simulations on the lattice. The experimental input is

effectively passed to the simulation by tuning lattice parameters to a number of physical

observables. The tuned lattice action (which is no longer modified or adjusted) is then used

to perform the predictions for the moments. Lattice simulations have to overcome some

difficulties, such as the continuum, infinite-volume, and physical mass extrapolations, which

can translate into sizable uncertainties. The simulations are based on MC methods, and are

therefore also limited by statistics. Other aspects to take into account when using lattice

data is which type of action is used to compute the fermion determinant. According to

ref. [8], moments of the pseudo-scalar current are not as afflicted by systematic uncertainties

as the vector-current ones, and therefore might be used for precision analyses.

Lattice results for the pseudo-scalar correlator are provided in terms of the so-called

reduced moments Rk. They are constructed to have mass-dimension 0, and factor out the

tree-level results such that their perturbative expression starts with a coefficient equal to

1. For n = 0 and n > 0 they are related to the notation in eq. (2.7) as follows

MP,0
c =

4

3
R4 , MP,n

c = cP,n0

(
R2n+4

mηc

)2n

. (3.1)

The mass dimension of “regular” moments with n > 0 is obtained through powers of the

ηc mass. However, when taking ratios this dependence, as expected, completely drops, and
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we obtain the following relation:

RP,nc = rP,n0

(
R2n+4

R2n+6

)2

. (3.2)

Numerical values for the 0-th moment of the pseudo-scalar correlator, as well as for the

first two ratios, are given in table 7. We have transformed the results quoted by various

lattice studies into our notation. We again observe that systematic lattice uncertainties in

regular moments largely cancel when taking the ratios, and, even though only the first two

have been computed, one can see that central values decrease when going from n = 1 to

n = 2, becoming closer to 1.

4 Analysis of perturbative uncertainties

In this section we investigate the convergence properties of those perturbative series that

will be used to determine the strong coupling. For that we will need to evolve αs and the

MS heavy-quark masses with the renormalization scales µα and µm, respectively, using the

corresponding renormalization group evolution (RGE) equations. Details on how this is

implemented are provided in appendix A.

In order to thoroughly study the perturbative uncertainties, and following refs. [3, 5],

we use two independent renormalization scales, which we call µα and µm. The perturbative

series we shall be dealing with are written in terms of αs(µα) only. It is important to have

a single expansion parameter [ that is, one has to avoid having αs(µm) explicitly in the

series ], such that the pole-mass related renormalon is properly canceled. Therefore, the

dependence on µm starts only at α2
s, as powers of log(µα/µm) and log[µm/mq(µm)]. Hence,

it is expected that the dependence on µm is weaker than on µα, which in turn might mean

that double scale variation is not as crucial as in quark mass determinations. In any case,

to be conservative, we adopt the same scale variation as in [3, 5]: mq ≤ µα, µm ≤ µmax,

with µmax = 4 (15) GeV for charm (bottom). For practical purposes we create a grid in the

two renormalization scales, with 4000 and 3025 evenly distributed points for bottom and

charm respectively, which correspond to a bin size of ∼ 0.05 GeV. We will explore how

uncertainties change if other conventions, some of which less conservative, are adopted.

When performing scale variations, it is customary to avoid extreme cases where the

series converges badly or contains large logarithms. Firstly, we performed an analysis

of the convergence properties of the perturbative series for αs in the spirit of what was

done in ref. [5], studying the convergence of each series for different values of µα and µm
within our grids. In ref. [5] it was suggested that series with bad convergence properties

could be discarded. However, in the present case we find a rather flat distribution for the

parameter that measures the convergence of the series, in contrast to what was found in

ref. [5] for quark-mass determinations. The detailed results of this analysis are given in

appendix B. Instead, here we shall use a more standard criterion based on avoiding large

logarithms, and will simply require that 1/ξ ≤ µα/µm ≤ ξ, being our canonical choice

ξ = 2. The excluded regions are shown as faint gray areas in figure 1. We do not impose

a similar veto on µm/mq(µm) since the original variation range on µm already implements
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the usual small-log paradigm (here one cannot use values of µm smaller than mq since then

αs becomes large and endangers the convergence properties of the series). Furthermore, the

analyses in appendix B also show that the bottom vector ratios are the most convergent,

closely followed by the charm vector correlator. However, the series for the pseudo-scalar

correlator are significantly less convergent than the other two cases studied, a behavior that

was already found in ref. [5]. Therefore, determining αs from the charm and bottom vector

correlators seems warranted, at least from the perspective of perturbative uncertainties.

We continue our exploration of perturbative uncertainties drawing contour plots that

show the dependence of the α
(nf=5)
s (mZ) extracted value on the renormalization scales. For

this exercise we do not include the gluon condensate correction and use the experimental

values quoted in table 6 for the vector correlator (using the world average value for the

strong coupling), and the results of [10] shown in table 7 for the pseudo-scalar correlator.

We also use the values mc = 1.28 GeV, and mb = 4.18 GeV for the quark masses. We

analyze the values of αs as obtained from the series which include up to O(α3
s) terms.

The results for the various currents and number of flavors are collected in the three rows

of figure 1, where different columns correspond to different ratios (except in the last row,

where the leftmost panel shows the result for the n = 0 pseudo-scalar moment) and gray

shaded areas show excluded values for the choice ξ = 2. From the plots one can conclude

that, in most cases, varying the scales in a correlated way in some limited ranges may

lead to serious underestimates of perturbative uncertainties. In some cases, however, a

variation keeping both scales equal seems to capture most of the spread in αs values, while

in others keeping µm = mq seems also sufficient. It seems that there is no unique 1D slice

valid for all situations, and hence we conclude that an independent variation of scales is

the safest procedure.

We turn now to a systematic study of the ξ dependence. Since at O(αs) there is no

µm dependence, to estimate the perturbative uncertainty at this order we simply vary µα
between mq and µmax. At higher orders we once again vary mq ≤ µα, µm ≤ µmax, with

the constraint 1/ξ ≤ µα/µm ≤ ξ. The perturbative uncertainty is then computed as half

of the difference between the maximum and minimum values of αs in the constrained grid,

while the central value is simply the average of those two. The standard choice to estimate

perturbative uncertainties is to vary the argument of logarithms dividing/multiplying it by

factor of 2, which corresponds to our canonical choice ξ = 2. Taking ξ = 1 corresponds to

the correlated variation µα = µm, while very large values of ξ do not impose any constraint.

We show the dependence of the central value and perturbative uncertainty on the value of

ξ in figure 2. To carry out this study we do not fix the value of αs on the charm and bottom

vector-correlator experimental moments, since setting it to the world average makes the

uncertainty smaller and we want to assess the effect of ξ on our final uncertainty. For the

bottom vector correlator, taking both scales equal yields uncertainties smaller than our

canonical choice by factors of 1.4, 2.4, and 2.3, for the first three ratios, respectively. For

the charm-vector correlator the difference grows dramatically, with uncertainties that are

smaller by factors of 3.7, 2.5 and 2.1 for the first three ratios. In the pseudo-scalar case

the uncertainty as a function of ξ is nearly the same for all quantities considered, and the

correlated estimate is 2.4 times smaller than the default choice. The unconstrained error
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Figure 1. Contour plots for the extracted value of α
(nf=5)
s (mZ) from different perturbative series

at O(α3
s), as a function of the two renormalization scales µα and µm. The three panels at the top

show the result for the bottom vector correlator, the three in the middle (bottom) correspond to the

charm vector (pseudo-scalar) correlator. For the six panels showing results for the vector correlator,

the left, center and right columns correspond to RV,1q , RV,2q and RV,3q , respectively, while for the

pseudo-scalar they show MP,0
c , RP,1c , and RP,1c . The shaded gray areas are excluded for ξ = 2.
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Figure 2. Dependence of the central value and perturbative uncertainty with the “trim-

ming” parameter ξ, which controls how renormalization scales are varied through the constraint

1/ξ ≤ µα/µm ≤ ξ, with mq ≤ µα, µm ≤ µmax and q = c (b) for charm (bottom). The gray, dashed,

vertical lines signal our canonical choice ξ = 2. The three panels on top correspond to how central

values depend on ξ, shown as a percent deviation from our canonical choice for ξ. The three panels

at the bottom show the dependence of perturbative uncertainties with ξ. Left, right, and middle

panels correspond to bottom vector, charm vector, and charm pseudo-scalar, respectively. Blue,

red and green distinguish which moment or ratio is used, as shown in the plot legends.

estimate is at most 53% larger than that with ξ = 2 for all cases. Except for values of ξ

close to 1, the central value grows as ξ increases, but the variation is below the percent in

all cases.

We finish this section by exploring the order-by-order convergence of the extracted

values of αs. Again we ignore non-perturbative effects and fix the quark masses. We also

assume experimental moments have no uncertainties, such that error bars shown in this

section are purely of perturbative origin. Taking the default constraint ξ = 2 we obtain

the results shown in figure 3. We see excellent convergence between the O(α2
s) and O(α3

s)

determinations in all cases, while for ratios with n > 1 there is a slight tension between the

O(α1
s) and O(α3

s) results. This is not cause for concern since the LO extraction does not yet

depend on µm and therefore should be regarded as a special case. A similar situation was

found with the O(α0
s) determination of quark masses in e.g. ref. [5], which was independent

of µα. In that sense the O(αns ) quark-mass determination should be thought of as being of

the same order as the O(αn+1
s ) strong-coupling extraction.

5 Results

In this section we present the main results of our analysis: the determination of α
(nf=5)
s (mZ)

using perturbative expressions at O(α3
s) from ratios of moments for the two types of currents
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Figure 3. α
(nf=5)
s (mZ) as determined from ratios of moments or MP,0

c using the corresponding per-

turbative series at O(αns ) with n = 1, 2, 3 which we call NnLO. Panels (a), (b), and (c) show results

for the bottom vector, charm vector, and charm pseudo-scalar correlators, respectively. For (a) and

(b), blue, red and green correspond to RV,1q , RV,2q , and RV,3q , respectively, with q = c, b, while for (c)

these colors correspond to MP,0
c , RP,1c , and RV,2c . Error bars reflect only perturbative uncertainties,

which are computed varying µα and µm independently, but requiring that 0.5 ≤ µα/µm ≤ 2.

considered, both for charm and bottom quarks, as well as from the 0-th moment of the

pseudo-scalar charm correlator. Here we include the gluon condensate correction, and take

into account all relevant sources that contribute to the uncertainty. The most important

contributions to the error budget are the perturbative error — due to the truncation of the

series in αs, estimated through scale variation — and the experimental/lattice uncertainties

(in general, experimental uncertainties in αs from the vector correlators are larger than

lattice uncertainties in αs from the pseudo-scalar moments). To estimate the incertitude

coming from the charm or bottom mass we use

mb = 4.18± 0.023 GeV , mc = 1.28± 0.02 GeV . (5.1)

The associated uncertainties are very small and barely contribute to the final error, since

the ratios of moments we use are rather insensitive to the quark mass. Non-perturvative

corrections also contribute to the error budget, but their contribution is absolutely negli-

gible in the case of the bottom-quark based determinations, and always subleading for the

charm-quark ones.

For charm-quark based determinations one could consider an additional source of un-

certainty coming from matching the theories with nf = 4 and 5 active flavors at the scale

µb, which by default is taken to be mb. The choice of µb inflicts a tiny uncertainty, which

we estimate by considering µb = 2mb and mb/2. Running αs at 5 loops (and matching

accordingly at 4 loops) it turns out to be negligibly small: 5 × 10−6. The uncertainty on

the bottom mass also affects the matching relation, but the associated error is also in-

significant: 1× 10−5. These are much smaller than any other source and will no longer be

mentioned.

5.1 αs from ratios of vector correlators

In this section we present results based on “real” experimental data, that is, αs extractions

from ratios of vector-correlator moments, for nf = 4 and 5. For these analyses we use the
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flavor n α
(nf=5)
s (mZ) σpert σexp σmq σnp σtotal

bottom

1 0.1183 0.0011 0.0089 0.0002 0.0000 0.0090

2 0.1186 0.0011 0.0046 0.0001 0.0000 0.0048

3 0.1194 0.0013 0.0029 0.0001 0.0000 0.0032

charm

1 0.1168 0.0010 0.0028 0.0003 0.0006 0.0030

2 0.1168 0.0015 0.0009 0.0003 0.0007 0.0019

3 0.1173 0.0020 0.0005 0.0003 0.0006 0.0022

Table 8. α
(nf=5)
s (mZ) determination from ratios of bottom and charm vector-correlator moments

RV,nq , eq. (2.6). The first column specifies the flavor content of the current, the second column

shows which ratio has been used, while the third gives the central value. Fourth to seventh provide

the various components of the uncertainty: scale variation (σpert), experimental (σexp), quark mass

(σmq
), and gluon condensate (σnp), which are added in quadrature in the last column (σtot).

αs dependence of the experimental moments, given in table 6, solving the relevant equa-

tions consistently. The determinations from the charm correlator are shown graphically in

figure 4(a). For comparison, the world average is shown as a faint gray band. All char-

monium (and bottomonium) determinations are compatible among themselves and with

the world average. Both extractions are quite robust, with rather stable central values,

although the extraction from bottomonium yields somewhat larger central values than the

extractions from charmonium sum rules. A detailed splitting of all sources of incertitude is

given in table 8. For both quarkonium systems we observe that perturbative uncertainties

grow with n (this behavior was already seen in figure 3), particularly for charmonium, with

overall larger errors. Experimental uncertainties behave in the opposite way, decreasing

as n grows. This is expected since larger values of n are dominated by the very precise

narrow-resonance contribution. For charmonium, the larger experimental uncertainties

discards the first ratio for precision extractions of αs. If the experimental error could be

drastically reduced, n = 1 could however turn into a competitive measurement, since, from

the theoretical point of view, it is quite clean. For both systems there is a compensation of

the two effects such that the uncertainties for n = 2 and n = 3 are comparable. Since the

ratios RV,2q involves the moments MV,2
q and MV,3

q their perturbative expansion is expected

to be better behaved than the ones for RV,3q which brings the contribution from MV,4
q .

Larger values of n are disfavored since non-relativistic duality violations could start play-

ing a non-negligible role. This is in line with the smaller perturbative uncertainty for RV,2q .

Since the charm-quark based extractions have smaller errors and in the spirit of avoiding

moments with large values of n we take the charm n = 2 result as the main outcome from

the analysis of vector correlators:

α
(nf=5)
s (mZ) = 0.1168± (0.0015)pert ± (0.0009)exp + (0.0006)np (5.2)

= 0.1168± (0.0019)total .

Here we do not show the mc uncertainty since it does not change the total error. Our result

is less precise than the current world average (which has an uncertainty of ±0.0011 [51]),

– 19 –



J
H
E
P
0
3
(
2
0
2
0
)
0
9
4

1 2 3
0.112

0.114

0.116

0.118

0.120

(a)

0 1 2
0.112

0.114

0.116

0.118

0.120

(b)

Figure 4. α
(nf=5)
s (mZ) determination from ratios of charm vector-correlator (left panel) and

pseudo-scalar (right panel) moments. Error bands include all sources of uncertainties added in

quadrature. Panel (a) has results for the first three ratios of moments. Panel (b) has results in

different colors for lattice output from various collaborations: from left to right these are Allison

et al. [8], McNeile et al. [9], Maezawa et al. [10], Petreczky et al. [11], and Nakayama et al. [12].

n = 0 corresponds to RP,0c ≡ MP,0
c , while n = 1, 2 stand for RP,nc . Perturbative uncertainties are

estimated trimming the grids with the default parameter ξ = 2. The light gray area shows the

current (2019) world average with its uncertainty [47].

being fully compatible with it: the central values differ by 0.6σ. This value of αs was

reported, for the first time, in ref. [13].

It is interesting to compare our final uncertainties, based on the conservative procedure

of varying both scales independently, with more optimistic approaches often used in the

literature. For example, if we had used a correlated scale variation with µα = µm the

central value would decrease by 0.0001, but the perturbative uncertainty would decrease

by a factor of 2.12 to (0.0007)pert, making up for a total error of only (0.0013)total. On

the other hand, using a completely unconstrained grid, the central value and perturbative

uncertainty grow to 0.1175± (0.0022)pert, a 50% increase in error, with a total uncertainty

of (0.0025)total.

5.2 αs from lattice data

We turn now our attention to the pseudo-scalar Green’s function, for which “experimental”

data is obtained from lattice MC simulations. A number of collaborations provide results

for the same quantities, and we analyze all of those with the same theoretical expressions

and identical treatment of perturbative uncertainties. The results are shown graphically

in figure 4(b), using different colors for the various lattice determinations. From left to

right these are: Allison et al. [8] and McNeile et al. [9] (HPQCD collaboration, MILC

configurations, HISQ action for light quarks and c-quark propagator, only MP,0
c ); Maezawa

et al. [10] and Petreczky et al. [11] (HotQCD configurations, 2 + 1 flavors plus valence c-

quarks treated with the HISQ action, MP,0
c and RP,nc with n = 1, 2); and Nakayama et

al. [12] (JLQCD collaboration, 2 + 1 flavors plus valence c-quarks treated with the Möbius
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Ref. α
(nf=5)
s (mZ) σpert σlattice σmc σnp σtotal

Allison et al. [8] 0.1179 0.0019 0.0006 0.0003 0.0004 0.0020

McNeile et al. [9] 0.1180 0.0019 0.0005 0.0003 0.0004 0.0020

Maezawa et al. [10] 0.1171 0.0018 0.0008 0.0003 0.0004 0.0020

Petreczky et al. [11] 0.1177 0.0019 0.0005 0.0003 0.0004 0.0020

Table 9. α
(nf=5)
s (mZ) determination from the n = 0 moment of the pseudo-scalar correlator MP,0

c .

The first column shows from which reference the lattice results are taken, the second corresponds

to the central value, third to sixth provide the various component of the uncertainty: scale vari-

ation (σpert), lattice (σlattice), charm mass (σmc) and gluon condensate (σnp), which are added in

quadrature in the last column (σtotal).

domain-wall fermion, only RP,nc with n = 1, 2). We again include the 2019 world average as

a faint gray band. The determinations from MP,0
c and RP,n=1,2

c , with a complete breakdown

of the uncertainty, are collected in tables 9 and 10, respectively.

We observe that the total uncertainty is overly dominated by the truncation error, such

that efforts to compute these quantities on the lattice more precisely are not warranted

with our present knowledge of the perturbative series. Interestingly, perturbative errors for

the pseudo-scalar correlator seem roughly independent of the moment being used. Even

though all determinations are well compatible with the current world average, we observe

that results from RP,2c are slightly lower than those with MP,0
c and RP,1c . This behavior

is less pronounced for the JLQCD results, which could suggest that the shift is caused by

lattice results (another argument in favor of this reasoning is that for the vector correlator

results with larger n are higher). We also observe that MP,0
c -based extractions are higher

if HPQCD results are employed, although still compatible. For RP,1c -based determinations,

the newest HotQCD result of ref. [11] is in very nice agreement with the JLQCD result,

although the old HotQCD determination [10] is significantly larger. Interestingly, for deter-

minations with RP,1c the situation is the opposite, and there is excellent agreement between

JLQCD and the old HotQCD results, being again the extraction of [11] somewhat lower.

All in all, the various results are compatible and there seems to be a higher density of

central values around the world average. As a representative value of αs from the pseudo-

scalar lattice correlator we average the various central values from the n = 0 moment,

finding α
(nf=5)
s (mZ) = 0.1177± (0.0020)total .

We finish this section by comparing the perturbative uncertainties for vector and

pseudo-scalar correlators with charm quarks. As expected from the analysis carried out

in section 2.1, the uncertainties for the pseudo-scalar correlator are larger for the n = 1, 2

ratios of moments, but for n = 3 they become of the same order. This is in line with

the findings of ref. [5] for regular moments, and again points to the fact that the total

uncertainty will not go down with more precise lattice simulations. Without 5-loop results,

possible ways of improving the accuracy are understanding the origin of the bad conver-

gence behavior of the pseudo-scalar correlator or computing the values for ratios of the

vector correlator on the lattice.
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Ref. n α
(nf=5)
s (mZ) σpert σlattice σmc σnp σtotal

Maezawa et al. [10]
1 0.1179 0.0019 0.0005 0.0003 0.0005 0.0021

2 0.1153 0.0018 0.0004 0.0003 0.0008 0.0020

Petreczky et al. [11]
1 0.1164 0.0018 0.0002 0.0003 0.0006 0.0019

2 0.1146 0.0017 0.0005 0.0003 0.0008 0.0020

Nakayama et al. [12]
1 0.1163 0.0018 0.0007 0.0003 0.0006 0.0020

2 0.1152 0.0018 0.0006 0.0003 0.0008 0.0021

Table 10. α
(nf=5)
s (mZ) determination from ratios of charm pseudo-scalar correlator moments

RP,nc . The first column shows from which reference the lattice results are taken, the second which

ratio has been used, the third corresponds to the central value, fourth to seventh provide the various

component of the uncertainty: scale variation (σpert), lattice (σlattice), charm mass (σmc
) and gluon

condensate (σnp), which are added in quadrature in the last column (σtotal).

5.3 Comparison to previous lattice determinations

In this section we compare the estimates of perturbative uncertainties from the various

lattice collaborations, which have a huge impact in the total uncertainty.

Ref. [8] estimates the perturbative uncertainty on αs from the MP,0
c moment by varying

the renormalization scales setting 2 GeV ≤ µα = µm ≤ 4 GeV. The result 0.1174(12) is

quoted, with a central value in good agreement with our result in table 9, but with a

smaller error. If we use a correlated scale variation (taking the charm quark mass as the

lowest scale) we obtain 0.1178± (0.0011)total, which has a very similar total uncertainty.

Ref. [9] does not perform any scale variation, but estimates the uncertainty by making

an educated guess for the unknown O(α4
s) term. The 0-th moment is used in the analysis,

and value 0.1183(7) is quoted, which agrees well with the corresponding central value in

table 9, but has only a third of our uncertainty. Refs. [10] and [11] quote 0.11622(84) and

0.1159(12), from MP,0
c and an average of MP,0

c and RP,n=1,2
c , respectively, estimating the

truncation error in the same way as in [9]. Our uncertainties turn out to be larger because

of our more conservative method to estimate perturbative errors, being our central values

a bit larger. By averaging our results which use data from [11], we obtain 0.1162.

Ref. [12] performs uncorrelated double scale variation, taking µα = µm ± 1 GeV with

2 GeV ≤ min{µα, µm} and max{µα, µm} ≤ 4 GeV. The value 0.1177 ± (0.0026)total is

obtained from a combined analysis involving MP,n=0,1,2
c and their ratios. The analysis

carried out in [12] determines the charm quark mass and the gluon condensate, what

may also contribute to a different central value. Our total uncertainty is slightly smaller

than theirs, and this could be caused by their different prescription when varying the

renormalization scales. If we use an unconstrained grid our total error grows to 0.0029 and

0.0026 for the first two ratios, the latter matching their quoted error.

5.4 Final result: fit to charm vector and pseudo-scalar moments

One can go one step further to gain precision by determining αs from a fit to different

correlators, which benefits from the fact that the experimental and lattice data are obvi-

– 22 –



J
H
E
P
0
3
(
2
0
2
0
)
0
9
4

ously uncorrelated. Since the bulk of the uncertainty comes from truncation errors, it is

also crucial to realize that perturbative uncertainties from the vector and pseudo-scalar

correlators are completely independent. Hence one can easily construct a χ2 function in

which all uncertainty sources (experimental, perturbative, non-perturbative, and from the

charm mass) are combined. The uncertainties due to the gluon condensate and the charm

mass are correlated and we implement this into our function. For this analysis we con-

sider two observables: MP,0
c , since results from the lattice collaborations are in excellent

agreement, and RV,2c , which has the smallest error among the vector moment extractions.

Adding other moments to the χ2 would not improve the strong coupling determination,

due to the strong correlations among moments from the same correlator. We take an aver-

age of all four lattice values, assigning the smallest uncertainty of the four determinations

(since perturbative uncertainties overly dominate, this choice has a tiny effect on the fit

outcome): MP,0
c = 1.7054 ± 0.0053. On the theoretical side we make a one-dimensional

grid in αs,
8 and for each value we scan in the renormalization scales as described in sec-

tion 4 to determine a central value and perturbative uncertainty for both the vector and

pseudo-scalar moments. We make three additional grids: one setting the gluon condensate

to zero and other two in which the charm mass is set to 1.3 GeV and 1.26 GeV. These

extra grids are used to determine the (correlated) non-perturbative and charm-quark mass

uncertainties. Following this procedure one accounts for αs-dependent theory uncertainties

in a consistent way.

Our χ2 function takes the following form

χ2(αs) = v(αs)
> · [M(αs)]

−1 · v(αs) , (5.3)

where here αs ≡ α
(nf=5)
s (mZ) and the vector v(αs) is given by

v(αs) = [ 1.7054−MP,0
c (αs), 1.1173− 0.1130 (αs − 0.1181)−RV,2c (αs) ]. (5.4)

The covariance matrix that takes into account experimental and theory errors is written as

M(αs) =

[
0.00532 + [∆MP,0

c (αs)]
2 m1,2(αs)

m1,2(αs) 0.00222 + [∆RV,2c (αs)]
2

]
, (5.5)

with theoretical errors given by (R = RV,2c ,MP,0
c )

[∆R(αs)]
2 ≡ [∆R(αs)]

2
pert + [∆R(αs)]

2
np + [∆R(αs)]

2
mc
. (5.6)

The non-diagonal terms in eq. (5.5) arise because of the correlation in the theory uncer-

tainties due to the mass and the gluon condensate, and are written as

m1,2(αs) = [∆MP,0
c (αs)]np[∆RV,2c (αs)]np + [∆MP,0

c (αs)]mc [∆R
V,2
c (αs)]mc . (5.7)

Upon the minimization of the χ2 function we find the main outcome of this paper

α
(nf=5)
s (mZ) = 0.1170± (0.0014)total , (5.8)

8Our αs grid is very fine, covering the region [ 0.1132, 0.1209 ] with 150 evenly spaced points.
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with a p-value of 26%. Neglecting correlations due to the gluon condensate and the charm

mass the uncertainty is 0.0013, so once again our treatment is conservative. Changing the

value of MP,0
c to a weighted average (with much smaller errors from the lattice) does not

change the fit outcome within four digital places. Taking instead the least precise lattice

determination lowers the central value by 0.0003, a shift much smaller than the uncertainty.

Our result is compatible with the current word average within 0.65σ with a smaller

central value and a very similar uncertainty. As a sanity check we have also performed

a standard weighted average of the individual αs determinations from MP,0
c and RV,2,c ,

finding α
(nf=5)
s (mZ) = 0.1172± (0.0014)total, in excellent agreement with eq. (5.8).

6 Conclusions

In this work we have determined αs from ratios of quarkonium correlator moments. The

strategy we follow when taking the ratio is canceling the overall dependence on the heavy-

quark mass, leaving only a small logarithmic dependence which is damped by two powers

of the strong coupling constant. The ratio is re-expanded in αs such that the new se-

ries has nice convergence properties. Our determination uses O(α3
s)-accurate perturbative

computations, supplemented with non-perturbative corrections parameterized by the gluon

condensate, which is included to O(αs) precision. We compute the experimental values for

the ratios of moments of charmonium, updating the computation performed in ref. [3],

and bottomonium, using the results in ref. [5], but, in both cases, keeping αs as a free

parameter in the treatment of the perturbative continuum contributions, as well as in the

treatment of the light-quark perturbative background in the case charmonium. It is crucial

to have full control over the uncertainty correlation among moments, since there are large

cancellations of errors when taking the ratios. We also analyze lattice results on ratios of

the pseudo-scalar correlator.

We perform a careful study of perturbative uncertainties, and conclude that the renor-

malization scales of αs and mq should be varied independently in the same ranges as in

refs. [3, 5]. Furthermore, since the convergence parameter of the series does not show a

preferred value, we do not restrict the renormalization scales based on convergence. In-

stead, we simply impose that the logarithm of ratios of scales is order one. This restriction

ensures order-by-order convergence, while keeping uncertainties of moderate size. Our es-

timates are in general much more conservative than those based on educated guesses for

the unknown higher order terms of the perturbative series. In that sense, our reanalyses

of lattice data shows that uncertainties are overly dominated by the truncation error, such

that more precise lattice simulations will not decrease the total incertitude with the present

knowledge on the perturbative series.

Our main result combines experimental and lattice information on charm correlators,

and reads

α
(nf=5)
s (mZ) = 0.1170± (0.0014)total , (6.1)

where the main contribution to the error comes from truncating the perturbative series.

Despite our conservative perturbative error estimate, our determination is very precise.
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Figure 5. Comparison of our main determination of α
(nf=5)
s (mZ) (red on top) with some selected

determinations. Event-shape analyses at N3LL′ + O(α3
s): thrust and C-parameter (green) [78–80];

lattice QCD [11, 12, 77, 81, 82] and static energy potential [83] (both use lattice input, in dark

blue); electroweak precision observables fits [84] (black); Deep Inelastic Scattering [85] and global

PDF fits [86, 87] (light blue); and hadronic τ decays [88, 89] and e+e− → hadrons [90] (gray). The

current world average [47] is shown as a translucent orange band.

Our uncertainty could go further down if the accuracy of the experimental value for the

moments of the charm vector correlator increased. On the theory side, since the pertur-

bative error dominates, knowing the moments at O(α4
s) would be paramount to obtain

smaller uncertainties. We get a value fully compatible with the current world average with

a comparable uncertainty. Our results from bottom moments, despite their smaller pertur-

bative errors, are less precise because there is less sensitivity to αs at larger energies even

though the experimental values for the ratios are equally accurate. The situation would

dramatically improve if the bottom cross section measurements in the continuum reached

larger energies, and also with more precise data at threshold. In figure 5, we compare our

main result of eq. (5.8) to a selection of previous determinations from a variety of sources.9

Our analysis can be extended or improved in a number of directions. On the theoretical

side, as an additional sanity check on our perturbative error estimate, we could consider

alternative expansions, such as taking powers of RX,nq (and re-expanding the resulting

9See also ref. [76] for a recent extraction based on a strategy similar to the analysis of ref. [77].
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series), or using a linearized iterative solution for αs(µα) in the same spirit of refs. [3, 5].

In the same direction, one could consider analyses in which the ratio of moments is not re-

expanded in powers of αs. Finally, since the renormalon associated to the pole mass cancels

when taking ratios, an alternative analysis could use directly the pole mass (which appears

only in logarithms). In a different direction, QED effects could can be readily accounted for,

since final-state photons are included in the cross section measurements. Finally, one could

consider fits to αs using all available information (various ratios from charm and bottom

correlators) included in a χ2 function, taking into account all correlations. Similarly, one

can perform global fits to αs and the charm and bottom quark masses.

A related analysis could use ratios of bottomonium moments for very large n, us-

ing NRQCD predictions for the theoretical moments, which includes resummation of

Sommerfeld-enhanced terms, and, in some cases, also the logarithm of the relative ve-

locity of the qq̄ pair, see e.g. refs. [91, 92]. In this way, the experimental uncertainty would

be reduced to the point of being completely negligible. The question is, of course, by how

much the perturbative error grows, and if it would still make the method eligible for a

precise determination of the strong coupling. Another approach to exclude the continuum

from the experimental moments is using finite-energy sum rules, in which a pinched kernel

suppresses quark-hadron duality violations.

In the same spirit of our present analysis, one could consider ratios of masses of bot-

tomonium states. In ref. [38] it was shown that a simultaneous fit for the bottom quark

mass and αs was feasible, but the strong coupling was determined with large (perturba-

tive) uncertainties. The origin of the big error was the strong correlation between the two

parameters (a similar correlation was found for fits to the Cornell model in ref. [93]). The

series resulting from the ratio of two bottomonium bound-state masses (having e.g. distinct

principal quantum number n) is free from the pole-mass renormalon and depends only log-

arithmically on the heavy-quark mass, starting at NNLO. Therefore one a) eliminates the

correlation between the two parameters, and b) has a better-behaved perturbative series.

Probably one cannot use this idea in charmonium states since masses of mesons with n = 2

are already badly described in perturbation theory.
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A Renormalization group evolution for coupling and masses

Our numerical programs use an exact solution to eqs. (2.15), using methods which do

not rely on directly solving an ordinary differential equation such as the Runge-Kutta

algorithm. For αs, the first line of eq. (2.15) can be integrated as follows:

log

(
µ

µ0

)
=

∫ αs(µ)

αs(µ0)

dα

βQCD(α)
. (A.1)

We analytically perform the integration using partial fractions. The root decomposition

can always be performed to arbitrary precision once the number of flavors nf has been

specified. One is then left with an ordinary equation which cannot be solved analytically

beyond LL. Its solution, however, can be easily found numerically e.g. by ordinary methods

(as we use in our Mathematica implementation), or using a recursive method with the LL

(analytic) solution as seed (used in our python implementation). Solving the MS mass

RGE equation is very simple, and as usual one can decouple the αs and mq evolution of

eqs. (2.15) using the chain rule, finding

mq(µ) = mq exp

[
2

∫ αs(µ)

αs(m)
dα

γm(α)

βQCD(α)

]
. (A.2)

The integration over αs is easily performed with the partial fraction just discussed. In our

numerical codes we always use the anomalous dimensions for αs and mq at five-loop order,

and the four-loop threshold condition [94–96] to relate α
(nf=5)
s and α

(nf=4)
s . We match the

theories with and without an active bottom quark at the scale µb = mb using

α
(nf=5)
s (mb) = α

(nf=4)
s (mb)

{
1 +

4∑
i=2

[
α

(nf=4)
s (mb)

π

]i
ηi

}
, (A.3)

with ηi = {−0.15278,−0.63345,−0.70894} for i = 2, 3, 4. We have checked that, with

the running (matching) at five (four) loops, varying µb by factors or 2 and 1/2 produces

a negligible uncertainty in αs, and therefore do not include this variation in our final

error budget.

B Convergence properties of the series expansion of RV,n
q

We study the convergence properties of the series using Vc, the parameter introduced in

ref. [5], which is a finite-order version of Cauchy’s root convergence test. While in ref. [5]

Vc was right-away defined on the fit parameter (in that case it was the quark mass), here

we apply the method directly to the series. This is justified since the quantity we aim to

determine is already the expansion parameter. Writing the series generically as S =
∑

i=0 si
with si ∝ αis depending on µα, µm and mq(µm) as

si ≡
[
αs(µα)

π

]i i∑
j=0

logj
(

µ

mq(µm)

)max(i−1,0)∑
k=0

rX,ni,j,k logk
(
µα
µm

)
, (B.1)

(here we ignore non-perturbative corrections), we define

Vc = max
[
|si|

1
i+1

]
i=1,2,3

. (B.2)
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Figure 6. Vc distribution for the series corresponding to: ratios of the vector correlator for nf = 5

(bottom) [ panel (a) ]; ratios of the vector correlator for nf = 4 (charm) [ panel (b) ]; charm pseudo-

scalar correlator, 0-th moment (blue), and first two ratios (green and red). For panels (a) and (b)

blue, green, and red correspond to the first, second, and third ratios of moments, respectively.

The parameter Vc depends on the tuple (µα, µm), and the values obtained in the grid

of renormalization scales can be converted into a histogram. One can also compute the

average and standard deviation of the results. These provide a measurement of the overall

convergence of the perturbative expansion and the results are shown in figure 6, which uses a

2-dimensional grid of 2500 evenly distributed points. Here we use the current world average

value α
(nf=5)
s (mZ) = 0.1181. Performing the threshold matching to 4-loop accuracy at

µm = mb the world average corresponds to α
(nf=4)
s (4 GeV) = 0.22865, which is chosen as a

reference value to obtain α
(nf=4)
s (µ) through RGE evolution. For the bottom correlator we

find that the average and standard deviation for Vc are [ 2.02±0.33, 1.85±0.40, 1.75±0.44 ]

for the first three ratios of moments, while the corresponding histograms are shown in

figure 6(a). For the charm vector correlator we obtain [ 2.07±0.47, 1.99±0.51, 1.92±0.51 ],

with histograms shown in figure 6(b). For the pseudo-scalar correlator, we find 3.21± 0.66

for the n = 0 moment, and [ 3.16 ± 0.58, 2.44 ± 0.55 ] for the first two ratios, with the

corresponding histograms in figure 6(c). We find values of Vc larger than those quoted

in [5], with the maximum criterion saturated in most cases by the three-loop correction,

which is larger than the lower-order ones. Histograms do not show a clear peak for any of

the ratios (there is however a very prominent peaky structure for MP,0
c ), in clear contrast

with the results of ref. [5]. This seems to disfavor trimming grid points with Vc � 〈Vc〉.

C An iterative method to extract αs from RV,n
q

In this appendix we present an algorithm to determine αs from the perturbative series. It

is based on a numerical recursive relation, and its main advantage over other traditional

methods such as bisection is that one does not need to rely on intervals which should

necessarily contain the solution. Let us write the series generically as

Mexp = M0 +M1 αs(µα) +
∑
i=2

[αs(µα)]iMi[αs(µα),mq, µα, µm] , (C.1)

Mi[αs(µα),mq, µα, µm] ≡ 1

πi

i∑
j=0

logj
(

µ

mq(µm)

)max(i−1,0)∑
k=0

rX,ni,j,k logk
(
µα
µm

)
,
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where we pull the first two terms out of the sum, since their coefficients do not depend

on renormalization scales. The dependence of Mi>1 on µm is through log(µα/µm) and

mq(µm), while the dependence on µα is only through the logarithm. Mi>1 retains some

(small) dependence on αs(µα) through mq(µm). Our strategy is to determine αs(µα) in first

place, which is afterwards evolved to a given reference scale. The leading order solution,

which we denote by α
(0)
s , is analytic and does not depend on the mass or renormalization

scales. It will be used as the seed to our iterative algorithm. Solving for αs(µα) in the

linear term of eq. (C.1) we find the following recursive relation:10

α(n+1)
s (µα) =

Mexp −M0 −
∑

i=2 [α
(n)
s (µα)]iMi[α

(n)
s (µα),mq, µα, µm]

M1
, (C.2)

α(0)
s (µα) =

Mexp −M0

M1
,

where the superscript (n) denotes the iteration number. The procedure is repeated until the

numerical value of αs(µα) does not change within 15 decimal places. While we implement

this algorithm into our python code, its Mathematica counterpart uses built-in functions to

find roots of equations. Equation (C.2) can be trivially modified to account for the gluon

condensate correction, that is included in our final analysis.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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