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Abstract
Particle accelerators require continuous adjustment to

maintain beam quality. Several machine learning (ML) ap-
proaches are being explored for this task. At the Advanced
Photon Source (APS), we have recently proposed the adap-
tive Bayesian optimization (ABO) algorithm and have shown
it to be effective experimentally in the APS injector com-
plex. Further testing has suggested several improvements, on
which we report here. We introduce dynamic kernel switch-
ing, deep kernel learning, and surrogate model prior means,
resulting in improved robustness. We also extend our code
with multi-dimensional time kernel support and predictive
constraint avoidance to make it applicable to a wider range
of systems. These changes also improve the general ABO
performance, but more importantly expand ABO applica-
bility to systems with rapid or unexpected changes in either
optimization parameters or time properties. Notably, this
allows for rapid and automated fallback to conservative pa-
rameters when optimizer confidence degrades, with alarms
raised for further operator review. These features will permit
further operational ML adoption at APS.

INTRODUCTION
Particle accelerators face increasing performance de-

mands, resulting in tighter tolerances on accuracy and sta-
bility [1]. Continuous parameter adjustment is typically
required, often relying on expert guidance and intuition.
With the rise of machine learning, there is immense interest
in making use of newly-available algorithms to implement
generic tools to improve reliability, reduce expert workload,
and provide higher performance to users.

A key application of ML for accelerators is in parameter
optimization, whereby one or multiple objectives are tuned
through an intelligent search of the parameter space. Con-
ventional optimization methods already in use include sim-
plex [2, 3], RCDS [4], genetic algorithms [5], and extremum
seeking [6]. New ML methods include Bayesian optimiza-
tion (BO) [7], reinforcement learning [8], and others. BO
is of special interest since it allows efficient black-box func-
tion optimization with few samples, taking advantage of any
prior physics-model knowledge provided to the algorithm.

At APS, we are working on methods to make BO appli-
cable to a wider range of experimental systems, including
those with high-dimensionality, time-dependent drift, or
high noise, all without extensive expert tuning. One of our
recent algorithms, ABO, has shown good performance in
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several such cases. This paper discusses several new fea-
tures that overall help make ABO a more configurable and
robust method that can detect, predict, and avoid problematic
configurations, with a graceful failover in the worst cases.

ADAPTIVE BAYESIAN OPTIMIZATION
This section briefly reviews the ABO concept as presented

in Ref. [9]. The output being optimized is described by

y = 𝑓 (t, x) + 𝜀, (1)

where 𝑓 (x) is the black-box function of interest and 𝜀 ∼
N(0, 𝜎2

𝜀) the added noise. Using Gaussian Processes
(GP) [10], a surrogate model for 𝑓 can be parameterized as
a multivariate normal distribution with a mean 𝑚(x) and
covariance kernel 𝑘 (x, x′) as

𝑓 (x) ∼ GP(𝑚(x), 𝑘 (x, x′)). (2)

The kernel is used to evaluate the similarity between values
of 𝑓 at x and x′, and its’ appropriate choice is critical for
good GP convergence. In ABO, the black-box function is
presumed to depend not only on input parameters x but also
on time and potentially other variables contained within
‘auxiliary’ vector t. The value of t is dictated by outside
factors and cannot be controlled by the optimizer. Time
is a typical fixed parameter, but others are possible - room
temperature, upstream accelerator beam parameters, etc. In
ABO, standard input dimensions are typically assigned one
of the common stationary ‘local’ kernels, such as the square
exponential (SE) kernel:

𝑘𝑆𝐸,𝑖 = 𝜎2 exp

(
−(𝑥𝑖 − 𝑥′

𝑖
)2

2𝑙2

)
. (3)

Kernel hyper-parameters are output variance 𝜎 and length-
scale 𝑙. For auxiliary variables however, correlations can
have unusual patterns like non-stationary oscillations or ir-
regular motion. Previous studies found that standard local
kernels were beneficial for irregular signals, while globally
adaptive spectral mixture (SM) [11] or deep (i.e. neural net-
work) kernels were useful to take advantage of long-range
patterns. To form the final GP kernel, individual sub-kernels
are multiplied, which is equivalent to a logical ‘AND’:

𝑘 = 𝑘𝑥 (𝑖) (𝑥𝑖 , 𝑥′𝑖) × ... × 𝑘𝑡 ( 𝑗 ) (𝑡 𝑗 , 𝑡′𝑗 ). (4)

Once the ABO model is created, the process of choos-
ing the next point is similar to standard BO, except that all
auxiliary variables are held fixed at expected values during
acquisition function optimization. For example, the time
parameter would be set to the time of next measurement,
including any lag in setting devices.
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KERNEL IMPROVEMENTS
Kernel Switching

The behavior of drifting systems can change abruptly,
making a pre-trained time-aware model inaccurate and po-
tentially worse than one with no historical data, at least until
the new system behavior is learned sufficiently. We have
previously proposed SM kernels as a universal choice suit-
able for signals with both local correlations and long-range
patterns. This flexibility came at the cost of a higher param-
eter count and thus longer training requirements. When a
SM model is exposed to rapid changes, reconvergence can
be slow and large exploration steps can occur. While such
steps may give optimal information gain, output swings can
be disruptive to operational systems and need to be avoided.

To mitigate this issue, we implemented a heuristic to dy-
namically switch to more robust and conservative local mod-
els until the system stabilizes, trading off convergence speed
for better worst-case performance. GP models provide an el-
egant way to detect changes through kernel lengthscales, 𝑙 in
Eq. (3), which can be thought of as the ranges within which
data is locally correlated [12]. Rapid changes in lengthscales
can thus indicate high model uncertainty. Similar logic can
be applied to output variance and other hyperparameters.

Several implementation details are critical. First, the con-
cept of lengthscale as a single parameter does not exist when
fully Bayesian priors are used. Instead, lengthscales are
defined through prior distributions, such as the Gamma dis-
tribution. Γ(𝛼, 𝛽) ≡ Gamma(𝛼, 𝛽). Expected values of
lengthscale are used for such parameters. Second, with auto-
matic relevance determination, each dimension has its own
lengthscale and thus no single threshold can be defined. We
considered both vector-based similarity metrics (euclidean
or cosine distance) and aggregated metrics (mean and me-
dian relative change). Median relative change 𝑟 was chosen
since it is a robust statistic and showed good performance:

𝑟 = 𝑀

[
Δ𝑙/𝑙
Δ𝑡

]
, (5)

withΔ𝑡 the application-dependent time window, typically 10-
300s. Only lengthscale decreases are typically considered.

In Fig. 1, a simple trajectory simulation is used to demon-
strate the dynamic switching when a system experiences a
sudden change due to a ramp from one optimum location to
another.

Multi-Dimensional Auxiliary Spaces
While time is correlated with all drift signals and can thus

be used as the only auxiliary variable, the direct relationship
between the disturbance and the objective can often be rep-
resented with a simpler function. For example, variation in
stored beam current might be hard to model as a function of
time but its effect on lifetime is well understood and easier to
fit. Thus, if drifts can be attributed to just a few parameters, it
is advantageous to use them directly. To support such cases,
we extended ABO to support multi-dimensional auxiliary

Figure 1: Kernel switching demonstration, with yellow re-
gions corresponding to a safe SE kernel and green to an SM
kernel. Both 30 point window and full dataset parameters
are plotted, with the latter being less useful in detecting
changes. Note how only decreases in lengthscales trigger
kernel swaps.

spaces. In the future, we plan to add the ability to turn on/off
dimensions and suggest to the user which auxiliary variables
have the largest impact on optimization quality.

Deep Kernels and Prior Means
As described above, GP models estimate the black-box

function through mean and covariance. Both of these com-
ponents are functions and can be replaced with different
heuristics. Doing so with neural networks that are trained
on historical or live data is referred to as deep kernel learn-
ing [13], and we have implemented support for it in ABO.
However, many of our injector models were found to lack
quantitative fidelity and could not be used for kernel training.
As such, we focused more effort on prior means. Previously,
only constant prior mean functions were used, with the value
either learned as part of the GP fitting process or fixed to a
pessimistic value (to discourage exploration). ABO perfor-
mance can be improved if the auxiliary-space prior mean can
be biased to a region where most outputs are expected. We
added a feature to automatically create prior means with ei-
ther simple distributions or neural-network surrogates based
on historical data. Even when no previous data is available,
we found it useful to define a broad uniform prior over max-
imum expected range to limit spurious exploration, which
can be thought of as a ‘soft’ trust region.

CONSTRAINT PREDICTION AND
AVOIDANCE

ABO supports constraints by using additional GP models
that apply weights to candidate points based on predicted
feasibility [14]. Initial implementation was limited to only
checking the next step, but time-aware GP models can be
used for long range forecasting. To exploit this knowledge,
we added a constraint avoidance procedure that can take
preventive action several steps ahead of a likely violation.
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It works by ‘fantasizing’ (drawing from model posterior)
several sequences of steps and detecting any that could po-
tentially result in violations. In such cases, the acquisition
function is further biased to avoid problematic regions.

Figure 2: Constraint avoidance test with a triangular keepout
area. Optimum is kept stationary at -1, forcing inputs to
deviate away to satisfy constraints.

Figure 2 visualizes the paths taken with and without the
avoidance feature, with the latter deviating more smoothly
from the naive optimum ahead of actual constraint violation.
However, it also exhibits slight lag at the peak as a tradeoff
for the more conservative strategy. Note that both cases
are technically safe — when violation is inevitable on the
next step, algorithms can be configured to abort. We are
exploring more flexible ways to distinguish between soft
and hard constraints, and how to apply them with different
avoidance policies.

EXPERIMENTAL TESTS
We have tested several combinations of new ABO options

in the APS linac [15]. We chose beam size and trajectory
stabilization tasks in the L1 and L3 sections, since these ob-
jectives were highly reproducible and accurately measured.
Absent significant natural drift, we simulated drifts by chang-
ing upstream quadrupoles and correctors in various patterns.
ABO had no knowledge of these changes, and had to respond
purely based on the objective value. In Figure 3, a trajectory
test is shown with a customized prior mean based on training
data earlier in the shift. Data indicates highly regular ABO
behavior both in the standard case and during anomalies like
hitting optimization boundaries or sudden system changes.

A second test was performed with two input dimensions
and kernel switching enabled to test a common case of paus-
ing/resuming optimization after some system changes. Re-
sults are shown in Figure 4, and demonstrate that after re-
suming only a small interval was necessary to stabilize the
algorithm and switch to a more complex kernel.

CONCLUSION
In order to become true operational tools, ML algorithms

must be robust and flexible. We presented several improve-
ment to one such algorithm, ABO — dynamic kernels, smart
priors, and other changes. They are expected to improve
ABO robustness and expand its applicability to more de-
manding systems. Experimental results using the new fea-
tures have shown promising improvements in stability and

Figure 3: 1D ABO test with a prior mean. Beam was first
oscillated to confirm functionality (left), then ramped past
optimizer variable limit and suddenly changed back (right).

Figure 4: 2D ABO test with kernel switching. Background
denotes safe local kernel (yellow), paused ABO (gray), and
full SM kernel (green). Red lines show position setpoints.

performance. Much work remains in automating the various
configuration choices that for now require an expert. For
future work, we want to focus on an operational implemen-
tation as a control room tool and also to make a collection
of machine-specific bespoke kernel/prior neural network
surrogates that are automatically retrained on live data.
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