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Introduction

Magnéto-optique dans la matiére

L’influence d’'un champ magnétique sur la propagation de la lumiére a été
découverte pour la premiére fois en 1846 par Michael Faraday [1]. Il observa
en particulier qu'une lumiére polarisée linéairement et se propageant dans un
milieu soumis & un champ magnétique B) parallele au vecteur d’onde ! yoyait sa
polarisation tourner. Cet effet est désormais connu sous le nom d’effet Faraday
et il est utilisé dans divers systémes tels que les isolateurs optiques. Avec une
telle expérience, Faraday mit en évidence le lien intime existant entre la lumiére
et les champs électromagnétiques. Ces découvertes représentent I'une des étapes
importantes vers le théorie classique de I’électromagnétisme établi par Maxwell.

L’effet Faraday, schématisé sur la figure 1, correspond & une biréfringence
magnétique circulaire : I'indice de réfraction n_ pour la lumiére polarisée circu-
lairement gauche n’est pas le méme que l'indice de réfraction n, pour la lumiére
polarisée circulairement droite. La biréfringence circulaire, proportionnelle au
champ magnétique, est alors donnée par :

Anp =n_ —ny = kpB. (1)

En d’autres termes, les polarisations circulaires gauche et droite se propagent
sans déformation mais pas a la méme vitesse. Une lumiére polarisée initialement
linéairement, correspondant donc a la somme d’une onde polarisée circulaire
droite et d’'une onde polarisée circulaire gauche, voit ainsi sa polarisation tourner
sous l'effet d’'un champ magnétique longitudinal.

L’influence d’'un champ magnétique B, transverse & la propagation de la
lumiére a été découverte une cinquantaine d’années plus tard, au tout début
du 20°™¢ siécle par Kerr [2] et Majorana [3]. Pour cela, un milieu, généralement,
liquide, était placé dans un champ magnétique transverse entre deux polariseurs
croisés dont les axes étaient placés a 45 “ de la direction du champ magnétique. La
lumiére linéairement polarisée devenait alors elliptique aprés propagation dans le
milieu soumis au champ magnétique. Cet effet a été par la suite étudié en détails
par Cotton et Mouton et il porte depuis le nom d’effet Cotton-Mouton [4-7].

1. Dans la suite du manuscrit, on parlera de champ magnétique longitudinal lorsque le
champ magnétique est paralléle au vecteur d’onde, et de champ magnétique transverse dans le
cas d’un champ magnétique orthogonal au vecteur d’onde.
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FIGURE 1 — Effet Faraday ou biréfringence magnétique circulaire.

L’effet Cotton-Mouton, représenté sur la figure 2, correspond a une biréfrin-
gence magnétique linéaire : I'indice de réfraction n vu par une onde polarisée
parallélement au champ magnétique n’est pas le méme que l'indice de réfraction
n, vu par une onde polarisée perpendiculairement au champ magnétique. La
biréfringence est quadratique en champ :

ATLCM = n” —n, = k’CMBi- (2)

Les polarisations paralléle et perpendiculaire au champ magnétique voyagent sans
déformation mais a des vitesses différentes. Une lumiére polarisée linéairement,
avec un angle 6 par rapport au champ magnétique transverse, ressort ainsi de la
zone de champ magnétique polarisée elliptiquement.

Depuis leurs découvertes, les effets Faraday et Cotton-Mouton ont été large-
ment étudiés, que ce soit dans des milieux solides ou liquides. Dans les milieux
gazeux, les biréfringences sont bien plus petites, et ce d’autant plus que la pres-
sion est basse. Leurs mesures représentent donc un véritable défi expérimental.
Mais elles sont particuliérement intéressantes car elles permettent de tester notre
connaissance de l'interaction entre la matiére et les champs électromagnétiques.
La valeur des biréfringences dépend des propriétés microscopiques de la matiére
telles que la polarisabilité électrique, la susceptibilité magnétique ou 'hypersus-
ceptibilité magnétique. Dans le cas des milieux dilués, ces réponses peuvent étre
calculées dans le cadre de la chimie quantique. Pour 1’hélium, les calculs sont
considérés comme exact. Les comparaisons entre les résultats expérimentaux et
théoriques permettent alors de valider ou de calibrer les dispositifs expérimen-
taux. Pour des atomes a plus grand nombre d’électrons, cette comparaison permet
de valider les modéles de calculs utilisés.
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F'IGURE 2 — Effet Cotton-Mouton ou biréfringence magnétique linéaire.

Magnéto-optique dans le vide quantique

L’interaction entre champs électromagnétiques dans un milieu peut étre dé-
crite a partir des équations de Maxwell et des équations constitutives du milieu.
Les équations de Maxwell dans le vide sont linéaires. Dans le cadre de 1’électro-
dynamique classique, aucune interaction n’est donc possible. En particulier, les
effets Faraday et Cotton-Mouton sont inexistants.

Ces interactions sont en revanche possibles dans le cadre de 1’électrodyna-
mique quantique (QED) via les fluctuations quantiques du vide. Le vide étant
supposé invariant par transformations de Lorentz, l'effet Faraday n’existe pas.
L’effet Cotton-Mouton du vide est quant & lui différent de zéro et a été calculé
dans les années 1970 [8,9] a partir du lagrangien établi par Heisenberg et Euler
en 1935 et 1936 [10,11]. Aux premiers ordres de la constante de structure fine «,
I’effet Cotton-Mouton vaut :

202 h? 25
ko= ———— 1+ "—a|[T? 3
M 15 pugmics ( * 47ra> o 3)

avec h la constante de Planck divisée par 2w, uo la perméabilité du vide, m, la
masse de ’électron et c la vitesse de la lumiére dans le vide. Le terme principal en
a? correspond au diagramme de Feynman de la figure 3a : deux photons associés
au champ électromagnétique interagissent avec deux photons associés au champ
magnétique externe par l'intermédiaire d’une paire virtuelle électron-positron.
La premiére correction radiative, correspondant au terme en o, est quant a elle
représentée par le diagramme de Feynman de la figure 3b. Elle tient compte de la
possibilité pour la paire électron-positron d’échanger un photon. Cette correction
a été calculée par Ritus en 1976 [9]. Elle vaut environ 1.5 % du terme principal.
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(a) Diagramme de Feynman correspon- (b) Diagramme de Feynman correspon-
dant au terme principal pour la biré- dant & la premiére correction radiative.
fringence magnétique du vide.

FIGURE 3 — Diagrammes de Feynman correspondant a la biréfringence magnétique du
vide. Les lignes ondulées représentent les photons du champ électromagnétique et les
lignes ondulées terminées d’une croix correspondent aux photons du champ magnétique
externe. Le cercle représente une paire électron-positron.

En utilisant les valeurs des constantes fondamentales données par le CODATA
[12], la valeur de la biréfringence magnétique du vide est :

ko = (4.0316994 + 0.0000009) x 1072 T2, (4)

L’incertitude est donnée par I'incertitude sur les constantes fondamentales. Elle
est donc négligeable comparée a I'incertitude due au fait que seule la premiére
correction radiative ait été calculée. En ce sens, la mesure de l'effet Cotton-
Mouton du vide ne correspond pas & une mesure de constantes fondamentales,
mais a un test du lagrangien de Heisenberg et Euler.

L’effet Cotton-Mouton du vide est extrémement faible et il n’a & I’heure
actuelle jamais été mesuré. Son observation représente un véritable défi expéri-
mental. Plusieurs expériences sont actuellement en cours dans la monde, dont
le projet BMV (Biréfringence Magnétique du Vide) installé au Laboratoire Na-
tional des Champs Magnétiques Intenses de Toulouse (LNCMI-T) et qui sera
présenté dans ce mémoire. Les expériences sont essentiellement basées sur des
champs magnétiques les plus intenses possibles couplés a des cavités Fabry-Pérot
de trés hautes finesses permettant d’accumuler 'effet & mesurer sur I’équivalent
de plusieurs centaines de kilométres. Concernant le champ magnétique, plusieurs
technologies existent : les champs magnétiques continus avec ses aimants per-
manents ou ses aimants supraconducteurs, et les champs pulsés. Ces derniers
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présentent ’avantage de délivrer des champs magnétiques plus intenses avec une
fréquence équivalente de I'ordre de la centaine de Hz. C’est la technologie utilisée
pour le projet BMV et dont le LNCMI-T est spécialiste.

La QED est 'une des théories les mieux testées. Certaines prédictions théo-
riques ont été vérifiées expérimentalement avec une extréme précision. C’est par
exemple le cas pour les systémes liés avec le déplacement de Lamb de 'atome
d’hydrogéne [13] ou pour les particules isolées chargées avec le moment ma-
gnétique anormal de 1'électron [14]. Cependant, aucun test ne faisant intervenir
uniquement les photons et le vide quantique n’a encore été réalisé. LLa mesure de
I'effet Cotton-Mouton du vide serait le premier test réalisé dans ce cadre.

Au-delda du modéle standard

L’étude de la propagation de la lumiére dans le vide soumis & un champ ma-
gnétique transverse permet également de tester des prédictions au-dela du modéle
standard. Elle permettrait en particulier de détecter des particules pouvant se
coupler aux photons via le champ magnétique par effet Primakoff [15], comme
schématisé sur la figure4. Ces particules hypothétiques, interagissant trés peu
avec la matiére et donc pratiquement indétectables, sont appelées de maniére
générale WIMPs (Weakly Interacting Massive Particles).

FIGURE 4 — Schéma correspondant au couplage
WIMP - photon via un champ magnétique ex-
terne. Le trait pointillé correspond a une parti-
cule WIMP comme 1’axion.

L’une des particules les plus connues parmi les WIMPs est 'axion. Cette
particule a été introduite en 1977 par Peccei et Quinn pour résoudre un pro-
bléme théorique, le « strong CP problem » [16]. L’axion serait également I'un des
constituants les plus crédibles de la matiére noire. En astrophysique, la matiére
noire (ou matiére sombre), censée représenter le quart de notre univers, désigne
la matiére apparemment indétectable, invoquée pour rendre compte d’effets in-
attendus, notamment concernant la rotation des galaxies spirales. Différentes
hypothéses ont été émises et explorées sur la composition de cette hypothétique
matiére noire : gaz moléculaire, étoiles mortes, naines brunes en grand nombre,
trous noirs... Cependant, les observations impliqueraient plutdt une nature non-
baryonique encore inconnue, comme ’axion. La détection de cette particule serait
une avancée majeure dans la compréhension de notre univers.
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D’un point de vue expérimental, différentes stratégies ont été adoptées pour
tenter de détecter cet axion. Les meilleures limites concernant sa masse et la
constante de couplage axion-2 photons (un photon du champ électromagnétique
et un photon du champ magnétique externe) sont données par des observations
astrophysiques. La premiére, appelée CAST [17] recherche des axions solaires.
La deuxiéme, ADMX [18], tente de détecter des axions galactiques. Le principe
est ici de convertir sur terre les axions créés possiblement en grand nombre par
des sources extérieures. Bien que trés sensibles, ces expériences présentent le
désavantage d’étre fortement dépendantes des modéles utilisés pour décrire les
sources célestes et donc du taux de création d’axions. D’un autre coté, les ex-
périences purement terrestres, créant et détectant les axions sur terre, sont bien
moins sensibles mais les limites données ne dépendent d’aucun modéle. Trois
types d’expériences purement terrestres existent, complémentaires les unes des
autres : les expériences de type “mur brillant” ou photorégénération de bosons de
faible masse [19], les expériences type projet BMV et les expériences permettant
de mesurer le dichroisme magnétique du vide |20, 21].

Plan du mémoire

Je présente dans ce mémoire mes travaux concernant I’étude de la propaga-
tion de la lumiére sous champ magnétique et plus particuliérement 1’étude de la
biréfringence magnétique du vide. Les principaux articles relatifs & chaque partie
sont regroupés a la fin des chapitres correspondants. Ce mémoire est organisé de
la maniére suivante :

— Le chapitre 1 est consacré a la présentation du cadre général de la mesure
de la biréfringence magnétique du vide. Comme dit précédemment, cette
mesure constitue un test de I’électrodynamique quantique. Nous nous pla-
cons dans le cadre plus général de ’électrodynamique non-linéaire du vide,
dont fait partie la QED. Cette partie permet en particulier de mettre en
évidence la complémentarité de la mesure de la biréfringence magnétique
du vide des autres mesures testant de maniére trés précise la QED comme
celles réalisées dans les systémes liés.

— Je présente dans le chapitre 2 le dispositif expérimental mis en place pour
la mesure de la biréfringence magnétique du vide. Les différents éléments
constituant l'ellipsométre, avec en particulier le champ magnétique et la
cavité Fabry-Pérot de haute finesse, sont détaillés.

— Les premiéres mesures ont été réalisées dans des gaz. L’effet Faraday et
Cotton-Mouton de I’hélium et du xénon ont en particulier été mesurés et
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comparés aux données théoriques. Nous avons ensuite mesuré la biréfrin-
gence magnétique du vide. Nos mesures ont permis de donner des limites
qui étaient au moment de leur publication les meilleures au monde. L’en-
semble de ces résultats sont présentés dans le chapitre 3.

Comme dit dans 'introduction, la propagation de la lumiére sous champ
magnétique permet également de tester des prédictions hors modéle stan-
dard. Je présente dans le chapitre 4 deux expériences réalisées dans ce
cadre avec des expériences de type “mur brillant”.

Le dispositif de premiére génération nous a permis de donner de trés bonnes
limites sur la biréfringence magnétique du vide, mais pas de ’observer. Pour
atteindre cet objectif, un dispositif de deuxiéme génération doit étre mis en
place. Je présente les améliorations correspondantes dans la conclusion.
J’évoque également les mesures ultérieures envisagées sur les gaz afin en
particulier d’observer de nouveaux effets.






CHAPITRE 1

Electrodynamique non-linéaire

L’électrodynamique non-linéaire est un cadre général englobant les théories
décrivant les interactions entre champs électriques et magnétiques dans le vide.
De nombreux phénomeénes y sont prévus, allant de la variation de la vitesse de la
lumiére dans le vide en présence d’un champ électrique et/ou magnétique a la dif-
fusion photon-photon en passant par la modification du potentiel électrostatique
créé par une particule chargée.

Parmi les différentes théories d’électrodynamique non-linéaire, I’électrodyna-
mique quantique (QED) est la théorie la mieux validée, avec des prédictions
théoriques vérifiées expérimentalement avec une incroyable précision. Elle a été
largement testée dans les systémes liés avec par exemple le déplacement de Lamb
dans 'atome d’hydrogéne [13] et pour les particules chargées isolées comme avec
le moment magnétique anormal de I'électron [14]. Ce type d’expériences permet
en particulier de mettre en évidence 'influence du vide sur les interactions, qui
sont véhiculées par les photons, entre particules chargées.

L’influence du vide quantique sur la propagation de la lumiére, en 'absence
de toute particule, n’a en revanche jamais été testé. Plusieurs expériences dans ce
domaine sont actuellement en cours |21-24| mais aucune n’a encore la sensibilité
suffisante pour observer de tels effets. La QED permet certes de prédire et de
quantifier les phénoménes en jeu. Mais faute de preuves expérimentales, il est
toutefois légitime de se demander si elle s’applique encore dans ce domaine ou
si des formes alternatives d’électrodynamique non-linéaire sont nécessaires. C’est
dans ce cadre que s’inscrit le projet BMV, développé au LNCMI de Toulouse
et visant & mesurer I'influence du champ magnétique sur la propagation de la
lumiére dans le vide. Nous verrons dans ce chapitre comment les différents types
d’expériences évoquées ici (propagation de la lumiére dans le vide et déplacement
de Lamb essentiellement) permettent de tester de maniére complémentaire les
différentes théories, et en particulier la QED.
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1.1 Equations de Maxwell et équations constitu-
tives

L’interaction entre champs électromagnétiques dans un milieu sans densité de
charges ou de courants libres peut étre décrite a partir des équations de Maxwell :

— = OB
th = —— 1.1
ro TR (1.1)
— = oD
tH = — 1.2
ro 5 (1.2)
divD = 0, (1.3)
divB = ,
et des équations constitutives du milieu
B = o (H+30) =, (1:5)
D = eE+P=[{E. (1.6)

L’ excitation magnétique H et I’excitation electrlque D dépendent des champs
electrlque E et magnétique B de la polarisation P du milieu et de son aiman-
tation M. Ils décrivent la réponse du milieu & ces champs. Les tenseurs [¢] et []
correspondent aux tenseurs permittivité électrique et perméabilité magnétique.
Les equations constitutives sont également reliées au lagrangien du systéme de
la fagon suivante :

oL

D = —=, (1.7)
oF

i - % (1.8)
OB

1.2 Lagrangien

1.2.1 Lagrangien général

Le vide est supposé étre invariant par transformations de Lorentz. La descrip-
tion de toutes les formes d’électrodynamique non-linéaire sera donc représentée
par le lagrangien suivant [25] :

L= i i ¢ j F'G. (1.9)

i=0 j=0
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Il correspond & une somme de puissance des invariants de Lorentz F et G :

132
Ho
¢ = J2E.B, (1.11)
Ho

Le nombre de paramétres libres ¢; ; est infini, mais il est généralement accepté que
seuls les ordres les plus bas en champ sont suffisants pour décrire les phénoménes
induits dans la plupart des expériences. Le lagrangien devient alors :

avec

et

L

Lo
l:NL

Lo+ Ly (1.12)
1

§f (1.13)
c01G + C20F° + €026 + 11 FG. (1.14)

Le terme d’ordre le plus bas L, correspond au lagrangien de Maxwell classique,
avec ¢ = 1/2. La correction non-linéaire Lyy, depend de quatre parameétres :

€o,15 2,0, Co,2 and C1,1-

En utilisant les équations (1.7) et (1.8), nous obtenons :

P

=

cir (2eogﬁ n (1.15)

€ =
Co,1 —F
Ho

B
0204]?——
Ho

CQQQ EE{JZ?
V Ho

B —
cin (29— = E—OfE).
Ho Ho

2 FE),
Ho

(1.16)

L’expression du lagrangien, et en particulier I’expression des paramétres ¢; ;,
dépend des théories développées. Sans étre exhaustif, les parties suivantes pré-
sentent quelques exemples de lagrangien, en partant de celui le plus reconnu,
établi dans le cadre de la QED, au cas le plus général établi dans le cadre de la

théorie des cordes.
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1.2.2 Lagrangien classique

Dans la théorie classique, nous avons :

1 B2
— = - | eFE?* - — 1.1
ﬁ ﬁo 5 (60 /,LO) y ( 7)
Ln, = O, (1.18)
P =0, (1.19)
M = 0. (1.20)

Les tenseurs permittivité électrique et perméabilité magnétique deviennent [e] =
€o et [u] = po. Les équations de Maxwell sont donc linéaires et aucune interaction
entre champs électromagnétiques n’est donc possible.

1.2.3 Lagrangien de Heisenberg et Euler

Le lagrangien le plus largement utilisé est celui établi dans le cadre de la
QED en 1936 par Heisenberg and Euler [11], généralisant a tous les ordres le
lagrangien de Euler et Kockel de 1935 [10]. Le vide est supposé ne pas violer les
symétries C, P et T. Ceci implique que les coefficients ¢; ; avec j impair sont nuls.
En particulier, nous trouvons :

1 = 0, (1.21)
cip = 0. (1.22)

Le lagrangien s’écrit alors de la maniére suivante :

1
L = SF+Lx, (1.23)
_ 1 2 2
= 2]:+ng0]: +0072g . (124)

Les coefficients ¢y et cpo sont donnés a partir des résultats de Euler et Kockel
[10] :

20213
C20 = W (1.25)
a 1 a g
= = — 1.26
90megE2. 90w B2 (1.26)
3
~ 1.66 x 107 {”ﬂ , (1.27)

Co2 = 70270. (128)
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Le lagrangien non-linéaire s’écrit donc :

a 1
Lag = —
N 90w e B2,

(F*+17G%). (1.29)

avec o = e*/4meghe la constante de structure fine et e la charge élémentaire.
Eo = m?2c3/eh = 1.3 x 10 V/m est appelé le champ critique et B, = FEe/c =
m2c?/eh = 4.4 x 10° T est appelé le champ magnétique critique.

Dans le cadre de la QED, les parameétres c; ; sont fixés. Aucune prédiction
théorique obtenue & partir de ce lagrangien ne contient donc de paramétre libre.

1.2.4 Lagrangien de Born et Infeld

Le lagrangien de Born et Infeld est un exemple trés connu rentrant dans le
cadre des théories de I’électrodynamique non-linéaire. Il a été introduit dans les
années 1934 [26], et il précéde donc le lagrangien de Heisenberg et Euler. Il a été
introduit pour résoudre le probléme de I’énergie infinie d’une particule ponctuelle
chargée baignant dans son propre champ électrique. Pour cela, il a été postulé
I’existence d’'un champ électrique absolu F,,s correspondant & la limite haute que
peut atteindre un champ purement électrique. Dans ces conditions, le lagrangien

s’écrit :
F g
L=eF%, | —/1- — 1]. 1.30
€0 abs ( \/ €0E§bs (EOEzzbs)Q * ) ( )
En supposant que (EO ]f; — 60%—1) < 1, le lagrangien devient aux ordres les plus
abs abs

bas en champ :

1 1
L~—-F Fiy ——G2 1.31
2 + 860E§bs + QEOESng ( )
Ceci correspond aux parameétres Cij suivant :
1

Ci1o = 5, (1.32)
1 = c1,1 =0, (1.33)

1
= — 1.34
62,0 8€0E§bs ) ( )

1
= ——— =4cyp. 1.35
Co,2 o Esbs C2.0 ( )

E.s est un paramétre libre de la théorie, qui reste donc a determiner soit
théoriquement, soit expérimentalement. Dans la référence [26], ce champ a été
calculé en supposant que la masse de 'électron était intégralement d’origine
électromagnétique. On trouve alors Fus ~ 2 x 102 V/m, correspondant a un
terme ¢y environ quatre fois plus petit que celui prédit avec le lagrangien de
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Heisenberg et Euler. Le défaut de cette approche est qu’elle implique que le champ
absolu dépend de la particule considérée. Par exemple, pour le muon, le champ
absolu serait (207)? fois plus grand que pour celui de I'¢lectron. Il semblerait plus
satisfaisant de supposer I'existence d’une limite universelle au champ électrique,
indépendante de la particule créant ce champ.

Une autre maniére de contraindre F,,s est de comparer les mesures des éner-
gies des niveaux atomiques aux prédictions théoriques avec et sans champ élec-
trique limite. Ceci a été réalisé par Soff, Rafelski and Greiner [27] sur des atomes
de numéro atomique élevé ou les non-linéarités doivent étre plus importantes.
Leur conclusion est que E.ps doit étre supérieur & 1.7 x 10?2 V/m. Ceci corres-
pond a un parametre cyo 5 ordres de grandeur plus petit que celui prédit dans
le cadre de la QED. Ces résultats ont été depuis remis en question [28] sans
toutefois remettre en cause le fait que la valeur introduite par Born et Infeld est
physiquement non justifiée.

Bien que le paramétre E, soit un paramétre libre de la théorie de Born et
Infled, le rapport entre les paramétres co et cp2 est quant a lui fixe, comme le
montre I'équation (1.35). Dans espace des parameétres (co,0, ¢o2), la prédiction de
Born et Infeld est donc représentée par une droite, alors que celle de Heisenberg
et Euler est représentée par un point. Ceci est schématisé sur la figure 1.1.

20 —
/
15 4
mg /
s 10 —
— /
X
N
5 54 !
/
ol
| | | | |
0 5 10 15 20

Cy0x 10> (M)

FIGURE 1.1 — Prediction de Born-Infeld (droite) et de Heisenberg-Euler (point) dans
I'espace des parameétres (2,0, ¢o2).
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1.2.5 Lagrangien dans le cadre de la théorie des cordes

Les lagrangiens précédents, aux ordres les plus bas en champ, font partie de
la famille plus générale des lagrangiens obtenus dans le cadre de la théorie des
cordes, comme discuté dans la référence [29]. Dans ce contexte, le lagrangien
s’'écrit :

1
L=3F+ % [(1— b)F? +667] (1.36)
avec 7y et b deux parameétres libres. Les parameétres ¢; ; correspondant sont :
1
co = 5 (1.37)
Ch1p = C1= 07 (138)
oo = %(1 —b), (1.39)
3
C2 = 37 (1.40)

Les coefficients co et cy2 représentent donc également deux parameétres libres.
Le lagrangien de Born et Infeld correspond au cas b = —1/2 and v = 1/3¢, E?,...
Celui de Heisenberg et Euler correspond a b= 1/7 et v = 7a/135meo B2

1.3 Propagation de la lumiére dans le vide

A partir des lagrangiens précédents, de nombreux phénoménes d’optique non
linéaire sont prévus dans le vide. Un grand nombre de ces phénoménes sont listés
dans la revue [25]. On peut citer par exemple les phénoménes de biréfringence
induite par des champs électriques et/ou magnétiques, le dichroisme du vide,
la diffusion photon-photon, la fusion de photons ou encore la génération de se-
conde harmonique. Je me concentre dans la suite sur deux phénoménes ayant
fait, et faisant toujours, 'objet de recherches expérimentales : la biréfringence
magnétique et la diffusion photon-photon.

1.3.1 Biréfringence magnétique

Une biréfringence peut étre induite dans le vide par un champ électrique,
un champ magnétique ou une combinaison des deux. Alors que dans les milieux
matériels, les phénomeénes induits par les champs électriques sont bien plus im-
portants que ceux induits par les champs magnétiques, ce n’est pas le cas dans le
vide. En effet, la méme biréfringence, autrement dit la méme différence d’indice,
est obtenue avec un champ magnétique B ou un champ électrique £ = ¢B. D’un
point de vue technologique, il est plus facile de créer des champs magnétiques
intenses de plusieurs tesla que de produire des champs électriques de 'ordre
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duGVm™!. Expérimentalement, il est donc plus judicieux d’étudier les effets
magnétiques.

Prévisions théoriques

Le vide étant supposé invariant par transformations de Lorentz, 'effet Fara-
day n’existe pas. Pour étudier les effets de biréfringence, nous prendrons donc
un champ magnétique externe B | transverse a la propagation de la lumiére. Le
calcul de la biréfringence induite par un un tel champ est fait en détails dans la
référence [30]. Il est basé sur le lagrangien des équations (1.12) a (1.14).

Le champ magnétique total correspond a la somme du champ magnétique
externe statique et du champ magnétique associé a 'onde lumineuse éw B =
B,+B,.Le champ électrique est celui associé a I’onde lumineuse E,.En injectant
ces quantités dans les équations (1.5), (1.6), (1.15) et (1.16) et en ne gardant que
les termes oscillant & la pulsation w, on obtient :

. 4 .
D, = « (1— CZOBi) E,

2¢pc S oo
+ 2(E,. BB,
Ho
+ 6—0 6071 — Cl—JBi> éw
Ho 0
2 L L o
— RSN E BB, (1.41)
Ho Mo
S 1 4 S
qd, = — <1— C“Bi) B.
Ho Ho
8¢ =
— 2%B,-B.)B,
Ho
€ & —
+ —0 <_C(] 1+ l—JBi> Ew
Ho Ho

211 = = -
OV E BB, (1.42)
Ko Mo

On définit la direction du champ magnétique statique suivant la direction
x. Le champ magnétique est transverse a la direction z correspondant a la di-
rection de propagation de la lumiére. On suppose l'existence d’ondes planes se
propageant sans déformation de polarisation. Le champ électrique correspondant
s’écrit de la maniére suivante :

E,(Ft) = Epeil«t=F7), (1.43)
avec ko= yé’z. (1.44)

C
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Le vecteur k est le vecteur d’onde. Le parameétre n correspond a l'indice vu par
I’onde plane. Les équations de Maxwell s’écrivent alors :

ko E, = wB,, (1.45)
k® H, = —wD,, (1.46)
k-D, = 0, (1.47)
k-B, = 0. (1.48)

(1.49)

En injectant dans la deuxiéme equation les expressions des vecteurs ﬁw et ﬁw
données par les équations (1.41) et (1.42), et en utilisant la relation entre les
vecteurs Ew et éw donnée par la premiére équation de Maxwell, on trouve dans
le plan de polarisation (z,y) :

2 (4c20 p2 2(co,2—2¢2,0) 2 2nc1,1 2
w (Bt - 1) 41 Mgt o Bl Fo_d
2nci,1 2 2 [ 12¢2,0 2 dea0 2 S
o BJ_ n <TBJ‘_1>+1_ o BJ_
(1.50)

La résolution de ce systéme d’équations permet finalement de trouver les indices
et les axes propres du milieu.

On peut tout d’abord noter I'absence du terme cy;. Celui-ci n’a donc ici
aucune influence sur la propagation de la lumiére. Les termes diagonaux de la
matrice précédente correspondent & 'effet Cotton-Mouton. En considérant dans
un premier temps les termes non-diagonaux comme nuls, les axes propres sont
paralléles et perpendiculaires au champ magnétique externe. Les indices de ré-
fraction correspondants sont :

ng = 14+22p% (1.51)
Ho
4

ng = 1+-20p2, (1.52)
Ho

L’indice de réfraction n pour la lumiére polarisée parallélement au champ ma-
gnétique externe ne dépend que de ¢g 2. L'indice de réfraction n, pour la lumiére
polarisée perpendiculaire ne dépend quant a lui que de ¢y o. De plus, les effets de
dispersion pouvant étre négligés, n| et n . sont supérieurs a 1. Ceci implique :

Co,2 > 0, (153)
ea0 > 0. (1.54)

La biréfringence An est finalement égale a :

Co,2 — 402,0

B?, (1.55)
Ho

Ancy = ny—ng =
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FIGURE 1.2 — Effet Cotton-Mouton. Une lumiére de polarisation linéaire, faisant un
angle 0 avec le champ magnétique externe transverse, devient elliptique aprés traversée
du milieu soumis au champ magnétique sur une longueur Lp.

Elle dépend des deux parameétres cpo et c2o. En utilisant le lagrangien de Hei-
senberg et Euler donné par 1’équation (1.24), nous obtenons :

30270 2 20[27:L3 2
AnCM,HE = B n

Le lagrangien de Born-Infeld donné par I’équation (1.31) prédit quant & lui un
effet Cotton-Mouton nul :
AncMBI = 0. (157)

Le schéma de principe de la biréfringence Cotton-Mouton est rappelé sur la
figure 1.2. Une lumiére initialement polarisée linéairement, inclinée d’un angle 6
par rapport a la direction du champ magnétique, va acquérir une ellipticité Yoy
aprés avoir traversé la zone sous champ magnétique. L’ellipticité est donnée par :

Yo = gLBAnCM sin 26, (1.58)

avec A la longueur d’onde et L la longueur sur laquelle le champ magnétique
est appliqué.

Les termes non-diagonaux de la matrice de I'équation (1.50) sont respon-
sables d’une biréfringence supplémentaire, connue sous le nom de biréfringence
de Jones, venant se superposer a la biréfringence Cotton-Mouton. On consi-
dére que la biréfringence Cotton-Mouton reste la contribution principale. Dans
ces conditions, les indices suivant les axes propres restent ceux donnés par les
équations (1.51) et (1.52). En revanche, les axes propres tournent d’un angle
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FIGURE 1.3 — Effet Cotton-Mouton et biréfringence de Jones. La biréfringence de
Jones, plus petite que Veffet Cotton-mouton, a pour effet de tourner légérement les
polarisations propres d'un angle 3.

par-rapport aux précédents, comme le montre la figure 1.3, avec [ au premier
ordre donné par [31] :

" - (1.59)

402,0 — Co,2

L’ellipticité induite devient alors :

P = ;LBAnCM sin2(0 — f). (1.60)

L’angle 3 étant trés petit devant un, on peut également écrire ellipticité totale
comme :

C’est la somme de Dellipticité due a D'effet Cotton-Mouton et de celle due a
la biréfringence de Jones. Cette derniére correspond a une biréfringence linéaire
suivant les axes orientés & £45° par rapport a la direction du champ magnétique
statique avec une biréfringence égale a :

2C1,1

A?”LJ = MNyg5° —N—y5° = Bi (163)

Ho
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Limites expérimentales

Théoriquement, on s’attend donc & observer une variation de la vitesse de la
lumiére dans le vide soumis & un champ magnétique transverse, avec une varia-
tion pouvant dépendre de la direction de polarisation. Deux types d’expériences
ont été réalisés pour mesurer cette variation. La premiére est basée sur des in-
terférométres a bras séparés comme les interférométres de Michelson et Morley.
Le principe, représenté sur le figure 1.4 est de mesurer le changement de la figure
d’interférence lorsqu’un champ magnétique externe est appliqué sur I'un des bras.
Ce type de configuration, représenté sur la figure, présente 'avantage de mesu-
rer directement les indices n et n,, et donc les parameétres cgo et ¢z, suivant
que le champ magnétique est orienté parallélement ou perpendiculairement & la
polarisation de la lumiére.

FIGURE 1.4 — Interférométre de Michelson pour la mesure de la biréfringence ma-
gnétique du vide. Un champ magnétique transverse est appliqué sur I'un des bras de
Iinterféromeétre induisant un changement de la figure d’interférences.

Les résultats les plus précis avec ce type d’interférométres ont été publiés en
1940 par Farr and Banwell [32]. Un champ magnétique de 2T était appliqué
sur I'un des deux bras de l'interféromeétre. Aucune variation de la vitesse de la
lumiére n’a été observée, ce qui correspond, compte tenu de la sensibilité de
leur expérience, & une variation relative inférieure a 2 x 1072, Les limites sur les
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parametres ¢; ; sont alors :

coo < 1.6x 10719 m?Jh (1.64)
cop < 6.3x1071%m3J 7t (1.65)
11 < 6.3x1071% miJh (1.66)

Pour les termes cy o et cg 2,ces limites sont & 14 ordres de grandeur de la prédiction
théorique établie par la QED (équations(1.28) et (1.27)).

Le deuxiéme type d’expérience est basé sur la polarimétrie. Le principe est de
mesurer 'ellipticité induite par un champ magnétique sur une lumiére polarisée
initialement linéairement [33], comme indiqué sur la figure1.5. Dans ce cas, la
quantité mesurée est la différence d’indice. Cette mesure ne permet donc pas de
contraindre ou de mesurer les parametres ¢y o et ¢z o, mais seulement de quantifier
une certaine combinaison linéaire de ces deux parametres : coo — 4c .

Ph;

FIGURE 1.5 — Mesure de la biréfringence magnétique du vide par polarimétrie. L’el-
lipticité de la lumiére, induite par le champ magnétique transverse, est mesurée via
le rapport entre les intensités transmise (mesurée par la photodiode Phe) et réfléchie
(mesurée par la photodiode Phy) par le polariseur de sortie noté A.

Les expériences les plus sensibles & I’heure actuelle sont d’une part celle mise
en place par la collaboration PVLAS en Italie [24], et d’autre part celle que nous
développons & Toulouse et appelée projet BMV [23]|. La direction du champ
magnétique est & 45" par rapport a la direction de la polarisation d’entrée. Les
résultats de mesure Ancy sont données avec une erreur 6 Ancy. Ceci correspond
a deux régions d’exclusion dans l’espace des paramétres (co2,c20) :

Coo < 40270 + Mo(ATLCM + 5ATLCM), (167)
Co2 > 40270 + Mo(AnCM — 5AHCM) (168)
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La meilleure limite actuelle a été obtenue récemment par les italiens avec
An = (0.4+2.0) x 107%*B2 a 1o |24], ce qui correspond & :

coa < Acgg+3x 107 m?J (1.69)
Con > degg—2x 107 miJ (1.70)

Ces limites sont reportées dans la figure 1.6.

0.4
° Prédiction d'Heisenberg-Euler
5 034
mg 0.2 — — Prédiction de Born-Infeld
o .
Ng o1 Région exclues a partir de n, et np>1
< O
og" 0.0 N Régions exclues a partir des mesures
' de biréfringence magnétique du vide
01" .
T T T T T

0.1 0.0 0.1 02 0.3 0.4
Cox 107 (1)

F'IGURE 1.6 — Meilleure limite actuelle dans ’espace des parameétres (cg 2, ¢2,0) obtenue
grace aux mesures de biréfringence magnétique. Zones hachurées : régions exclues a
partir des résultats publiés par la collaboration PVLAS [24]. Point : prédiction dans
le cadre de la QED (Heisenberg et Euler). Ligne pointillée : prédiction a partir du
lagrangien de Born et Infeld. Le point semble se trouver sur la ligne pointillée & cause
de échelle (voir figure 1.1 pour le zoom sur cette région). Zones pointillées : régions
exclues du fait que les indices nj and ny doivent étre supérieurs a 1.

Enfin, pour donner une limite sur le parameétre c;;, nous devons nous pla-
cer dans la configuration de Jones, avec une lumiére polarisée parallélement ou
perpendiculairement au champ magnétique externe. Aucune mesure n’a jamais
été reportée dans cette configuration. A noter également qu’une estimation de ce
paramétre est donnée dans la référence [31] dans le cadre du modéle standard et
de la chromodynamique quantique. Le paramétre c;; serait au moins 20 ordres
de grandeur plus petit que le parameétre co calculé a partir du lagrangien de
Heisenberg et Euler.

1.3.2 Diffusion photon-photon

L’expérience la plus simple pour tenter d’observer la diffusion photon-photon
dans le vide consiste a focaliser deux faisceaux lasers, les plus énergétiques pos-
sibles, en un méme point. Néanmoins, le nombre de photons diffusés peut étre
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sensiblement augmenté en utilisant un troisiéme faisceau permettant de stimuler
la réaction [34]. En utilisant cette configuration, le lien entre les paramétres c¢;
et le nombre de photons diffusés peut étre établi & partir de ’approche propo-
sée dans les références [35] et [36] en introduisant une susceptibilité non linéaire
effective x3, comme en optique non-linéaire classique. Dans la suite, je ne présen-
teral que les étapes de calcul principales, le détail se trouvant dans les références
précédentes.

Prévisions théoriques

Dans le cas de la diffusion élastique, ’énergie et 'impulsion sont conservées,
ce qui correspond & :

E4 == El + EQ - ];3, (171)

W4 = W1 +wy — W3, (172)

avec IZ, le vecteur d’onde du laser numéro ¢ et w; sa pulsation. Les faisceaux
d’entrée sont les faisceaux 1, 2 et 3. Le faisceau 3 stimule la diffusion dans le
faisceau 4, comme indiqué sur la figure 1.7. Les polarisations sont linéaires et nous
écrivons les champs électriques et magnétiques associés aux ondes lumineuses de
la maniére suivante :

7 (7 1) = EoyelRmeii (1.73)
B,(7,t) = Bye!kimeibg,, (1.74)

X faisceau diffusé
— 2 -
k2a 0\)2 J/ /[ .- \ k4’ (04

FI1GURE 1.7 — Diffusion photon-photon. Les faisceau 1 et 2 sont focalisés en un méme
point. Le faisceau 3 permet de stimuler la diffusion dans le faisceau 4.
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A partir des équations (1.15) et (1.16) et en ne gardant que le terme oscillant
A wy, on obtient :

—

P, = EEEE, {202701(&0 LR % (Kpm i Kpllﬁz,) 1 (1.75)

2
== 63E1E2E31’?P, (176)
- 2 = > Co2 Ci1 (= >
My, = cEE\EyE, { 200K 1,0+ 5Ky, = 5 (R — K }(1.77)
= CEgElEQEzJ,[_()M. (178)

Les vecteurs Kp,;, Kp,,, Kp,, et Kp,,, correspondent aux facteurs géométriques
suivant :

Epy = i (@0 — 03.03) + @ (@305 — 01.03) + @5 (.05 — 01.03) (1.79)
Kp, = O (030 + 03.005) + 03 (0305 + 01.435) + 03 (4305 + 01.43%) (1.80)
Kp,, = i (@503 + v5.43) + U (ui.03 + 03.405) + 13 (.05 + 01.455) (1.81)
Kpy, = 01 (pais — 63.03) + 05 (.40 — 07.03) + 03 (103 105 — v7.03) (1.82)

Ces facteurs géométriques dépendent de la direction des faisceaux incidents ainsi-
que de leur polarisation.

L’équation de propagation du champ électrique 54 est obtenue & partir des
équations de Maxwell :

(1.83)

V2E, — — —V ® M, + o 2 <V.Pw4

- 10%E, (0 . 0P, . 4>
2 o M\ o

Dans I'approximation paraxiale et pour des amplitudes des champs lentement
variables dans le temps et I'espace, la génération de I'amplitude FEjyy devient
|35, 36] :

(5E04 1 3E04> - Lplows
Uy = —

0z c Ot

[(CP0w4,m + M0w4,y> Uy + (Cp0w4,y - M0w4,:s) “_z;] .

(1.84)
L’axe z correspond a la direction de propagation du faisceau 4. Les indices x and
y correspondent aux composantes suivant les axes x et y. On peut également
écrire cette derniére équation sous la forme :

<8E04 n 1 8E04) 5 iLU4 3

02 ¢ o Ug = __XvEOIEOQF(]iiu_;L‘ (185)

Ceci est équivalent en optique non-linéaire & une équation de type mélange a
4 ondes dans un milieu de susceptibilité non-linéaire effective d’ordre trois x>
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donnée par :

3 Clto 2 2
= — - cPy, » + My, + (cPow,y — Mow, 2)”,
N V(€Prsss + Moury)? + (Pay — M)
— o\ (K + Kty + (Kpy — Kaga)?. (1.86)

Elle dépend des paramétres ¢; ; via les vecteurs P et M des équations (1.75) et

(1.77), ou via les vecteurs géométriques Kp et Ky donnés par les équations (1.76)
and (1.78). La polarisation du photon diffusée est :

> (CPOw4,x + M0w4,y) u_;c + (CPOw4,y - M0w4,az> U_;/

- (1.87)
\/(CPOUJ4,x + M0w4,y)2 + (CPOwM/ - M0w4@)2

Elle dépend également des parameétres ¢; ;.

Le nombre de photons diffusés est finalement obtenu en intégrant I’équation
(1.85). Le résultat dépend des profils des faisceaux lasers (onde plane, faisceau
gaussien,...), mais il est toujours proportionnel a (ij)2 et proportionnel a la
section efficace totale de diffusion du processus.

Expérimentalement, la géométrie de 'expérience doit étre choisie afin de
maximiser le nombre de photons diffusés tout en ayant une détection avec un
rapport signal sur bruit le meilleur possible. Cependant, pour voir clairement le
lien entre les coefficients ¢; ; et le nombre de photons diffusés, prenons une confi-
guration simple : les lasers 2 et 3 sont copropageant, et le laser 1 est contrapro-
pageant des deux autres. Les différents cas envisagés par la suite sont représentés
sur la figure 1.8.

Dans le premier cas, nous prenons :

U] = —Uy = —U3 1.89

Nous obtenons :
Kp = 8ot} — 26110 (1.90)
KM == 802701)3 - 2017116_’1 (].9].)

La susceptibilité effective est alors :
Xo1 = 16€pCa,. (1.92)

La paramétre c;; disparait et le paramétre x3 dépend uniquement de cy. Une
mesure effectuée dans cette configuration permet donc de contraindre ce para-
meétre indépendamment des autres.



32

CHAP 1 - ELECTRODYNAMIQUE NON-LINEAIRE

(c) Cas 3

FIGURE 1.8 — Diffusion photon-photon en configuration unidimensionnelle. Les vec-
teurs orthogonaux a la propagation et de couleur rouge représentent les vecteurs u;
(polarisation de la lumiére) alors que les vecteurs gris correspondent & v; (vecteur
unitaire colinéaire avec le champ magnétique de 'onde lumineuse).

Dans le deuxiéme cas, nous supposons :

U] = —0Uy = —03 (1.93)
n = —uy = —u3 1.94)
Nous obtenons :
I?p = 200}2171 + 201717}_1 (195)
[?M = 2C0’2’U_i + 201,1’1[1 (196)

La susceptibilité effective est alors donnée par :
X o = 4€0Co2- (1.97)

Elle dépend uniquement de cy .
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Dans un troisiéme cas, nous considérons :

Uy = vz = ug (1.98)
1= Uy = —0U3 (1.99)
Nous obtenons :
Kp = (deap — o)Vl + 2¢1,1U03 (1.100)
Ky = —(4ea0 — co2)tii — 201,177 (1.101)

La susceptibilité effective est alors :
X35 = V2e(dcay — o). (1.102)

Elle dépend d’une combinaison linéaire de ¢z et ¢ 2.
Pour des configurations plus compliquées & deux ou trois dimensions, le
nombre de photons diffusés IV, est de la forme :

Ny, o (X)) (1.103)
X ac;O + bcgg + cci 4
+2d027000,2 + 2600’20171 + 2f027001,1. (1.104)

Le terme ¢ ; est toujours absent. Ce type d’expérience ne peut donc pas donner
de limite sur ce paramétre. Enfin, I’étude de la polarisation du photon diffusé
donnée par ’équation (1.87) devrait permettre d’extraire des informations sup-
plémentaires sur les différents paramétres ca, co2 et ¢ 1.

Limites expérimentales

Les meilleures limites expérimentales sur le diffusion photon-photon dans le
vide ont été publiées en 2000 [36]. Aucun photon diffusé n’a été observé. L’incerti-
tude est quant a elle a 18 ordres de grandeur de la prédiction QED, correspondant
aux paramétres ¢y et ¢ donnés par les équations (1.27) et (1.28), et ¢, = 0.

1.3.3 Comparaison biréfringence magnétique du vide - dif-
fusion photon-photon

Parmi les expériences étudiant les effets non-linéaires de la propagation de la
lumiére dans le vide, les plus sensibles sont celles tentant de mesurer la biréfrin-
gence magnétique du vide par polarimétrie. Alors que les autres sont a au moins
14 ordres de grandeur des prédictions théoriques établies a partir du lagrangien
d’Heisenberg et Euler (14 ordres de grandeur pour 1'étude de la biréfringence
magnétique avec des interférométres a bras séparés, 18 ordres de grandeur pour
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la diffusion photon-photon), la mesure de leffet Cotton-Mouton du vide est a 2
ordres de grandeur de la prédiction QED.

On pourrait alors envisager d’utiliser les mesures obtenues sur I'effet Cotton-
mouton pour donner des limites sur les autres, et plus particuliérement sur la
section efficace de diffusion. Comme le montre ’équation (1.55), la mesure de
la biréfringence magnétique du vide ne peut pas contraindre séparément les pa-
rametres cpo et c 9. D'un autre coté, nous avons vu sur des exemples simples
que la dépendance de x? vis a vis des paramétres ¢; ; dépend de la configuration
des lasers choisie. Excepté dans le cas 3 pour la diffusion photon-photon, les li-
mites obtenues sur la biréfringence magnétique du vide ne peuvent donc a elles
seules donner des limites sur la diffusion photon-photon, la dépendance des effets
vis-a-vis des paramétres étant généralement différentes.

Les limites sur la diffusion photon-photon peuvent néanmoins étre utilisées
pour contraindre davantage 1'espace des paramétres présenté sur la figure 1.6. Les
deux types d’expérience sont donc en ce sens complémentaires.

1.4 Particules chargées et vide quantique

A Theure actuelle, les expériences dédiées a I’étude de la propagation de le
lumiére dans le vide quantique n’ont pas encore été en mesure de tester le lagran-
gien de Heisenberg et Euler. Les expériences sur la biréfringence magnétique du
vide sont désormais a seulement deux ordres de grandeur de la prédiction établie
dans le cadre de la QED et on peut prévoir qu’ils seront gagnés dans les toutes
prochaines années.

Il est aujourd’hui admis que la QED est 'une des théories les mieux testées
au monde, en particulier sur les systémes liés comme I’hydrogéne. Mais alors
que les expériences décrites plus haut permettent de tester la propagation de la
lumiére dans le vide quantique, les mesures sur les systémes liés permettent de
mettre en évidence l'influence du vide quantique sur l'interaction entre particules
chargées. Les deux approches représentent donc des tests complémentaires de la
QED, comme nous allons le voir dans cette partie.

1.4.1 Vecteurs polarisation et aimantation

Considérons une particule ponctuelle de charge () et de moment magnétique
i = pe,. Les champs électriques et magnétiques générés dans le vide classique,



1.4 Particules chargées et vide quantique

35

autrement dit dans un milieu ne pouvant étre ni polarisé ni aimanté, sont :

- Q .
E = —< ¢, 1.1
47r607’2€ (1.105)
S Mo b 5 o o o
B = - 3 (€..€) €. — €] (1.106)
- Zf:fd (3cose, — &.) (1.107)

Dans le vide quantique, ces champs sont légérement modifiés du fait de la pola-
risation du milieu que nous allons expliciter & partir du lagrangien général des
équations (1.12), (1.13) et (1.14).

Le lagrangien développé dans les équations (1.12) & (1.14) n’est valide que
pour des champs bien inférieurs aux champs critiques, dont les expressions sont
données en début de partie 1.2.3. Nous nous placons dans ce cadre. On suppose

donc :
ro> r. avec r. = \/L (1.108)
cr cr dreg By

1/3
Mo,U)/

&
&

1.109
47 B, ( )

et r > rg avec 1. = <
Le rayon critique obtenu avec le champ électrique critique est généralement le plus
contraignant. Quelques valeurs sont listées dans le tableau 1.1 pour différents élé-
ments comme ’hydrogéne, ’hydrogéne muonique ou les ions hydrogénoides (ions
constitués d’un noyau de charge Ze et d’un électron). A titre de comparaison,
nous donnons également les rayons de Bohr correspondant. Alors que dans le cas
de I’hydrogéne, le rayon de Bohr est bien plus grand que les rayons critiques,
nous voyons qu’il existe d’autres systémes pour lesquels le rayon de Bohr de-
vient comparable aux rayons critiques rZ et donc pour lesquels les effets du vide
quantique seront plus importants.

En injectant les champs magnétique et électrique précédents dans les inva-
riants de Lorentz des équations (1.10) et (1.11), on obtient :

Fo 9 (r 2(1+300529) (1.110)
© (4n)2eprt cQr ’ '
g — [roQRucost (1.111)

€0 (4m)%rd -
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Particule Rayon de Bohr rZ (m) di au noyau
Expression | Valeur numérique (m)
hydrogene ag = ﬂ?j;gz 5.3 x 107" m 3x 107
hydrogéne muonique | ay = aj < 2.6 x 107 m 3x 1071
ions hydrogénoides | la§ = %0
Li** 1.8 x 1071 6 x 10
gjl3+ 4.1 x 10712 1x107%
ULt 5.8 x 10713 3x 1071

TABLE 1.1 — Comparaison du rayon de Bohr et du rayon critique électrique pour
I’hydrogéne, I’hydrogéne muonique et quelques ions hydrogénoides.

Les vecteurs polarisation P et aimantation M s’écrivent alors :

(3cos e, — ¢€)

15 = 00,1\/€0N04M

3
2
+ 027060E‘$ [1 - (cQLT) (1 + 3 cos? 9)]
+ 007260E%(3 cos 0e, — é,)
BN L

2
[€0  Quop L 5 L
+ C171€0E %W [1 — (ch—r) (1 + 3 cos 9)] (3 COS 967» — ez),

€ @

Lo Amegr?

=t
I

Co,1

—

— B—ﬁﬁ—ll—(lb>?1+3w§@]

mirar |1 (e
B(0 =0) Q*cosb
140 8m2eqrd "

B o Qucos b
— C — —_—
L1 €y 4m2rd

-+ 0072

(1.112)

B =0 3 ?
+ ( ) [ Q2 1—(£-) (1+3cos?0)| &,
’ Lo po 3212 €G3 cQr

(1.113)
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avec B(0 = 0) = pou/2mr®. On peut noter que certains des termes précédents
ont une forme trés inhabituelle, comme par exemple la composante radlale du
vecteur M due en particulier & (E - B) et cpo. Ces vecteurs P et M dus a la
polarisation du vide induisent finalement une légére modification des champs
électriques et magnétiques qui deviennent :

4 L, p

Epy = E——, (1.114)
€0

Bpy = B+ uoM. (1.115)

1.4.2 Moment dipolaire électrique et monopole magnétique

Le premier terme des équations (1.112) et (1.113) est proportionnel & ¢ :

ﬁ(n = CO,l\/GOMO# (3COS€€T—5Z) (1116)
= ooy 2B, (1.117)

Ho

- 6 Q .

My, = 1.118
01 Co,1 1o Ameqr? ( )
= o1y [ 2E. (1.119)

Ho

Si cp n'est pas nul, dés que 'on a a la fois un champ électrique et un champ
magnétique dans le vide, une correction au vecteur E proportionnelle & B et une
correction au vecteur B proportionnelle a E apparaissent.

Dans le cas d’une particule isolée de moment magnétique pu, le champ magné-
tique apparait également comme un champ dipolaire électrique. D’aprés ’équa-
tion (1.116), la particule acquiert donc le moment dipolaire électrique suivant :

d=-—215 (1.120)
c

Dans le cadre du modéle standard, un moment dipolaire électrique non nul est
prédit pour ’électron, le muon et le tau. Pour I'électron par exemple, la valeur
prédite est d, ~ 1073 e-cm ! [37]. A Pheure actuelle, les valeurs prédites sont bien
plus petites que les sensibilités expérimentales, mais des limites sont données.
Certaines sont listées dans le tableau 1.2 (voir également le "particle data book"
[38]). A partir de I’équation (1.120), on peut déduire la limite correspondante
sur le terme ¢ ;. On peut également observer qu’un coefficient cj; de I'ordre de
10~2® donnerait le méme effet que le moment dipolaire électrique de 1’électron
prédit dans le cadre du modéle standard.

1. Le paramétre e correspond & la charge élémentaire.
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Particule d (e-cm) Référence o]
électron | < 10.5 x 107 [39] < 5.43 x 10717
muon <1071 [40] 1076
tau 0.45 x 1016 [41] 8.1 x 1073
proton | <7.9x107% |42] <2.7x 1071

TABLE 1.2 — Limites expérimentales sur le moment dipolaire électrique de particules
chargées et limites correspondantes sur le parametre cg 1.

Le champ électrique radial da a la charge () de la particule induit également
un champ magnétique radial. Ceci équivaut a 'apparition du monopole magné-
tique suivant, calculé a partir de I’équation (1.118) :

m = cp1Qc, (1.121)

ol nous avons écrit le champ magnétique radial du monopole B,, comme B, =
pom /4mr?é,. Les monopoles magnétiques ont été introduits pour la premiére fois
par P. A. M. Dirac en 1931 [43]. L’objectif était d’expliquer la quantification de
la charge en postulant I'existence d’une charge magnétique élémentaire, QY =
27h/e, qui est depuis appelée la charge de Dirac. D’un point de vue expérimental,
on peut trouver des limites concernant la charge magnétique de I’électron et du
proton [38,44]. La meilleure limite sur la charge magnétique de 1'électron Qy,
induisant un champ magnétique de type Coulomb avec B= Qu/Amr?e,, est

Qum < 4 x 107QY. (1.122)

Ceci correspond 4 :
lcoa] < 3 x 10722 (1.123)

Cette limite est encore meilleure que celle donnée par les mesures sur le moment
dipolaire électrique de 1’électron.

1.4.3 Systémes liés et déplacement de Lamb

Nous allons maintenant considérer que les termes cg ; et ¢;; sont nuls, ou tout
du moins négligeables. A partir des équations (1.112) et (1.113), les vecteurs Epy
et Bpy deviennent, aux premiers ordres en 1/r :

E = E|l—cpop——— 1.124

PV [ 6270471'2607”4} ) ( )

- - 2 Q? cos 6

B = B|l—cpy—— B0 =0)———¢€,. 1.125
Py [ €20 47T2607“4:| 025 ) 8m2eprt ‘ ( )
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Commengons par I’équation (1.124). La correction, en valeur absolue, au po-
tentiel de Coulomb est proportionnelle a 1/ :

3

0V =crp—""r5—. 1.126
€20 80m3edr® ( )
Dans le cadre de la QED, on obtient :
eZ3 20° Eo\*
0VoED = 1.127
QED T Yreor 2257 (mecr) ’ ( )

avec Z la charge totale en unité de charge élémentaire e. Cette correction, pro-
portionnelle & co, a été étudiée pour la premiére fois en 1956 par Wichmann et
Kroll [45]. On I'appelle depuis le potentiel de Wichmann-Kroll.

Dans les systémes liés, la modification du potentiel de Coulomb percu par les
électrons et di au noyau entraine un décalage en énergie des niveaux atomiques.
Celui-ci fait partie intégrante du décalage de Lamb observé pour la premiére fois
en 1947 [46] et est di a la modification par les fluctuations du vide quantique
de l'interaction entre les particules chargées. Le décalage de Lamb comporte
diverses contributions, dont les plus importantes sont listées par ordre décroissant
d’importance dans la tableau 1.3 pour le niveau 1S de 'atome d’hydrogéne. Les
diagrammes de Feynman pour les deux premiéres contributions sont présentés
sur la figure 1.9. L’auto énergie de ’électron correspond, de maniére imagée, a
I’émission et ’absorption de photons virtuels par I’électron. La polarisation du
vide a quant a elle pour effet d’écranter le champ électrique du proton au niveau
de I’électron via les particules virtuelles électron-positron dans le vide.

Contribution au déplacement de Lamb

Valeur théorique pour le niveau 1S de H

Auto-énergie

Polarisation du vide
Corrections du recul

Taille du proton
Corrections a deux boucles

8383 339.466 kHz
-214 816.607 kHz
2401.782kHz
1253.000 kHz
731.000 kHz

TABLE 1.3 — Contributions principales au déplacement de Lamb pour le niveau 1.5 de
l'atome d’hydrogéne [47]. Les calculs sont faits dans le cadre de la QED.

La contribution au déplacement de Lamb de la polarisation du vide comporte
également deux sous-composantes [12]|. La premiére correspond au potentiel dit
de Uehling qui décroit exponentiellement avec la distance et qui représente donc
un potentiel & courte portée. La deuxiéme contribution, plus petite que la pre-
miére, provient du potentiel longue portée de Wichmann-Kroll présenté dans
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S,

(a) Auto énergie de I’électron. (b) Polarisation du vide.

proton

FIGURE 1.9 — Diagrammes de Feynman correspondant aux contributions principales
au déplacement de Lamb dans ’atome d’hydrogéne.

I'équation (1.126). Le diagramme de Feynman correspondant est représenté sur
la figure 1.10. On peut noter la similitude de ce diagramme avec celui de la fi-
gure 3a de I'introduction correspondant a 1'effet Cotton-Mouton du vide. Ils sont
tous les deux basés sur une boucle électron-positron et quatre photons. Dans
le tableau 1.4, nous donnons quelques exemples de la contribution théorique du
potentiel de Wichmann-Kroll par rapport & celle du potentiel de Uehling et par
rapport au déplacement de Lamb total. La précision expérimentale sur la mesure
du déplacement de Lamb dans ces systémes a également été ajoutée.

FIGURE 1.10 — Diagrammes de Feynman correspondant & la contribution du potentiel
de Wichmann-Kroll.

Les meilleures limites expérimentales sont obtenues pour le niveau 15 de
I'atome d’hydrogéne [13,47]. Les mesures sont en accord avec les prévisions théo-
riques obtenues dans le cadre de la QED, permettant de valider les calculs pour
les contributions principales au déplacement de Lamb. Concernant le potentiel
de Wichmann-Kroll, sa contribution est théoriquement de 0.3 ppm par rapport

au terme principal [12,47]. Les calculs font intervenir le terme c;%OED obtenu par
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Polarisation du vide | Wichmann-Kroll | Wichmann-Kroll Incertitude
Systéme / Lamb total / Uehling / Lamb total relative
AEPV/AELamb AEWK/AEU AEWK/AELamb expérimentale
IAEeyp/AEexp
H, 15 3% 10 ppm 0.3 ppm [47] 3ppm [13]
H-like U, 1S 19 % 1% 0.19 % [48] 1% [49]
H muonic 5 ppm [50] 15 ppm [51]
séparation 25-2P

TABLE 1.4 — Exemples de la contribution théorique du potentiel de Wichmann-Kroll
par-rapport au potentiel de Uehling et par-rapport au déplacement de Lamb total dans
différents éléments. La derniére colonne correspond aux incertitudes relatives obtenues
sur la mesure du déplacement de Lamb [47]. Dans le cas de ’hydrogéne muonique, les
effets d’auto-énergie et de polarisation du vide de la référence [50] ne sont pas traités
séparément.

la QED et donné par I'équation (1.27). La valeur théorique est donc inférieure a
la précision de la mesure. Cependant, les mesures étant en accord avec la pré-

vision théorique, elles permettent de donner une limite sur la contribution de
Wichmann-Kroll :

AFEwk AV
— WK P _ 3 1.128
AEWLaLmb AEiLamb P, ( )
AFE YAV
—om < amp = 10, (1.129)
AEwx AEwk
On peut alors en déduire la limite suivante sur le terme ¢y :
C2.0
€20

le déplacement en énergie dii au potentiel de Wichmann-Kroll étant linéaire en
2,0 [45]. En revanche, le terme ¢ 5 étant absent du potential de Wichmann-Kroll,
il ne peut étre contraint par ce type de mesure. La zone d’exclusion correspon-
dante dans Pespace des parameétres (g2, o) a été ajoutée dans la figure 1.11.

Dans le cas du déplacement de Lamb dans ’hydrogéne muonique, la correc-
tion due au potentiel de Wichmann-Kroll par rapport au terme dominant est
théoriquement de I'ordre de 5 ppm [50]. La précision de la mesure est de 15
ppm [51]. Cette mesure ne permet donc pas de tester la correction due au po-
tentiel de Wichmann-Kroll. De plus, le rayon du proton extrait a partir de cette
mesure n’est pas en accord avec celui extrait de la mesure du Lamb shift dans
I'atome d’hydrogéne [47]. Ce probléme important est connu maintenant sous le
nom de “proton charge radius puzzle”.

Terminons enfin par la modification du champ magnétique présentée dans
I’équation (1.125). Il semble que ce terme n’ait jamais été considéré, excepté par
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° Prédiction d'Heisenberg-Euler
— — Prédiction de Born-Infeld

Régions exclues & partir de n;, et np>1

N Régions exclues a partir des mesures
de biréfringence magnétique du vide

Coox 107 (1)

r r r — Régions exclues a partir des mesures

0.00 0.15 du déplacement de Lamb dans l'atome
' ——_— d'hydrogéne
CroXx10 (Mm/J)
FIGURE 1.11 — Meilleures limites expérimentales dans l'espace des paramétres

(co2,¢2,0), en ajoutant la zone d’exclusion déduite des mesures sur le déplacement
de Lamb dans 'atome d’hydrogéne.

Jeremy Heyl qui I'interpréte comme une modification du dipéle magnétique ma-
croscopique [52], mais sans le terme proportionnel & ¢ provenant du couplage
entre le champ électrique et le champ magnétique. Aucune correction sur le dé-
calage des niveaux d’énergie dii & ce terme n’a été calculée. La modification du
champ magnétique d’une particule ponctuelle chargée devrait néanmoins affecter
la structure hyperfine des atomes. En effet, le terme principal dans cette struc-
ture, appelé terme de Fermi, est proportionnel au champ de la particule liée au
niveau du noyau. Dans le cas de 'atome d’hydrogéne, la correction relative du
champ magnétique de 1’électron & une distance de 'ordre du rayon de Bohr est
d’environ 2 x 10717, Elle reste cependant plus petite que la précision expérimen-
tale sur la structure hyperfine du niveau fondamental de 'hydrogéne qui est de
lordre de 107! en valeur relative [53]. Pour I’hydrogéne muonique, la correc-
tion due au champ magnétique du muon au niveau du proton est de 'ordre de
4 x 1078, Mais aucune mesure de la structure hyperfine de cet atome n’a encore
été réalisée (voir par exemple la référence [54]).

1.5 Conclusion

Nous avons tenté ici de donner une vision d’ensemble, sans étre exhaustif, des
expériences permettant de tester les théories non-linéaires d’électrodynamique
quantique, dont la QED avec le lagrangien de Heisenberg et Euler font partie.
La mesure de la biréfringence magnétique du vide est 'une de ces expériences.
Elle permet en particulier de donner des limites sur une combinaison linéaire des
termes cy g et ¢ 2. Nous avons vu que chaque expérience, bien que testant le méme
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lagrangien, apporte des informations complémentaires sur les différents termes
du lagrangien, permettant en particulier de contraindre différemment I'espace
des paramétres (cg o, C20).

Cette approche nous a permis de comprendre I'implication des mesures du
déplacement de Lamb dans les systémes liés sur les paramétres du lagrangien
de Heisenberg et Euler. Bien qu’étant I'une des mesures testant la QED avec la
plus grande précision, elle n’est pas encore en mesure de tester la contribution du
potentiel de Wichmann-Kroll, qui apporte une correction a grande distance au
potentiel de Coulomb et que I'on retrouve a partir du lagrangien de Heisenberg et
Euler. La correction a courte portée due au potentiel de Uehling est en revanche
trés bien testée. Ces deux potentiels, Wichmann-Kroll et Uehling, sont issus du
méme cadre théorique et il est donc difficilement imaginable que le terme a courte
distance soit correctement traité sans que le terme a longue portée le soit. Il reste
néanmoins primordial de le vérifier expérimentalement, justifiant largement les
mesures telles que la biréfringence magnétique du vide.






CHAPITRE 2

Dispositif Expérimental -
Ellipsomeétre de grande sensibilité

Comme nous 'avons présenté en introduction, le projet BMV (Biréfringence
Magnétique du Vide) s’articule autour d’un projet expérimental ambitieux dont
le but est de vérifier en laboratoire les prévisions de I’électrodynamique quantique
en ce qui concerne l’énergie du vide : en présence d’un champ magnétique, le
vide quantique devient biréfringent. En d’autres termes, I'indice de réfraction n|
vu par une onde polarisée parallélement au champ magnétique est différent de
I'indice n vu par une onde polarisée perpendiculairement au champ magnétique.
La différence An = nj — n est alors proportionnelle & B2, correspondant & un
effet Cotton-Mouton :

An=n|—n, = ke B2 (2.1)
La prédiction théorique dans le cadre de la QED donne :
kov ~ 4 x 107172, (2.2)

C’est le challenge que nous avons a relever. L’observation d’un tel effet consti-
tuerait la premiére mise en évidence de la propagation non linéaire de la lumiére
dans le vide quantique. Ce projet est basé sur 'utilisation de champs magnétiques
pulsés trés intenses et d’un appareil optique trés sensible pour la détection des
effets induits par ce champ sur un faisceau laser. Il résulte de la collaboration de
deux laboratoires : le laboratoire National des Champs Magnétiques Intenses de
Toulouse (LNCMI-T) spécialisé dans la génération de champs magnétiques in-
tenses pulsés et le Laboratoire des Matériaux Avancés (LMA) de P'IN2P3 & Lyon
spécialisé entre autres dans la conception et la réalisation de miroirs de trés haute
réflectivité. Dans ce chapitre, je présente rapidement les différents éléments du
dispositif expérimental. On peut se référer aux articles en fin de chapitre pour
plus de détails ainsi qu’a la thése d’Agathe Cadéne que j’ai co-encadrée avec
Carlo Rizzo.

2.1 Principe général

Nous réalisons la mesure de la biréfringence magnétique du vide par I'inter-
médiaire d’'une mesure d’ellipticité. Le principe de cette mesure a été présenté
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dans la partie 1.3 et il est rappelé sur la figure 2.1. Une lumiére linéairement po-
larisée par un premier polariseur P se propage & travers un champ magnétique
transverse. L’ellipticité acquise est donnée par :

b = gkCMBiLB sin 26, (2.3)

avec A la longueur d’onde de la lumiére, Lp la longueur sur laquelle le champ
magnétique est appliqué et 0 I'angle entre la polarisation incidente et le direction
du champ magnétique. L’angle 6 est placé a 45° afin de maximiser ellipticité
induite et donc le signal a mesurer.

FIGURE 2.1 — Mesure de la biréfringence magnétique du vide par polarimétrie. L’el-
lipticité de la lumiére, induite par le champ magnétique transverse, est mesurée via
le rapport entre les intensités transmise (mesurée par la photodiode Phe) et réfléchie
(mesurée par la photodiode Phy) par le polariseur de sortie noté A.

Un champ magnétique longitudinal peut également étre présent. Il est alors
responsable d’un effet Faraday dont le principe est rappelé sur la figure 2.2. La
rotation induite par le champ s’écrit :

™

HF:)\

krByLp =V B|Lp, (2.4)
avec V' la constante de Verdet qui dépend du milieu traversé par la lumiére.

La polarisation est analysée avec un deuxiéme polariseur A, croisé avec P
au maximum d’extinction. Le faisceau extraordinaire, dont la polarisation est
perpendiculaire a la polarisation incidente, est collecté par la photodiode Ph,.
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FIGURE 2.2 — Mesure de 'effet Faraday. La rotation de la polarisation de la lumiére,
induite par le champ magnétique longitudinal, est mesurée via le rapport entre les inten-
sités transmise (mesurée par la photodiode Phe) et réfléchie (mesurée par la photodiode
Phy) par le polariseur de sortie noté A.

L’analyseur a une fenétre de sortie qui permet également d’extraire le faisceau
ordinaire réfléchi, dont la polarisation est paralléle & celle du faisceau incident.
Ce faisceau est collecté sur la photodiode Phy. L’ellipticité acquise ainsi que la
rotation sont mesurées grace au rapport des intensités regues sur Ph, et Ph; :

L =0+ 0p(t)? +(t)?, (2.5)

ou 0?2 est 'extinction des polariseurs qui est actuellement de 'ordre de 1077,

La rotation et Dellipticité dépendent du temps lorsque le champ magnétique est
pulsé.

L’effet & mesurer étant extrémement faible, une cavité optique est ajoutée
autour du champ magnétique afin d’accumuler U'effet au cours des allers et retours
dans la cavité. L’ellipticité a la sortie d’un tel dispositif est alors donnée par :

2F  2F
U="= TkCMBiLB sin 26. (2.6)
s

avec I’ la finesse de la cavité. La rotation totale due a l'effet Faraday devient

quant a elle :

2F 2F
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Le rapport des intensités recues par Ph, et Phy s’écrit finalement :

= 0%+ Op(t)* + V()2 (2.8)

1y(t)

Comme le montre les équations (2.6), (2.7) et (2.8), augmenter le signal a mesu-
rer revient & maximiser autant que possible ¥ et ©. Les deux éléments clés de
I'expérience sont donc le champ magnétique et la cavité Fabry-Perot. Ces deux
éléments sont décrits dans les deux prochaines parties.

Le schéma actuel de I'expérience, décrit en détails dans les références [55-57],
est présenté sur la Fig. 2.3. Environ 30 mW d’un laser Nd :Yag, de longueur d’onde
A = 1064 nm, est injecté dans une cavité Fabry-Perot constituée des miroirs M; et
Ms. La longueur de la cavité est L.=2,2m. Le laser est asservi sur la fréquence de
résonance de la cavité par la méthode Pound-Drever-Hall [58]. Pour cela, le laser
passe a travers un modulateur électro-optique (EOM) créant des bandes latérales
a 10 MHz. Le faisceau réfléchi par la cavité est analysé par la photodiode Ph,. Ce
signal est utilisé pour controler un modulateur acousto-optique (AOM) pour le
controle en fréquence rapide, la cale piézoélectrique du laser pour les fréquences
intermédiaires et I’élément Peltier du laser pour le controle basse fréquence. La
bande passante de notre asservissement est typiquement de quelques dizaines de

kilohertz.
Ph
Nd:YAG B, B A
A=1064 nm

f p S
R ---*ﬁT

2 v —

M. P M, .

~{Aom]

== \4

777777 Ph r

PDH lock y l—» z

FIGURE 2.3 — Schéma de l'expérience. La fréquence du laser est asservie sur la fré-
quence de résonance de la cavité constituée des miroirs M; et Ms. Le systéme d’asservis-
sement, basé sur la méthode Pound-Drever-Hall (PDH), est constitué d’'un modulateur
électro-optique (EOM) qui permet de créer des bandes latérales & 10 MHz, et d’un
modulateur acousto-optique (AOM) sur lequel est réalisée la rétroaction. Le laser est
polarisé linéairement par le polariseur P, puis analysé & la sortie de la cavité par le
polariseur A. Ce polariseur permet d’extraire a la fois le faisceau extraordinaire envoyé
sur la photodiode Ph, et le faisceau ordinaire envoyé sur Phy. Le champ magnétique
transverse B, ou longitudinal B est appliqué a I'intérieur de la cavité.
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L’ensemble (polariseurs + cavité) est placé sous vide. L’enceinte est pompée
dans un premier temps par une pompe turbomoléculaire permettant d’atteindre
un vide de l'ordre de quelques 10~" mbar. Trois pompes ioniques réparties sur
I'enceinte & vide prennent ensuite le relais afin de s’affranchir des vibrations de
la pompe turbomoléculaire. I’ensemble de I'enceinte doit étre finalement étuvé
pour atteindre des pressions inférieures. Des bouteilles de gaz sous pression et de
haute pureté sont également raccordées a ’enceinte par 'intermédiaire de micro-
fuites. Ces derniéres permettent d’injecter un gaz dans l’enceinte de maniére
controlée, soit pour effectuer des mesures de biréfringence magnétique comme
dans I'hélium, le diazote, ou le xénon, soit pour pouvoir remettre proprement
I’enceinte a la pression atmosphérique avec un gaz de diazote.

2.2 Le champ magnétique

Notre systéme permet d’étudier la biréfringence magnétique circulaire (effet
Faraday) et la biréfringence magnétique linéaire (effet Cotton-Mouton). Ces deux
types de mesures nécessitent un champ magnétique longitudinal pour la premiére
et un champ magnétique transverse pour la deuxiéme. A amplitude de champ
magnétique fixée, 'effet Faraday est beaucoup plus important que I'effet Cotton-
Mouton, hormis pour le vide ot 'effet Faraday n’existe pas. Un simple solénoide
fonctionnant en continu et a température ambiante est suffisant pour mesurer
les effets Faraday. En revanche, pour mesurer les effets Cotton-Mouton dans les
gaz puis dans le vide, un aimant pulsé spécialement conc¢u pour 'expérience a
été développé.

2.2.1 Champ magnétique longitudinal

Le champ magnétique longitudinal est délivré par un solénoide de 300 mm de
long, bobiné autour d’'un tube de 50 mm de diamétre, dans lequel est injecté un
courant . Le profil longitudinal du champ magnétique a été mesuré a ’aide d’un
gaussmeétre. La Fig. 2.4 présente les données pour un courant continu [ = 1.5 A
correspondant & un champ magnétique au centre du solénoide d’environ 2.15mT.
On définit la longueur magnétique L de la fagon suivante :

+00
/ B”(z)dz = B()”LB, (29)
—00
avec By le champ magnétique au centre du solénoide. En tenant compte des
incertitudes expérimentales, on trouve L = 0.308 4+ 0.006 m, avec un incerti-
tude & 1 0. Ce solénoide nous permet d’atteindre un champ magnétique maximal
d’environ 4.3 m'T au centre correspondant a un courant injecté de 3 A.

La mesure du champ magnétique pendant les mesures d’effets Faraday est
réalisée via la mesure du courant injecté. Le champ magnétique longitudinal au
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F'IGURE 2.4 — Champ magnétique longitudinal le long du solénoide avec un courant
injecté de 1.5 A. Points : mesures; trait pointillé : profil équivalent avec un champ
magnétique constant By sur une longueur Lp.

centre de la bobine By a été préalablement mesuré a I'aide d’un gaussmetre en
fonction du courant injecté I mesuré avec un ampeéremeétre. Les incertitudes de
type B sur le champ magnétique proviennent des incertitudes liées aux mesures
réalisées avec le gaussmétre (1%) et celles lites a la mesure du courant avec
I'ampéremétre (1%). Ceci donne une incertitude de type B sur la valeur de champ
de 1.4%. L’incertitude liée au fait que la lumiére ne se propage pas exactement au
centre de la bobine radialement, avec moins d’1 cm de décalage, est négligeable.
Comme nous le verrons dans le chapitre suivant, les mesures d’effets Faraday sont
effectuées avec un champ magnétique modulé sinusoidalement & des fréquences
de l'ordre de 20 Hz. Nous avons vérifié que le rapport By|// ne montre aucun
effet de filtrage du dispositif jusqu’a au moins 50 Hz.

Enfin, le courant maximal qui est injecté dans la bobine est de 3 A. Pour
un tel courant, I’élévation de température au niveau du gaz est toujours bien
inférieure & 4 K au bout de 5 minutes. On peut donc garder le solénoide a 'air
libre sans aucun systéme de refroidissement. Pendant la prise de données d’effet
Faraday dans les gaz, les durées d’acquisition sont typiquement de l'ordre de la
minute. La température au niveau du gaz est alors estimée a 7' = 294 + 1 K.

2.2.2 Champ magnétique transverse

Les mesures de la biréfringence magnétique du vide nécessitent un champ
magnétique le plus grand possible. Différentes stratégies ont été adoptées par les
diverses équipes travaillant sur ce sujet : aimants supraconducteurs, aimants per-
manents ou bobines résistives pulsées. De plus, comme le montre I’équation (2.6),
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nous avons également besoin d’une région d’interaction avec le champ magnétique
importante, lellipticité induite étant proportionnelle au produit B?Lg. Pour le
projet BMV, nous avons décidé de nous orienter vers les aimants pulsés dont le
LNCMI & Toulouse est spécialiste. Ceci nous permet d’avoir un B2Lp élevé tout
un gardant un Lp raisonnable permettant de placer ’ensemble de 1'expérience
sur une seule table optique, améliorant ainsi la stabilité de I’ensemble du systéme.

faisceau
laser

FIGURE 2.5 — Schéma de la bobine permettant de générer le champ magnétique trans-
verse tout en laissant ’accés pour le passage du faisceau laser. Chaque branche de spire
génére un champ magnétique dont la somme donne le champ magnétique transverse.
Le fil de cuivre est enroulé sur un corps en G10 (mélange de tissu de verre et d’époxy)
dont le modeéle tridimensionnel est représenté sur la droite. Les dimensions finales de
la bobine sont : 250 mm de long, 100 mm de haut et 46 mm d’épaisseur.

L’aimant actuellement utilisé est basé sur une géométrie en X, appelé X-
coil, dont le schéma est présenté sur la figure2.5. Il permet d’avoir un champ
magnétique transverse important tout en laissant ’accés optique pour laisser
passer le laser. Le principe de 'aimant et ses propriétés sont décrites dans les
références [55,59]. La bobine peut étre alimentée par deux bancs de condensateurs
différents placés de part et d’autre de la salle d’expérience. Les propriétés des
deux générateurs sont les mémes excepté le sens de branchement des thyristors !
qui est inversé. Ceci permet d’envoyer un courant dans un sens ou un autre et
donc d’inverser la direction du champ magnétique qui est alors soit paralléle a
I'axe x soit anti-paralléle (voir figure 2.3). Ce point est essentiel pour permettre
d’isoler les signaux Cotton-mouton des autres effets systématiques, comme nous
le verrons dans le prochain chapitre.

1. Le thyristor est un composant adapté a 1’électronique de puissance. Il est basé sur la
technologie des transistors, et est ici utilisé comme un interrupteur.
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L’obtention de fort champ magnétique nécessite d’injecter un courant élevé
dans la bobine, ce qui a pour conséquence d’augmenter la température de la bo-
bine par effet Joule, pouvant aller jusqu’a sa destruction. Pour limiter cet effet,
la bobine est immergée dans de ’azote liquide. Ceci permet tout d’abord de di-
minuer la température initiale de la bobine, mais aussi de réduire sa résistance
et donc de réduire I’échauffement par effet Joule. Un temps d’attente entre deux
tirs est nécessaire pour permettre a la bobine de retrouver sa température d’équi-
libre. Des photos du cryostat contenant la bobine sont présentées sur la Fig. 2.6.
Le tube de I'enceinte a vide dans lequel se propage le faisceau laser passe dans le
tube du cryostat sans le toucher. Afin de découpler mécaniquement le cryostat
de ’enceinte a vide a laquelle les miroirs de la cavité Fabry-Perot sont fixés, le
cryostat est placé sur un bati indépendant de la table optique.

courant

Renforts mécaniques placés
autour de la bobine

FIGURE 2.6 — Gauche : Bobine dans son cryostat. Droite : Cryostat a azote liquide.

Le profil du champ magnétique le long de 'axe z, correspondant a la direction
de propagation de la lumiére, a été mesuré a ’aide d’une bobine pick-up calibrée.
Le profil normalisé, présenté sur la figure 2.7, n’est pas uniforme. Comme pour
le champ magnétique longitudinal, nous définissons la longueur Lg comme la
longueur équivalente d’un aimant produisant un champ magnétique uniforme
By, , avec By, le champ magnétique au centre de la bobine :

+oo
/ B} (2)dz = B, Lp. (2.10)

o0
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Nous trouvons Lg = 0.137 m.
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FIGURE 2.7 — Points : Mesures du profil longitudinal normalisé¢ du carré du champ
magnétique. Trait pointillé : champ magnétique équivalent.

Le profil temporel du champ magnétique est représenté sur la figure 2.8 pour
un champ magnétique maximal de 6.5T. La durée totale du tir est inférieure a
10 ms. Le maximum est atteint en moins de 2 ms.
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FIGURE 2.8 — Carré du champ magnétique au centre de la bobine en fonction du temps
pour un champ magnétique maximal de 6.5T.

Le tableau 2.1 permet de comparer la technologie des aimants pulsés aux ai-
mants utilisés sur les expériences concurrentes. Notre choix technologique permet
d’avoir un B? L important tout en gardant un Lp relativement petit. Ceci a
pour avantage de pouvoir placer les miroirs de la cavité Fabry-Perot sur une seule
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table optique. De plus, cette technologie laisse encore une marge de progression
importante en terme de champ maximal atteignable, comme nous le montrerons
dans le dernier chapitre relatif aux perspectives.

BFRT PVLAS Q&A BMV
[60] [20] [24] [21]
Régime continu continu continu continu pulsé
. aimants aimants bobine
Technologie supraconducteur | supraconducteur .
permanents | permanents | résistive
B, (T) 2 2.5 2.5 2.3 6.5
Lp (m) 8.8 1 1.64 0.6 0.137
B2 L (T?m) 35.2 5.3 10.25 3.2 5.8

TABLE 2.1 — Caractéristiques des aimants utilisés sur les expériences visant & mesurer
la biréfringence magnétique du vide. Lorsque des limites ont été publiées, le champ
magnétique reporté correspond au champ magnétique utilisé pendant les mesures.

2.3 La cavité Fabry-Perot

Le deuxiéme élément clé de I'expérience correspond a la cavité Fabry-Perot.
Celle-ci permet en effet d’accumuler Ueffet au cours des allers et retours de la
lumiére dans la cavité. La longueur de la cavité est L. = 2.27m. L’intervalle
spectral libre, correspondant a I’écart en fréquence entre deux pics de résonance
TEMg, est donné par I’équation suivante :

c
STV 66 MHz,
avec n I'indice du milieu dans lequel baigne la cavité. Pour nos mesures effectuées
dans des gaz, les pressions restent trés faibles. L’indice de réfraction sera donc
toujours considéré comme égal a 1.

La cavité est placée dans I'enceinte a vide. La position angulaire des miroirs
est ajustée a l'aide de montures avec actionneurs piézoélectriques. Nous réglons
I'orientation de chaque miroir I'un par rapport a ’autre et par rapport au faisceau
incident afin de faire résonner principalement le mode TEMgq. Les miroirs de la
cavité sont des miroirs diélectriques de rayon de courbure 8 m. La taille du mode
TEMg est donc de wy = 0.97mm au centre de la cavité et w(+L./2) = 1.05 mm
au niveau des miroirs. Des lentilles placées sur le trajet du faisceau incident
permettent d’adapter le mode du laser au mode TEM, de la cavité.

ABL — (2.11)

2.3.1 Finesse et couplage

La finesse de la cavité est mesurée en évaluant la durée de vie des photons dans
la cavité. Pour cela, la fréquence du laser est tout d’abord asservie sur la fréquence
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FIGURE 2.9 — Evolution au cours du temps de l'intensité du faisceau ordinaire a la
sortie de la cavité (en gris). L’intensité du laser est coupée & to. Cette courbe est ajustée
avec 1’équation (2.12) (courbe pointillée) permettant d’en déduire la durée de vie des
photons dans la cavité 7 = 1.15ms et la finesse de la cavité F' = 475 000.

de résonance de la cavité. L’intensité laser est ensuite coupée brutalement a
I’aide d’un modulateur acousto-optique a l'instant t = ¢;. On obtient alors une
décroissance exponentielle de 'intensité transmise par la cavité, mesurée par la
photodiode Phy. La figure 2.9 présente une décroissance typique. La courbe est
ajustée pour t > ty par la formule suivante :

I(t) = L(tg)e (=107, (2.12)
ol 7 est la durée de vie des photons dans la cavité. Cette durée de vie est reliée

a la finesse F' de la cavité par ’équation :

TCT
F = : 2.13
- (2.13)

Nous avons a notre disposition différents jeux de miroirs. Ceux-ci sont listés
dans le tableau 2.2 avec les finesses maximales observées pour chaque jeu. Le deux
premiers jeux de miroirs correspondent a des miroirs commerciaux produits par
les sociétés Layertec en Allemagne et ATFilms aux USA. Le dernier jeu a été
fourni par le LMA avec qui nous sommes en collaboration. Les finesses étant
élevées, il est primordial de manipuler les miroirs dans un environnement propre.
En effet, la moindre poussiére qui se dépose sur le miroir dégrade son coefficient
de réflectivité et donc dégrade la finesse de la cavité. L’expérience a donc été
installée dans une salle propre dont l'accés est réservé aux membres du projet
équipés de combinaison.
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Provenance Finesse de la cavité
Layertec (Allemagne) 100000
ATFilms (USA) 481 000
LMA (France) 529 000

TABLE 2.2 — Finesse maximale de la cavité obtenue sur le projet BMV en fonction de
la provenance des miroirs.

Le tableau 2.3 permet de comparer des cavités parmi les meilleures au monde

travaillant dans le domaine optique. Elles peuvent étre divisées en trois groupes :

— grande finesse et petite longueur L.. La meilleure finesse jamais publiée est
d’environ 2000000 [61].

— finesse modérée et grande longueur de cavité. Ces cavités sont principale-
ment utilisées pour les détecteurs d’ondes gravitationnelles avec des lon-
gueurs de cavité de quelques kilométres [62,63].

— haute finesse et longueur de cavité intermédiaire. La cavité du projet BMV
se place dans cette catégorie.

Longueur Finesse Durée Largeur Facteur
Catégorie Projet Réf. | de cavité de vie de qualité
L. (m) F 7(us) | Av (Hz) Q

Grand F REMPE [61] | 4 x 1073 | 1900000 8 19400 | 2x10%
Petit L. SYRTE [64] 0.1 800 000 85 1875 | 1.5 x 10!
VIRGO [62] 3000 50 160 1000 | 2.8 x 10U

F modéré Advanced VIRGO | [65] 3000 450 1400 110 25x 101!
Grand L. LIGO [63] 4000 230 980 160 17 x 10
Advanced LIGO | [66] 4000 450 1900 83 34x10M

PVLAS [67] 3.3 770000 | 2700 59 48 x 101

Grand F Q&A [21] 3.5 43000 111 1400 2 x 101
L. intermédiaire | BMV (ATFilms) 2.27 481000 | 1160 137 21 x 10!
BMV (LMA) 2.27 529000 | 1275 124 23 x 10!

TABLE 2.3 — Comparaison des meilleures cavités dans le domaine optique.

Comme nous 'avons dit précédemment, la finesse F' est I'un des paramétres
importants. Il est également nécessaire d’avoir une longueur de cavité L. suffi-
samment grande pour pouvoir placer les aimants entre les miroirs : plus L. est
grand, plus nous pourrons placer d’aimants entre les miroirs et ainsi augmenter
la longueur d’interaction avec le champ magnétique. Le parameétre pertinent est
donc le produit F'L.. Ce paramétre est inversement proportionnel & la largeur
du pic de résonance donné par I’équation suivante :

(2.14)
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et proportionnel au facteur de qualité de la cavité :

v 2F L.
CTn T

(2.15)

avec v = ¢/ la fréquence du laser. Nous voyons dans le tableau 2.3 que la cavité
de projet BMV fait partie de celle ayant un grand facteur de qualité.

Enfin, la mesure d’ellipticité étant réalisée sur le faisceau de sortie de la cavité,
la puissance de ce dernier doit étre suffisante pour ne pas étre limitée par le bruit
des photodiodes de détection, en particulier par celle qui observe le faisceau
de polarisation perpendiculaire a la polarisation incidente. Autrement dit, le
couplage de la cavité doit rester non négligeable. Le couplage en transmission 7T,
et la finesse F' de la cavité sont reliés aux coefficients de réflexion en intensité
des miroirs R, au coefficients en transmission 7' et aux pertes de chaque miroir
P de la maniére suivante :

T
F = —— 2.1
1-R (2.16)

T \° (TF\®

no (GI) = (T o
On suppose ici que les deux miroirs de la cavité sont identiques, ce qui est une
hypothése raisonnable pour des miroirs provenant d’une méme cloche de fabri-
cation. La finesse ne dépend que du coefficient de réflexion. En revanche, la
transmission va dépendre du rapport entre la transmission et les pertes des mi-
roirs. Ainsi, pour avoir un couplage supérieur a 25 %, il faut T' > P. Ceci devient
particulierement difficile lorsqu’on augmente la finesse : R augmente, 7" diminue
et les pertes P peuvent alors devenir prépondérantes devant 7T'. Le tableau 2.4
résume les valeurs que nous avons trouvées pour nos trois jeux de miroirs. Alors
que les miroirs du LMA permettent d’obtenir la meilleure finesse, le couplage est

nettement plus important avec les miroirs ATFilms. C’est la raison pour laquelle
nous avons décidé d’utiliser les miroirs ATFilms pour toutes nos mesures.

Miroirs Cavité
Provenance R T (ppm) | P (ppm) F T (%)
Layertec 0.999 969 6 25 100000 3.6
ATFilms 0.999 993 4 3 481 000 35
LMA 0.999 994 1 5 529000 0.1

TABLE 2.4 — Caractéristiques des miroirs utilisés pour le projet BMV. Compte-tenu
de la finesse et du couplage en transmission de la cavité, les mesures de biréfringence
ont été réalisées avec les miroirs ATFilms.
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2.3.2 Biréfringence des miroirs

La cavité Fabry-Perot induit également une ellipticité statique totale I'. Celle-
ci est due a la biréfringence statique de chaque miroir qui peut étre modélisée par
un miroir non biréfringent plus une lame a retard de phase. Le schéma équivalent
de la cavité Fabry-Perot est présenté sur la figure 2.10. L’ellipticité statique peut
alors s’écrire comme la somme des ellipticités induites par chaque miroir I'; et

FQ [68] :

2F
I'= Fl + FQ = — %Sin 2(91 - 913) + %sin 2(&2 — HP) s (218)
T

avec 01 et 0y les déphasages induits par chaque lame entre les polarisations pa-
ralléles aux axes neutres, et 6, 0, et Op les angles que font les axes rapides des
deux lames et la polarisation incidente avec 'axe x (voir figure 2.10).

axe rapide

axe lent

4T\~ T T r/|=====2

FIGURE 2.10 — Schéma équivalent de la cavité Fabry-Perot en tenant compte de la
biréfringence statique des miroirs. Chaque miroir correspond a la combinaison d’un
miroir sans biréfringence et d’une lame biréfringente induisant un déphasage §; entre
les polarisations paralléles & ses axes neutres. Nous avons placé ici 'axe rapide de la
lame Lo paralléle a 'axe x, ce qui équivaut a 6 = 0.

La mesure de I' en fonction de 6, et 6, permet de remonter aux déphasages
de chaque miroir. Cette mesure a été réalisée pour les différents jeux de miroirs
a notre disposition. Pour cela, chaque monture de miroir a été placée sur une
monture tournante pouvant étre manipulée manuellement depuis 'extérieur de
I’enceinte a vide. La technique de mesure et les résultats sont publiés dans Applied
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Physics B [69] et présentés en détails dans les théses de Paul Berceau [56] et
Agathe Cadéne [57]. Nous obtenons en particulier pour les miroirs ATFilms
un déphasage typique de 6 = 7 x 10~ "rad, correspondant & un déphasage par
réflexion (deux passages dans la lame a retard de phase) de deg = 20 = 1.4 X
10~%rad.

L’origine de la biréfringence statique des miroirs interférentiels est mal connue.
Cependant, une étude basée sur une revue des données déja existantes [69] ad-
ditionnée & nos nouvelles données sur les miroirs ATFilms montre que plus le
coefficient de réflexion augmente, autrement dit plus le nombre de couches di-
électriques formant le miroir est grand, plus la biréfringence intrinséque du miroir
est petite. Les données sont tracées sur la figure2.11. Le coefficient de réflexion
des miroirs est en général obtenu & partir de la finesse via I’équation (2.16).

-3 -
10 P -~
? % -

4| - T

10 -
-
-
5 -

10"

0 par réflexion (rad)

10° = 7 )i{ ? i —T—
T

10 10 10° 10
1R

FIGURE 2.11 — Mesure du déphasage par réflexion induit par des miroirs interférentiels
en fonction de leur réflectivité en intensité R. Points blancs : Résumé des valeurs rassem-
blées dans la référence [69]. Points gris : mesures rapportées dans les références [70-74].
Point noir : mesure obtenue avec les miroirs ATFilms sur le projet BMV. Ligne poin-
tillée : résultat de la modélisation en considérant que seule la couche diélectrique la
plus proche du substrat est biréfringente.

Pour tenter de comprendre l'origine de cette biréfringence, nous avons déve-
loppé une simulation numérique permettant de calculer la biréfringence totale
en fonction de la biréfringence des différentes couches diélectriques. Différentes
possibilités ont été envisagées : biréfringence identique sur toutes les couches for-
mant le miroir, biréfringence aléatoire (déphasage et direction des axes neutres)
sur toutes les couches, ... Finalement, la configuration qui correspond le mieux a
la tendance de la figure 2.11 est celle pour laquelle seule la couche diélectrique la
plus proche du substrat est biréfringente. Cette étude ne permet pas de donner
I'origine physique de cette biréfringence, mais elle indique néanmoins la partie
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du miroir qui semble concernée. Cette information peut étre particuliérement in-
téressante si I’on souhaite fabriquer des miroirs de haute réflectivité et de faible
biréfringence.

Nous pouvons également modéliser la cavité Fabry-Perot comme représentée
sur la figure 2.12, avec une lame a retard de phase L., placée entre deux miroirs
non biréfringents. L’orientation de 'axe rapide 0., de cette nouvelle lame ainsi
que le déphasage d., induit entre les polarisations paralléles a ses axes neutres
dépendent de l'orientation des deux miroirs et de leur biréfringence respective.
En supposant que 'axe rapide de la lame Lo est paralléle a I'axe z, autrement

dit 6, = 0, et pour des déphasages petits, nous obtenons [75] :

Oeq = /(05— 01)% + 46105 cos? 1, (2.19)
2
coS 20eq = 02+ 01 c08 26, 91, (2.20)
Jeq
2F 0eq .
I = 7761 Sin 2(feq — Op). (2.21)
e
L

/T~ T T r/=T====2

FIGURE 2.12 — Schéma équivalent de la cavité Fabry-Perot en tenant compte de la
biréfringence statique des miroirs. La cavité équivaut ici & deux miroirs non biréfringents
avec une lame & retard de phase équivalente Leq placée entre les deux miroirs. celle-ci
induit une rotation € de la polarisation linéaire incidente et une ellipticité I'.

Pour les mesures de biréfringence magnétique, il est nécessaire de tenir compte
de cette biréfringence statique. Celle-ci a deux effets :
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— elle induit une ellipticité statique I' sur la polarisation linéaire incidente
donnée par I'équation (2.18) ou (2.21)
— elle induit également une rotation € de la polarisation linéaire incidente.
La rotation de ’axe de 'ellipse par rapport & la polarisation incidente, pour des
déphasages trés petits devant 1'unité, est égale a [57] :

2T
€ = ?55&1. (222)

Le rapport des intensités transmises par le polariseur de sortie A devient alors :

=02 + e+ Op(t)]” + [T + T(1)]>. (2.23)

Le réglage de € et I est primordial sur ’expérience. L’angle € est tout d’abord
minimisé en minimisant de,. Pour cela, I'axe lent du miroir M; est aligné avec
I'axe rapide du miroir My. Comme le montre les références [55-57|, le bruit
en ellipticité de notre appareil est pour le moment dominé par les fluctuations
de T'. Dans ce cas, la sensibilité optique est meilleure lorsque I' diminue avec
un optimum de sensibilité pour I'? = ¢2. Expérimentalement, nous nous placons
dans un premier temps a I' = 0. Ceci correspond a placer I'un des axes propres de
la lame équivalente L., paralléle a la polarisation incidente. On ajuste ensuite la
valeur de I' en tournant I'un des miroirs autour de ’axe z. Le sens de rotation nous
permet de choisir le signe de I'. Celui-ci est déduit de mesures de biréfringence
magnétique dans ’azote gazeux pour lequel le signe et la valeur de la biréfringence
sont parfaitement connus.

2.3.3 Comportement dynamique de la cavité

La cavité agit également comme un filtre passe-bas du premier ordre dont la
fonction de transfert est donnée par :

1
IR

Hy(v)

(2.24)

La fréquence de coupure v, est reliée a la durée de vie des photons dans la cavité
7, & la finesse F' ou & la largeur du pic de résonance de la cavité Av de la maniére
suivante :

1 c Av

V., = —— —= — .
¢ dmr  ALF 2
Pour les miroirs ATFilms, nous trouvons une fréquence de coupure de 1'ordre
de 70 Hz. Pour les mesures de biréfringences magnétiques, le champ magnétique
varie au cours du temps. En particulier, pour le champ magnétique transverse,
nous avons typiquement un temps de montée du champ de 'ordre de 2ms, donc

(2.25)
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du méme ordre de grandeur que la durée de vie des photons dans la cavité. L’effet
du filtrage devra alors étre pris en compte.

La cavité a pour effet de filtrer les intensités incidentes. En particulier, I'in-
tensité ordinaire [; correspond a l'intensité incidente filtrée par le filtre passe-bas
d’ordre un. C’est d’ailleurs la raison pour laquelle nous obtenons une décroissance
exponentielle lorsque l'intensité incidente est coupée brutalement. En revanche,
a cause de la biréfringence de la cavité, la cavité agit comme un filtre passe-bas
du second ordre pour le faisceau I,. Cet effet est expliqué en détails dans ’article
que nous avons publié dans Applied Physics B [76]. La fonction de transfert du
filtre passe-bas est la suivante :

Hy(v) = Hi(v) x Hi(v) =

(2.26)

Elle correspond a la combinaison de deux filtres passe-bas du premier ordre.
Le premier caractérise le filtrage habituel de la cavité. Le deuxiéme est di a la
biréfringence de la cavité qui alimente le faisceau extraordinaire via le faisceau
ordinaire.

Ce filtrage de second ordre a pour premiére conséquence de modifier la réponse
de la cavité lorsque le faisceau incident est coupé brutalement. La figure2.13
montre la décroissance de I; et I, dans ces conditions. Nous retrouvons pour
I; une décroissance exponentielle que nous utilisons pour mesurer 7 et F (voir
équation (2.12)). L’évolution temporelle de I, est quant a elle donnée par :

2

t—t

L.(t) = L(to) <1+ 5 0) e~ (t=to)/T, (2.27)
T

Cette fonction correspond a la réponse du filtre passe-bas du second ordre a un
échelon.

Cette derniére équation doit étre légérement modifiée lorsque la biréfringence
des substrats des miroirs ne peut plus étre négligée [77]. On obtient alors :

T

t—to\1
L(t) = I (to) <a2 + [Fsl +Te + T, (1 + = 0)] ) e~ (t=t)/T, (2.28)

ou I'yy, I'yy et T'; sont respectivement les ellipticités induites par chacun des sub-
strats des miroirs et par les allers et retours dans la cavité. L’évolution temporelle
de I, dans ces conditions est représentée sur la figure 2.14.

Finalement, 'intensité extraordinaire étant filtrée une fois de plus que le signal
ordinaire, nous devons en tenir compte dans ’analyse. Le rapport entre les deux
intensités devient :

Le(t)
Tos(1)

= 0%+ [e 4 Op()]” + [T+ Ue(1)]?, (2.29)
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F'IGURE 2.13 — Evolution au cours du temps de l'intensité ordinaire (gris) et de I'inten-
sité extraordinaire (rouge) normalisées au cours du temps aprés coupure de U'intensité
incidente sur la cavité & l'instant ¢ = ty. Les courbes sont correctement ajustées par
une décroissance exponentielle pour I; et par ’équation (2.27) pour I.
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FIGURE 2.14 — Evolution au cours du temps de l'intensité extraordinaire normalisée
(rouge) au cours du temps apreés coupure de l'intensité incidente sur la cavité lorsque
la biréfringence des substrats des miroirs ne peut plus étre négligée. La courbe est
correctement ajustée par I’équation (2.28).
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avec Iy le signal [; filtré numériquement. L’indice “f” sous la rotation © et
Pellipticité ¥ rappelle qu’il faut tenir compte du filtrage de la cavité lorsque les
rotations et ellipticités sont induites par un champ magnétique évoluant au cours
du temps.

2.4 Conclusion

Nous avons vu ici les parties principales constituant 1’ellipsométre avec en
particulier les champs magnétiques longitudinal et transverse, ainsi que la ca-
vité Fabry-Perot. L’ensemble du montage est présenté sur la figure 2.15. L’équa-
tion (2.29) permettant de traiter les données est maintenant connue et va pouvoir
étre utilisée pour extraire les effets Faraday et Cotton-Mouton dans les gaz puis
dans le vide. C’est I'objet du prochain chapitre.

cryostat de la .
bobine X-coil /

solénoide

enceinte
avide
analyseur.,

70 .
table optique
X
y
)
z

FIGURE 2.15 — Schéma de I'expérience BMV. L’enceinte & vide repose sur une seule
table optique. Les tuyaux de I'enceinte passent a la fois dans le solénoide générant le
champ magnétique longitudinal et dans la bobine X-coil générant le champ magnétique
transverse. Le cryostat dans lequel se trouve la bobine X-Coil est placé sur un bati
indépendant de la table optique pour éviter tout contact mécanique entre le cryostat
et I'enceinte a vide.
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2.5 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références 69| et [76].
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Abstract In this paper we present a review of the existing
data on interferential mirror birefringence. We also report
new measurements of two sets of mirrors that confirm that
mirror phase retardation per reflection decreases when mir-
ror reflectivity increases. We finally developed a computa-
tional code to calculate the expected phase retardation per
reflection as a function of the total number of layers consti-
tuting the mirror. Different cases have been studied and we
have compared computational results with the trend of the
experimental data. Our study indicates that the origin of the
mirror intrinsic birefringence can be ascribed to the reflect-
ing layers close to the substrate.

PACS 42.25.Lc - 07.60.Fs - 42.79.Bh

1 Introduction

In the last decades high-reflectivity interferential mirrors
have been widely used in optical cavities to measure small
light polarization variations induced by the propagation in a
weakly anisotropic medium, such as in parity violation ex-
periments [1-3] or in vacuum magnetic birefringence exper-
iments [4-6]. Mirrors themselves are birefringent and this
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is manifestly a problem for such a kind of applications be-
cause they induce a phase retardation' which superimposes
to the signal to be measured. This birefringence is due to
off-normal incidence and/or to intrinsic birefringence of the
mirror coatings. In the case of Fabry—Perot cavities the in-
cidence on the mirrors is normal. In this paper we focus on
this type of device, thus on birefringence due to the mirror
coatings.

Interferential mirrors are composed of a stack of slabs de-
posited on a substrate. One slab corresponds to a low-index
layer and a high-index layer with an optical thickness /4
for each layer, where X is the light wavelength for which the
mirror reflectivity is optimized. While nonbirefringent strat-
ified media are discussed in textbooks [17], and films with
a nontrivial dielectric tensor have been treated in literature
(see, e.g., [18]), as far as we know, the origin of the mirror
birefringence is unknown and a detailed study of the prob-
lem does not exist. In [19] computational results are given
in the hypothesis that the birefringence is due to only one
layer, in particular the uppermost. The author notices that
the phase retardation effect diminishes as he moves the only
phase retardation layer down the stack. In [15] measure-
ments of the mirror phase retardation as a function of time
and of laser power in the Fabry—Perot cavity have been per-
formed. The authors suggest that mirror birefringence may
be photoinduced, at least partly.

In this paper we present a review of the existing data
on interferential mirror phase retardation. We show that the
data indicate that the phase retardation per reflection de-
creases when the mirror reflectivity becomes better and bet-
ter, i.e., when the total number of layers increases. We also

Phase retardation due to birefringence corresponds to the difference
of phase velocities between the two normal modes.

@ Springer



458

F. Bielsa et al.

report new measurements of two sets of mirrors that con-
firm this trend. We finally developed a computational code
to calculate the expected phase retardation per reflection as
a function of the total number of layers. Different cases have
been studied going from a fixed birefringence for each layer
to a random birefringence for each layer. We finally com-
pare computational results with the trend of the experimen-
tal data. Our study indicates that the origin of the mirror in-
trinsic birefringence can be ascribed to the reflecting layers
close to the substrate.

2 Experimental study

Birefringence of interferential mirrors have been measured
and reported by several authors [7—-15]. The phase retarda-
tion per reflection ranges between a few 10~ rad to 1073
for values of (1 — R) going from a few 1075 to 1072, where
R is the mirror reflectivity. All the measurements have been
conducted using an optical cavity except one [9] where the
ellipticity acquired after a single reflection was directly mea-
sured. Optical cavities are usually absolutely necessary to
accumulate the effect and thus to allow to measure very
small phase retardations. Whereas a multipass cavity has
been used in [7, 8], a Fabry—Perot cavity is used in [10-14].
In the following section, the published data are presented
in details and in chronological order. These studies were al-
ways motivated by measurements of small phase retardation
such as parity violation experiments [1-3] or vacuum mag-
netic birefringence experiment [4].

2.1 Review of published data

The first study of intrinsic phase retardation of interferen-
tial mirrors dates from 1982 [7]. Measurements have been
conducted using a multipass cavity made of two spherical
mirrors between which the light beam bounces many times
forwards and backwards under quasinormal incidence. In-
trinsic phase retardation is therefore superimposed to the
off-normal incidence phase retardation but this has also been
evaluated by the authors. The light beam does not hit the
same point of the mirror after a round trip. Thus the mea-
surement of phase retardation per reflection gives a value
averaged on the mirror surface. The mirrors have been man-
ufactured by Spectra-Physics, Inc. (Mountain View, CA,
USA), and their reflectivity R is 0.998 at A = 540 nm.
Intrinsic phase retardation typically varies between 2 and
4 x 10~ rad per reflection. Among the 19 mirrors analyzed,
two exceptions with phase retardation less than 10~ rad per
reflection have been found. The authors called this a “happy
accident”.

A few years later a new study was again performed us-
ing a multipass cavity [8]. A set of five mirrors manufac-
tured by MTO, Palaiseau, France, has been analyzed. The
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authors did not give explicitly the reflectivity of the mir-
rors, but they have reported that at A = 514.5 nm and after
about 250 reflections the light intensity is reduced to 1/e.
We can deduce that (1 — R) = 0.004. From their measure-
ments, intrinsic phase retardation varies between 3.0 x 107>
and 2.2 x 107 rad per reflection.

The next study was performed in 1993 [9] using multi-
pass cavities. Only one mirror has been analyzed but this
time the phase retardation has been measured directly after
only one reflection. The mirror had a reflectivity of 0.9983
at 633 nm. It was coated by the Laboratory of Laser En-
ergetics of the University of Rochester. The authors were
able to measure the intrinsic phase retardation and the phase
retardation axis direction of the mirror in different points
of the surface. They could therefore draw a map of the in-
trinsic phase retardation showing a clear rotational pattern.
The intrinsic phase retardation per reflection ranged between
3 to 6.2 x10~* rad, while the axis direction ranged be-
tween 9 and —13 degrees. To test that the origin of such
an anisotropy was not due to the substrate, the authors have
measured the phase retardation when the light was reflected
on the backsurface of the mirror. They obtained a result com-
patible with zero within the experimental error.

In 1995 the first measurement using a Fabry—Perot cav-
ity was reported [10]. In this type of interferometer the in-
cidence on the mirrors is strictly normal, and off-normal
phase retardation vanishes. The mirror reflectivity can be in-
ferred by the cavity finesse F' = 6600 given by the authors at
A=633nm: R=1—n/F =0.999524. The reported val-
ues of phase retardation per reflection are 1.0 x 10~® and
4.4 x 107° rad. Besides, their study allows to conclude that
the birefringence is not due to the mirror mounts.

In 1996, a new intrinsic phase retardation of a mir-
ror is reported [11]. The Fabry—Perot cavity finesse was
300 at A = 633 nm, and we can therefore infer that R =
0.9895. The measured phase retardation per reflection is
1.2 x 1073 rad.

For the next value reported in [12], a Fabry—Perot was
again used. The mirrors have been manufactured by Re-
search Electro-Optics Inc., Boulder, Colorado, USA. The
Fabry—Perot cavity finesse was 125600 at A = 540 nm, and
the inferred reflectivity is R = 0.999975. The value of the
phase retardation per reflection is given for only one mirror
and corresponds to 3 x 107 rad.

In 1997 two works have been published in the same jour-
nal issue [13, 14] concerning mirror intrinsic phase retar-
dation. In [13] two mirrors constituting a Fabry—Perot cav-
ity have been characterized. The average value of the re-
ported reflectivity was R = 0.9988 at A = 633 nm. The mea-
sured phase retardation per reflection was 4.2 x 10~* rad and
1.04 x 1073 rad. In [14], the reflectivity was R = 0.999969
at A = 1064 nm and they have been manufactured by Re-
search Electro-Optics Inc., Boulder, Colorado, USA. The
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Table 1 Review of published data

Ref. R &M (rad) Nmirrors A (nm)
(7] 0.998 2—-4)x10~* 17 540
<10°° 2 540
[8] 0.996 3-22)x 107 5 514
[9] 0.9983 (3-62) x 107 1 633
[10] 0.999524 (1—4.4)%x1076 2 633
[11] 0.9895 1.2%x 1073 1 633
[12] 0.999975 3x10°6 1 540
[13] 0.9988 (42-10.4) x 1074 2 633
[14] 0.999969 (7.4 —24) x 1077 3 1064
<1077 1 1064
[15] 0.999923 1.8 x 107 1 633

measured value for three mirrors over four was between 3.7
and 12 x 1077 rad, while the last mirror was a happy ac-
cident with a phase retardation per reflection smaller than
107 rad.

Finally in 2000, a new measurement is reported [15].
Measurements have been done on a Fabry—Perot cavity,
looking at frequency shift of the resonance line of the cav-
ity due to mirror phase retardation. The Fabry—Perot cav-
ity finesse was about 40 000 at A = 633 nm, corresponding
to R = 0.999923, and the phase retardation per reflection
1.8 x 107 rad. The authors have also showed that the mea-
sured phase retardation could be changed by several per-
cents by appropriately injecting more power in the cavity.
Phase retardation relaxed down to the average value several
seconds after the perturbation.

In Table 1 we summarize the existing data on mirror in-
trinsic phase retardation per reflection. We give the refer-
ence number, the value of the reflectivity R, the measured
value of the phase retardation per reflection 8y, the number
of characterized mirrors Npjrrors, and finally the light wave-
length A for which the mirror reflectivity was optimized. We
give the minimum and the maximum value for )1 when sev-
eral mirrors have been analyzed in the same reference. In
the case of [9], where a single mirror has been studied but
in several points of its surface, we give the dispersion of the
reported values.

2.2 Our new measurements

In this paragraph we report new measurements of two differ-
ent sets of mirror performed in the framework of the BMV
experiment [20] which goal is to measure vacuum magnetic
birefringence. As in the previous attempts to measure such
a weak quantity [4—6], mirror intrinsic phase retardation is
a source of noise limiting the sensitivity of the apparatus.
Moreover, since signal detection in the BMV experiment

corresponds to a homodyne technique, the ellipticity I in-
duced on the linearly polarized laser beam by the Fabry—
Perot cavity overall phase retardation is used as a D.C. car-
rier. To reach a shot noise limited sensitivity, one needs I to
be as small as possible [20], implying that the phase retar-
dation axis of the two mirrors constituting the cavity have to
be aligned.

To measure the mirror intrinsic phase retardation, our ex-
perimental method is based on the ones described in de-
tails in [10, 14]. More details on our experimental setup
can be found in [20]. Briefly, 30 mW of a linearly polar-
ized Nd:YAG (A = 1064 nm) laser beam is injected into a
Fabry—Perot cavity. This laser is locked to the cavity reso-
nance frequency using the Pound-Drever-Hall method [21].
The beam transmitted by the cavity is then analyzed by a
polarizer crossed at maximum extinction and collected by
a low noise photodiode with a noise equivalent power of
0.25 pW/+/Hz. Polarizer extinction is (4 £2) x 10~7 which
is always much lower than the ellipticity we measure.

As shown on Fig. 1, both mirrors are schematized as two
ideal wave plates with phase retardation &1 and §,. Thus the
phase retardation per reflection of each mirror we want to
measure corresponds to 28; and 2§,. For the sake of sim-
plicity the angle indicating the direction of the phase retar-
dation axis of the first mirror is taken as zero. The angle be-
tween the phase retardation axis of the two mirrors is Gwp.
For §1, 62 « 1, combination of both wave plates gives a sin-
gle wave plate of phase retardation [14]:

SpQ = \/(3] — 82)% + 4818, cos? wp, (1

and with a fast axis at an angle with respect to the x axis
given by:

5 1 cos 26wp

\/(g—; —1)2 +4§—;cos20wp

cos 20gq = 2)

The Fabry—Perot cavity corresponds to a wave plate with a
phase retardation § related to dgq as follows:

2F
6 = —9IE0, 3
- OEQ (3

where F is the cavity finesse. Finally, the intensity trans-
mitted by the analyzer over the incident intensity is equal to
the square of the ellipticity 1 induced by the cavity mirrors.
This ellipticity is given by [14]:

82
Y= T sin?(2(6p — 0kQ)). 4)

with 6p the angle indicating the direction of the light polar-
ization with respect to the x axis. Thus, by measuring the
intensity transmitted by the analyzer as a function of Gwp
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Fast axis
A

Fig. 1 Principle of the experiment: a linearly polarized laser beam is
injected into a Fabry—Perot cavity (mirrors M1 and M2). The polariza-
tion is then analyzed outside of the cavity

and for different value of 6p, we are able to calculate the
phase retardation of both mirrors.

Two different sets of mirrors have been tested. The first
one is constituted by two one inch diameter spherical mir-
rors, 6 m radius of curvature, BK7 substrate, manufactured
by Laseroptik GmbH, Garbsen (Germany). The reflectivity
at A = 1064 nm is 0.999396 corresponding to a cavity fi-
nesse of 5200 and the transmission of the cavity is about
20%. The second set of mirrors is constituted by three one-
inch diameter spherical mirrors, 8 m radius of curvature,
BK?7 substrate, manufactured by Layertec GmbH, Mellin-
gen (Germany). The reflectivity at A = 1064 nm is 0.999972
corresponding to a cavity finesse of about 110000. Ac-
cording to the manufacturer, mirror losses are lower than
100 ppm and the overall measured transmission of the cav-
ity is about 3%.

The square of the ellipticity ¥ induced by the cavity as a
function of the angle between the phase retardation axis of
the two mirrors is plotted in Fig. 2. Experimental values are
fitted using (4). The deduced mirror intrinsic phase retarda-
tion per reflection is presented in Table 2 for each mirror.

2.3 Summary

All the published data together with the data obtained in this
work are plotted as a function of (1 — R) on Fig. 3. When
only one mirror has been tested, the corresponding point has
no error bars. When different mirrors have been measured
the data point have error bars. These error bars do not rep-
resent the measurement error for one mirror (typically 10%)
but the dispersion of the measured value for the whole set
of mirrors. Arrows represent mirrors for which the phase re-
tardation was smaller than the apparatus sensitivity (see Ta-
bles I and 2). Dots represent the new measurements reported
in this work at A = 1064 nm.

Published data plotted on Fig. 3 clearly show that the
higher the reflectivity, i.e., the lower the value of (1 — R), the
lower the phase retardation per reflection. More precisely,
the intrinsic phase retardation decreases by three orders of
magnitude as (1 — R) decreases by almost three orders of
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Table 2 Mirror intrinsic phase retardation

R SMm (rad) No. A (nm)
0.999396 (5.84+0.4) x 1074 1 1064
(3.4+04) x 1074 2
0.999972 (9.84+0.4) x 107° 1 1064
(2.6+0.4) x 107° 2
(1+£0.4) x 1076 3
20x10°
15 -
2
4 10 4
5 o
0 —
I I I I I I |
0 5 10 15 20 25 30
45x10”°
40
35
2
"4 30
25
20

T T T T T T T
-60 -40 -20 0 20 40 60

Oyp (°)

Fig. 2 Experimental values of the square of the ellipticity ¥ as a func-
tion of the angle between the phase retardation axis of the cavity mir-
rors (see Table 2). Data are fitted using (4). Upper curve: the mirrors re-
flectivity is 0.999396. Lower curve: the mirrors reflectivity is 0.999972

magnitude. Our new measurements perfectly confirm this
trend.

3 Computational study

The understanding of the origin of the experimental data
trend is crucial if one wants to control the manufacture to ob-
tain birefringence-free interferential mirrors. We have there-
fore developed a computer code that can simulate the behav-
ior of an interferential mirror made by an arbitrary number
of layers each one with its own arbitrary phase retardation
and arbitrary retardation axis. Our goal was to find a config-
uration of layers, as simple as possible, that could reproduce
the experimental trend and give a first indication to experi-
mentalists to test in further studies.
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Fig. 3 Summary of all the published data and the data obtained in this
work with mirror intrinsic phase retardation 8y versus (1 — R). The
symbols represent the wavelength for which the mirror reflectivity was
optimized (o: 540 nm, ¢: 633 nm, a: 1064 nm, e: our work). Errors
bars correspond to the minimum and the maximum value when several
mirrors have been analyzed. Arrows represent mirrors for which the
phase retardation was smaller than the apparatus sensitivity. The trend
of the whole points shows that the intrinsic phase retardation decreases
by three orders of magnitude as (I — R) decreases by almost three
orders of magnitude

3.1 Interferential mirrors

Interferential mirrors are made by a stack of slabs of an opti-
cal thickness of A /2 as shown on Fig. 4, where A is the light
wavelength for which the mirror reflectivity is optimized.
Each slab is composed by a low-index layer n1, and a high-
index layer ny. Each layer has an optical thickness of 1 /4.
Typically, n, is around 1.5 and ny is higher than 2.0. The
substrate is usually fused silica or Zerodur, and a 1 /2 coat-
ing of SiO; protects the reflecting surface of the mirror. Ob-
viously, construction details are not shared publicly by man-
ufacturers (see, e.g., the paragraph on mirror manufacture
in [16]).

In the case of what is called an “odd stack”, i.e., N slabs
of a high-index layer and a low-index layer plus one high-
index layer (2N + 1 layers), the mirror reflectivity R can be
written as [17]:

&)

- (2N 2
- [1 + (7,—‘:)2(',1—;5”]

where n; is the index of refraction of the substrate. Typi-
cally to obtain a reflectivity R >~ 0.999999 one needs about
20 pairs of quarter-wavelength layers of materials such as
Si0; and either TiO, or TaOs, while 10 pairs are sufficient
to obtain R ~0.999.

3.2 Methods
The model multilayer we used for our calculations consists

of a stack of slabs placed between two semi-infinite media
of refractive indices n. (the external medium) and ng (the

External medium n,

N Slabs

Fig. 4 Interferential mirror. It consists of an odd stack of slabs de-
posited on a substrate

= X
Z

Fig. 5 Angle between the principal axis of the birefringent medium
and the reference frame

substrate). The coordinate system used to reference the mul-
tilayer axes is shown in Fig. 4.

Each birefringent layer is uniaxial. For the jth layer ex-
tending from z = z; to z = z; 1 we denote by 6, the an-
gle between the principal axis of the birefringent medium
and the reference frame and by d; =z 41 — z; its thickness
(see Fig. 5).

In the reference frame, the dielectric tensor of this layer
is then given by

Jj+1

et =R, “ R®; 6
= j+1) 0 6j+1 ( j—i—l) ( )
2

where R(6) is the standard rotation matrix:

cosf  sind
R©) = ) ) @)
—sinf cosd
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For a low-index layer, we have

i+1 [ j+1
n{ = ef /eo =ny, + dnr,

i+1 _ [ j+1 ®)
né = eé /€0 =nL
and for a high-index layer
n'{“ = ,/E{H/eo =ny + ény,
©))

j+1 [ j+1
n =./€& Jeo=nn

where € is the vacuum permeability and np,, ny stand for
refractive indices of similar but no-birefringent layers with
an optical thickness of A /4, so that nf;]dj =1/4.

Let us now consider a transverse electric polarized plane
monochromatic wave normally incident upon this model
mirror. The solution of the Maxwell’s equations for the elec-
tric field can be expressed as a superposition of the forward
and backward propagating waves along each reference di-
rection x and y. In the external medium, we have

E, = A;x exp{i(ke,xz - a)t)}

+ A expli(—kerz — o)} (10)
for the x component and
E,= A;y expi (ke,yz — wt) }

+ Agy expli(—ke yz — wi)} (11)

for the y component, where w = 27 /A and

w
ke x = ke,y = zne (12)

with ¢ the light velocity in vacuum. In the same way, the
electric field in the substrate is written as

Ec = A, expli(ks.x(z — 22n41) — 01) ]

+ Ay expli(—ksx(z — z2n+41) — 1) } (13)
for the x component and
Ey = A expfi(ks.y (z — 2an11) — 0t) }

+ A5, expli (—key (2 — 22n41) — o)} (14)
for the y component, where

w
kox =koy = —ns. (15)

Using the characteristic matrix method [17], we have

Al, AL,
AT AT
i’x =M if (16)
A7, Af,
Acy Ay
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where M is a 4 x 4 matrix called the characteristic matrix
of the multilayer. This matrix can be calculated step by step
by solving numerically a 4 x 4 linear system of equations
corresponding to the appropriate boundary conditions that
must be fulfilled by the electric field at the interface between
two adjacent layers. Noting that A, = A\ =0 and taking
A;x =1and A;fy =0, we get

- M>; _ M3 M3, a7
T My = MR Mas(My — M
B My M43 M3,

A7 = - . (18)
T My = MR Mas(My — MR

The induced ellipticity per reflection v is then given by

A7,
tan Yy = ——. (19)
|Ae x|

Since measured phase retardations presented in the previ-
ous section are small, we only consider small birefringence.
To fully reproduce the experimental technique we calculate
Yw as a function of the angle between the polarization and
the birefringent axis of the simulated mirror. We checked

that it behaves as a standard wave plate from which we can
extract the intrinsic phase retardation dy;.

3.3 Results

Using the code based on the methods detailed in the previous
section, we have simulated several simple configurations. In
the trivial case in which every layer gives the same contri-
bution to the total effect, the straightforward result was that
phase retardation per reflection increases with the number
of layers, i.e., with the mirror reflectivity. Random phase re-
tardation and axis orientation per layer has also been tested
varying the range of variation of these two parameters. No
result similar to the experimental trend has been obtained.
The configurations which can reproduce this trend are the
ones in which the birefringent layers are only the ones close
to the substrate.

Figure 6 presents two different numerical calculations
for the induced phase retardation per reflection as a func-
tion of (1 — R) where R is the multilayer reflectivity we
got from our simulations. Crosses represent the measure-
ments plotted in Fig. 3. To match these experimental data,
we have chosen the parameters of our simulations such that
numerical results reproduce the experimental data for the
highest (1 — R) available value. Dots with error bars cor-
respond to the result of random calculations with dnp )
(resp. 6;) randomly distributed inside the interval [0, 0.001]
(resp. [—m, r]) for each layer. The error bar for each point
corresponds to the dispersion obtained with 10 tries. This
result does not reproduce the experimental data. On the
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Fig. 6 Two different numerical calculations for the induced phase re-
tardation per reflection as a function of (1 — R). Solid curve: birefrin-
gence only for the first layer just after the substrate. Dots with error
bars: calculation with random birefringence per each layer. Crosses:
measurements plotted in Fig. 3

other hand, the solid curve has been obtained by includ-
ing birefringence only for the layer lying directly on the
substrate. The parameters we used are: ényg = 0.13 for the
(2N + 1)th layer (zero for the others). This result repro-
duces quite well the trend of the experimental data, i.e.,
the intrinsic phase retardation decreases by three orders of
magnitude as (1 — R) decreases by three orders of magni-
tude.

4 Conclusion

Existing experimental data on interferential mirrors intrin-
sic phase retardation, together with the two new measure-
ments reported in this work, clearly indicate that some phys-
ical effect decreases the birefringence per reflection when
the mirror reflectivity R increases, i.e., when one increases
the number of layers used to realize the interferential mirror.
Our numerical calculations show that it can be explained
with a simple model in which only the layers close to the
substrate are birefringent. We could not find any other rea-
sonable configuration giving a trend similar to the experi-
mental one.

Our study cannot unveil the physical origin but it seems
to indicate in which part of the mirror the problem resides:
the reflecting layers close to the substrate. We believe that
it is a crucial piece of information for mirror manufacturers
in order to realize birefringence-free mirrors or at least to
control and minimize the effect.

Finally, although experimental data have been obtained
by using different mirrors that in principle have not been
realized using exactly the same manufacture protocol, we

obtain a clear decreasing of the phase retardation per refec-
tion as R increases. But to fully understand the origin of
interferential mirror phase retardation, we believe that next
step should be to study a series of mirrors, all made with the
same industrial process, but with different values of reflec-
tivity R.
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Abstract In this paper we present a theoretical and exper-
imental study of the dynamical behaviour of birefringent
cavities. Our experimental data show that usual hypothe-
sis which provides that a Fabry—Perot cavity is a first-order
low-pass filter cannot explain the behaviour of a birefringent
cavity. We explain this phenomenon and give the theoretical
expression of the equivalent cavity filter which corresponds
to a second-order low-pass filter.

1 Introduction

Fabry—Perot cavities are widely used in experiments de-
voted to the detection of very small optical effects, e.g. in
the framework of gravitational wave interferometers [1-5],
optomechanical noise studies [6], frequency measurements
via optical clocks [7-11], Lorentz invariance experimental
tests [12], or vacuum magnetic birefringence measurements
[13-15].

Fabry—Perot cavities made with interferential mirrors are
birefringent [16-19]. For most of the Fabry—Perot funda-
mental applications, this property can be neglected, at least
at first sight, since the studied effects do not depend on po-
larization. Obviously, this is not the case of birefringence
studies reported in [13—15].
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The dynamical behaviour of nonbirefringent cavities has
been studied in details [20]. The cavity acts as a first-order
low-pass filter whatever the polarization of the incident light
is, and the frequency spectrum of the transmitted light is
modified consequently. As far as we know, nothing has been
published so far regarding birefringent cavities. In this pa-
per we present a theoretical and experimental study of the
dynamical behaviour of birefringent cavities in the presence
of a time variation of the incident light intensity and in the
presence of a time variation of the birefringence itself.

Our experimental data show that a birefringent cavity
cannot be described as a first-order low-pass filter as it
is generally assumed. We explain this phenomenon and
give the theoretical expression of the equivalent cavity fil-
ter which corresponds to a second-order low-pass filter. We
also discuss the implications of this cavity behaviour in the
case of existing experiments for measuring very low bire-
fringence effects using Fabry—Perot cavities.

2 Experimental setup

Our study is performed in the framework of the BMV exper-
iment [15] whose goal is to measure vacuum magnetic bire-
fringence. Briefly, as shown on Fig. 1, a linearly polarized
Nd:Yag laser beam (A = 1064 nm) is injected into a Fabry—
Perot cavity made of mirrors M and Mj. The length of the
cavity is L = 2.2 m. The laser frequency is locked to the
cavity resonance frequency using the Pound-Drever—Hall
method [21]. To this end, the laser is phase-modulated at
10 MHz with an electro-optic modulator (EOM). The beam
reflected by the cavity is then analyzed on the photodiode
Ph;. This signal is used to drive the acousto-optic modulator
(AOM) frequency for a fast control and the Peltier element
of the laser for a slow control.
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1=1064 nm B

P
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Ph,
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Fig. 1 Experimental setup. An Nd-YAG laser is frequency locked to
the Fabry—Perot cavity made of mirrors M| and M. The laser beam
is linearly polarized by the polarizer P and analyzed with the polar-
izer A. This analyzer allows one to extract the extraordinary beam sent
on photodiode Ph, and the ordinary beam sent on photodiode Ph;. The
beam reflected by the cavity analyzed on the photodiode Ph; is used for
the cavity locking. A transverse magnetic field B can be applied inside
the cavity in order to study the magnetic birefringence of the medium.
EOM = electro-optic modulator; AOM = acousto-optic modulator

Our birefringence measurement is based on an elliptic-
ity measurement. Light is polarized just before the cavity
by the polarizer P. The beam transmitted by the cavity is
then analyzed by the analyzer A crossed at maximum ex-
tinction and collected by a low-noise photodiode Ph.. The
analyzer has an escape window which allows us to extract
the reflected ordinary beam. This beam is collected by the
photodiode Ph;. Both signals are simultaneously used in the
data analysis as follows: I./I; = o2+ lllt%t, where ¥ is the
total ellipticity acquired by the beam going from P to A, and
o2 is the polarizer extinction ratio. Our polarizers are Glan
Laser Prism manufactured by Karl Lambrecht Corporation
(Chicago, USA) which have an extinction ratio of 4 x 107",

The origin of the total ellipticity cavity is firstly due to the
mirror intrinsic birefringence. Mirrors are similar to wave
plates. For small birefringence, combination of both wave
plates gives a single wave plate. The phase retardation and
the axis orientation of this equivalent wave plate depends
on the birefringence of each mirror and on their respective
orientation [23, 24]. We define the ellipticity induced on the
linearly polarized laser beam by the Fabry—Perot cavity as
I" which is set to about 10~ in the experiment described in
this paper.

A second component of the total ellipticity appears when
a birefringent medium is placed inside the cavity. For exam-
ple, on magnetic birefringence measurements, a transverse
magnetic field B is applied inducing an ellipticity ¥ o B2l
where [ is the optical path in the magnetic field.

Finally, if ellipticities are small compared with unity, one
gets:

Ie/li=0%+ (I +¥)% ¢h)

The goal of the experiment presented in this paper is to
have a complete understanding of birefringent cavity dy-
namical behaviour. For this study, two different methods

@ Springer

have been implemented. In the next section we present the
cavity behaviour in the case of a time variation of the inci-
dent light intensity, whereas in the last section, the ellipticity
inside the cavity is modulated.

3 Time variation of the incident light intensity

In this part, we study the cavity dynamical behaviour to a
time variation of the incident laser beam intensity while the
total ellipticity remains constant. Two approaches have been
used: study of the cavity response to a step function or to
an intensity frequency modulation of the incident beam. The
first section is devoted to the presentation of both approaches
when looking at the ordinary beam collected by Phy, i.e.
when the transmitted beam polarization is parallel to the in-
cident one. In the second section, this study is performed on
the extraordinary beam, i.e. when the beam polarization is
perpendicular to the incident one.

3.1 Cavity dynamical behaviour towards the ordinary beam
3.1.1 Time response of the cavity to a step function

The simplest way to study the cavity response is to abruptly
switch off the intensity of the incident beam locked to the
cavity and then to look at the intensity decay of the beam
transmitted by the cavity. This method allows one to deter-
mine typical cavity parameters as the photon lifetime, the
cavity finesse, the full width at half maximum, or the cavity
quality factor.

Experimentally, the intensity is switched off thanks to the
acousto-optic modulator (AOM) shown on Fig. 1 and used
as an ultrafast commutator. Its switched-off time is less than
1 ps, far less than the photon lifetime as we will see below.
On Fig. 2 the intensity of the ordinary beam is plotted as a
function of time. For ¢ < 1y, the laser is locked to the cavity.
The laser intensity is switched off at #(. For t > #(, one sees
the typical exponential decay [22]:

L(t) = L(tg)e™ 1 =0)/7, )

where 7 is the photon lifetime. This lifetime is related to
the finesse F >~ /(1 — R) of the cavity through the re-
lation: T = LF /mc with ¢ the speed of light and R the
mirror reflectivity, which is supposed to be the same for
both mirrors. By fitting our data with this expression one
gets T = (245 £ 10) ps corresponding to a finesse of F =
(105 £ 5) x 103. The uncertainty results from statistical un-
certainty.
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Fig.2 Time evolution of the intensity of the ordinary beam (grey line).
The laser is switched off at 1 = #7. Experimental data are fitted by
an exponential decay (black dashed line) giving a photon lifetime of
T = (245 £ 10) ps and a finesse of F = (105 +5) x 103

3.1.2 Frequency response of the cavity to an intensity
modulation

In order to complete our understanding of the experiment,
we also study the frequency response of the Fabry—Perot
cavity to an intensity modulation. Theoretically, for an in-
cident light modulated in intensity at pulsation wf and for a
small depth of modulation, the complex response function is
given by [20]

t(C‘)F) 1
H(wp) = W (&8 @ 3
It(wF) (Ii(wF)) is the wg component of the ordinary (incident)
beam intensity. The response function operates as a first-
order low-pass filter with a cutoff frequency v. = w./2r =
1/4rt.

Experimentally, to study the cavity frequency response,
the laser is locked to the cavity, and the intensity is modu-
lated with a small depth of modulation thanks to the AOM.
The intensity of the incident beam and of the ordinary beam
transmitted by the cavity is recorded at different modulation
frequencies.

Results are presented on Fig. 3. Figure 3a presents the
gain of the response function normalized to 1 at low fre-
quency, and Fig. 3b presents the phase delay. Data are fitted
by the response function of a first-order low-pass filter. Cut-
off frequency is equal to v, = (310 &= 20) Hz when fitting
the gain, and v, = (315 &+ 20) Hz when fitting the phase
delay. These values correspond to a finesse of respectively
F =(109+9) x 10 and F = (108 £ 8) x 103, which is
in agreement with the finesse measured with the previous
approach.

While in the second approach we are looking at the fre-
quency response of the cavity, the first approach is per-
formed in the time domain. Both areas of analysis are equiv-
alent and can be connected thanks to Laplace transform.

;
o
6
f— &
ER
EE
o
3x1071 — —
2 3 4 5678 2 3 4 5678
10 100 1000
of (Hz)
= 02—
°
g
< .04
£ -06-
£ 08
j -
a -1.0
1.24 > o
T T T T T
200 400 600 800 1000
b of (Hz)

Fig. 3 Experimental cavity response function towards the ordinary
beam. (a) Gain of the response function normalized to 1 at low fre-

quency, i.e. IIK(“’F ) / Ii(wF ) | as a function of the modulation frequency wr.

Data are fitted by the gain of a first-order low-pass filter. (b) Phase de-

lay between It(mF) and Ii(wF) as a function of the modulation frequency.

Data are fitted by the phase delay of a first-order low-pass filter

However, the time analysis is usually preferred to the fre-
quency analysis since it is simpler and quicker to implement
on the experiment.

Finally, the study performed on the ordinary beam shows
that the dynamical behaviour of our cavity is the same as the
one obtained on nonbirefringent cavities. The typical expo-
nential decay is observed when the incident light is suddenly
switched off and the frequency response shows that the cav-
ity behaves as a first-order low-pass filter.

3.2 Cavity dynamical behaviour towards the extraordinary
beam

We now turn to the study on the extraordinary beam col-
lected by Phe, i.e. the beam transmitted by the cavity with a
polarization perpendicular to the polarization of the incident
one.

3.2.1 Time response of the cavity to a step function

Time evolution of the extraordinary beam when the incident
beam is suddenly switched off is shown on Fig. 4. By com-
paring this curve to the one plotted on Fig. 2, we see that the
cavity does not have the same behaviour for /; and /.. When
one fits /. with an exponential decay, the experimental be-
haviour is not reproduced, and it gives a photon lifetime of
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Fig. 4 Time evolution of the intensity of the extraordinary beam
(grey line). The laser is switched off at r = fy. Experimental data
are fitted by (5) (black dashed line) giving a photon lifetime of
T = (245 £ 10) ps. The fit with an exponential decay (dots) does not
correspond to the experimental behaviour and gives a photon lifetime
of © =735 ps in disagreement with previously given values.

T =735 ps in disagreement with previously given values.
We will show that this is due to the intrinsic birefringence of
the cavity.

Let us calculate the transmitted intensity along the round-
trip inside the cavity:

— For t < 19, the laser is continuously locked to the cavity.
According to (1), the intensities of the ordinary and the
extraordinary beams are related by

Lt <1t9) = ' 1(t < 19).

The polarizer extinction ratio is neglected since we have
02 « I'? and no birefringence is applied inside the cavity.

— At t = 1y, the laser beam is abruptly switched off, the
cavity empties gradually. The ordinary and extraordinary
beams are slightly transmitted at each reflection on the
mirrors. However, because these mirrors are birefringent,
some photons of the ordinary beam are converted into the
extraordinary one. The reverse effect is neglected because
I. < I.

As shown on (1), the total ellipticity corresponds to
the sum of ellipticities when they are small. Furthermore,
following [24], the ellipticity I" induced by the cavity is
related to the ellipticity induced per round-trip y through
the relation y = I'n/ F.

Thus after one round-trip inside the cavity, i.e. at time
to+tp =19+ 2L/c, we get:

Ie(to + tp) = (I 4+ ¥)? Ii(to + 1p).

— After p round-trips, one gets the intensity of the extinc-
tion beam:

Ie(to + ptp) = (I' + py)*L(to + ptp). 4
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Fig. 5 Cavity response function towards the extraordinary beam.
(a) Gain of the response function normalized to 1 at low frequency,

ie. \Ie(wF) / Ii(wF)l as a function of the modulation frequency wg. Data
are fitted by the gain of a second-order low-pass filter. (b) Tangent of

the phase delay between Ie(wF ) and li((”F ) as a function of the modu-
lation frequency. Data are fitted by the phase delay of a second-order
low-pass filter

Assuming that (4) holds not only at times #o + ptp but also
at any time ¢ > fo and using (2) for I;, we can write:

2
t—1 _ =g
T, 5
2T > ¢ ©)

Ie(t) = Ie(t0)<1 +

This expression is used to fit our experimental data plotted
on Fig. 4. We find a photon lifetime of v = (245 £ 10) ps,
which is in good agreement with the value found in the pre-
vious section.

3.2.2 Frequency response of the cavity to an intensity
modulation

As done before, we also study the frequency response of
the cavity towards the extraordinary beam to an intensity
modulation. Results are presented on Fig. 5.

To calculate the complex response function expected the-
oretically, we use (5) and the Laplace transform, and we get:

(wF) 1 2
H =" _« .
e(wF) Ii(ch) ( 1+ if)—f )

Ie(wF) corresponds to the wr component of the extraordinary

beam intensity. The response function operates as a second-
order low-pass filter with the same cutoff frequency v, found
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previously for the ordinary beam. Data of Fig. 5 are fitted by
the following expressions:

1

|He,n(0)F)’ = m, (6)
WE
arg[ He n(wr)] = —?“’w_)z ™

Cutoff frequencies given by the fits are v, = (325 +20) Hz
and v, = (350 & 20) Hz and are consistent with the values
found in the previous section.

The study presented in this part shows that a birefringent
cavity cannot be described as a first-order low-pass filter as
it is generally assumed for usual cavities. For the extraordi-
nary beam, the cavity acts as a second-order low-pass filter
instead of a first-order one. This filter represents the com-
bined action of two successive first-order low-pass filters.
While the first filter characterizes the usual cavity behav-
iour as seen in Sect. 3.1, we can interpret the second filter in
terms of pumping or filling: due to the mirror birefringence,
some photons of the ordinary beam are gradually converted
into the extraordinary beam at each reflection.

4 Time variation of the birefringence

The second method implemented to study the cavity dynam-
ical behaviour consists in varying the cavity birefringence
itself. The intrinsic cavity birefringence can hardly be mod-
ulated. We have chosen to obtain a time variation of the cav-
ity birefringence by a variation of the birefringence of the
medium placed inside the cavity.

According to (1), the measured signal is given by

I(t) /I, =02 + T2 +2IW (1).

We assume that ¥ <« I". Let us consider that the ellipticity
per round-trip ¥ applied inside the cavity is modulated with
a pulsation wg:

¥ (1) = Yo sin(wgt).

Following calculations performed in [15], the ellipticity out-
side of the cavity induced by the applied birefringence is
Yo

1+ (25)

¢

v = = sin(wpt + @) ®)

with tan ¢ = —wr/w: and ¥y = Yo F /. We see that this el-
lipticity corresponds to an ellipticity filtered by a first-order
low-pass filter with a cutoff frequency corresponding to the
one of the cavity. In other words, if the ellipticity i varies
over the photon lifetime in the cavity, the ellipticity out-
side of the cavity is attenuated and does not remain in phase
with .

8* (1)

(ne)hf

(‘ne) 1P

10x10°

b time (s)

Fig. 6 (a) Dashed curve: Square of the magnetic field as a function of
time. Line: Signal I./1; as a function of time while the laser is locked
to the cavity. (b) Dashed curve: Square of the magnetic field filtered by
a first-order low-pass filter corresponding to the cavity filtering. Line:
Signal I./I; as a function of time while the laser is locked to the cavity.
Shifts of both maxima are compensated when the cavity filtering is
taken into account. Noise observed on the transmitted intensities after
2 ms of magnetic pulse are due to vibrations induced on the cavity
by the magnetic pulse. This part is not taken into account in the data
analysis

From the experimental point of view, the birefringence
inside the cavity corresponds to a magnetic birefringence.
The induced ellipticity per round-trip is given by ¥
B?sin 20 where 6 is the angle between light polarization and
the direction of the transverse magnetic field. To modulate
this ellipticity, one can modulate the value of the magnetic
field or modulate the direction of the magnetic field.

On our experiment, the magnetic field is created thanks
to pulsed coils. Thus, the time variation of the applied bire-
fringence corresponds to a time variation of the square of
the magnetic field. On Fig. 6a, a typical magnetic pulse is
plotted. It reaches its maximum of 2.9 T within less than
2 ms.

The cavity finesse is 100000, which corresponds to a pho-
ton lifetime of 230 ps. About 15 mbar of air was inserted
inside the vacuum chamber which contains the cavity and
the polarizers. The applied birefringence is always smaller
compared to the mirror birefringence. The observed signal
is shown on Figs. 6a and b on the right axis and compared to
the magnetic field. We see that both maxima of BZ and I. /1
do not coincide. However, as expected by (8) and shown on
Fig. 6b, this shift is actually compensated if we apply a first-
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order low-pass filter corresponding to the cavity filtering on
the square of the magnetic field.

Finally, the value of the magnetic birefringence is cal-
culated through the correlation between ¥ (¢) and B2(t) fil-
tered [15]. In the case of Fig. 6 this analysis is not performed
for ¢+ > 2 ms where vibrations are induced on the cavity due
to the magnetic pulse. Improvements are currently under de-
velopment to minimize this effect. If the filter is not applied
on the magnetic field, i.e. if the cavity influence is not taken
into account, a systematic uncertainty of a few percents is
added on the value of the magnetic birefringence.

5 Conclusion

We have studied the dynamical behaviour of birefringent
Fabry—Perot cavities. Actually, because of the intrinsic mir-
ror birefringence, all Fabry—Perot cavities are birefringent,
and our study applies to all of them. We have shown that the
cavity dynamical behaviour depends on polarization.

For intensity modulation of the incoming beam, its fre-
quency spectrum is filtered by the cavity differently depend-
ing on the polarization of the light exiting the cavity. This
filtering also applies to the intensity noise frequency spec-
trum.

We have also considered the case of a cavity birefrin-
gence time variation. To study how a cavity filters such a
modulation, we have measured a magnetic birefringence in-
duced by a pulsed magnetic field on a medium inside a
Fabry—Perot cavity. We have experimentally shown that de-
pending on the photon lifetime in the cavity, i.e. the cavity
cutoff frequency, the induced ellipticity is attenuated and be-
comes out of phase with respect to the magnetic field pulse.
The finesse of the cavity we used is of the order of 100000.
A higher finesse will correspond to a more important filter-
ing and to a bigger systematic uncertainty correction.

The problem is exactly the same if the value of the mag-
netic field remains fixed while its direction compared to the
cavity birefringence axis is rotated as it is the case on other
experiments measuring magnetic birefringence. For exam-
ple, in [25], where the Cotton—Mouton effect in helium is
measured, a superconducting dipole magnet rotating at a
frequency of 0.35 Hz is used. The finesse is 100000 cor-
responding to a cavity cutoff frequency of v, = 116.5 Hz.
Taking into account the cavity filtering allows us to avoid a
systematic uncertainty of 1.8 x 1073% on the final magnetic
birefringence. In the same way, in [26], where the Cotton—
Mouton effect of different gases is measured, a dipole per-
manent magnet is rotating at about 6.8 Hz inside a cavity
with a cutoff frequency of 725 Hz. The systematic uncer-
tainty is then 1.7 x 1072%. Systematic uncertainty on such
experiments is negligible compared to statistical uncertain-
ties but it will become more important if the rotating fre-
quency increases and/or the cavity finesse increases.
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CHAPITRE 3

Biréfringence magnétique dans les
gaz et dans le vide

3.1 Biréfringence magnétique dans les gaz

L’objectif final du projet BMV est d’observer, a ’aide de I'ellipsométre décrit
dans le chapitre précédent, la biréfringence magnétique linéaire (ou effet Cotton-
Mouton) du vide prédit dans le cadre de I'électrodynamique quantique. Comme
nous I’avons vu en introduction, 'effet a mesurer est extrémement faible, avec une
biréfringence de An ~ 4 x 1072 T~2. L’observation d’un si petit effet requiert
un ellipsométre de trés grande sensibilité qui doit pouvoir étre préalablement
testé, tant en termes de sensibilité que d’exactitude. Ces tests sont réalisés avec
des mesures d’effet Cotton-Mouton dans des gaz & faible pression. A cette fin,
la mesure dans I’hélium est particuliérement appropriée. C’est en effet le gaz qui
présente le plus faible effet Cotton-Mouton aprés le vide quantique. La valeur
de sa biréfringence est en outre calculée par des méthodes qui sont considérées
comme exactes. La comparaison de nos valeurs expérimentales avec les prédic-
tions théoriques nous permettent alors de valider le dispositif et le traitement de
nos données.

Mais les mesures de biréfringence magnétique dans les gaz vont bien au-dela
du simple test de notre dispositif expérimental. Elles permettent en particulier de
tester notre connaissance de l'interaction entre les champs électromagnétiques et
la matiére. En effet, la valeur de la biréfringence dépend des propriétés microsco-
piques de la matiére comme la polarisabilité électrique, la susceptibilité magné-
tique ou I’hypersusceptibilité magnétique. Ces propriétés sont calculées dans le
cadre de la chimie quantique. La comparaison entre nos mesures et les prévisions
théoriques peut alors permettre de valider les modéles théoriques utilisés. Ceci
est d’autant plus vrai pour les atomes de numéro atomique élevé, comme le xé-
non, ou les effets de corrélations électroniques et les effets relativistes deviennent
importants.
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3.1.1 Biréfringence magnétique circulaire : effet Faraday

La biréfringence magnétique induite par l'effet Faraday est celle la plus faci-
lement mesurable. En effet, comme nous I'avons vu dans le chapitre précédent,
cette mesure ne requiert que des champs magnétiques modestes, délivrés par
exemple par un solénoide travaillant a 'air libre. Nous avons mesuré l'effet Fa-
raday de deux gaz nobles : I’hélium qui est le gaz présentant le plus petit effet et
le xénon qui est le gaz noble non radioactif de numéro atomique le plus élevé.

Le traitement des données et les résultats sont présentés en détails dans les
articles que nous avons publiés dans Phys. Rev. A pour 'hélium [78] et dans J.
Chem. Phys. pour le xénon [79] ainsi que dans la thése d’Agathe Cadéne [57].
Dans la suite, je ne présente que les étapes principales de notre méthode d’analyse
ainsi que les résultats mis a jour.

Principe de la mesure

L’effet Faraday est extrait du rapport entre les intensités transmises par le po-
lariseur de sortie (voir figure 2.2 et équation (2.29)) et qui correspond a I’équation
suivante :

Le(2)
Los(1)

= o+ e+ @va(t)]2 , (3.1)

= 02+ 17 + &+ 2e0p,(t) + OF (1) (3.2)

Le champ magnétique est longitudinal. Il n’y a donc pas d’ellipticité ¥ induite
par un champ magnétique transverse correspondant a l'effet Cotton-Mouton. Les
indices “f” rappellent qu’il faut tenir compte du filtrage de la cavité Fabry-Perot.
Le champ magnétique longitudinal est modulé a la fréquence v = 18 Hz :

B” = BH70 Sin(27ﬂ/t + qb) (33)

D’apres la partie 2.1, I’angle de rotation de la polarisation incidente induit par le
champ magnétique longitudinal est :

Or = Opgsin2rvt + ¢), (3.4)
2F 2F

avec @RO = TkFBH,OLB = _VBH,OLB' (35)
™

Le signal mesuré, donné par 1’équation (3.2), présente trois composantes fré-
quentielles : une composante DC, une composante a la fréquence v et une com-
posante a la fréquence 2v. Pour mesurer la constante de Verdet V', nous utilisons
I’amplitude du signal a la fréquence double qui permet de s’affranchir des valeurs
de 02, I'? et . Cette amplitude est donnée par :

2
Ay, = O (3.6)

2<1+ (—>2>
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en tenant compte du filtrage de la cavité®. L’amplitude A,, est mesurée pour
différentes amplitudes de champ magnétique. Les données sont ensuite ajustées
par une courbe quadratique : KVBﬁ’O. La constante de Verdet dépend finalement
des paramétres expérimentaux de la facon suivante :

V2Ky 1+<1)2 i (3.7)

Ve 2FLB’

V(T, P)

1+ (4n7v)?

= V2RV AL, (3:8)

avec T' et P la température et la pression du gaz dans I'enceinte a vide. L’équa-
tion (3.8) est celle que nous utilisons car elle relie directement la constante de
Verdet aux parameétres réellement mesurés expérimentalement.

La température du gaz reste constante, avec T' = 294 £ 1 K. Nous mesurons
la constante de Verdet pour différentes pressions de gaz, de 10 mbar a 60 mbar
pour 'hélium et de 1mbar a 5mbar pour le xénon. A de telles pressions, les
gaz peuvent étre considérés comme parfaits : la constante de Verdet est alors
proportionnelle & la pression. Les données sont donc ajustées par une droite :

V(T,P)=V"P, (3.9)

de maniére a extraire la constante de Verdet normalisée V* & P = 1 atm.

Résultats dans I’hélium

Les mesures d’effet Faraday dans I’hélium nous donnent la constante de Ver-
det correspondante & T'=294+ 1K et & A = 1064 nm :

VYNT) = (3.774£0.11) x 10" rad. T 'm *atm™". (3.10)

Les données théoriques sont habituellement données a 7 = 273.15 K. Toujours
en supposant un gaz parfait, la constante de Verdet a cette température devient :

T
VN = Vn(T)TO, (3.11)
= (4.06+0.12) x 10°rad. T " 'm*atm™". (3.12)

Les incertitudes, données & 1o, tiennent compte des incertitudes de type A et de
type B 2. Elles sont listées dans le tableau 3.1.

1. Cette équation différe de celle qui a été utilisée dans les références [78,79] ou nous avions
fait 'erreur d’appliquer le filtre di & la cavité au signal ©% au lieu de Op. Les résultats présentés
dans ce manuscrit différent donc légérement des résultats publiés. Compte tenu de la fréquence
de modulation, la différence est cependant inférieure & I'incertitude des données et ne modifie
pas les conclusions obtenues dans ces articles.

2. Nous utilisons ici la convention préconisée par le GUM [80]. Les incertitudes de type A
sont évaluées par une analyse statistique. Toutes les autres correspondent au type B.
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Paramétre | Incertitude relative | Incertitude relative

de type A de type B

T 2.0 x 1072
Ky hélium : ~ 1.7 x 1072 3.2 x 1072
xénon : ~ 2.6 x 1073 3.2 x 1072
Ly 1.9 x 1072
ASE 3 x 1074
P 2x 1073

TABLE 3.1 — Paramétres utilisés pour la mesure de la constante de Verdet avec leurs
incertitudes relatives & 1o.

Notre valeur peut étre comparée aux autres valeurs expérimentales publiées.
Les références [81,82] présentent le travail le plus complet avec des mesures dans
différents gaz et a différentes longueurs d’onde. Les valeurs mesurées dans 1’hé-
lium sont présentées sur la figure 3.1 par les triangles blancs. Aucune valeur n’est
donnée a 1064 nm. Elle peut cependant étre extrapolée en ajustant les données
par a/\? [57]. La courbe d’ajustement correspond & la courbe en pointillés. La
constante de Verdet ainsi calculée est, a T'=273.15K et P = 1latm :

VN = (4.1540.05) x 10°rad. T~ 'm~*atm . (3.13)

L’incertitude, donnée a 1o, tient compte de l'incertitude donnée par I'ajustement
et de celle donnée par les auteurs pour chaque mesure et qui est inférieure a 1 %.
Cette derniére est cependant sous-estimée. En effet, leurs mesures ont été réalisées
en étalonnant au préalable le dispositif expérimental avec des mesures dans de la
vapeur d’eau dont la constante de Verdet est supposée connue et sans incertitude.
Notre mesure est représentée par le triangle noir. Elle est compatible & 1o avec
la valeur extrapolée des données de la référence [82].

Nous comparons finalement notre mesure avec les prédictions théoriques qui
sont représentées graphiquement sur la figure 3.2. Les données les plus récentes
ont été publiées en 2005 en utilisant un calcul Hartree-Fock [83], et en 2012 avec
une méthode d’interaction de configuration [84]. Les premiéres, représentées par
les ronds gris, sont tout juste compatibles avec la notre & 30. Le calcul tient
compte des effets relativistes mais pas des corrélations électroniques. Les données
publiées en 2012 correspondent aux ronds blancs. Elles sont elles aussi extrapolées
a 1064nm avec 'ajustement en a/)\?. Le résultat est en accord a 1o avec notre
mesure. Dans ce cas, les répulsions électroniques sont prises en compte de maniére
beaucoup plus précise, ce qui montre I'importance de la prise en compte de cette
correction.

L’ensemble des données expérimentales et théoriques est finalement résumé
dans le tableau 3.2. Elles ont été publiées dans Phys. Rev. A [78].
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FIGURE 3.1 — Données expérimentales de la constante de Verdet de I’hélium. Les
triangles blancs correspondent aux données publiées dans la référence [82]. Les données
sont ajustées par a/\? (courbe pointillée) de facon & calculer la valeur & 1064 nm. Notre
mesure est représentée par le triangle noir avec son incertitude a lo. L’encart permet
de zoomer autour de A = 1064 nm.
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FIGURE 3.2 — Comparaison de notre valeur expérimentale (triangle noir) aux valeurs
théoriques publiées en 2005 [83] (ronds gris) et en 2012 [84] (ronds blancs) et extrapo-
lées & 1064 nm (courbe pointillée).
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5 N
Référence (ra d.Tlerz_‘l/atm_l) Remarques
Théorie
|83] 3.72 sans corrélation électronique
|84] 4.09 £0.02 valeur extrapolée
Expérience
[82] 4.1540.05 valeur extrapolée et non absolue
ce travail, 78| 4.06 +0.12

TABLE 3.2 — Bilan des valeurs expérimentales et théoriques de la constante de Verdet
de I’hélium gazeux & A = 1064 nm et Ty = 273.15 K.

Résultats dans le xénon

Les mesures d’effet Faraday réalisées sur notre expérience avec un gaz de
xénon donne une constante de Verdet & T' = 273.15K de :

VN =(3.4740.10) x 10*rad. T~ 'm~*atm ™. (3.14)

L’incertitude est donnée a 1o.

4x107

s . , 407

g S
\ns X

£ 364 —HA—
T'|_ 2 -

'd I T I T I T I
g 1050 1060 1070 1080
Z> 1 —

| ' | ' | ' | '
400 600 800 1000
A (nm)

FIGURE 3.3 — Données expérimentales de la constante de Verdet du xénon. Les tri-
angles blancs correspondent aux données publiées dans la référence [82]. Les données
sont ajustées par a/A? + 2b/A\* (courbe en trait plein) de fagon & calculer la valeur &
1064 nm. Notre mesure est représentée par le triangle noir avec son incertitude & 1o.
L’encart permet de zoomer autour de A = 1064 nm.

Cette valeur est comparée aux données expérimentales publiées dans la ré-
féerence [82]. Ces derniéres sont de nouveau interpolées pour pouvoir extraire la
valeur & 1064 nm. Toutefois, pour avoir un bon ajustement des données, il est
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nécessaire d’aller a Pordre supérieur en 1/)\%. Les données sont ajustées par la
courbe a/A\? + 2b/A\*, donnant :

VN =(3.46 £ 0.04) x 10~ rad. T 'matm™". (3.15)

Notre mesure est la encore compatible a 1o avec cette valeur. La figure 3.3 fait
la synthése de toutes ces données.

Le calcul théorique de la constante de Verdet du xénon est quant a lui loin
d’étre trivial et il est réguliérement utilisé pour tester de nouvelles méthodes de
calculs. Pour obtenir des résultats précis, il est en particulier important de tenir
compte des corrélations électroniques et des effets relativistes. Ceci est d’autant
plus important pour les atomes de numéro atomique élevé : alors que la prise
en compte des effets relativistes n’apporte qu’une correction de -0.03% pour
I’hélium, elle peut s’élever & 3 ou 4 % dans le cas du xénon.

[}
-3

_~ 3.8x10° —jSavukov 2012
£
c 3.7 7

-

- 36q_____ Savukov 2015_ _ _ lkaldinenetal Cetavall
; 3.5 - g Ekstrom et al ONR-CCSD: CC3
S .

i ®tppHr " DHF
> 34

ATDHF ~ ANR
3.3

FIGURE 3.4 — Comparaison de notre valeur expérimentale (trait plein) avec son incer-
titude & 1o (traits pointillés) aux valeurs théoriques & A = 1064nm et 7" = 273.15 K
publiées en 2005 par Ekstrom et al [83], en 2012 par Ikdldinen et al [85], en 2012 par
Savukov [84] et de nouveau par Savukov en 2015 [86]. Les données théoriques calculées
dans le cadre d’une collaboration avec S. Coriani et A. Rizzo sont regroupées sous le
titre “ce travail”. Icones noires : effets relativistes pris en compte. Icones blanches : ef-
fets relativistes non pris en compte. Ronds : corrélations électroniques prises en compte.
Triangles : corrélations électroniques non prises en compte.

La figure 3.4 permet de comparer notre valeur expérimentale (trait plein, les
traits pointillés correspondant a 'incertitude & 1o) aux prévisions théoriques pu-
bliées dans les références [79,83-86|. Les icones noires correspondent aux calculs
incluant les effets relativistes, contrairement aux icones blanches. Les corrélations
électroniques sont prises en compte pour les ronds, contrairement aux triangles.
L’ensemble de ces données est également résumé dans le tableau 3.3. Les détails
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concernant les différentes méthodes de calculs sont donnés dans la thése d’Agathe
Cadéne [57] et dans notre publication [79]. Notre travail a en outre été réalisé en
collaboration avec Sonia Coriani et Antonio Rizzo pour les aspects théoriques.
Leurs résultats sont indiqués sur la figure 3.4 sous le titre “ce travail”.

3 N
Référence (ra d.TlOlrz_‘lfa tm~1) Remarques
Théorie
|84] 3.86 £ 0.01 CI, valeur extrapolée
[86] 3.52 CLMBPT
[83] 3.35 TDHF
[83] 3.46 TDHF
[85] 3.34 NR
|85] 3.48 X2C
[85] 3.46 DIF
[85] 3.52 NR-CCSD
[79] 3.49 CCSD
[79] 3.52 CC3
Expérience
[82] 3.46 £ 0.04 valeur extrapolée et non absolue
ce travail, [79] 3.47£0.10

TABLE 3.3 — Bilan des valeurs expérimentales et théoriques de la constante de Verdet
du xénon gazeux & A = 1064 nm et Ty = 273.15 K.

Hormis la valeur extrapolée a partir des données théoriques publiées par Savu-
kov en 2012 [84], notre mesure expérimentale est compatible avec les prévisions
théoriques. On constate par ailleurs un meilleur accord lorsque les effets relati-
vistes sont pris en compte, ainsi que les corrélations électroniques.

3.1.2 Biréfringence magnétique linéaire : effet Cotton-Mouton

Principe de la mesure

Les mesures d’effet Cotton-Mouton dans les gaz datent des années 1930 [87]
et les premiéres mesures systématiques ont été publiées en 1967 par Buckin-
gham et ses collaborateurs [88]. Les mesures ont été réalisées a 1’époque sur un
grand nombre de gaz tels que le benzéne, le dihydrogéne, le diazote, le monoxyde
d’azote ou encore le dioxygéne et 1’éthane. Depuis, de nombreuses mesures ont
été publiées et les résultats sont en particulier utilisés pour tester les propriétés
de l'interaction électromagnétique avec les atomes ou les molécules.
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Parmi tous les gaz possibles, le diazote est 'un des gaz le plus souvent uti-
lisé pour calibrer les dispositifs expérimentaux [21,60,89]. Il présente ’avantage
d’étre relativement peu cotiteux, inoffensif pour la santé, facile a utiliser et avec
un effet Cotton-Mouton relativement grand. C’est le gaz que nous avons utilisé
pour nos premiéres mesures.

Sur notre ellipsométre, le signal Cotton-Mouton ¥ est extrait du rapport des
intensités transmises par le polariseur de sortie (voir figure 2.1 et équation (2.29))
correspondant a I’équation suivante :

Le(t)
I (1)

Dans le cas du diazote, les mesures ont été réalisées avec une ellipticité statique
de l'ordre de 1072 rad. La rotation statique € peut étre négligée. Le champ ma-
gnétique longitudinal, induisant une rotation ©p de la polarisation incidente est
dans un premier temps négligé.

Les signaux bruts typiques obtenus sont présentés sur la figure 3.5 avec une
pression de 32.1 x 103 atm de diazote et une finesse de cavité de l'ordre de
480 000. La puissance du faisceau ordinaire I reste constante (haut) alors que la
puissance du faisceau extraordinaire I, (milieu) varie lorsque le champ magné-
tique est appliqué (bas). Le champ magnétique atteint son maximum de 5.2 T en
moins de 2ms, contrairement au signal I, qui atteint son extremum en presque
3ms. Le temps de montée du champ magnétique étant ici comparable a la du-
rée de vie des photons dans la cavité, 'influence du filtrage de la cavité y est
particuliéerement visible.

= o4 [[+ U (1)) (3.16)

Lellipticité ¥, induite par le champ magnétique est extraite de ’équation (3.16).

En supposant |¥¢| < |I'|, on obtient :

L(t)
Tos(t)

£ y(t) = —|D| + — o2, (3.17)

Lellipticité statique |I'| est mesurée quelques millisecondes avant chaque tir de
champ magnétique, lorsque W¢(t) = 0. L’effet Cotton-Mouton étant quadratique
en champ (partie 2.1), Dellipticité induite est ajustée par I’équation suivante :

Ui (t) = aB (1), (3.18)

avec Bif(t) le champ magnétique au carré filtré numériquement par le filtre
passe-bas du premier ordre correspondant a la cavité |76,77|. Sur la figure 3.6
sont tracés le champ magnétique au carré filtré ainsi que Vellipticité W (¢) au cours
du temps. Nous remarquons que les deux quantités atteignent leur extremum en
méme temps et que leur variation se superpose parfaitement, donnant ainsi une
mesure précise de la valeur de la biréfringence magnétique.
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FIGURE 3.5 — Mesure de l'effet Cotton-Mouton dans 32.1 x 1072 atm de diazote. Haut :
Puissance du faisceau ordinaire en fonction du temps. Milieu : Puissance du faisceau
extraordinaire en fonction du temps. Bas : Champ magnétique au carré en fonction du
temps.

La constante Cotton-Mouton est finalement calculée & partir de I’équation (2.6)
et du paramétre o donné par I'ajustement :

a\ 1
- . 1
kon 9FLpsin20’ (3.19)
aA 1
— . 3.20
AT ABL[ 5 sin 20 ( )

Comme pour les mesures d’effet Faraday, la constante Cotton-Mouton est me-
surée pour différentes pressions de gaz. L’ensemble des données est finalement
ajusté par une droite :



3.1 Biréfringence magnétique dans les gaz

93

}
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temps (s)

FIGURE 3.6 — Mesure de l'effet Cotton-Mouton dans 32.1 x 1073 atm de diazote.
Courbe grise : Ellipticité en fonction du temps. Courbe pointillée : Carré du champ
magnétique filtré par un filtre passe-bas du premier ordre correspondant au filtrage de
la cavité.

pour extraire la constante Cotton-Mouton normalisée k¢ & P = 1atm. Cette
constante Cotton-Mouton & la température Ty = 273.15 K devient :

T

kgM = kgM(T)j_w' (3-22)
0

Résultats dans le diazote

Nous avons mesuré la biréfringence magnétique du diazote a différentes pres-
sions entre 2.1 x 1073 et 32.1 x 1073 atm. La constante Cotton-Mouton en fonc-
tion de la pression est présentée sur la figure 3.7. L’ajustement par une droite
donne une ordonnée & l'origine compatible avec zéro et une biréfringence a
P=Tlatmet T=293+ 1K de:

K2y = (—2.00 = 0.08 = 0.06) x 1073 T~ 2atm ™. (3.23)

La premiére incertitude correspond a l'incertitude de type A & 1o et la deuxiéme
a celle de type B. Un bilan d’incertitude précis, listé dans le tableau 3.4, a été
réalisé pour cette mesure. Tous les résultats sont présentés en détails dans la
référence [77).

Notre valeur est comparée a celles mesurées sur d’autres expériences dans le
tableau 3.5. Notre valeur est en accord avec les autres mesures et est 1.8 fois plus
précise.

D’un point de vue théorique, 'effet Cotton-Mouton a été tout d’abord étudié
par Buckingham et Pople en 1956 [91]. On montre en particulier que la constante
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FIGURE 3.7 — Biréfringence magnétique du diazote en fonction de la pression (points
noirs). La ligne pointillée correspond a l’ajustement linéaire des données expérimentales.
La zone grisée correspond & l'incertitude & 1o de type A.

Paramétre Incertitude relative Incertitude relative
de type A de type B
T 2 x 1072
o diazote : >~ 3.5 x 1072 2.2 x 1072
hélium : ~ 8 x 107* 2.2 x 1072
xénon : ~ 7 x 1074 2.2 x 1072
vide : ~ 4 x 107! 2.2 x 1072
Ly 2.2 x 1072
AL 3x 107
sin 20 9x 1074
A <5x10™*

TABLE 3.4 — Parameétres utilisés pour la mesure de la constante Cotton-Mouton avec
leurs incertitudes relatives a lo.

Cotton-Mouton pour les molécules axiales est donnée par [87] :

ko = 2 (An+ ACYAX) , (3.24)

460

avec n, la densité moléculaire, An ’anisotropie d’hypersusceptibilité magnétique,
A« I'anisotropie de polarisabilité électrique et Ay 'anisotropie de susceptibilité
magnétique. Le deuxiéme terme de 1’équation (3.24) dépend de la température et
correspond & l'effet d’orientation de la molécule. A température ambiante, il est
en général bien plus élevé que le premier terme qui est quant a lui indépendant de
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£ Gy X 1071
Référence (T-2atm=1) Remarques
Théorie
187] -2.21 A =00
|87] -2.14 A =00
Expérience
|89] -2.17 £ 0.21
[90] -2.02 + 0.16 £ 0.08
Ce travail | -2.00 £ 0.08 £ 0.06

TABLE 3.5 — Bilan des valeurs expérimentales et théoriques des biréfringences magné-
tiques linéaires du diazote & A = 1064 nm et T' = 293 K.

la température. En revanche, pour les atomes ou pour les molécules sphériques,
le terme dépendant de la température disparait et seul le terme en An subsiste.
Les mesures réalisées sur les gaz rares, comme 1’hélium et le xénon, s’avérent
alors intéressantes puisqu’elles permettent de tester uniquement le calcul de An.

Le tableau 3.5 permet de comparer notre valeur expérimentale aux prévisions
théoriques. Elles sont en accord a 20, mais il est important de noter que les
calculs ne sont pas réalisés & la longueur d’onde utilisée sur notre expérience.

Prise en compte des effets systématiques

La mesure dans le diazote correspond a la premiére validation du disposi-
tif expérimental. Afin de tester la sensibilité de 'expérience, nous avons ensuite
mesuré 'effet Cotton-Mouton de I’hélium qui est le gaz présentant le plus petit
effet Cotton-Mouton aprés le vide. Cette mesure permet en outre de s’affranchir
du terme dépendant de la température de I’équation (3.24) dans la constante
Cotton-Mouton et de se concentrer uniquement sur le terme d’anisotropie d’hy-
persusceptibilité magnétique An.

Nous avons dans un premier temps appliqué la méme méthode d’analyse que
pour le diazote. La figure 3.8 présente le signal calculé & partir de I’équation (3.17)
utilisée pour le diazote et qui doit correspondre a lellipticité induite W¢. La
pression d’hélium est ici de 550x 1073 atm. Nous avons également superposé a ce
signal le signal Cotton-Mouton théoriquement attendu. Nous voyons clairement
que le signal attendu ne correspond pas au signal expérimental, tant par sa forme
que par son signe. Une nouvelle procédure de traitement des signaux a donc di
étre mise en place.

Reprenons ’équation générale du rapport entre les intensités transmises par
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FIGURE 3.8 — Evolution temporelle de Iellipticité mesurée a partir de 'équation (3.24)
a4 550 x 1072 atm d’hélium. Courbe continue : données expérimentales. Courbe poin-
tillée : signal attendu en ne considérant que 'effet Cotton-Mouton.

le polariseur de sortie donnée par 1’équation (2.29) :

I.(t)

= 0%+ e+ Ops()]? + [T + Ve (2))?, (3.25)
Tis(t)
= 02+ @+ T2 420p; + OF ;+ 200 + U7 . (3.26)
— — ) — —‘
terme statique effet Faraday effet Cotton-Mouton

Pour les mesures dans le diazote, nous avons négligé la rotation statique e ainsi
que l'effet Faraday Opy. Or la bobine X-coil délivrant le champ magnétique
transverse a également une composante longitudinale, environ 230 fois plus faible.
De plus, pour I’hélium ou le xénon, la constante Cotton-Mouton est beaucoup
plus faible que dans le cas du diazote. L’effet Faraday devient alors, pour ces gaz,
non négligeable par rapport a leffet Cotton-Mouton [57].

Afin d’extraire D'ellipticité induite par le champ magnétique transverse Wy,
nous utilisons les propriétés de symétrie des différents termes de ’équation (3.26)
vis a vis du signe de I' et de la direction du champ magnétique B . Celles-ci sont
résumées dans le tableau 3.6. Par exemple, le signal di a I'effet Cotton-Mouton
2I'V est impair avec I' et pair en B. L’effet Faraday 2¢Op est quant & lui impair
en ' et B. Les signaux sont donc collectés pour les deux signes de I' et pour les
deux directions du champ magnétique. Ceci donne quatre séries de données :

— série “>>" . ' > 0 et EL paralléle a I'axe x,

— série “><": ' > 0 et El anti-paralléle a 'axe =,

— série “<<” : ' < 0 et EL anti-paralléle a 'axe =,
série “<>" : T < 0 et B, parallele a I'axe z.
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terme | signe de I' | direction de B,
2€@F,f - -

Of ¢ + +

210 - +

A + +

TABLE 3.6 — Propriétés de symétrie des différents termes dépendant du champ de
I’équation (3.26), vis-a-vis du signe de I" et de la direction de B . Le signe + représente
un terme pair, le signe — un terme impair.

Pour chaque série, le signal suivant est calculé :

I ()
Toe(t) Apc

—_ 2
e (327

Y(t) =

avec Apc = 0%+ €2 + 1% la composante continue du signal I./Is. Le signal ayant
la symétrie correspondant a l'effet Cotton-Mouton 2I'U; est extrait grace a une
combinaison linéaire des quatre séries de données. La méthode est expliquée en
détails dans la référence 78] et a été améliorée dans les références [57,79]. Les
résultats présentés dans le suite sont basés sur la méthode d’analyse la plus
aboutie [57] et peuvent donc légérement différer des résultats publiés [78,79] qui
restent toutefois compatibles a 1o.

6x10° ]
8 4
¥
2 —
0 —
| | | | | | |
-2 0 2 4 6 8 10
temps (ms)

FIGURE 3.9 — Evolution temporelle de Iellipticité & 550 x 1072 atm d’hélium. Courbe
grise : données expérimentales. Courbe noire : ajustement en ozBif.
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Résultats dans I’hélium

Cette méthode d’analyse a tout d’abord été appliquée pour les mesures dans
I’hélium gazeux. Le signal correspondant a I’effet Cotton-Mouton est représenté
sur la figure 3.9 pour 550 x 10~% atm d’hélium. L’ajustement en aB? ; colle parfai-
tement aux données expérimentales. Ceci montre I'importance de cette procédure
d’analyse pour oOter les effets systématiques tels que 'effet Faraday.

Nous avons réalisé ces mesures pour des pressions allant de 40 & 550x 1072 atm.

Aprés une ajustement linéaire des données, nous obtenons pour la constante
Cotton-Mouton a T'=273.15K et P = 1 atm :

koy = (2.63 +0.29) x 1071 T~ %atm ™. (3.28)

L’incertitude inclut celle de type A et celle de type B. Cette valeur est comparée
dans le tableau 3.7 et dans la figure3.10 aux autres valeurs expérimentales et
théoriques publiées. Au moment de sa publication, notre valeur était seulement
la deuxiéme publiée & 1064 nm. Notre valeur est la seule en accord avec la théorie
a mieux que lo. Cette valeur théorique est considérée comme exacte par la com-
munauté. Ceci constitue donc un véritable test de notre dispositif expérimental
et de notre méthode d’analyse pour les mesures de biréfringence magnétique du
vide.

A (nm) Résultats expérimentaux Prédiction théorique [95]
Référence  10'6 x kY, (T 2atm™!) 10'6 x kXy (T~ 2atm™)
5145 [02] 1.80 £ 0.36 2.3959
932 [94] 2.08£0.16 2.3966
790 93] 3.95 £ 1.40 2.4018
1064 [94] 2.22£0.16 2.4036
1064 | Ce travail 2.63 £ 0.29 2.4036
1064 [24] 2.90 £ 0.32 2.4036

TABLE 3.7 — Valeurs expérimentales et théoriques de la constante Cotton-Mouton de
I’hélium. Les valeurs sont normalisées & T = 273.15 K et P = 1 atm. Les incertitudes
sont données & lo.
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FIGURE 3.10 — Comparaison des constantes Cotton-Mouton de I’hélium en fonction
de la longueur d’onde (haut) et a 1064 nm (bas). Les valeurs expérimentales ont été
publiées par Cameron et al [92], Muroo et al [93] et Bregant et al [94]. Aprés la
publication de notre résultat [78], une valeur supplémentaire a été publiée en 2014 par
Della Valle et al [24]. Les incertitudes sont données a lo. Le triangle noir correspond
a notre mesure. Les ronds blancs correspondent & la prévision théorique [95].

Résultats dans le xénon

Les derniéres mesures sur les gaz ont été effectuées dans un gaz de xénon.
La pression a été variée de 3 & 8 mbar. Nous obtenons pour la constante Cotton-
Mouton a T'=273.15K et P = latm :

koy = (2.59 +0.40) x 107 T~ 2atm ™. (3.29)

Le tableau 3.8 résume les constantes Cotton-Mouton du xénon publiées pré-
cédemment et mesurée avec notre expérience. Elles sont également représentées
sur la figure3.11. Notre valeur est la deuxiéme publiée & A = 1064nm et elle
est compatible & 1o avec celle publiée dans la référence [96]. Notre incertitude
est d’environ 15%. Elle est plus importante en particulier que celles établies a
A = 514.5nm [97] et A = 632.8nm [98]. Cependant, il est important de noter
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que notre incertitude a été calculée avec un bilan d’incertitudes complet. Pour
la valeur publiée & 632.8 nm, aucune information n’est donnée concernant le dis-
positif, le nombre de pressions utilisées pour la mesure, le budget d’erreur ou
I’évaluation des incertitudes. La mesure réalisée a 514.5nm n’a été faite qu’a la
pression atmosphérique et en calibrant les mesures par rapport a celles obtenues
avec du diazote dans les mémes conditions expérimentales. Aucune incertitude
sur la valeur de la biréfringence magnétique du diazote n’a été néanmoins appli-
quée. Il est donc probable que cette derniére incertitude ait été sous-estimée.

-15 _|| — - Bishop
32x10 O _Cadeéne 2015, CCSD
— @ _Cadeéne 2015, CC3
o 30 Bregant
£
o 288 @
|l L L L L L _______
Z —
LE) 26 Ce travail
= 24 communication privée
de H. Huttner
Carusotto
22
| | | | |
600 700 800 900 1000
A (nm)
—~ -15 Bregant
’-'E 30x10
= i Cadene 2015Cadéne 2015
N 1 @]
e {o______%esd _ _ccs ___|___
z s — V' N
RS 25— Ce travail
7 |- - Bishop

A =1064 nm

FIGURE 3.11 — Comparaison des constantes Cotton-Mouton du xénon en fonction de la
longueur d’onde (haut) et & 1064 nm (bas). Les valeurs expérimentales ont été publiées
par Carusotto et al [97] et Bregant et al [89,96]. La valeur expérimentale de W. Hiittner
est rapportée dans la référence [98|. Les prévisions théoriques sont représentées par les
ronds |79] et la ligne pointillée [99].

Concernant les prédictions théoriques, trés peu de calculs ont été réalisés.
Celles obtenues par Bisphop et al [99] sont représentées par la ligne pointillée
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Résultats expérimentaux | Prédictions théoriques
Alnm) | 7 104 x kY, » 101 x kN,
Rétérence (T~2atm™1) Référence (T-2atm"1)
CCSD  CC3
514.5 [97] 2.29+£0.10 |79] 2.803 2.778
632.8 | W. Hiittner 241 +£0.12 [79] 2.808 2.784
1064 [89, 96| 3.02+0.27 [79] 2.804 2.782
1064 Ce travail 2.59 £0.40 [79] 2.804 2.782
SCF
00 [99] 2.665

TABLE 3.8 — Valeurs expérimentales et théoriques de la constante Cotton-Mouton du
xénon. Les valeurs sont normalisées & T' = 273.15K et P = 1 atm. Les incertitudes sont
données & lo. La valeur expérimentale de W. Hiittner est rapportée dans la référence
[98].

sur la figure 3.11. Elles ont été calculées sans tenir compte des effets relativistes
ni des corrélations électroniques. Les valeurs théoriques calculées dans le cadre
de ce travail, grace & une collaboration avec les théoriciens de chimie quantique
A. Rizzo et S. Coriani, incluent les corrections relativistes et les corrélations
électroniques. Le niveau d’approximation CC3 correspond a ’heure actuelle au
calcul le plus précis.

La valeur expérimentale & A = 514.5nm n’est pas compatible & 30 avec les
prévisions théoriques. Celle & A = 632.8 nm est compatible a 30 avec celle de
Bishop et al mais pas avec celles calculées par Rizzo et Coriani. Cela semble
confirmer la sous-estimation de leurs incertitudes. Notre valeur expérimentale
est quant elle compatible a 10 avec les deux prédictions théoriques. Notre incer-
titude de 15 % est en effet trop élevée pour pouvoir observer la contribution des
effets relativistes et des corrélations électroniques qui s’éléve a environ 5 %. Une
amélioration de nos incertitudes est donc, dans ce cadre, indispensable.

3.2 Biréfringence magnétique linéaire du vide

Les mesures de biréfringence magnétique sur les gaz permettent de valider le
dispositif expérimental. Les mesures sur I’hélium ont été particuliérement impor-
tantes car elles ont été 'occasion de la mise en place et de la validation d’une
procédure d’acquisition et de traitement des données originale, basée sur 'utilisa-
tion des symétries des signaux. Cette procédure a été finalement appliquée pour
les mesures dans le vide. Les résultats finaux ont été publiés dans EPJD [23].
Les résultats présentés dans ce manuscrit différent légérement de ceux publiés.
Comme pour ’hélium et le xénon, 'ensemble des signaux a en effet été repris lors
de la rédaction de la thése d’Agathe Cadéne [57] et a été traité avec la méthode
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d’analyse la plus aboutie. Les résultats sont compatibles entre eux a 1o et 'ordre
de grandeur de la sensibilité expérimentale obtenue reste identique.

3.2.1 Résultats

Pour les mesures dans le vide, tout comme pour les mesures dans 'hélium et le
xénon, nous nous sommes placés dans les meilleures conditions possibles en terme
de sensibilité optique. Pour cela, nous avons aligné précisément 1’orientation des
miroirs par rapport & la polarisation incidente pour avoir une biréfringence sta-
tique totale de la cavité I" la plus faible possible, de 'ordre de o. Ceci correspond
aux meilleures conditions de travail lorsque l'on est en présence de bruit en el-
lipticité [55,57]. Ceci a été confirmé par des mesures de sensibilité optique (i.e.
sans champ magnétique), en fonction de I', ou nous observons en effet une amé-
lioration de la sensibilité lorsque I' diminue. La valeur de I' et son signe sont
réajustés précisément avant chaque tir.

Environ 200 tirs de champ magnétique ont été appliqués dans le vide, avec
un champ maximum de 6.5T. Les signaux ne sont pas analysés sur l’ensemble
du tir. Nous constatons en effet une perturbation sur le signal de rétroaction de
I’asservissement de la fréquence du laser sur la fréquence de résonance de la cavité
quelques millisecondes apreés le déclenchement du tir. Cette perturbation est due
a une onde sonore provoquée par le tir et qui atteint les miroirs de la cavité.
Ceci ayant également pour effet de modifier lellipticité statique de la cavité,
nous stoppons 'analyse des signaux a tg, = 3.1 ms, bien avant I'arrivée de 'onde
sonore mais apres que le carré du champ magnétique filtré par la cavité ait atteint
son maximum. Par symétrie, nous commencons l'analyse a tqgput = —3.1ms.

Une sélection des tirs est dans un premier temps effectuée. Pour cela, nous
calculons le signal suivant :

B(t) = \/ L) ey (3.30)

Itf(t) t<0

Lo (1)
It,f (t) t<0

début du tir a ¢ = 0. Le champ magnétique étant nul pour ¢ < 0, les termes
OF et ¥ sont égaux a zero. D’aprés I’équation (3.26) et en négligeant le terme e,
® doit donc lui aussi étre nul en moyenne. Nous tragons ensuite ’histogramme
de ce signal. Deux histogrammes typiques sont tracés sur la figure 3.12. Celui de
gauche correspond & une distribution normale. En revanche, celui de droite ne
peut étre ajusté correctement par une gaussienne. Ce type de signal est rejeté
pour l'analyse. Il correspond en général a une dérive de D'ellipticité statique I’
avant le tir. Sur les 200 tirs effectués, une centaine est conservée pour la suite de
I’analyse.

Le terme

correspond a I.(t)/I;¢(t) pris entre les instants tgeoue et le
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FIGURE 3.12 — Histogrammes du signal calculé a partir de I’équation (3.30). Le signal
de gauche correspond a une distribution normale et est en conséquence gardé pour la
suite de ’analyse. Celui de droite n’est pas correctement ajusté par une gaussienne et
est rejeté de ’analyse.

Nous utilisons la méme procédure de prise et de traitement des données que
celle présentée pour I’hélium, de facon a isoler les effets systématiques. Une ana-
lyse statistique de la distribution de nos mesures nous donne la valeur moyenne
de 'ellipticité Wy. I’écart type divisé par la racine carré du nombre de tirs corres-
pond a l'incertitude statistique. Le signal d’ellipticité ainsi obtenu est tracé sur
la figure 3.13. La courbe en pointillé correspond a l'ajustement en aB7 ;. Nous
constatons que celle-ci n’a pas la méme variation temporelle que les données.
Nous sommes donc en présence d’un effet systématique qui est en particulier
déclenché deés le début du tir.

1
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FIGURE 3.13 — Signal d’ellipticité obtenu dans le vide. L’incertitude a lo est repré-
sentée en gris clair. La courbe en pointillé correspond a l'ajustement en aBi £

L’origine de cet effet systématique peut étre multiple. Mais ’hypothése la plus



104

CHAP 3 - BIREFRINGENCE MAGNETIQUE DANS LES GAZ ET DANS LE VIDE

probable est que ’on vient exciter les résonances mécaniques de notre enceinte a
vide, induisant donc un mouvement des montures de miroirs et donc une oscilla-
tion de l'ellipticité statique I'. Nous savons en particulier que diverses fréquences
de résonance existent entre 100 Hz et 600 Hz. La fréquence de résonance la plus
proche de celle observée sur le signal de la figure 3.13 est de 177 Hz. Afin de sous-
traire cet effet systématique, nous ajustons le signal par un sinus commencant a
t =0, la fréquence étant fixée a 177 Hz, comme le montre la figure 3.14.

!
2 —
,I
0 == |l T — 7| Ty " Vid
=) \ ’
© \ ’
= -2 i 4
3_ \\ ,I
\\ ,l
_4 ] ~ . -
-6x10"
| | | | | | |
-3 -2 -1 0 1 2 3
temps (ms)

FIGURE 3.14 — Signal d’ellipticité obtenu dans le vide ajusté en pointillé par un sinus de
fréquence fixe f = 177 Hz correspondant & une des fréquences de résonance mécanique
du dispositif.

Les résidus de cet ajustement par une fonction sinus sont présentés sur la
figure 3.15. Ils sont ajustés par la fonction aBif. Nous obtenons un plancher de
bruit a 1o de :

|kem| = (3.8 £2.0) x 1072 T2, (3.31)

Cette méthode d’analyse suppose que le signal parasite est prépondérant par
rapport a l'effet Cotton-Mouton résiduel. Pour s’affranchir de cette hypothése,
nous pouvons directement ajuster le signal d’ellipticité de la figure 3.13 par un
sinus plus un effet Cotton-Mouton. On trouve alors :

|kem| = (6.1 +£2.5) x 107172, (3.32)

L’incertitude est donnée a 1o. Le résultat est compatible & 30 avec la prédiction
théorique établie dans la cadre de la QED. Rappelons qu’une incertitude a 3o
correspond A un niveau de confiance de 99.8 % qui est couramment utilisé pour
souligner I’évidence d’un signal non nul en cas de non compatibilité avec zéro.
Ces résultats nous permettent finalement de montrer que la sensibilité de notre
dispositif est de I'ordre de quelques 10721 T2,
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FIGURE 3.15 — Résidus du signal d’ellipticité ajusté par une fonction sinus. Ces résidus
sont ajustés par la fonction ozBJQ_ 7 correspondant a l’effet Cotton-Mouton.

3.2.2 Comparaison

Cette derniére valeur est comparée dans la figure 3.16 aux constantes Cotton-
Mouton du vide expérimentales publiées. Les incertitudes sont données a 3o.
Avant 2014, les meilleures valeurs correspondaient a celles publiées par la colla-
boration PVLAS |20, 100]. Néanmoins, les expériences étaient particuliérement
dépendantes des effets systématiques. En 2008, un signal était toujours présent a
5T [20]. En 2012, les données ont été collectées seulement lorsque "no spurious
peaks are observed", permettant de ne donner qu’un bruit plancher et pas une va-
leur absolue [100]. Ceci montre qu’un appareil avec une trés bonne sensibilité en
ellipticité n’est pas suffisante, mais qu’elle doit étre associée a une minimisation
des effets systématiques.

Notre valeur a été publiée en 2014 dans EPJD [23]. Elle correspondait alors
a la meilleure limite donnée dans le vide, prouvant ainsi que les champs magné-
tiques pulsés sont un outil particuliérement puissant pour ce genre d’expérience.
Depuis, la collaboration PVLAS a publié¢ une nouvelle limite & 30 de 2x 10722 T2
fin 2014 [24].

Le tableau 3.9 présente un bilan des dispositifs expérimentaux ayant donné
des limites sur la biréfringence magnétique du vide. Le B? Ly du projet BMV
a été calculé en utilisant le champ magnétique maximal utilisé pour les mesures
dans le vide en tenant compte du filtrage de la cavité. Les incertitudes et sen-
sibilités en ellipticité sont données a lo. La sensibilité en ellipticité pour les
expériences fonctionnant en régime continu est donnée par :

\Ijsens =V tint‘ylimv (333)

avec ti, le temps d’integration total ayant permis d’obtenir l'incertitude finale
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FIGURE 3.16 — Comparaison des valeurs expérimentales publiées de biréfringence ma-
gnétique du vide. Les barres d’erreur sont & 30. Les fleches indiquent que 'on parle
d’un plancher de bruit. La valeur de Cameron et al correspond a la référence [60], celle
de Zavattini et al en 2008 & [20], celle de Zavattini et al en 2012 a [100], et celle de
Della Valle et al a [24].

Ui calculée a partir de 'incertitude sur kcyy :

2F
Wi, = TBiLBAkCM. (3.34)

Pour notre expérience fonctionnant en régime pulsé, la sensibilité est calculée de
la maniére suivante :
\Ilsens Y N‘Ijlima (335)

avec N le nombre total de tirs.

Nous avons finalement calculé le temps d’intégration nécessaire, a partir des
sensibilités en ellipticité obtenues, pour observer la biréfringence magnétique du
vide. Pour notre expérience, le calcul a été réalisé en considérant 10 tirs par jour.
Aucune expérience ne semble encore en mesure de pouvoir observer l'effet prédit
par la QED.



en kCM (T_2)

Remarques

Signal observé

“when no spurious

BFRT PVLAS 2008 PVLAS 2012 BMV PVLAS 2014
[60] [20] [100] [23] [24]
. 34 réflexions
Finesse . 70000 240000 445 000 670000
multi-passage
L. (m) 14.9 6.4 0.4 2.27 3.3
. aimants bobine aimants
Technologie supraconducteur supraconducteur o
permanents résistive permanents
Régime continu continu continu pulsé continu
B?Lp (T%m) 35.2 5.3 2.1 3 10.25
Sensibilité 4x1078 1.4 %1076 3.8 x 1077 6.8 x 1078 2.2 x 1076
en ellipticité rad/vHz rad/vHz rad/vHz rad/tir rad/vHz
Intégration 16 3755 652008 8§192s 101 tirs 7.6 x 10°s
Meilleure limite (2240.3) x 10719 | (1.4 4+ 0.8) x 1020 <4.4x1072% (6.14+2.5) x 10721 | (0.4 +2.0) x 1022

abT peaks are observed” ) )
Ellipticite attendue . 2.8 x 10712 3.8 x 10712 1.0 x 10~ 11 5.2 x 10~ 11
dans le vide (rad)
Intégration pour 2.5 x 10! s 10105 4 x 107 tirs 1.8 x 10%s
observer l'effet - ~ ~ ~ ~
du vide 3 x 109 jours 10° jours 4 % 10% jours 2 x 104 jours

TABLE 3.9 — Résumé des expériences ayant donné des résultats sur la biréfringence magnétique du vide. Le BiLB du projet
BMYV a été calculé en utilisant le champ magnétique maximal utilisé pour les mesures dans le vide en tenant compte du filtrage de
la cavité. Les sensibilités et les incertitudes sont données a 1o. Les temps d’intégration pour observer la biréfringence magnétique

du vide avec un rapport signal sur bruit de un n’ont été donnés que pour les expériences ayant trouvé un signal compatible avec
la, prévision théorique & 3o.
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CHAP 3 - BIREFRINGENCE MAGNETIQUE DANS LES GAZ ET DANS LE VIDE

3.3 Conclusion

L’expérience de Biréfringence Magnétique du Vide a débuté en 2001. Depuis,
des mesures précises de biréfringence magnétique sur le diazote, ’hélium et le
xénon gazeux ont été réalisées. Elles ont permis de valider le dispositif expérimen-
tal et la procédure d’acquisition et de traitement des données afin de s’affranchir
des effets systématiques tels que 'effet Faraday. Toutes ces mesures ont été com-
parées aux prévisions théoriques. La mesure de l'effet Faraday du xénon a en
particulier permis de mettre en évidence 'importance de la prise en compte des
effets relativistes et des corrélations électroniques dans les calculs.

Nous avons également donné une limite sur la biréfringence magnétique du
vide. Notre dispositif actuel correspond au montage de premiére génération, dont
Iobjectif était de montrer la faisabilité de 'expérience. Notre mesure a en par-
ticulier permis de mettre en évidence les limites de notre dispositif et il est clair
qu’il ne permettra pas d’aller jusqu’a I'observation de la biréfringence magnétique
du vide.

Un montage de deuxiéme génération est en cours de construction. La sensi-
bilité sera améliorée en particulier grace a ’augmentation du champ magnétique
et grace a une meilleure stabilité optique de 'expérience. Comme nous 1’avons
vu dans la derniére partie, une attention particuliére devra étre portée a I'amé-
lioration de la sensibilité de I'expérience mais aussi & la gestion des effets systé-
matiques. Ces points seront présentés dans le dernier chapitre de ce manuscrit.

3.4 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références [77], [78], [79] et [23].
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In this paper we present the realization of further steps toward the measurement of the magnetic birefringence
of a vacuum using pulsed fields. After describing our experiment, we report the calibration of our apparatus
using nitrogen gas and discuss the precision of our measurement giving a detailed error budget. Our best present
vacuum upper limitis An < 5.0 x 1072 T~2 per 4 ms acquisition time. We finally discuss the improvements

necessary to reach our final goal.

DOI: 10.1103/PhysRevA.85.013837

I. INTRODUCTION

Experiments on the propagation of light in a transverse
magnetic field date from the beginning of the 20th century.
Kerr [1] and Majorana [2] discovered that linearly polarized
light, propagating in a medium in the presence of a transverse
magnetic field, acquires an ellipticity. In the following years,
this linear magnetic birefringence was studied in detail by
Cotton and Mouton [3] and it is known nowadays as the Cotton-
Mouton effect. It corresponds to an index of refraction n
for light polarized parallel to the magnetic field B, which
is different from the index of refraction n for light polarized
perpendicular to the magnetic field. For symmetry reasons, the
difference between n and n is proportional to B2. Thus, an
incident linearly polarized light exits from the magnetic-field
region elliptically polarized. For a uniform B over an optical
path L, the ellipticity is given by

L 5 .
\IlznxAnB sin 26, @))

where A is the wavelength of light in vacuum, An=n-n at
B = 1T, and 6 is the angle between light polarization and the
magnetic field.

The Cotton-Mouton effect exists in any medium and
quantum electrodynamics predicts that magnetic linear bire-
fringence exists also in vacuum, which has been shown [4,5]
as a result of the effective Lagrangian established by Kochel,
Euler, and Heisenberg [6,7]. At the lowers two orders in ¢, the
fine-structure constant An can be written (in units of T~2) as

A 2 o - 25 @
n=_————— — ’
15 m4cd o 47

where % is the Planck constant over 27, m, is the electron
mass, c is the speed of light in vacuum, and ¢ is the magnetic
constant. The term «? is given in Ref. [4]. The term o?
was reported in Ref. [8] and corresponds to the lowest-order
radiative correction. Its value is about 1.5% of the o term.
Using the CODATA recommended values for the fundamental
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constants [9], Eq. (2) gives An = (4.031 699 £ 0.000 002) x
1072 T2,

As we see, the error due to the uncertainty of fundamental
constants is negligible compared to the error coming from the
fact that only the first-order QED radiative correction has been
calculated. The QED «* radiative correction should affect the
fourth digit and the QED « radiative correction the sixth digit.
Thus, a measurement of An up to a precision of a few parts
per 10° (ppm) remains a pure QED test.

Experimentally, the measurement of the Cotton-Mouton
effect is usually very challenging, especially in dilute matter,
thus all the more so in vacuum. Several groups have attempted
to observe vacuum magnetic birefringence [10,11], but this
very fundamental prediction still has not been experimentally
confirmed.

Gas measurements date back to the late 1930s [12] and
the first systematic work of Buckingham et al. was published
in 1967 [13]. Investigations concerned benzene, hydrogen,
nitrogen, nitrogen monoxide, and oxygen at high pressures as
well as ethane. Since then, many more papers concerning the
effect in gases have been published and Cotton-Mouton effect
experiments have been employed as sensitive probes of the
electromagnetic properties of molecules [12].

The measurement of the Cotton-Mouton effect in gases is
not only important to test quantum chemical predictions. Itis a
crucial test for any apparatus that is dedicated to the search for
vacuum magnetic birefringence. Measurement of the Cotton-
Mouton effect in a gas is a milestone in the improvement of
the sensitivity of such an apparatus. Typically measurements
of the linear magnetic birefringence in nitrogen gas are used
to calibrate a setup [10,11,14].

In the following we present magnetic linear birefrin-
gence measurements performed in the framework of our
biréfringence magnétique du vide (BMV) project. It is based
on the use of strong pulsed magnetic fields, which is different
compared to other experiments searching for vacuum magnetic
birefringence, and on a very high finesse Fabry-Pérot cavity
to increase the effect to be measured by trapping the light
in the magnetic-field region. The use of pulsed fields for
such measurements was proposed in Ref. [15]. In principle,
pulsed magnetic fields can be as high as several tens of teslas,

©2012 American Physical Society
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which increases the signal, and they are rapidly modulated,
which decreases the 1/f-flicker noise resulting in an increase
of the signal-to-noise ratio. Both advantages are supposed to
compensate for the loss of duty cycle since only a few pulses
per hour are possible. A feasibility study, which discusses
most of the technical issues related to the use of pulsed fields
coupled to precision optics for magnetic linear birefringence
measurements, can be found in Ref. [16].

In this paper we present the realization of further steps
toward the measurement of the magnetic birefringence of
the vacuum using pulsed fields. After describing our BMV
experiment, we report the calibration of our apparatus with
nitrogen gas and discuss the precision of our measurement,
giving a detailed error budget. Finally, the present vacuum
upper limit is reported and we discuss the perspectives to reach
our final goal.

II. EXPERIMENTAL SETUP AND SIGNAL ANALYSIS

A. Apparatus

The BMV experiment is detailed in Ref. [16]. Briefly, as
shown in Fig. 1, 30 mW of a linearly polarized Nd: YAG laser
beam (A = 1064 nm) is injected into a Fabry-Pérot cavity
consisting of the mirrors M; and M. The laser frequency is
locked to the cavity resonance frequency using the Pound-
Drever-Hall method [17]. To this end, the laser is phase
modulated at 10 MHz with an electro-optic modulator. The
beam reflected by the cavity is then detected by the photodiode
Ph,. This signal is used to drive the acousto-optic modulator
(AOM) frequency for a fast control and the Peltier element of
the laser for a slow control of the laser frequency.

Our birefringence measurement is based on an ellipticity
measurement. Light is polarized just before entering the cavity
by polarizer P. The beam transmitted by the cavity is then
analyzed by analyzer A crossed at maximum extinction and
collected by a low-noise photodiode Ph, (the intensity of
the extraordinary beam I,). The analyzer also has an escape
window that allows us to extract the ordinary beam (intensity

Ph
Nd:YAG — A
A=1064 nm B
P
] I —N T [ v !_ﬁ Ly
] E, L TY |L ﬂ = 1
M M A Phg
AOM 1 2
A4 :
Ph,
PDH lock

FIG. 1. Experimental setup. A Nd:YAG laser is frequency locked
to the Fabry-Pérot cavity consisting of mirrors M; and M,. The
laser beam is linearly polarized by polarizer P and analyzed with
polarizer A. This analyzer allows one to extract the extraordinary
beam sent on photodiode Ph, as well as the ordinary beam sent on
photodiode Ph,. The beam reflected by the cavity analyzed on the
photodiode Ph, is used for the cavity locking. A transverse magnetic
field B can be applied inside the cavity in order to study the magnetic
birefringence of the medium. The following denotations are used:
EOM, electro-optic modulator; AOM, acousto-optic modulator; and
PDH, Pound-Drever-Hall.
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I;), which corresponds to the polarization parallel to P. This
beam is collected by the photodiode Ph,.

All the optical components from polarizer P to analyzer A
are placed in an ultrahigh-vacuum chamber. In order to perform
birefringence measurements on high-purity gases, the vacuum
chamber is connected to several gas bottles through leak valves
that allow one to precisely control the amount of injected
gas. Finally, since the goal of the experiment is to measure
magnetic birefringence, magnets surround the vacuum pipe.
The transverse magnetic field is created due to pulsed coils
described in Ref. [18] and briefly detailed in the following
section.

Both signals collected by the photodiodes outside the cavity
are simultaneously used in the data analysis as follows:

% =0’ + Vg, 3)
where Wy, is the total ellipticity acquired by the beam going
from P to A and o2 is the polarizer extinction ratio. Our
polarizers are Glan laser prisms, which have an extinction
ratio of 2 x 1077,

The origin of the total ellipticity of the cavity is due to
the intrinsic birefringence of mirrors M; and M;, as will be
discussed in Sec. II C 2. We define the ellipticity imparted to the
linearly polarized laser beam when light passes through each
mirror substrate as I'; » and the one induced by the reflecting
layers of the mirrors as I'.. An additional component W of
the total ellipticity can be induced by the external magnetic
field. Since we use pulsed magnetic fields, this ellipticity is a
function of time. Finally, if the ellipticities are small compared
to unity, one gets

L)
1)
where I' = T'y; + I'y» + I is the total static birefringence.

o2 + [T + W), “4)

B. Magnetic field

It is clear from Eq. (1) that one of the critical parameter
for experiments looking for magnetic birefringence is B>L.
Our choice has been to reach a B2L as high as possible while
having a B as high as possible with an L such as to set up a
tabletop low-noise optical experiment. This is fulfilled using
pulsed magnets that can provide fields of several tens of teslas.
Our apparatus consists of two magnets, called X-coils. The
principle of these magnets and their properties are described
in detail in Refs. [16,18].

The magnetic-field profile along the longitudinal zaxis,
which corresponds to the axis of propagation of the light beam,
has been measured with a calibrated pickup coil. Figure 2
shows the normalized profile of an X-coil. The magnetic field
is not uniform along z. We define By« as the maximum field
provided by the coil at its center and Lp as the equivalent
length of a magnet producing a uniform magnetic field B,
such that

+00
/ B%*(z)dz = B2, Ls, %)
—00
where L p is about the half of the X-coil’s length. Each X-coil
currently used has reached more than 14 T over 0.13 m of
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FIG. 2. Normalized profile of the square of the magnetic field
along the longitudinal zaxis (solid line) inside one X-coil. This is
compared to the equivalent uniform magnetic field (dashed line) over
the effective magnetic length L (see the text).

effective length corresponding to 25 T2 m. The total duration
of a pulse is a few milliseconds. The magnetic field reaches its
maximum value within 2 ms.

The pulsed coils are immersed in a liquid-nitrogen cryostat
to limit the consequences of heating, which could be a cause
of permanent damage to the coil’s copper wire. The pulse
duration is short enough that the coil, starting at liquid-nitrogen
temperature, always remains at a safe level i.e., below room
temperature. A pause between two pulses is necessary to let
the magnet cool down to the equilibrium temperature, which is
monitored via the X-coils’ resistance. The maximum repetition
rate is 5 pulses per hour.

C. Fabry-Pérot cavity

The other key point of our experiment is to accumulate the
effect due to the magnetic field by trapping the light between
two ultrahigh-reflectivity mirrors constituting a Fabry-Pérot
cavity. Its length has to be large enough to leave a wide space
so as to insert our two cylindrical cryostats (with a diameter
of 60 cm for each cryostat) and vacuum pumping system. The
length of the cavity is L, = 2.27 m, which corresponds to a
free spectral range of AFSR = ¢/2nL.~ 66 MHz, with n the
index of refraction of the considered medium in which the
cavity is immersed. This index of refraction can be considered
equal to one. The total acquired ellipticity W is linked to the
ellipticity ¥ acquired in the absence of a cavity and depends
on the cavity finesse F as follows [19]:

2F
U=—qv, (6)
b4
where F is given by
R
F = N—M’ (7
1 — Ry

with Ry, the intensity reflection coefficient, which is supposed
to be the same for both mirrors. A finesse as high as possible
is essential to increase the induced signal.

1. Cavity finesse and transmission

Experimentally, the finesse is inferred from a measurement
of the photon lifetime 7 inside the cavity as presented in Fig 3.
For t < 1y, the laser is locked to the cavity. The laser intensity
is then switched off at #; due to the AOM shown in Fig. 1

PHYSICAL REVIEW A 85, 013837 (2012)
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FIG. 3. Time evolution of the intensity of the ordinary beam (gray
solid line). The laser is switched off at r = #,. Experimental data are
fitted by an exponential decay (black dashed line), giving a photon
lifetime of T = 1.16 ms, a finesse of F = 481000, and a linewidth
of Av =c¢/2nL.F = 137 Hz.

and used as an ultrafast commutator. For ¢ > £y, one sees the
typical exponential decay of the intensity of the transmitted
ordinary beam [20]

L(t) = I(to)e /7. ®)

The photon lifetime is related to the finesse of the cavity
through the relation

nL.F
Tc

T= ©))
By fitting our data with Eq. (8) we get T = 1.16 ms, which
corresponds to a finesse of F = 481 000 and a cavity linewidth
of Av =c¢/2nL.F = 137 Hz. We summarize in Table I the
performances of some well-known sharp cavities at A =
1064 nm, showing the quality of our cavity.

The transmission of the cavity 7, is another important
parameter. It corresponds to the intensity transmitted by the
cavity divided by the intensity incident on the cavity when the
laser frequency is locked. Indeed, in order not to be limited
by the noise of photodiodes Ph, and Ph,, I, and I, have to
be sufficiently high. This point is particularly critical for /,,
which corresponds to the intensity transmitted by the cavity
multiplied by 2. With a Ph, noise equivalent power of 11
fW/+/Hz, we need an incident power greater than 0.2 nW so
as not to be limited by the electronic noise of Ph,.

Our cavity transmission is 20%. The measurements of the
finesse and the transmission allow us to calculate mirrors
properties such as their intensity transmission T, and their
losses Py as a result of the following relations:

T

F=——760", 10
Ty + Pu (10)

2

(M) , (11)

g
supposing that the mirrors are identical. We found 7, = 3 ppm
and Py = 3.5 ppm, which correspond to the specifications
provided by the manufacturer.

To conclude, our high-finesse cavity enhances the Cotton-
Mouton effect by a factor 2F /7 = 306 000 and its transmis-

sion allows measurements that are not limited by the noise of
the detection photodiodes.

T,
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TABLE I. Performance summary of the sharpest infrared interferometers in the world. The following denotations are use: L. is the length
of the Fabry-Pérot cavity, A™R is its full spectral range, F is the cavity finesse, T is the photon lifetime, Av is the frequency linewidth, and
O = viuer/ Av is the quality factor of the interferometer, with vy, the laser frequency.

Interferometer Ref. L.(m) AFSR (kHz) F T (us) Av (Hz) 0

VIRGO [21] 3000 50 50 160 1000 2.8 x 10"
TAMA300 [22] 300 500 500 160 1000 2.8 x 10"
PVLAS [11] 6.4 23 400 70 000 475 335 8.4 x 10"
LIGO [23] 4000 37 230 975 163 17 x 10"
BMV this work 2.27 66 000 481 000 1160 137 21 x 10"

2. Cavity birefringence

The origin of the total static ellipticity is due to the mirror
intrinsic phase retardation. Mirrors can be regarded as wave
plates and for small birefringence, the combination of both
wave plates gives a single wave plate. The phase retardation
and the axis orientation of this equivalent wave plate depend
on the birefringence of each mirror and on their respective
orientations [19,24].

The intrinsic phase retardation of the mirrors is a source of
noise limiting the sensitivity of the apparatus. Moreover, since
our signal detection corresponds to a homodyne technique, the
static ellipticity I" is used as a zero-frequency carrier. To reach
a shot-noise-limited sensitivity, one needs I" to be as small
as possible [16], implying that the phase retardation axes of
both mirrors have to be aligned. For magnetic birefringence
measurements, both mirrors’ orientation is adjusted in order
tohave 1072 < T' < 3 x 1073 rad.

The measurement of the total ellipticity as a function of
mirror orientation allows us to calculate the mirror intrinsic
phase retardation per reflection. The experimental procedure
is presented in Ref. [25]. The deduced phase retardation for
our mirrors is 83y = (7 & 6) x 1077 rad. Although the origin
of the mirrors’ static birefringence is still unknown, a review
of the existing data shows that for interferential mirrors, the
phase retardation per reflection decreases when reflectivity
increases [25]. This observation is confirmed by our present
measurement. It is also in agrement with the empirical trend
given in Ref. [25]: 8y =~ 0.1(1 — Rjps). Numerical calculations
show that this trend can be explained by assuming that the
effect is essentially due to the layers close to the substrate.

As previously stated, mirror birefringence has two contri-
butions: One comes from the substrate and the other is due to
the reflecting layers. Whereas previous measurements do not
allow one to distinguish between the two contributions, we
will see that this can be achieved with the measurement of I,
decay.

A typical time evolution of /, when the incident beam
locked to the cavity is switched off is shown in Fig. 4. We
see that this curve cannot be fitted by an exponential decay.
As explained in Ref. [26], one has to take into account
the intrinsic birefringence of the cavity. Nevertheless, the
expression derived in Ref. [26], which takes into account only
the reflecting layer’s birefringence, does not always fit our
data. The evolution of I, sometimes presents an unexpected
behavior: Whereas photons no longer enter the cavity at¢ = #,
the extraordinary intensity starts growing before decreasing.
To reproduce this behavior, one has to take into account the
substrate birefringence.

We now calculate the transmitted intensity along the round-
trip inside the cavity.

For ¢ < 1y, the laser is continuously locked to the cavity.
According to Eq. (4), the intensities of the ordinary and
extraordinary beams are related by

L(t <10) = [02 + (T2 + Ty + T2 1Lt < 1p).  (12)

At t = 1y, the laser beam is abruptly switched off and
the cavity empties gradually. The ordinary and extraordinary
beams are slightly transmitted at each reflection on the mirrors;
however, because these mirrors are birefringent, some photons
of the ordinary beam are converted into the extraordinary one.
The reverse effect is neglected because I, < I;.

We then follow the same procedure as in Ref. [26] to
calculate the time evolution of /,. For ¢t > 1, one gets

5 t—1\ 71
Ie(t):It(t) o+ |y + T+ T I+ 7 .

13)

The behavior shown in Fig. 4 is reproduced if I'y; + 'y >~
—TI'.. This expression is used to fit our experimental data
plotted in Fig. 4. We find a photon lifetime of 7 = 960 us,
which is in good agreement when fitting 1, [27], T's; + I'sp =
2 x 1073 rad, and ', = —7 x 1073 rad. We have evidence
that the substrate is birefringent and that this birefringence
contributes to the total ellipticity due to the cavity.

D. Signal analysis

The voltage signals V, and V; provided by Ph, and Ph,
are the starting point of our analysis. Voltage signals have to
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FIG. 4. Time evolution of the intensity of the extraordinary beam
(gray solid line). The laser is switched off at # = ). Experimental
data are perfectly fitted by Eq. (13) (black dashed line).
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be converted into intensity signals by using the photodiode
conversion factors g, and g;:
I, = 8e Ve, (14)
I =gV (15)
As demonstrated in Ref. [26], before analyzing raw signals

one has to take into account the first-order low-pass filtering
of the cavity. In Fourier space I; fijereq 1S given by

I fiterea (@) = I(w), (16)

1+i>

where v, = w./2m = 1/4mt is the cavity cutoff frequency.
Then, according to Eq. (4), the ellipticity W(¢) to be measured
can be written as

[ L)
Y()=-T — — 02, 17
(t) + Ir,ﬁltered(t) 7 ( )

The total static birefringence I" is measured a few milliseconds
just before the beginning of the magnetic pulse, thus when
() =0.

In contrast, W is proportional to the square of the magnetic
field and thus can be written as

U(1) = k B erea(1)- (18)

Since the photon lifetime is comparable with the rise time
of the magnetic field, the first-order low-pass filtering of the
cavity also has to be taken into account for the quantity B>(¢) as
in Ref. [26]. To recover the value of the constant x we calculate
for each pulse the correlation between W (¢) and Béhered(t):

K = fOTi \V(I)B(I)gllereddt
fOTi [B(t)ﬁltered]zdt

where T; is the integration time. A statistical analysis gives the
mean value of « and its uncertainty.
The magnetic birefringence A is finally given by
K A1
4wt AFSR [ 5 sin26

19)

An(T,P) = (20)
and An is thus expressed in T~2. The terms T and P corre-
spond to the gas temperature and pressure when measurements
of magnetic birefringence on gases are performed. We define
the normalized birefringence An, as An for P = 1 atm and
B=1T.

III. EXPERIMENTAL PARAMETERS AND
ERROR BUDGET

In the following, to evaluate the precision of our apparatus
in the present version, we list the uncertainties at 1o on the
measurement of the parameters of Eq. (20) as recommended
in Ref. [28]. The uncertainty of the magnetic birefringence
has two origins. The evaluation of the uncertainty by a
statistical analysis of a series of observations is termed a type- A
evaluation and mainly concerns the measurement of t and «.
An evaluation by means other than the statistical analysis of
a series of observations, calibrations for instance, is termed
a type- B evaluation and especially affects the parameters B,
AFSR Lp, X, and 6.

PHYSICAL REVIEW A 85, 013837 (2012)

A. Photon lifetime in the Fabry-Pérot cavity

The photon lifetime 7 is measured by analyzing the
exponential decay of the intensity of the transmitted light.
Several measurements have been performed both before and
after almost each magnetic pulse. The uncertainty of the value
of T comes from the fact that mirrors can move slightly because
of thermal fluctuations and acoustic vibrations. Measurements
conducted under the same experimental conditions have been
studied statistically, leading to a relative variation of 7 that does
not exceed 2 at the 1o level. Data taken during the operation,
i.e., before and after magnetic pulses, show the same statistical
properties as the ones taken without any magnetic field. Thus,
the magnetic field does not cause additional change in 7.

B. Correlation factor

The correlation factor « is given by Eq. (19). The type-A
uncertainty of x depends on the measurement of W and thus
on the experimental parameters given in Eq. (17). In practice,
we pulse the magnets several times in the same experimental
conditions to obtain a set of values of x. The distribution of
the « values is found to be Gaussian and we assume that its
standard deviation corresponds to the type-A uncertainty of «.
For our measurements performed with nitrogen and presented
in Sec. IV B, the type- A relative uncertainty is typically 3.5%.
The standard uncertainty of the average value of k can then be
reduced, thus increasing the number of pulses.

Type-B uncertainties depend on those of the square of the
magnetic field, the photodiode conversion factors, and the
filter function applied to the field. To measure the magnetic
field during operation, we measure the current that is injected
in our X-coil. As mentioned in Ref. [18], the form factor
B/I has been determined experimentally during the test phase
by varying the current inside the X-coil (modulated at room
temperature or pulsed at liquid-nitrogen temperature) and
by measuring the magnetic field induced on a calibrated
pickup coil. These measurements have led to a relative
type-B uncertainty of §B/B = 0.7% for the magnetic field
corresponding to a type-B uncertainty of k of 1.4%.

The ratio g./g; is measured from time to time by sending
the same light intensities to each photodiode. The relative
uncertainty in this parameter is 1.5%, which corresponds to
the same amount of relative uncertainty in k.

The terms 7,(t) and B2(¢) are also filtered by a function that
involves the parameter 7. We have empirically determined that
a T variation of 2% led to a k variation of 0.8%. We can finally
add quadratically the uncertainties above and deduce that a
type-B uncertainty of 2.2% must be taken into account for
every measurement of the correlation factor «.

C. Frequency splitting between perpendicular polarizations

In this section we evaluate the attenuation of the extraor-
dinary beam transmitted by our sharp resonant Fabry-Pérot
cavity on which the laser’s ordinary beam is frequency
locked. Let us suppose that the ordinary (extraordinary) beam
resonates in the interferometer at the frequency v, (v.). The
laser is locked to the cavity due to the ordinary beam. Thus v,
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FIG. 5. Airy function of our Fabry-Pérot cavity (with a linewidth
of Av = 137 Hz, a transmission of 7. = 20%, and where m is an
integer). The frequency of the ordinary beam is assumed to be locked
at the top of the transmission function (solid line) and the frequency v,
of the extraordinary beam is shifted from v, by a quantity §v (dashed
line).

corresponds to the top of the transmission Airy function A of
the Fabry-Pérot cavity, which is given by
T,

1+ ‘;—FZZ sin? (—ZHZLC v).

AW) = 1)

The frequency v, is shifted from v; by a quantity §v, as
shown in Fig. 5. The frequency splitting v = v; — v, can be
expressed as a function of the phase retardation § acquired
along a round-trip between the ordinary and extraordinary
beams:

c FAv
8_

Sv = =
2nnL, T

5. (22)

This formula indicates that in order to have a splitting that is
very small compared to the cavity linewidth (6v < Av), the
phase retardation § must satisfy the following condition:

g

K —, 23

<7 (23)

which is equivalent to the condition on the acquired total
ellipticity W:

VL1 (24)

By combining Egs. (21) and (22), we obtain the factor of
attenuation a of the transmitted extraordinary beam’s intensity
given by

_Alve) 1
AW 1+ 471—‘22 sin? (Z2Lesy)
1

L+ sin2(s)

(25)

The attenuation factor a is plotted as a function of § in
Fig. 6 for a finesse F' = 481 000. The real intensity I, of the
extraordinary beam transmitted by the cavity is obtained from
the corrected measured intensity 1;°°* as I, = 17 /a.

First, the frequency splitting can be due to our birefringent
cavity. As in Ref. [19], we consider both cavity mirrors to be
equivalent to a single wave plate with phase retardation 6,, =
between both polarizations. The total phase retardation §,, is
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FIG. 6. Attenuation factor a as a function of the phase retardation
8 between both polarizations.

linked to the cavity mirrors’ M;and M>own phase retardation
81 and &, as [19]

8w = v/ (81 — 82)> + 48,8, 02 (6,). (26)

To set a §,, as small as possible so as to minimize the correction
to 1,;°°%°, one needs to adjust the angle 6,, between the neutral
axes of both mirrors. This way, we set a §,, of the order of a few
1078 rad, corresponding to a correction smaller than 0.001%
on "%,

e

Second, the frequency splitting between both polarizations
can be due to the induced magnetic birefringence of the
medium inside the chamber. As seen above, the induced
ellipticity given by Eq. (24) must be well below 1 rad. This
condition is always satisfied in the range of pressure and
field we are working. The induced ellipticity does not exceed
1072 rad. This corresponds at worst to a phase retardation of
8 = 1077 rad. The attenuation factor /™ is thus smaller than
0.1%.

In principle, this attenuation generates an error that has to
be taken into account in the measured ratio 1,/ filtered in
Eq. (17), which implies an error in the value of «. At present,
since the attenuation is smaller than 0.1%, this error can be
neglected compared to the others uncertainties in .

D. Cavity-free spectral range

The dedicated experimental setup for the measurement of
the cavity free spectral range AR =¢/2nL. is shown in
Fig. 7. The principle is to inject into the cavity two laser beams
that are shifted relative to each other by a given frequency. This
frequency is then adjusted to coincide with the free spectral
range.

Experimentally, the main beam is divided into two parts due
to a polarizing beam splitting cube. The first part is directly
injected into the cavity and the other one is frequency shifted
by the acousto-optic modulator AOM?2 with a double-pass
configuration before injection. The main beam is frequency
modulated with a voltage ramp applied on a piezoelement
mounted on the crystal resonator of the laser.

The intensity transmitted by the cavity is observed on Ph,
as shown in Fig. 8. The solid line corresponds to the intensity
of the first beam. We observe typical Fabry-Pérot peaks whose
frequency gap corresponds to APSR, Peaks due to the second
beam (dashed line) are frequency shifted by 2 faom2. We finally
adjust faomp in order to superimpose both series of peaks. The
precise knowledge of the driven frequency faomz enables us to

013837-6



MAGNETIC LINEAR BIREFRINGENCE MEASUREMENTS ...

PZT: frequency ramp

A2 Ph

N:YAG yL{}—“c\-_ 7
P
A—-—H- ﬂé

AOM AOM2[«— f M

AOM2
M4

=S|

N

FIG. 7. Experimental setup for the cavity length measurement.
Two laser beams that are frequency shifted relative to each other by
the AOM2 are injected into the cavity. The frequency of the laser is
frequency modulated with a voltage ramp applied on a piezoelement
(PZT) mounted on the crystal resonator of the laser. Photodiode Ph,
allows us to observe the typical Fabry-Pérot peaks from which the
AFSR measurement is performed.

determine with the same precision the value of the free spectral
range and thus the cavity length.

A typical value is APSR = (65.996 + 0.017) MHz. This
corresponds to a cavity length of L, = (2.2713 £ 0.0006) m.
Since this length can be prone to variation, the AR value is
regularly checked and updated.

E. Effective magnetic length

Following Eq. (5), the effective magnetic length Ly has
been calculated by numerically integrating the field mea-
sured with a calibrated pickup coil. Taking into account the
experimental uncertainties, for one X-coil we obtain Lg =
(0.137 £ 0.003) m, which corresponds to a relative type-B
uncertainty of Lg of 2.2%.

F. Laser wavelength

As mentioned above, infrared light enters the cavity.
The wavelength of the Nd:YAG laser is 1064 nm and its
uncertainty is given by the width of the laser transition. The
natural linewidth of Nd:YAG lasers is not usually given by
the manufacturers. However, we can estimate it from the
bandwidth of the gain curve of the amplifying medium. It
is typically of the order of 30 GHz [29]. This corresponds
to an uncertainty on the laser wavelength of 0.3 nm. In

FSR

z |
=
(= ¥ 1
3 # 2fpom2 i
5 A I
— \
© | I
= [ "

I . I \‘

[ [

N
v — - " I — e

frequency (arb. units)

FIG. 8. Transmission peaks of the Fabry-Pérot cavity as a func-
tion of the laser frequency. Two beams are sent to the interferometer:
The second beam (dashed line) is frequency shifted by 2 faom relative
to the first beam (solid line). The adjustment of faomz in order to
superimpose both series of peaks allows us to precisely measure the
free spectral range AFSR of the cavity.
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FIG. 9. Correlation factor « between the square of the magnetic
field and the ellipticity as a function of the angle 6p of the incident
polarization.

order to be conservative, we use A = (1064.0 &+ 0.5) nm. The
relative uncertainty is negligible in our case, compared to main
uncertainties.

G. Angle between the incident polarization and the
magnetic-field direction

The angle between the incident light polarization and the
magnetic-field direction is adjusted to 45° as a result of
magnetic birefringence measurements as a function of the
polarizer direction 6p. In order to be more sensitive, this is
performed close to the position where the magnetic field is
parallel to the polarizer P (8 = 0°).

Measurements are realized with about 7x 1073 atm of air.
The analyzer direction is crossed at maximum extinction each
time the polarizer is turned. Figure 9 represents the evolution
of the correlation factor « as a function of 6p. Data are fitted
by a sinusoidal trend k(6p) = k¢ sin[2(8p — Bp)] giving 6y =
(2.6 £ 0.2)°. This measurement allows us to set 6 = (45.0 £
1.2)°. The uncertainty is mainly due to the mechanical system
that holds and turns the polarizer.

H. Error budget

We summarize in Table II the typical values of the experi-
mental parameters that have to be measured and their type-B
associated uncertainty. These uncertainties are quadratically
added to give a type- B relative uncertainty of the birefringence
Anof3.1% at lo.

TABLE II. Parameters that have to be measured to infer the
value of the birefringence An and their respective relative type-B
uncertainty at lo.

Relative type-B

Parameter Typical value uncertainty
K 1075 rad T2 2.2 x 1072
AFSR 65.996 MHz 3x 1074
Lg 0.137m 2.2 x 1072
A 1064.0 nm <5x107*
sin 20 1.0000 9x 1074

Total 3.1 x 1072
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FIG. 10. Profile of the temperature inside the vacuum pipe along
the longitudinal zaxis. The X-coil is also schematized at the center.
The temperature variation does not exceed 1 K inside the tube that
runs through it.

I. Temperature and pressure of gases

Gas magnetic birefringence measurements are performed
at room temperature 7 = 293 K. The experimental room is air
conditioned. A flow of compressed air between the outer wall
of the vacuum pipe and the liquid-nitrogen cryostat containing
the magnet maintains the room temperature in the gas chamber.

A temperature profile has been realized along the length of
the vacuum pipe and is plotted in Fig. 10. The temperature
variation does not exceed 1 K inside the tube that passes
through the magnetic field. Concerning gases, we consider
that our birefringence measurements are given at (293+1) K.
The pressure of the gas inside the chamber is measured at each
side of the vacuum pipe getting into magnets with pressure
gauges. The relative uncertainty provided by the manufacturer
is 0.2%.

IV. MAGNETIC BIREFRINGENCE MEASUREMENTS

A. Raw signals

Figure 11 presents signals obtained with 32.1x 107 atm
of molecular nitrogen. The intensity of the ordinary beam
I, (top) remains almost constant while the intensity of the
extraordinary beam I, (middle) varies when the magnetic field
(bottom) is applied. The magnetic field reaches its maximum
of 5.2 T within less than 2 ms.

The laser beam remains locked to the Fabry-Pérot cavity,
despite mechanical vibrations caused by the shot of magnetic
field. The intensities I, and I, start oscillating after about
4 ms. Seismometers placed on mirror mounts show that these
oscillations are mainly due to acoustic perturbations produced
by the magnet pulse and propagating from the magnet to the
mirror mounts through the air. We also see that the minimum
of I, does not coincide with the maximum of BZ. This
phenomenon is due to the cavity filtering, as explained in
detail in Ref. [26].

In Fig. 12 we plot the square of the magnetic field filtered
by the cavity and the ellipticity calculated with Eq. (17) as a
function of time. Since the acoustic perturbations affect both
signals I, and I,, by taking into account the cavity filtering
between I; and I,, oscillations on W are strongly reduced to
a few 107 rad and thus are not visible in this figure. These
oscillations induce uncertainty to the measurement, but are
already included in the type-A uncertainty on x measured in
Sec. III B.
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FIG. 11. Cotton-Mouton effect measurements on 32.1x 1073 atm
of molecular nitrogen: top, normalized intensity of the ordinary beam
as a function of time; middle, intensity of the extraordinary beam
divided by the mean of I, as a function of time; and bottom, square
of the magnetic field as a function of time.

Finally, we note that both quantities Béhered and W reach
their extremum at the same time and their variation can be
perfectly superimposed, thus providing a precise measurement
of magnetic linear birefringence of nitrogen gas.

B. Apparatus calibration

In order to calibrate our apparatus and to evaluate its present
sensitivity we have measured the magnetic birefringence of

4 o L
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FIG. 12. Cotton-Mouton effect measurement on 32.1x 1073 atm
of molecular nitrogen. The gray line denotes the total ellipticity as
a function of time and the dashed line denotes the square of the
magnetic field filtered by a first-order low-pass filter corresponding
to the cavity filtering.
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FIG. 13. Magnetic birefringence of molecular nitrogen as a
function of pressure. The solid line corresponds to the linear fit of the
experimental data.

molecular nitrogen. These measurements have been performed
at different pressures from 2.1x 1073 to 32.1x 1073 atm and
are summarized in Fig. 13. In this range, nitrogen can be
considered as an ideal gas and the pressure dependence of its
birefringence is thus linear:

An[T~?] = An,[atm™' T2 P[atm]. @7

We have checked that our data are correctly fitted by a linear
equation. Its An axis intercept is consistent with zero within
the uncertainties. Its slope gives the normalized magnetic
birefringence at B = 1 T and P = 1 atm (in atm™!' T72):

An, = (=2.00 + 0.08 & 0.06) x 10713,

The first uncertainty 0.08 x 10~'3 atm~'T~2 corresponds
to the fitting uncertainty and represents the type-A total
uncertainty at lo; the second one 0.06 x 10~ atm~!T—2
represents the type- B uncertainty at lo.

Our value of the normalized birefringence is compared
in Table III to other published experimental values at A =
1064 nm [30,31]. The table shows that our value agrees
perfectly well with other existing measurements. Our total
uncertainty is 107'* atm~! T2, calculated by quadratically
adding the type-A and type- B uncertainties. This is 1.8 times
more precise than the other results. It therefore provides a
successful calibration of the whole apparatus.

C. Upper limit on vacuum magnetic
birefringence measurements

Once the calibration had been performed we evaluated
the upper limit of the present apparatus on vacuum magnetic
birefringence. To this end, several pulses were performed in
vacuum. A typical ellipticity measured during a magnetic pulse
is plotted in Fig. 14. Acoustic perturbations induce oscillations

TABLE III. Comparison between our value of the nitrogen
normalized magnetic birefringence and other experimental published
values at A = 1064 nm.

An, x 10718
Ref. (aaP=1latmand B=1T)
[30] —2.17+£0.21
[31] —2.02 £0.16 £ 0.08

this work —2.00 £ 0.08 £ 0.06
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FIG. 14. Typical ellipticity (gray) measured during a magnetic
pulse (black) performed in vacuum. Acoustic perturbations generate
ellipticity oscillations starting at 4 ms.

of W starting at about 4 ms, with variations of the order of
1072 rad. In order to infer our best upper limit for the value of
the vacuum magnetic birefringence, we limit the integration
time to 4 ms. We get An < 5.0 x 1072° T2 per pulse.

During operation, the pressure inside the UHV system was
better than 10719 atm. To be conservative, let us assume that
residual gases are mainly 78% nitrogen and 21% oxygen. The
normalized magnetic birefringences of these gases are of the
order of —2 x 10713 and —2 x 102 atm™! T2, respectively
[12]. The total residual magnetic birefringence is then of the
order of 6 x 1072* T~2, which is well below our current upper
limit. In the final setup, vacuum quality will be monitored with
aresidual gas analyzer.

V. CONCLUSION

The successful calibration we report in this paper is a
crucial step toward the measurement of vacuum magnetic
birefringence. It shows our capability to couple intense
magnetic fields with one of the sharpest Fabry-Pérot cavities
in the world. It is worthwhile to note that an energy of about
100 kJ is discharged in our coils during a few milliseconds.
These 10 MW of electrical power generate acoustic perturba-
tions and mechanical vibrations that tend to misalign the cavity
mirrors. The linewidth Av of our Fabry-Pérot cavity is of the
order of 150 Hz. A relative displacement AL, = L. Av/Vjer
= 1 pm of both mirrors is enough to get out of resonance. The
sharper the cavity, the bigger the challenge.

The sensitivity per pulse we got in both gases and vacuum is
outstanding. For the sake of comparison, the best birefringence
limit obtained in vacuum with continuous magnets is An <
2.1 x 1072° T2 with an integration time of fi, = 65 200
s [11]. In order to compare both methods, we need to translate
the best limit obtained in the continuous regime to the one
obtained with our integration time 7; = 4 ms. Assuming white
noise for both methods, the best limit reported in Ref. [11]
corresponds to An(T;) = An(tin)vfini/T; < 8.5 x 10717 in
4 ms of integration. This value is more than three orders of
magnitude higher than ours, proving that pulsed fields are a
powerful tool for magnetic birefringence measurements.

The long-term prospective is to get a value of An =
4 x 1072* T2, corresponding to the vacuum magnetic bire-
fringence, with at most 1000 pulses. This corresponds to a
sensitivity better than 1.3 x 10722 T2 per pulse. A factor of
the order of 10 of optical sensitivity will be achievable with
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better acoustic insulation and a more robust locking system, in
particular reducing the noise of the measured light intensities
transmitted by the cavity. Further improvements depend on the
possibility of having higher magnetic fields. We have designed
a pulsed coil, called the XXL-coil, which has already reached
a field higher than 30 T when a current higher than 27 000 A
is injected. This corresponds to more than 300 T2 m [32]. Two
XXL-coils will allow us to improve our current sensitivity by
a factor 100. We plan to modify the apparatus in order to host
these XXL-coils. Therefore, the final version of the experiment
will be ready for operation.

PHYSICAL REVIEW A 85, 013837 (2012)
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Faraday and Cotton-Mouton effects of helium at A = 1064 nm
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We present measurements of the Faraday and the Cotton-Mouton effects of helium gas at A = 1064 nm. Our
apparatus is based on an up-to-date resonant optical cavity coupled to longitudinal and transverse magnetic fields.
This cavity increases the signal to be measured by more than a factor of 270 000 compared to the one acquired
after a single passage of light in the magnetic field region. We have reached a precision of a few percent for both

the Faraday and the Cotton-Mouton effect. Our measurements give the experimental value of the Faraday effect

at A = 1064 nm. This value is compatible with the theoretical prediction. Concerning the Cotton-Mouton effect,
our measurement agrees at better than 1o with theoretical predictions.

DOI: 10.1103/PhysRevA.88.043815

I. INTRODUCTION

In 1845 Faraday discovered that a magnetic field affects
the propagation of light in a medium [1]. In particular, he
observed that a magnetic field parallel to the light wave vector
k induces a polarization rotation of linearly polarized light.
This effect is known now as the Faraday effect. With such
experiments, Faraday was looking for proof that light and
magnetic fields have a common origin. These revolutionary
findings represented one of the most important steps towards
Maxwell’s theory of electromagnetism.

At the very beginning of the 20th century, Kerr [2]
and Majorana [3] discovered that linearly polarized light,
propagating in a medium in the presence of a magnetic field,
also acquires an ellipticity when the field is perpendicular to
k. In the following years, this phenomenon was studied in
detail by Cotton and Mouton [4] and it is known now as the
Cotton-Mouton effect.

The Faraday and Cotton-Mouton effects are both due to the
fact that the magnetic field creates an anisotropy in the medium
which then becomes birefringent. The term “birefringent”
indicates that different states of polarization do not have the
same propagation velocity. The Faraday effect corresponds to a
magnetic circular birefringence, i.e., the index of refraction n_
for left circularly polarized light is different from the index of
refraction n,. forright circularly polarized light. The difference
Ang = n_ — ny is proportional to the longitudinal magnetic
field B I

AHF IkFBH, (1)

where kg is the circular magnetic birefringence per tesla. On
the other hand, the Cotton-Mouton effect corresponds to a
magnetic linear birefringence, i.e., the index of refraction n
for light polarized parallel to the magnetic field is different
from the index of refraction n, for light polarized perpendic-
ular to the magnetic field. The difference Ancy = n| —ny is
proportional to the square of the transverse magnetic field Bi:

AI’[CM = kCMBJZ_, (2)

where kcy is the linear magnetic birefringence per tesla
squared.
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Such magnetic birefringences are usually very small
(Anp,Ancy < 1) for magnetic fields available in laboratories,
especially in the case of dilute matter. Magnetic birefringence
measurements are therefore an experimental challenge. The
value of the birefringence depends on microscopic matter
response properties like (hyper)susceptibilities. In the case
of dilute matter, these responses can be calculated ab initio
using the computational methods developed in the framework
of quantum chemistry [5]. Experimental measurements are
then a fundamental test of our knowledge of the interaction of
electromagnetic fields and matter.

Among all known gases, helium presents the smallest
Faraday and Cotton-Mouton effects. Ab initio calculations of
the helium Faraday effect at A = 1064 nm, with X the light
wavelength, have been published only recently [6]. From the
experimental point of view, Faraday effect measurements in
helium date back to the 1950s [7], but not at A = 1064 nm.
The Cotton-Mouton effect in helium was first measured at
A = 514.5nmin 1991 [8]. At the same time, the first numerical
calculation at a different wavelength in the coupled Hartree-
Fock approximation was published [9]. Actually, these two first
values were not in agreement. While some other theoretical
calculations exist in the literature [10], to our knowledge only
three more experimental values have been published since
1991 [8,11,12], with only one at A = 1064 nm [12].

Ab initio calculations of both the Faraday and Cotton-
Mouton effects of helium are benchmark tests for computa-
tional methods. In practice they can be considered as error-free,
especially when compared with the error bars associated with
the experimental values. Experimental measurement precision
has therefore to be as good as possible to be able to test the
different computational methods.

Experimentally, one generally measures the Faraday effect
by measuring the polarization rotation angle 6, related to the
circular birefringence by the formula

Lpg
Op=m TAHF, (3)
where Lp is the length of the magnetic field region. The

Cotton-Mouton effect is measured through the induced
ellipticity related to the linear birefringence by the formula

Lp .
Y= nTAnCM sin 26p, @
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where Op is the angle between the light polarization and the
magnetic field. Experiments are difficult because one needs a
high magnetic field coupled to optics designed to detect very
small variations of light velocity. One also needs an Lp as
large as possible. To this end, optical cavities are used to trap
light in the magnetic field region and therefore increase the
ellipticity to be measured (see, e.g., Ref. [8]).

In this paper, we present measurements of the Faraday and
Cotton-Mouton effects of helium gas at A = 1064 nm. Our
apparatus is based on an up-to-date resonant optical cavity
coupled to longitudinal and transverse magnetic fields. This
cavity increases the signal to be measured by more than a factor
of 270 000 compared to the one acquired after a single passage
of light in the magnetic field region. This allows us to reach a
measurement precision of a few percent for both the Faraday
and Cotton-Mouton effects. Our results are finally compared
to the theoretical predictions and they agree to within better
than lo.

II. EXPERIMENTAL SETUP AND SIGNAL ANALYSIS

A. Apparatus

Our apparatus is described in detail in Refs. [13,14]. Briefly,
as shown in Fig. 1, 30 mW of linearly polarized light provided
by a Nd:YAG laser (A = 1064 nm) is injected into a high-
finesse Fabry-Pérot cavity consisting of the mirrors M| and M.
The laser frequency is locked onto the cavity using the Pound-
Drever-Hall method [15]. To this end, the laser passes through
an electro-optic modulator creating sidebands at 10 MHz. The
beam reflected by the cavity is detected by the photodiode
Ph,. This signal is used to adjust the laser frequency with a
bandwidth of 80 kHz via an acousto-optic modulator and with
a bandwidth of a few kilohertz via the piezoelectric element of
the laser. A slow control with a bandwidth of a few millihertz
is also applied by the Peltier element of the laser.

Before entering the optical cavity, the light is linearly
polarized by the polarizer P. The light transmitted by the
cavity is then analyzed with the analyzer A crossed at
maximum extinction. Both polarizations are extracted: parallel
and perpendicular to P. The extraordinary beam (power I.),
corresponding to the light polarization perpendicular to P, is
collected by the low-noise photodiode Ph,., while the ordinary
beam (power I;), corresponding to the light polarization
parallel to P, is detected by Ph,. All the optical components
from the polarizer P to the analyzer A are placed in a

Ph ¢
— —
Nd:YAG B, B, A
A=1064 nm
P S S
| A =N 1A --->T|!_ET :
o ~
=] INJIE J A Ph
AON M, /N N, e
M4
Ph, X
PDH lock: yl_yz

FIG. 1. Experimental setup. EOM, electro-optic modulator;
AOM, acousto-optic modulator; PDH, Pound-Drever-Hall; Ph, pho-
todiode; P, polarizer; A, analyzer. See text for more details.
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high-vacuum chamber which can be filled with high-purity
gases. During this work, magneto-optical measurements have
been done using a bottle of helium gas with a global purity
higher than 99.9999%. This bottle is connected to the chamber
through a leak valve allowing injection of less than 10~ atm
of gas.

Magnets providing a field perpendicular to the light wave
vector k and a field parallel to k surround the vacuum pipe. The
transverse magnetic field (B, L k) used for Cotton-Mouton
effect measurements is created by pulsed coils as described in
Refs. [14,16] and briefly detailed in Sec. IV A. For the Faraday
effect measurements, a modulated longitudinal magnetic field
(By |l k) is applied via a solenoid. More details are given in
Sec. IITA.

B. Fabry-Pérot cavity

A key element of the experiment is the Fabry-Pérot cavity.
Its aim is to accumulate the effect of the magnetic field by
trapping the light between two ultrahigh-reflectivity mirrors
M; and M,. The length of the cavity is L. = (2.2713 +
0.0006) m. This corresponds to a cavity free spectral range of
APSR = ¢/2nL. = (65.996 & 0.017) MHz, with ¢ the speed
of light in vacuum and » the index of refraction of the medium
in which the cavity is immersed. This index of refraction
will be considered equal to 1. All these parameters and their
uncertainties were measured previously. Details concerning
the measurement are given in Ref. [13]. Using the Jones matrix
formalism, we can calculate the total acquired ellipticity due
to the Cotton-Mouton effect, W (¢). It is linked to the ellipticity
without any cavity, ¥ (¢), by

2F
V@) =—y ) o

Likewise, the total rotation angle ®g(¢) due to the Faraday
effect is

2F
Or(r) = 79}:(1‘), (6)

where F is the finesse of the cavity and 6g(¢) the rotation angle
without any cavity.

1. Cavity birefringence

The cavity induces a total static ellipticity I'. This is due to
the mirrors’ intrinsic phase retardation [17]. Each mirror can
be regarded as a wave plate and a combination of both wave
plates gives a single wave plate. The total phase retardation
d¢q and the axis orientation of the wave plate equivalent to the
cavity depend on the phase retardation of each mirror and on
their relative orientation [18,19]. Thus the value of I" can be
adjusted by rotating the mirrors M; and M, around the z axis
corresponding to the axis of light propagation.

We first set I' = 0. To this end, we align the axis of the
equivalent wave plate on the incident polarization. This is done
by rotating the mirrors while the laser frequency is locked
onto the cavity. As the polarizers are crossed at maximum
extinction, we can measure the extinction ratio o2 of the
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polarizers by measuring the following ratio:

18
ol="] . )
ll I'=0

The value of o2 is regularly measured, in particular be-
fore each shot for the Cotton-Mouton effect measurements.
This extinction ratio can typically vary from 4 x 1077
to 8 x 1077,

As shown in Ref. [14], because of the ellipticity noise, the
optical sensitivity improves when I" decreases. Starting from
I' = 0 and rotating M in the clockwise or counterclockwise
direction, we choose the sign of I" as well as its value, with
typically I'> ~ ¢2. The sign of I' is known by filling the
vacuum chamber with nitrogen gas and by measuring its
Cotton-Mouton effect, whose sign and value are perfectly
known. This measurement has already been done with this
apparatus and the results are reported in Ref. [13]. We
performed several measurements with different signs and
values of I', showing that this parameter is perfectly controlled.
The value and the sign of I' are set before each magnetic
shot.

The static birefringence of the cavity changes the incident
linear polarization into an elliptical polarization of elliptic-
ity I". But it also induces a rotation angle ¢ of the major axis of
the ellipse compared with the polarizer axis. The value of this
angle can be calculated by considering the Fabry-Pérot cavity
as an equivalent wave plate of phase retardation d¢. The angle
between the incident linear polarization and the fast axis of
the equivalent wave plate corresponds to ¢, as represented in
Fig. 2. The ellipticity induced by the wave plate is given by

. sin(2¢) sin(8eq)
= 5 .
As we set I' « 1, the fast axis is almost aligned with P and
thus we have ¢ < 1. Assuming that 6.4 < 1, we get

®)

o=—. ©)

Fast axis

Elliptical
polarization

Wave plate
equivalent to

the cavit!
y y

FIG. 2. Rotation of the major axis of the elliptical polarization
due to the static birefringence of the Fabry-Pérot cavity.
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We also have

tan(26) = tan(2¢) cos(deq), (10)

52
0 = <_";> (11

where 0 is the angle between the major axis of the ellipse and
the fast axis of the wave plate. Combining Egs. (9) and (11),
we obtain the angle € between the major axis of the elliptical
polarization and the incident linear polarization:
e=9—¢=—m”. (12)
2
The value of the phase retardation of our cavity is about [§¢q| ~
0.1 rad. This has been inferred by measuring the value of I as
a function of the mirrors’ orientation, as explained in detail in
Ref. [17]. With a typical value of |T'| varying from 8 x 107*
to 3 x 1073, we obtain 40 < |e| < 150 prad.

2. Cavity finesse and cavity filtering

The finesse of the cavity is inferred from the measurement
of the photon lifetime 7 inside the cavity. Atz = t; the intensity
of the laser, previously locked onto the cavity resonance, is
switched off. The exponential decay of the intensity of the
ordinary beam for ¢ > 1y is fitted with

I(t) = I(tg)e " =/" (13)

to obtain t. The cavity finesse is related to the photon lifetime
through

F="2 14
=TI, (14)
The value of the photon lifetime is regularly checked during
data taking. In this experiment, it ranges from 1.06 to 1.12 ms,
corresponding to a finesse of 438 000 to 465 000. During a
run of data taking, the relative variation of the photon lifetime
does not exceed 2% at the 1o confidence level.
Due to the photon lifetime, the cavity acts as a first-order
low-pass filter, as explained in detail in Ref. [20]. Its complex
response function H(v) is given by

: (15)
+iy

Ve

HW) = 1

with v the frequency and v, = 1/4wt >~ 70 Hz the cavity
cutoff frequency. This filtering has to be taken into account
in particular for the time-dependent magnetic field applied
inside the Fabry-Pérot cavity.

The cavity also acts as a first-order low-pass filter for
the ordinary beam I;(¢) compared to the beam incident on
the cavity. But, due to the cavity birefringence, the cavity
acts as a second-order low-pass filter for the extraordinary
beam I.(¢). This effect is explained in detail in Ref. [20]. The
second-order low-pass filter represents the combined action
of two successive identical first-order low-pass filters. Their
complex response function is given by Eq. (15). While the first
one characterizes the usual cavity behavior, we can interpret
the second filter in terms of pumping or filling: due to the
mirror birefringence, some photons of the ordinary beam
are gradually converted into the extraordinary beam at each
reflection. Thus, if we want to directly compare /() and (),
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we have to apply the first-order low-pass filter to /i(¢). The
filtered signal I ¢(¢) is then used for the analysis.

C. Signals
The ellipticity W(¢) and the rotation of the polarization
®g(?) induced by the transverse and the longitudinal magnetic
fields can be related to the ratio of the extraordinary and
ordinary powers as follows:

le(r)
I (1)
This formula, which can be obtained using the Jones formal-

ism, clearly shows that our experiment is sensitive to both
ellipticities and rotations.

o2 + [T + W) + [e + Or()]*. (16)

III. FARADAY EFFECT OF HELIUM GAS

As stated above, the Faraday effect corresponds to a
magnetic circular birefringence Ang induced by a longitudinal
magnetic field By. From Egs. (1), (3), and (6), we deduce that
the polarization rotation to be measured depends on kr as
follows:

Lpg

For historical reasons, the Faraday effect is usually given in
terms of the Verdet constant V [21], which is related to the
Faraday constant by

y = ke (18)
A
Equation (17) becomes
2F
Or(t) = 7VB” (t)Lp. (19)

A. Magnetic field

To measure the Faraday effect, we need a longitudinal
magnetic field. It is delivered by a 300-mm-long solenoid. Its
diameter is 50 mm and it corresponds to 340 loops of copper
wire. The magnetic field profile along the longitudinal z axis
has been measured with a gaussmeter. Figure 3 shows the
normalized profile. We define B ¢ as the maximum magnetic
field, thus at the center of the coil, and Ly as the equivalent

1.0
0.8
0.6

B)/Bj|max

0.4
0.2

0.0 T T T T T T T T T
-40 -20 0 20 40
Longitudinal z-axis (cm)

FIG. 3. Normalized profile of the longitudinal magnetic field
inside the solenoid along the longitudinal z axis. The crosses
correspond to the measurements.
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magnetic length such that

+00
/ BH(Z)dZ = BH,OLB~ (20)
—00

This equivalent magnetic length has been calculated by numer-
ically integrating the measured field. Taking into account the
experimental uncertainties, we obtain L = (0.308 % 0.006)
m at lo. We can reach a maximum magnetic field of about
4.3 mT corresponding to an injected current of 3 A.

To measure the magnetic field during operation, we measure
the current injected into the coil. The form factor By/I
has been determined experimentally using the gaussemeter
and an ammeter. This form factor remains constant for
frequency modulation ranging from dc to 50 Hz. Finally
we have estimated the relative uncertainty u(B))/ B = 1.4%
at lo, taking into account the uncertainties coming from
the gaussmeter and the ammeter and from a possible small
misalignment of the laser beam inside the solenoid.

Faraday effect measurements were performed at room
temperature 7 = 293 K in an air-conditioned room. When a
current is injected into the solenoid, the temperature increases
inside the coil. Nevertheless, for a maximum current of 3 A,
the increase is lower than 2 K. This will be taken into account
in the final uncertainty.

B. Analysis of Faraday signal

The magnetic field at the center of the coil is modulated at
the frequency v: B = By o sin(2w vt + ¢). The rotation of the
polarization due to the Faraday effect is thus given by

Or = O¢ sin(2w vt + ¢), 21
. 2F
with @() = —VBH’()LB. (22)
b4
Expanding Eq. (16), we obtain
L.(t
D _ 0% + € +2eOx(1) + O1)
Ii£(2)

4+ T2 4 20W() + W2(0). (23)

We define the ratio between the Faraday and the Cotton-
Mouton signals as

205 + O2
2TV + W2

For the Faraday measurements, our typical static ellipticity
is I' =3 x 1073 rad, and Eq. (12) gives |¢| = 150 urad. We
evaluate the value of Rg/cm using the theoretical values of
the Verdet and Cotton-Mouton constants of helium which are
given later in this article. For this experiment, our typical
helium pressure is 30 x 1073 atm and the cavity finesse is
of the order of 465 000, corresponding to a cavity cutoff
frequency of about 70 Hz. The solenoid mainly induces a
longitudinal magnetic field, but, for the sake of argument, let
us perform the calculation with the same value 4.3 mT for
the longitudinal and the transverse magnetic fields. One gets
Re/em ~ 10°. The Cotton-Mouton effect is thus negligible.
Equation (23) thus becomes

Lo
I ¢(1) B

Rp/om = (24)

o +T? + [e + Op()]* (25)
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This equation results in three main frequency components:

@2
Idc=O'2+F2+62+70, (26)
2€0 . v
I, = — sin [271\)1 + ¢ — arctan (—):| , @D
1+ () :
@6 2v
b, = ——F—— ¢0s 4mvt +2¢ —arctan | — | | .
2,1+ (®) Ve

(28)

As mentioned before, the cavity acts as a first-order low-pass
filter, with a cavity cutoff frequency v.. This filtering has been
taken into account in Egs. (27) and (28).

The amplitude of the v component, I, depends on ® but
also on €, whose value is not precisely known. On the other
hand, I, depends only on ®,. Consequently it is the only
component used to measure the Verdet constant. The amplitude
of the 2v frequency component, proportional to (B oLp)?, is
measured as a function of the magnetic field amplitude. We fit
our data with Ky Bﬁ’o. The Verdet constant V finally depends
on the measured experimental parameters as follows, using
Eq. (22) and the amplitude of the 2v component given in Eq.
(28):

Ky [1 4+ 8rtv)?]/4

VITLP) == 2TAFSR

(29)

C. Results
1. Our result

We report in Fig. 4 the Fourier transform of the I /I,  — I4c
signal with about 60 x 10~3 atm of helium and with By gLy =
1.3 x 103 T m. The magnetic frequency modulation is fixed
to v = 18 Hz in order to have the 2v frequency lower than
the cavity cutoff frequency. We can observe both components
at frequencies v and 2v. During the Faraday data taking, the
photon lifetime was t = (1.12 4= 0.02) ms corresponding to a
cavity finesse of (465 000 £ 8000).

We plot in Fig. 5 the amplitude of the 2v component as a
function of By . We fit our data by a quadratic law Ky Bﬁ,o'
We also study the v frequency component as a function of the
magnetic field amplitude. According to the relation (27), we
obtain a linear dependence. By fitting these data by a linear

6x107

0 T T T

10 20 30 40 50
frequency (Hz)

FIG. 4. Fourier transform of I, /I, — I, with about 60 x 1073 atm
of helium and with BjoLg = 1.3 x 1073 T m. The magnetic
frequency modulation is v = 18 Hz.
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FIG. 5. Amplitude of the 2v frequency component as a function of
By o with about 60 x 1072 atm of helium. The solid line corresponds
to a quadratic fit of the experimental data.

equation and using the value of the Verdet constant measured
with the 2v frequency component, we infer the value of the
€ parameter. We obtain € ~~ 10 rad, in agreement with the
value calculated with Eq. (12).

We performed Faraday constant measurements at different
pressures from 1072 to 6 x 1072 atm. They are summarized
in Fig. 6. We measure the gas pressure in the chamber with
pressure gauges which have a relative uncertainty given by the
manufacturer of 0.2%. In this range of pressure, helium can
be considered as an ideal gas and the pressure dependence of
the Verdet constant is thus linear. As shown in Fig. 6, our data
are correctly fitted by a linear equation. Its V-axis intercept
is consistent with zero within the uncertainties. Its slope
gives the normalized Verdet constant at A = 1064 nm and at
T=294+1)K:

V =(3.87+0.12) x 107 atm ' rad T "' m~". (30)

With a scale law on the gas density and considering an ideal
gas, this corresponds to a normalized Verdet constant at 7 =
273.15 K of

V=(4.17+0.13) x 107> atm ' rad T "' m~". (31)

The uncertainty is given at lo. It is calculated from the relative
A- and B-type uncertainties summarized in Table I and detailed
in Ref. [13]. Using Eq. (18), we can also give the normalized
Faraday constant. At T = 273.15 K, one gets

kg = (1.41 £0.04) x 107" atm™' T~ (32)
2.0x10° C
- -6 &
£ 1.5 Lo
- L4 ©,
g 1.0 - :'w
> 0.5 r2
0.0 T T T T T r 0
0 10 20 30 40 50 goyq0°

P (atm)

FIG. 6. Verdet constant of helium as a function of pressure. The
solid line corresponds to a linear fit of the experimental data.
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TABLE I. Parameters and their respective relative A- and B-type
uncertainties at 1o that have to be measured to infer the value of the
normalized Verdet constant V.

Parameter Relative A-type Relative B-type
uncertainty uncertainty

T 2 x 1072

Ky 8 x 1073

Byo 1.4 x 1072

Ly 2.0 x 1072

AFSR 3x 1074

P 2 x 1073

2. Comparison

Our value of the normalized Verdet constant can be
compared to other published values. Reference [7] presents the
most extensive experimental values in helium. They have been
measured at different wavelengths, from 363 to 900 nm, and
they correspond to the open trianglesin Fig. 7at T = 273.15K.
As stated by the authors in Refs. [7,22], “the average absolute
probable error is considered to be about 1%,” but “the scale of
measurement was determined by a comparison of these results
with accepted values for water.” This is an important difference
from our experiment since we do not need to calibrate our setup
with another gas. All parameters on which the measured Verdet
constant depends are accurately monitored, yielding therefore
a Verdet constant of high precision.

As far as we know, no value has been reported at 1064 nm,
our working wavelength. Nevertheless, it can be quadratically
interpolated from the data of Ref. [7] with a fit A/A? (solid
line in Fig. 7). This gives a normalized Verdet constant at
A =1064 nm and T =273.15 K of V = (4.15+0.05) x
107 atm~' rad T~! m~!. The uncertainty is the one given by
the fit. This value is compatible with ours, which is represented
as the open circle in the inset of Fig. 7.

We finally compared our value with the theoretical pre-
dictions at T = 273.15 K. The most recent ones were pub-
lished in 2005 [6] exploiting a four-component Hartree-Fock
calculation and in 2012 [23] using a relativistic particle-hole

y 74
< 3x10 o 437
E : ' 424 \%\
A x
— 414

2 i
g i 40 T T T T T T T
- 1050 1060 1070 1080
e 1
S
~ _

01 T T T T T T T

400 600 800 1000
A (nm)

FIG. 7. A: Experimental values of helium normalized Verdet
constant at 7 = 273.15 K reported in Ref. [7] for wavelengths from
363 to 900 nm. These values are fitted by the law A /A2 (solid line).
o: Our experimental value at 7 = 273.15 K. e: Theoretical predic-
tions at 7 =273.15 K reported in Ref. [6]. Inset: Zoom around
A = 1064 nm. The error bar corresponds to the 1o uncertainty of our
measurement.
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TABLE II. Experimental and theoretical values of the nor-
malized Verdet constant at 7 = 273.15 K, A = 1064 nm and
with uncertainties at lo.

Ref. V x 10° Remarks
(atm™'rad T™'m™1)
Theory
[6] 4.06
[23] 4.09 £0.02 Quadratically interpolated.
Experiment
[7] 4.15+0.05 Quadratically interpolated.
Not absolute: scaled to
water.
This work 4.174+0.13

configuration-interaction method. Reference [6] gives values
at different wavelengths that are plotted in Fig. 7 with the
filled points. The value at A = 1064 nm is V =4.06 x
107> atm~'rad T~'m~! and it is plotted in Fig. 7 with the
filled point. Reference [23] does not give a value at 1064 nm,
but it can be obtained by a quadratic interpolation of the
data provided by the author. One obtains V = (4.09 £ 0.02) x
10~ atm~' rad T-! m~!, with an uncertainty given by the fit.
Both theoretical values are compatible with our experimental
Verdet constant. All these theoretical and experimental values
are summarized in Table II.

IV. COTTON-MOUTON EFFECT OF HELIUM GAS

The Cotton-Mouton effect consists in a linear birefringence
Ancy induced by a transverse magnetic field B;. From
Egs. (4) and (5) we deduce that the ellipticity W(¢) to be
measured is linked to kcy by

L
() = ZFTBkCMBi(t) sin 26p. (33)

The angle 6p is adjusted to 45° with the experimental procedure
explained in Ref. [13].

A. Magnetic field

One can see that W is proportional to B L 5. In order to have
W as high as possible, we have to maximize this parameter.
This is fulfilled using pulsed fields delivered by one magnet,
named the “X-coil”, especially designed by the Laboratoire
National des Champs Magnétiques Intenses (LNCMI). The
principle of this magnet and its properties are described in
detail in Refs. [14,16]. It can provide a maximum field of
more than 14 T over an equivalent length Ly of 0.137 m [13].
The high-voltage connections can be remotely switched to
reverse the direction of the field. Thus we can set B parallel or
antiparallel to the x direction, as shown in Fig. 1.

The pulsed coil is immersed in a liquid-nitrogen cryostat
to limit its heating. A pause between two pulses is necessary
to let the magnet cool down to the equilibrium temperature.
We do not need to use the coil at its maximum field since
the sensitivity of our experiment is largely sufficient. We have
chosen to apply a maximum field of 3 T in order to limit
the aging of the magnet. From one shot to another, a relative
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FIG. 8. Square of the magnetic field amplitude as a function of
time for a maximum field of 3 T. Solid black curve, Bf_; dashed curve,
B?..

variation of the maximum of the field lower than 1.5% was
observed due to variation of the power supply voltage.

The pulse duration is less than 10 ms, with the maximum
of the field reached within 2 ms. Since the pulse duration is of
the same order of magnitude as the photon lifetime inside the
cavity, the filtering of the Fabry-Pérot cavity has to be taken
into account for the magnetic field, as we said in Sec. Il B2. We
calculate the filtered field Bif from B2 by using the first-order
low-pass filter corresponding to the cavity. The time profiles of
B? and B7 ; are shown in Fig. 8, for a maximum field of 3 T.

B. Analysis of Cotton-Mouton signal

As mentioned in Sec. I C, the ratio of the powers I. and I,
is linked to the birefringence W(¢) to be measured as follows:

L
Ii¢(t) N

where ®g(f) is the rotation angle due to the longitudinal
component of the pulsed magnetic field inducing a Faraday
effect in helium. This component By(z) is first due to the
X structure of the coil. It is around 230 times smaller than
the transverse field, i.e., around 10 mT for a pulse of 3 T.
Moreover a contribution to B) appears if the cryostat is not
perfectly aligned with the optical axis. The diameter of the
cryostat is 60 cm. A typical misalignment of 2 mm over this
length, i.e., around 3 mrad, leads to a longitudinal component
of 10 mT. Finally the estimated longitudinal magnetic field is
about 20 mT. It can be present during a shot over an equivalent
length Ly = 0.137 m.

Using Eq. (19) and the value of the Verdet constant given
in Eq. (30), we can calculate the rotation of the polarization
Or due to By. It is about 30 mrad per atmosphere of helium
gas. We then calculate the ratio of the Faraday effect to the
Cotton-Mouton effect, Rg/cm, given by Eq. (24). Since the
static ellipticity is typically || ~ 8 x 10~* rad corresponding
to € >~ 40 urad as stated in Sec. Il B1, this ratio goes from 200
at 40 x 1073 atm to 2600 at 550 x 103 atm. This shows that
the Faraday effect component is not negligible and thus needs
to be taken into account.

From Eq. (34), we obtain

L(t)
Le(t)

o2 F T+ WP + e + O, (34

02+ T2+ €24+ 2TW(1) + V2(r)

+2€@k(1) + OX(2). (35)
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This formula shows that the angle € carries the Faraday effect
of the gas. During a Cotton-Mouton effect measurement we
want to have the Faraday effect as small as possible. We
therefore minimize € before the shot, once the value of I
is set, by turning the analyzer A. As we can see in Fig. 2,
this consists in aligning A, which was initially adjusted at 90°
compared to the incident polarization, on the minor axis of
the elliptical polarization. Nevertheless, in order to take into
account the imperfections of this experimental adjustment, we
still keep € in the formula, assuming that €2 < I'2.

To extract the ellipticity W(¢), we calculate the following
Y (¢) function:

I.(1)

L) — de
Yit) = ———
) N
W(1) l€|lOr(t)  Ok1)
= yW(t N 36
y() + N +vy N + N (36)

where y corresponds to the sign of T". Iy is the static signal:

) 2 2 I e(t ) >
Ije=0"+T"+¢€ <I"f(t) . (37)
and it is measured just before each shot, the magnetic field
being applied at = 0. We also measure the extinction ratio o2
before each shot using the experimental procedure described
in Sec. I B1. The absolute value of the static ellipticity is then
calculated as follows:

ING)
' = — o2 38
T <It,f(f)>z<o 7 %)

Two parameters are adjustable in the experiment: the sign
y of the static ellipticity I" and the direction of the transverse
magnetic field. We acquire signals for both signs of I and
both directions of B: parallel to x is denoted as >0 and
antiparallel is denoted as <0. This gives four data series:
=0, B, >0,IT=>0,B, <0), I' <0, B, <0), and
(I' <0, B, > 0). For each series, signals calculated with
Eq. (36) are averaged and denoted as Ys,, Y~ ., Y«,and Y_..
The first subscript corresponds to I' > 0 or I' < 0 while the
second one corresponds to B parallel or antiparallel to x.

The Y signals are the sum of different effects with different
symmetries, denoted as S:

Ys = a5 St + 058+ S +ds Sy,
Y.. = a><S++ - b><S+— - C><S—— + d><S_+,
(39)
Yo =aeSit —beSi +oeS— —deS—,

Y<> - a<>S++ + b<>S+7 - C<>S,, - d<>S,+.

The first subscript in S corresponds to the symmetry with
respect to the sign of I' and the second one with respect to the
direction of B. The subscript + indicates an even parity while
the subscript — indicates an odd parity. In practice ws =~
Wso ™~ We ~ wos (With w =a, b, ¢, or d) depend on the
experimental parameters. These values are not perfectly equal
because the experimental parameters slightly vary from one
shot to another, in particular the value of |I'|.

Possible physical effects contributing to the different S
signals are summarized in Table III. The S;_ signal does
not appear in Eq. (36) but it has to be taken into account. It
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TABLE III. Possible physical effects contributing to the S signals.

S signal Physical effect
Si4(0) OF(1), ¥ (1)

S, (1) B effects on photodiodes
S_—(1) Y Or()

S_.(t) 1240

corresponds to a signal with odd parity towards the direction
of B and even parity towards the sign of I" that could be, for
example, a spurious effect on the photodiodes Ph, and Ph,
induced by the magnetic field.

Linear combinations of the Y signals allow the effects
corresponding to the different symmetries to be highlighted:

Yo + Yo+ V47V

Ji = ;
4
= ES++ + Ab1S+, + AC]S,, + Ad157+,
Yo =Yoo —Ye+7Yoo
Jh= ,
4
= ES+_ + Aa2S++ + ACzS__ + Asz_+, 40
Y>> - Y>< + Y<< - Y<> ( )
S = ,
4
=cS__ + Aa3S++ =+ Ab3S+_ + Ad3S_+,
Y>> +Y>< - Y<< - Y<>
Jy = ,

4
=dS_, + AasSyy + AbySy_ + AcyS__,
with Aw; >0 (w =a, b,c,ord andi =1, 2, 3, or 4). The
signal we want to measure is W (¢) which corresponds to the

main part of S_ (), and is thus proportional to BJZ.,f' We can
write

Jo=aB] ¢+ AaySii + AbsSs + AcsS_
~ B ;. 41
We fit the function J; with aB? ; to obtain «. The Cotton-

Mouton constant kcy finally depénds on the measured exper-
imental parameters as follows:

o A 1
Ar T AFSR [ sin26p

The terms 7 and P correspond to the gas temperature and
pressure.

kem(T,P) =

(42)

C. Results
1. Our result

We have taken data for helium pressures ranging from
40 x 1073 to 550 x 1073 atm. Before injecting the gas, we
pumped the vacuum chamber and the initial pressure was
about 1071 atm. Several series of four shots (I' > 0, B, > 0;
I'>0,B, <0;I"'<0,B; <0;and T" <0, B, > 0) were
acquired for each pressure. The vacuum chamber was pumped
between two measurements at different pressures, which made
them totally independent. The temperature of the gas during
the magnetic pulse was measured previously [13] and was
T =293 +1) K. For this set of measurement the mean

PHYSICAL REVIEW A 88, 043815 (2013)

time (ms) time (ms)
(a) Y>> (b) Ysc
6x10™*1
4 4+
>
2,
0 - ==
T T T
0 4 8
time (ms) time (ms)
(c) Y<< (d) Yo

FIG. 9. Time evolution of the Y(f) signals at a pressure of
550 x 1073 atm. Solid black curve, experimental data; dashed curve,
expected signal from the theoretical prediction considering only the
Cotton-Mouton effect.

photon lifetime inside the cavity is v = (1.06 £ 0.02) ms,
corresponding to a finesse of 438 000 = 8000.

The signals Ys,, Y~ -, Y«, and Y_.. obtained for a pressure
of 550 x 1073 atm are plotted in Fig. 9. We calculate the
signals expected from the theoretical prediction considering
only the Cotton-Mouton effect [5]. The theoretical signals
(dashed line) are superimposed on the experimental data (solid
line). One can see that the Y signals do not match at all with the
expected signals. A more refined study is thus needed to extract
the Cotton-Mouton effect. The Y signals are in fact linear
combinations of different effects with different symmetries
with respect to the sign of I" and the direction of B, as predicted
in Egs. (39).

We then calculate the corresponding J signals, plotted in
Fig. 10. In order to validate the physical origin of J;, J», J3,
and J4, we have studied the evolution of the values of their
maxima as a function of pressure. They are shown in Fig. 11.
In this range of pressure, helium can be considered as an ideal
gas and the pressure dependence of the Faraday and Cotton-
Mouton effects is thus linear. We see that the maxima of J3 and

-5
6x10™* 1 4x10
= 4 S 2
2,
0 T T T T T 0 T T T T T T
0 4 8 0 4 8
time (ms) time (ms)
(a) Jl (b) J2
0 6x10°
-2 4
- -4 = 5
-6
Bx10° e 0
0 4 8 0 4 8
time (ms) time (ms)
(c) J3 (d) Ja

FIG. 10. Time evolution of the J(¢) signals at a pressure of 550 x
1073 atm.
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FIG. 11. Evolution of the maximum of the J(r) signals as a
function of pressure.

J4 are proportional to the pressure, which is consistent with
the Faraday effect due to the residual longitudinal magnetic
field B and the Cotton-Mouton effect due to the transverse
magnetic field B, . The maximum of J; increases with the
square of the pressure. This confirms that this signal contains
the terms ©F and W2. The value of the J, maximum does
not have a clear dependence on the pressure. Moreover the
shape of J,(¢) is not the same from one pressure to another.
Finally, the J, signals can be fitted by a linear combination of
J1, J3, and Jy4. Thus, we deduce that J; is essentially a linear
combination of the other signals, and that the signal bS, _ is
almost zero.
Thus we can write

S = AarSiy + AcryS—— + AdrS_4,
J4 ~ 3S,+.

J1~aS,, “3)
J3 ~ cS__,

The main contribution to J4 comes from the Cotton-Mouton
effect. We thus fit J4(¢) with aBif(t). The value of kcy is then
calculated using Eq. (42).

For the lowest pressures, the Cotton-Mouton signal, pro-
portional to ozBif, also decreases. In this case, Aay S, and
Acy S__ are not completely negligible compared to aBiyf.
This is shown in Fig. 12 where a typical signal obtained for a
helium pressure of 162 x 1073 atm is plotted. We see that the

15x10° =
N
10 - / N\

= ! AN

5_

04— — — —

time (ms)

FIG. 12. Gray: Time evolution of J; for a pressure of 162 x
1073 atm. Black dashed curve: fit with « B7 ;. White solid curve: fit
with «B? ; + a1 J; + a3 J5, the value of « being fixed at the value
obtained with the previous fit « B? .

Pressure (atm)

FIG. 13. Linear magnetic birefringence of helium gas as a
function of pressure. The solid line corresponds to a linear fit of
the experimental data.

fit of J4 with aBif does not perfectly match the experimental
data. To obtain a better fit, we have to add parameters. To this
end, we first fix the value of « at the value obtained with the
first fit « BT . Then we fit Jy with @ B ; + a1 J; + a3J3. Jr is
not used in this fit because, as we said before, it is mainly a
linear combination of the other signals. One can see in Fig. 12
that this fit now matches the data much better. We can conclude
that, in this case, we have

Ji=aB] ;+ AaySiy + AcsS__ (44)
) Aay Acy
:O{Bl’f‘i‘ a Jl +?J3’ (45)

withay = Aas/a and a3 = Acy/c. This fit procedure repeated
for each pressure shows that we always have a, and o3 lower
than 0.1.

The value of kcy as a function of the pressure is shown in
Fig. 13. A linear fit of this data gives kcy = (2.19 £ 0.09) x
1071 T2 atm™! at T = (293 £ 1) K. Its kcy-axis intercept is
consistent with zero within the uncertainties.

The A-type uncertainties come from the fit and from the
photon lifetime with a relative variation lower than 2%.
The B-type uncertainties have been evaluated previously and
detailed in Ref. [13]. They essentially come from the length
of the magnetic field L. They are summarized in Table IV.
We obtain for the value of the Cotton-Mouton constant at
T=293+1HK

kem = (2.19+0.12) x 1071 T2 atm™!. (46)

TABLE IV. Parameters that have to be measured to infer the
value of the Cotton-Mouton constant kcy and their respective relative
B-type uncertainties at 1o.

Relative B-type

Parameter Typical value uncertainty
a 1073 rad T2 2.2 x 1072
AFSR 65.996 MHz 3x 1074
Ly 0.137 m 2.2 x 1072
1064.0 nm <5x 107
sin 26p 1.0000 9 x 107
Total 3.1 x 1072
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2.0

A =1064 nm

(b) Summary of the two values at A = 1064 nm

FIG. 14. Comparison of reported values of the Cotton-Mouton
effect of helium gas. A, experimental values of helium Cotton-
Mouton constant reported in Refs. [8,11,12]; o, our experimental
value; e and dashed line, theoretical predictions reported in Ref. [24].

The value of kcym normalized at 273.15 K is calculated with a
scale law on the gas density:

kem = (2.354£0.13) x 1071 T2 atm ™!, (47)

at A = 1064 nm, taking into account the uncertainty on the
temperature.

2. Comparison

The value of the Cotton-Mouton effect in helium is
calculated very precisely by ab initio quantum chemistry
computational methods [5]. Theoreticians concentrate on the
calculation of the hypermagnetizability anisotropy An while
experimentalists measure the birefringence Ancy = kem B2,
The Cotton-Mouton constant kcy is linked to An by [10]

6.18381 x 1074
T

Few experiments have been realized to measure the Cotton-
Mouton effect of helium. The results are summarized in
Table V. The theoretical values correspond to those of Ref.
[24]. The latter have been obtained using the full configuration-
interaction (FCI) method and the most extended wave function
basis. They are expected therefore to be very accurate.

Our result is compatible at better than lo with the
theoretical prediction. In Fig. 14 we summarize the results
for the Cotton-Mouton measurements at 273.15 K.

ke (atm™' T72) = An(au). (48)

V. DISCUSSIONS AND CONCLUSION

In this paper we report a measurement of the Faraday and
Cotton-Mouton effects at A = 1064 nm. Both measurements
have precisions that are of the order of a few percent,

PHYSICAL REVIEW A 88, 043815 (2013)

TABLE V. Experimental and theoretical values of the Cotton-
Mouton constant for helium gas. Values are normalized for a
temperature of 273.15 K and a pressure of 1 atm. Uncertainties are
given at lo.

Experimental results Theoretical prediction [24]

Ref. Am) 10y (T72) 10'%key (T72)
(8] 5145  1.80£0.36 2.3959
[12] 532 2.08+0.16 2.3966
[11] 790 3.95 + 1.40 2.4018
[12] 1064  2.2240.16 2.4036

Thiswork 1064  2.35+0.13 2.4036

corresponding to one of the most precise birefringence
measurements. Our measurements are also in agreement with
theory at better than 1o. It is worthwhile to stress that our
Faraday measurement is absolute, while previous results [7,22]
were given with respect to the Faraday effect of water.

Our Cotton-Mouton measurement agrees well with the
recent theoretical prediction obtained using theFCI method
and the most extended wave function basis. This solves the
problem of the discrepancy between experiment and theory
originating from the first 1991 measurements and calculation
[10] and that still persisted (see Table V).

The measurement of such small Cotton-Mouton effects,
like that of helium, is important not only to test the quantum
chemistry predictions. It is also a crucial test for the appara-
tuses devoted to the search for vacuum magnetic birefringence.
Quantum electrodynamics predicts that a vacuum, like any
other centrosymmetric medium, should exhibit a Cotton-
Mouton effect [25]. This fundamental prediction has not yet
been experimentally proven. Several attempts have been made
and a few are still under way [25]. The vacuum Cotton-Mouton
effect should be about eight orders of magnitude smaller than
that of helium at 1 atm. Measurement of the Cotton-Mouton
effect of helium is therefore compulsory in the search to
improve the sensitivity of such apparatuses.

Our experimental method based on pulsed fields coupled to
a Fabry-Pérot cavity seems very appropriate to reach the sen-
sitivity needed for vacuum measurement. The measurements
reported here validate the whole procedure of data taking and
signal analysis that allow isolation of the main effect from the
spurious ones due to signal symmetries. They are therefore a
significant step in the road towards vacuum linear magnetic
birefringence.
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The circular and linear magnetic birefringences corresponding to the Faraday and the Cotton-Mouton
effects, respectively, have been measured in xenon at A = 1064 nm. The experimental setup is based on
time dependent magnetic fields and a high finesse Fabry-Pérot cavity. Our value of the Faraday effect
is the first measurement at this wavelength. It is compared to theoretical predictions. Our uncertainty
of a few percent yields an agreement at better than 1o with the computational estimate when
relativistic effects are taken into account. Concerning the Cotton-Mouton effect, our measurement, the
second ever published at A = 1064 nm, agrees at better than 10~ with theoretical predictions. We also
compare our error budget with that established for other experimental published values. © 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4916049]

. INTRODUCTION

Magnetic birefringence corresponds to an anisotropy of
the (generally complex) refractive index induced in a medium
by a magnetic field.!”> A circular birefringence arises when the
magnetic field changes the angular velocity of the two eigen
modes of polarization in which a linearly polarized beam is
split, without deforming them. The net result is a rotation of
the plane of linear polarization, a phenomenon also seen in
the absence of external fields in chiral samples (natural optical
rotation). When the presence of the external magnetic field
yields a different phase of two perpendicular components of
the linear polarization vector, the net result is the appearance
of an ellipticity, and we are observing an example of linear
birefringence.

Two well known examples of magnetic birefringences are
the Faraday and the Cotton-Mouton effects. The former corre-
sponds to a circular birefringence induced by a longitudinal
magnetic field B (aligned parallel to the direction of propaga-
tion of light). After going through the birefringent medium, the
real part of the index of refraction for left circularly polarized
light n_ is different from that for right circularly polarized light
n.. The difference Ang = n_ — n, is proportional to By,

Anp = kFB”, (1)

kg being the circular magnetic birefringence per unit magnetic
field intensity. For historical reason, the Faraday effect is usu-
ally given in terms of the Verdet constant,
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where A is the light wavelength. On the other hand, the Cotton-
Mouton effect corresponds to a linear magnetic birefringence
induced by a transverse magnetic field B;. The field induces
a difference between the real parts of the refraction index
for light polarized parallel n| with respect to that polarized
perpendicular to the magnetic field n,. The difference Ancy
= nj — n, is proportional to the square of the magnetic field,

Ancy = kemB?, 3

with kcy the linear magnetic birefringence per square unit
magnetic field intensity.

For the Cotton-Mouton effect, kcp has two contributions,
the first one due to the distortion of the electronic structure
while the second one corresponds to a partial orientation of
the molecules. When working in the conditions of constant
volume, the orientational contribution is proportional to the
inverse of the temperature 7', and it usually dominates, often
hiding the first temperature independent contribution. For axial
molecules, for example, kcy is given by the expression®

_ 7TNA (A + 2
T Vodrneg T 15kgT

Above N, is the Avogadro constant, Vp, the molar volume,
kg the Boltzmann constant, €y the electric constant, An the
frequency dependent hypermagnetizability anisotropy, Aa the
optical electric dipole polarizability anisotropy, and Ay the
magnetic susceptibility anisotropy. For spherical molecules or
for atoms, such as xenon, however, the temperature depen-
dent contribution vanishes. Measurements on noble gases, for
example, allow to focus on the hypermagnetizability anisot-
ropy An term. On the other hand, since the Langevin-type
orientational term vanishes, the magnetic birefringence is
much lower than the one observed in nonspherical molecules.

kew AaAy). @)
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From an experimental point of view, measurements on such
gases require a very sensitive apparatus, with a Ancy of the
order of 107'¢ for helium and 10~'# for xenon at 1 atm and
with a magnetic field of 1 T. In comparison, Ang is typically
10° bigger.

The computational determination of the Verdet constant
and of the Cotton-Mouton effect requires the far-from-trivial
calculation of higher-order response functions,> and it has
often served as a test bed for the validation of new electronic
structure methods. For atoms, in order to obtain accurate re-
sults, one must properly account for the appropriate description
of one-electron (basis set), N-electron (correlation), and rela-
tivistic effects. As far as correlation is concerned, coupled clus-
ter (CC) methods are nowadays among the most accurate tools
in electronic structure theory.*> Both birefringences treated
here, and in particular, the Cotton-Mouton effect, require a
good description of the outer valence space of the system at
hand. Therefore, the presence of diffuse functions in the one-
electron basis set is mandatory.>* Whereas for light atoms,
relativistic corrections are minor, their importance increases
and they become significant for heavier atoms. For example,
Ekstrom et al.® have calculated that for helium, the relativistic
effects add —0.03% to the non-relativistic Verdet value. For
xenon, the heaviest non-radioactive noble atom, relativistic
corrections add 3%—4%, depending on the chosen wavelength.
In this case, relativistic effects cannot be ignored in accurate
calculations.

In this article, we report both measurements and calcula-
tions of Faraday and Cotton-Mouton effects at A = 1064 nm.
We perform the first measurement of the Faraday effect of
xenon at this wavelength, and our estimate bears an uncer-
tainty of a few percent. Concerning the Cotton-Mouton effect,
our measurement, the second ever published at A = 1064 nm,
agrees at better than 1o with theoretical predictions and we
also compare our error budget with that established for other
experimental published values. Our theoretical predictions,
that can be considered of state-of-the-art quality, were ob-
tained at the coupled cluster singles and doubles (CCSD)’~?
and coupled cluster singles, doubles and approximate triples
(CC3)!'%-13 Jevels of theory, and they include estimates of rela-
tivistic effects. For both effects, our theoretical predictions are
within 1o of our experimental data.

Il. EXPERIMENTAL SETUP
A. Principle of the measurement

Experimentally, we determine the Faraday and the Cotton-
Mouton effects by measuring, respectively, the rotation induced
by alongitudinal magnetic field and the ellipticity induced by a
transverse magnetic field on an incident linear polarization. For
small angles, the induced rotation 6 depends on the circular
birefringence as follows:

L
O = nTBAnF, (5)

where Lp is the length of the magnetic field region. The
induced ellipticity ¥y is related to the linear birefringence
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by the formula,

L
Wom = nTBAnCM sin 26p, (6)

where 60p is the angle between the light polarization and the
magnetic field.

B. General setup

The apparatus has already been described in detail else-
where.!*!> Briefly, light comes from a Nd:YAG laser at A
= 1064 nm (see Fig. 1). It is linearly polarized by a first polar-
izer P, before going through either a transverse or a longitudinal
magnetic field. The polarization is then analyzed by a second
polarizer A, crossed at maximum extinction compared to P.
The beam polarized parallel to the incident beam, reflected
by the polarizer A as the ordinary ray, is collected by the
photodiode Ph. Its power is denoted by /. The beam polarized
perpendicular to the incident beam (power 1), corresponding
to the extraordinary ray that passes through the polarizer A, is
collected by the low noise and high gain photodiode Ph..

This setup has been designed to measure the linear mag-
netic birefringence of vacuum!'® and its sensitivity allows to
perform precise measurements on gases.'>!” All the optical
components from A to P are placed in an ultrahigh-vacuum
chamber. To perform birefringence measurement on gases,
we fill the vacuum chamber with a high-purity gas. For this
particular measurement, we have used a bottle of xenon with
a global purity higher than 99.998%.

C. Fabry-Pérot cavity

Magnetic birefringence measurements on dilute gases are
difficult, especially at low pressure, because one has to detect
very small variations of light polarization. To increase the
measured signal, one needs high magnetic fields. One also
needs an as large as possible path length in the field Lp (cf.
Egs. (5) and (6)). To this end, optical cavities are used to trap
light in the magnetic field region and therefore enhance the
signal to be measured.

As shown in Fig. 1, the cavity is formed by two mirrors M
and M,, placed at both sides of the magnetic field region. The
laser frequency is locked to the cavity resonance frequency,
using the Pound-Drever-Hall technique.'® The electro-optic
modulator generates 10 MHz sidebands, and the signal re-
flected by the cavity is detected by the photodiode Ph,. The
laser frequency is adjusted with the acousto-optic modulator,
the piezoelectric, and the Peltier elements of the laser.

This cavity increases the distance traveled by light in the
magnetic field by a factor 2F/r, where F is the cavity finesse.
Therefore, the rotation induced by the longitudinal magnetic
field becomes

2F
Ok(r) = 79F(l), @)

with 6 the rotation acquired without any cavity. In the same
way, the ellipticity induced by the transverse magnetic field
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)=1064 nm !
1 P v \—/ FIG. 1. Experimental setup. EOM
8 1~ |7 T : ———> TI T . :electro-optif.: modulator; AOM
IEI N IL | ¢ «— LI ~ = acousto-optic modulator; PDH
A Ph = Pound-Drever-Hall; Ph = photodiode;
AOM M 1 m /_\ M e P =polarizer; and A =analyzer. See
text for more details.
==\4
R - Ph, X
PDH lock y l—; Z
becomes zation due to the Faraday effect is thus given by
2F Of = Oy sin(2rvt + ¢), (11D
Pem(t) = ?WCM(I)s €)) oF
with @ = —VBjoLs. (12)

with cm denoting the ellipticity acquired without any cavity.
The cavity finesse is inferred from the measurement of the
photon lifetime 7 inside the cavity,'”

F = 27APRz, )

with AFSR as the cavity free spectral range. For the Faraday ef-
fect, the cavity finesse was about F' = 475 000. For the Cotton-
Mouton effect, two sets of mirrors were used with a respective
finesse of about 400 000 and 480 000.

D. Raw signals

We measure the circular and the linear magnetic birefrin-
gence by measuring the ratio I./1;,

2 2 2
0] =0+ [+ Yem(@)]” + [e + Op(1)]". (10)

As said previously, I. (I;) corresponds to the power of light
polarized perpendicular (parallel) to the incident beam. The
subscript findicates that we need to take into account the cavity
filtering, as explained in detail in the previous papers.'>!? The
term o2 corresponds to the extinction ratio of polarizers P and
A, T is the total static ellipticity due to the cavity mirrors, and
€ is the static angle between the major axis of the elliptical
polarization and the incident polarization. The extinction ratio
and the static birefringence are measured before each magnetic
pulse. The static angle € can be estimated but its value is not
needed for the analysis.

lll. CIRCULAR MAGNETIC BIREFRINGENCE
A. Magnetic field

The magnetic field is generated by a solenoid previously
used for Faraday effect measurement in helium. ' Its charac-
teristics have already been explained in detail.'!> Here, we just
briefly recall its main features. It generates a longitudinal mag-
netic field with an equivalent length Ly = (0.308 + 0.006) m
at 1o. This magnetic field is modulated at the frequency v
= 18 Hz: B = B,osin(27vt + ¢). The rotation of the polari-

B. Data analysis

Expanding Eq. (10), the raw signal becomes

LG o? +T7% + € + 2€Ox(t) + OF(0). (13)
14(2)

This gives three main frequency components: a DC signal, a
signal at the frequency v, and a signal at the double frequency
2v. To measure the Verdet constant, we use the amplitude of
the signal at 2v"°

@2
2 (14)

2,1+ (2)

where v, = 1/4n7 is the cavity cutoff frequency, introduced
to take into account the cavity filtering.'” A, is measured
for different magnetic field amplitudes, from 0 to about 50
x 1073 T. The whole is fitted by Kv B} . The Verdet constant
finally depends on the measured experimental parameters as

follows:

Ay, =

Ky [1 + (87771/)2]1/4
VP =N eame, (1

where T and P are, respectively, the temperature and pressure
of the gas.

C. Measurement and error budget

The A- and B-type uncertainties associated to the mea-
surement of V are detailed in Table I.'>!7 They are given at 1o
(coverage factor k = 1). The A-type uncertainty is dominated
by the photon lifetime uncertainty. The main contributions
to the B-type uncertainty come from the uncertainty of the
magnetic length and of the fit constant Ky which includes the
B-type uncertainty of the magnetic field and of the photodiodes
conversion factor.!’

We have measured the Verdet constant in xenon at T’
= (294 + 1) K and for 5 pressures from 1.01 x 1073 to 5.01
x 1073 atm. In this range of pressure, xenon can be considered
as an ideal gas and the Verdet constant is thus proportional to
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TABLE I. Parameters and their respective relative A- and B-type uncertain-
ties at 1o that have to be measured to infer the value of the Verdet constant
V. Typical values are given at P =5x 1073 atm.

Typical Relative A-type Relative B-type
Parameter value uncertainty uncertainty
7 (ms) 1.14 2.0% 1072
Ky (rad T 1.07 3x1073 3.2x1072
AFSR (MHz) 65.996 3x 107
Lp (m) 0.308 1.9 x 1072
Vx10° (rad T-' m™1) 1.66 1.8 %1072 2.5% 1072
the pressure. Data are fitted by a linear equation,

V(T,P)=V"P, (16)

giving a normalized Verdet constant (P = 1 atm) at A = 1064
nmand 7T = (294 + 1) K,

V'=(3.31+0.09)x 102 atm ' rad T"' m™".  (17)

The uncertainty is given at 1o~ and is detailed in Table II. With
a scale law on the gas density, this corresponds to a normalized
Verdet constant at 7 = 273.15 K of

VN=(3.56+0.10)x 10 % atm ' rad T"'m~".  (18)

Using Eq. (2), we can also give the normalized Faraday con-
stant at 7 = 273.15 K,

kR =(1.21+£0.03) x 10~ atm™ T~ (19)

IV. LINEAR MAGNETIC BIREFRINGENCE
A. Magnetic field

The transverse magnetic field B, is generated by an X-
Coil, specially designed by the High Magnetic Field National
Laboratory (LNCMI-Toulouse, France) for the measurement
of the vacuum magnetic birefringence. This coil has been
presented and discussed in great detail in several previous
papers.'4?° Very briefly, the magnet delivers a pulsed magnetic
field over an equivalent length Lg of 0.137 m. The total dura-
tion of the pulse is about 10 ms with a maximum reached within
2 ms. For the present measurements, a maximum magnetic
field of 3 T has been used. Finally, the high-voltage connections
can be remotely switched to reverse the direction of the field.

TABLE II. Parameters and their respective relative A- and B-type uncertain-
ties at 1o~ that have to be measured to infer the value of the normalized Verdet
constant V. The uncertainty given by the linear fit takes into account the
A-type uncertainty of V.

Relative Relative
Typical A-type B-type
Parameter value uncertainty uncertainty
V x10° (rad T ' m™!) 1.66 1.8 x 1072 2.5 %1072
P x 103 (atm) 5 2% 1073
Linear fitx 10 331 1.5x 1072
(atm™' rad T-' m™")
V%103 (atm ™! rad T-! m™1) 3.31 1.5x 1072 25% 1072

J. Chem. Phys. 142, 124313 (2015)

Thus, we can set B, parallel or antiparallel to the x direction,
as shown in Fig. 1.

B. Data analysis

The data analysis follows the one described for the Cotton-
Mouton effect measurement in helium.'> We will, however,
detail the main steps, since a slightly different method was used
in the present case.

To extract the ellipticity Wcm(¢) from Eq. (10), we calcu-
late the following Y (¢) function:

1e(t)

- Ipc
I (1)
()
(1) o]
P20 elOr) Ot
= yPemlt M B (0
Y¥em(t) + 2T +y 2T AT (20)

where y stands for the sign of I'. Ipc is the static signal
measured just before the application of the magnetic field.
The absolute value of the static ellipticity |T'| is also measured
before each pulse.

Two parameters are adjustable in the experiment: the sign
v of the static ellipticity I and the direction of the transverse
magnetic field. We acquire signals for both signs of I" and both
directions of B, : parallel to x is denoted as > 0 and antiparallel
is denoted as < 0. This gives four data series: (I' > 0, B, > 0),
T>0,B,<0),I<0,B, <0),and (I' <0, B, > 0).

For each series, signals calculated with Eq. (20) are aver-
aged and denoted as Y~ -, Y- ., Y. ., and Y<.. The first subscript
corresponds to I' > 0 or < 0 while the second one corresponds
to B, parallel or antiparallel to x. This average function can be
written in a more general form than the one of Eq. (20). Itis the
sum of different effects with different symmetries, denoted as s

1,1 1 1,1
Yoo =4+¥ + §<F>>>S++ + <r>>>s__ + §<F>>>S+_’
1, 1 1 1, 1
Vo= ¥t (g e b+l 1)
1| et TR o LR
D AV UV VYAl AV DA
1,1 1 1,1
Yoo =-F+ §<F<>>s++ + <F<>>s" + §<F<>>S+_

The first subscript in s corresponds to the symmetry with
respect to the sign of I' and the second one to the symmetry
with respect to the direction of B, . The subscript + indicates an
even parity while the subscript — indicates odd parity. The ratio
(1/T) is the average of 1/|T'| measured during corresponding
series. The terms ‘I’éM and 612: are included in s,., y|€|®f
included in s__, and s,_ corresponds to a spurious signal with
an odd parity towards the direction of B, and an even parity
with respect to the sign of I'. The ellipticity y'Wcym corresponds
to s_;.

From this set of four equations with four unknown quan-
tities (Wem, S+4, S——, and s._), we extract Wem(z), which is
fitted by aBif. The cavity filtering should again be taken
into account, as indicated by the subscript f.!>!° The Cotton-
Mouton constant kcy finally depends on the measured
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TABLE III. Parameters that have to be measured to infer the value of the
Cotton-Mouton constant kcy and their respective relative A- and B-type
uncertainties at lo-. Typical values are given at P =8x 1073 atm.

Typical Relative A-type  Relative B-type
Parameter value uncertainty uncertainty
7 (ms) 1.14 2.0x 1072
ax10° (T7?) 2.82 2.8x1074 22x1072
AFSR (MHz) 65.996 3x 1074
Lp (m) 0.137 22x 1072
A (nm) 1064.0 <5x 107
sin26p 1.0000 9x 107
kepx 1010 (T-2) 231 2.0x 1072 3.1x 1072
experimental parameters as follows:
a A 1
kem(T, P) = (22)

4xTAFSR L sin 26p°

C. Measurement and error budget

The A- and B-type uncertainties associated to the mea-
surement of kcy are detailed in Table III and are given at 1o
The B-type uncertainties have been evaluated previously and
detailed in Ref. 17. They essentially come from the length of
the magnetic field Ly and the fit constant «.

We have measured the Cotton-Mouton constant in xenon
at 7 =293 +1) K and for nine pressures ranging from 3
x 1073 to 8 x 1073 atm. The data as a function of the pressure
are fitted by a linear equation, and we obtain for the value of
the Cotton-Mouton constant at P = 1 atm,

k& = (241 £0.37)x 107 T2 atm™". (23)

The uncertainty given at 1o is detailed in Table IV. The
dominant uncertainty comes from the linear fit of the Cotton-
Mouton constant versus pressure (A-type). The value of k¢,
normalized at 273.15 K is calculated with a scale law on the
gas density,

keyg = (2.59 £0.40) x 107 T2 atm™". (24)

V. OUR CALCULATIONS

The Verdet constant and the Cotton-Mouton birefringence
were computed within Coupled Cluster response theory,*> at

TABLE IV. Parameters and their respective relative A- and B-type uncer-
tainties at 1o~ that have to be measured to infer the value of the normalized
Cotton-Mouton constant k.

Typical Relative A-type  Relative B-type
Parameter value uncertainty uncertainty
kemx 1016 (T-2) 2.31 2.0 % 1072 3.1 %1072
P %103 (atm) 5 2% 1073
Linear fitx 101 2.41 1.5x 107!
(T2 atm™")
kB x 1014 (T2 atm™") 241 1.5x 107! 3.1x 1072
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the CCSD’~? and CC3!%!3 Jevels of approximation. Specif-
ically, the Verdet constant was obtained from the following

frequency-dependent quadratic response function:*?!~23
V(w) = Cw((ﬂ,\’5 ﬂy’Lz»w,O’ (25)
with C = Sml;’:oco =0.912742 x 1077 in atomic units, N the

number density (N = kBLT for ideal gases), e the elementary

charge, m, the electron mass, ¢ the speed of light in vacuo,
w/2m the frequency of the probing light, and u, and L,
are Cartesian components of the electric dipole and angular
momentum operators, respectively. The hypermagnetizability
anisotropy An entering the Cotton-Mouton birefringence in
Eq. (4) (the only term contributing for atoms) is given by the
combination of a quadratic and a cubic response functions,’

1 1
AT] = _Z«,ux; ,le,Lz, LZ>>w,w,0 - Z«lux’ ,Ux,®xx>>w,0
= ApP + A9, (26)

with O, the xx Cartesian component of the traceless quad-
rupole operator. At the CC3 level, calculations were per-
formed at three different wavelengths, namely, 1064, 632.8,
and 514.5 nm. At the CCSD level, we computed the dispersion
coefficients, as done in our previous study,24 i.e., for the Verdet
constant,

V(2n) = 2nS(-2n - 2); 27
V(w) =C Z w¥V(2n); (28)
n=1

whereas for the Cotton-Mouton constant,

An(2n) = —%[(2n + 1)2n +2)S(-2n — 4) + B(2n)];
(29)

An(w) = Z w?An(2n). (30)
n=0

Above, S(k) is the Cauchy moment,

Sty = )" 205040 | e | my(m | pz 10), (31)
m#0

with 7w, indicating the excitation energy from the ground
state O to the excited state(s) m, and B(2n) being the disper-
sion coefficient introduced when expanding, for frequencies
below the lowest excitation energy, the electric dipole—
electric dipole—electric quadrupole quadratic response func-
tion Bx,x,xx(_U);waO) = <<ﬂx;ﬂm®xx>>w,0 in a convergent
power series in the circular frequency w,

By ¢ oo ~0;0,0) = 3 ™ B(2n). (32)
n=0
For further details on how the above Cauchy moments and
dispersion coefficients of the given quadratic response func-
tion are computed within coupled cluster response theory, the
reader should refer to Refs. 24-26.

Relativistic effects were approximately accounted for by
employing relativistic effective core potentials (ECPs)?’ and
specifically pseudo-potentials (PPs). “Small core” effective
pseudo-potentials were used to describe the 28 inner electrons
(that is, the [Ar]3d'? core), whereas the remaining 26 valence
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TABLE V. Dispersion coefficients of the Verdet and Cotton-Mouton response functions at the CCSD level of theory (atomic units).

n B(2n) S(-2n-4) S(-2n-2) V(2n) An(2n)
aug_cc_pvqz_pp

0 —654.89471 126.50595 100.47070
1 —-8903.3825 763.598 99 126.50595 253.01190 —64.951 345
2 -92298.251 5369.048 6 763.598 99 3054.3960 —17193.302
3 —860869.9 41692.560 5369.048 6 32214.292 —368478.36
4 41692.560 333540.48

d-aug_cc_pvqz_pp
0 —739.156 30 126.97174 121.30323
1 -9822.9127 774.87190 126.97174 253.94348 131.11247
2 -106369.19 5553.2321 774.87190 3099.4876 -15056.943
3 —-1074975.1 44095.369 5553.2321 33319.393 —348591.39
4 44 095.369 352762.95

t-aug_cc_pvqz_pp
0 —748.34187 126.919 27 123.62583
1 —-9940.7218 774.472 34 126.91927 253.838 54 161.76343
2 -107513.63 5551.3771 774.472 34 3097.8894 -14756.921
3 —-1084127.2 44088.280 5551.3771 33308.263 —346204.12
4 44 088.280 352706.24

electrons were correlated as in standard non-relativistic calcu-
lations. The basis sets used were constructed starting from the
singly augmented aug_cc_pvxz_pp (X = t,q) sets of Peterson
et al.”® Since single augmentation is usually not sufficient
to ensure converged results, at least for the Cotton-Mouton
birefringence, additional sets of diffuse functions were added
by applying an even-tempered generation formula commonly
used for this purpose to the orbital functions describing the
valence electrons, while retaining the pseudo-potential of the
original set. The resulting sets are labeled d-aug and t-aug, for
double and triple augmentation, respectively.

Where pseudo-potentials parametrically account for rela-
tivistic effects on the innermost orbitals, other relativistic ef-
fects (e.g., higher-order and picture change effects, and spin-

orbit coupling) could play a significant role.>>** When dealing
with valence properties like electric hyperpolarizabilities, the
higher-order relativistic effects and picture change effects (for
the dipole operator and also the electron-electron interaction)
are expected to be not so important. Also, spin-orbit coupling
should be quite weak. Both the Faraday and Cotton Mouton
birefringences, however, involve the magnetic dipole operator.
In general, relativistic effects on magnetic properties can be
more significant and more difficult in terms of picture change
(the operators look different in relativistic and non-relativistic
theory, and this may require a correction of the property oper-
ator that one uses as a perturbation).?-3°

Nonetheless, also given that the most stringent require-
ment in terms of basis set convergence is the inclusion of

TABLE VI. CC3 values of the response function components (in atomic units) involved in the Verdet and Cotton-Mouton birefringences. The Verdet constant
VN(w) is given in atm™! rad T~' m™~! and the Cotton-Mouton constant kgM isin T-2 atm™" at 273.15 K.

A (nm) ((ﬂx;ﬂys LZ>>w,O VN(‘U)X 103 <</~lx;/~‘x’ G)xx»w,o «ﬂx;ﬂx’ LZaLz»w,w,O ATI kngu)M
aug_cc_pvqz_pp

1064 11.1587 3.505 -668.242 272.564 98.9195 2.239

632.8 19.5823 10.35 -700.706 308.069 98.1593 2222

514.5 24.9438 16.22 —728.260 339.617 97.1607 2.200
d-aug_cc_pvqz_pp

1064 11.2155 3.522 —755.936 274.099 120.459 2.727

632.8 19.6927 10.40 =791.994 310.285 120.427 2.726

514.5 25.0963 16.32 —-822.705 342.514 120.048 2.718
t-aug_cc_pvqz_pp

1064 11.2127 3.521 —765.680 274.031 122.912 2.782

632.8 19.6878 10.40 —-802.186 310.210 122.994 2.784

514.5 25.0901 16.31 -833.274 342.435 122.710 2.778
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diffuse functions as in the case of the electric hyperpolar-
isability, it is reasonable to assume that both properties are
essentially valence properties, for which picture change effects
are typically small, and we reckon therefore that the use of
(PP)ECPs can be considered accurate enough.

The results obtained in the x = g basis sets are summarized
in Tables V and VI, for CCSD and CC3, respectively.

All calculations were performed with the Dalton code.’!

VI. RESULTS AND DISCUSSION
A. Faraday effect
1. Experiments

We can compare our value of the normalized Verdet con-
stant to the other published values. The most extensive
experimental compilation of Verdet constants has been re-
ported by Ingersoll and Liebenberg in 1956, for several gases
including xenon? for wavelengths ranging from 363.5 to
987.5 nm, with a total uncertainty of about 1%. These values
are plotted in Fig. 2.

No datum has ever been reported for A = 1064 nm. Never-
theless, we can extrapolate its value from the points of Fig. 2,
by fitting the data with a function of form V = A/A% + B/\*
(solid curve in Fig. 2).3233 A supplementary systematic uncer-
tainty should also be added, since the authors measured the
ratio between Faraday effects in xenon and in distilled water
and rescaled their measurements with accepted values for wa-
ter.>>33 Thus, it does not correspond to absolute measurements
of the Faraday effect, contrary to ours.

At A=1064 nm and T =273.15 K, we obtain VN
= (3.46 +£ 0.04) x 1073 atm~! rad T~' m~'. The 10 uncertainty
includes the one given by the fit. This value is compatible
with our experimental value (Eq. (18)), represented as the open
circle in Fig. 2 and as the straight and dashed lines in Fig. 3.

2. Theory

We can also compare our experimental value with theo-
retical predictions (both ours and from the literature), plotted
in Fig. 3 and summarized in Table VII at 1 atm, 273.15 K
and with the gas number density of an ideal gas. To convert
from theoretical results given in atomic units into the units used

_ 40x10°7

'E

s 30
E 20 -
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3 10—
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FIG. 2. A: Experimental values of xenon normalized Verdet constant at T
=273.15 K reported by Ingersoll and Liebenberg®” for wavelengths ranging
from 363 nm to 987.5 nm. These values are fitted by the law A/A\%+ B/A\*
(solid line). o: Our experimental value at 7 =273.15 K.
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FIG. 3. Normalized Verdet constant of xenon at 7 =273.15 K at A = 1064 m.
Solid line: Our experimental mean value. Dashed lines: Our experimental
value with 1o~ uncertainty. Points: Theoretical predictions (both ours and
from the literature). See text and Table VII for the references.

experimentally, we exploited the relation

V(atm ' rad T'm™) = V (a.u.) x 8.039617 x 10*.
(33)

Our experimental value is compatible within 1o~ with our
“best” coupled cluster results (t-aug_cc_pvqz_pp basis) and
also with the most complete theoretical predictions by Ekstrom
et al.® and by Ikiliinen et al.>* (see below), and within 30 with
that of Savukov.®

The uncertainty of a few percent obtained on our experi-
mental value allows to comment on the agreement with theo-
retical predictions as a function of the theoretical approxi-
mation or model. Savukov®> has used a relativistic particle-
hole configuration interaction (CI) method. He does not give
a value at 1064 nm, but the latter can be interpolated, as
done with the previous experimental data of Ingersoll and
Liebenberg,*? obtaining the value of Table VII, with an uncer-
tainty given by the fit. The agreement between Savukov’s
interpolated result and experiment is only within 30, even
if relativistic effects are taken into account. Ekstrém et al.®
have used the non-relativistic time-dependent Hartree-Fock
(TDHF in Fig. 3) and the relativistic time-dependent Dirac-
Hartree-Fock (TDDHF in Fig. 3). There is clearly a better

TABLE VII. Experimental and theoretical values of the normalized Verdet
constant at 7 =273.15 K, A = 1064 nm, with uncertainties at 1o-.

VNx103
References (atm~' rad T-' m~1) Remarks
Experiment
Ingersoll et al.?? 3.46+0.04 Interpolated with A/A\2+2B/)\*.
Scaled to water.
This work 3.56+0.10
Theory
Savukov?? 3.86+0.01 Interpolated in this work with
AN+ B/
Ekstrom et al.® 3.35 TDHF
Ekstrom et al. 3.46 TDDHF
Ikildinen et al.>* 3.34 NR
Ikiildinen e al.>* 3.48 X2C
Ikildinen et al.>* 3.46 DHF
Ikiliinen et al.>* 3.52 NR-CCSD
This work 3.49 CCSD/t-aug_cc_pvqz_pp
This work 3.52 CC3/t-aug_cc_pvqz_pp
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TABLE VIII. Experimental (uncertainties of 1o0) and theoretical values of
the Cotton-Mouton constant of xenon at T =273.15 K.

References A (nm) kgM x 1014 (T2 atm™!)
Experiment

Carusotto ef al.*® 514.5 (2.29+0.10)
Hiittner®’ 632.8 (2.41£0.12)
Bregant et al.383° 1064 (3.02+0.27)
This work 1064 (2.59+0.40)
Theory

Bishop et al.* o0 2.665

This work, 514.5 2.803
CCSD/t-aug_cc_pvqz_pp

This work, 632.8 2.808
CCSD/t-aug_cc_pvqz_pp

This work, 1064 2.804
CCSD/t-aug_cc_pvqz_pp

This work, CC3/t-aug_cc_pvqz_pp 514.5 2.778

This work, CC3/t-aug_cc_pvqz_pp 632.8 2.784

This work, CC3/t-aug_cc_pvqz_pp 1064 2.782

agreement (better than 10) between their calculations and
our experimental value when relativistic effects are taken
into account. Finally, Ikildinen et al* have used the non-
relativistic Hartree-Fock method (NR in Fig. 3), the exact
two-component method (X2C in Fig. 3), and the fully rela-
tivistic four-component method (DHF in Fig. 3). The same
authors also report (in the supplementary material**) a non-
relativistic CCSD result (NR-CCSD in Fig. 3). While their
uncorrelated results confirm that relativistic effects should be
taken into account to improve agreement with experiment,
their non-relativistic CCSD result highlights how the inclusion
of correlation effects is equally important. Also worth noticing
is the rather poor performance of the Becke Lee Yang and
Parr (BLYP) and its 3-parameters variant (B3LYP) functionals,
which overestimate the value of the Verdet constant in both
non-relativistic and relativistic calculations. This also applies
for the Becke-Half-and-Half-LYP functional (BHandHLYP)
in the relativistic calculations, whereas the non-relativistic
BHandHLYP value is still within 10 of our experimental result
(see Table S5 of the supplementary material of Ref. 34).
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FIG. 4. Reported values of Cotton-Mouton constant of xenon for A ranging
from 514.5 nm to 1064 nm and with 1o~ uncertainty. Experimental values:
black triangle: Carusotto et al.,>® open triangle: Hiittner (private communica-
tion by Bishop et al.),’” black diamond: Bregant et al.,>® and open diamond:
this work. Theoretical predictions: dashed line: self-consistent-field (SCF)
method for A = co by Bishop,*? open circle: this work, CCSD, and black circle:
this work, CC3.
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B. Cotton Mouton effect
1. Experiments

Only a few measurements of the Cotton-Mouton effect
in xenon have been discussed in the literature. There is one
at A = 514.5 nm by Carusotto et al.,’® one at A = 632.8 nm
by Hiittner (reported as a private communication by Bishop
et al.),”’” and finally one at A = 1064 nm by Bregant et al.>%
Our experimental value, referring to A = 1064 nm is compat-
ible within 1o~ with the data of Refs. 38 and 39. The set of
results is shown in Table VIII and plotted as a function of the
wavelength in Fig. 4.

Our measurement has an uncertainty of about 15%. This
value, which is larger than that of the other reported values,
especially those given for wavelengths of 514.5 nm and
632.8 nm, was established via a complete error budget. Note
that no information is available on the setup, the number of
pressures, the error budget, and the evaluation of the uncer-
tainty for the value reported at A = 632.8 nm by Bishop et al.’’
as a private communication of Hiittner. The value reported at
A = 514.5 nm by Carusotto et al.*® was measured only at 1
atm, and by comparing the observed magnetic birefringence
with that of nitrogen under the same experimental conditions,
therefore taking as a reference, assumed as free of uncertainty,
the Cotton-Mouton constant of nitrogen. It is safe to say
therefore that the uncertainty associated to their datum might
be underestimated. Finally, the value reported by Bregant
et al.’%%% at . = 1064 nm corresponds to the weighted average
between measurements at two different pressures (9 pressures
for our measurement) and the uncertainty is similar to ours.

2. Theory

The Cotton-Mouton constant kcy is linked to An by the
relationship?

6.18381 x 10714

kem (atm™' T72) = T

An (a.u). (34)

Only one theoretical prediction has been published so-
far for the Cotton-Mouton effect in xenon.*’ The calculation
of Bishop and Cybulski was performed at the SCF level of
approximation, and it yielded the static hypermagnetizability
anisotropy An. As stated by the authors, relativistic effects
were not taken into account, even though the authors expected
them to play a substantial role. Our experimental value agrees
with that theoretical prediction within lo.

Our computed coupled cluster results, both CCSD and
CC3, in the largest (t-aug_cc_pvqz_pp) basis sets for the three
wavelengths at which experimental results are available are
given in Table VIII. Both the CCSD and CC3 values at 1064 nm
are well within 10 of our experimental measurement, and just
within 1o of the result by Bregant et al.®* At 632.8 nm, the
agreement of our CC3 value with the experimental result of
Hiittner”” is justoutside 30-. At 514.5 nm, our computed values
fall well outside 30~ of the estimate of Carusotto et al.3® This
apparently confirms that the error associated to this measured
value might be underestimated.
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VIl. CONCLUSION

We have carried out a thorough analysis of the Faraday
(circular) and Cotton Mouton (linear) birefringences of xenon,
at a wavelength of 1064 nm. The study involves both an exper-
imental segment, exploiting the capabilities of a state-of-the-
art optical setup, and a computational element, where sophisti-
cated wavefunction structure and optical response models (and
with an estimate of the effect of relativity) were employed.

Our experimental estimate for the normalized Verdet con-
stant of xenon at a temperature of 273.15 K and A = 1064 nm,
VN =(3.56+0.10) x 1073 atm™ rad T~' m~!, is very well
reproduced by our theoretical approach, which yields a value
(VN =3.52x 1073 atm™! rad T-! m~! using the CC3 approxi-
mation) within 1o~ of the measured datum.

With respect to the Cotton Mouton effect, at 7 = 273.15K
and A = 1064 nm, experiment yields a normalized constant
kgM =(2.59 + 0.40) x 10~ atm™! T2, whereas we compute
(again with our most sophisticated model, CC3) a value of
ki = 2.78 x 107" atm™" T2, therefore within 1o~ of experi-
ment.

ACKNOWLEDGMENTS

We thank all the members of the BMV collaboration,
and in particular J. Béard, J. Billette, P. Frings, B. Griffe, J.
Mauchain, M. Nardone, J.-P. Nicolin, and G. Rikken for strong
support. We are also indebted to the whole technical staff
of LNCMI. Sonia Coriani acknowledges useful discussions
with Lucas Visscher and Trond Saue. We acknowledge the
support of the Fondation pour la recherche IXCORE and the
Agence National de la Recherche (Grant No. ANR-14-CE32-
0006).

IL. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge
University Press, Cambridge, 2004).

2A. Rizzo and S. Coriani, “Birefringences: A challenge for both theory and
experiment,” Adv. Quantum Chem. 50, 143-184 (2005).

3C. Rizzo, A. Rizzo, and D. M. Bishop, “The Cotton-Mouton effect in gases:
Experiment and theory,” Int. Rev. Phys. Chem. 16, 81-111 (1997).

4T. Hel gaker, S. Coriani, P. Jgrgensen, K. Kristensen, J. Olsen, and K. Ruud,
“Recent advances in wave function-based methods of molecular-property
calculations,” Chem. Rev. 112, 543-631 (2012).

50. Christiansen, C. Hittig, and P. Jgrgensen, “Response functions from
Fourier component variational perturbation theory applied to a time-
averaged quasienergy,” Int. J. Quantum Chem. 68, 1-52 (1998).

%U. Ekstrom, P. Norman, and A. Rizzo, “Four-component Hartree—Fock
calculations of magnetic-field induced circular birefringence—Faraday
effect—in noble gases and dihalogens,” J. Chem. Phys. 122, 074321
(2005).

7G. D. Purvis and R. J. Bartlett, “A full coupled cluster singles and doubles
model: The inclusion of disconnected triples,” J. Chem. Phys. 76, 1910
(1982).

8H. Koch, A. S. de Meras, T. Helgaker, and O. Christiansen, “The integral-
direct coupled cluster singles and doubles model,” J. Chem. Phys. 104, 4157
(1996).

9C. Hittig, O. Christiansen, H. Koch, and P. Jgrgensen, “Frequency-
dependent first hyperpolarizabilities using coupled cluster quadratic
response theory,” Chem. Phys. Lett. 269, 428 (1997).

104, Koch, O. Christiansen, P. Jgrgensen, A. Sanchez de Merds, and T. Hel-
gaker, “The CC3 model: An iterative coupled cluster approach including
connected triples,” J. Chem. Phys. 106, 1808 (1997).

Q. Christiansen, H. Koch, and P. Jgrgensen, “Response functions in the CC3
iterative triple excitation model,” J. Chem. Phys. 103, 7429 (1995).

J. Chem. Phys. 142, 124313 (2015)

12J Gauss, O. Christiansen, and J. F. Stanton, “Triple excitation effects in
coupled-cluster calculations of frequency-dependent hyperpolarizabilities,”
Chem. Phys. Lett. 296, 117 (1998).

13E. Pawlowski, “Development and implementation of CC3 response the-
ory for calculation of frequency-dependent molecular properties. Bench-
marking of static molecular properties,” Ph.D. thesis (Aarhus University,
2004).

1R, Battesti, B. Pinto Da Souza, S. Batut, C. Robilliard, G. Bailly, C. Michel,
M. Nardone, L. Pinard, O. Portugall, G. Trénec, J.-M. Mackowski, G. L.
Rikken, J. Vigué, and C. Rizzo, “The BMV experiment: A novel apparatus
to study the propagation of light in a transverse magnetic field,” Eur. Phys.
J. D 46, 323-333 (2008).

I5A . Cadene, D. Sordes, P. Berceau, M. Fouché, R. Battesti, and C. Rizzo,
“Faraday and Cotton-Mouton effects of helium at A = 1064 nm,” Phys. Rev.
A 88, 043815 (2013).

167 Cadene, P. Berceau, M. Fouché, R. Battesti, and C. Rizzo, “Vacuum
magnetic linear birefringence using pulsed fields: Status of the BMV exper-
iment,” Eur. Phys. J. D 68, 16 (2014).

17p Berceau, M. Fouché, R. Battesti, and C. Rizzo, “Magnetic linear birefrin-
gence measurements using pulsed fields,” Phys. Rev. A 85, 013837 (2012).

18R V. Pound, “Electronic frequency stabilization of microwave oscillators,”
Rev. Sci. Instrum. 17, 490-505 (1946).

19p Berceau, M. Fouché, R. Battesti, F. Bielsa, J. Mauchain, and C. Rizzo,
“Dynamical behaviour of birefringent Fabry-Pérot cavities,” Appl. Phys. B:
Lasers Opt. 100, 803-809 (2010).

203, Batut, J. Mauchain, R. Battesti, C. Robilliard, M. Fouché, and O.
Portugall, “A transportable pulsed magnet system for fundamental investiga-
tions in quantum electrodynamics and particle physics,” IEEE Trans. Appl.
Supercond. 18, 600-603 (2008).

21g, Coriani, C. Hittig, P. Jorgensen, A. Halkier, and A. Rizzo, “Coupled
cluster calculations of Verdet constants,” Chem. Phys. Lett. 281, 445-451
(1997).

228, Coriani, C. Hittig, P. Jgrgensen, A. Halkier, and A. Rizzo, “Erratum:
“Coupled cluster calculations of Verdet constants” [Chem. Phys. Lett. 281,
445 (1997)],” Chem. Phys. Lett. 293, 324 (1998).

238, Coriani, P. Jgrgensen, O. Christiansen, and J. Gauss, “Triple excitation
effects in coupled cluster calculations of Verdet constants,” Chem. Phys. Lett.
330, 463—470 (2000).

248, Coriani, C. Hittig, and A. Rizzo, “The electric-field-gradient-induced
birefringence of Helium, Neon, Argon, and SFe,” J. Chem. Phys. 111,
7828-7836 (1999).

25C. Hiittig, O. Christiansen, and P. Jgrgensen, “Cauchy moments and disper-
sion coefficients using coupled cluster linear response theory,” J. Chem.
Phys. 107, 10592 (1997).

26C. Hiittig and P. Jgrgensen, “Dispersion coefficients for first hyperpolariz-
abilities using coupled cluster quadratic response theory,” Theor. Chem. Acc.
100, 230 (1998).

2Mm. Dolg, “Effective core potentials,” in Modern Methods and Algorithms of
Quantum Chemistry, NIC Series Vol. 1, edited by J. Grotendorst (John von
Neumann Institute for Computing, Jiilich, 2000), pp. 479-508.

28K. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, “Systematically
convergent basis sets with relativistic pseudopotentials. II. Small-core pseu-
dopotentials and correlation consistent basis sets for the post-d group 16-18
elements,” J. Chem. Phys. 119, 11113 (2003).

T. Saue, “Spin-interactions and the non-relativistic limit of electrody-
namics,” Adv. Quantum Chem. 48, 383-405 (2005).

30T, Saue, “Relativistic Hamiltonians for chemistry: A primer,”
ChemPhysChem 12, 3077-3094 (2011).

3K Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Chris-
tiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekstrom, T.
Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, H. Fliegl,
L. Frediani, K. Hald, A. Halkier, C. Hittig, H. Heiberg, T. Helgaker, A. C.
Hennum, H. Hettema, E. Hjertenzs, S. Hgst, I.-M. Hgyvik, M. F. Iozzi, B.
Jansik, H. J. A. Jensen, D. Jonsson, P. Jgrgensen, J. Kauczor, S. Kirpekar, T.
Kjergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A.
Krapp, K. Kristensen, A. Ligabue, O. B. Lutnzs, J. I. Melo, K. V. Mikkelsen,
R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A.
Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z.
Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A.S.de Meras, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A.
H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren,
D. P. Tew, A. J. Thorvaldsen, L. Thggersen, O. Vahtras, M. A. Watson, D. J.
D. Wilson, M. Ziolkowski, and H. Agren, “The Dalton quantum chemistry
program system,” WIREs: Comput. Mol. Sci. 4, 269-284 (2014).



124313-10 Cadéne et al.

32L. R. Ingersoll and D. H. Liebenberg, “Faraday effect in gases and vapors
I1,” J. Opt. Soc. Am. 46, 538-542 (1956).

3L. Rosenfeld, “Zur Theorie des Faradayeffekts,” Z. Phys. 57, 835 (1929).

348, Ikildinen, P. Lantto, and J. Vaara, “Fully relativistic calculations of
Faraday and nuclear spin-induced optical rotation in xenon,” J. Chem. The-
ory Comput. 8, 91 (2012).

351. M. Savukov, “Particle-hole configuration-interaction polarizabilities and
Verdet constants of noble-gas atoms,” Phys. Rev. A 85, 052512 (2012).

368, Carusotto, E. Tacopini, E. Polacco, F. Scuri, G. Stefanini, and E. Zavattini,
“Measurement of the magnetic birefringence of noble gases,” J. Opt. Soc.
Am. B 1, 635-640 (1984).

3D. M. Bishop and J. Pipin, “Hypermagnetizability anisotropy (Cotton-
Mouton effect) for the rare gases and methane,” Chem. Phys. Lett. 186,
195-197 (1991).

J. Chem. Phys. 142, 124313 (2015)

38M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. Della Valle, G.
Di Domenico, U. Gastaldi, M. Karuza, E. Milotti, E. Polacco, G. Ruoso,
E. Zavattini, and G. Zavattini, “Measurement of the Cotton-Mouton effect
in krypton and xenon at 1064 nm with the PVLAS apparatus,” Chem. Phys.
Lett. 392, 276280 (2004).

M. Bregant, G. Cantatore, S. Carusotto, R. Cimino, F. Della Valle, G. Di
Domenico, U. Gastaldi, M. Karuza, V. Lozza, E. Milotti, E. Polacco, G.
Raiteri, G. Ruoso, E. Zavattini, and G. Zavattini, “Erratum: ‘Measurement of
the Cotton-Mouton effect in krypton and xenon at 1064 nm with the PVLAS
apparatus’ [Chem. Phys. Lett. 392, 276 (2004)] and ‘A precise measurement
of the Cotton-Mouton effect in neon’ [Chem. Phys. Lett. 410, 288 (2005)],”
Chem. Phys. Lett. 477, 415 (2009).

40D, M. Bishop and S. M. Cybulski, “Calculation of electromagnetic properties
of the noble gases,” Chem. Phys. Lett. 211, 255-258 (1993).



Eur. Phys. J. D (2014) 68: 16
DOLI: 10.1140/epjd/e2013-40725-9

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Vacuum magnetic linear birefringence using pulsed fields: status

of the BMV experiment

Agathe Cadeéne, Paul Berceau, Mathilde Fouché, Rémy Battesti, and Carlo Rizzo®

Laboratoire National des Champs Magnétiques Intenses (UPR 3228, CNRS-UPS-UJF-INSA), 31400 Toulouse Cedex, France

Received 18 November 2013

Published online 23 January 2014 — (©) EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2014

Abstract. We present the current status of the BMV experiment. Our apparatus is based on an up-to-
date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and
analysis procedure which takes into account the symmetry properties of the raw data with respect to the
orientation of the magnetic field and the sign of the cavity birefringence. The measurement result of the
vacuum magnetic linear birefringence kcwm presented in this paper was obtained with about 200 magnetic
pulses and a maximum field of 6.5 T, giving a noise floor of about 8 x 1072 T~2 at 3¢ confidence level.

1 Introduction

It is known since the beginning of the 20th century that
any medium shows a linear birefringence in the presence
of a transverse external magnetic field B. This effect is
usually known as the Cotton-Mouton (CM) effect (see
Ref. [1] and references therein). The existence of such a
magnetic linear birefringence has also been predicted in
vacuum around 1970 in the framework of quantum elec-
trodynamics (QED) [2,3]. It is one of the non-linear op-
tical effects described by the Heisenberg-Euler effective
lagrangian (see Ref. [4] and references therein) and it can
be seen as the result of the interaction of the external
magnetic field with quantum vacuum fluctuations. In a
vacuum therefore the index of refraction n| for light po-
larized parallel to B is expected to be different from the
index of refraction n, for light polarized perpendicular
to B such that [4]:

AnCM :TLH —-—ng, (1)
= kem B2 (2)

At the first order in the fine structure constant o, kcwm
can be written as:

kom = 20283 /15pgmic®, (3)

with A the Planck constant over 27, m. the electron mass,
¢ the speed of light in vacuum, and po the magnetic
constant. Using the CODATA recommended values for
fundamental constants [5], one obtains:

kom ~ 4.0 x 1072 T2, (4)

In spite of several experimental attempts, the experimen-
tal proof of such a very fundamental QED prediction is

? e-mail: carlo.rizzo@lncmi.cnrs.fr

still lacking [4]. All recent experiments, both completed or
running, measure Ancy via the ellipticity ¢ induced on
a linearly polarized light propagating in the birefringent
vacuum:

L
R AB B2 sin 20p, (5)

where A is the light wavelength, Lp is the path length in
the magnetic field, and fp = 45° is the angle between the
light polarization and the birefringence axis. This equation
clearly shows that the critical experimental parameter is
the product B2L . In order to increase the ellipticity to be
measured, one usually uses an optical cavity to store light
in the magnetic field region as long as possible. The total
acquired ellipticity ¥ is linked to the ellipticity ¥ acquired
in the absence of cavity and depends on the cavity finesse
F as:

2F

U= - . (6)
After the theoretical calculations in the 70s, a first mea-
surement of the kcy value was published by the BFRT
collaboration [6]. It was based on a superconducting mag-
net providing a maximum field of 3.9 T, and a multi-
pass optical cavity. Spurious signals were always present
(see table V(b) in [6]). Final results gave kcy = (2.2 £
0.8) x 1071 T=2 at 30 confidence level for 34 refections
inside the cavity, and kcy = (3.2 4 1.3) x 10712 T2 for
578 reflections. In 2008 a new measurement was published
by the PVLAS collaboration using a Fabry-Pérot optical
cavity and a superconducting magnet providing a 2.3 T
field: koy = (1.4 +2.4) x 10720 T2 at 30 [7]. The same
experiment at 5 T gave kay = (2.7 +1.2) x 10720 T2
at 30. More recently a new version of the PVLAS appara-
tus based on two 2.5 T permanent magnets and a Fabry-
Pérot optical cavity reached a noise floor corresponding
to kem = 1.3 x 10720 T=2 at 30, but “only when no
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Fig. 1. Comparison of reported absolute values of the vac-
uum magnetic linear birefringence and their uncertainties
represented at 30.

spurious signal was observed” [8]. All over our paper, we
give error bars at 30 corresponding to a confidence level
of 99.8%, that usually indicates an evidence for a non-
zero signal. All these measurements are summarized in
Figure 1. This clearly shows that vacuum CM measure-
ments are true experimental challenges and that one has
to focus not only on getting the best optical sensitivity
and maximizing the signal to be measured, but also on
minimizing all the unwanted systematic effects by decou-
pling the apparatus from their sources and by performing
an appropriate data analysis.

In this paper we present a measurement of ke
obtained using the first generation setup of the BMV
(Biréfringence Magnétique du Vide) experiment at the
National High Magnetic Field Laboratory of Toulouse,
France — (LNCMI-T) [9]. The novelty of this experiment
is the use of pulsed magnetic fields. This method allows to
provide the highest magnetic fields in terrestrial laborato-
ries without destroying the coil itself [4]. Our apparatus
is also based on the use of an infrared Fabry-Pérot cavity
among the sharpest in the world [10]. We calibrated our
experiment using nitrogen gas [10], and recently published
a high precision measurement of the Cotton-Mouton ef-
fect of helium gas compatible with the theoretical predic-
tion [11]. We present our data acquisition and analysis
procedure that takes into account the symmetry proper-
ties of the raw data with respect to the orientation of the
magnetic field and the sign of the cavity birefringence. The
measurement result of the vacuum magnetic linear bire-
fringence kcy presented in this paper was obtained with
about 200 magnetic pulses and a maximum field of 6.5 T.
It corresponds to the best noise floor ever reached. It is
therefore a clear validation of our innovative experimental
method.

2 Experimental setup
2.1 Apparatus

Our experimental setup is described in reference [11]. As
shown in Figure 2, 30 mW of a linearly polarized Nd:YAG
laser beam (A = 1064 nm) goes through an acousto-optic
modulator (AOM) used in double pass for an adjustment
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Fig. 2. Experimental setup. EOM, electro-optic modulator;

AOM, acousto-optic modulator; PDH, Pound-Drever-Hall; Ph,
photodiode; P, polarizer; A, analyzer. See text for more details.
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Fig. 3. Square of the magnetic field amplitude as a function
of time for a maximum field of 6.5 T. Solid black curve, B?;
dashed curve, B?.

of the laser frequency. It is then injected into a monomode
optical fiber before entering a high finesse Fabry-Pérot
cavity of length L. = 2.27 m, consisting of the mirrors M;
and Ms. This corresponds to a cavity free spectral range
of AFSR = ¢/2L. = 65.996 MHz. The laser passes through
an electro-optic modulator (EOM) creating sidebands at
10 MHz. We analyze the beam reflected by the cavity
on the photodiode Ph,. This signal is used to lock the
laser frequency to the cavity resonance frequency using
the Pound-Drever-Hall method [12], via the acousto-optic
modulator and the piezoelectric and Peltier elements of
the laser.

To measure the ellipticity induced by the Cotton-
Mouton effect one needs a transverse magnetic field as
high as possible. This is fulfilled using pulsed fields deliv-
ered by one magnet, named X-coil, especially designed in
our laboratory. The principle of this magnet and its prop-
erties are described in details in references [9,13]. It can
provide a maximum field of more than 14 T over an equiv-
alent length Lp of 0.137 m [10]. Data have been taken with
a maximum magnetic field of 6.5 T reached within 1.70 ms
while the total duration of a pulse is less than 10 ms as
shown in Figure 3. Moreover, we can remotely switch the
high-voltage connections to reverse B in order to set it
parallel or antiparallel to the z direction. The maximum
repetition rate is 6 pulses per hour.

We infer the cavity finesse from the measurement of the
photon lifetime 7 [10]. Its value is regularly checked during
data taking and we get 7 = 1.07 ms. The corresponding
finesse is:

F="7, (7)
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We get F' = 445 000 with a relative variation that does not
exceed 6% at the 30 confidence level. This corresponds to
a cavity linewidth Av = ¢/2F L. of 148 Hz. This is one of
the sharpest infrared cavity in the world [10].

Before entering the Fabry-Pérot cavity, light is polar-
ized by the polarizer P. The beam transmitted by the cav-
ity is then analyzed by the analyzer A crossed at maxi-
mum extinction. We extract both polarizations: parallel
and perpendicular to P. The extraordinary ray, whose po-
larization is perpendicular to the incident polarization, is
detected by the photodiode Ph, (power I.,), while the or-
dinary ray, whose polarization is parallel to the incident
polarization, is detected by Phy (power I;).

All the optical devices from the polarizer to the ana-
lyzer are placed in an ultrahigh-vacuum chamber. During
operation, the pressure inside the UHV vessel was about
10~ " mbar. We have monitored the vacuum quality with a
residual gas analyzer. Residual gases can cause a measur-
able CM effect. Most important contributions come from
N, and O, leading to a ko of 1.5 x 10723 T2, Moreover
dielectric mirrors also induce a CM effect corresponding
to an ellipticity of 8 x 107'° rad T~2 per reflection, as
reported in reference [14]. The stray transverse magnetic
field at the mirror position is smaller than 150 pT, giving
in our case kcy < 1 x 10724 T2, We expect these CM
effects to be smaller than the measured noise floor.

2.2 Signals

The ellipticity ¥(¢) induced by the transverse magnetic
field is related to the ratio of the extraordinary and
ordinary powers as follows:

=0+ [M+¥(t)?,

~o? + T? 4 2IU(t) for ¥ < T, (8)
with o2 the polarizer extinction ratio and I' the total
static ellipticity. This static ellipticity is due to the mir-
rors’ intrinsic phase retardation [15]. Each mirror can be
regarded as a wave plate. The combination of both wave
plates gives a single wave plate with a total phase retar-
dation and an axis orientation that depend on each mirror
phase retardation and on their relative orientation [16,17].
Thus, we adjust the value of I" by rotating the mirrors M,
and My around the z-axis corresponding to the axis of
light propagation.

To measure the polarizer extinction ratio, we first set
I' = 0, with no magnetic field. We get I/l = 0% ~
7 x 1077, Then, to reach the best sensitivity, we need
I'* ~ ¢% [9]. Starting from I = 0 and rotating M; in
the clockwise or counterclockwise direction, we choose the
value of I', as well as its sign determined by CM measure-
ments in nitrogen and helium gas. The measurement of o2
and the adjustment of the value and sign of I" are done
before each magnetic pulse.

Due to the photon lifetime, the cavity acts as a first or-
der low pass filter, as explained in details in reference [18].
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Its complex response function H(v) is given by:

1
14477

Ve

H(v) = (9)

with v the frequency and v, = 1/477T ~ 74 Hz the cavity
cutoff frequency. This filtering has to be taken into account
in particular for the time dependent magnetic field applied
inside the Fabry-Pérot cavity. The ellipticity ¥ induced by
the external magnetic field is thus proportional to B?:

U(t) = aBE(t), (10)
where the filtered field B? is calculated from B? taking
into account the cavity filtering. The time profile of B is
plotted in Figure 3 with the dashed curve. In particular,
the cavity filtering induces an attenuation and a shift of
the maximum. The cavity filtering has also to be applied
to I; as explained in details in references [11,18].

The calculated signals used for the analysis are de-
scribed in details in reference [11]. In order to extract
the ellipticity ¥(¢) from equation (8), we calculate the
following Y (t) signal after each pulse:

(11)
(12)

where « corresponds to the sign of I'. We calculate the
static signal Iy, = 0% 4+ I'2 before the pulse as follows:

(0

¢ L ¢ (1)
where ¢ corresponds to the beginning of the analysis
and t = 0 to the beginning of the applied magnetic field.
The absolute value of the cavity ellipticity is measured a

few milliseconds before each magnetic pulse thanks to the
following equation:

1= J( 0 )
It’f(t)

Signals Y'(t) are collected for both signs of I" and for both
directions of B: parallel to = is denoted as >0 and an-
tiparallel is denoted as <0. This gives four data series:
(' >0,B>0),(I >0,B<0),[I"<0, B<O0)
and (I" < 0, B > 0). For each series, signals calculated
with equation (11) are averaged and denoted as Y., Y~ o,
Y« and Y.~. The first subscript corresponds to I" > 0
or < 0 and the second one corresponds to B parallel or
antiparallel to x.

, (13)

tr<t<O0

—o2. (14)
tr<t<0

3 Data analysis and results

The raw signals, such as Ii(t), I.(t), B(t) or the cavity
locking signal, are recorded 25 ms before the beginning of
the magnetic field and 25 ms after. A typical cavity locking
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Fig. 4. Time evolution of the locking signal during a magnetic
pulse. The magnetic field is applied at ¢ = 0 ms.

N o
S o
I I

number of occurences

number of occurences

Fig. 5. Typical histogram of ¥(¢) before the magnetic pulse.
(a) The histogram can be fitted by a gaussian function (dashed
curve): the shot is selected. (b) Rejected shot.

signal is plotted in Figure 4. We clearly see a perturba-
tion which begins at about 3.2 ms. This corresponds to
the acoustic perturbation triggered at ¢ = 0 by the mag-
netic pulse. This perturbation travels trough the air to the
mirror mounts. We have confirmed the arrival time on the
mirror mounts with accelerometers. This perturbation in-
duces an ellipticity noise which degrades our sensitivity.
We have thus decided to stop the analysis at ¢ = 3.1 ms.
Symmetrically, we start the analysis at ¢t = —3.1 ms. It
also allows to avoid drifts and long time variations of I".

For each pulse applied in vacuum, we first calculate
the |I'| value following equation (14). To check that this
corresponds to a meaningful value, we plot the histogram
of the following signal for ¢t < t < 0:

() = \/ Ij;'?f((tt)) —e?—T

This corresponds to 3100 values acquired every 1 us. With
white noise and because no induced ellipticity is present
at t < 0, the histogram is centered on 0 and corresponds
to a gaussian distribution, as shown in Figure Ha.
However, some of the histograms cannot be fitted by
a gaussian function, as shown in Figure 5b. The main ori-
gin of this type of distributions is mechanical oscillations
of the setup induced by the environment and leading to
static ellipticity fluctuations, event if the magnetic field is
not applied. These mechanical oscillations can be directly
observed on the power spectral density (PSD) of the el-
lipticity ¥ in the absence of the magnetic field, as shown
in Figure 6. In the case corresponding to Figure 5b, we
cannot give a statistical and significant value of I'. The

(15)
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Fig. 6. Power spectral density of ¥ in the absence of the mag-
netic field. We observe the different mechanical resonances of
the setup.

corresponding shots are thus rejected. Finally we selected
101 pulses. It should be noted that this selection is per-
formed for ¢ < 0, thus before the magnetic pulse. We do
not select or reject pulses with an analysis on the signal
we want to measure, thus induced by the magnetic field
at t > 0.

From the 101 selected pulses, we calculate the signals
Ys, Yoo, Y, and Yo, denoted by Y; with j =>, ><,
>, <>. As explained in Section 2.2, they correspond
to the average of the Y (¢) signals calculated with equa-
tion (11) for each of the four series. The Y; uncertainties
are calculated at each time ¢;, AY;(t;) = o;(t;)/\/Nj,
with o;(t;) the standard deviation of the Y;(¢;) distribu-
tion and N; the number of shots for the j series.

As explained in details in reference [11], one has to con-
sider systematic effects that mimic the CM effect we want
to measure. We thus analyze our data following a general
expression taking into account the symmetry properties
of Y; towards experimental parameters:

Yo =as Sy +bs54- 45— +dsS_4,
=asSyt +bs5i_ +es S+ U,
Yoc=ascS14 = 05851 —exc S +dac S,
=a><Sqp —bscSp- —escS- 4+ Y,

Yo =acSiy —baSy— + S —deS—1,
= (Z<<S++ — b<<S+7 + C<<Sff — W,
Yoo =acsSiq + 0S4 —cas S —des Sy,

=ac>Si+ + b S —cex S V.

The S functions correspond to a given symmetry towards
the sign of I" and the direction of B. The first subscript +
(resp. —) indicates an even (resp. odd) parity with respect
to the sign of I'. The same convention is used for the sec-
ond subscript corresponding to B. Each S function has a
different physical origin which are summarized in Table 1.
CM effect signal contributes to S_4 since it depends on
the cavity birefringence I" and on the square of the mag-
netic field amplitude as shown in equations (5) and (12).
We can thus replace dS_4 by V.
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Table 1. Possible physical effects contributing to the S signals.
The Or signal corresponds to a polarization rotation angle due
to the circular birefringence induced by a longitudinal magnetic
field (Faraday effect).

S signal Physical effect
Si4(t) g Ok (1), W*(t)
S1_(t) B effects on photodiodes
S__(t) ~vOr (1)
S_a(t) ()
1.0 1 1.0 1
e 0.51 o 0.5:l
% 00 -IW Y o.ojW
= -o.5j S 05
-1.0 | -1.0 |
— T T T T T — T T T T 1
2 0 2 2 0 2
time (ms) time (ms)
1.0:] ' 1.0 |
ey 05 o o.5:l
% 00 -IM | % 0.0+ ‘
= 05 | = -o.5j
1.0 1.0 |
T T T T T T T T T T
-2 0 2 -2 0 2
time (ms) time (ms)

Fig. 7. Time evolution of Ji, J2, J3 and J4 (dark grey curve)
and their uncertainties at 30 confidence level (light grey).

The S functions are then extracted with a linear com-
bination of Yj as follows:

EY>>+Y><+Y<<+Y<>

Jl 4 )

=a S++ + Abl S+7 + ACl S__ + Adl S,Jr,
J, = Yo =Yoo —Ye+Yes
2 = 4 ’

= Aasg S++ +b S+7 + Acy S__ + Ads S,Jr,
J. = Yo —Yoc+Ye—Yoo
3 = 4 ’

= Aas S++ + Abs S+_ +cS__ + Ads S_+,
J _ Y>>+Y><_Y<<_Y<>
4 = )

4
= Aay S++ + Aby S+_ +Acy S__+d S_+. (16)
Ji(t), Ja2(t), J3(t) and Ja(t) are plotted in Figure 7. Their
uncertainties are calculated from the Y; uncertainties. The
weighting parameters a, b, ¢ and d depend on the exper-
imental adjustment from pulse to pulse and from day to
day. Their relative variations are small: Aa/a, Ab/b, Ac/c,
Ad/d < 1. Aa, Ab and Ac are mainly due to the I" vari-
ation from one shot to another and we can precisely cal-
culate them since I' is measured for each shot. We ob-
tain Aas/a = 5.97 x 1072, Aby/b = —7.67 x 1072 and
Acy/c = —8.27x 1072, These values are of the same order
of magnitude as the one obtained during the CM mea-
surement of helium gaz [11]. Ad is independent of the I"
variation. It mainly comes from a variation of the magnetic
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Fig. 8. Dark grey curve: time evolution of J; and its 3o uncer-
tainties (light grey). Black curve: aBf function superimposed
to guide the eyes.

field from one pulse to another. As the B relative variation
is small compared to the I relative variation we consider
Ad ~ 0. The variation of ¥ is thus neglected.

We thus write:

J1 >~ a S++,
J2 ~b S+_,
Js~cS__,|
A Ab
~ aq Ji + 4
a b
We then calculate:

A
Ji=Jy— ?h

AC4

Ju Jo + c J3+ V. (17)

A
Jo + CC“J?,,

n Aby

~ U, (18)
which corresponds to the Cotton-Mouton signal. It is plot-
ted in Figure 8 together with a aB} function superim-
posed to guide the eyes. Nevertheless, we see that the
major component of J; is not aBZ but a supplementary
systematic effect.

As said before, the setup is subject to several mechan-
ical resonances which can be excited both by the environ-
ment and the magnetic field. The latter could thus trigger
a mechanical oscillation of the setup at t = 0. We try
to fit J; by a sine function starting at ¢ = 0. The fit
gives a frequency of (180 £ 3) Hz and it is superimposed
to J; in Figure 9a. We finally fit the residues by aB?.
The fit is superimposed to the residues of Jj in Figure 9b.
The Cotton-Mouton constant kcy is deduced from the
measured experimental parameters as follows [10]:

« A 1

= . 19
47T7'AFSR LB sin 2013 ( )

kcm

‘We obtain:

kom = (—0.9+6.2) x 10721 T2 (20)
at 30 confidence level. As said before we give error bars
at 3o corresponding to a confidence level of 99.8%, that
usually indicates an evidence for a non-zero signal. The
uncertainty takes into account the A-type and B-type un-
certainties. The A-type uncertainties come from the fit
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Fig. 9. Time evolution of Jj; and its residues (dark grey). The
30 uncertainties are superimposed in light grey. (a) Time evo-
lution of Jj. Black curve: Fit with a sine function at 180 Hz.
(b) Time evolution of the residues of J;. Black curve: Fit
with aB?.

and from the photon lifetime with a relative variation
lower than 6% at 30. The B-type uncertainties have been
evaluated previously and detailed in reference [10]. They
essentially come from the length of the magnetic field Lp
with a relative uncertainty of 6.6% at 30. The value of
equation (20) gives an estimate of our noise floor, which is
half the one of the PVLAS collaboration in 2012 obtained
with an integration time of 8192 s [8].

In order to assess more precisely the physical origin of
the systematic effect, we zoom in the power spectral den-
sity of ¥, depicted in Figure 6, on the frequencies around
180 Hz. We find several resonances at 177 Hz, 200 Hz and
above. The signal J} is then fitted by a sine function but
with the frequency fixed to each of the resonance frequen-
cies. The best fit, corresponding to the best 2, is obtained
for 177 Hz, which is compatible with the frequency given
by the previous fit. Fitting the residues by aB? gives our
final value for the CM constant:

kem = (5.146.2) x 10721 T2 (21)
at 30 confidence level.

On the other hand, if we fit the data corresponding
to Figure 8 with the sum of the sine function of 177 Hz
frequency and aB?, we obtain:

kom = (8.3+8.0) x 10721 T2 (22)

at 3o confidence level.

Eur. Phys. J. D (2014) 68: 16
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Fig. 10. Comparison of the latest absolute reported values
of the vacuum CM effect. Error bars are given at 3o0. This
work: black dot, value obtain with the fit combining the sine
function at 177 Hz and the aB? function; arrow, noise floor of
8.0 x 1072 T2

All this shows that our noise floor given by the un-
certainties is of a few 1072! T2 while the central value
depends on the fitting procedure. Establishing what is the
most statistically appropriate fitting procedure is out of
the scope of this paper. Our goal is to report on our noise
floor and to highlight the main contributions to system-
atic effects in order to improve the overall sensitivity of
the next version of the apparatus.

Nevertheless, for the sake of comparison we show in
Figure 10 our typical value given in equation (22) together
with the already published values. We see that our value
is slightly better than the previous one.

4 Conclusions and perspectives

We presented the last advances of our BMV apparatus in
terms of the best noise floor of vacuum magnetic birefrin-
gence ever realized. Our result validates our experimen-
tal method based on pulsed fields. In particular, it proves
that the sensitivity obtained in a single pulse compen-
sates the loss of duty cycle. To reach the QED value, the
needed improvement is of three orders of magnitude. This
is not conceivable with this first-generation experiment.
Our strategy is therefore to increase the magnetic field
thanks to the pulsed technology. At the moment, we have
B?Lp = 5.8 T? m but we conceptualized and tested a
pulsed coil that has already reached a B?Lp higher than
300 T? m. Two coils of this type will be inserted in the
experiment in the near future. This essential step really
makes the vacuum birefringence measurement within our
reach.

On the other hand, our analysis has allowed us to iden-
tify some systematic effects. Obviously, a special care will
be devoted to limit them in order to improve the accu-
racy. The magnetic field induces an excitation on the setup
which resonates at different frequencies. Since it affects
the signal Jy, the resonance at 177 Hz has an odd sym-
metry with respect to the sign of I'. This implies that it
concerns the mirror mounts. In order to get rid of this
effect, a new setup was designed, providing a better mag-
netic insulation of the mirrors. It will also provide a better
acoustic insulation of the mirror mounts, improving the
overall sensitivity and decreasing the number of rejected
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shots. Moreover in the new version of our setup we will be
able to measure the ellipticity both with #p equal to 0°
(no induced ellipticity) and 45° (maximal induced elliptic-
ity). This will allow us to subtract from the raw data the
systematic effects that do not depend on the polarization
direction, as the sine function at 177 Hz.
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CHAPITRE 4

Au-dela du modéle standard

4.1 Introduction

4.1.1 “Weakly Interacting Massive Particles” (WIMPs)

L’étude de la propagation de la lumiére dans le vide et sous champ magné-
tique permet également de tester la physique hors modéle standard qui prévoit
alors, par exemple, l'oscillation de photons en particules de faible masse inter-
agissant trés peu avec la matiére. Ces particules, hypothétiques pour le moment,
sont appelées de maniére générale des WIMPs (pour Weakly Interacting Massive
Particles), parmi lesquelles I’axion est généralement la particule la plus connue.
[axion a été introduit en 1978 par Weinberg [101] et Wilczek [102] suite a la
proposition de Peccei et Quinn en 1977 pour résoudre un probléme théorique,
le “strong CP problem”! [16]. Des preuves de son existence sont depuis recher-
chées activement. Sa détection serait également une avancée majeure dans la
compréhension de notre univers puisque ’axion pourrait également étre I'un des
constituants possibles de la matiére noire.

La détection de ce type de particules est particuliérement compliquée. Elles
sont en effet théoriquement de faible masse, neutres, sans spin, stables et elles
interagiraient trés peu avec la matiére - des particules donc pratiquement indé-
tectables. En revanche, en présence d’'un champ magnétique ou électrique, elles
devraient se coupler aux photons avec une probabilité de conversion caractérisée
par une constante de couplage appelée g [103]. Cette propriété est celle qui est
généralement utilisée expérimentalement pour tenter d’observer une WIMP.

4.1.2 Principe de détection des WIMPs

Le principe de la détection repose sur la conversion sous champ magnétique
des photons en WIMPs et inversement. Le diagramme correspondant est rap-
pelé sur la figure 4.1.2. Concrétement, les expériences consistent & mesurer cette
probabilité de conversion aprés propagation des WIMPs ou des photons dans
un champ magnétique B sur une longueur z. Celle-ci dépend de la constante de

1. Le probléme CP fort correspond & l'observation expérimentale de la non-violation de la
symétrie CP en chromodynamique quantique bien que celle-ci soit théoriquement possible.
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couplage photons-WIMP g et de la masse de la particule WIMP m, de la facon
suivante [104] :

z 2
P(z) = / dZ A, () B (4.1)
0
: 9B(¥) my
avec Ay () = 5 et A, = ~o (4.2)

oll w est I'énergie du photon?. L’orientation du champ magnétique par rapport
a la polarisation de la lumiére dépend de la particule hypothétique considérée.
Dans le cas de ’axion, le champ magnétique est paralléle a la polarisation de la
lumiére.

photon

FIGURE 4.1 — Schéma correspondant au cou-
plage WIMP (trait pointillé) - photon (courbe

B ondulée) via un champ magnétique externe
(courbe ondulée terminée d’une croix).

Pour un champ magnétique constant sur une longueur L, la probabilité de-

vient : ) ,
BL L
P= (_g 5 ) sinc? (njlz.z > ) (4.3)

Pour étre expérimentalement mesurable, cette probabilité de conversion doit étre
la plus grande possible, nécessitant donc I'utilisation de champ magnétique le plus
intense possible. Le terme oscillant indique que la zone de masse explorée est celle
satisfaisant sin(m2L/4w) < 1 et donc m, < y/27w/L. Dong, plus la longueur de
I’aimant sera petite, plus la zone de masse explorée sera importante. A champ
magnétique constant, la probabilité de conversion maximale, proportionnelle a
(BL)?, sera en revanche plus faible. Un compromis doit donc étre trouvé concer-
nant les paramétres de 'aimant. Enfin, la zone de masse explorée est d’autant
plus importante que I’énergie du photon est grande. Il serait donc préférable de
s’orienter vers des sources a rayons X ou gamma plutdt que dans le domaine
visible. En revanche, le nombre de photons délivrés par ces sources étant plus
faible que dans le visible, le nombre de WIMPs générés est moins important.
Aucune expérience n’a pour le moment détecté une particule WIMP. Les
limites obtenues sur la probabilité de conversion permettent cependant d’exclure

2. Tous les paramétres sont exprimés en unités naturelles (h = ¢ = 1) : gleV~!], BleV?]=
1/195B[T], ma[eV] = 5.6 x 103°m,[kg], w[eV], 2/[eV71] = 2 x 107 72[m].
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certaines régions de l'espace des paramétres (g-m,). Celui-ci est représenté sur
la figure 4.2 avec les prédictions théoriques pour 1'axion [105,106] qui prévoient
en particulier que la constante de couplage g est proportionnelle & la masse de
I’axion m,. Ainsi, plus I’axion est léger, plus la constante de couplage est faible : sa
détection est alors plus difficile puisqu’il se convertit moins volontiers en photon.

107
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FIGURE 4.2 — Espace des paramétres (g-m,) caractérisant ’axion (ou une WIMP). La
zone pointillée correspond aux prédictions théoriques pour 'axion [105,106].

4.1.3 Observations astrophysiques
CAST

Expérimentalement, les résultats les plus précis sont obtenus via I’observation
de sources astrophysiques ot siégent un champ magnétique important, comme le
soleil. Le principe de ces expériences a été imaginé pour la premiére fois par P.
Sikivie [103]. Les axions seraient créés a partir des photons thermiques dans le
plasma solaire et s’en échapperaient pratiquement sans interagir. Le principe de
détection de ces axions solaires est présenté sur la figure 4.3 et correspond & ce
que I’on pourrait appeler un “télescope magnétique”. Il est tout d’abord constitué
d’un “mur” permettant de stopper les nombreux photons provenant du soleil tout
en laissant passer les axions qui interagissent trés peu avec la matiére. Un champ
magnétique transverse est placé aprés ce mur permettant de convertir les axions
en photons avec une probabilité de conversion donnée par 1’équation (4.1) ou
(4.3). Ces photons “reconvertis” sont finalement détectés a 1’aide d’un détecteur
bas bruit.

L’expérience la plus sensible basée sur ce principe est celle développée au
CERN sous le nom de CAST (CERN Axion Solar Telescope). Les meilleures
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AXxions==

FIGURE 4.3 — Principe de la détection des axions solaires (gauche) et diagramme équi-
valent (droite). Une partie des axions solaires, aprés avoir traversé le mur permettant
de stopper la lumiére du soleil, est convertie en photons. Un détecteur placé a la sortie
de 'appareil permet de mesurer le nombre de photons ainsi convertis.

limites actuelles sont indiquées sur la figure4.4 [107]. De nombreuses améliora-
tions ont été apportées depuis sa construction, permettant d’ores et déja d’exclure
certaines prévisions théoriques.
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FIGURE 4.4 — Zones d’exclusion (hachurées) des paramétres de I’axion avec un indice
de confiance de 95 % obtenues & partir des mesures sur CAST [107] et & 'aide de cavités
micro-ondes comme celle développée dans le projet ADMX [108].



4.1 Introduction

153

ADMX

ADMX (Axion Dark Matter Experiment) donne également d’excellentes li-
mites, mais dans un domaine de masse beaucoup plus restreint. Le principe de
I'expérience est le méme que pour les axions solaires, mais le “télescope magné-
tique” est ici a la recherche des axions pouvant constituer la matiére noire. Ces
axions seraient dotés d’'une masse trés faible, de 1 & 100 ueV, et se convertiraient
en photons dans le domaine des micro-ondes. La sensibilité du télescope est ici
accrue a l'aide d’une cavité résonante dont les miroirs sont placés de part et
d’autre du champ magnétique. Aucun axion n’a été pour le moment détecté, cor-
respondant aux limites de la figure 4.4 [108]. Ces limites permettent elles aussi
d’exclure une partie des prévisions théoriques.

4.1.4 Expériences purement terrestres

Les expériences basées sur la détection de WIMPs non créés sur Terre donnent
actuellement les meilleures limites. Elles souffrent en revanche d’un handicap :
Iinterprétation des mesures et le calcul des limites font appel a la modélisation.
Pour les axions solaires par exemple, le calcul du taux d’axions créés et arrivant
jusqu’au télescope CAST est basé sur notre connaissance du noyau solaire. Une
certaine imprécision persiste donc sur ces résultats.

Pour contourner ce probléme, il est alors nécessaire de développer des expé-
riences purement terrestres qui permettent de détecter les WIMPs mais égale-
ment, de les créer. Trois types d’expériences existent : la photorégénération, la
biréfringence magnétique du vide et le dichroisme magnétique du vide.

Photorégénération ou expérience du “mur brillant”

Le principe de 'expérience, proposé initialement par K. Van Bibber et al [19],
est relativement simple. Il est présenté sur la figure4.5. Il consiste a injecter de
la lumiére dans une premiére zone de champ magnétique B; transverse sur une
longueur L;. Les photons sont alors convertis en WIMPs avec une probabilité P,
donnée par ’équation (4.1). Un mur est placé a la sortie du premier aimant que
seules les WIMPs peuvent traverser. Un deuxiéme aimant délivrant un champ
magnétique By sur une longueur Lo, placé aprés le mur, permet de reconvertir
une partie des WIMPs en photons avec une probabilité P,. Un détecteur trés
sensible est finalement placé a la sortie de facon a compter le nombre de photons
ainsi régénérés.

Le taux de détection de photons régénérés est donné par :

R = P1P2§777 (44)

avec P la puissance lumineuse incidente et n 'efficacité de détection totale. Les
équations (4.1) et (4.4) montrent qu'un taux de détection élevé nécessite un
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FIGURE 4.5 — Principe de la photorégénération (haut) et diagramme correspondant
(bas).

taux de photons incidents important, un paramétre BL élevé et une efficacité de
détection la meilleure possible.

Biréfringence magnétique

Le deuxiéme type d’expérience purement terrestre correspond a celles déve-
loppées pour la mesure de la biréfringence magnétique du vide. En effet, le cou-
plage photon-WIMP via le champ magnétique induit également une biréfringence
venant s’ajouter a celle prévue dans le cadre de la QED [104]. Le diagramme
correspondant est présenté sur la figure4.6. La création virtuelle d’'une WIMP
induit un retard de phase entre les photons polarisés paralléelement au champ
magnétique, et étant sujet aux créations virtuelles de WIMPs, et les photons
polarisés perpendiculairement au champ magnétique.

L’ellipticité induite par cette oscillation virtuelle photon-WIMP est donnée

par [60] :
F (Big\’ 2L
v ( Lg) wlLp {1 — sin(:mQa B] sin 26, (4.5)

2\ m, w

avec 0 'angle entre la polarisation incidente et la direction du champ magnétique
transverse. Pour augmenter ’effet, il faut maximiser le champ magnétique B, et
la longueur d’interaction Lpg entre les photons et le champ magnétique.
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FIGURE 4.6 — Gauche : création virtuelle d'une WIMP induisant une ellipticité dans
les mesures de biréfringence magnétique du vide. Droite : création réelle d’'une WIMP
responsable d’un dichroisme.

Dichroisme magnétique

Enfin, sur I'expérience précédente, nous pouvons également avoir création
réelle de WIMPs a partir des photons polarisés parallélement au champ magné-
tique dans le cas des axions. Le diagramme correspondant est présenté sur la
droite de la figure 4.6. Ainsi, une lumiére polarisée a 45° du champ magnétique
verra sa composante paralléle au champ magnétique atténuée da a la conversion
d’une partie des photons correspondant en axions, induisant donc un dichroisme.
L’angle de rotation E est donné par la formule suivante [60] :

oF (B, Lgg\” 2,
E:—( = Bg) sinCQ%smze, (4.6)

T 4 w

Les paramétres importants restent la finesse de la cavité, le champ magnétique
et la longueur sur laquelle il est appliqué.

Les mesures réalisées par une mesure de biréfringence magnétique ou par
photorégénération sont complémentaires. Dans ce cadre, nous avons réalisé deux
expériences de photorégénération : une dans le domaine visible, 'autre dans le
domaine des rayons X. Celles-ci sont décrites dans les deux prochaines parties.
Les limites obtenues avec la mesure de biréfringence magnétique du vide sont
finalement présentées dans la derniére partie.

4.2 Photorégénération dans le visible

Cette expérience de photorégénération a débuté en 2006 suite aux résultats de
I'équipe italienne PVLAS [109] travaillant elle aussi sur la biréfringence magné-
tique du vide a 'aide d’une cavité optique. En cherchant & mettre en évidence
la biréfringence magnétique du vide, cette équipe a en effet détecté un signal
bien plus intense que celui prédit dans le cadre de la QED. L’interprétation la
plus plausible de leurs mesures était alors la détection de ’axion. Cependant,
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FIGURE 4.7 — Schéma de ’expérience de photorégénération réalisée au LULI.

la constante de couplage photons-axion déduite des mesures de PVLAS était
en sérieux désaccord avec les limites données par CAST [110]. Une expérience
indépendante et complémentaire était donc capitale pour confirmer ou non ces
résultats [111]. De nombreux groupes a la renommée internationale, comme le
DESY en Allemagne, le FERMILAB et le Jefferson Lab aux Etats-Unis, ou le
CERN en Suisse, se sont également lancés dans 'aventure, ce qui a rendu le
contexte particuliérement concurrentiel.

4.2.1 Description de ’expérience

Les résultats ont été publiés dans PRL [112] et PRD [113]. Je ne décris dans
la suite que les points principaux de 'expérience ainsi que les résultats.

Le probléeme principal de cette expérience résidait dans la détection. Le taux
de régénération attendu était en fait extrémement faible — moins de 10720 —
ce qui imposait un blindage optique parfait contre tout photon parasite et un
niveau de bruit de fond du détecteur trés bas. La solution originale et efficace que
nous avons mise en place pour résoudre ce probléme de détection a été d’utiliser
des éléments pulsés a la fois pour le laser, le champ magnétique et le détecteur.
Contrairement aux autres expériences de photorégénération qui requiérent de
long temps d’intégration, nous ne sommes pas limités par le bruit du détecteur
puisque les photons sont concentrés dans des tirs laser puissants et trés courts.

Le laser

Le schéma de principe de 'expérience est présenté sur la figure4.7. Afin
d’avoir un maximum de photons incidents & une longueur d’onde facilement
détectable, 1’équipe a choisi d’installer I’expérience au LULI a Palaiseau sur la
chaine laser Nano 2000. Cette chaine permet de délivrer en moyenne 1.5 kJ dans
une fenétre de 4.8ns comme cela est montré dans l'insert de la figure 4.8 avec
w=1.17¢eV. Ceci correspond a 8 x 10?! photons incidents par tir laser. Le taux de
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FIGURE 4.8 — Champ magnétique au centre de la bobine en fonction du temps. Le
maximum est atteint en moins de 1.75ms et peut étre considéré comme constant pen-
dant 150 us. Le tir laser de 5 ns est appliqué durant cet intervalle. Insert : profil temporel
du tir laser.

répétition est d’un tir toutes les deux heures. Le faisceau est focalisé juste avant
le mur a I’aide d’une lentille de focale 20,4 m. Pour éviter toute ionisation de 'air,
un vide meilleur que 1072 mbar est nécessaire. Le mur est constitué d'une plaque
en dural et est incliné a 45° par rapport a ’axe de propagation du laser ce qui
permet d’augmenter 'aire de 'impact laser et d’éviter toute retroréflexion.

Le champ magnétique

Comme le montrent les équations (4.1) et (4.2), la probabilité de conversion
est quadratique en champ magnétique. Il faut donc un champ le plus intense
possible. Les bobines les plus adaptées sont alors des bobines pulsées. Avec nos
parameétres, la longueur caractéristique des aimants pour pouvoir détecter I’axion
de PVLAS doit étre inférieure & 1m. La géométrie des bobines est la méme
que celle utilisée sur le projet BMV, soit une géométrie en X décrite dans la
partie 2.2.2 [59]. La puissance est fournie par un générateur transportable, lui
aussi développé au LNCMI.

Comme pour tous les aimants pulsés, les bobines sont plongées dans des
cryostats a azote liquide pour limiter les conséquences de I’échauffement lors
du tir. Un délai entre deux tirs magnétiques est nécessaire pour permettre a la
bobine de retrouver sa température d’équilibre. Ceci limite le nombre de tirs a
cing par heure.

Le champ maximum est obtenu au centre de la bobine qui peut délivrer
jusqu’a 13,5 T sur une longueur de 365 mm. Cependant, pendant toutes les cam-
pagnes de mesure, un champ magnétique plus faible de 12 T a été utilisé afin
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d’augmenter la durée de vie de la bobine. La figure 4.8 montre 'allure du champ
magnétique au centre de la bobine au cours du temps. La durée totale est de
quelques millisecondes. Le champ magnétique atteint son maximum en moins de
2ms et reste constant a 0.3% prés pendant 150 us, un temps long comparé a la
durée d’un tir laser.

Le détecteur

Le dernier élément clé de 'expérience est le détecteur de photons. Afin d’avoir
une sensibilité la plus grande possible, nous nous sommes tournés vers les détec-
teurs de photons uniques. De plus, le temps d’intégration est limité par la durée
d’un tir laser qui est inférieur a 5ns. Nous comptions réaliser une centaine de
tirs laser, soit 500ns de temps d’intégration total. Il fallait donc que le bruit
d’obscurité, autrement dit le nombre de photons détectés lorsqu’il n’y a aucun
photon incident sur le détecteur, soit bien plus petit que 1 pendant ces 500 ns.

Nous avons choisi un détecteur de photons uniques basé sur une photodiode
a avalanche, commercialisé par Princeton Lightwave Instruments, et qui a une
grande efficacité de détection a 1.05 pm. La lumiere est couplée au détecteur a
I’aide d’une fibre multimode. Un point important de I'expérience a été de mettre
en place un coupleur de fibre dans une monture stable afin que le couplage dans
la fibre ne change pas au cours des tirs de champs magnétiques.

Nous avons précisément caractérisé le détecteur. L’efficacité de détection et
le bruit d’obscurité ont été mesurés en fonction des divers parameétres ajustables,
comme la température de la photodiode ou la tension qui y est appliquée. Fina-
lement, une fois ces parameétres optimisés, nous avons obtenu une efficacité de
détection d’environ 50 % avec un bruit d’obscurité de 2.5 x 1072 sur 500 ns.

Protocole expérimental et test

Le montage et le test de I’expérience se sont déroulés de février a mai 2007 au
LULI. Les trois points suivants ont été caractérisés et optimisés avec attention :
— L’alignement. Aprés le second aimant, les photons régénérés sont injectés
dans le détecteur a l'aide d’un coupleur et d’une fibre optique. Cette fibre
a un diamétre de cceur de 62.5 ym et une ouverture numérique de 0.27. Ces
parameétres ont été choisis afin d’assurer un couplage élevé méme lorsque
I’on prend en compte 'instabilité du faisceau laser tir aprés tir.
L’alignement du faisceau haute puissance est réalisé avec un laser basse
puissance parfaitement aligné avec le faisceau haute puissance. Pour cela, le
mur est relevé pour laisser passer la lumiére. Cet alignement est vérifié entre
chaque tir. Enfin, la derniére source de désalignement provient des effets
thermiques durant le tir haute énergie. Ce désalignement est reproductible
et peut donc étre corrigé. De plus, le champ lointain est imagé pour chaque
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tir a la sortie de la chaine d’amplification laser ce qui nous permet de
connaitre le couplage dans la fibre pour chaque tir.

— Bruit optique et électro-magnétique. Pour avoir la meilleure sensibilité pos-
sible, nous avons besoin d’avoir un blindage optique contre tout photon pa-
rasite. Le mur a une épaisseur de quelques centimétres. Des flasques pleines
sont placées a la sortie du premier aimant et a 'entrée du deuxiéme aimant.
Des soufflets opaques sont placés entre le deuxiéme cryostat et I’entrée de la
fibre. Ceci permet de placer la zone de régénération dans une chambre par-
faitement noire tout en découplant mécaniquement ’aimant qui peut vibrer
au cours du tir et le coupleur de fibre qui doit rester parfaitement stable.
Afin d’éviter tout comptage de photon dii & un bruit électro-magnétique,
le détecteur est placé dans une baie faisant office de cage Faraday. La fibre
ayant une longueur de 30 m, nous avons placé le détecteur loin des aimants.

— Synchronisation. Notre expérience étant basée sur des éléments pulsés, une
attention particuliére a été portée sur la synchronisation de tous les élé-
ments : le tir laser doit étre appliqué au maximum de champ magnétique
et doit arriver sur la photodiode au cours de la fenétre temporelle de détec-
tion. Tous les signaux de synchronisation ainsi que les instants d’ouverture
et de fermeture de la fenétre de détection sont enregistrés a chaque tir. Ceci
nous permet d’avoir la certitude que le fait de ne compter aucun photon
ne vient pas d’un défaut de synchronisation.

4.2.2 Reésultats

Au cours des 80 tirs réalisés, aucune photorégénération n’a été observée. Ce
résultat nous permet de conclure avec certitude que l'interprétation particulaire
des résultats de PVLAS est erronée puisqu’au moins un photon régénéré par
tir aurait da étre détecté. La courbe représentant les limites de la constante de
couplage axion-photons g en fonction de la masse de 'axion m, est représentée
sur la figure 4.9 pour notre expérience (gris foncé) et est comparée aux limites
données par d’autres expériences au moment de la publication de nos résultats
sur la figure 4.10.

4.2.3 Conclusion

La force de cette expérience a été de combiner de facon presque idéale le laser
Nano 2000 du LULI, les bobines pulsées développées au LNCMI et un compteur
de photons uniques commercial adapté a nos besoins. Ceci nous a permis d’étre
les premiers a infirmer les résultats italiens devancant les grands laboratoires en
course. Ces résultats ont été publiés dans :

— Physical Review Letters en 2007 pour les premiers résultats [112]. Ces ré-

sultats ont été particuliérement importants pour nous puisqu’ils nous ont
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FIGURE 4.9 — Gris foncé : Limite a 30 de la constante de couplage g axion-photon, en
fonction de la masse de ’axion m,, obtenue a partir de notre absence de comptage au
cours des tirs. L’aire grisée est exclue. Gris clair : Limite obtenue par la collaboration
BFRT en 1993 [60]. Noire : Limite donnée par PVLAS [109] et non exclue par BFRT
pour 'observation de ’axion.

permis de devancer les autres équipes s’étant lancées sur les traces de ’axion
comme le FermiLab et le Jefferson Lab aux Etats-unis, le CERN en Suisse
ou le DESY en Allemagne.

— Physical Review D en 2008 pour les résultats finaux [113].

4.3 Photorégénération dans le domaine des rayons
X

Nous avons également réalisé une autre expérience du méme type, mais dans
un domaine de longueur d’onde complétement différent. Alors que nous travail-
lions dans le domaine proche infrarouge au LULI, cette nouvelle expérience a
été réalisée dans le domaine des rayons X. Nos résultats ont finalement permis
d’apporter de nouvelles données dans un domaine d’énergie oll aucune expérience
n’avait encore été réalisée.

Toutes les expériences sur la recherche de ’axion purement terrestres, au-
trement dit dans lesquelles I’axion est créé expérimentalement puis détecté, qui
ont été réalisées jusqu’a maintenant ont travaillé avec des énergies de photon
de lordre de 1eV (domaine visible et proche infrarouge). Or, les limites don-
nées habituellement ne sont valables que pour des masses d’axions trés petites
devant I’énergie du photon (m, < w), I’axion formé & partir du photon devant
étre relativiste. Augmenter I'énergie du photon dans une expérience de photo-
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F1GURE 4.10 — Comparaison des zones d’exclusion de l’axion obtenues sur diverses
expériences au moment de la publication de nos résultats finaux obtenus au LULI [113] :
GammeV en 2008 114, PVLAS en 2008 20|, expériences avec des micro-cavités comme
celles développées sur le projet ADMX [115-119] et CAST en 2007 [110] — et zone de

présence de 'axion attendue théoriquement.

régénération permettrait donc de tester de nouvelles régions dans I'espace des
paramétres (m, — g).

4.3.1 Présentation de ’expérience
La source de rayons X

Le principe de I’expérience est présenté sur la figure4.11. L’expérience a été
montée sur la ligne ID26 de ’ESRF. Deux énergies ont été utilisées : w = 50.2 keV
et 90.7keV. Ces énergies sont sélectionnées a I'aide d'un monochromateur situé
sur le trajet du faisceau de rayons X. Le faisceau voyage quasiment intégralement
sous vide afin d’éviter la perte de photons incidents due a 'absorption par ’air.
Le flux incident est mesuré précisément avec une chambre & ionisation remplie
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FIGURE 4.11 — Schéma de I'expérience de photorégénération dans le domaine des
rayons X.

d’un bar de krypton. Les autres chambres a ionisation placées le long du trajet
permettent de vérifier 'alignement. Durant les prises de données, nous avons
obtenu environ 1.2 x 10'? photons par seconde & 50.2keV et 3.1 x 10'° & 90.7 keV.

Le champ magnétique

Le champ magnétique est délivré par deux aimants supraconducteurs avec
un champ magnétique paralléle a la polarisation du faisceau. Le premier aimant
fournit 3T sur une longueur de 150 mm alors que le deuxiéme aimant fournit 3 T
sur 97 mm.

Les aimants sont placés dans les deux salles expérimentales EH1 et EH2 qui
sont blindées par du plomb. Le mur permettant de bloquer les rayons X entre
les deux aimants correspond a l’obturateur de sécurité entre EH1 et EH2 et qui
est constitué d’une épaisseur de plomb de 50 mm. La zone de régénération, qui
se trouve au niveau de la deuxiéme bobine, et la zone de détection se trouvent
blindées dans la cabane EH2. Cette configuration permet d’avoir un niveau de
bruit de fond bas, essentiellement dominé par les rayons X cosmiques.

Le détecteur

Le dernier élément clé de I’expérience est le détecteur. Le détecteur est consti-
tué de 5 mm de Germanium refroidi a I’azote liquide. Les rayons X arrivant sur le
détecteur créent des charges électriques proportionnelles & 1’énergie du photon.
Le signal de sortie est ensuite filtré afin de rejeter les événements dont 1’énergie
ne correspond pas a l'énergie des photons incidents sélectionnée par le mono-
chromateur. L’efficacité de détection est d’environ 99.98% a 50.2keV et 84% a
90.7keV. Le taux de comptage mesuré alors que le faisceau de rayons X est éteint,
correspondant donc au bruit de fond, est de (7.24:0.7) x 1073 photon par seconde.
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FIGURE 4.12 — Comparaison des zones d’exclusion de l’axion obtenues sur diverses
expériences au moment de la publication de notre résultat [120], avec un indice de
confiance de 95 % pour nos résultats et ceux de CAST [121] et 90 % pour les résultats
obtenus avec les cavités micro-ondes [108,117,118]. Pour le détail : voir texte.

4.3.2 Reésultats

Aucun excés de comptage au-dessus du bruit de fond n’a été observé. Les
limites sur la constante de couplage ¢ WIMP-photon en fonction de la masse
de la particule WIMP m, sont représentées sur la figure4.12 en gris foncé et
sont comparées aux limites données par d’autres expériences au moment de la
publication de nos résultats [120].

Les meilleures limites obtenues a ’époque sur une expérience purement ter-
restre ont été données par la collaboration ALPS au DESY en Allemagne en
2010 [122] et sont représentées par la zone d’exclusion au-dessus de la ligne
en trait plein. Les meilleures limites établies par les recherches d’axions extra-
terrestres sont représentées par les zones hachurées : les hachures horizontales
correspondent & CAST [121] alors que les hachures horizontales correspondent
aux recherches d’axions galactiques a laide de micro-cavités [108,117,118]. La
bande & pois correspond aux prévisions théoriques. Cette figure montre que nous
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avons testé une nouvelle région dans l’espace des paramétres (m, — g) en ce qui
concerne les expériences purement terrestres.

4.3.3 Conclusion

Ces résultats ont été publiés dans PRL fin 2010 [120]|. Notre expérience a
permis d’étendre a de plus hautes énergies la recherche des oscillations photons -
WIMPs en présence d’un champ magnétique. Aucune limite avec des expériences
purement terrestres, donc indépendantes de modéles, n’avait été donnée jusqu’a
maintenant dans cette région. De plus, cette expérience représente la premiére
étude expérimentale de la propagation des photons sous champ magnétique dans
le domaine des rayons X, ouvrant ainsi un nouveau domaine d’étude expérimen-
tale.

4.4 Axions et projet BMV

Comme nous 'avons vu dans la partie 4.1.4, les mesures de biréfringence ma-
gnétique du vide par ellipsométrie permettent également de donner des limites sur
les parameétres des WIMPs. L’ellipticité induite par le couplage photons-WIMPs
via le champ magnétique est donnée par ’équation (4.5). La limite obtenue sur
le projet BMV est :

\kom| = (6.1 +£7.5) x 1072 T2 (4.7)

a 3o0. Les mesures ayant été réalisées avec une finesse F' = 445000, un paramétre
B? ;Lp ~ 3T?m et un angle de 45 ° entre la polarisation incidente et la direction
du champ magnétique, I'ellipticité mesurée en sortie de cavité est :

2F
v = TBifLBkCM (4.8)

= (1.5+£1.8) x 107%, (4.9)

Injectée dans 'équation (4.5), on trouve les limites dans 1'espace des paramétres
(m, — g) tracées sur la figure 4.13. Nous avons également tracé sur cette figure
les meilleures limites obtenues jusqu’a maintenant avec ’observation des axions
solaires [107], les cavités micro-ondes avec en particulier le projet ADMX [108],
et les expériences de photorégénération avec les projets ALPS [122] et OSQAR
[123].

4.5 Conclusion

Les expériences de photorégénération mises en place dans le cadre du projet
BMYV ont permis de donner des limites sur les paramétres des axions, et de
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FIGURE 4.13 — Comparaison des meilleures zones d’exclusion obtenues jusqu’a main-
tenant concernant les parameétres des WIMPs, que ce soit avec les expériences a
la recherche de ’axion solaire (CAST) [107], celles observant les axions galactiques
(ADMX) [108,117,118] ou les expériences purement terrestres de photorégénération
ou de biréfringence magnétique du vide [120,122,123]. L’indice de confiance est de
95 % pour CAST et pour la photorégénération dans le domaine des rayons X ou visible
(projets ALPS et OSQAR), de 90 % pour les résultats obtenus avec les cavités micro-
ondes et de 99.7% pour les limites obtenues sur le projet BMV. La courbe pointillée
correspond & la limite obtenue si la biréfringence magnétique du vide est observée avec
un rapport signal sur bruit de un.
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maniére plus générale sur les paramétres des WIMPs. Celle réalisée au LULI dans
le domaine du visible a été la premiére & infirmer I'interprétation des résultats
de I'équipe PVLAS en 2006 [109]. Celle réalisée dans le domaine des rayons X a
permis quant a elle de donner des limites pour des masses encore jamais explorées
par des expériences purement terrestres.

Nous voyons clairement sur la figure4.13 que les limites sur la constante
de couplage données par les expériences purement terrestres sont de plusieurs
ordres de grandeur plus basses que celles données par les recherches sur les axions
solaires ou galactiques, ou encore celle de 'axion prévue théoriquement. Ces
expériences restent néanmoins importantes puisqu’elles ne dépendent d’aucun
modéle. Enfin, parmi les expériences purement terrestres, il est important de
noter la complémentarité des expériences de photorégénération et de mesures
de la biréfringence magnétique du vide. Alors que les premiéres permettent de
donner des limites aux faibles masses, les deuxiémes permettent d’étendre les
limites aux masses plus grandes. Le projet BMV est dans ce cadre prometteur
comme le montrent les limites obtenues si la biréfringence magnétique du vide
est observée avec un rapport signal sur bruit de un.

4.6 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références [112], [113] et [120].
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Recently, axionlike particle search has received renewed interest. In particular, several groups have
started “‘light shining through a wall” experiments based on magnetic field and laser both continuous,
which is very demanding in terms of detector background. We present here the 20 limits obtained so far
with our novel setup consisting of a pulsed magnetic field and a pulsed laser. In particular, we have found
that the axionlike particle two photons inverse coupling constant M is >8 X 10° GeV provided that the
particle mass m, ~ 1 meV. Our results definitively invalidate the axion interpretation of the original
PVLAS optical measurements with a confidence level greater than 99.9%.

DOI: 10.1103/PhysRevLett.99.190403

The axion was first proposed 30 years ago to solve the
strong CP problem [1], but other models also support the
existence of such light, neutral, spin-zero bosons [2,3]
called axionlike particles. Although no axion has been
definitely detected yet, several experiments and astronomi-
cal observations have limited the range of possible axion-
like particle mass m, and inverse axionlike particle two
photons inverse coupling M [4].

Last year, an Italian collaboration (PVLAS) announced
an unexpected observation of a magnetic dichroism in
vacuum which they suggested might be due to photoregen-
eration of axionlike particles [5]. However, their mass and
two photon inverse coupling constant inferred from these
PVLAS measurements were seriously inconsistent with the
CAST limits [6], albeit the latter are model dependent.
There was an urgent need for a direct independent experi-
mental test of the observed dichroism [7].

All of that has raised a renewed interest in axionlike
particle search, in particular, for model independent purely
laboratory-based experiments [8]. The most popular setup,
commonly called “light shining through a wall”, is a
photoregeneration experiment based on the Primakoff ef-
fect coupling an axionlike particle with two photons (a real
one from the laser field and a virtual one from an external
magnetic field) [9]. The experiment consists of converting
photons into axionlike particles of identical energy in a
transverse magnetic field, then blocking the photon beam
with a wall. The axionlike particles hardly interact with the
wall and are converted back to photons in a second magnet.
Finally, the regenerated photons are counted with an ap-
propriate detector. Such an experiment was conducted in
the 1990s by the BFRT Collaboration without detecting
any regenerated photon signal, which led to limits on the
axion parameters [10]. Mainly motivated by the PVLAS
astonishing results, several ‘“‘light shining through a wall”
experiments have been proposed and are currently under
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construction [11]: at DESY the Axion-Like Particle Search
project (ALPS), at CERN, the Optical Search for QED
Vacuum Magnetic Birefringence, Axions and Photon
Regeneration project (OSQAR), at Jefferson Laboratory,
the LIght PseudoScalar Search project (LIPSS), and at
Fermilab, the GammeV Particle Search Experiment
project. Eventually, the PVLAS Collaboration disclaimed
their previous observations [12].

Experimentally, the main difficulty lies in detection. The
expected regeneration rate is indeed very weak—less than
10~2°—so that optical shielding has to be perfect and the
detector background very low.

In this Letter, we detail our project, and we present the
limits on the axionlike particle mass and two photons
inverse coupling constant we have obtained so far. We
have found an original and efficient way to solve the
detection problem as both the laser and the magnetic field
are pulsed, as well as our detector. Contrary to other similar
experiments requiring long integration times, we are not
limited by the background of the detector as the photons
are concentrated in very intense and short laser pulses. We
are the first to present here the results of a pulsed “‘light
shining through a wall” experiment, specially designed to
test the PVLAS claims. In particular, we have found that
the axionlike particle two photons inverse coupling con-
stant M is >8 X 10° GeV provided that the particle mass
m, ~ 1 meV. Our results definitively invalidate the axion
interpretation of the original PVLAS optical measurements
with a confidence level greater than 99.9%.

Our experimental setup shown in Fig. 1 is based on three
synchronized pulsed elements: a very energetic laser, two
pulsed magnets which are placed on each side of the wall,
and a time-gated single photon detector. We have chosen
this pulsed approach as it allows us to measure very small
conversion rates free from the inevitable background
counts of photon detectors.

© 2007 The American Physical Society
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FIG. 1.

The conversion and reconversion transition rate (in natu-
ralunits hi=c=1,with1 T=195eVZand I m =5 X
10° eV ') after propagating over a distance z in the in-
homogeneous magnetic field B writes [13]:

Z 2
P@) = | [fars@expin,) |
0
where Ay, = 55;and A, = — % with the photon energy w.

Note that this equation is valid both for pseudoscalar and
scalar particles, but pseudoscalar (respectively scalar) par-
ticles couple to photons with a polarization parallel (re-
spectively orthogonal) to the magnetic field. We have two
identical magnets; the detection rate of regenerated pho-
tons is given by

P
R=P>—n, 2)
)

with P the laser power and n the global detection
efficiency.

Studying Eqgs. (1) and (2), we can easily see that the
number of incident photons, the integral of the transverse
magnetic field over the magnet length L:

+L/2
[ Bdz = ByLe, 3)
-L/2

and the detection efficiency have to be maximized. We
define By, as the maximum field and L., as the equivalent
length of a magnet producing a uniform magnetic field B,.
On the other hand, P(z) oscillates for too long magnets.
The length leading to the highest conversion rate for a
homogeneous magnetic field is Ly = 27w/ m2. For opti-
cal frequencies and an axionlike particle mass on the order
of 1 meV, this length is on the order of 1 m.

In order to have the maximum number of incident
photons for the laser source at a wavelength that can be
efficiently detected, we have chosen to set up the experi-
ment at LULI, Palaiseau, France, on the Nano 2000 chain.
It can deliver up to 1.5 kJ over 4.8 ns (FWHM)—as shown
in the inset of Fig. 2—with @ = 1.17 eV. This corre-
sponds to N;,. = 8 X 10?! photons per pulse. The repeti-
tion rate is 1 pulse every 2 hours. The vertically linearly
polarized incident beam has a 186 mm diameter and is
almost perfectly collimated. A deformable mirror included

/ Fiber coupler

| % [
M

30 m multimode
fiber to the single
photon detector

Scheme of our experimental setup.

in the middle of the amplification chain corrects the spatial
phase of the beam to obtain at focus a spot better than two
diffraction limits. It is then focused just behind the wall
using a lens which focal length is 20.4 m. The beam is
apodized to prevent the incoming light from generating a
disturbing plasma on the sides of the vacuum tubes. Before
the wall where the laser beam propagates, a vacuum better
than 1073 mbar is necessary in order to avoid air ioniza-
tion. Two turbo pumps along the vacuum line give
1073 mbar near the lens and better than 10~* mbar close
to the wall. The wall is made of a 15 mm width aluminum
plate to stop every incident photon while axionlike parti-
cles continue. It is tilted by 45° compared to the axis of the
laser propagation in order to increase the area of the laser
impact and to avoid backreflected photons. In the second
magnetic field region, a vacuum better than 1073 mbar is
also maintained.

For the magnets, we use a pulsed technology. The pulsed
magnetic field is produced by a transportable generator
developed at LNCMP, Toulouse, France, which consists
of a capacitor bank releasing its energy in the coils in a few
milliseconds [14]. A typical time dependence of the mag-
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FIG. 2. Magnetic field B, at the center of the magnet as a
function of time. The maximum is reached within 1.75 ms and
can be considered as constant (£0.3%) during 75 = 150 us.
The 5 ns laser pulse is applied during this interval. Inset:
temporal profile of the laser pulse.
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netic field in our coils is shown in Fig. 2. Besides, a special
coil geometry has been developed in order to reach the
highest and longest transverse magnetic field [15]. A
12 mm diameter aperture has been made inside the mag-
nets for the laser beam. As for usual pulsed magnets, the
coils are immersed in a liquid nitrogen cryostat to limit the
consequences of heating. When the magnetic field is maxi-
mum, the repetition rate is set to 5 pulses per hour. A delay
between two pulses is necessary to get back to the tem-
perature of equilibrium which is monitored via the coil
resistance. During data acquisition, our coils provide By, =
123 T over an equivalent length L., = 365 mm. The
magnetic field B, remains constant (==0.3%) during 75 =
150 us, a very long time compared to the 5 ns laser pulse.
During operation the magnetic pulse is triggered by a
signal from the laser chain which has a stability ensuring
that the laser pulse happens within these 150 us. In order
to detect pseudoscalar particles, the transverse magnetic
field is parallel to the laser polarization.

The last principal element is the single photon detector
that has to meet several criteria. In order to have a sensi-
tivity as good as possible, the regenerated photon detection
has to be at the single photon level. The integration time is
limited by the 5 ns laser pulse. This imposes a detector with
a dark count far lower than 1 over this integration time so
that a nonzero regenerated photon counting would be
significant.

Our detector is a commercially available single photon
receiver from Princeton Lightwave which has a high de-
tection efficiency at 1.05 wm. It integrates a 80 X 80 wm?
InGaAs Avalanche Photodiode (APD) thermoelectrically
cooled, with all the necessary bias, control, and counting
electronics. Light is coupled to the photodiode through a
FC/PC connector and a multimode fiber. When the detector
is triggered, the APD bias voltage is raised above its
reverse breakdown voltage V. to operate in “Geiger
mode”. For our experiment, the bias pulse width is 5 ns
to correspond with the laser pulse.

The APD bias voltage is then adjusted to obtain the best
compromise between the detection efficiency and the dark
count rate per pulse. The detection efficiency 7 is mea-
sured by illuminating the detector with a calibrated laser
intensity, n = 0.50(0.02). The dark count rate is about 5 X
10~* counts per pulse.

After the second magnet, regenerated photons are in-
jected into the detector through a coupling lens plus a
graded index multimode fiber with a 62.5 wm core diame-
ter, a 0.27 numerical aperture, and an attenuation lower
than 1 dB/km. These parameters ensure that we can easily
inject light into the fiber with a high coupling ratio, even
when one takes into account the pulse by pulse instability
of the propagation axis that can be up to 9 urad. During
data acquisition, a typical coupling efficiency through the
fiber was found to be about 1. = 0.85. This efficiency is
measured by removing the wall and the blind flanges (see

Fig. 1) and by using the laser beam from the pilot oscillator
without chopping nor amplifying it. This procedure en-
sures that the pulsed kJ beam is perfectly superimposed to
the alignment beam.

The only remaining source of misalignment lies in ther-
mal effects during the high energy laser pulse, which could
slightly deviate the laser beam, hence generating supple-
mentary losses in fiber coupling. This misalignment is
reproducible. This means that it can be corrected by prop-
erly changing the initial laser pointing. By monitoring the
optical path followed by the high energy beam for each
pulse, we were able to take such misalignment losses into
account, and we have observed a maximum value of 20%
of coupling reduction.

The detector gate is triggered with the same fast signal
as the laser, using delay lines. We have measured the
coincidence rate between the arrival of photons on the
detector and the opening of the 5 ns detector gate as a
function of an adjustable delay. We have chosen our work-
ing point in order to maximize the coincidence rate (see
Fig. 3). To perform such a measurement we used the laser
pilot beam which was maximally attenuated and chopped
with a pulsed duration of 5 ns, exactly as the kJ beam.

The fiber to inject the detector is 30 m long so that it can
be placed far from the magnets to avoid potential electronic
noise during magnetic shots. In addition, the detector is
placed in a shielding bay to prevent electromagnetic noise
during laser pulses.

So far, during data acquisition, a total amount of about
17.4 kJ has reached the wall in 14 different pulses. This
corresponds to about 9.3 X 10?2 photons. To evaluate the
actual number of incident photons that could yield a re-
generated photon observable by the detector, we took into
account for each pulse the fiber coupling 7., the misalign-
ment due to thermal effects during the pulse. We have also
evaluated the percentage of the whole laser energy (see
inset of Fig. 2) actually contained in the 5 ns detection gate,
which is 93%. All of these experimental parameters are
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FIG. 3. Coincidence rate between the arrival of photons on the
detector and its 5 ns detection gate as a function of an arbitrary
delay time. The arrow indicates our working point, chosen in
order to maximize the coincidence rate.
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FIG. 4. 95% confidence level limits on the axionlike particle
two photons inverse coupling constant M as a function of the
axionlike particle mass m, obtained thanks to our null result
(dotted line). The area below our curve is excluded. Our limits
are compared to the 95% confidence level exclusion region
obtained by the BFRT photon regeneration experiment [10].

known with a few percent errors. The effective number of
photons is about 6.7 X 10?2, which corresponds to about
12.5 kJ. No regenerated photon has been detected. In this
case, the measurement error is given by the number of
photons that could have been missed due to the non perfect
detection. The probability P, that n incident photons have
been missed by the detector is P, = (I — n)". Dark count
is negligible. A standard deviation o means that a result
outside the window *2¢ corresponds to P,, < 0.05, which
yields about 4 missed photons for our value of 7.

The limits at 95% and 99.9% confidence level that we
have reached so far are plotted on Fig. 4. These have been
calculated by numerically solving Eq. (1). The area below
our curve is excluded by our null result. In particular, the
axionlike particle two photons inverse coupling constant M
is >8 X 10° GeV provided that the particle mass m, ~
1 meV. This improves the exclusion region obtained on
BFRT photon regeneration experiment [10]. In this mass
region their results were limited by the axionlike particle
photon oscillation due to the length of their magnets. Using
shorter magnets, we are able to enlarge the mass range
exclusion area.

In Ref. [5], the PVLAS Collaboration suggested that
their claimed observation of a vacuum magnetic dichroism
could be explained by the existence of an axionlike particle

with a two photons inverse coupling constant 1 X 10° =
M =6 X 10° GeV and a mass around 1 meV. This is
excluded by us with a confidence level greater than 99.9%.

We plan to improve our apparatus so that with about 100
laser pulses, we will be able to give more stringent limits
on M than the one given by the BFRT experiment for all the
values of m,.
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Recently, axionlike particle search has received renewed interest, and several groups have started
experiments. In this paper, we present the final results of our experiment on photon-axion oscillations in
the presence of a magnetic field, which took place at the Laboratoire pour 1’Utilisation des Lasers
Intenses, Palaiseau, France. Our null measurement allowed us to exclude the existence of axions with
inverse coupling constant M > 9. X 10° GeV for low axion masses and to improve the preceding
Brookhaven-Fermilab-Rochester-Trieste (BFRT) Collaboration limits by a factor of 3 or more for axion
masses 1.1 <m, <2.6 meV. We also show that our experimental results improve the existing limits on
the parameters of a low mass hidden-sector boson usually dubbed “‘paraphoton” because of its similarity
with the usual photon. We detail our apparatus which is based on the “light shining through the wall”
technique. We compare our results to other existing ones.

DOI: 10.1103/PhysRevD.78.032013

I. INTRODUCTION

Ever since the standard model was built, various theories
have been proposed to go beyond it. Many of these involve,
if not imply for the sake of consistency, some light, neutral,
spinless particles very weakly coupled to standard model
particles, and hence difficult to detect.

One famous particle beyond the standard model is the
axion. Proposed more than 30 years ago to solve the strong
CP problem [1,2], this neutral, spinless, pseudoscalar par-
ticle has not been detected yet, in spite of constant experi-
mental efforts [3-6]. Whereas the most sensitive
experiments aim at detecting axions of solar or cosmic
origin, laboratory experiments including the axion source
do not depend on models of the incoming axion flux.
Because the axion is not coupled to a single photon but
to a two-photon vertex, axion-photon conversion requires
an external electric or—preferentially—magnetic field to
provide for a virtual second photon [7].

At present, purely terrestrial experiments are built ac-
cording to two main schemes. The first one, proposed in
1979 by Iacopini and Zavattini [8], aims at measuring the
ellipticity induced on a linearly polarized laser beam by the
presence of a transverse magnetic field, but is also sensitive
to the ellipticity and, slightly modified, to the dichroism
induced by the coupling of low mass, neutral, spinless
bosons with laser beam photons and the magnetic field
[9]. The second popular experimental scheme, named
“light shining through the wall” [10], consists of first
converting incoming photons into axions in a transverse
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magnetic field, then blocking the remaining photonic beam
with an opaque wall. Behind this wall with which the
axions do not interact, a second magnetic field region
allows the axions to convert back into photons with the
same frequency as the incoming ones. Counting these
regenerated photons, one can calculate the axion-photon
coupling or put some limits on it. This setup was first
realized by the BFRT Collaboration in 1993 [3].

Because of their impressive precision, optical experi-
ments relying on couplings between photons and these
hidden-sector particles seem most promising. Thanks to
such couplings, the initial photons oscillate into the mas-
sive particle to be detected. The strength of optical experi-
ments lies in the huge accessible dynamical range: from
more than 10%° incoming photons, one can be sensitive to 1
regenerated photon.

In fact, the light shining through the wall experiment
also yields some valuable information on another hidden-
sector hypothetical particle [11]. After the observation of a
deviation from a blackbody curve in the cosmic back-
ground radiation [12], some theoretical works suggested
photon oscillations into a low mass hidden-sector particle
as a possible explanation [13]. The supporting model for
such a phenomenon is a modified version of electrodynam-
ics proposed in 1982 [14], based on the existence of two U
(1) gauge bosons. One of the two can be taken as the usual
massless photon, while the second one corresponds to an
additional massive particle usually called a paraphoton.
Both gauge bosons are coupled, giving rise to photon-
paraphoton oscillations. Several years later, more precise
observations did not confirm any anomaly in the cosmic
background radiation spectrum [15] and the interest for

© 2008 The American Physical Society
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paraphoton decreased, although its existence was not ex-
cluded. More recently, it was found out that similar addi-
tional U(1) gauges generally appear in string embeddings
of the standard model [16], reviving the interest for experi-
mental limits on the paraphoton parameters [17-19].

Some limits on the mass and the coupling constant of the
paraphoton have already been obtained by a photoregen-
eration experiment [3]. Astrophysical limits on paraphoton
parameters also exist. They have been derived from the
agreement of the cosmic microwave background with the
blackbody radiation [20], and more recently by the absence
of distortions in the optical spectrum of distant type Ia
supernovae [21].

Our effort was motivated by the observation published
by the PVLAS Collaboration, and subsequently retracted
[22], which they claimed could be explained by the exis-
tence of axions in the mass range 1-2 meV. We have
therefore designed an apparatus optimized for that mass
region to rapidly prove or disprove the interpretation in
terms of axionlike particles of the PVLAS signal. Our
preliminary results, excluding at a 30 confidence level
the existence of axions with parameters consistent with
the PVLAS observation, have been published in
November 2007 [23]. This paper is devoted to the final
results of our light shining through the wall experiment,
sensitive to axionlike particles and to paraphotons. We first
derive the detection probabilities for both particles. We
then detail our apparatus whose strength lies in pulsed
laser and magnetic fields, thus reducing the demand on
the detector noise. Finally, we present our latest experi-
mental results and compare them with the limits obtained
by other searches.

II. PHOTOREGENERATION PROBABILITY
A. Axionlike particle

The photon to axionlike particle conversion and recon-
version transition probability (in natural units 7z = ¢ = 1,
with1 T=195eVZand1 m = 5 X 10° eV~!) after prop-
agating over a distance z in the inhomogeneous magnetic
field B writes [7,24]

Pa(2) = I L “dz' Ay () X expliA ) 2, (1)

2 .
@ is the photon energy,

where Ay, =5 and A, = — 72,
m, the axionlike particle mass, and M its inverse coupling
constant with two photons. Note that this equation is valid
for a light polarization parallel to the magnetic field since
the axion has to be a pseudoscalar [1]. Finally, as we have
two identical magnets, the photon regeneration probability

due to axionlike particles is
P, = pa(L), @

with L the magnet length.
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In order to have a number of regenerated photons as
large as possible, the number of incident photons, the
detection efficiency, and the integral of the transverse
magnetic field over the magnet length L have to be maxi-
mized. We define B, as the maximum field and L., as the
equivalent length of a magnet producing a uniform mag-
netic field B, such that

+L/2

/' Bdz = ByLe,. 3)
-L/2

On the other hand, p,(z) oscillates for too long magnets.

Actually, for a homogeneous magnetic field By, Eq. (1)

gives

2M ’ @

a

_ (BOL>2 sin?(%g< L)
Ao
(5<L)

where A . = —A,. In our case, our search was focused on
the 1 <m, <2 meV, so that a length larger than 1 m
would have been useless.

Finally, very recently a detailed theoretical study of the
photon to axionlike particle conversion probability pointed
out that an enhancement of this probability is predicted at
m, = o [25]. In this particular condition, the probability
of getting a photon after the wall is

334 2gm*
P, - ﬁ4m4qf) 5)
T6gm? "2\ "B

with B8 = By/M and ¢ = A/w the quality factor of the
laser source, and A is the laser bandwidth.

B. Paraphoton

In the modified version of electrodynamics developed in
1982 [14], the paraphoton weakly couples with the photon
through kinetic mixing. Contrary to axionlike particles,
photon-paraphoton oscillations are therefore possible with-
out any external field and are independent of photon
polarization.

Recently, the experimental signatures of paraphoton
have been discussed in detail in Ref. [19]. The conversion
probability of a photon into a paraphoton of mass p and
vice versa after a distance L is given by

(ML
p, = 4X2sm2(’iw ) ©6)

where ) is the photon-paraphoton coupling constant,
whose arbitrary value is to be determined experimentally.
This equation is valid for a relativistic paraphoton satisfy-
ing 4 < .

Comparing Eqs. (4) and (6), one notes that from a
mathematical point of view the two are equivalent, w

corresponding to m,,, and y to 5?7’1‘; . This analogy originates

from the fact that both formulas describe the same physical
phenomenon, i.e., quantum oscillations of a two level
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system. Using this mathematical equivalence between par-
aphoton parameters and axionlike particle parameters, we
were able to derive for the enhancement of the paraphoton
conversion probability at u = w a formula equivalent to

Eq. (5):

3x*t 2
P, = é 1og<X—‘41>. )

In the case of a typical photoregeneration experiment,
the incoming photons freely propagate for a distance L,
and might oscillate into paraphotons before being stopped
by a wall, after which the paraphotons propagate for a
distance L, and have a chance to oscillate back into
photons that are detected with efficiency 74, The photon
regeneration probability due to paraphotons can therefore
be written as

2 2
oMLy . (L
P, = p,(L)p,(L,) = 16X4sm2<4—w1>sm2(ﬂ2).
(8)

In our experiment, L, is the distance between the focusing
lens at the entrance of the vacuum system, which focuses
photons but not paraphotons, and the wall, which blocks
photons only. Similarly, L, represents the distance separat-
ing the blind flange just before the regenerating magnet and
the lens coupling the renegerated photons into the optical
fiber (see Fig. 1).

Note that Eq. (8) is a priori valid in the absence of a
magnetic field. If a magnetic field is applied, the formula
remains valid provided that it can be considered as static
during the experiment and its transverse spatial extent is
larger than 1/ [17], which is the case in our experiment
for paraphoton masses larger than 2 X 1073 eV.

III. EXPERIMENTAL SETUP

As shown in Fig. 1, the experimental setup consists of
two main parts separated by the wall. An intense laser
beam travels through a first magnetic region (generation
magnet) where photons might be converted into axionlike
particles. The wall blocks every incident photon while
axionlike particles would cross it without interacting and
may be converted back into photons in a second magnetic

Wall

Regeneration
magnet

Generation
magnet

Focalization lens

30m mtﬁtimode
fiberto the single
photon detector

L,=20.2m L,=105m

FIG. 1. Sketch of the apparatus. The wall and the blind flanges
are removable for fiber alignment.
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region (regeneration magnet). The regenerated photons are
finally detected by a single-photon detector.

The three key elements leading to a high detection rate
are the laser, the generation, and regeneration magnets
placed on each side of the wall and the single-photon
detector. Each element is described in the following
sections.

A. Laser

In order to have the maximum number of incident
photons at a wavelength that can be efficiently detected,
the experiment has been set up at the Laboratoire pour
I’Utilisation des Lasers Intenses (LULI) in Palaiseau, on
the Nano 2000 chain [26]. It can deliver more than 1.5 kJ
over a few nanoseconds with w = 1.17 eV. This corre-
sponds to N; = 8 X 10! photons per pulse.

The nanosecond pulse is generated by a yttrium lithium
fluoride seeded oscillator with a A = 1.7 meV bandwidth.
It delivers 4 mJ with a duration adjustable between 500 ps
and 5 ns. Temporal shaping is realized with five Pockels
cells. Then this pulse seeds single-pass Nd:pPhosphate
glass rods and disk amplifiers. During our 4 weeks of
campaign, the total duration was decreased from 5 ns the
first week to 4 ns and finally 3 ns while keeping the total
energy constant. (A typical time profile is shown in the
inset of Fig. 6 with a full width at half maximum of 2.5 ns
and a total duration of 4 ns.)

The repetition rate of high energy pulses is imposed by
the relaxation time of the thermal load in the amplifiers
which implies wave-front distortions. Dynamic wave-front
correction is applied by use of an adaptive-optics system
[27]. To this end a deformable mirror is included in the
middle of the amplification chain. It corrects the spatial
phase of the beam to obtain at focus a spot of about once or
twice the diffraction limit, as shown in Fig. 2. This system
allows one to increase the repetition rate while maintaining
good focusability although the amplifiers are not at thermal
equilibrium. During data acquisition, the repetition rate has

a
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FIG. 2. Focal spot without correction (a) and with wave-front
correction (b). This correction allows one to maintain a spot of
one or two diffraction limits despite the amplifiers’ not being in
thermal equilibrium.
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typically varied between 1 pulse per hour and 1 pulse every
other hour.

At the end of the amplification chain, the vertically
linearly polarized incident beam has a 186 mm diameter
and is almost perfectly collimated. It is then focused using
a lens with focal length 20.4 m. The wall is placed at L; =
20.2 m from the lens in order to have the focusing point a
few centimeters behind this wall. The beam is well apo-
dized to prevent the incoming light from generating a
disturbing plasma on the sides of the vacuum tubes.

Before the wall where the laser beam propagates, a
vacuum better than 1073 mbar is necessary in order to
avoid air ionization. Two turbo pumps along the vacuum
line easily give 1073 mbar near the lens and better than
10~* mbar close to the wall. The wall is made of a 15 mm
width aluminum plate to stop every incident photon. It is
tilted by 45° with respect to the laser beam axis in order to
increase the area of the laser impact and to avoid retrore-
flected photons. In the second magnetic field region, a
vacuum better than 1073 mbar is also maintained.

Figure 3 shows a histogram of laser energy per pulse for
the 82 laser pulses performed during our campaign. The
laser energy per pulse ranges from 700 J to 2.1 kJ, with a
mean value of 1.3 kJ.

B. Magnetic field

Concerning the magnets, we use a pulsed technology.
The pulsed magnetic field is produced by a transportable
generator developed at LNCMP [28], which consists of a
capacitor bank releasing its energy in the coils in a few
milliseconds. Besides, a special coil geometry has been
developed in order to reach the highest and longest trans-
verse magnetic field. Coil properties are explained in
Ref. [29]. Briefly, the basic idea is to get the wires gen-
erating the magnetic field as close as possible to the light
path. As shown in Fig. 4, the coil consists of two interlaced
racetrack shaped windings that are tilted one with respect
to the other. This makes room for the necessary optical
access at both ends in order to let the laser in while

Number of pulses

L L L I R L |
08 10 12 14 16 18 20 22

Laser energy (kJ)

FIG. 3. Number of high energy pulses versus laser energy
during the four weeks of data acquisition.
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FIG. 4. Scheme of XCoil. Magnetic fields 1§1 and Ez are
created by each of the racetrack shaped windings. This yields
a high transverse magnetic field B while allowing the necessary
optical access for the laser photons 7.

providing a maximum BjL.,. Because of the particular
arrangement of wires, these magnets are called Xcoils.

The coil frame is made of G10 which is a nonconducting
material commonly used in high stress and cryogenic
temperature conditions. External reinforcements with the
same material have been added after wiring to contain the
magnetic pressure that can be as high as 500 MPa. A
12 mm diameter aperture has been dug into the magnets
for the light path.

As for usual pulsed magnets, the coils are immersed in a
liquid nitrogen cryostat to limit the consequences of heat-
ing. The whole cryostat is double walled for a vacuum
thermal insulation. This vacuum is in common with the
vacuum line and is better than 10~# mbar. A delay between
two pulses is necessary for the magnet to cool down to the
equilibrium temperature which is monitored via the
Xcoils’ resistance. Therefore, the repetition rate is set to
5 pulses per hour. Furthermore, the coils’ resistance is
precisely measured after each pulse and when equilibrium
is reached, in order to check the Xcoils’ nonembrittlement.
Indeed variations of the resistance provide a measurement
of the accumulation of defects in the conductor material
that occur as a consequence of plastic deformation. These

Magnetic field B (T)
o
|

T T T T T
-0.2 -0.1 0.0 0.1 0.2
Distance from the center of the magnet (m)

FIG. 5. Transverse magnetic field inside the magnet along the
laser direction. At the center of the magnet we have a mean
maximum magnetic field By = 12 T. Integrating B along the
optical path yields 4.38 Tm.

032013-4



SEARCH FOR PHOTON OSCILLATIONS INTO MASSIVE ...

defects lead to hardening and embrittlement of the con-
ductor material, which ultimately leads to failure.

The magnetic field is measured by a calibrated pickup
coil. This yields the spatial profile shown in Fig. 5. The
maximum field B, is obtained at the center of the magnet.
Xcoils have provided By = 13.5 T over an equivalent
length L., = 365 mm. However, during the whole cam-
paign a lower magnetic field of By = 12(0.3) T was used
to increase the coils’ lifetime.

A typical time dependence of the pulsed magnetic field
at the center of the magnet is represented in Fig. 6. The
total duration is a few milliseconds. The magnetic field
reaches its maximum value within less than 2 ms and
remains constant ( = 0.3%) during 75 = 150 us, a very
long time compared to the laser pulse.

C. Detector

The last key element is the detector that has to meet
several criteria. In order to have a sensitivity as good as
possible, the regenerated photon detection has to be at the
single-photon level. The integration time is limited by the
longest duration of the laser pulse which is 5 ns. Since we
expected about 100 laser pulses during our four week
campaign, which corresponds to a total integration time
of 500 ns, we required a detector with a dark count rate [30]
far lower than 1 over this integration time, so that any
increment of the counting would be unambiguously asso-
ciated to the detection of one regenerated photon.

Our detector is a commercially available single-photon
receiver from Princeton Lightwave which has a high de-
tection efficiency at 1.05 wm. It integrates a 80 X 80 wm?
InGaAs avalanche photodiode (APD) with all the neces-
sary bias, control, and counting electronics. Light is
coupled to the photodiode through a FC/PC connector
and a multimode fiber. When the detector is triggered,
the APD bias voltage is raised above its reverse breakdown
voltage Vy, to operate in “Geiger mode.” A short time

12 +
10 +
8 -
< 64 L R N

6-4-202 4/6
4 Time (ns)
2

0 - f T T T T T
-2 0 2 4 6 8 10 12
Time (ms)

Intensity

(T)

B

FIG. 6. Magnetic field B at the center of the magnet as a
function of time. The maximum is reached within 1.75 ms and
can be considered as constant ( = 0.3%) during 75 = 150 us.
The 3-5 ns laser pulse is applied during this interval. Inset:
temporal profile of a 4 ns laser pulse.
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later—adjustable between 1 and 5 ns—the bias is reduced
below V,, to avoid false events. For our experiment, the
bias pulse width is 5 ns to correspond with the longest laser
pulse.

Typical output signals available on the detector are
plotted in Fig. 7. Let us first consider Fig. 7(a) with no
incident photon. The upper signal corresponds to the am-
plified APD output. The application of such a short pulse to
a reverse-biased APD produces a capacitive transient. The
first two transients temporally shifted by 5 ns correspond to
the bias pulse. This signal enables one to precisely deter-
mine the moment when detection starts. The last transients
are due to an electronic reflection of the bias pulse.

When a photon is detected [Fig. 7(b)], the signal result-
ing from a photon-induced avalanche superimposes upon
transients. The transient component may be much larger
than the photon-induced component, making it difficult to
discern. The detector uses a patented transient cancellation
scheme to overcome this problem [31]. A replica of the
unwanted transient is created and subtracted from the
initial signal. The photon-induced signal will thus appear
against a flat, low-noise background, as it is observed in
Fig. 7(b) between the initial bias pulse and the reflected
one. It can then be easily detected using a discriminator. To
this end, this signal is sent to a fast comparator with
adjustable threshold that serves as a discriminator and
outputs a logic pulse, as shown by lower traces on Fig. 7.

To optimize the dark count rate and the detection effi-
ciency 14, three different parameters can be adjusted: the
APD temperature, the discriminator threshold V, set to
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FIG. 7. Amplified APD output (upper curve) and logic signal

(lower curve) of the detector as a function of time. The capaci-
tive transients on the APD output signals are due to the gated
polarization of the photodiode in Geiger mode. (a) Signals with
no incident photon. (b) Signals when a photon is detected.
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reject electronic noise, and the APD bias voltage Vpp. The
dark count rate is first optimized by choosing the lowest
achievable temperature which is around 221 K. This rate is
measured with no incident light, a trigger frequency of
5 kHz, and an integration time of at least 1 s. Dark counts
for a 5 ns detection gate as a function of V, is shown in
Fig. 8(a). It increases rapidly when V; is too low. On the
other hand, 74, remains constant for a large range of V.
We set V, to a value far from the region where the dark
count increases and where 74, is still constant. This cor-
responds to less than 2.5 X 1072 dark count over 500 ns
integration time.

The detection efficiency is precisely measured by illu-
minating the detector with a laser intensity lower than 0.1
photon per detection gate at 1.05 wm. The probability to
have more than one photon per gate is thus negligible. Such
a low intensity is obtained with the setup described in
Fig. 9. A cw laser is transmitted through two supermirrors
with a reflectivity higher than 99.98% [32]. The angle of
incidence is near normal in order to intercept the reflected
beam and avoid spurious light without increasing trans-
mission. This gives a measured transmission of 0.015% for
each mirror. Finally, to calculate the number of incident
photons on the detector, we measure the laser power before
the two supermirrors with a precise power sensor.

The detection efficiency as a function of the bias voltage
is plotted in Fig. 8(b). Our measurements show that 74,
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FIG. 8. Detection efficiency (@) and dark count per 5 ns bias
pulse (A) as a function of the discriminator threshold (a) (Vapp
fixed to 78.4 V) or APD bias voltage (b) (V, fixed to 0.760 V).
The APD temperature is fixed to the lowest achievable value
221.5 K. Dashed lines indicate the chosen working point.
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FIG. 9. Experimental setup to measure the detection efficiency
of the single-photon detector. The detector is illuminated with a
laser intensity lower than 0.1 photon per 5 ns. This intensity is
calculated through the measurement of the supermirrors trans-
mission and the laser power before those supermirrors. A half
wave plate and a polarizer are used to change the number of
incident photons.

slowly increases with V,pp until a threshold where it
increases dramatically for a value of Vpp shortly below
the dark count runaway value. The best compromise be-
tween detection efficiency and dark count rate is found at
Varp = 78.4(0.05) V with 4, = 0.48(0.025).

As mentioned in the Introduction, other similar experi-
ments generally require long integration times which im-
plies an experimental limitation due to the detection noise.
Using pulsed laser, magnetic field and detection is an
original and efficient way to overcome this problem.
Photons are concentrated in very intense short laser pulses
during which the detection background is negligible. This
also means that if a photon is detected in our experiment in
correlation with the magnetic field, it will be an unambig-
uous signature of axion generation inside our apparatus.

IV. EXPERIMENTAL PROTOCOL AND TESTS
A. Alignment

After the second magnet, the regenerated photons are
injected into the detector through a coupling lens and a
graded index multimode fiber with a 62.5 pum core diame-
ter, a 0.27 numerical aperture, and an attenuation lower
than 1 dB/km. These parameters ensure that we can inject
light into the fiber with a high coupling ratio, even when
one takes into account the pulse by pulse instability of the
propagation axis that can be up to 9 urad.

Injection is adjusted thanks to the fiber coupler and by
removing the wall and the blind flanges (see Fig. 1). As the
high energy laser beam, the alignment beam comes from
the pilot oscillator without chopping nor amplifying it.
This procedure ensures that the pulsed kJ beam is perfectly
superimposed to the alignment beam. During data acquis-
ition, the mean coupling efficiency through the fiber was
found to be 1. = 0.85.

The alignment of the high energy beam is performed
with a low energy 5 ns pulsed beam, allowing for a 10 Hz
repetition rate. During alignment, several black crosses are
distributed along the laser path to mark the optical axis.
Mirrors mounted on stepper motors allow one to align the
beam very precisely on this axis. This procedure is carried
out a few minutes before each high energy pulse.
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The only remaining source of misalignment lies in ther-
mal effects during the high energy pulse, which could
slightly deviate the laser beam, hence generating supple-
mentary losses in fiber coupling. This misalignment is
mostly reproducible. This means that it can be corrected
by a proper offset on the initial laser pointing. The far field
of the high energy beam is imaged for each pulse at the
output of the amplification chain (see Fig. 10). Since the
focal length of the imaging system is similar to that of our
focalization lens, the position of the far field image on the
alignment mark is a fair diagnosis of the alignment on the
fiber coupler. The best offset was determined by a trial and
error method after a few high energy pulses.

B. Optical and electromagnetic noise

In order to have the best sensitivity, a perfect optical
shielding is necessary. As shown in Fig. 1, an aluminum
blind flange closes the entrance to the regeneration magnet.
A black soft PVC bellow placed between the exit of the
magnet and the fiber coupler prevents stray light while
mechanically decoupling the magnet which vibrates during
its pulse and the fiber coupler which should stay perfectly
still. Finally, another aluminum blind flange closes the exit
of the generation area in order to stop any incident photon
scattered inside the vacuum line.

A count on the single-photon receiver is most probably
due to an incident photon on the photodiode but it may also
originate from electromagnetic noise during laser or mag-
netic pulses. To avoid such noise, the detector is placed in a
Faraday shielding bay. In addition, a 30 m long fiber is used
so that the detector can be placed far away from the
magnets.

To test our protective device, laser and magnetic pulses
were separately applied while triggering the detector. No
fake signal was detected, validating the optical and elec-
tromagnetic shielding.

No correction

Focalization
lens

Vacuum tube

=]

Losses 30 %
Best correction

I

Ulmaging lens

No losses

FIG. 10. Monitoring of the optical path followed by the high
energy beam. Losses due to misalignment are estimated by
comparing the center of the beam to the center of the black
cross. The upper image corresponding to an uncorrected laser
beam pointing exhibits 30% injection losses, while the lower one
is perfectly corrected.
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FIG. 11. Coincidence rate between the arrival of photons on

the detector and its 5 ns detection gate as a function of an
arbitrary delay time. The dashed line indicates our working
point, chosen in order to maximize the coincidence rate.

C. Synchronization

Our experiment is based on pulsed elements which
require a perfect synchronization: the laser pulse must
cross the magnets when the magnetic field is maximum
and fall on the photodiode during the detection gate.

The magnetic pulse is triggered with a transistor—tran-
sistor logic signal from the laser chain. The delay between
this signal and the laser trigger is adjusted once and for all
by monitoring on the same oscilloscope the magnetic field
and the laser trigger. Then, the magnetic trigger has a jitter
lower than 10 ws, ensuring that the laser pulse travels
through the magnets within the 150 us interval during
which the magnetic field is constant and maximum.

Synchronization of the laser pulse and the detector needs
to be far more accurate since both have a 5 ns duration. The
detector gate is triggered with the same fast signal as the
laser, using delay lines. We have measured the coincidence
rate between the arrival of photons on the detector and the
opening of the 5 ns detector gate as a function of an
adjustable delay. We have chosen our working point in
order to maximize the coincidence rate (see Fig. 11). To
perform such a measurement we used the laser pilot beam
which was maximally attenuated by shutting off 4 Pockels
cells along the amplification chain and chopped with a
pulsed duration of 5 ns, which corresponds to the longest
duration of the kJ beam.

V. DATA ANALYSIS

A. Detection sensitivity

The best experimental limits are achieved when no fake
signal is detected during the experiment. In this case, to
estimate the corresponding upper conversion probability of
regenerated photons, we have to calculate the upper num-
ber of photons that could have been missed by the detector
for a given confidence level (CL).

The probability P, that n incident photons have been
missed by the detector is P, = (1 — 14.)" when dark
count is negligible. Therefore, the probability that n pho-
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tons at most were missed by the detector writes
2o Px
2o Pr
and has to be compared with the required CL. This yields

the upper number of possibly missed photons 7;s.q as the
smallest integer n satisfying

1-(01- ndet)nﬂ = CL,

=1 (1 — nge)""!

which writes
log(1 — CL)
Mmissed = 7717 3\
IOg(l - ndet)
For example, with our value of 74, a confidence level of

99.7% corresponds to less than eight missed photons. The
upper photon regeneration probability is then

1. ©)

P — Nmissed ) 10

vory =t (10)
where N is the number of effective incident photons over
the total number of laser shots, taking into account the
losses described hereafter. Our experimental sensitivity
limit for the coupling constant versus mass is finally calcu-
lated by numerically solving Egs. (1) and (2) for axionlike
particles, and Egs. (6) and (8) for paraphotons.

B. Photon losses

The number of photons per laser pulse N, is measured at
the end of the amplification chain with a calibrated calo-
rimeter. Then the number of effective incident photons on
the detector N should take into account every loss. The
first source of loss is due to the coupling efficiency through
the fiber. This is precisely calibrated once a day. Injection
is checked before each pulse, just after the alignment of the
high energy beam. The mean coupling efficiency is 1. =
0.85.

As said before, the main source of misalignment lies in
thermal effects during the high energy laser pulse, whose
mean value was corrected. Furthermore, using the cw
alignment beam we calibrated the injection losses in the
fiber as a function of the misalignment visible on the far
field imaging. Thanks to this procedure, we were able to
estimate the actual alignment losses for each pulse: they
amounted to 30% for a noncorrected pulse and varied
between 0% and 10% for corrected pulses, because of
pulse-to-pulse instabilities.

Possible jitter between the beginning of the detection
and the arrival of the laser pulse on the detector is also
taken into account. For each pulse, a single oscilloscope
acquires the laser trigger and the detector trigger as well as
the detection gate. Those curves allow one to precisely
calculate the moment 7, when detection actually starts
compared to the laser pulse arrival. Furthermore, the tem-
poral profile of each laser pulse is also monitored. By
integrating this signal from #;, and during the 5 ns of
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detection, the fraction 7, of photons inside the detection
gate is calculated. This fraction has fluctuated between 0.6
and 1 at the beginning of our data acquisition with the 5 ns
pulse, mainly due to a 1 ns jitter that was then reduced to
about 200 ps. Then, with the 4 and 3 ns laser pulses, jitter is
less critical and 7y = 1 is obtained almost all the time.

Finally, for axionlike particles the numerical solving of
Eq. (1) is performed with a fixed magnetic field B.
Variations of this magnetic field along data acquisition
are taken into account by multiplying each number of
incident photons by the factor (B;/B,)*, where By is
the maximum field for the ith pulse.

Integration of every loss yields a total number of effec-
tive photons

By \4
Netr g = zm,i’flp,mf,i<B—'l) N;, (11)
i 0
the sum being taken over the total number of laser and
magnetic pulses.
Concerning paraphotons, given that the magnetic fields
have no effect on the oscillations, the formula is written as

Neff,'y = ch,inp,inf,iNi' (12)

VI. RESULTS

Data acquisition was spread over four different weeks.
As shown in Fig. 3, 82 high energy pulses have reached the
wall with a total energy of about 110 kJ. This corresponds
to 5.9 X 102 photons. During the whole data acquisition,
no signal has been detected.

A. Axionlike particles

The magnetic field was applied during 56 of those laser
pulses, with a mean value of 12 T. The laser pulses without
magnetic field aimed at testing for possible fake counts.

Our experimental sensitivity limits for axionlike particle
at 99.7% confidence level are plotted in Fig. 12. They

M (GeV)

2 3 4 5 6

m, (meV)

4 5

6 7 89

FIG. 12. 30 limits for the axionlike particle—two-photon in-
verse coupling constant M, as a function of the axionlike particle
mass m,, obtained from our null result. The area below our curve
is excluded.
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correspond to a detection probability of regenerated pho-
tons P, = 3.3 X 1072 and give M > 9.1 X 10° GeV at
low masses. The dark gray area below our curve is ex-
cluded. This improves the limits we have published in [23],
which already excluded the PVLAS results [22].

We also compared our limits to other laboratory experi-
ments in Fig. 13. They are comparable to other purely
laboratory experiments [3,33,34], especially in the meV
region of mass. On the other hand, they are still far from
experiments in which limits (stripes) approach models
predictions [4,5,35,36].

Using Eq. (5), our experimental results correspond to
M > 8 GeV at m, = 1.17 eV. Despite this enhancement,
our limits are still very far from the inverse coupling
constant of model predictions which is around 10° GeV
for a 1 eV mass.

B. Paraphotons

In the case of paraphotons, we take into account the laser
bandwidth A by averaging P, (w) over A:

10"
1E
= E
S 10" 15
o —
<) =
= 109 - % %
1E
wWHAEEe

10
10° 10" 10° 107 107
m, (eV)
B Our experiment ra CAST
O BFRT B= Microwave
---- GammeV cavity experiments
------- PVLAS Axion models

FIG. 13. Limits on the axionlike particle—two-photon inverse
coupling constant M as a function of the axionlike particle mass
m, obtained by experimental searches. Our exclusion region is
first compared to other purely laboratory experiments such as the
BFRT photon regeneration experiment [3], the GammeV experi-
ment [33], and the PVLAS Collaboration [34] with a 30 con-
fidence level. Those curves are finally compared to the 95%
confidence level exclusion region obtained on CAST [5] and the
more than 90% confidence level on microwave cavity experi-
ments [4,35,36]. Model predictions are also shown as a dotted
stripe between the predictions of the KSVZ model (lower line,
E/N = 0) [44] and of the DFSZ model (upper line, E/N = 8/3)
[45].

PHYSICAL REVIEW D 78, 032013 (2008)
5 _1
YA Ju—ap

w—(A/2)
P (w)do. (13)

The experimental sensitivity is then calculated by numeri-
cally solving

D Nmissed
=—, (14)
Negr

where N, is given by Eq. (12). In the regime of low mass
u < \Jw/Lg, it is equivalent to }_’7 =P, and the mixing
parameter oscillates as a function of the paraphoton mass.
For higher masses, oscillations are smoothed to a mean
value. Note that the relevant mass ranges concerning axi-
onlike particles are situated in the low mass regime, which
explains why the averaging over the laser bandwidth was
not useful.

The deep gray area in Fig. 14 represents the parameters
for a paraphoton that our measurements exclude with a
95% confidence level. It corresponds to a maximum photon
regeneration probability P, = 9.4 X 107%*. This sets a
limit y <1.1 X107® for 1 < u <10 meV [for higher
masses, Eq. (6) is not valid anymore]. This improves by
almost 1 order of magnitude the exclusion area obtained by
the BFRT photon regeneration experiment [3]. The en-
hanced probability at . = w given by Eq. (7) corresponds
to y <1.9X 1077, For other ranges of mass, a more
complicated calculation is required [25] which is beyond
the scope of this article. Nevertheless, comparing to other
laboratory experiments [37,38] (see [39] for review), we

-2

10
10
10

=10
10°
10

8

10 I I I I I I T
10° 10° 10" 10° 10
u(eV)

Coulomb law
@ Rydberg

-3

-4

-7

B Our experiment
O BFRT

FIG. 14.  95% confidence level limits on photon-paraphoton
mixing parameter as a function of the paraphoton mass obtained
to our null result (deep gray area). Shaded regions are excluded.
This is compared to excluded regions obtained by the BFRT
photon regeneration experiment [3] (light gray area), to searches
for deviations of the Coulomb law [37] (points) and to compari-
sons of the Rydberg constant for different atomic transitions [38]
(stripes).
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were able to constrain the paraphoton parameters in a
region which had not been covered so far by purely terres-
trial experiments.

VII. CONCLUSION AND OUTLOOKS

We have presented the final results of our photon regen-
eration experiment which exclude the PVLAS results. Our
null measurement leads to limits similar to other purely
terrestrial axion searches and improves the preceding lim-
its by more than 1 order of magnitude concerning para-
photons [17].

As far as axionlike particles are concerned, improving
the sensitivity of our apparatus in order to test the axion
model predictions seems rather unrealistic, especially as
the possible mass and two-photon coupling constant ranges
are still several orders of magnitude wide. In that respect,
magnetic birefringence experiments like the one presently
under development in Toulouse [40] seem more promising:
aimed at measuring for the first time the long predicted
QED magnetic birefringence of vacuum [41], it will im-
prove by 1 to 2 orders of magnitude the precision of purely
terrestrial axion searches.

PHYSICAL REVIEW D 78, 032013 (2008)

Generally speaking, let us argue that such precision
optical experiments may prove useful for experimentally
testing the numerous theories beyond the standard model in
the low energy window, a range in which the large particle
accelerators are totally helpless. For example, our appara-
tus can be modified to become sensitive to chameleon
fields [42].

Finally, very intense laser beams such as those planned
at ELI [43] will become available in the forthcoming years.
Such facilities should open new exciting opportunities for
our field.
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In this Letter we describe our novel photon regeneration experiment for the axionlike particle search
using an x-ray beam with a photon energy of 50.2 and 90.7 keV, two superconducting magnets of 3 T, and
a Ge detector with a high quantum efficiency. A counting rate of regenerated photons compatible with
zero has been measured. The corresponding limits on the pseudoscalar axionlike particle—two-photon
coupling constant is obtained as a function of the particle mass. Our setup widens the energy window of
purely terrestrial experiments devoted to the axionlike particle search by coupling to two photons. It also
opens a new domain of experimental investigation of photon propagation in magnetic fields.

DOI: 10.1103/PhysRevLett.105.250405

Photon propagation in magnetic fields is a long-standing
domain of research for QED tests [1] and for particle
searches beyond the standard model [2]. All the experi-
ments performed up to now have used a photon energy of
the order of 1 eV (see [3] and references therein). Higher
photon energies have been proposed to increase the signal,
in particular, vy rays [4] for QED tests, or to increase the
parameter space for particle searches, in particular, x rays
[5.6].

As far as particle searches are concerned, photon regen-
eration experiments [7-9], also called “light shining
through the wall”” experiments, are an important tool in
the search for massive particles that couple to photons in
the presence of magnetic fields. Such particles are pre-
dicted by many extensions of the standard model. A very
well-known example is the standard axion, a pseudoscalar
chargeless boson proposed to solve the strong CP problem
[10-12], i.e., the difference between the value of the neu-
tron electric dipole moment predicted by QCD and its
experimental value [13].

The principle of a photon regeneration experiment is to
send a polarized photon beam through a region where a
transverse magnetic field is present, and then to stop the
photons by a wall. Since they hardly interact with matter,
axionlike particles (ALPs) generated in the magnetic re-
gion upstream of the wall can pass through it. Behind the
wall, a second magnetic field region allows us to convert
back ALPs into photons. Several photon regeneration ex-
periments have been performed [14-20]: none of them has
ever detected regenerated photons. They have therefore set
limits on the ALP-two-photon coupling constant g and the
particle mass m,. The best limits can be found in Ref. [20].

Limits are usually given for masses m, < w [21],
where w is the photon energy, but a detailed theoretical
analysis of ALP-photon and photon-ALP conversion am-
plitudes valid for m, = w can be found in Ref. [22]. Again,
for all the photon regeneration experiments performed up
to now, w is of the order of 1 eV. Experiments searching for
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ALPs of astrophysical origin, such as ADMX [23] and
CAST [24], provide better limits than the purely terrestrial
ones. ADMX looks for galactic cold dark matter ueV ALP
conversion into microwave photons in a resonant cavity
immersed in a static magnetic field, while CAST looks for
axions or ALPs generated in the core of the sun. These
ALPs travel to Earth and are converted back into photons
of a few keV in a static laboratory magnetic field. Because
of the higher photon energy, the CAST limits extend up to
masses on the order of a few electron volts [24]. These
limits, however, depend on the model used to calculate the
flux of ALPs to be detected. The critical sensitivity to these
models is exposed by the recent proposal of an ALP with a
17 meV mass which could explain the observed spectral
shape of the x-ray solar emission [25]. In this case ALPs
coming from the sun’s interior would be reconverted into
photons near the sun’s surface, thus escaping the detection
by CAST.

Increasing the photon energy in photon regeneration
experiments allows us to test new regions of the m, and
g parameter space. The use of soft x rays has been pro-
posed in Ref. [5], namely, at the VUV-FEL free electron
laser at DESY, providing photons of energy between 10
and 200 eV. The use of hard x rays from a synchrotron light
source has been proposed in Ref. [6]. Synchrotron light
sources provide photons with energy of several tens of keV,
much higher than the photon energy available nowadays at
free electron lasers.

In this Letter we describe our photon regeneration ex-
periment using x-ray beams with a photon energy of 50.2
and 90.7 keV, carried out at the European Synchrotron
Radiation Facility (ESRF), France, on beam line ID06
[26]. Our setup consists of two superconducting magnets
that provide magnetic fields of 3 T over a length of 150 and
97 mm, respectively, and a Ge detector with a high quan-
tum efficiency for the stated photon energies. This con-
figuration widens the energy domain probed by purely
terrestrial ALP searches. A counting rate of regenerated

© 2010 The American Physical Society
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photons compatible with zero has been measured. We
present the corresponding limits on the ALP—two-photon
coupling constant as a function of the particle mass.
Thanks to the high photon energy, our limits extend to a
parameter region where no model-independent limits have
been set so far. In particular, our experimental results
provide limits on the existence of 17 meV ALPs.

Our experimental setup is shown in Fig. 1. We use two
different photon energies, w = 50.2 keV and 90.7 keV,
corresponding to slightly different settings of the x-ray
beam line. For 50.2 keV (resp. 90.7 keV), a Si(111)
[resp. Si(311)] double crystal monochromator is adjusted
to select x rays emitted by the 5th (resp. 9th) harmonic of
the cryogenic permanent magnet multipole undulator
source U18, closed to a gap of 6.0 mm [27,28]. The energy
bandwidth is 7.3 eV (resp. 6.8 eV). For both energies, the
size of the beam is 2 X 2 mm? and the synchrotron x rays
are horizontally polarized. The beam direction is stabilized
by a feedback loop adjusting the pitch of the second
monochromator crystal to ensure a position stability better
than 0.1 mm at the entrance of the second magnet.

Most of the beam path is under vacuum in order to avoid
air absorption. The incident flux is measured thanks to
ionization chambers filled with 1 bar of nitrogen or kryp-
ton. Different ionization chambers placed along the beam
path let us check for any photon loss due to beam misalign-
ment, for example. During data acquisition, the 30 cm-long
krypton filled ionization chamber, located just before the
first magnet, is used to precisely monitor the incident flux.
The beam line has delivered about 1.2 X 10'? photons per
second at 50.2 keV and 3.1 X 10'° photons per second at
90.7 keV.

The magnetic fields are provided by two superconduct-
ing magnets with the field direction parallel to the x-ray
polarization; the experiment being thus sensitive to pseu-
doscalar particles [29]. Their diameter aperture is about
2 cm and the pressure inside the magnets is less than
10~% mbar. Both magnets have been manufactured by
Oxford Instruments. The first one has provided a maximum

Optics Hutch

Exp. Hutch 1 Exp. Hutch 2

Si(111) or Si(311) K
monochromator ionization B, B,
B t chamber Ge detector
Undulator /. — 144 )
u18u/u32 = = B
2 N2
ionization «—> ionization <>
chamber 50mm || chamber 97 mn

ITTIT
[TTTTT]
X-ray beam

Vwair
lead safety shutter

FIG. 1. Experimental Setup. The double crystal monochroma-
tor is adjusted to select the desired photon energy. The first
experimental hutch corresponds to the ALP generation area with
the transverse magnetic field B;. The second experimental hutch
contains the second magnetic field B, which allows us to
reconvert ALPs to photons. These photons are detected by a
liquid nitrogen cooled Ge detector with a high quantum effi-
ciency. lonization chambers placed along the beam path measure
the incident flux or serve for alignment purposes. The synchro-
tron x rays are polarized parallel to the magnetic fields.

magnetic field B; = 3 T which can be regarded as uniform
along the beam path over a length of L; = 150 mm. The
second magnet was lent to us by the DUBBLE beam line
(BM26) [30] at the ESRF. It has also delivered B, = 3 T.
The shape of its magnetic field along the beam direction
can be approximated by a triangular shape with a half base
length of L, = 97 mm, the maximum of 3 T being at the
center of the magnet.

The magnets are located separately in the two lead-
shielded experimental hutches, EH1 and EH2, respectively,
of the beam line. The safety shutter between EH1 and
EH2 serves as the wall to block the x-ray beam. It consists
of a 50 mm-thick lead plate. Similarly, the x-ray regenera-
tion and detection section is shielded by the radiation hutch
EH2. The complete enclosure of the primary x-ray beam in
EH1 and the additional shielding of EH2 lead to a comfort-
ably low level of x-ray background radiation dominated by
cosmic events.

The detection system is based on a 5 mm thick Ge
detector (Canberra GL0055) cooled with liquid nitrogen.
The sensitive area is 6 mm in diameter. X-ray photons
arriving on the detector create electric charges proportional
to the photon energy, which are amplified (Canberra 2024)
and filtered by a single channel analyzer (Ortec 850) to
reject events that do not correspond to the photon energy
selected by the monochromator. This detection system
combines an acceptable quantum efficiency of = 99.98%
at 50.2 keV and = 84% at 90.7 keV, with a reasonably low
dark count rate. This background count rate was measured
at (7.2 = 1.4) X 1073 photons per second while the x-ray
beam was turned off, as shown on the first line of Table I.
The error corresponds to 95% confidence level.

The following experimental protocol is used before each
data acquisition. First, the monochromator is adjusted to
select the desired energy while keeping an incident flux as
high as possible. Then, the detector is moved about 20 cm
sideways from the direct beam position. The safety shutter
is opened, allowing the x-ray beam to propagate through
both experimental hutches. In this position, the dominant
radiation received at the detector are photons elastically
scattered by air [31]. This is used to adjust the upper and
lower thresholds of the single channel analyzer such that
only photons of the selected energy are counted. The upper
(lower) threshold is 10% above (20% below) the voltage
generated by the elastically scattered photons. Next, the
detector is protected by Cu absorbers and it is moved back
into the direct beam position to check its geometrical
alignment. Finally, before data collection the safety shutter
is closed and the Cu absorbers are removed. The procedure
is repeated after data collection.

Results are summarized in Table I. The integration time
t; is about 2 hours for each photon energy in two different
configurations, with or without the magnetic fields. The
count rate N,. is the number of photons detected per second.
The error on N, corresponds to 95% confidence level and is
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TABLE I. Summary of our data acquisition taken with magnets on or off, x-ray beam on or off. The integration time is denoted as ¢;,
while Ny, is the number of incident photons per second, N, is the number of detected photons per second, and N, is number of
regenerated photons per second. Errors correspond to 95% confidence level. No excess count rate above background has been detected.

X-Ray Beam Magnets w (keV) t; (s) Nine (Hz) N. (Hz) N, (Hz)
OFF OFF 13913 0 (7.2 = 1.4) x 1073

ON OFF 50.2 7575 1.2 X 10'2 (5.7+1.8) x 1073

ON ON 50.2 7276 1.2 X 10'2 6.2+ 1.8) x 1073 (0.5+2.6) x 1073
ON OFF 90.7 7444 3.2 X 1010 (7.9 £2.0) x 1073

ON ON 90.7 7247 3.1 X 10'° (8.1 +22)x 1073 (0.2 +3.0)x 1073

given by 24/N./t; since the distribution of the detected
photons is a Poisson distribution. The number of regener-
ated photons per second N, is the difference between count
rates measured with and without the magnetic fields.
We see that no excess count above the background level
has been detected. Finally the upper photoregeneration
probability at 95% confidence level corresponds to the
error on N, over the incident photon rate Nj,. It is P =
2.2 X 1075 at 50.2 keVand P = 9.7 X 10~ at 90.7 ke V.

The photon-to-ALP conversion and reconversion tran-
sition probability after propagating in vacuum over a dis-
tance z in an inhomogeneous magnetic field B may be
written as [32]

p(2) = | [0 * 42 A () explid ). (1)

where A,(z) = gB(z)/2 and A, = —mj/2w. Finally, the
photoregeneration probability is

P = npp,, (2)

with 7 the detection efficiency, p; the conversion proba-
bility in the first magnet, and p, the reconversion proba-
bility in the second magnet. These equations are correct for
m, K w.

Our experimental sensitivity limit for the ALP-two-
photon coupling constant versus mass is calculated by
numerically solving Egs. (1) and (2), using the upper
photon regeneration probability experimentally measured.
To this end, the real profiles of the magnetic fields along the
beam direction provided by the manufacturers are used.
Our limits at 95% confidence level are plotted in Fig. 2. In
particular, g < 1.3 X 1073 GeV~! for masses lower than
0.4 eV, and g < 6.8 X 1073 GeV~! for masses lower than
1 eV. Our limits could be extended up to 90 keV [22], but
because of the phase mismatching they decrease very

rapidly when m, > ‘/ w /Ly, thus becoming less interest-

ing. Moreover, for such masses the probability oscillates so
rapidly that its actual value depends critically on the exact
value of the experimental parameters L, and w. In this
case the level of confidence of corresponding limits is
mostly limited by the confidence level on these experimen-
tal values. We believe that a detailed discussion of this
issue is out of the scope of our Letter.

We compare our limits to other limits obtained with
laboratory experiments in Fig. 3. Our exclusion region is
presented as the grey area. The best limits obtained on a
purely laboratory experiment by the ALPS collaboration
[20] with a 95% confidence level is the region above the
solid line. The best limits set by the search of extraterres-
trial ALPs are the two hashed areas, namely, the 95%
confidence level exclusion region of CAST (diagonally
hashed) [24], and the 90% confidence level exclusion
region on microwave cavity experiments (horizontally
hashed) [23,33-35]. Model predictions [36] are also shown
as a dotted stripe (line in between: E/N = 0 [37,38]). This
figure shows that we have tested a new region of the m,
and g parameter space for purely terrestrial—model-
independent—experiments.

Our experiment could certainly be upgraded. A longer
acquisition time would improve the limits, but an improve-
ment of a factor of 2 requires a 16 times longer acquisition.
This also applies for the photon flux and for detector noise
rate. The latter could likely be improved by using the x-ray
detector in anticoincidence with cosmic ray detectors put
around it or in coincidence with the electron bunches
circulating in the synchrotron ring. Using higher magnetic
fields increases limits linearly, which is obviously more
interesting. A static 15 T field can be reasonably envisaged.
Longer magnets could provide higher limits but only at low
masses since longer magnets reduce the coherence length
of the photon-ALP oscillations and limits at higher masses.

o

[N N
N

|

1
harRweTm

N

FIG. 2. Confidence level limits of 95% on the ALP-two photon
coupling constant g as a function of the particle mass m,. The
grey area is excluded. The dashed line represents limits obtained
with a photon energy of 50.2 keV while the solid line corre-
sponds to 90.7 keV.
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FIG. 3. Limits on the ALP-two-photon coupling constant g as
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The best solution would be to increase the magnetic field B
and reduce the magnet length L keeping the product B X L
as high as possible.

Our experiment extends the search of photon oscilla-
tions into massive particles in the presence of magnetic
fields to higher energies. The observed low background
count rate clearly demonstrates the sensitivity of “‘shining
through the wall” experiments with a synchrotron light
source. Moreover we studied for the first time the propa-
gation of x-ray photons in magnetic fields opening a new
domain of experimental investigations.
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CHAPITRE 5

Conclusion et perspectives

5.1 Biréfringence magnétique du vide

J’ai présenté dans ce manuscrit le projet principal sur lequel j’ai travaillé ces
derniéres années : le projet BMV visant a mesurer la biréfringence magnétique
du vide. Le dispositif mis en place dans ce cadre a finalement permis de donner

la limite suivante :
|kem| = (6.1 £ 7.5) x 107212, (5.1)

avec une incertitude & 3o. Ce résultat, parmi les meilleurs au monde, a prouvé
notre capacité a coupler des champs magnétiques pulsés avec des cavités Fabry-
Perot de trés haute finesse.

Nous ne sommes désormais plus qu’a trois ordres de grandeur de la valeur
prédite par la QED qui, rappelons le, est :

komqep =~ 4 x 10724T 72, (5.2)

L’étude de notre dispositif a permis en outre de mettre en évidence ses principales
limitations, tant en termes de sensibilité qu’en termes d’effets systématiques. Il
est maintenant clair qu’il ne permettra pas d’aller jusqu’a l'observation de la
prédiction théorique.

Pour atteindre cet objectif, un dispositif de deuxiéme génération a été mis
au point. Il a été monté durant 'année 2015 et il est désormais en cours de
test. Les principales améliorations permettront d’une part d’augmenter le signal
a mesurer et d’autre part d’améliorer la sensibilité en ellipticité et de réduire les
effets systématiques.

5.1.1 Augmentation de ’ellipticité & mesurer
Comme nous ’avons vu dans le chapitre 2, 'ellipticité a mesurer est :

2F
\Ij - Tk01\4BJ2_LB, (53)
la polarisation de la lumiére incidente étant réglée a 45° du champ magnétique.
Augmenter cette ellipticité va donc consister a augmenter encore davantage la

finesse de la cavité et le champ magnétique.
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Cavité Fabry-Perot

Les besoins concernant les miroirs de la cavité sont les suivants :

— une haute réflectivité. Le signal & mesurer est directement proportionnel a
la finesse. Cette derniére doit donc étre la plus grande possible, correspon-
dant & une réflectivité des miroirs la plus grande possible.

— de faibles pertes. Comme nous ’avons montré dans le chapitre 2, la mesure
de Dellipticité est réalisée sur les faisceaux de sortie de la cavité optique.
Afin de ne pas étre limité par le bruit des photodiodes de détection, la puis-
sance de sortie, et donc le couplage en transmission de la cavité, doivent
étre maximales. Ce couplage est donné par : T?/(T + P)?, avec T la trans-
mission et P les pertes en intensité de chaque miroir. Un couplage le plus
élevé possible correspond donc a des pertes les plus faibles possibles.

L’objectif est donc d’augmenter la réflectivité des miroirs tout en gardant de
faibles pertes comparées a la transmission.

Les meilleurs miroirs utilisés sur le dispositif de premiére génération avaient
une finesse de 480000 avec un couplage de ordre de 35%. Ils provenaient de
la compagnie ATFilms chez qui nous avions commandé des miroirs avec une
finesse cible de 500 000. Un nouveau lot a été commandé depuis, avec une finesse
cible de 800 000. Deux miroirs ont été récemment testés. La finesse obtenue est
de l'ordre de 550 000. Bien que plus élevée qu’avec les précédents miroirs, nous
n’atteignons pas la finesse cible souhaitée. D’autres miroirs seront prochainement
testés mais il est probable que nous obtenions les mémes résultats, les miroirs
correspondant tous a une méme cloche de fabrication. La société ATFilms est
connue dans le monde entier pour étre la seule capable de fournir des miroirs de
trés haute réflectivité avec de trés faibles pertes, mais les processus de fabrication
restent compliqués et les résultats aléatoires. De plus, méme si la finesse cible
peut étre adaptée sur mesure, ATFilms ne garantit qu’une finesse de l'ordre de
300000. Aucun miroir commercial avec une finesse garantie supérieure a 300 000
n’est donc disponible sur le marché.

Pour contourner ce probléme, I’équipe collabore avec le Laboratoire des Ma-
tériaux Avancés (LMA) a Villeurbanne. Les miroirs fournis par ce laboratoire
en 2006 nous ont permis d’obtenir une finesse de 529 000, mais avec une trans-
mission de la cavité trop faible. Depuis, une amélioration d’un facteur deux sur
les pertes par absorption a été réalisée, avec parfois un niveau exceptionnel de
0.3 ppm. Les pertes par diffusion sont quant a elles gouvernées par deux para-
meétres : la micro-rugosité du substrat et le nombre de défauts ponctuels sur la
surface. Des substrats de trés haute qualité seront utilisés pour cette expérience.
De plus, avant le dépot, les défauts de chaque substrat seront caractérisés afin
de ne traiter que les meilleurs. La méme analyse des défauts sera réalisée apreés
dépot pour ne sélectionner que les meilleurs en termes de pertes par diffusion.
Enfin, les mesures finales de finesse seront réalisées directement au LMA a I'aide
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d’un banc de mesure dédié que nous avons d’ores et déja commencé & mettre
en place. L’objectif final est de pouvoir travailler avec des finesses de 'ordre de
1000 000.

Champ magnétique

Les aimants utilisés pour le dispositif de premiére génération ont atteint un
champ magnétique maximal de 14.3 T sur une longueur L de 137 mm. Depuis, de
nouveaux aimants ont ét¢ développés permettant d’atteindre des champs magné-
tiques bien plus importants sur une longueur également plus grande. La figure 5.1
présente les profils temporel et spatial du champ magnétique maximal obtenu
sur 'un des prototypes, juste avant la rupture de I'aimant. Les valeurs obtenues
donnent un B? Lp supérieur & 300 T?m avec une longueur L de 320 mm.
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ax = . 30 -
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20 257
- E 20
< 15 O
O M 15
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FIGURE 5.1 — Bobine “XXL-Coil” juste avant son champ de rupture. Gauche : profil
temporel du champ magnétique au centre de la bobine. Droite : profil longitudinal.

L’autre avantage de ce nouvel aimant, appelé “XXL-Coil”, est la plus faible
densité de courant circulant dans le fil le constituant. Pour un méme champ
magnétique maximal, I’échauffement de la bobine est donc maintenant bien moins
important. Ceci nous permettra d’augmenter sensiblement le nombre de tirs avec
plus d'une dizaine de tirs par heure contre un tir toutes les 10 minutes avec
I’aimant précédent.

Une bobine de ce type a été fabriquée et testée, ainsi que le cryostat dans
lequel elle est placée. L’ensemble est désormais prét a étre mis en place sur le
nouveau dispositif, ce qui devrait étre réalisé en début d’année 2016. La bobine
sera alimentée dans un premier temps par les générateurs utilisés pour le dispositif
de premiére génération. Ceci permettra de faire les premiers tests avec un champ
maximal relativement limité. Le générateur 6 MJ du LMCMI sera finalement
utilisé avec pour objectif d’obtenir un B? (Lp de l'ordre de 100 T?m", contre

1. Le calcul de Bif tient compte du filtrage de la cavité en supposant une finesse de
1000 000.
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environ 3 T?m sur le dispositif de premiére génération.

5.1.2 Amélioration de la sensibilité en ellipticité
Stabilisation mécanique

La sensibilité du dispositif de premiére génération était principalement limitée
par la stabilité mécanique du montage. Le plan de la figure 5.2 montre la maniére
dont étaient montés les miroirs de la cavité Fabry-Perot : ceux-ci étaient placés
sur un cylindre relativement long de 20 cm lui-méme solidaire de ’enceinte a vide
soutenue par de fines équerres. Ceci rend le systéme particuliérement sensible a
toutes perturbations extérieures mécaniques et acoustiques.

FIGURE 5.2 — Schéma du montage
de premiére génération centré sur
I'une des montures de miroirs de la
cavité Fabry-Perot.

Le principe du nouveau montage est présenté sur la figure 5.3. Les montures
de miroirs et les supports de polariseurs sont désormais montés sur une rehausse
en inox vissée directement sur le fond de l'enceinte & vide. Ils sont donc ainsi
découplés des parois de I'enceinte a vide. Cela permettra de diminuer fortement
la sensibilité de ces montures aux vibrations extérieures. Les montures de miroirs
ont également été modifiées par des montures de la société PI, plus massives.

Biréfringence statique de la cavité

Comme nous 'avons vu, Uellipticité statique I" du dispositif est due au retard
de phase intrinséque induit par les miroirs. Celle-ci est une source de bruit qui
limite la sensibilité de I’expérience. Nous avons en particulier observé que la
sensibilité est d’autant meilleure que la biréfringence totale est faible [55-57].
L’optimum est actuellement obtenu lorsque I'? est de 'ordre de o2, 'extinction
des polariseurs.
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FIGURE 5.3 — Schéma du montage
de deuxiéme génération centré sur
I'une des montures de miroirs de la
cavité Fabry-Perot.

plot en inox

L’extinction des polariseurs sur le montage de premiére génération était geé-
néralement de quelques 10~7. Pour améliorer encore la sensibilité en ellipticité,
il est nécessaire de diminuer encore o2. Des extinctions de ordre de 10719 ont
été publiées [124,125]. Elles ont été obtenues en ajoutant des montures tip-tilts
permettant de régler précisément ’angle d’incidence du faisceau sur les polari-
seurs. Nous avons testé ce type de montage sur un banc dédié nous permettant
d’obtenir des extinctions inférieures a 1078, Le montage de deuxiéme génération
inclut donc ce nouveau réglage. L’objectif est d’obtenir un I' de I'ordre de 1074

L’obtention d’une faible ellipticité statique I' nécessite de régler précisément
les axes neutres de chaque miroir I'un par rapport a 'autre et par rapport a la
polarisation incidente. Ce réglage doit étre réalisé avec d’autant plus de précision
que le retard de phase intrinséque de chaque miroir est important. Il serait donc
intéressant de pouvoir disposer de miroir de faible biréfringence intrinséque.

La collaboration que nous avons avec le LMA pour la fabrication de miroirs de
tres haute réflectivité vise également a étudier cette propriété. Cette biréfringence
intrinséque semble étre intimement liée au stress intrinséque des couches minces
déposées par pulvérisation par faisceaux d’ions. Un traitement thermique est
réalisé aprés dépot permettant de baisser le niveau d’absorption mais aussi de
diminuer le stress induit par ces couches. L’étude de I'influence de la durée de ce
recuit est alors primordial pour obtenir potentiellement de faible biréfringence.
Les résultats préliminaires semblent trés positifs en vue de réaliser des miroirs de
haute réflectivité et de faibles pertes ayant une anisotropie de phase intrinséque
réduite par rapport a ce qui se fait actuellement.
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Gestion des effets systématiques

Une fois la sensibilité en ellipticité améliorée, la principale difficulté restera
la gestion des effets systématiques qui peuvent masquer l'effet Cotton-Mouton
du vide. Une attention particuliére est portée tout d’abord sur la diminution de
ces effets systématiques. Ensuite, la procédure d’acquisition des données, tenant
compte des propriétés de symétrie du signal recherché, devrait permettre de s’af-
franchir des faibles effets systématiques restants.

Pression

Le gaz résiduel peut étre I'une des sources principales d’effet systématique.
Le tableau 5.1 liste la contribution de quelques gaz ainsi que la pression cor-
respondante pour que l'effet Cotton-Mouton de ce gaz soit équivalent & D'effet
Cotton-Mouton du vide. En ultra-vide, le dihydrogéne est généralement le gaz
limitant. Dans ce cas, une pression de I'ordre de 1072 mbar devrait suffire.

i B B P (mbar
Gaz kéa (T72atm™) pour avoir Ang,, Z(Anvidz
i S5x 107 5x 1071
N, 9% 1013 2x 1078
0, —2.5 % 10712 2x 107
H,0 6.7 x 10-15 6 x 1077
o, _50x10-13 7x107°
CH. <1013 <4x1078
Ar 6.3 x 1015 6> 1077

TABLE 5.1 — Biréfringence magnétique de quelques gaz typiques (référence [126] pour
la valeur de kg, de HO, référence [77] pour N et référence [87] pour les autres gaz)
et la pression correspondante pour que 'effet Cotton-Mouton de ce gaz soit équivalent
a leffet Cotton-Mouton du vide.

Sur le montage de premiére génération, nous avons obtenu une pression de
10~8 mbar. Pour réduire encore davantage cette pression, les tubes & vide passant
au travers de 'aimant seront traités par la société Saes Getters. Enfin, un analy-
seur de gaz sera placé sur I’enceinte afin d’analyser en permanence la nature du
gaz résiduel.

Blindage magnétique

La réduction des champs magnétiques de fuite est également particuliérement
importante. Ces champs de fuite sont en effet responsables d'un effet Cotton-
Mouton et Faraday au niveau des optiques les plus proches des aimants, autre-
ment dit les miroirs de la cavité optique et les polariseurs. Ils peuvent également




5.2 Effets magnéto-optiques dans les gaz

193

induire des forces sur le systéme a vide, induisant alors un mouvement des miroirs
et des polariseurs et donc en particulier une modification de I'ellipticité statique.

L’enceinte a vide du dispositif de seconde génération a entiérement été congue
en inox amagnétique. Les champs de fuite sont tout d’abord réduits au maximum
au niveau de la bobine. Pour cela, des plaques de cuivre sont placées a l'intérieur
du cryostat dans lequel est fixée la bobine. Enfin, de maniére & éviter tout ef-
fet Cotton-Mouton au niveau des miroirs de la cavité, un blindage y sera placé,
constitué de feuilles de cuivre et/ou de mu-métal.

Procédure d’acquisition des données

La priorité sur le dispositif de seconde génération est de réduire au maximum
les effets systématiques. La procédure d’acquisition tenant compte des propriétés
de symétrie de signal Cotton-Mouton, et qui a été testée sur le dispositif de
premiére génération, sera également mise en place et automatisée. Finalement,
pour s’affranchir des derniers effets systématiques ayant la méme symétrie que
I’effet Cotton-Mouton, des tirs seront également réalisés en modifiant ’angle de
la polarisation incidente par rapport a la direction du champ magnétique, avec en
particulier le polariseur d’entrée réglé paralléle ou & 45° du champ magnétique.

5.1.3 Objectifs finaux

Le tableau 5.2 résume les différentes propriétés des expériences de premiére et
seconde génération. Une amélioration de plus d’un facteur 10 est attendue pour la
sensibilité en ellipticité. Ceci permettra ’observation de la biréfringence magné-
tique du vide avec un rapport signal sur bruit de un en 730 tirs. [’automatisation
de 'expérience, qui est actuellement déja partiellement en place, permettra de
réaliser un dizaine de tirs par heure. L’observation de I'effet Cotton-Mouton du
vide devrait donc étre possible en quelques journées d’acquisition de données.

5.2 Effets magnéto-optiques dans les gaz

5.2.1 Effets Faraday et Cotton-Mouton
Amélioration de ’incertitude

Les mesures d’effets Faraday et Cotton-Mouton nous ont permis de valider
notre dispositif expérimental et d’identifier les principales difficultés comme la
gestion des effets systématiques. Ces mesures ont été en particulier 'occasion de
mettre en place une procédure d’acquisition des données originale permettant la
prise en compte des propriétés de symétrie des signaux recherchés.

Nous avons également montré que ces mesures permettent de tester les cal-
culs de chimie quantique, en particulier dans le cas de 'effet Faraday du xénon
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. BMV BMV
Parameétre | ... ., ., . : .
19 génération | 2°™M¢ génération
Finesse F 445000 1000 000
Longueur de cavité L. (m) 2.27 1.83
Champ magnétique maximal 9 9
avec filtrage de la cavité BLi(T%) 215 310
Longueur magnétique Lg (m) 0.137 0.319
Sensibilité en ellipticité Wsens 6.3 x 1078 2 x 1078
rad/tir
Elllpt1c1te attendue dans le Voo (rad) 1.0 x 10-11 7 4 % 10-10
vide
4 % 107 tirs 730 tirs
Intégration pour observer - ~ ~
leffet du vide 4 x 10%jours quelques jours

TABLE 5.2 — Résumé des propriétés de l'expérience BMV de premiére et deuxiéme
génération.

qui permet de montrer I'importance de la prise en compte des effets relativistes
et des corrélations électroniques. Pour l'effet Cotton-Mouton, nos incertitudes
expérimentales restent trop élevées. Elle est en effet de 15 % pour la mesure dans
le xénon alors que la contribution des effets relativistes et des corrélations s’éléve
a5%.

L’amélioration de notre incertitude est donc ici indispensable si 'on veut
pouvoir se comparer précisément aux prédictions théoriques. Mais elle semble
cependant difficile. Une piste intéressante pourrait étre de mieux controller la
température au sein du tube a vide passant au travers de la bobine. Ce point est
en effet 'une des différences majeures comparé aux mesures d’effets Faraday pour
lesquelles I'incertitude n’est que de 3 %. Alors que ces derniéres sont réalisées avec
un aimant fonctionnant & température ambiante, la bobine générant le champ
magnétique pour l'effet Cotton-Mouton baigne dans l'azote liquide. Malgré le
vide d’isolation thermique du cryostat, la température du tube a vide chute treés
rapidement. Pour y remédier, un flux d’air a température ambiante est envoyé
en continu entre le tube a vide et le tube du cryostat. Cependant, ce flux induit
des vibrations mécaniques. Il est donc arrété quelques minutes avant chaque tir
induisant une diminution de la température au sein du tube a vide et un gradient
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FIGURE 5.4 — Courbe gris clair : ellipticité obtenue avec une pression de 10~2 mbar
de gaz résiduel. Courbe noire : champ magnétique au carré filtré par la cavité.

de température entre le tube a vide et le reste de ’enceinte. Ceci peut étre source
d’instabilité pour le gaz et peut donc augmenter la dispersion de nos mesures tir
aprés tir. Une solution serait alors de stabiliser la température de ’ensemble a
I’aide d’un cable chauffant correctement placé autour du tube a vide.

Effet Cotton-Mouton du gaz résiduel

L’étude de l'effet Cotton-Mouton du gaz résiduel est elle aussi un sujet a
part entiére. Nous avons en effet observé des variations de l'ellipticité tout a
fait singuliéres lorsque des mesures sont réalisées a des pressions inférieures au
millibar. Pour ce type de mesures, I’enceinte est dans un premier temps pompée
jusqu’a quelques 10" mbar. Le pompage est ensuite arrété et la pression remonte
ensuite doucement par dégazage des parois de I'enceinte a vide.

La figure 5.4 présente ’évolution temporelle de D'ellipticité en fonction du
temps pour une pression de gaz résiduel de 'ordre de 1072 mbar. Le champ ma-
gnétique au carré filtré par la cavité y est superposé. Nous constatons clairement
que les deux signaux n’ont pas la méme évolution temporelle. En particulier,
I’ellipticité change de signe et ne revient a zéro que bien apreés I'annulation du
champ magnétique. Le processus physique induisant cette évolution n’est pour
le moment pas compris et devra étre étudié en détails. Une premiére étude sys-
tématique serait d’étudier 'amplitude et la variation temporelle des signaux en
fonction de la pression du gaz résiduel.

Les résultats obtenus pourraient étre particulierement importants pour la
mesure de la biréfringence magnétique du vide. En effet, ellipticité due a l'effet
Cotton-Mouton du vide doit suivre I'évolution de B? ;. Si tel n’est pas le cas
pour le gaz résiduel, ceci serait un moyen supplémentaire de s’affranchir de I'effet
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systématique correspondant.

5.2.2 Vers 'observation de nouveaux effets

L’ellipsométre de trés grande sensibilité que nous mettons en place peut étre
utilisé pour toute mesure de biréfringence, qu’elle soit induite par un champ
magnétique et/ou un champ électrique que nous pouvons rajouter au sein de la
cavité. On peut citer dans ce cadre l'effet Kerr, ou la biréfringence est proportion-
nelle au carré du champ électrique, ou des biréfringences plus exotiques telles que
la biréfringence de Jones magnéto-électrique [127]. Cette derniére, bilinéaire en
champ électrique et champ magnétique, apparait lorsque un champ magnétique
et électrique, paralléles entre eux, sont appliqués perpendiculairement au trajet
du faisceau lumineux. De nombreux calculs, de plus en plus précis, ont été réali-
sés pour différents atomes et molécules [128|. Malheureusement, aucune mesure
n’a encore été réalisée en milieu gazeux permettant de valider les calculs. Cette
mesure, réalisée par exemple avec notre appareil, serait donc particuliérement
intéressante.

Enfin, notre dispositif peut étre utilisé de maniére plus large pour des mesures
d’effets non-linéaires. L'un des objectifs est par exemple de pouvoir mettre en
évidence pour la premiére fois la génération de seconde harmonique induite par
un champ magnétique dans un gaz, appelé également BFISH (Magnetic Field
Induced Second Harmonic). Le principe de 'expérience est présenté sur la fi-
gure 5.5. Le faisceau de pulsation w se propage dans le milieu non-linéaire qu’est
le gaz. La génération de photons a la pulsation double 2w a lieu dans la zone de
champ magnétique. Le nombre de photons Ny, ainsi émis a la fréquence double
est donné par la formule suivante :

L
Now o x®B2N2sinc? b : (5.4)
2Lcoh

2mce

avec Leon (5.5)

4w(ngy, — ny,)
Le paramétre x® correspond a la susceptibilité non-linéaire d’ordre 3, N,, repré-
sente le nombre de photons a la pulsation w, Lp est la longueur sur laquelle le
champ magnétique est appliqué et L., correspond a la longueur sur laquelle il
y a accord de phase et qui dépend des indices du milieu a la pulsation w et 2w.

La cavité Fabry-Perot permet ici d’avoir un nombre de photons N, impor-
tant. Les miroirs de la cavité sont transparents pour les photons de fréquence
double qui traversent donc ces miroirs. Un miroir dichroique est placé en sortie
de cavité de fagon a rejeter tous les photons de pulsation w. Les photons a 2w
sont finalement détectés a ’aide d’un détecteur de photons uniques par exemple.

La stratégie envisagée pour pouvoir observer cet effet est la suivante. Nous
souhaitons dans un premier temps mesurer 'effet Kerr a 'aide d’électrodes pla-
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FIGURE 5.5 — Schéma de principe pour Pobservation de la génération de seconde
harmonique induite par un champ magnétique. Les photons de pulsation double 2w
sont générés & partir des photons de pulsation w stockés au sein de la cavité Fabry-
Perot et ot régne un champ magnétique transverse. Les photons de pulsation double
traversent les miroirs de la cavité Fabry-Perot et sont détectés & ’aide d’un détecteur
type compteur de photons uniques. Les photons de pulsation w sont rejetés a ’aide
d’un miroir dichroique.

cées de part et d’autre du tube a vide. Une fois les résultats comparés aux pré-
visions théoriques et validés, nous passerons & I'observation de la génération de
seconde harmonique induite par un champ électrique, appelée également EFISH.
Cet effet, observé pour la premiére fois en 1962 [129], a été depuis étudié dans
de nombreux systémes, en particulier en milieu gazeux [130]. Outre la validation
du dispositif expérimental, cette étape permettra de valider la longueur de cohé-
rence de 'équation (5.5). En effet, pour une conversion optimale, la longueur sur
laquelle est appliquée le champ électrique ou magnétique doit étre de 'ordre de
cette longueur de cohérence. Alors que pour la génération de champs électriques,
il est aisé de mettre en place des électrodes de longueurs différentes, la longueur
sur laquelle sera appliqué le champ magnétique ne peut étre modifiée facilement.
La longueur de cohérence sera donc adaptée & Lp en ajustant la valeur des in-
dices n,, et ng, par 'intermédiaire de la pression du gaz injecté dans l'enceinte.

L’appareil développé dans le cadre du projet BMV est donc un outil ex-
trémement sensible dont les applications vont des tests trés fondamentaux de
I’électrodynamique quantique, en passant par I’étude trés large des propriétés de
I'interaction lumiére-matiére.






ANNEXE A

Curriculum Vitae

Mathilde Fouché, née Hugbart le 25/07,/1978
mathilde.fouche@inln.cnrs.fr

CURSUS UNIVERSITAIRE

2002 - 2005
Doctorat en Sciences Physiques de 1’Université Paris X1 a Orsay
Mention : Trés honorable

2000 - 2001
DEA "Optique et Photonique" de I'Université Paris XI, Orsay
Classement : 3éme

1998 - 2001
Diplome d’ingénieur de I’Ecole Supérieure d’Optique & Orsay
Classement : lére

CURSUS RECHERCHE

09/2015 - ...

Chargé de recherche 1lére classe au CNRS a I'Institut Non Linéaire de Nice
(Valbonne Sophia Antipolis) - UMR 7335

Sujet : Etude de la diffusion de la lumiére dans des nuages d’atomes froids,
sous la direction de Robin Kaiser.
10/2010 - 09/2015

Chargé de recherche 1ére classe au CNRS au Laboratoire National des Champs
Magnétiques Intenses (Toulouse) - UPR 3228

Sujet : Etude de la propagation de la lumiére sous champ magnétique intense -
Expérience de biréfringence magnétique du vide sous la direction de Carlo Rizzo.
2006 - 2010

Chargé de recherche 2éme classe au CNRS au Laboratoire Collisions Agrégats
Réactivité (Toulouse) - UMR 5589

Sujet : Expérience de photorégénération de bosons de faible masse puis ex-
périence de biréfringence magnétique du vide sous la direction de Carlo Rizzo.
2005 - 2006

Post-doctorat au LNE-SYRTE de I’Observatoire de Paris



mathilde.fouche@inln.cnrs.fr

200

Annexe A - Curriculum Vitae

Sujet : Développement d’une horloge optique & atomes froids de Strontium
de trés grande performance sous la direction de Pierre Lemonde.
2002 - 2005

Thése au Laboratoire Charles Fabry de I'Institut d’Optique (Orsay)

Directeur de thése : Alain Aspect

Financement : Bourse CIFRE cofinancée par 'ANRT et IXSEA (Marly le
Roi)

Sujet : Etude des propriétés de cohérence d’un condensat de Bose-Einstein a
I’équilibre et hors équilibre.



ANNEXE B

Publications scientifiques

La liste ci-dessous présente mes publications sous mes deux noms (Hugbart :
nom de jeune fille et Fouché : nom marital).

REVUES A COMITE DE LECTURE

Sélection de 5 publications :

1. S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer, and
A. Aspect, Momentum Spectroscopy of 1D Phase Fluctuations in Bose-
Finstein Condensates, Phys. Rev. Lett. 91, 010405 (2003). Cité 159 fois.

2. R. Le Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. D.
Rovera, and P. Lemonde, A ccurate Optical Lattice Clock with 3" Sr Atoms,
Phys. Rev. Lett. 97, 130801 (2006). Cité 76 fois.

3. C. Robilliard, R. Battesti, M. Fouché, J. Mauchain, A.-M. Sautivet, F.
Amiranoff, and C. Rizzo, No "Light Shining through a Wall" : Results
from a Photoregeneration Ezperiment, Phys. Rev. Lett. 99, 190403 (2007).
Cité 88 fois.

4. A. Cadéne, P. Berceau, M. Fouché, R. Battesti and C. Rizzo, Vacuum
magnetic linear birefringence using pulsed fields : status of the BMV ex-
periment, Eur. Phys. J. D 68, 16 (2014). Cité 6 fois.

5. A. Cadéne, M. Fouché, A. Rivére, R. Battesti, S. Coriani, A. Rizzo and C.

Rizzo, Circular and linear magnetic birefringence in zenon at A = 106/
nm, J. Chem. Phys. 142, 124313 (2015).

Données bibliométriques (au 29/12/15, source ISI Web of Knowledge) :
Nombre d’articles = 38 Total de citations = 1230 Index h = 15.




202

Annexe B - Publications scientifiques

2015

1. A. Cadéne, M. Fouché, A. Rivére, R. Battesti, S. Coriani, A. Rizzo and
C. Rizzo, Circular and linear magnetic birefringence in zenon at A = 1064
nm, J. Chem. Phys. 142, 124313 (2015).

2014

2. A. Cadéne, P. Berceau, M. Fouché, R. Battesti and C. Rizzo, Vacuum
magnetic linear birefringence using pulsed fields : status of the BMV expe-
riment, Eur. Phys. J. D 68, 16 (2014).

2013

3. A. Cadéne, D. Sordes, P. Berceau, M. Fouché, R. Battesti and C. Rizzo,
Faraday and Cotton-Mouton effects of helium at A\ = 106/ nm, Phys. Rev.
A 88, 043815 (2013).

4. R. Battesti, P. Berceau, M. Fouché, G. L. J. A. Rikken and C. Rizzo, Quan-
tum vacuum magneto-optics, Comptes Rendus Physique 14, 27 (2013).
2012

5. P. Berceau, R. Battesti, M. Fouché, P. Frings, M. Nardone, O. Portugall,
G. L. J. A. Rikken and C. Rizzo, Quantum vacuum magnetic birefringence,
Hyperfine interact 210, 7 (2012).

6. P. Berceau, M. Fouché, R. Battesti, and C. Rizzo, Magnetic linear birefrin-
gence measurements using pulsed fields, Phys. Rev. A 85, 013837 (2012).

2011

7. A. Ben-Amar Baranga, R. Battesti, M. Fouché, C. Rizzo and G. L. J. A.
Rikken, Observation of the inverse Cotton-Mouton effect, EPL 94, 44005
(2011).

8. P. Berceau, R. Battesti, M. Fouché and C. Rizzo, The vacuum magnetic bi-

refringence experiment : a test for quantum electrodynamics, Can. J. Phys.
89, 153 (2011).

2010

9. R. Battesti, M. Fouché, C. Detlefs, T. Roth, P. Berceau, F. Duc, P. Frings,
G. L. J. A. Rikken and C. Rizzo, Photon Regeneration Erperiment for
Azion Search Using X-Rays, Phys. Rev. Lett. 105, 250405 (2010).

10. C. Rizzo, A. Dupays, R. Battesti, M. Fouché and G. L. J. A. Rikken, Inverse
Cotton-Mouton effect of the vacuum and of atomic systems, EPL 90, 64003
(2010).

11. P. Berceau, M. Fouché, R. Battesti, F. Bielsa, J. Mauchain and C. Rizzo,

Dynamical behaviour of birefringent Fabry-Perot cavities, Appl. Phys. B
100, 803 (2010).



Annexe B - Publications scientifiques

203

2009

12.

13.

F'. Bielsa, A. Dupays, M. Fouché, R. Battesti, C. Robilliard and C. Rizzo,
Birefringence of interferential mirrors at normal incidence : Experimental
and computational study, Appl. Phys. B 97, 457 (2009).

C. Robilliard, B Pinto Da Souza, F. Bielsa, J. Mauchain, M. Nardone, G.
Bailly, M. Fouché, R. Battesti, C. Rizzo, The BMV project : Search for
photon oscillations into massive particles, Can. J. Phys. 87, 735 (2009).

2008

14.

15.

16.

17.

M. Fouché, C. Robilliard, S. Faure, C. Rizzo, J. Mauchain, M. Nardone,
R. Battesti, L. Martin, A.-M. Sautivet, J.-L.. Paillard, and F. Amiranoff,
Search for photon oscillations into massive particles, Phys. Rev. D 78,
032013 (2008).

S. Batut, J. Mauchain, R. Battesti, C. Robilliard, M. Fouché, and O. Portu-
gall, A transportable pulsed magnet system for fundamental investigations

in quantum electrodynamics and particle physics, IEEE Trans. Appl. Su-
perconductivity 18, 600 (2008).

X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F.
Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize,
G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H.
Schnatz, An optical lattice clock with spin-polarized Sr-87 atoms, Fur. Phys.
J. D 48, 11 (2008).

S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky,
M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P.
Lemonde, M. Takamoto, F.-L. Hong, H. Katori, and V. V. Flambaum,
New Limits on Coupling of Fundamental Constants to Gravity Using %" Sr
Optical Lattice Clocks, Phys. Rev. Lett. 100, 140801 (2008).

2007

18.

19.

20.

21.

C. Robilliard, R. Battesti, M. Fouché, J. Mauchain, A.-M. Sautivet, F.
Amiranoff, and C. Rizzo, No "Light Shining through a Wall" : Results from
a Photoregeneration FErperiment, Phys. Rev. Lett. 99, 190403 (2007).

X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, Y.
Le Coq, G. D. Rovera, S. Bize, and P. Lemonde, Accuracy evaluation of an
optical lattice clock with bosonic atoms, Opt. Lett. 32, 1812 (2007).

M. Fouché, R. Le Targat, X. Baillard, A. Brusch, O. Tcherbakoff, G. D.
Rovera, and P. Lemonde, Accuracy evaluation of a Sr-87 optical lattice
clock, IEEE Trans. Inst. Meas. 56, 336 (2007).

M. Hugbart, J. A. Retter, A. F. Varon, P. Bouyer, A. Aspect, and M. J.
Davis, Population and phase coherence during the growth of an elongated
Bose-Finstein condensate, Phys. Rev. A 75, 011602 (2007).



204

Annexe B - Publications scientifiques

2006

22. R. Le Targat, X. Baillard, M. Fouché, A. Brusch, O. Tcherbakoff, G. D.
Rovera, and P. Lemonde, Accurate Optical Lattice Clock with " Sr Atoms,
Phys. Rev. Lett. 97, 130801 (2006).

23. A. Brusch, R. Le Targat, X. Baillard, M. Fouché, and P. Lemonde, Hy-
perpolarizability Effects in a Sr Optical Lattice Clock, Phys. Rev. Lett. 96,
103003 (2006).

2005

24. D. Clément, A. F. Varon, M. Hugbart, J. A. Retter, P. Bouyer, L.. Sanchez-
Palencia, D. M. Gangardt, G. V. Shlyapnikov, and A. Aspect, Suppression

of Transport of an Interacting Elongated Bose-Einstein Condensate in a
Random Potential, Phys. Rev. Lett. 95, 170409 (2005).

25. M. Hugbart, J. A. Retter, F. Gerbier, A. F. Varon, S. Richard, J. H. Thy-
wissen, D. Clément, P. Bouyer and A. Aspect, Coherence length of an elon-

gated condensate : a study by matter-wave inerferometry, Eur. Phys. J. D
35, 155 (2005).

2004

26. F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A.
Aspect, Experimental study of the thermodynamics of an interacting trapped
Bose-FEinstein condensed gas, Phys. Rev. A 70, 013607 (2004).

27. F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A.
Aspect, Critical Temperature of a Trapped, Weakly Interacting Bose Gas,
Phys. Rev. Lett. 92, 030405 (2004).

2003

28. S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer, and A. As-
pect, Momentum Spectroscopy of 1D Phase Fluctuations in Bose-Einstein
Condensates, Phys. Rev. Lett. 91, 010405 (2003).

29. F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A. As-
pect, Momentum distribution and correlation function of quasicondensates
in elongated traps, Phys. Rev. A 67, 051602 (2003).



Annexe B - Publications scientifiques

205

ACTES DE CONFERENCES A COMITE DE LECTURE

2010

1. M. Fouché, P. Berceau, R. Battesti and C. Rizzo, The QED Vacuum Ma-
gnetic Birefringence Experiment, 2010 CONFERENCE ON PRECISION
ELECTROMAGNETIC MEASUREMENTS CPEM, 335 (2010).

2007

2. X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F.
Chapelet, S. Bize, P. Rosenbusch, M. Abgrall, P. Laurent, Y. Lecoq, G. D.
Rovera, A. Clairon, P. Lemonde, B. Lipphardt, G. Grosche, and H. Schnatz,
An optical lattice clock with fermionic and bosonic Sr atoms, 2007 Pacific
RIM Conference on Lasers and Electro-Optics 1-4, 923 (2007).

3. X. Baillard, M. Fouché, R. Le Targat, P. Westergaard, A. Lecallier, J. Lo-
dewyck, F. Chapelet, M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch,
S. Bize, G. Santarelli, A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt,
and H. Schnatz, Optical lattice clock with spin-polarized Sr-87 atoms, Quan-
tum Communications Realized 6780, 78000 (2007).

2006

4. R. Le Targat, A. Brusch, X. Baillard, M. Fouché, O. Tcherbakoff, G. D. Ro-
vera, and P. Lemonde, Hyperpolarizability effects and accuracy evaluation
of a Sr-87 optical lattice clock, Proceedings of the 2006 TEEE International
Frequency Control Symposium and Exposition 1-2, 149 (2006).

5. D. Clément, A. F. Varon, M. Hugbart, J. A. Retter, P. Bouyer, L. Sanchez-
Palencia, D. Gangardt, G. V. Shlyapnikov, and A. Aspect, Inhibition of
the transport of a Bose-Finstein condensate in a 1D random potential, J.
Phys. TV 135, 145 (2006).

2005

6. J. A. Retter, A. F. Varon, D. Clément, M. Hugbart, P. Bouyer, L. Sanchez-
Palencia, D. Gangardt, G. V. Shlyapnikov, A. Aspect, Inhibition of trans-
port of a Bose-Einstein condensate in a random potential, 17th Internatio-
nal Conference on Laser Spectroscopy, Laser Spectroscopy, 248 (2005).

2004

7. A. Aspect, S. Richard, F. Gerbier, M. Hugbart, J. Retter, J. H. Thywissen,
and P. Bouyer, Momentum spectroscopy of phase fluctuations of an elon-
gated Bose-FEinstein condensate, 16th International Conference on Laser
Spectroscopy, Laser Spectroscopy, 116 (2004).

8. M. Hugbart, J. Retter, F. Gerbier, S. Richard, J. H. Thywissen, A. Varon,
P. Bouyer, and A. Aspect, Coherence length of a Bose-FEinstein condensate
in a very anisotropic trap, J. Phys. VI 119, 193 (2004).



206

Annexe B - Publications scientifiques

9. P. Bouyer, J. H. Thywissen, F. Gerbier, M. Hugbart, S. Richard, J. Retter,
A. Aspect, One-dimensional behavior of elongated Bose-Einstein conden-
sates, J. Phys. VI 116, 219 (2004).

CUMMUNICATIONS ORALES A DES CONFERENCES

ET WORKSHOPS

2013

1. M. Fouché, A. Cadéne, R. Battesti and C. Rizzo, Quantum FElectrodynamics
Effects, Workshop on " Coupling high-power lasers with external magnetic
fields " (LaB2013), Palaiseau, France (Décembre 2013).

2. M. Fouché, A. Cadéne, P. Berceau, R. Battesti and C. Rizzo, The vacuum
magnetic birefringence experiment, European French /Israeli Symposium on
Nonlinear and Quantum Optics (FRISNO 12), Ein Gedi, Israél (Février
2013).

2010

3. M. Fouché, P. Berceau, R. Battesti and C. Rizzo, The QFED vacuum ma-
gnetic birefringence experiment, Conference on Precision Electromagnetic
Measurements, Daejeon, Corée du Sud (Juillet 2010).

2008

4. M. Fouché, C. Robilliard, C. Rizzo, J. Mauchain, R. Battesti, A.-M. Sau-
tivet and F. Amiranoff, BMV project : Final results on photon oscilla-
tions into massive particles, 4th Patras Workshop on Axions, WIMPs and
WISPs, Hamburg, Allemagne (Juin 2008).

2007

5. M. Fouché, C. Robilliard, C. Rizzo, J. Mauchain, R. Battesti, A.-M. Sau-
tivet and F. Amiranoff, New results from a photoregeneration experiment,
Astroparticle Workshop, Toulouse, France (Novembre 2007).

2006

6. M. Fouché, R. Le Targat, X. Baillard, A. Brusch, O. Tcherbakoff, G. D. Ro-
vera and P. Lemonde, Sr optical lattice clock : hyperpolarizability effects and
preliminary accuracy evaluation, Conference on Precision Electromagnetic
Measurements, Turin, Ttalie (Juillet 2006).

2005

7. M. Hugbart, J. Retter, A. Varon, D. Clément, P. Bouyer, and A. As-
pect, Phase coherence of Bose-Finstein condensate, European Workshop
on Quantum Mechanics for space, Chatillon, France (Mars 2005).



Annexe B - Publications scientifiques 207

BREVETS

2010

1. G. Rikken, R. Battesti, A. Ben-Amar Baranga, M. Fouché, and C. Rizzo,
Dispositif et procédé pour caractériser un faisceau pulsé, Numéro de depot :
FR20100057007 20100903 Date de dépot : 03-09-2010






ANNEXE C

Autres Activités

C.1 Encadrement, Enseignement et Diffusion de
la Culture Scientifique

C.1.1 Encadrement

Doctorant :

~ Agathe Cadéne, co-encadrement a 50% avec Carlo Rizzo de 2012 a 2015.
Sujet des travauz : Mesure de la biréfringence magnétique du vide.
Contenu des travauz : L’objectif de cette thése était d’obtenir les meilleures
limites possibles sur la biréfringence magnétique du vide avec le montage
de premiére génération. Pour cela, des mesures ont tout d’abord été réali-
sées dans des gaz, permettant de valider le fonctionnement de 1’expérience,
mais aussi d’apporter de nouvelles mesures d’effets magnéto-optiques. Ces
résultats ont donné lieu a une collaboration avec des chimistes théoriciens
pour comparer au mieux nos résultats avec les prévisions théoriques. Une
étude et une amélioration des bruits ont été réalisées. Une acquisition des
données originale a finalement été développée afin de s’affranchir au mieux
des effets systématiques et d’améliorer au maximum la sensibilité de 'ex-
périence.
Orientation : Recrutée comme enseignante en C.P.G.E.

Ingénieurs de recherche :

— Agnés Souquet et Alexandre Bacou, co-encadrement a 50% avec Rémy
Battesti de 2011 a 2013.
Sujet des travaux : développement d’un prototype suite au brevet déposé
en 2010 [131].

Stagiaires :

— Romain Hernandez, stage de L1, parcours spéciaux licences, Université
Paul Sabatier a Toulouse, juillet 2014.

— Delphine Sordes, stage de M2 "Physique de la matiére", Université Paul
Sabatier a Toulouse, février a juin 2013.



210

Annexe C - Autres Activités

C.1.

Timothée Achilli, stage de premiére année d’école d’ingénieur (L3), Ins-
titut d’Optique Graduate School a Palaiseau, juillet 2012.

Imane Karouiti, stage de M1 "Physique fondamentale", Université Paul
Sabatier a Toulouse, avril & juin 2011.

Loic Recoules, stage de M2 "Ingénierie des Systémes et Microsystémes
Embarqués"”, Université Paul Sabatier & Toulouse, février a juillet 2011.
Marie-Aude Maynard, stage de premiére année d’école d’ingénieur (L3),
Institut d’Optique Graduate School & Palaiseau, juillet 2011.

Etienne Rodriguez, stage de premiére année d’école d’ingénieur (L3),
Institut d’Optique Graduate School a Palaiseau, juillet 2011.

Erwan Engammare, stage de licence professionnelle, Université Paul Sa-
batier & Toulouse, avril a juillet 2010.

Loranne Vernisse, stage de L3, Université Paul Sabatier a Toulouse,
juillet 2009.

Hugo Jarry, stage de L3, Ecole normale supérieure de Cachan, juillet
2009.

Stage de M2 "Laser et Matiére", Université d’Orsay, avril a juin 2006.

2 Enseignement

2014 - 2015
Enseignement a I'INSA de Toulouse, niveau L1

TD de mécanique du point : 15 heures
TD d’optique géométrique : 22 heures
TP d’optique géométrique : 12 heures
TD d’électrostatique : 17 heures

TP d’électrostatique : 3 heures

2013 - 2014
Enseignement a I'INSA de Toulouse, niveau L1

TD de mécanique du point : 15 heures
TD d’optique géométrique : 22 heures
TP d’optique géométrique : 12 heures
TD d’électrostatique : 17 heures

TP d’¢électrostatique : 3 heures

2012 - 2013
Enseignement a I'INSA de Toulouse, niveau L1

TD de mécanique du point : 15 heures
TD d’optique géométrique : 22 heures
TP d’optique géométrique : 12 heures



Annexe C - Autres Activités 211

2011 - 2012
Enseignement a 'INSA de Toulouse, niveau L1
— TP de mécanique du point : 8 heures

2004 - 2005

Enseignement a ’Ecole Supérieure d’Optique & Orsay

— TD d’électronique numérique, niveau L3 : 9 heures

— TP d’électronique, niveau M1 : 45 heures

— TD d’optique physique et polarisation, niveau L3 : 10,5 heures

2003 - 2004

Enseignement a 1’'Ecole Supérieure d’Optique a Orsay

— TD d’électronique numérique, niveau L3 : 9 heures

— TP d’électronique, niveau M1 : 45 heures

— TD d’optique physique et polarisation, niveau L3 : 10,5 heures

2002 - 2003

Enseignement a 1’'Ecole Supérieure d’Optique a Orsay
— TD d’électronique numérique, niveau L3 : 9 heures
— TP d’électronique, niveau M1 : 45 heures

Enseignement & I’Université Paris XI d’Orsay, niveau L1
— TD de projet professionnel, niveau L1 : 12 heures

2001 - 2002
Enseignement a 1’'Ecole Supérieure d’Optique a Orsay
— TP d’électronique, niveau M1 : 45 heures

C.1.3 Diffusion de la culture scientifique

2014 - 2015

— Partenariat avec une classe de terminale
Ce partenariat s’axe autour de 4 phases : une premiére rencontre avec les
chercheurs au lycée pour une présentation de notre parcours, de la recherche
et de nos thémes de recherche, une seconde rencontre avec la visite du la-
boratoire parrain, une phase de remédiation au lycée sur la visite et les
résultats recueillis par les éléves, et une derniére rencontre avec la présen-
tation des travaux des éléves aux chercheurs.
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2014

Nuit des chercheurs
Présentation d’un atelier laser a la Cité de I’Espace 4 Toulouse.

2012

Nuit des chercheurs
Présentation d’un atelier laser a la Météopole & Toulouse.

2011 - ...

Féte de la science au sein du LNCMI

Présentation auprés de lycéens du domaine de la biréfringence a l'aide de
différentes expériences spécialement congues pour pouvoir étre manipulées
par les éléves.

2010

50 ans du laser

Des ateliers de présentation du laser ont été mis en place dans la cadre des
50 ans du laser a Toulouse. Ces ateliers ont été présentés durant 3 jours
au cours de la Novela (Festivals des savoirs) a automne 2010. J’ai été
plus particuliérement co-responsable de D'atelier "historique et anatomie
du laser".

Nuit des chercheurs

Présentation d’un atelier laser a la Cité de I’Espace a Toulouse.

2008 - 2009

Club CNRS jeunes et citoyens "Atelier scientifique"

Encadrement de 3 lycéennes.

Suget : étude autour de la biréfringence magnétique du vide (compréhension
et expérimentation).

Lieu : lycée Toulouse-Lautrec les jeudis midi hors vacances scolaires et au
Laboratoire Collisions Agrégats et Réactivité durant les stages.

Durée : chaque jeudi midi d’octobre 2008 & mars 2009 + 2 semaines de
stage au laboratoire.

Journée d’accueil d’une dizaine d’enseignants en sciences de col-
léges et lycées (dans le cadre de la formation continue des enseignants du
2nd degré en continuité du plan académique de valorisation des filiéres
scientifiques et technologiques)

Présentation du théme de recherche "I'optique en cavité" et visite de 'ex-
périence en laboratoire.

Exposition tout public "Nature Magnétique : des atomes aux
étoiles" dans le cadre de 'année mondiale de ’astronomie

Elaboration d’un poster visible a adresse suivante :
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http://www.ast.obs-mip.fr/users/donati/expo/3.7.pdf
Sujet : "Magnétisme et vide quantique"

— Exposition tout public "Nature Magnétique : des atomes aux
étoiles"dans le cadre de 'année mondiale de I’astronomie
Participation a I’élaboration d’un film visible & I’adresse suivante :
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubriqueb7
Sujet : "Magnétisme et vide quantique" - présentation de I’expérience de
"biréfringence magnétique du vide".
Contribution : enregistrement de la voix off et présentation de I'expérience
pour l'enregistrement des images.

2008

— Féte de la science au sein de 'TRSAMC.
Présentation auprés de collégiens (classe de 3éme) du domaine des cavités
optiques a I'aide d’un poster et d'une expérience spécialement congue pour
pouvoir étre manipulée par les éléves.

2007

— Aide a la mise en place d’un TIPE (Travaux d’Initiative Personnelle
Encadrés)
Le théme étant "le temps" , deux étudiants de 2éme année de classe pré-
paratoire ont choisi de réaliser leur travail autour de notre expérience de
photorégénération de bosons de faible masse et en particulier autour des
différents problémes de synchronisation liés & cette expérience. Ma partici-
pation a tout d’abord consisté & leur expliquer dans le détail notre expé-
rience puis a leur proposer différentes expériences pouvant étre réalisées en
salle de Travaux Pratiques.

— Exposition autour du théme de la lumiére a 'occasion de la journée
de la femme
Participation a cette exposition qui a été présentée a des éléves de lére S
sur le campus de ’Université Paul Sabatier.

2007 - ...

— Site internet du LNCMI
Mise en place et mise a jour des pages de I’équipe sur le site
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubriqueli6.


http://www.ast.obs-mip.fr/users/donati/expo/3.7.pdf
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique57
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique116
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C.2 Transfert Technologique, Relations Industrielles
et Valorisation

Les études menées sur l'effet Cotton-Mouton inverse (ICME) [132] ont donné
lieu & un dépot de brevet par le CNRS (numéro FR 10 57007 déposé le 03 sep-
tembre 2010, inventeurs : Andrei Ben-Amar Baranga, Rémy Battesti, Mathilde
Fouché, Carlo Rizzo, Geert L.J.A. Rikken) [131]. Rémy Battesti et moi-méme
nous sommes ensuite investis dans la valorisation de ce brevet. Nous avons ren-
contré un soutien fort de la part du CNRS dans cette démarche, en particulier
de la part de la directrice de la valorisation du CNRS Mme Chantal Vernis. Je
liste ici les dates clés des financements, prix et avancées obtenus dans ce cadre.

Printemps 2011

Financement pour une durée d’un an d’un ingénieur de recherche par le CNRS
pour le développement d’un prototype.

Membre du projet lauréat au concours d’aide a la création d’entreprise tech-
nologique innovante catégorie " émergence " (porteur de projet : Rémy Battesti).
La somme remportée a en particulier permis de financer une étude de marché.

Eté 2011

Financement pour une durée d’'un an d’un deuxiéme ingénieur de recherche
par le PRES de Toulouse et la région Midi-Pyrénées, et obtention d’une aide
financiére pour le développement du prototype.

Automne 2011
Entrée a l'incubateur Midi-Pyrénées (porteur de projet : Mathilde Fouché)
en vue d’une création de start-up autour du brevet.

2011 - 2013

Elaboration d’un prototype. Cette phase nous a permis d’étudier la pertinence
de créer rapidement une entreprise ou de travailler en lien avec des entreprises
intéressées par un transfert technologique.

La construction du prototype a comporté trois phases importantes : la géné-
ration du champ magnétique transverse, la mise en place du systéme optique et
I’élaboration de la sonde de détection. Alors que les deux premiers points sont
désormais parfaitement maitrisés, I’élaboration de la sonde de détection a pré-
senté plus de difficultés. Il s’est avéré en particulier compliqué d’avoir une sonde
de grande sensibilité mais correctement blindée des bruits électromagnétiques
extérieurs. Ceci correspond au point dur dans I’élaboration du prototype.

Suite a ces résultats, il a été décidé de suspendre la création d’une start-up
et de poursuivre les recherches en laboratoire. Des collaborations sont eu cours
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pour la partie sonde de détection. J’ai en particulier obtenu le financement pour
un chercheur invité sur 4 mois, permettant 4 Andrei Ben-Amar Baranga, co-
inventeur du brevet, de revenir travailler sur ce sujet. Une collaboration avec une
équipe israélienne spécialiste dans la détection des trés faibles aimantations est
depuis sérieusement envisagée.

C.3 Encadrement, Animation et Management de
la Recherche

2014 - ...
Membre du Collége Scientifique "Physique-SDU" de I’Université Toulouse I11
- Paul Sabatier.

2013 - ...
Membre du comité de sélection pour le poste 34 MCFE 1708 en qualité de
membre externe de I’Université Toulouse III - Paul Sabatier.

2011 - ...
Organisation des séminaires internes du LNCMI. L’objectif est de permettre
aux membres du laboratoire de présenter réguliérement leurs résultats.

2010 - 2012

Membre du comité d’organisation de 1’école internationale "QED and Quan-

tum Vacuum, Low Energy Frontier", 16-27 avril 2012, Cargése, France

— Cette école s’est inscrite dans la lignée des précédents workshops concernant
les fluctuations du vide quantique, en Italie en 1993, en Bulgarie en 1998,
en ITtalie en 2000 et finalement aux Houches, France en 2005. I’objectif
était dans un premier temps de réunir différentes communautés, a la fois
de théoriciens et d’expérimentateurs, dont les thémes de recherche peuvent
aller des tests de QED en laboratoire a ’astrophysique, en passant par
I’étude de la physique hors modéle standard. Le second objectif a été de
donner I'opportunité & de jeunes physiciens de progresser dans ce domaine
trés prometteur.

— Cette école a permis d’accueillir 65 personnes allant d’étudiants en master
2 aux professeurs confirmés. Cependant, la grande majorité des partici-
pants (plus de 70 %) était constituée d’étudiants en master 2 et thése,
de post-doctorants et de jeunes chercheurs, ce qui était I'objectif de cette
école. Cette conférence internationale a permis de réunir pas moins de 18
nationalités différentes.

— Site web de I’école : http://qed2012.cnrs.fr/

— Cette école a été approuvée comme école thématique du CNRS.


http://qed2012.cnrs.fr/
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— Contributions : Rédaction du dossier de demande a 'TESC de Cargese,
participation a ’¢laboration du programme et du choix des intervenants,
rédaction des demandes de subvention (CNRS, EMFL, GDR AS-GRAM,
GDR PECH), gestion des liens avec 'TESC de Cargése, mise en place du
site web de ’école, gestion des inscriptions, mise en place des proceedings.

2009 - ...

Membre du Groupement de Recherche "Phénomeénes Cosmiques de Haute
Energie" (GdR PCHE) qui unit astrophysiciens observateurs et théoriciens et
physiciens des particules du CNRS (INSU, IN2P3, INP) et du CEA. La par-
ticipation a ce GdR concerne les recherches de I'équipe autour des particules
massives au-dela du modéle standard telles que les axions.

2009 - 2014

Membre du projet ASPHON

— ASPHON est un projet qui a été approuvé par le Conseil Scientifique de
I’Université Paul Sabatier et qui a en particulier pour objectif de proposer
une série de séminaires portant sur I’Astrophysique et la Physique Fonda-
mentale.

2009 - 2010

Organisation des séminaires du LCAR. L’objectif était a la fois :

— de permettre aux membres du laboratoire, et plus particuliérement aux
étudiants en thése, de présenter réguliérement leurs résultats,

— et d’inviter des personnes extérieures au laboratoire ayant des thématiques
proches de celles des différentes équipes du laboratoire.

2007 - 2010
Membre du conseil de laboratoire du LCAR.
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RESUME

Depuis le début du 20éme siécle, il est connu que n’importe quel milieu
devient biréfringent lorsqu’il est soumis a un champ magnétique transverse.
Cette biréfringence est appelée effet Cotton-Mouton. Concernant le vide,
alors qu’aucun effet non-linéaire n’est autorisé dans le cadre classique du fait
de la linéarité des équations de Maxwell, I'effet Cotton-Mouton du vide est
permis dans le cadre de 1’électrodynamique quantique (QED). Celui-ci peut
étre vu comme le résultat de 'interaction entre le champ magnétique et les
fluctuations du vide quantique.

La biréfringence magnétique du vide prédite par la QED est extrémement
faible ce qui rend son observation particuliérement difficile. Pour tenter de
I'observer, un dispositif expérimental de grande sensibilité a été mis en place
au Laboratoire National des Champs Magnétiques Intenses de Toulouse. Il
est basé sur 'utilisation de champs magnétiques intenses pulsés et d'une ca-
vité Fabry-Perot de trés haute finesse. Ce manuscrit présente les avancées
sur ce projet, connu sous le nom de projet BMV.

ABSTRACT

It is known since the beginning of the 20*" century that any medium shows a
birefringence in the presence of a transverse magnetic field. This birefringence
is usually known as the Cotton-Mouton effect. Concerning vacuum, whereas
no non-linear effect is possible in the framework of classical physics due to
the linearity of Maxwell’s equations, the Cotton-Mouton effect is predicted in
the framework of quantum electrodynamics (QED). This effect can be seen
as the result of the interaction of the magnetic field with quantum vacuum
fluctuations.

The value of the vacuum magnetic birefringence predicted by QED is extre-
mely small and its observation is an experimental challenge. To be able to
observe it for the first time, a setup has been built at the High Magnetic
Field National Laboratory in Toulouse, based on intense pulsed magnetic
fields and a high finesse Fabry-Perot cavity. This manuscript describes the
current status of the project, also known as the BMV project.
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