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Introduction

Magnéto-optique dans la matière

L'in�uence d'un champ magnétique sur la propagation de la lumière a été
découverte pour la première fois en 1846 par Michael Faraday [1]. Il observa
en particulier qu'une lumière polarisée linéairement et se propageant dans un
milieu soumis à un champ magnétique B‖ parallèle au vecteur d'onde 1 voyait sa
polarisation tourner. Cet e�et est désormais connu sous le nom d'e�et Faraday
et il est utilisé dans divers systèmes tels que les isolateurs optiques. Avec une
telle expérience, Faraday mit en évidence le lien intime existant entre la lumière
et les champs électromagnétiques. Ces découvertes représentent l'une des étapes
importantes vers le théorie classique de l'électromagnétisme établi par Maxwell.

L'e�et Faraday, schématisé sur la �gure 1, correspond à une biréfringence
magnétique circulaire : l'indice de réfraction n− pour la lumière polarisée circu-
lairement gauche n'est pas le même que l'indice de réfraction n+ pour la lumière
polarisée circulairement droite. La biréfringence circulaire, proportionnelle au
champ magnétique, est alors donnée par :

∆nF = n− − n+ = kFB‖. (1)

En d'autres termes, les polarisations circulaires gauche et droite se propagent
sans déformation mais pas à la même vitesse. Une lumière polarisée initialement
linéairement, correspondant donc à la somme d'une onde polarisée circulaire
droite et d'une onde polarisée circulaire gauche, voit ainsi sa polarisation tourner
sous l'e�et d'un champ magnétique longitudinal.

L'in�uence d'un champ magnétique B⊥ transverse à la propagation de la
lumière a été découverte une cinquantaine d'années plus tard, au tout début
du 20ème siècle par Kerr [2] et Majorana [3]. Pour cela, un milieu, généralement
liquide, était placé dans un champ magnétique transverse entre deux polariseurs
croisés dont les axes étaient placés à 45�de la direction du champ magnétique. La
lumière linéairement polarisée devenait alors elliptique après propagation dans le
milieu soumis au champ magnétique. Cet e�et a été par la suite étudié en détails
par Cotton et Mouton et il porte depuis le nom d'e�et Cotton-Mouton [4�7].

1. Dans la suite du manuscrit, on parlera de champ magnétique longitudinal lorsque le
champ magnétique est parallèle au vecteur d'onde, et de champ magnétique transverse dans le
cas d'un champ magnétique orthogonal au vecteur d'onde.
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Figure 1 � E�et Faraday ou biréfringence magnétique circulaire.

L'e�et Cotton-Mouton, représenté sur la �gure 2, correspond à une biréfrin-
gence magnétique linéaire : l'indice de réfraction n‖ vu par une onde polarisée
parallèlement au champ magnétique n'est pas le même que l'indice de réfraction
n⊥ vu par une onde polarisée perpendiculairement au champ magnétique. La
biréfringence est quadratique en champ :

∆nCM = n‖ − n⊥ = kCMB
2
⊥. (2)

Les polarisations parallèle et perpendiculaire au champ magnétique voyagent sans
déformation mais à des vitesses di�érentes. Une lumière polarisée linéairement,
avec un angle θ par rapport au champ magnétique transverse, ressort ainsi de la
zone de champ magnétique polarisée elliptiquement.

Depuis leurs découvertes, les e�ets Faraday et Cotton-Mouton ont été large-
ment étudiés, que ce soit dans des milieux solides ou liquides. Dans les milieux
gazeux, les biréfringences sont bien plus petites, et ce d'autant plus que la pres-
sion est basse. Leurs mesures représentent donc un véritable dé� expérimental.
Mais elles sont particulièrement intéressantes car elles permettent de tester notre
connaissance de l'interaction entre la matière et les champs électromagnétiques.
La valeur des biréfringences dépend des propriétés microscopiques de la matière
telles que la polarisabilité électrique, la susceptibilité magnétique ou l'hypersus-
ceptibilité magnétique. Dans le cas des milieux dilués, ces réponses peuvent être
calculées dans le cadre de la chimie quantique. Pour l'hélium, les calculs sont
considérés comme exact. Les comparaisons entre les résultats expérimentaux et
théoriques permettent alors de valider ou de calibrer les dispositifs expérimen-
taux. Pour des atomes à plus grand nombre d'électrons, cette comparaison permet
de valider les modèles de calculs utilisés.
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Figure 2 � E�et Cotton-Mouton ou biréfringence magnétique linéaire.

Magnéto-optique dans le vide quantique

L'interaction entre champs électromagnétiques dans un milieu peut être dé-
crite à partir des équations de Maxwell et des équations constitutives du milieu.
Les équations de Maxwell dans le vide sont linéaires. Dans le cadre de l'électro-
dynamique classique, aucune interaction n'est donc possible. En particulier, les
e�ets Faraday et Cotton-Mouton sont inexistants.

Ces interactions sont en revanche possibles dans le cadre de l'électrodyna-
mique quantique (QED) via les �uctuations quantiques du vide. Le vide étant
supposé invariant par transformations de Lorentz, l'e�et Faraday n'existe pas.
L'e�et Cotton-Mouton du vide est quant à lui di�érent de zéro et a été calculé
dans les années 1970 [8, 9] à partir du lagrangien établi par Heisenberg et Euler
en 1935 et 1936 [10,11]. Aux premiers ordres de la constante de structure �ne α,
l'e�et Cotton-Mouton vaut :

kCM =
2α2~3

15µ0m4
ec

5

(
1 +

25

4π
α

)
[T−2], (3)

avec ~ la constante de Planck divisée par 2π, µ0 la perméabilité du vide, me la
masse de l'électron et c la vitesse de la lumière dans le vide. Le terme principal en
α2 correspond au diagramme de Feynman de la �gure 3a : deux photons associés
au champ électromagnétique interagissent avec deux photons associés au champ
magnétique externe par l'intermédiaire d'une paire virtuelle électron-positron.
La première correction radiative, correspondant au terme en α3, est quant à elle
représentée par le diagramme de Feynman de la �gure 3b. Elle tient compte de la
possibilité pour la paire électron-positron d'échanger un photon. Cette correction
a été calculée par Ritus en 1976 [9]. Elle vaut environ 1.5% du terme principal.
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(a) Diagramme de Feynman correspon-
dant au terme principal pour la biré-
fringence magnétique du vide.

(b) Diagramme de Feynman correspon-
dant à la première correction radiative.

Figure 3 � Diagrammes de Feynman correspondant à la biréfringence magnétique du
vide. Les lignes ondulées représentent les photons du champ électromagnétique et les
lignes ondulées terminées d'une croix correspondent aux photons du champ magnétique
externe. Le cercle représente une paire électron-positron.

En utilisant les valeurs des constantes fondamentales données par le CODATA
[12], la valeur de la biréfringence magnétique du vide est :

kCM = (4.0316994± 0.0000009)× 10−24 T−2. (4)

L'incertitude est donnée par l'incertitude sur les constantes fondamentales. Elle
est donc négligeable comparée à l'incertitude due au fait que seule la première
correction radiative ait été calculée. En ce sens, la mesure de l'e�et Cotton-
Mouton du vide ne correspond pas à une mesure de constantes fondamentales,
mais à un test du lagrangien de Heisenberg et Euler.

L'e�et Cotton-Mouton du vide est extrêmement faible et il n'a à l'heure
actuelle jamais été mesuré. Son observation représente un véritable dé� expéri-
mental. Plusieurs expériences sont actuellement en cours dans la monde, dont
le projet BMV (Biréfringence Magnétique du Vide) installé au Laboratoire Na-
tional des Champs Magnétiques Intenses de Toulouse (LNCMI-T) et qui sera
présenté dans ce mémoire. Les expériences sont essentiellement basées sur des
champs magnétiques les plus intenses possibles couplés à des cavités Fabry-Pérot
de très hautes �nesses permettant d'accumuler l'e�et à mesurer sur l'équivalent
de plusieurs centaines de kilomètres. Concernant le champ magnétique, plusieurs
technologies existent : les champs magnétiques continus avec ses aimants per-
manents ou ses aimants supraconducteurs, et les champs pulsés. Ces derniers
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présentent l'avantage de délivrer des champs magnétiques plus intenses avec une
fréquence équivalente de l'ordre de la centaine de Hz. C'est la technologie utilisée
pour le projet BMV et dont le LNCMI-T est spécialiste.

La QED est l'une des théories les mieux testées. Certaines prédictions théo-
riques ont été véri�ées expérimentalement avec une extrême précision. C'est par
exemple le cas pour les systèmes liés avec le déplacement de Lamb de l'atome
d'hydrogène [13] ou pour les particules isolées chargées avec le moment ma-
gnétique anormal de l'électron [14]. Cependant, aucun test ne faisant intervenir
uniquement les photons et le vide quantique n'a encore été réalisé. La mesure de
l'e�et Cotton-Mouton du vide serait le premier test réalisé dans ce cadre.

Au-delà du modèle standard

L'étude de la propagation de la lumière dans le vide soumis à un champ ma-
gnétique transverse permet également de tester des prédictions au-delà du modèle
standard. Elle permettrait en particulier de détecter des particules pouvant se
coupler aux photons via le champ magnétique par e�et Primako� [15], comme
schématisé sur la �gure 4. Ces particules hypothétiques, interagissant très peu
avec la matière et donc pratiquement indétectables, sont appelées de manière
générale WIMPs (Weakly Interacting Massive Particles).

Figure 4 � Schéma correspondant au couplage
WIMP - photon via un champ magnétique ex-
terne. Le trait pointillé correspond à une parti-
cule WIMP comme l'axion.

L'une des particules les plus connues parmi les WIMPs est l'axion. Cette
particule a été introduite en 1977 par Peccei et Quinn pour résoudre un pro-
blème théorique, le � strong CP problem � [16]. L'axion serait également l'un des
constituants les plus crédibles de la matière noire. En astrophysique, la matière
noire (ou matière sombre), censée représenter le quart de notre univers, désigne
la matière apparemment indétectable, invoquée pour rendre compte d'e�ets in-
attendus, notamment concernant la rotation des galaxies spirales. Di�érentes
hypothèses ont été émises et explorées sur la composition de cette hypothétique
matière noire : gaz moléculaire, étoiles mortes, naines brunes en grand nombre,
trous noirs... Cependant, les observations impliqueraient plutôt une nature non-
baryonique encore inconnue, comme l'axion. La détection de cette particule serait
une avancée majeure dans la compréhension de notre univers.
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D'un point de vue expérimental, di�érentes stratégies ont été adoptées pour
tenter de détecter cet axion. Les meilleures limites concernant sa masse et la
constante de couplage axion-2 photons (un photon du champ électromagnétique
et un photon du champ magnétique externe) sont données par des observations
astrophysiques. La première, appelée CAST [17] recherche des axions solaires.
La deuxième, ADMX [18], tente de détecter des axions galactiques. Le principe
est ici de convertir sur terre les axions créés possiblement en grand nombre par
des sources extérieures. Bien que très sensibles, ces expériences présentent le
désavantage d'être fortement dépendantes des modèles utilisés pour décrire les
sources célestes et donc du taux de création d'axions. D'un autre côté, les ex-
périences purement terrestres, créant et détectant les axions sur terre, sont bien
moins sensibles mais les limites données ne dépendent d'aucun modèle. Trois
types d'expériences purement terrestres existent, complémentaires les unes des
autres : les expériences de type �mur brillant� ou photorégénération de bosons de
faible masse [19], les expériences type projet BMV et les expériences permettant
de mesurer le dichroïsme magnétique du vide [20,21].

Plan du mémoire

Je présente dans ce mémoire mes travaux concernant l'étude de la propaga-
tion de la lumière sous champ magnétique et plus particulièrement l'étude de la
biréfringence magnétique du vide. Les principaux articles relatifs à chaque partie
sont regroupés à la �n des chapitres correspondants. Ce mémoire est organisé de
la manière suivante :

� Le chapitre 1 est consacré à la présentation du cadre général de la mesure
de la biréfringence magnétique du vide. Comme dit précédemment, cette
mesure constitue un test de l'électrodynamique quantique. Nous nous pla-
çons dans le cadre plus général de l'électrodynamique non-linéaire du vide,
dont fait partie la QED. Cette partie permet en particulier de mettre en
évidence la complémentarité de la mesure de la biréfringence magnétique
du vide des autres mesures testant de manière très précise la QED comme
celles réalisées dans les systèmes liés.

� Je présente dans le chapitre 2 le dispositif expérimental mis en place pour
la mesure de la biréfringence magnétique du vide. Les di�érents éléments
constituant l'ellipsomètre, avec en particulier le champ magnétique et la
cavité Fabry-Pérot de haute �nesse, sont détaillés.

� Les premières mesures ont été réalisées dans des gaz. L'e�et Faraday et
Cotton-Mouton de l'hélium et du xénon ont en particulier été mesurés et
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comparés aux données théoriques. Nous avons ensuite mesuré la biréfrin-
gence magnétique du vide. Nos mesures ont permis de donner des limites
qui étaient au moment de leur publication les meilleures au monde. L'en-
semble de ces résultats sont présentés dans le chapitre 3.

� Comme dit dans l'introduction, la propagation de la lumière sous champ
magnétique permet également de tester des prédictions hors modèle stan-
dard. Je présente dans le chapitre 4 deux expériences réalisées dans ce
cadre avec des expériences de type �mur brillant�.

� Le dispositif de première génération nous a permis de donner de très bonnes
limites sur la biréfringence magnétique du vide, mais pas de l'observer. Pour
atteindre cet objectif, un dispositif de deuxième génération doit être mis en
place. Je présente les améliorations correspondantes dans la conclusion.
J'évoque également les mesures ultérieures envisagées sur les gaz a�n en
particulier d'observer de nouveaux e�ets.





C H A P I T R E 1

Electrodynamique non-linéaire

L'électrodynamique non-linéaire est un cadre général englobant les théories
décrivant les interactions entre champs électriques et magnétiques dans le vide.
De nombreux phénomènes y sont prévus, allant de la variation de la vitesse de la
lumière dans le vide en présence d'un champ électrique et/ou magnétique à la dif-
fusion photon-photon en passant par la modi�cation du potentiel électrostatique
créé par une particule chargée.

Parmi les di�érentes théories d'électrodynamique non-linéaire, l'électrodyna-
mique quantique (QED) est la théorie la mieux validée, avec des prédictions
théoriques véri�ées expérimentalement avec une incroyable précision. Elle a été
largement testée dans les systèmes liés avec par exemple le déplacement de Lamb
dans l'atome d'hydrogène [13] et pour les particules chargées isolées comme avec
le moment magnétique anormal de l'électron [14]. Ce type d'expériences permet
en particulier de mettre en évidence l'in�uence du vide sur les interactions, qui
sont véhiculées par les photons, entre particules chargées.

L'in�uence du vide quantique sur la propagation de la lumière, en l'absence
de toute particule, n'a en revanche jamais été testé. Plusieurs expériences dans ce
domaine sont actuellement en cours [21�24] mais aucune n'a encore la sensibilité
su�sante pour observer de tels e�ets. La QED permet certes de prédire et de
quanti�er les phénomènes en jeu. Mais faute de preuves expérimentales, il est
toutefois légitime de se demander si elle s'applique encore dans ce domaine ou
si des formes alternatives d'électrodynamique non-linéaire sont nécessaires. C'est
dans ce cadre que s'inscrit le projet BMV, développé au LNCMI de Toulouse
et visant à mesurer l'in�uence du champ magnétique sur la propagation de la
lumière dans le vide. Nous verrons dans ce chapitre comment les di�érents types
d'expériences évoquées ici (propagation de la lumière dans le vide et déplacement
de Lamb essentiellement) permettent de tester de manière complémentaire les
di�érentes théories, et en particulier la QED.
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1.1 Equations de Maxwell et équations constitu-

tives

L'interaction entre champs électromagnétiques dans un milieu sans densité de
charges ou de courants libres peut être décrite à partir des équations de Maxwell :

−→
rot ~E = −∂

~B

∂t
, (1.1)

−→
rot ~H =

∂ ~D

∂t
, (1.2)

div ~D = 0, (1.3)

div ~B = 0, (1.4)

et des équations constitutives du milieu :

~B = µ0

(
~H + ~M

)
= [µ] ~H, (1.5)

~D = ε0 ~E + ~P = [ε] ~E. (1.6)

L'excitation magnétique ~H et l'excitation électrique ~D dépendent des champs
électrique ~E et magnétique ~B, de la polarisation ~P du milieu et de son aiman-
tation ~M . Ils décrivent la réponse du milieu à ces champs. Les tenseurs [ε] et [µ]
correspondent aux tenseurs permittivité électrique et perméabilité magnétique.
Les equations constitutives sont également reliées au lagrangien du système de
la façon suivante :

~D =
∂L
∂ ~E

, (1.7)

~H = −∂L
∂ ~B

. (1.8)

1.2 Lagrangien

1.2.1 Lagrangien général

Le vide est supposé être invariant par transformations de Lorentz. La descrip-
tion de toutes les formes d'électrodynamique non-linéaire sera donc représentée
par le lagrangien suivant [25] :

L =
∞∑

i=0

∞∑

j=0

ci,jF iGj. (1.9)
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Il correspond à une somme de puissance des invariants de Lorentz F et G :

F = ε0E
2 − B2

µ0

, (1.10)

G =

√
ε0
µ0

~E · ~B, (1.11)

Le nombre de paramètres libres ci,j est in�ni, mais il est généralement accepté que
seuls les ordres les plus bas en champ sont su�sants pour décrire les phénomènes
induits dans la plupart des expériences. Le lagrangien devient alors :

L = L0 + LNL (1.12)

avec L0 =
1

2
F (1.13)

et LNL ' c0,1G + c2,0F2 + c0,2G2 + c1,1FG. (1.14)

Le terme d'ordre le plus bas L0 correspond au lagrangien de Maxwell classique,
avec c1,0 = 1/2. La correction non-linéaire LNL depend de quatre paramètres :
c0,1, c2,0, c0,2 and c1,1.

En utilisant les équations (1.7) et (1.8), nous obtenons :

~P = c0,1

√
ε0
µ0

~B

+ c2,04ε0F ~E

+ c0,22

√
ε0
µ0

G ~B

+ c1,1

(
2ε0G ~E +

√
ε0
µ0

F ~B
)
, (1.15)

~M = c0,1

√
ε0
µ0

~E

− c2,04F
~B

µ0

+ c0,22

√
ε0
µ0

G ~E

− c1,1

(
2G

~B

µ0

−
√
ε0
µ0

F ~E
)
. (1.16)

L'expression du lagrangien, et en particulier l'expression des paramètres ci,j,
dépend des théories développées. Sans être exhaustif, les parties suivantes pré-
sentent quelques exemples de lagrangien, en partant de celui le plus reconnu,
établi dans le cadre de la QED, au cas le plus général établi dans le cadre de la
théorie des cordes.
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1.2.2 Lagrangien classique

Dans la théorie classique, nous avons :

L = L0 =
1

2

(
ε0E

2 − B2

µ0

)
, (1.17)

LNL = 0, (1.18)
~P = ~0, (1.19)
~M = ~0. (1.20)

Les tenseurs permittivité électrique et perméabilité magnétique deviennent [ε] =
ε0 et [µ] = µ0. Les équations de Maxwell sont donc linéaires et aucune interaction
entre champs électromagnétiques n'est donc possible.

1.2.3 Lagrangien de Heisenberg et Euler

Le lagrangien le plus largement utilisé est celui établi dans le cadre de la
QED en 1936 par Heisenberg and Euler [11], généralisant à tous les ordres le
lagrangien de Euler et Kockel de 1935 [10]. Le vide est supposé ne pas violer les
symétries C, P et T. Ceci implique que les coe�cients ci,j avec j impair sont nuls.
En particulier, nous trouvons :

c0,1 = 0, (1.21)

c1,1 = 0. (1.22)

Le lagrangien s'écrit alors de la manière suivante :

L =
1

2
F + LNL, (1.23)

=
1

2
F + c2,0F2 + c0,2G2. (1.24)

Les coe�cients c2,0 et c0,2 sont donnés à partir des résultats de Euler et Kockel
[10] :

c2,0 =
2α2~3

45m4
ec

5
(1.25)

=
α

90π

1

ε0E2
cr

=
α

90π

µ0

B2
cr

(1.26)

' 1.66× 10−30

[
m3

J

]
, (1.27)

c0,2 = 7c2,0. (1.28)
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Le lagrangien non-linéaire s'écrit donc :

LNL =
α

90π

1

ε0E2
cr

(
F2 + 7G2

)
. (1.29)

avec α = e2/4πε0~c la constante de structure �ne et e la charge élémentaire.
Ecr = m2

ec
3/e~ = 1.3 × 1018 V/m est appelé le champ critique et Bcr = Ecr/c =

m2
ec

2/e~ = 4.4× 109 T est appelé le champ magnétique critique.
Dans le cadre de la QED, les paramètres ci,j sont �xés. Aucune prédiction

théorique obtenue à partir de ce lagrangien ne contient donc de paramètre libre.

1.2.4 Lagrangien de Born et Infeld

Le lagrangien de Born et Infeld est un exemple très connu rentrant dans le
cadre des théories de l'électrodynamique non-linéaire. Il a été introduit dans les
années 1934 [26], et il précède donc le lagrangien de Heisenberg et Euler. Il a été
introduit pour résoudre le problème de l'énergie in�nie d'une particule ponctuelle
chargée baignant dans son propre champ électrique. Pour cela, il a été postulé
l'existence d'un champ électrique absolu Eabs correspondant à la limite haute que
peut atteindre un champ purement électrique. Dans ces conditions, le lagrangien
s'écrit :

L = ε0E
2
abs

(
−
√

1− F
ε0E2

abs

− G2

(ε0E2
abs)

2
+ 1

)
. (1.30)

En supposant que
(

F
ε0E2

abs
− G2

ε0E4
abs

)
� 1, le lagrangien devient aux ordres les plus

bas en champ :

L ' 1

2
F +

1

8ε0E2
abs

F2 +
1

2ε0E2
abs

G2. (1.31)

Ceci correspond aux paramètres ci,j suivant :

c1,0 =
1

2
, (1.32)

c0,1 = c1,1 = 0, (1.33)

c2,0 =
1

8ε0E2
abs

, (1.34)

c0,2 =
1

2ε0E2
abs

= 4c2,0. (1.35)

Eabs est un paramètre libre de la théorie, qui reste donc à determiner soit
théoriquement, soit expérimentalement. Dans la référence [26], ce champ a été
calculé en supposant que la masse de l'électron était intégralement d'origine
électromagnétique. On trouve alors Eabs ' 2 × 1020 V/m, correspondant à un
terme c2,0 environ quatre fois plus petit que celui prédit avec le lagrangien de
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Heisenberg et Euler. Le défaut de cette approche est qu'elle implique que le champ
absolu dépend de la particule considérée. Par exemple, pour le muon, le champ
absolu serait (207)2 fois plus grand que pour celui de l'électron. Il semblerait plus
satisfaisant de supposer l'existence d'une limite universelle au champ électrique,
indépendante de la particule créant ce champ.

Une autre manière de contraindre Eabs est de comparer les mesures des éner-
gies des niveaux atomiques aux prédictions théoriques avec et sans champ élec-
trique limite. Ceci a été réalisé par So�, Rafelski and Greiner [27] sur des atomes
de numéro atomique élevé où les non-linéarités doivent être plus importantes.
Leur conclusion est que Eabs doit être supérieur à 1.7 × 1022 V/m. Ceci corres-
pond à un paramètre c2,0 5 ordres de grandeur plus petit que celui prédit dans
le cadre de la QED. Ces résultats ont été depuis remis en question [28] sans
toutefois remettre en cause le fait que la valeur introduite par Born et Infeld est
physiquement non justi�ée.

Bien que le paramètre Eabs soit un paramètre libre de la théorie de Born et
In�ed, le rapport entre les paramètres c2,0 et c0,2 est quant à lui �xe, comme le
montre l'équation (1.35). Dans l'espace des paramètres (c2,0, c0,2), la prédiction de
Born et Infeld est donc représentée par une droite, alors que celle de Heisenberg
et Euler est représentée par un point. Ceci est schématisé sur la �gure 1.1.
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Figure 1.1 � Prédiction de Born-Infeld (droite) et de Heisenberg-Euler (point) dans
l'espace des paramètres (c2,0, c0,2).
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1.2.5 Lagrangien dans le cadre de la théorie des cordes

Les lagrangiens précédents, aux ordres les plus bas en champ, font partie de
la famille plus générale des lagrangiens obtenus dans le cadre de la théorie des
cordes, comme discuté dans la référence [29]. Dans ce contexte, le lagrangien
s'écrit :

L =
1

2
F +

γ

4

[
(1− b)F2 + 6G2

]
(1.36)

avec γ et b deux paramètres libres. Les paramètres ci,j correspondant sont :

c1,0 =
1

2
, (1.37)

c0,1 = c1,1 = 0, (1.38)

c2,0 =
γ

4
(1− b), (1.39)

c0,2 =
3

2
γ. (1.40)

Les coe�cients c2,0 et c0,2 représentent donc également deux paramètres libres.
Le lagrangien de Born et Infeld correspond au cas b = −1/2 and γ = 1/3ε0E

2
abs.

Celui de Heisenberg et Euler correspond à b = 1/7 et γ = 7α/135πε0E
2
cr.

1.3 Propagation de la lumière dans le vide

A partir des lagrangiens précédents, de nombreux phénomènes d'optique non
linéaire sont prévus dans le vide. Un grand nombre de ces phénomènes sont listés
dans la revue [25]. On peut citer par exemple les phénomènes de biréfringence
induite par des champs électriques et/ou magnétiques, le dichroïsme du vide,
la di�usion photon-photon, la fusion de photons ou encore la génération de se-
conde harmonique. Je me concentre dans la suite sur deux phénomènes ayant
fait, et faisant toujours, l'objet de recherches expérimentales : la biréfringence
magnétique et la di�usion photon-photon.

1.3.1 Biréfringence magnétique

Une biréfringence peut être induite dans le vide par un champ électrique,
un champ magnétique ou une combinaison des deux. Alors que dans les milieux
matériels, les phénomènes induits par les champs électriques sont bien plus im-
portants que ceux induits par les champs magnétiques, ce n'est pas le cas dans le
vide. En e�et, la même biréfringence, autrement dit la même di�érence d'indice,
est obtenue avec un champ magnétique B ou un champ électrique E = cB. D'un
point de vue technologique, il est plus facile de créer des champs magnétiques
intenses de plusieurs tesla que de produire des champs électriques de l'ordre
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duGVm−1. Expérimentalement, il est donc plus judicieux d'étudier les e�ets
magnétiques.

Prévisions théoriques

Le vide étant supposé invariant par transformations de Lorentz, l'e�et Fara-
day n'existe pas. Pour étudier les e�ets de biréfringence, nous prendrons donc
un champ magnétique externe ~B⊥ transverse à la propagation de la lumière. Le
calcul de la biréfringence induite par un un tel champ est fait en détails dans la
référence [30]. Il est basé sur le lagrangien des équations (1.12) à (1.14).

Le champ magnétique total correspond à la somme du champ magnétique
externe statique et du champ magnétique associé à l'onde lumineuse ~Bω : ~B =
~Bω+ ~B⊥. Le champ électrique est celui associé à l'onde lumineuse ~Eω. En injectant
ces quantités dans les équations (1.5), (1.6), (1.15) et (1.16) et en ne gardant que
les termes oscillant à la pulsation ω, on obtient :

~Dω = ε0

(
1− 4c2,0

µ0

B2
⊥

)
~Eω

+
2ε0c0,2

µ0

( ~Eω · ~B⊥) ~B⊥

+

√
ε0
µ0

(
c0,1 −

c1,1

µ0

B2
⊥

)
~Bω

−
√
ε0
µ0

2c1,1

µ0

( ~Bω · ~B⊥) ~B⊥, (1.41)

~Hω =
1

µ0

(
1− 4c2,0

µ0

B2
⊥

)
~Bω

− 8c2,0

µ2
0

( ~Bω · ~B⊥) ~B⊥

+

√
ε0
µ0

(
−c0,1 +

c1,1

µ0

B2
⊥

)
~Eω

+

√
ε0
µ0

2c1,1

µ0

( ~Eω · ~B⊥) ~B⊥. (1.42)

On dé�nit la direction du champ magnétique statique suivant la direction
x. Le champ magnétique est transverse à la direction z correspondant à la di-
rection de propagation de la lumière. On suppose l'existence d'ondes planes se
propageant sans déformation de polarisation. Le champ électrique correspondant
s'écrit de la manière suivante :

~Eω(~r, t) = ~E0e
i(ωt−~k·~r), (1.43)

avec ~k =
nω

c
~ez. (1.44)
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Le vecteur ~k est le vecteur d'onde. Le paramètre n correspond à l'indice vu par
l'onde plane. Les équations de Maxwell s'écrivent alors :

~k ⊗ ~Eω = ω ~Bω, (1.45)
~k ⊗ ~Hω = −ω ~Dω, (1.46)
~k ·Dω = 0, (1.47)
~k ·Bω = 0. (1.48)

(1.49)

En injectant dans la deuxième equation les expressions des vecteurs ~Dω et ~Hω

données par les équations (1.41) et (1.42), et en utilisant la relation entre les
vecteurs ~Eω et ~Bω donnée par la première équation de Maxwell, on trouve dans
le plan de polarisation (x, y) :

n

2
(

4c2,0
µ0
B2
⊥ − 1

)
+ 1 + 2(c0,2−2c2,0)

µ0
B2
⊥

2nc1,1
µ0

B2
⊥

2nc1,1
µ0

B2
⊥ n2

(
12c2,0
µ0

B2
⊥ − 1

)
+ 1− 4c2,0

µ0
B2
⊥


 ~Eω = ~0

(1.50)
La résolution de ce système d'équations permet �nalement de trouver les indices
et les axes propres du milieu.

On peut tout d'abord noter l'absence du terme c0,1. Celui-ci n'a donc ici
aucune in�uence sur la propagation de la lumière. Les termes diagonaux de la
matrice précédente correspondent à l'e�et Cotton-Mouton. En considérant dans
un premier temps les termes non-diagonaux comme nuls, les axes propres sont
parallèles et perpendiculaires au champ magnétique externe. Les indices de ré-
fraction correspondants sont :

n‖ = 1 +
c0,2

µ0

B2
⊥, (1.51)

n⊥ = 1 +
4c2,0

µ0

B2
⊥. (1.52)

L'indice de réfraction n‖ pour la lumière polarisée parallèlement au champ ma-
gnétique externe ne dépend que de c0,2. L'indice de réfraction n⊥ pour la lumière
polarisée perpendiculaire ne dépend quant à lui que de c2,0. De plus, les e�ets de
dispersion pouvant être négligés, n‖ et n⊥ sont supérieurs à 1. Ceci implique :

c0,2 > 0, (1.53)

c2,0 > 0. (1.54)

La biréfringence ∆n est �nalement égale à :

∆nCM = n‖ − n⊥ =
c0,2 − 4c2,0

µ0

B2
⊥, (1.55)
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Figure 1.2 � E�et Cotton-Mouton. Une lumière de polarisation linéaire, faisant un
angle θ avec le champ magnétique externe transverse, devient elliptique après traversée
du milieu soumis au champ magnétique sur une longueur LB.

Elle dépend des deux paramètres c0,2 et c2,0. En utilisant le lagrangien de Hei-
senberg et Euler donné par l'équation (1.24), nous obtenons :

∆nCM,HE =
3c2,0

µ0

B2
⊥ =

2α2~3

15µ0m4
ec

5
B2
⊥. (1.56)

Le lagrangien de Born-Infeld donné par l'équation (1.31) prédit quant à lui un
e�et Cotton-Mouton nul :

∆nCM,BI = 0. (1.57)

Le schéma de principe de la biréfringence Cotton-Mouton est rappelé sur la
�gure 1.2. Une lumière initialement polarisée linéairement, inclinée d'un angle θ
par rapport à la direction du champ magnétique, va acquérir une ellipticité ψCM

après avoir traversé la zone sous champ magnétique. L'ellipticité est donnée par :

ψCM =
π

λ
LB∆nCM sin 2θ, (1.58)

avec λ la longueur d'onde et LB la longueur sur laquelle le champ magnétique
est appliqué.

Les termes non-diagonaux de la matrice de l'équation (1.50) sont respon-
sables d'une biréfringence supplémentaire, connue sous le nom de biréfringence
de Jones, venant se superposer à la biréfringence Cotton-Mouton. On consi-
dère que la biréfringence Cotton-Mouton reste la contribution principale. Dans
ces conditions, les indices suivant les axes propres restent ceux donnés par les
équations (1.51) et (1.52). En revanche, les axes propres tournent d'un angle β
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Figure 1.3 � E�et Cotton-Mouton et biréfringence de Jones. La biréfringence de
Jones, plus petite que l'e�et Cotton-mouton, a pour e�et de tourner légèrement les
polarisations propres d'un angle β.

par-rapport aux précédents, comme le montre la �gure 1.3, avec β au premier
ordre donné par [31] :

β =
c1,1

4c2,0 − c0,2

. (1.59)

L'ellipticité induite devient alors :

ψ =
π

λ
LB∆nCM sin 2(θ − β). (1.60)

L'angle β étant très petit devant un, on peut également écrire l'ellipticité totale
comme :

ψ =
π

λ
LB

B2
⊥
µ0

[(c0,2 − 4c2,0) sin 2θ − 2c1,1 cos 2θ sin 2β] , (1.61)

= ψCM + ψJ. (1.62)

C'est la somme de l'ellipticité due à l'e�et Cotton-Mouton et de celle due à
la biréfringence de Jones. Cette dernière correspond à une biréfringence linéaire
suivant les axes orientés à ±45˚ par rapport à la direction du champ magnétique
statique avec une biréfringence égale à :

∆nJ = n+45˚ − n−45˚ =
2c1,1

µ0

B2
⊥. (1.63)
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Limites expérimentales

Théoriquement, on s'attend donc à observer une variation de la vitesse de la
lumière dans le vide soumis à un champ magnétique transverse, avec une varia-
tion pouvant dépendre de la direction de polarisation. Deux types d'expériences
ont été réalisés pour mesurer cette variation. La première est basée sur des in-
terféromètres à bras séparés comme les interféromètres de Michelson et Morley.
Le principe, représenté sur le �gure 1.4 est de mesurer le changement de la �gure
d'interférence lorsqu'un champ magnétique externe est appliqué sur l'un des bras.
Ce type de con�guration, représenté sur la �gure, présente l'avantage de mesu-
rer directement les indices n‖ et n⊥, et donc les paramètres c0,2 et c2,0, suivant
que le champ magnétique est orienté parallèlement ou perpendiculairement à la
polarisation de la lumière.

B⊥

S C

M1

M2

Figure 1.4 � Interféromètre de Michelson pour la mesure de la biréfringence ma-
gnétique du vide. Un champ magnétique transverse est appliqué sur l'un des bras de
l'interféromètre induisant un changement de la �gure d'interférences.

Les résultats les plus précis avec ce type d'interféromètres ont été publiés en
1940 par Farr and Banwell [32]. Un champ magnétique de 2T était appliqué
sur l'un des deux bras de l'interféromètre. Aucune variation de la vitesse de la
lumière n'a été observée, ce qui correspond, compte tenu de la sensibilité de
leur expérience, à une variation relative inférieure à 2× 10−9. Les limites sur les
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paramètres ci,j sont alors :

c2,0 < 1.6× 10−16 m3J−1, (1.64)

c0,2 < 6.3× 10−16 m3J−1, (1.65)

c1,1 < 6.3× 10−16 m3J−1. (1.66)

Pour les termes c2,0 et c0,2,ces limites sont à 14 ordres de grandeur de la prédiction
théorique établie par la QED (équations(1.28) et (1.27)).

Le deuxième type d'expérience est basé sur la polarimétrie. Le principe est de
mesurer l'ellipticité induite par un champ magnétique sur une lumière polarisée
initialement linéairement [33], comme indiqué sur la �gure 1.5. Dans ce cas, la
quantité mesurée est la di�érence d'indice. Cette mesure ne permet donc pas de
contraindre ou de mesurer les paramètres c0,2 et c2,0, mais seulement de quanti�er
une certaine combinaison linéaire de ces deux paramètres : c0,2 − 4c2,0.

E

B

A

Phe

Pht

Figure 1.5 � Mesure de la biréfringence magnétique du vide par polarimétrie. L'el-
lipticité de la lumière, induite par le champ magnétique transverse, est mesurée via
le rapport entre les intensités transmise (mesurée par la photodiode Phe) et ré�échie
(mesurée par la photodiode Pht) par le polariseur de sortie noté A.

Les expériences les plus sensibles à l'heure actuelle sont d'une part celle mise
en place par la collaboration PVLAS en Italie [24], et d'autre part celle que nous
développons à Toulouse et appelée projet BMV [23]. La direction du champ
magnétique est à 45˚ par rapport à la direction de la polarisation d'entrée. Les
résultats de mesure ∆nCM sont données avec une erreur δ∆nCM. Ceci correspond
à deux régions d'exclusion dans l'espace des paramètres (c0,2, c2,0) :

c0,2 < 4c2,0 + µ0(∆nCM + δ∆nCM), (1.67)

c0,2 > 4c2,0 + µ0(∆nCM − δ∆nCM). (1.68)
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La meilleure limite actuelle a été obtenue récemment par les italiens avec
∆n = (0.4± 2.0)× 10−22B2

0 à 1σ [24], ce qui correspond à :

c0,2 < 4c2,0 + 3× 10−28 m3J−1, (1.69)

c0,2 > 4c2,0 − 2× 10−28 m3J−1. (1.70)

Ces limites sont reportées dans la �gure 1.6.
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27

 (m
3
/J)

Prédiction d'Heisenberg-Euler
 

Prédiction de Born-Infeld
 

Région exclues à partir de n// et n⊥ >1
 

Régions exclues à partir des mesures
de biréfringence magnétique du vide

Figure 1.6 � Meilleure limite actuelle dans l'espace des paramètres (c0,2, c2,0) obtenue
grâce aux mesures de biréfringence magnétique. Zones hachurées : régions exclues à
partir des résultats publiés par la collaboration PVLAS [24]. Point : prédiction dans
le cadre de la QED (Heisenberg et Euler). Ligne pointillée : prédiction à partir du
lagrangien de Born et Infeld. Le point semble se trouver sur la ligne pointillée à cause
de l'échelle (voir �gure 1.1 pour le zoom sur cette région). Zones pointillées : régions
exclues du fait que les indices n‖ and n⊥ doivent être supérieurs à 1.

En�n, pour donner une limite sur le paramètre c1,1, nous devons nous pla-
cer dans la con�guration de Jones, avec une lumière polarisée parallèlement ou
perpendiculairement au champ magnétique externe. Aucune mesure n'a jamais
été reportée dans cette con�guration. A noter également qu'une estimation de ce
paramètre est donnée dans la référence [31] dans le cadre du modèle standard et
de la chromodynamique quantique. Le paramètre c1,1 serait au moins 20 ordres
de grandeur plus petit que le paramètre c2,0 calculé à partir du lagrangien de
Heisenberg et Euler.

1.3.2 Di�usion photon-photon

L'expérience la plus simple pour tenter d'observer la di�usion photon-photon
dans le vide consiste à focaliser deux faisceaux lasers, les plus énergétiques pos-
sibles, en un même point. Néanmoins, le nombre de photons di�usés peut être
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sensiblement augmenté en utilisant un troisième faisceau permettant de stimuler
la réaction [34]. En utilisant cette con�guration, le lien entre les paramètres ci,j
et le nombre de photons di�usés peut être établi à partir de l'approche propo-
sée dans les références [35] et [36] en introduisant une susceptibilité non linéaire
e�ective χ3

v, comme en optique non-linéaire classique. Dans la suite, je ne présen-
terai que les étapes de calcul principales, le détail se trouvant dans les références
précédentes.

Prévisions théoriques

Dans le cas de la di�usion élastique, l'énergie et l'impulsion sont conservées,
ce qui correspond à :

~k4 = ~k1 + ~k2 − ~k3, (1.71)

ω4 = ω1 + ω2 − ω3, (1.72)

avec ~ki le vecteur d'onde du laser numéro i et ωi sa pulsation. Les faisceaux
d'entrée sont les faisceaux 1, 2 et 3. Le faisceau 3 stimule la di�usion dans le
faisceau 4, comme indiqué sur la �gure 1.7. Les polarisations sont linéaires et nous
écrivons les champs électriques et magnétiques associés aux ondes lumineuses de
la manière suivante :

~Ej(~r, t) = E0je
i(~kj ·~r−ωjt)~uj, (1.73)

~Bj(~r, t) = B0je
i(~kj ·~r−ωjt)~vj, (1.74)

avec ~uj et ~vj des vecteurs unitaires.

k2, w2

k3, w3

faisceau diffusé

k1, w1

k4, w4

z

Figure 1.7 � Di�usion photon-photon. Les faisceau 1 et 2 sont focalisés en un même
point. Le faisceau 3 permet de stimuler la di�usion dans le faisceau 4.
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A partir des équations (1.15) et (1.16) et en ne gardant que le terme oscillant
à ω4, on obtient :

~Pω4 = ε20E1E2E3

[
2c2,0

~KP20 +
c02

2
~KP02 +

c11

2

(
~KP11,1 + ~KP11,2

)]
(1.75)

= ε20E1E2E3
~KP , (1.76)

~Mω4 = cε20E1E2E3

[
− 2c2,0

~KP11,2 +
c02

2
~KP11,1 −

c11

2

(
~KP20 − ~KP02

)]
(1.77)

= cε20E1E2E3
~KM . (1.78)

Les vecteurs ~KP20 , ~KP02 , ~KP11,1 et ~KP11,2 correspondent aux facteurs géométriques
suivant :

~KP20 = ~u1 ( ~u2. ~u3 − ~v2.~v3) + ~u2 ( ~u1. ~u3 − ~v1.~v3) + ~u3 ( ~u1. ~u2 − ~v1.~v2)(1.79)
~KP02 = ~v1 ( ~u2.~v3 + ~v2. ~u3) + ~v2 ( ~u1.~v3 + ~v1. ~u3) + ~v3 ( ~u1.~v2 + ~v1. ~u2) (1.80)
~KP11,1 = ~u1 ( ~u2.~v3 + ~v2. ~u3) + ~u2 ( ~u1.~v3 + ~v1. ~u3) + ~u3 ( ~u1.~v2 + ~v1. ~u2) (1.81)
~KP11,2 = ~v1 ( ~u2. ~u3 − ~v2.~v3) + ~v2 ( ~u1. ~u3 − ~v1.~v3) + ~v3 ( ~u1. ~u2 − ~v1.~v2) .(1.82)

Ces facteurs géométriques dépendent de la direction des faisceaux incidents ainsi-
que de leur polarisation.

L'équation de propagation du champ électrique ~E4 est obtenue à partir des
équations de Maxwell :

∇2 ~E4 −
1

c2

∂2 ~E4

∂t2
= µ0

(
∂

∂t
~∇⊗ ~Mω4 +

∂2 ~Pω4

∂t2
− c2~∇

(
~∇ · ~Pω4

)]
. (1.83)

Dans l'approximation paraxiale et pour des amplitudes des champs lentement
variables dans le temps et l'espace, la génération de l'amplitude E04 devient
[35,36] :
(
∂E04

∂z
+

1

c

∂E04

∂t

)
~u4 = −iµ0ω4

2
[(cP0ω4,x +M0ω4,y) ~ux + (cP0ω4,y −M0ω4,x) ~uy] .

(1.84)
L'axe z correspond à la direction de propagation du faisceau 4. Les indices x and
y correspondent aux composantes suivant les axes x et y. On peut également
écrire cette dernière équation sous la forme :

(
∂E04

∂z
+

1

c

∂E04

∂t

)
~u4 = −iω4

2c
χ3
vE01E02E03 ~u4. (1.85)

Ceci est équivalent en optique non-linéaire à une équation de type mélange à
4 ondes dans un milieu de susceptibilité non-linéaire e�ective d'ordre trois χ3

v
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donnée par :

χ3
v =

cµ0

E01E02E03

√
(cP0ω4,x +M0ω4,y)

2 + (cP0ω4,y −M0ω4,x)
2,

= ε0

√
(KP,x +KM,y)

2 + (KP,y −KM,x)
2. (1.86)

Elle dépend des paramètres ci,j via les vecteurs ~P et ~M des équations (1.75) et
(1.77), ou via les vecteurs géométriques ~KP et ~KM donnés par les équations (1.76)
and (1.78). La polarisation du photon di�usée est :

~u4 =
(cP0ω4,x +M0ω4,y) ~ux + (cP0ω4,y −M0ω4,x) ~uy√

(cP0ω4,x +M0ω4,y)
2 + (cP0ω4,y −M0ω4,x)

2
. (1.87)

Elle dépend également des paramètres ci,j.
Le nombre de photons di�usés est �nalement obtenu en intégrant l'équation

(1.85). Le résultat dépend des pro�ls des faisceaux lasers (onde plane, faisceau
gaussien,...), mais il est toujours proportionnel à (χ3

v)
2 et proportionnel à la

section e�cace totale de di�usion du processus.
Expérimentalement, la géométrie de l'expérience doit être choisie a�n de

maximiser le nombre de photons di�usés tout en ayant une détection avec un
rapport signal sur bruit le meilleur possible. Cependant, pour voir clairement le
lien entre les coe�cients ci,j et le nombre de photons di�usés, prenons une con�-
guration simple : les lasers 2 et 3 sont copropageant, et le laser 1 est contrapro-
pageant des deux autres. Les di�érents cas envisagés par la suite sont représentés
sur la �gure 1.8.

Dans le premier cas, nous prenons :

~u1 = ~u2 = ~u3 (1.88)

~v1 = −~v2 = −~v3 (1.89)

Nous obtenons :

~KP = 8c2,0 ~u1 − 2c1,1 ~v1 (1.90)
~KM = 8c2,0 ~v1 − 2c1,1 ~u1 (1.91)

La susceptibilité e�ective est alors :

χ3
v,1 = 16ε0c2,0. (1.92)

La paramètre c1,1 disparaît et le paramètre χ3
v dépend uniquement de c2,0. Une

mesure e�ectuée dans cette con�guration permet donc de contraindre ce para-
mètre indépendamment des autres.
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Figure 1.8 � Di�usion photon-photon en con�guration unidimensionnelle. Les vec-
teurs orthogonaux à la propagation et de couleur rouge représentent les vecteurs uj
(polarisation de la lumière) alors que les vecteurs gris correspondent à vj (vecteur
unitaire colinéaire avec le champ magnétique de l'onde lumineuse).

Dans le deuxième cas, nous supposons :

~u1 = −~v2 = −~v3 (1.93)

~v1 = − ~u2 = − ~u3 (1.94)

Nous obtenons :

~KP = 2c0,2 ~u1 + 2c1,1 ~v1 (1.95)
~KM = 2c0,2 ~v1 + 2c1,1 ~u1 (1.96)

La susceptibilité e�ective est alors donnée par :

χ3
v,2 = 4ε0c0,2. (1.97)

Elle dépend uniquement de c2,0.
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Dans un troisième cas, nous considérons :

~u1 = ~v2 = ~u3 (1.98)

~v1 = ~u2 = −~v3 (1.99)

Nous obtenons :

~KP = (4c2,0 − c0,2)~v1 + 2c1,1 ~u1 (1.100)
~KM = −(4c2,0 − c0,2) ~u1 − 2c1,1 ~v1 (1.101)

La susceptibilité e�ective est alors :

χ3
v,3 =

√
2ε0(4c2,0 − c0,2). (1.102)

Elle dépend d'une combinaison linéaire de c2,0 et c0,2.
Pour des con�gurations plus compliquées à deux ou trois dimensions, le

nombre de photons di�usés Nγγ est de la forme :

Nγγ ∝
(
χ3
v

)2
, (1.103)

∝ ac2
2,0 + bc2

0,2 + cc2
1,1

+2dc2,0c0,2 + 2ec0,2c1,1 + 2fc2,0c1,1. (1.104)

Le terme c0,1 est toujours absent. Ce type d'expérience ne peut donc pas donner
de limite sur ce paramètre. En�n, l'étude de la polarisation du photon di�usé
donnée par l'équation (1.87) devrait permettre d'extraire des informations sup-
plémentaires sur les di�érents paramètres c2,0, c0,2 et c1,1.

Limites expérimentales

Les meilleures limites expérimentales sur le di�usion photon-photon dans le
vide ont été publiées en 2000 [36]. Aucun photon di�usé n'a été observé. L'incerti-
tude est quant à elle à 18 ordres de grandeur de la prédiction QED, correspondant
aux paramètres c2,0 et c0,2 donnés par les équations (1.27) et (1.28), et c1,1 = 0.

1.3.3 Comparaison biréfringence magnétique du vide - dif-
fusion photon-photon

Parmi les expériences étudiant les e�ets non-linéaires de la propagation de la
lumière dans le vide, les plus sensibles sont celles tentant de mesurer la biréfrin-
gence magnétique du vide par polarimétrie. Alors que les autres sont à au moins
14 ordres de grandeur des prédictions théoriques établies à partir du lagrangien
d'Heisenberg et Euler (14 ordres de grandeur pour l'étude de la biréfringence
magnétique avec des interféromètres à bras séparés, 18 ordres de grandeur pour
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la di�usion photon-photon), la mesure de l'e�et Cotton-Mouton du vide est à 2
ordres de grandeur de la prédiction QED.

On pourrait alors envisager d'utiliser les mesures obtenues sur l'e�et Cotton-
mouton pour donner des limites sur les autres, et plus particulièrement sur la
section e�cace de di�usion. Comme le montre l'équation (1.55), la mesure de
la biréfringence magnétique du vide ne peut pas contraindre séparément les pa-
ramètres c0,2 et c2,0. D'un autre côté, nous avons vu sur des exemples simples
que la dépendance de χ3

v vis à vis des paramètres ci,j dépend de la con�guration
des lasers choisie. Excepté dans le cas 3 pour la di�usion photon-photon, les li-
mites obtenues sur la biréfringence magnétique du vide ne peuvent donc à elles
seules donner des limites sur la di�usion photon-photon, la dépendance des e�ets
vis-à-vis des paramètres étant généralement di�érentes.

Les limites sur la di�usion photon-photon peuvent néanmoins être utilisées
pour contraindre davantage l'espace des paramètres présenté sur la �gure 1.6. Les
deux types d'expérience sont donc en ce sens complémentaires.

1.4 Particules chargées et vide quantique

A l'heure actuelle, les expériences dédiées à l'étude de la propagation de le
lumière dans le vide quantique n'ont pas encore été en mesure de tester le lagran-
gien de Heisenberg et Euler. Les expériences sur la biréfringence magnétique du
vide sont désormais à seulement deux ordres de grandeur de la prédiction établie
dans le cadre de la QED et on peut prévoir qu'ils seront gagnés dans les toutes
prochaines années.

Il est aujourd'hui admis que la QED est l'une des théories les mieux testées
au monde, en particulier sur les systèmes liés comme l'hydrogène. Mais alors
que les expériences décrites plus haut permettent de tester la propagation de la
lumière dans le vide quantique, les mesures sur les systèmes liés permettent de
mettre en évidence l'in�uence du vide quantique sur l'interaction entre particules
chargées. Les deux approches représentent donc des tests complémentaires de la
QED, comme nous allons le voir dans cette partie.

1.4.1 Vecteurs polarisation et aimantation

Considérons une particule ponctuelle de charge Q et de moment magnétique
~µ = µ~ez. Les champs électriques et magnétiques générés dans le vide classique,
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autrement dit dans un milieu ne pouvant être ni polarisé ni aimanté, sont :

~E =
Q

4πε0r2
~er, (1.105)

~B =
µ0µ

4πr3
[3 (~ez.~er)~er − ~ez] (1.106)

=
µ0µ

4πr3
(3 cos θ~er − ~ez) (1.107)

Dans le vide quantique, ces champs sont légèrement modi�és du fait de la pola-
risation du milieu que nous allons expliciter à partir du lagrangien général des
équations (1.12), (1.13) et (1.14).

Le lagrangien développé dans les équations (1.12) à (1.14) n'est valide que
pour des champs bien inférieurs aux champs critiques, dont les expressions sont
données en début de partie 1.2.3. Nous nous plaçons dans ce cadre. On suppose
donc :

r � rEcr avec rEcr =

√
Q

4πε0Ecr

(1.108)

et r � rBcr avec rBcr =

(
µ0µ

4πBcr

)1/3

. (1.109)

Le rayon critique obtenu avec le champ électrique critique est généralement le plus
contraignant. Quelques valeurs sont listées dans le tableau 1.1 pour di�érents élé-
ments comme l'hydrogène, l'hydrogène muonique ou les ions hydrogénoïdes (ions
constitués d'un noyau de charge Ze et d'un électron). A titre de comparaison,
nous donnons également les rayons de Bohr correspondant. Alors que dans le cas
de l'hydrogène, le rayon de Bohr est bien plus grand que les rayons critiques,
nous voyons qu'il existe d'autres systèmes pour lesquels le rayon de Bohr de-
vient comparable aux rayons critiques rEcr et donc pour lesquels les e�ets du vide
quantique seront plus importants.

En injectant les champs magnétique et électrique précédents dans les inva-
riants de Lorentz des équations (1.10) et (1.11), on obtient :

F =
Q2

(4π)2ε0r4

[
1−

(
µ

cQr

)2 (
1 + 3 cos2 θ

)
]
, (1.110)

G =

√
µ0

ε0

Q2µ cos θ

(4π)2r5
. (1.111)
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Particule Rayon de Bohr rEcr (m) dû au noyau
Expression Valeur numérique (m)

hydrogène ae0 = h2ε0
πmee2

5.3× 10−11 m 3× 10−14

hydrogène muonique aµ0 = ae0
me
mµ

2.6× 10−13 m 3× 10−14

ions hydrogénoïdes Iae0 =
ae0
Z

Li2+ 1.8× 10−11 6× 10−14

Si13+ 4.1× 10−12 1× 10−13

U91+ 5.8× 10−13 3× 10−13

Table 1.1 � Comparaison du rayon de Bohr et du rayon critique électrique pour
l'hydrogène, l'hydrogène muonique et quelques ions hydrogénoïdes.

Les vecteurs polarisation ~P et aimantation ~M s'écrivent alors :

~P = c0,1
√
ε0µ0

µ

4πr3
(3 cos θ~er − ~ez)

+ c2,0ε0 ~E
Q2

4π2ε0r4

[
1−

(
µ

cQr

)2

(1 + 3 cos2 θ)

]

+ c0,2ε0E
µ0µ

2 cos θ

4π2r6
(3 cos θ~er − ~ez)

+ c1,1ε0 ~E

√
µ0

ε0

Qµ cos θ
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avec B(θ = 0) = µ0µ/2πr
3. On peut noter que certains des termes précédents

ont une forme très inhabituelle, comme par exemple la composante radiale du
vecteur ~M due en particulier à ( ~E · ~B) et c0,2. Ces vecteurs ~P et ~M dus à la
polarisation du vide induisent �nalement une légère modi�cation des champs
électriques et magnétiques qui deviennent :

~EPV = ~E −
~P

ε0
, (1.114)

~BPV = ~B + µ0
~M. (1.115)

1.4.2 Moment dipolaire électrique et monopole magnétique

Le premier terme des équations (1.112) et (1.113) est proportionnel à c0,1 :

~P01 = c0,1
√
ε0µ0

µ

4πr3
(3 cos θ~er − ~ez) (1.116)

= c0,1

√
ε0
µ0

~B, (1.117)

~M01 = c0,1

√
ε0
µ0

Q

4πε0r2
~er (1.118)

= c0,1

√
ε0
µ0

~E. (1.119)

Si c0,1 n'est pas nul, dès que l'on a à la fois un champ électrique et un champ
magnétique dans le vide, une correction au vecteur ~E proportionnelle à ~B et une
correction au vecteur ~B proportionnelle à ~E apparaissent.

Dans le cas d'une particule isolée de moment magnétique µ, le champ magné-
tique apparaît également comme un champ dipolaire électrique. D'après l'équa-
tion (1.116), la particule acquiert donc le moment dipolaire électrique suivant :

~d = −c0,1

c
~µ. (1.120)

Dans le cadre du modèle standard, un moment dipolaire électrique non nul est
prédit pour l'électron, le muon et le tau. Pour l'électron par exemple, la valeur
prédite est de ' 10−38 e·cm 1 [37]. A l'heure actuelle, les valeurs prédites sont bien
plus petites que les sensibilités expérimentales, mais des limites sont données.
Certaines sont listées dans le tableau 1.2 (voir également le "particle data book"
[38]). A partir de l'équation (1.120), on peut déduire la limite correspondante
sur le terme c0,1. On peut également observer qu'un coe�cient c0,1 de l'ordre de
10−28 donnerait le même e�et que le moment dipolaire électrique de l'électron
prédit dans le cadre du modèle standard.

1. Le paramètre e correspond à la charge élémentaire.
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Particule d ( e·cm) Référence |c0,1|
électron < 10.5× 10−28 [39] < 5.43× 10−17

muon < 10−19 [40] 10−6

tau 0.45× 10−16 [41] 8.1× 10−3

proton < 7.9× 10−25 [42] < 2.7× 10−11

Table 1.2 � Limites expérimentales sur le moment dipolaire électrique de particules
chargées et limites correspondantes sur le paramètre c0,1.

Le champ électrique radial dû à la charge Q de la particule induit également
un champ magnétique radial. Ceci équivaut à l'apparition du monopole magné-
tique suivant, calculé à partir de l'équation (1.118) :

m = c0,1Qc, (1.121)

où nous avons écrit le champ magnétique radial du monopole ~Bm comme ~Bm =
µ0m/4πr

2~er. Les monopoles magnétiques ont été introduits pour la première fois
par P.A.M. Dirac en 1931 [43]. L'objectif était d'expliquer la quanti�cation de
la charge en postulant l'existence d'une charge magnétique élémentaire, QD

M =
2π~/e, qui est depuis appelée la charge de Dirac. D'un point de vue expérimental,
on peut trouver des limites concernant la charge magnétique de l'électron et du
proton [38, 44]. La meilleure limite sur la charge magnétique de l'électron QM,
induisant un champ magnétique de type Coulomb avec ~B = QM/4πr

2~er, est :

QM < 4× 10−24QD
M. (1.122)

Ceci correspond à :
|c0,1| < 3× 10−22. (1.123)

Cette limite est encore meilleure que celle donnée par les mesures sur le moment
dipolaire électrique de l'électron.

1.4.3 Systèmes liés et déplacement de Lamb

Nous allons maintenant considérer que les termes c0,1 et c1,1 sont nuls, ou tout
du moins négligeables. A partir des équations (1.112) et (1.113), les vecteurs ~EPV

et ~BPV deviennent, aux premiers ordres en 1/r :

~EPV = ~E

[
1− c2,0

Q2

4π2ε0r4

]
, (1.124)

~BPV = ~B

[
1− c2,0

Q2

4π2ε0r4

]
+ c0,2B(θ = 0)

Q2 cos θ

8π2ε0r4
~er. (1.125)
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Commençons par l'équation (1.124). La correction, en valeur absolue, au po-
tentiel de Coulomb est proportionnelle à 1/r5 :

δV = c2,0
Q3

80π3ε20r
5
. (1.126)

Dans le cadre de la QED, on obtient :

δVQED =
eZ3

4πε0r

2α3

225π

(
~

mecr

)4

, (1.127)

avec Z la charge totale en unité de charge élémentaire e. Cette correction, pro-
portionnelle à c2,0, a été étudiée pour la première fois en 1956 par Wichmann et
Kroll [45]. On l'appelle depuis le potentiel de Wichmann-Kroll.

Dans les systèmes liés, la modi�cation du potentiel de Coulomb perçu par les
électrons et dû au noyau entraîne un décalage en énergie des niveaux atomiques.
Celui-ci fait partie intégrante du décalage de Lamb observé pour la première fois
en 1947 [46] et est dû à la modi�cation par les �uctuations du vide quantique
de l'interaction entre les particules chargées. Le décalage de Lamb comporte
diverses contributions, dont les plus importantes sont listées par ordre décroissant
d'importance dans la tableau 1.3 pour le niveau 1S de l'atome d'hydrogène. Les
diagrammes de Feynman pour les deux premières contributions sont présentés
sur la �gure 1.9. L'auto énergie de l'électron correspond, de manière imagée, à
l'émission et l'absorption de photons virtuels par l'électron. La polarisation du
vide a quant à elle pour e�et d'écranter le champ électrique du proton au niveau
de l'électron via les particules virtuelles électron-positron dans le vide.

Contribution au déplacement de Lamb Valeur théorique pour le niveau 1S de H
Auto-énergie 8 383 339.466 kHz
Polarisation du vide -214 816.607 kHz
Corrections du recul 2 401.782 kHz
Taille du proton 1 253.000 kHz
Corrections à deux boucles 731.000 kHz

Table 1.3 � Contributions principales au déplacement de Lamb pour le niveau 1S de
l'atome d'hydrogène [47]. Les calculs sont faits dans le cadre de la QED.

La contribution au déplacement de Lamb de la polarisation du vide comporte
également deux sous-composantes [12]. La première correspond au potentiel dit
de Uehling qui décroît exponentiellement avec la distance et qui représente donc
un potentiel à courte portée. La deuxième contribution, plus petite que la pre-
mière, provient du potentiel longue portée de Wichmann-Kroll présenté dans
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e-

e-

proton

(a) Auto énergie de l'électron.

e-

e-

proton

(b) Polarisation du vide.

Figure 1.9 � Diagrammes de Feynman correspondant aux contributions principales
au déplacement de Lamb dans l'atome d'hydrogène.

l'équation (1.126). Le diagramme de Feynman correspondant est représenté sur
la �gure 1.10. On peut noter la similitude de ce diagramme avec celui de la �-
gure 3a de l'introduction correspondant à l'e�et Cotton-Mouton du vide. Ils sont
tous les deux basés sur une boucle électron-positron et quatre photons. Dans
le tableau 1.4, nous donnons quelques exemples de la contribution théorique du
potentiel de Wichmann-Kroll par rapport à celle du potentiel de Uehling et par
rapport au déplacement de Lamb total. La précision expérimentale sur la mesure
du déplacement de Lamb dans ces systèmes a également été ajoutée.

e-

Figure 1.10 � Diagrammes de Feynman correspondant à la contribution du potentiel
de Wichmann-Kroll.

Les meilleures limites expérimentales sont obtenues pour le niveau 1S de
l'atome d'hydrogène [13,47]. Les mesures sont en accord avec les prévisions théo-
riques obtenues dans le cadre de la QED, permettant de valider les calculs pour
les contributions principales au déplacement de Lamb. Concernant le potentiel
de Wichmann-Kroll, sa contribution est théoriquement de 0.3 ppm par rapport
au terme principal [12, 47]. Les calculs font intervenir le terme cQED

2,0 obtenu par
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Système
Polarisation du vide Wichmann-Kroll Wichmann-Kroll Incertitude

/ Lamb total / Uehling / Lamb total relative
∆EPV/∆ELamb ∆EWK/∆EU ∆EWK/∆ELamb expérimentale

δ∆Eexp/∆Eexp

H, 1S 3% 10 ppm 0.3 ppm [47] 3 ppm [13]
H-like U, 1S 19 % 1 % 0.19 % [48] 1 % [49]
H muonic 5 ppm [50] 15 ppm [51]
séparation 2S-2P

Table 1.4 � Exemples de la contribution théorique du potentiel de Wichmann-Kroll
par-rapport au potentiel de Uehling et par-rapport au déplacement de Lamb total dans
di�érents éléments. La dernière colonne correspond aux incertitudes relatives obtenues
sur la mesure du déplacement de Lamb [47]. Dans le cas de l'hydrogène muonique, les
e�ets d'auto-énergie et de polarisation du vide de la référence [50] ne sont pas traités
séparément.

la QED et donné par l'équation (1.27). La valeur théorique est donc inférieure à
la précision de la mesure. Cependant, les mesures étant en accord avec la pré-
vision théorique, elles permettent de donner une limite sur la contribution de
Wichmann-Kroll :

∆EWK

∆ELamb

<
δ∆Eexp

∆ELamb

= 3 ppm, (1.128)

∆EWK

∆EQED
WK

<
δ∆Eexp

∆EQED
WK

= 10, (1.129)

On peut alors en déduire la limite suivante sur le terme c2,0 :

c2,0

cQED
2,0

< 10, (1.130)

le déplacement en énergie dû au potentiel de Wichmann-Kroll étant linéaire en
c2,0 [45]. En revanche, le terme c0,2 étant absent du potential de Wichmann-Kroll,
il ne peut être contraint par ce type de mesure. La zone d'exclusion correspon-
dante dans l'espace des paramètres (c0,2, c2,0) a été ajoutée dans la �gure 1.11.

Dans le cas du déplacement de Lamb dans l'hydrogène muonique, la correc-
tion due au potentiel de Wichmann-Kroll par rapport au terme dominant est
théoriquement de l'ordre de 5 ppm [50]. La précision de la mesure est de 15
ppm [51]. Cette mesure ne permet donc pas de tester la correction due au po-
tentiel de Wichmann-Kroll. De plus, le rayon du proton extrait à partir de cette
mesure n'est pas en accord avec celui extrait de la mesure du Lamb shift dans
l'atome d'hydrogène [47]. Ce problème important est connu maintenant sous le
nom de �proton charge radius puzzle�.

Terminons en�n par la modi�cation du champ magnétique présentée dans
l'équation (1.125). Il semble que ce terme n'ait jamais été considéré, excepté par
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Figure 1.11 � Meilleures limites expérimentales dans l'espace des paramètres
(c0,2, c2,0), en ajoutant la zone d'exclusion déduite des mesures sur le déplacement
de Lamb dans l'atome d'hydrogène.

Jeremy Heyl qui l'interprète comme une modi�cation du dipôle magnétique ma-
croscopique [52], mais sans le terme proportionnel à c0,2 provenant du couplage
entre le champ électrique et le champ magnétique. Aucune correction sur le dé-
calage des niveaux d'énergie dû à ce terme n'a été calculée. La modi�cation du
champ magnétique d'une particule ponctuelle chargée devrait néanmoins a�ecter
la structure hyper�ne des atomes. En e�et, le terme principal dans cette struc-
ture, appelé terme de Fermi, est proportionnel au champ de la particule liée au
niveau du noyau. Dans le cas de l'atome d'hydrogène, la correction relative du
champ magnétique de l'électron à une distance de l'ordre du rayon de Bohr est
d'environ 2× 10−17. Elle reste cependant plus petite que la précision expérimen-
tale sur la structure hyper�ne du niveau fondamental de l'hydrogène qui est de
l'ordre de 10−13 en valeur relative [53]. Pour l'hydrogène muonique, la correc-
tion due au champ magnétique du muon au niveau du proton est de l'ordre de
4× 10−8. Mais aucune mesure de la structure hyper�ne de cet atome n'a encore
été réalisée (voir par exemple la référence [54]).

1.5 Conclusion

Nous avons tenté ici de donner une vision d'ensemble, sans être exhaustif, des
expériences permettant de tester les théories non-linéaires d'électrodynamique
quantique, dont la QED avec le lagrangien de Heisenberg et Euler font partie.
La mesure de la biréfringence magnétique du vide est l'une de ces expériences.
Elle permet en particulier de donner des limites sur une combinaison linéaire des
termes c2,0 et c0,2. Nous avons vu que chaque expérience, bien que testant le même
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lagrangien, apporte des informations complémentaires sur les di�érents termes
du lagrangien, permettant en particulier de contraindre di�éremment l'espace
des paramètres (c0,2, c2,0).

Cette approche nous a permis de comprendre l'implication des mesures du
déplacement de Lamb dans les systèmes liés sur les paramètres du lagrangien
de Heisenberg et Euler. Bien qu'étant l'une des mesures testant la QED avec la
plus grande précision, elle n'est pas encore en mesure de tester la contribution du
potentiel de Wichmann-Kroll, qui apporte une correction à grande distance au
potentiel de Coulomb et que l'on retrouve à partir du lagrangien de Heisenberg et
Euler. La correction à courte portée due au potentiel de Uehling est en revanche
très bien testée. Ces deux potentiels, Wichmann-Kroll et Uehling, sont issus du
même cadre théorique et il est donc di�cilement imaginable que le terme à courte
distance soit correctement traité sans que le terme à longue portée le soit. Il reste
néanmoins primordial de le véri�er expérimentalement, justi�ant largement les
mesures telles que la biréfringence magnétique du vide.





C H A P I T R E 2

Dispositif Expérimental -

Ellipsomètre de grande sensibilité

Comme nous l'avons présenté en introduction, le projet BMV (Biréfringence
Magnétique du Vide) s'articule autour d'un projet expérimental ambitieux dont
le but est de véri�er en laboratoire les prévisions de l'électrodynamique quantique
en ce qui concerne l'énergie du vide : en présence d'un champ magnétique, le
vide quantique devient biréfringent. En d'autres termes, l'indice de réfraction n‖
vu par une onde polarisée parallèlement au champ magnétique est di�érent de
l'indice n⊥ vu par une onde polarisée perpendiculairement au champ magnétique.
La di�érence ∆n = n‖ − n⊥ est alors proportionnelle à B2, correspondant à un
e�et Cotton-Mouton :

∆n = n‖ − n⊥ = kCMB
2. (2.1)

La prédiction théorique dans le cadre de la QED donne :

kCM ' 4× 10−24 T−2. (2.2)

C'est le challenge que nous avons à relever. L'observation d'un tel e�et consti-
tuerait la première mise en évidence de la propagation non linéaire de la lumière
dans le vide quantique. Ce projet est basé sur l'utilisation de champs magnétiques
pulsés très intenses et d'un appareil optique très sensible pour la détection des
e�ets induits par ce champ sur un faisceau laser. Il résulte de la collaboration de
deux laboratoires : le laboratoire National des Champs Magnétiques Intenses de
Toulouse (LNCMI-T) spécialisé dans la génération de champs magnétiques in-
tenses pulsés et le Laboratoire des Matériaux Avancés (LMA) de l'IN2P3 à Lyon
spécialisé entre autres dans la conception et la réalisation de miroirs de très haute
ré�ectivité. Dans ce chapitre, je présente rapidement les di�érents éléments du
dispositif expérimental. On peut se référer aux articles en �n de chapitre pour
plus de détails ainsi qu'à la thèse d'Agathe Cadène que j'ai co-encadrée avec
Carlo Rizzo.

2.1 Principe général

Nous réalisons la mesure de la biréfringence magnétique du vide par l'inter-
médiaire d'une mesure d'ellipticité. Le principe de cette mesure a été présenté
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dans la partie 1.3 et il est rappelé sur la �gure 2.1. Une lumière linéairement po-
larisée par un premier polariseur P se propage à travers un champ magnétique
transverse. L'ellipticité acquise est donnée par :

ψ =
π

λ
kCMB

2
⊥LB sin 2θ, (2.3)

avec λ la longueur d'onde de la lumière, LB la longueur sur laquelle le champ
magnétique est appliqué et θ l'angle entre la polarisation incidente et le direction
du champ magnétique. L'angle θ est placé à 45˚ a�n de maximiser l'ellipticité
induite et donc le signal à mesurer.

E

B

A

Phe

Pht

q

x

y

z

Figure 2.1 � Mesure de la biréfringence magnétique du vide par polarimétrie. L'el-
lipticité de la lumière, induite par le champ magnétique transverse, est mesurée via
le rapport entre les intensités transmise (mesurée par la photodiode Phe) et ré�échie
(mesurée par la photodiode Pht) par le polariseur de sortie noté A.

Un champ magnétique longitudinal peut également être présent. Il est alors
responsable d'un e�et Faraday dont le principe est rappelé sur la �gure 2.2. La
rotation induite par le champ s'écrit :

θF =
π

λ
kFB‖LB = V B‖LB, (2.4)

avec V la constante de Verdet qui dépend du milieu traversé par la lumière.
La polarisation est analysée avec un deuxième polariseur A, croisé avec P

au maximum d'extinction. Le faisceau extraordinaire, dont la polarisation est
perpendiculaire à la polarisation incidente, est collecté par la photodiode Phe.
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Figure 2.2 � Mesure de l'e�et Faraday. La rotation de la polarisation de la lumière,
induite par le champ magnétique longitudinal, est mesurée via le rapport entre les inten-
sités transmise (mesurée par la photodiode Phe) et ré�échie (mesurée par la photodiode
Pht) par le polariseur de sortie noté A.

L'analyseur a une fenêtre de sortie qui permet également d'extraire le faisceau
ordinaire ré�échi, dont la polarisation est parallèle à celle du faisceau incident.
Ce faisceau est collecté sur la photodiode Pht. L'ellipticité acquise ainsi que la
rotation sont mesurées grâce au rapport des intensités reçues sur Phe et Pht :

Ie(t)

It(t)
= σ2 + θF(t)2 + ψ(t)2, (2.5)

où σ2 est l'extinction des polariseurs qui est actuellement de l'ordre de 10−7.
La rotation et l'ellipticité dépendent du temps lorsque le champ magnétique est
pulsé.

L'e�et à mesurer étant extrêmement faible, une cavité optique est ajoutée
autour du champ magnétique a�n d'accumuler l'e�et au cours des allers et retours
dans la cavité. L'ellipticité à la sortie d'un tel dispositif est alors donnée par :

Ψ =
2F

π
ψ =

2F

λ
kCMB

2
⊥LB sin 2θ. (2.6)

avec F la �nesse de la cavité. La rotation totale due à l'e�et Faraday devient
quant à elle :

ΘF =
2F

π
θF =

2F

λ
kFB‖LB. (2.7)
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Le rapport des intensités reçues par Phe et Pht s'écrit �nalement :

Ie(t)

It(t)
= σ2 + ΘF(t)2 + Ψ(t)2. (2.8)

Comme le montre les équations (2.6), (2.7) et (2.8), augmenter le signal à mesu-
rer revient à maximiser autant que possible Ψ et Θ. Les deux éléments clés de
l'expérience sont donc le champ magnétique et la cavité Fabry-Perot. Ces deux
éléments sont décrits dans les deux prochaines parties.

Le schéma actuel de l'expérience, décrit en détails dans les références [55�57],
est présenté sur la Fig. 2.3. Environ 30mW d'un laser Nd :Yag, de longueur d'onde
λ = 1064 nm, est injecté dans une cavité Fabry-Perot constituée des miroirs M1 et
M2. La longueur de la cavité est Lc=2,2m. Le laser est asservi sur la fréquence de
résonance de la cavité par la méthode Pound-Drever-Hall [58]. Pour cela, le laser
passe à travers un modulateur électro-optique (EOM) créant des bandes latérales
à 10MHz. Le faisceau ré�échi par la cavité est analysé par la photodiode Phr. Ce
signal est utilisé pour contrôler un modulateur acousto-optique (AOM) pour le
contrôle en fréquence rapide, la cale piézoélectrique du laser pour les fréquences
intermédiaires et l'élément Peltier du laser pour le contrôle basse fréquence. La
bande passante de notre asservissement est typiquement de quelques dizaines de
kilohertz.

Figure 2.3 � Schéma de l'expérience. La fréquence du laser est asservie sur la fré-
quence de résonance de la cavité constituée des miroirs M1 et M2. Le système d'asservis-
sement, basé sur la méthode Pound-Drever-Hall (PDH), est constitué d'un modulateur
électro-optique (EOM) qui permet de créer des bandes latérales à 10MHz, et d'un
modulateur acousto-optique (AOM) sur lequel est réalisée la rétroaction. Le laser est
polarisé linéairement par le polariseur P, puis analysé à la sortie de la cavité par le
polariseur A. Ce polariseur permet d'extraire à la fois le faisceau extraordinaire envoyé
sur la photodiode Phe et le faisceau ordinaire envoyé sur Pht. Le champ magnétique
transverse B⊥ ou longitudinal B‖ est appliqué à l'intérieur de la cavité.
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L'ensemble (polariseurs + cavité) est placé sous vide. L'enceinte est pompée
dans un premier temps par une pompe turbomoléculaire permettant d'atteindre
un vide de l'ordre de quelques 10−7 mbar. Trois pompes ioniques réparties sur
l'enceinte à vide prennent ensuite le relais a�n de s'a�ranchir des vibrations de
la pompe turbomoléculaire. L'ensemble de l'enceinte doit être �nalement étuvé
pour atteindre des pressions inférieures. Des bouteilles de gaz sous pression et de
haute pureté sont également raccordées à l'enceinte par l'intermédiaire de micro-
fuites. Ces dernières permettent d'injecter un gaz dans l'enceinte de manière
contrôlée, soit pour e�ectuer des mesures de biréfringence magnétique comme
dans l'hélium, le diazote, ou le xénon, soit pour pouvoir remettre proprement
l'enceinte à la pression atmosphérique avec un gaz de diazote.

2.2 Le champ magnétique

Notre système permet d'étudier la biréfringence magnétique circulaire (e�et
Faraday) et la biréfringence magnétique linéaire (e�et Cotton-Mouton). Ces deux
types de mesures nécessitent un champ magnétique longitudinal pour la première
et un champ magnétique transverse pour la deuxième. A amplitude de champ
magnétique �xée, l'e�et Faraday est beaucoup plus important que l'e�et Cotton-
Mouton, hormis pour le vide où l'e�et Faraday n'existe pas. Un simple solénoïde
fonctionnant en continu et à température ambiante est su�sant pour mesurer
les e�ets Faraday. En revanche, pour mesurer les e�ets Cotton-Mouton dans les
gaz puis dans le vide, un aimant pulsé spécialement conçu pour l'expérience a
été développé.

2.2.1 Champ magnétique longitudinal

Le champ magnétique longitudinal est délivré par un solénoïde de 300mm de
long, bobiné autour d'un tube de 50mm de diamètre, dans lequel est injecté un
courant I. Le pro�l longitudinal du champ magnétique a été mesuré à l'aide d'un
gaussmètre. La Fig. 2.4 présente les données pour un courant continu I = 1.5A
correspondant à un champ magnétique au centre du solénoïde d'environ 2.15mT.
On dé�nit la longueur magnétique LB de la façon suivante :

∫ +∞

−∞
B‖(z)dz = B0‖LB, (2.9)

avec B0‖ le champ magnétique au centre du solénoïde. En tenant compte des
incertitudes expérimentales, on trouve LB = 0.308 ± 0.006m, avec un incerti-
tude à 1σ. Ce solénoïde nous permet d'atteindre un champ magnétique maximal
d'environ 4.3mT au centre correspondant à un courant injecté de 3A.

La mesure du champ magnétique pendant les mesures d'e�ets Faraday est
réalisée via la mesure du courant injecté. Le champ magnétique longitudinal au
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Figure 2.4 � Champ magnétique longitudinal le long du solénoïde avec un courant
injecté de 1.5A. Points : mesures ; trait pointillé : pro�l équivalent avec un champ
magnétique constant B0‖ sur une longueur LB.

centre de la bobine B0‖ a été préalablement mesuré à l'aide d'un gaussmètre en
fonction du courant injecté I mesuré avec un ampèremètre. Les incertitudes de
type B sur le champ magnétique proviennent des incertitudes liées aux mesures
réalisées avec le gaussmètre (1%) et celles liées à la mesure du courant avec
l'ampèremètre (1%). Ceci donne une incertitude de type B sur la valeur de champ
de 1.4%. L'incertitude liée au fait que la lumière ne se propage pas exactement au
centre de la bobine radialement, avec moins d'1 cm de décalage, est négligeable.
Comme nous le verrons dans le chapitre suivant, les mesures d'e�ets Faraday sont
e�ectuées avec un champ magnétique modulé sinusoïdalement à des fréquences
de l'ordre de 20Hz. Nous avons véri�é que le rapport B0‖/I ne montre aucun
e�et de �ltrage du dispositif jusqu'à au moins 50 Hz.

En�n, le courant maximal qui est injecté dans la bobine est de 3A. Pour
un tel courant, l'élévation de température au niveau du gaz est toujours bien
inférieure à 4K au bout de 5minutes. On peut donc garder le solénoïde à l'air
libre sans aucun système de refroidissement. Pendant la prise de données d'e�et
Faraday dans les gaz, les durées d'acquisition sont typiquement de l'ordre de la
minute. La température au niveau du gaz est alors estimée à T = 294± 1K.

2.2.2 Champ magnétique transverse

Les mesures de la biréfringence magnétique du vide nécessitent un champ
magnétique le plus grand possible. Di�érentes stratégies ont été adoptées par les
diverses équipes travaillant sur ce sujet : aimants supraconducteurs, aimants per-
manents ou bobines résistives pulsées. De plus, comme le montre l'équation (2.6),
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nous avons également besoin d'une région d'interaction avec le champ magnétique
importante, l'ellipticité induite étant proportionnelle au produit B2LB. Pour le
projet BMV, nous avons décidé de nous orienter vers les aimants pulsés dont le
LNCMI à Toulouse est spécialiste. Ceci nous permet d'avoir un B2LB élevé tout
un gardant un LB raisonnable permettant de placer l'ensemble de l'expérience
sur une seule table optique, améliorant ainsi la stabilité de l'ensemble du système.

faisceau   

laser

B1
B2

B

I

I

Figure 2.5 � Schéma de la bobine permettant de générer le champ magnétique trans-
verse tout en laissant l'accès pour le passage du faisceau laser. Chaque branche de spire
génère un champ magnétique dont la somme donne le champ magnétique transverse.
Le �l de cuivre est enroulé sur un corps en G10 (mélange de tissu de verre et d'époxy)
dont le modèle tridimensionnel est représenté sur la droite. Les dimensions �nales de
la bobine sont : 250mm de long, 100mm de haut et 46mm d'épaisseur.

L'aimant actuellement utilisé est basé sur une géométrie en X, appelé X-
coil, dont le schéma est présenté sur la �gure 2.5. Il permet d'avoir un champ
magnétique transverse important tout en laissant l'accès optique pour laisser
passer le laser. Le principe de l'aimant et ses propriétés sont décrites dans les
références [55,59]. La bobine peut être alimentée par deux bancs de condensateurs
di�érents placés de part et d'autre de la salle d'expérience. Les propriétés des
deux générateurs sont les mêmes excepté le sens de branchement des thyristors 1

qui est inversé. Ceci permet d'envoyer un courant dans un sens ou un autre et
donc d'inverser la direction du champ magnétique qui est alors soit parallèle à
l'axe x soit anti-parallèle (voir �gure 2.3). Ce point est essentiel pour permettre
d'isoler les signaux Cotton-mouton des autres e�ets systématiques, comme nous
le verrons dans le prochain chapitre.

1. Le thyristor est un composant adapté à l'électronique de puissance. Il est basé sur la
technologie des transistors, et est ici utilisé comme un interrupteur.
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L'obtention de fort champ magnétique nécessite d'injecter un courant élevé
dans la bobine, ce qui a pour conséquence d'augmenter la température de la bo-
bine par e�et Joule, pouvant aller jusqu'à sa destruction. Pour limiter cet e�et,
la bobine est immergée dans de l'azote liquide. Ceci permet tout d'abord de di-
minuer la température initiale de la bobine, mais aussi de réduire sa résistance
et donc de réduire l'échau�ement par e�et Joule. Un temps d'attente entre deux
tirs est nécessaire pour permettre à la bobine de retrouver sa température d'équi-
libre. Des photos du cryostat contenant la bobine sont présentées sur la Fig. 2.6.
Le tube de l'enceinte à vide dans lequel se propage le faisceau laser passe dans le
tube du cryostat sans le toucher. A�n de découpler mécaniquement le cryostat
de l'enceinte à vide à laquelle les miroirs de la cavité Fabry-Perot sont �xés, le
cryostat est placé sur un bâti indépendant de la table optique.

faisceau 

laser

Amenée de 

courant

Renforts mécaniques placés 

autour de la bobine

Cryostat

Figure 2.6 � Gauche : Bobine dans son cryostat. Droite : Cryostat à azote liquide.

Le pro�l du champ magnétique le long de l'axe z, correspondant à la direction
de propagation de la lumière, a été mesuré à l'aide d'une bobine pick-up calibrée.
Le pro�l normalisé, présenté sur la �gure 2.7, n'est pas uniforme. Comme pour
le champ magnétique longitudinal, nous dé�nissons la longueur LB comme la
longueur équivalente d'un aimant produisant un champ magnétique uniforme
B0⊥, avec B0⊥ le champ magnétique au centre de la bobine :

∫ +∞

−∞
B2
⊥(z)dz = B2

0⊥LB. (2.10)
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Nous trouvons LB = 0.137m.
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Figure 2.7 � Points : Mesures du pro�l longitudinal normalisé du carré du champ
magnétique. Trait pointillé : champ magnétique équivalent.

Le pro�l temporel du champ magnétique est représenté sur la �gure 2.8 pour
un champ magnétique maximal de 6.5T. La durée totale du tir est inférieure à
10ms. Le maximum est atteint en moins de 2ms.
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Figure 2.8 � Carré du champ magnétique au centre de la bobine en fonction du temps
pour un champ magnétique maximal de 6.5T.

Le tableau 2.1 permet de comparer la technologie des aimants pulsés aux ai-
mants utilisés sur les expériences concurrentes. Notre choix technologique permet
d'avoir un B2

⊥LB important tout en gardant un LB relativement petit. Ceci a
pour avantage de pouvoir placer les miroirs de la cavité Fabry-Perot sur une seule
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table optique. De plus, cette technologie laisse encore une marge de progression
importante en terme de champ maximal atteignable, comme nous le montrerons
dans le dernier chapitre relatif aux perspectives.

BFRT PVLAS Q&A BMV
[60] [20] [24] [21]

Régime continu continu continu continu pulsé

Technologie supraconducteur supraconducteur
aimants aimants bobine

permanents permanents résistive
B⊥ (T) 2 2.5 2.5 2.3 6.5
LB (m) 8.8 1 1.64 0.6 0.137
B2
⊥LB (T2m) 35.2 5.3 10.25 3.2 5.8

Table 2.1 � Caractéristiques des aimants utilisés sur les expériences visant à mesurer
la biréfringence magnétique du vide. Lorsque des limites ont été publiées, le champ
magnétique reporté correspond au champ magnétique utilisé pendant les mesures.

2.3 La cavité Fabry-Perot

Le deuxième élément clé de l'expérience correspond à la cavité Fabry-Perot.
Celle-ci permet en e�et d'accumuler l'e�et au cours des allers et retours de la
lumière dans la cavité. La longueur de la cavité est Lc = 2.27m. L'intervalle
spectral libre, correspondant à l'écart en fréquence entre deux pics de résonance
TEM00, est donné par l'équation suivante :

∆ISL =
c

2nLc

= 66 MHz, (2.11)

avec n l'indice du milieu dans lequel baigne la cavité. Pour nos mesures e�ectuées
dans des gaz, les pressions restent très faibles. L'indice de réfraction sera donc
toujours considéré comme égal à 1.

La cavité est placée dans l'enceinte à vide. La position angulaire des miroirs
est ajustée à l'aide de montures avec actionneurs piézoélectriques. Nous réglons
l'orientation de chaque miroir l'un par rapport à l'autre et par rapport au faisceau
incident a�n de faire résonner principalement le mode TEM00. Les miroirs de la
cavité sont des miroirs diélectriques de rayon de courbure 8m. La taille du mode
TEM00 est donc de ω0 = 0.97mm au centre de la cavité et ω(±Lc/2) = 1.05mm
au niveau des miroirs. Des lentilles placées sur le trajet du faisceau incident
permettent d'adapter le mode du laser au mode TEM00 de la cavité.

2.3.1 Finesse et couplage

La �nesse de la cavité est mesurée en évaluant la durée de vie des photons dans
la cavité. Pour cela, la fréquence du laser est tout d'abord asservie sur la fréquence
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Figure 2.9 � Evolution au cours du temps de l'intensité du faisceau ordinaire à la
sortie de la cavité (en gris). L'intensité du laser est coupée à t0. Cette courbe est ajustée
avec l'équation (2.12) (courbe pointillée) permettant d'en déduire la durée de vie des
photons dans la cavité τ = 1.15ms et la �nesse de la cavité F = 475 000.

de résonance de la cavité. L'intensité laser est ensuite coupée brutalement à
l'aide d'un modulateur acousto-optique à l'instant t = t0. On obtient alors une
décroissance exponentielle de l'intensité transmise par la cavité, mesurée par la
photodiode Pht. La �gure 2.9 présente une décroissance typique. La courbe est
ajustée pour t > t0 par la formule suivante :

It(t) = It(t0)e−(t−t0)/τ , (2.12)

où τ est la durée de vie des photons dans la cavité. Cette durée de vie est reliée
à la �nesse F de la cavité par l'équation :

F =
πcτ

Lc

. (2.13)

Nous avons à notre disposition di�érents jeux de miroirs. Ceux-ci sont listés
dans le tableau 2.2 avec les �nesses maximales observées pour chaque jeu. Le deux
premiers jeux de miroirs correspondent à des miroirs commerciaux produits par
les sociétés Layertec en Allemagne et ATFilms aux USA. Le dernier jeu a été
fourni par le LMA avec qui nous sommes en collaboration. Les �nesses étant
élevées, il est primordial de manipuler les miroirs dans un environnement propre.
En e�et, la moindre poussière qui se dépose sur le miroir dégrade son coe�cient
de ré�ectivité et donc dégrade la �nesse de la cavité. L'expérience a donc été
installée dans une salle propre dont l'accès est réservé aux membres du projet
équipés de combinaison.
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Provenance Finesse de la cavité
Layertec (Allemagne) 100 000
ATFilms (USA) 481 000
LMA (France) 529 000

Table 2.2 � Finesse maximale de la cavité obtenue sur le projet BMV en fonction de
la provenance des miroirs.

Le tableau 2.3 permet de comparer des cavités parmi les meilleures au monde
travaillant dans le domaine optique. Elles peuvent être divisées en trois groupes :

� grande �nesse et petite longueur Lc. La meilleure �nesse jamais publiée est
d'environ 2 000 000 [61].

� �nesse modérée et grande longueur de cavité. Ces cavités sont principale-
ment utilisées pour les détecteurs d'ondes gravitationnelles avec des lon-
gueurs de cavité de quelques kilomètres [62, 63].

� haute �nesse et longueur de cavité intermédiaire. La cavité du projet BMV
se place dans cette catégorie.

Catégorie Projet Réf.
Longueur

Finesse
Durée

Largeur
Facteur

de cavité de vie de qualité
Lc (m) F τ (µs) ∆ν (Hz) Q

Grand F REMPE [61] 4× 10−3 1 900 000 8 19 400 2× 1010

Petit Lc SYRTE [64] 0.1 800 000 85 1 875 1.5× 1011

VIRGO [62] 3 000 50 160 1 000 2.8× 1011

F modéré Advanced VIRGO [65] 3 000 450 1 400 110 25×1011

Grand Lc LIGO [63] 4 000 230 980 160 17× 1011

Advanced LIGO [66] 4 000 450 1 900 83 34×1011

PVLAS [67] 3.3 770 000 2 700 59 48× 1011

Grand F Q&A [21] 3.5 43 000 111 1 400 2× 1011

Lc intermédiaire BMV (ATFilms) 2.27 481 000 1 160 137 21× 1011

BMV (LMA) 2.27 529 000 1 275 124 23× 1011

Table 2.3 � Comparaison des meilleures cavités dans le domaine optique.

Comme nous l'avons dit précédemment, la �nesse F est l'un des paramètres
importants. Il est également nécessaire d'avoir une longueur de cavité Lc su�-
samment grande pour pouvoir placer les aimants entre les miroirs : plus Lc est
grand, plus nous pourrons placer d'aimants entre les miroirs et ainsi augmenter
la longueur d'interaction avec le champ magnétique. Le paramètre pertinent est
donc le produit FLc. Ce paramètre est inversement proportionnel à la largeur
du pic de résonance donné par l'équation suivante :

∆ν =
c

2LcF
, (2.14)
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et proportionnel au facteur de qualité de la cavité :

Q =
ν

∆ν
=

2FLc

λ
, (2.15)

avec ν = c/λ la fréquence du laser. Nous voyons dans le tableau 2.3 que la cavité
de projet BMV fait partie de celle ayant un grand facteur de qualité.

En�n, la mesure d'ellipticité étant réalisée sur le faisceau de sortie de la cavité,
la puissance de ce dernier doit être su�sante pour ne pas être limitée par le bruit
des photodiodes de détection, en particulier par celle qui observe le faisceau
de polarisation perpendiculaire à la polarisation incidente. Autrement dit, le
couplage de la cavité doit rester non négligeable. Le couplage en transmission Tc

et la �nesse F de la cavité sont reliés aux coe�cients de ré�exion en intensité
des miroirs R, au coe�cients en transmission T et aux pertes de chaque miroir
P de la manière suivante :

F =
π

1−R, (2.16)

Tc =

(
T

T + P

)2

=

(
TF

π

)2

. (2.17)

On suppose ici que les deux miroirs de la cavité sont identiques, ce qui est une
hypothèse raisonnable pour des miroirs provenant d'une même cloche de fabri-
cation. La �nesse ne dépend que du coe�cient de ré�exion. En revanche, la
transmission va dépendre du rapport entre la transmission et les pertes des mi-
roirs. Ainsi, pour avoir un couplage supérieur à 25%, il faut T > P . Ceci devient
particulièrement di�cile lorsqu'on augmente la �nesse : R augmente, T diminue
et les pertes P peuvent alors devenir prépondérantes devant T . Le tableau 2.4
résume les valeurs que nous avons trouvées pour nos trois jeux de miroirs. Alors
que les miroirs du LMA permettent d'obtenir la meilleure �nesse, le couplage est
nettement plus important avec les miroirs ATFilms. C'est la raison pour laquelle
nous avons décidé d'utiliser les miroirs ATFilms pour toutes nos mesures.

Miroirs Cavité
Provenance R T (ppm) P (ppm) F Tc (%)
Layertec 0.999 969 6 25 100 000 3.6
ATFilms 0.999 993 4 3 481 000 35
LMA 0.999 994 1 5 529 000 0.1

Table 2.4 � Caractéristiques des miroirs utilisés pour le projet BMV. Compte-tenu
de la �nesse et du couplage en transmission de la cavité, les mesures de biréfringence
ont été réalisées avec les miroirs ATFilms.
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2.3.2 Biréfringence des miroirs

La cavité Fabry-Perot induit également une ellipticité statique totale Γ. Celle-
ci est due à la biréfringence statique de chaque miroir qui peut être modélisée par
un miroir non biréfringent plus une lame à retard de phase. Le schéma équivalent
de la cavité Fabry-Perot est présenté sur la �gure 2.10. L'ellipticité statique peut
alors s'écrire comme la somme des ellipticités induites par chaque miroir Γ1 et
Γ2 [68] :

Γ = Γ1 + Γ2 =
2F

π

[
δ1

2
sin 2(θ1 − θP) +

δ2

2
sin 2(θ2 − θP)

]
, (2.18)

avec δ1 et δ2 les déphasages induits par chaque lame entre les polarisations pa-
rallèles aux axes neutres, et θ1, θ2 et θP les angles que font les axes rapides des
deux lames et la polarisation incidente avec l'axe x (voir �gure 2.10).
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M1
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axe rapide

axe lent

Figure 2.10 � Schéma équivalent de la cavité Fabry-Perot en tenant compte de la
biréfringence statique des miroirs. Chaque miroir correspond à la combinaison d'un
miroir sans biréfringence et d'une lame biréfringente induisant un déphasage δi entre
les polarisations parallèles à ses axes neutres. Nous avons placé ici l'axe rapide de la
lame L2 parallèle à l'axe x, ce qui équivaut à θ2 = 0.

La mesure de Γ en fonction de θ1 et θ2 permet de remonter aux déphasages
de chaque miroir. Cette mesure a été réalisée pour les di�érents jeux de miroirs
à notre disposition. Pour cela, chaque monture de miroir a été placée sur une
monture tournante pouvant être manipulée manuellement depuis l'extérieur de
l'enceinte à vide. La technique de mesure et les résultats sont publiés dans Applied
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Physics B [69] et présentés en détails dans les thèses de Paul Berceau [56] et
Agathe Cadène [57]. Nous obtenons en particulier pour les miroirs ATFilms
un déphasage typique de δ = 7 × 10−7 rad, correspondant à un déphasage par
ré�exion (deux passages dans la lame à retard de phase) de δrefl = 2δ = 1.4 ×
10−6 rad.

L'origine de la biréfringence statique des miroirs interférentiels est mal connue.
Cependant, une étude basée sur une revue des données déjà existantes [69] ad-
ditionnée à nos nouvelles données sur les miroirs ATFilms montre que plus le
coe�cient de ré�exion augmente, autrement dit plus le nombre de couches di-
électriques formant le miroir est grand, plus la biréfringence intrinsèque du miroir
est petite. Les données sont tracées sur la �gure 2.11. Le coe�cient de ré�exion
des miroirs est en général obtenu à partir de la �nesse via l'équation (2.16).
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Figure 2.11 � Mesure du déphasage par ré�exion induit par des miroirs interférentiels
en fonction de leur ré�ectivité en intensité R. Points blancs : Résumé des valeurs rassem-
blées dans la référence [69]. Points gris : mesures rapportées dans les références [70�74].
Point noir : mesure obtenue avec les miroirs ATFilms sur le projet BMV. Ligne poin-
tillée : résultat de la modélisation en considérant que seule la couche diélectrique la
plus proche du substrat est biréfringente.

Pour tenter de comprendre l'origine de cette biréfringence, nous avons déve-
loppé une simulation numérique permettant de calculer la biréfringence totale
en fonction de la biréfringence des di�érentes couches diélectriques. Di�érentes
possibilités ont été envisagées : biréfringence identique sur toutes les couches for-
mant le miroir, biréfringence aléatoire (déphasage et direction des axes neutres)
sur toutes les couches, ... Finalement, la con�guration qui correspond le mieux à
la tendance de la �gure 2.11 est celle pour laquelle seule la couche diélectrique la
plus proche du substrat est biréfringente. Cette étude ne permet pas de donner
l'origine physique de cette biréfringence, mais elle indique néanmoins la partie



60 Chap 2 - Dispositif Expérimental - Ellipsomètre de grande sensibilité

du miroir qui semble concernée. Cette information peut être particulièrement in-
téressante si l'on souhaite fabriquer des miroirs de haute ré�ectivité et de faible
biréfringence.

Nous pouvons également modéliser la cavité Fabry-Perot comme représentée
sur la �gure 2.12, avec une lame à retard de phase Leq placée entre deux miroirs
non biréfringents. L'orientation de l'axe rapide θeq de cette nouvelle lame ainsi
que le déphasage δeq induit entre les polarisations parallèles à ses axes neutres
dépendent de l'orientation des deux miroirs et de leur biréfringence respective.
En supposant que l'axe rapide de la lame L2 est parallèle à l'axe x, autrement
dit θ2 = 0, et pour des déphasages petits, nous obtenons [75] :

δeq =
√

(δ2 − δ1)2 + 4δ1δ2 cos2 θ1, (2.19)

cos 2θeq =
δ2 + δ1 cos 2θ1

δeq

, (2.20)

Γ =
2F

π

δeq

2
sin 2(θeq − θP). (2.21)
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Figure 2.12 � Schéma équivalent de la cavité Fabry-Perot en tenant compte de la
biréfringence statique des miroirs. La cavité équivaut ici à deux miroirs non biréfringents
avec une lame à retard de phase équivalente Leq placée entre les deux miroirs. celle-ci
induit une rotation ε de la polarisation linéaire incidente et une ellipticité Γ.

Pour les mesures de biréfringence magnétique, il est nécessaire de tenir compte
de cette biréfringence statique. Celle-ci a deux e�ets :
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� elle induit une ellipticité statique Γ sur la polarisation linéaire incidente
donnée par l'équation (2.18) ou (2.21)

� elle induit également une rotation ε de la polarisation linéaire incidente.
La rotation de l'axe de l'ellipse par rapport à la polarisation incidente, pour des
déphasages très petits devant l'unité, est égale à [57] :

ε =
2F

π

Γ

2
δeq. (2.22)

Le rapport des intensités transmises par le polariseur de sortie A devient alors :

Ie(t)

It(t)
= σ2 + [ε+ ΘF(t)]2 + [Γ + Ψ(t)]2 . (2.23)

Le réglage de ε et Γ est primordial sur l'expérience. L'angle ε est tout d'abord
minimisé en minimisant δeq. Pour cela, l'axe lent du miroir M1 est aligné avec
l'axe rapide du miroir M2. Comme le montre les références [55�57], le bruit
en ellipticité de notre appareil est pour le moment dominé par les �uctuations
de Γ. Dans ce cas, la sensibilité optique est meilleure lorsque Γ diminue avec
un optimum de sensibilité pour Γ2 = σ2. Expérimentalement, nous nous plaçons
dans un premier temps à Γ = 0. Ceci correspond à placer l'un des axes propres de
la lame équivalente Leq parallèle à la polarisation incidente. On ajuste ensuite la
valeur de Γ en tournant l'un des miroirs autour de l'axe z. Le sens de rotation nous
permet de choisir le signe de Γ. Celui-ci est déduit de mesures de biréfringence
magnétique dans l'azote gazeux pour lequel le signe et la valeur de la biréfringence
sont parfaitement connus.

2.3.3 Comportement dynamique de la cavité

La cavité agit également comme un �ltre passe-bas du premier ordre dont la
fonction de transfert est donnée par :

H1(ν) =
1

1 + i ν
νc

. (2.24)

La fréquence de coupure νc est reliée à la durée de vie des photons dans la cavité
τ , à la �nesse F ou à la largeur du pic de résonance de la cavité ∆ν de la manière
suivante :

νc =
1

4πτ
=

c

4LcF
=

∆ν

2
. (2.25)

Pour les miroirs ATFilms, nous trouvons une fréquence de coupure de l'ordre
de 70Hz. Pour les mesures de biréfringences magnétiques, le champ magnétique
varie au cours du temps. En particulier, pour le champ magnétique transverse,
nous avons typiquement un temps de montée du champ de l'ordre de 2ms, donc
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du même ordre de grandeur que la durée de vie des photons dans la cavité. L'e�et
du �ltrage devra alors être pris en compte.

La cavité a pour e�et de �ltrer les intensités incidentes. En particulier, l'in-
tensité ordinaire It correspond à l'intensité incidente �ltrée par le �ltre passe-bas
d'ordre un. C'est d'ailleurs la raison pour laquelle nous obtenons une décroissance
exponentielle lorsque l'intensité incidente est coupée brutalement. En revanche,
à cause de la biréfringence de la cavité, la cavité agit comme un �ltre passe-bas
du second ordre pour le faisceau Ie. Cet e�et est expliqué en détails dans l'article
que nous avons publié dans Applied Physics B [76]. La fonction de transfert du
�ltre passe-bas est la suivante :

H2(ν) = H1(ν)×H1(ν) =
1

1 + i2ν
νc
−
(
ν
νc

)2 . (2.26)

Elle correspond à la combinaison de deux �ltres passe-bas du premier ordre.
Le premier caractérise le �ltrage habituel de la cavité. Le deuxième est dû à la
biréfringence de la cavité qui alimente le faisceau extraordinaire via le faisceau
ordinaire.

Ce �ltrage de second ordre a pour première conséquence de modi�er la réponse
de la cavité lorsque le faisceau incident est coupé brutalement. La �gure 2.13
montre la décroissance de It et Ie dans ces conditions. Nous retrouvons pour
It une décroissance exponentielle que nous utilisons pour mesurer τ et F (voir
équation (2.12)). L'évolution temporelle de Ie est quant à elle donnée par :

Ie(t) = Ie(t0)

(
1 +

t− t0
2τ

)2

e−(t−t0)/τ . (2.27)

Cette fonction correspond à la réponse du �ltre passe-bas du second ordre à un
échelon.

Cette dernière équation doit être légèrement modi�ée lorsque la biréfringence
des substrats des miroirs ne peut plus être négligée [77]. On obtient alors :

Ie(t) = It(t0)

(
σ2 +

[
Γs1 + Γs2 + Γc

(
1 +

t− t0
2τ

)]2
)

e−(t−t0)/τ , (2.28)

où Γs1, Γs2 et Γc sont respectivement les ellipticités induites par chacun des sub-
strats des miroirs et par les allers et retours dans la cavité. L'évolution temporelle
de Ie dans ces conditions est représentée sur la �gure 2.14.

Finalement, l'intensité extraordinaire étant �ltrée une fois de plus que le signal
ordinaire, nous devons en tenir compte dans l'analyse. Le rapport entre les deux
intensités devient :

Ie(t)

It,f(t)
= σ2 + [ε+ ΘF,f(t)]

2 + [Γ + Ψf(t)]
2 , (2.29)
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Figure 2.13 � Evolution au cours du temps de l'intensité ordinaire (gris) et de l'inten-
sité extraordinaire (rouge) normalisées au cours du temps après coupure de l'intensité
incidente sur la cavité à l'instant t = t0. Les courbes sont correctement ajustées par
une décroissance exponentielle pour It et par l'équation (2.27) pour Ie.
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Figure 2.14 � Evolution au cours du temps de l'intensité extraordinaire normalisée
(rouge) au cours du temps après coupure de l'intensité incidente sur la cavité lorsque
la biréfringence des substrats des miroirs ne peut plus être négligée. La courbe est
correctement ajustée par l'équation (2.28).
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avec It,f le signal It �ltré numériquement. L'indice �f� sous la rotation Θ et
l'ellipticité Ψ rappelle qu'il faut tenir compte du �ltrage de la cavité lorsque les
rotations et ellipticités sont induites par un champ magnétique évoluant au cours
du temps.

2.4 Conclusion

Nous avons vu ici les parties principales constituant l'ellipsomètre avec en
particulier les champs magnétiques longitudinal et transverse, ainsi que la ca-
vité Fabry-Perot. L'ensemble du montage est présenté sur la �gure 2.15. L'équa-
tion (2.29) permettant de traiter les données est maintenant connue et va pouvoir
être utilisée pour extraire les e�ets Faraday et Cotton-Mouton dans les gaz puis
dans le vide. C'est l'objet du prochain chapitre.

30 cm

table optique

faisceau                           

laser

O

x
y

zbâti

cryostat de la 

bobine X-coil

solénoïde

enceinte                                 

à vide

polariseur

M1

M2

analyseur

Figure 2.15 � Schéma de l'expérience BMV. L'enceinte à vide repose sur une seule
table optique. Les tuyaux de l'enceinte passent à la fois dans le solénoïde générant le
champ magnétique longitudinal et dans la bobine X-coil générant le champ magnétique
transverse. Le cryostat dans lequel se trouve la bobine X-Coil est placé sur un bâti
indépendant de la table optique pour éviter tout contact mécanique entre le cryostat
et l'enceinte à vide.
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2.5 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références [69] et [76].
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Abstract In this paper we present a review of the existing
data on interferential mirror birefringence. We also report
new measurements of two sets of mirrors that confirm that
mirror phase retardation per reflection decreases when mir-
ror reflectivity increases. We finally developed a computa-
tional code to calculate the expected phase retardation per
reflection as a function of the total number of layers consti-
tuting the mirror. Different cases have been studied and we
have compared computational results with the trend of the
experimental data. Our study indicates that the origin of the
mirror intrinsic birefringence can be ascribed to the reflect-
ing layers close to the substrate.

PACS 42.25.Lc · 07.60.Fs · 42.79.Bh

1 Introduction

In the last decades high-reflectivity interferential mirrors
have been widely used in optical cavities to measure small
light polarization variations induced by the propagation in a
weakly anisotropic medium, such as in parity violation ex-
periments [1–3] or in vacuum magnetic birefringence exper-
iments [4–6]. Mirrors themselves are birefringent and this
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is manifestly a problem for such a kind of applications be-
cause they induce a phase retardation1 which superimposes
to the signal to be measured. This birefringence is due to
off-normal incidence and/or to intrinsic birefringence of the
mirror coatings. In the case of Fabry–Perot cavities the in-
cidence on the mirrors is normal. In this paper we focus on
this type of device, thus on birefringence due to the mirror
coatings.

Interferential mirrors are composed of a stack of slabs de-
posited on a substrate. One slab corresponds to a low-index
layer and a high-index layer with an optical thickness λ/4
for each layer, where λ is the light wavelength for which the
mirror reflectivity is optimized. While nonbirefringent strat-
ified media are discussed in textbooks [17], and films with
a nontrivial dielectric tensor have been treated in literature
(see, e.g., [18]), as far as we know, the origin of the mirror
birefringence is unknown and a detailed study of the prob-
lem does not exist. In [19] computational results are given
in the hypothesis that the birefringence is due to only one
layer, in particular the uppermost. The author notices that
the phase retardation effect diminishes as he moves the only
phase retardation layer down the stack. In [15] measure-
ments of the mirror phase retardation as a function of time
and of laser power in the Fabry–Perot cavity have been per-
formed. The authors suggest that mirror birefringence may
be photoinduced, at least partly.

In this paper we present a review of the existing data
on interferential mirror phase retardation. We show that the
data indicate that the phase retardation per reflection de-
creases when the mirror reflectivity becomes better and bet-
ter, i.e., when the total number of layers increases. We also

1Phase retardation due to birefringence corresponds to the difference
of phase velocities between the two normal modes.
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report new measurements of two sets of mirrors that con-
firm this trend. We finally developed a computational code
to calculate the expected phase retardation per reflection as
a function of the total number of layers. Different cases have
been studied going from a fixed birefringence for each layer
to a random birefringence for each layer. We finally com-
pare computational results with the trend of the experimen-
tal data. Our study indicates that the origin of the mirror in-
trinsic birefringence can be ascribed to the reflecting layers
close to the substrate.

2 Experimental study

Birefringence of interferential mirrors have been measured
and reported by several authors [7–15]. The phase retarda-
tion per reflection ranges between a few 10−7 rad to 10−3

for values of (1 −R) going from a few 10−5 to 10−2, where
R is the mirror reflectivity. All the measurements have been
conducted using an optical cavity except one [9] where the
ellipticity acquired after a single reflection was directly mea-
sured. Optical cavities are usually absolutely necessary to
accumulate the effect and thus to allow to measure very
small phase retardations. Whereas a multipass cavity has
been used in [7, 8], a Fabry–Perot cavity is used in [10–14].
In the following section, the published data are presented
in details and in chronological order. These studies were al-
ways motivated by measurements of small phase retardation
such as parity violation experiments [1–3] or vacuum mag-
netic birefringence experiment [4].

2.1 Review of published data

The first study of intrinsic phase retardation of interferen-
tial mirrors dates from 1982 [7]. Measurements have been
conducted using a multipass cavity made of two spherical
mirrors between which the light beam bounces many times
forwards and backwards under quasinormal incidence. In-
trinsic phase retardation is therefore superimposed to the
off-normal incidence phase retardation but this has also been
evaluated by the authors. The light beam does not hit the
same point of the mirror after a round trip. Thus the mea-
surement of phase retardation per reflection gives a value
averaged on the mirror surface. The mirrors have been man-
ufactured by Spectra-Physics, Inc. (Mountain View, CA,
USA), and their reflectivity R is 0.998 at λ = 540 nm.
Intrinsic phase retardation typically varies between 2 and
4 ×10−4 rad per reflection. Among the 19 mirrors analyzed,
two exceptions with phase retardation less than 10−6 rad per
reflection have been found. The authors called this a “happy
accident”.

A few years later a new study was again performed us-
ing a multipass cavity [8]. A set of five mirrors manufac-
tured by MTO, Palaiseau, France, has been analyzed. The

authors did not give explicitly the reflectivity of the mir-
rors, but they have reported that at λ = 514.5 nm and after
about 250 reflections the light intensity is reduced to 1/e.
We can deduce that (1 − R) = 0.004. From their measure-
ments, intrinsic phase retardation varies between 3.0×10−5

and 2.2 × 10−4 rad per reflection.
The next study was performed in 1993 [9] using multi-

pass cavities. Only one mirror has been analyzed but this
time the phase retardation has been measured directly after
only one reflection. The mirror had a reflectivity of 0.9983
at 633 nm. It was coated by the Laboratory of Laser En-
ergetics of the University of Rochester. The authors were
able to measure the intrinsic phase retardation and the phase
retardation axis direction of the mirror in different points
of the surface. They could therefore draw a map of the in-
trinsic phase retardation showing a clear rotational pattern.
The intrinsic phase retardation per reflection ranged between
3 to 6.2 ×10−4 rad, while the axis direction ranged be-
tween 9 and −13 degrees. To test that the origin of such
an anisotropy was not due to the substrate, the authors have
measured the phase retardation when the light was reflected
on the backsurface of the mirror. They obtained a result com-
patible with zero within the experimental error.

In 1995 the first measurement using a Fabry–Perot cav-
ity was reported [10]. In this type of interferometer the in-
cidence on the mirrors is strictly normal, and off-normal
phase retardation vanishes. The mirror reflectivity can be in-
ferred by the cavity finesse F = 6600 given by the authors at
λ = 633 nm: R = 1 − π/F = 0.999524. The reported val-
ues of phase retardation per reflection are 1.0 × 10−6 and
4.4 × 10−6 rad. Besides, their study allows to conclude that
the birefringence is not due to the mirror mounts.

In 1996, a new intrinsic phase retardation of a mir-
ror is reported [11]. The Fabry–Perot cavity finesse was
300 at λ = 633 nm, and we can therefore infer that R =
0.9895. The measured phase retardation per reflection is
1.2 × 10−3 rad.

For the next value reported in [12], a Fabry–Perot was
again used. The mirrors have been manufactured by Re-
search Electro-Optics Inc., Boulder, Colorado, USA. The
Fabry–Perot cavity finesse was 125600 at λ = 540 nm, and
the inferred reflectivity is R = 0.999975. The value of the
phase retardation per reflection is given for only one mirror
and corresponds to 3 × 10−6 rad.

In 1997 two works have been published in the same jour-
nal issue [13, 14] concerning mirror intrinsic phase retar-
dation. In [13] two mirrors constituting a Fabry–Perot cav-
ity have been characterized. The average value of the re-
ported reflectivity was R = 0.9988 at λ = 633 nm. The mea-
sured phase retardation per reflection was 4.2×10−4 rad and
1.04 × 10−3 rad. In [14], the reflectivity was R = 0.999969
at λ = 1064 nm and they have been manufactured by Re-
search Electro-Optics Inc., Boulder, Colorado, USA. The
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Table 1 Review of published data

Ref. R δM (rad) Nmirrors λ (nm)

[7] 0.998 (2 − 4) × 10−4 17 540

< 10−6 2 540

[8] 0.996 (3 − 22) × 10−5 5 514

[9] 0.9983 (3 − 6.2) × 10−4 1 633

[10] 0.999524 (1 − 4.4) × 10−6 2 633

[11] 0.9895 1.2 × 10−3 1 633

[12] 0.999975 3 × 10−6 1 540

[13] 0.9988 (4.2 − 10.4) × 10−4 2 633

[14] 0.999969 (7.4 − 24) × 10−7 3 1064

< 10−7 1 1064

[15] 0.999923 1.8 × 10−6 1 633

measured value for three mirrors over four was between 3.7
and 12 × 10−7 rad, while the last mirror was a happy ac-
cident with a phase retardation per reflection smaller than
10−7 rad.

Finally in 2000, a new measurement is reported [15].
Measurements have been done on a Fabry–Perot cavity,
looking at frequency shift of the resonance line of the cav-
ity due to mirror phase retardation. The Fabry–Perot cav-
ity finesse was about 40 000 at λ = 633 nm, corresponding
to R = 0.999923, and the phase retardation per reflection
1.8 × 10−6 rad. The authors have also showed that the mea-
sured phase retardation could be changed by several per-
cents by appropriately injecting more power in the cavity.
Phase retardation relaxed down to the average value several
seconds after the perturbation.

In Table 1 we summarize the existing data on mirror in-
trinsic phase retardation per reflection. We give the refer-
ence number, the value of the reflectivity R, the measured
value of the phase retardation per reflection δM, the number
of characterized mirrors Nmirrors, and finally the light wave-
length λ for which the mirror reflectivity was optimized. We
give the minimum and the maximum value for δM when sev-
eral mirrors have been analyzed in the same reference. In
the case of [9], where a single mirror has been studied but
in several points of its surface, we give the dispersion of the
reported values.

2.2 Our new measurements

In this paragraph we report new measurements of two differ-
ent sets of mirror performed in the framework of the BMV
experiment [20] which goal is to measure vacuum magnetic
birefringence. As in the previous attempts to measure such
a weak quantity [4–6], mirror intrinsic phase retardation is
a source of noise limiting the sensitivity of the apparatus.
Moreover, since signal detection in the BMV experiment

corresponds to a homodyne technique, the ellipticity Γ in-
duced on the linearly polarized laser beam by the Fabry–
Perot cavity overall phase retardation is used as a D.C. car-
rier. To reach a shot noise limited sensitivity, one needs Γ to
be as small as possible [20], implying that the phase retar-
dation axis of the two mirrors constituting the cavity have to
be aligned.

To measure the mirror intrinsic phase retardation, our ex-
perimental method is based on the ones described in de-
tails in [10, 14]. More details on our experimental setup
can be found in [20]. Briefly, 30 mW of a linearly polar-
ized Nd:YAG (λ = 1064 nm) laser beam is injected into a
Fabry–Perot cavity. This laser is locked to the cavity reso-
nance frequency using the Pound-Drever-Hall method [21].
The beam transmitted by the cavity is then analyzed by a
polarizer crossed at maximum extinction and collected by
a low noise photodiode with a noise equivalent power of
0.25 pW/

√
Hz. Polarizer extinction is (4±2)×10−7 which

is always much lower than the ellipticity we measure.
As shown on Fig. 1, both mirrors are schematized as two

ideal wave plates with phase retardation δ1 and δ2. Thus the
phase retardation per reflection of each mirror we want to
measure corresponds to 2δ1 and 2δ2. For the sake of sim-
plicity the angle indicating the direction of the phase retar-
dation axis of the first mirror is taken as zero. The angle be-
tween the phase retardation axis of the two mirrors is θWP.
For δ1, δ2 � 1, combination of both wave plates gives a sin-
gle wave plate of phase retardation [14]:

δEQ =
√

(δ1 − δ2)
2 + 4δ1δ2 cos2 θWP, (1)

and with a fast axis at an angle with respect to the x axis
given by:

cos 2θEQ =
δ1
δ2

+ cos 2θWP√
( δ1
δ2

− 1)2 + 4 δ1
δ2

cos2 θWP

. (2)

The Fabry–Perot cavity corresponds to a wave plate with a
phase retardation δ related to δEQ as follows:

δ = 2F

π
δEQ, (3)

where F is the cavity finesse. Finally, the intensity trans-
mitted by the analyzer over the incident intensity is equal to
the square of the ellipticity ψ induced by the cavity mirrors.
This ellipticity is given by [14]:

ψ2 = δ2

4
sin2(2(θP − θEQ)

)
, (4)

with θP the angle indicating the direction of the light polar-
ization with respect to the x axis. Thus, by measuring the
intensity transmitted by the analyzer as a function of θWP
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Fig. 1 Principle of the experiment: a linearly polarized laser beam is
injected into a Fabry–Perot cavity (mirrors M1 and M2). The polariza-
tion is then analyzed outside of the cavity

and for different value of θP, we are able to calculate the
phase retardation of both mirrors.

Two different sets of mirrors have been tested. The first
one is constituted by two one inch diameter spherical mir-
rors, 6 m radius of curvature, BK7 substrate, manufactured
by Laseroptik GmbH, Garbsen (Germany). The reflectivity
at λ = 1064 nm is 0.999396 corresponding to a cavity fi-
nesse of 5200 and the transmission of the cavity is about
20%. The second set of mirrors is constituted by three one-
inch diameter spherical mirrors, 8 m radius of curvature,
BK7 substrate, manufactured by Layertec GmbH, Mellin-
gen (Germany). The reflectivity at λ = 1064 nm is 0.999972
corresponding to a cavity finesse of about 110000. Ac-
cording to the manufacturer, mirror losses are lower than
100 ppm and the overall measured transmission of the cav-
ity is about 3%.

The square of the ellipticity ψ induced by the cavity as a
function of the angle between the phase retardation axis of
the two mirrors is plotted in Fig. 2. Experimental values are
fitted using (4). The deduced mirror intrinsic phase retarda-
tion per reflection is presented in Table 2 for each mirror.

2.3 Summary

All the published data together with the data obtained in this
work are plotted as a function of (1 − R) on Fig. 3. When
only one mirror has been tested, the corresponding point has
no error bars. When different mirrors have been measured
the data point have error bars. These error bars do not rep-
resent the measurement error for one mirror (typically 10%)
but the dispersion of the measured value for the whole set
of mirrors. Arrows represent mirrors for which the phase re-
tardation was smaller than the apparatus sensitivity (see Ta-
bles 1 and 2). Dots represent the new measurements reported
in this work at λ = 1064 nm.

Published data plotted on Fig. 3 clearly show that the
higher the reflectivity, i.e., the lower the value of (1−R), the
lower the phase retardation per reflection. More precisely,
the intrinsic phase retardation decreases by three orders of
magnitude as (1 − R) decreases by almost three orders of

Table 2 Mirror intrinsic phase retardation

R δM (rad) No. λ (nm)

0.999396 (5.8 ± 0.4) × 10−4 1 1064

(3.4 ± 0.4) × 10−4 2

0.999972 (9.8 ± 0.4) × 10−6 1 1064

(2.6 ± 0.4) × 10−6 2

(1 ± 0.4) × 10−6 3

Fig. 2 Experimental values of the square of the ellipticity ψ as a func-
tion of the angle between the phase retardation axis of the cavity mir-
rors (see Table 2). Data are fitted using (4). Upper curve: the mirrors re-
flectivity is 0.999396. Lower curve: the mirrors reflectivity is 0.999972

magnitude. Our new measurements perfectly confirm this
trend.

3 Computational study

The understanding of the origin of the experimental data
trend is crucial if one wants to control the manufacture to ob-
tain birefringence-free interferential mirrors. We have there-
fore developed a computer code that can simulate the behav-
ior of an interferential mirror made by an arbitrary number
of layers each one with its own arbitrary phase retardation
and arbitrary retardation axis. Our goal was to find a config-
uration of layers, as simple as possible, that could reproduce
the experimental trend and give a first indication to experi-
mentalists to test in further studies.
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Fig. 3 Summary of all the published data and the data obtained in this
work with mirror intrinsic phase retardation δM versus (1 − R). The
symbols represent the wavelength for which the mirror reflectivity was
optimized (◦: 540 nm, �: 633 nm, �: 1064 nm, •: our work). Errors
bars correspond to the minimum and the maximum value when several
mirrors have been analyzed. Arrows represent mirrors for which the
phase retardation was smaller than the apparatus sensitivity. The trend
of the whole points shows that the intrinsic phase retardation decreases
by three orders of magnitude as (1 − R) decreases by almost three
orders of magnitude

3.1 Interferential mirrors

Interferential mirrors are made by a stack of slabs of an opti-
cal thickness of λ/2 as shown on Fig. 4, where λ is the light
wavelength for which the mirror reflectivity is optimized.
Each slab is composed by a low-index layer nL and a high-
index layer nH. Each layer has an optical thickness of λ/4.
Typically, nL is around 1.5 and nH is higher than 2.0. The
substrate is usually fused silica or Zerodur, and a λ/2 coat-
ing of SiO2 protects the reflecting surface of the mirror. Ob-
viously, construction details are not shared publicly by man-
ufacturers (see, e.g., the paragraph on mirror manufacture
in [16]).

In the case of what is called an “odd stack”, i.e., N slabs
of a high-index layer and a low-index layer plus one high-
index layer (2N + 1 layers), the mirror reflectivity R can be
written as [17]:

R =
[1 − ( nH

ns
)2( nH

nL
)2N

1 + ( nH
ns

)2( nH
nL

)2N

]2

(5)

where ns is the index of refraction of the substrate. Typi-
cally to obtain a reflectivity R � 0.999999 one needs about
20 pairs of quarter-wavelength layers of materials such as
SiO2 and either TiO2 or TaO5, while 10 pairs are sufficient
to obtain R � 0.999.

3.2 Methods

The model multilayer we used for our calculations consists
of a stack of slabs placed between two semi-infinite media
of refractive indices ne (the external medium) and ns (the

Fig. 4 Interferential mirror. It consists of an odd stack of slabs de-
posited on a substrate

Fig. 5 Angle between the principal axis of the birefringent medium
and the reference frame

substrate). The coordinate system used to reference the mul-
tilayer axes is shown in Fig. 4.

Each birefringent layer is uniaxial. For the j th layer ex-
tending from z = zj to z = zj+1 we denote by θj+1 the an-
gle between the principal axis of the birefringent medium
and the reference frame and by dj = zj+1 − zj its thickness
(see Fig. 5).

In the reference frame, the dielectric tensor of this layer
is then given by

εj+1 = R−1(θj+1)

(
ε
j+1
1 0

0 ε
j+1
2

)
R(θj+1) (6)

where R(θ) is the standard rotation matrix:

R(θ) =
(

cos θ sin θ

− sin θ cos θ

)
. (7)
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For a low-index layer, we have
⎧
⎨
⎩

n
j+1
1 =

√
ε
j+1
1 /ε0 = nL + δnL,

n
j+1
2 =

√
ε
j+1
2 /ε0 = nL

(8)

and for a high-index layer
⎧
⎨
⎩

n
j+1
1 =

√
ε
j+1
1 /ε0 = nH + δnH,

n
j+1
2 =

√
ε
j+1
2 /ε0 = nH

(9)

where ε0 is the vacuum permeability and nL, nH stand for
refractive indices of similar but no-birefringent layers with
an optical thickness of λ/4, so that n

j+1
1,2 dj = λ/4.

Let us now consider a transverse electric polarized plane
monochromatic wave normally incident upon this model
mirror. The solution of the Maxwell’s equations for the elec-
tric field can be expressed as a superposition of the forward
and backward propagating waves along each reference di-
rection x and y. In the external medium, we have

Ex = A+
e,x exp

{
i(ke,xz − ωt)

}

+ A−
e,x exp

{
i(−ke,xz − ωt)

}
(10)

for the x component and

Ey = A+
e,y exp

{
i(ke,yz − ωt)

}

+ A−
e,y exp

{
i(−ke,yz − ωt)

}
(11)

for the y component, where ω = 2π/λ and

ke,x = ke,y = ω

c
ne (12)

with c the light velocity in vacuum. In the same way, the
electric field in the substrate is written as

Ex = A+
s,x exp

{
i
(
ks,x(z − z2N+1) − ωt

)}

+ A−
s,x exp

{
i
(−ks,x(z − z2N+1) − ωt

)}
(13)

for the x component and

Ey = A+
s,y exp

{
i
(
ks,y(z − z2N+1) − ωt

)}

+ A−
s,y exp

{
i
(−ks,y(z − z2N+1) − ωt

)}
(14)

for the y component, where

ks,x = ks,y = ω

c
ns. (15)

Using the characteristic matrix method [17], we have
⎛
⎜⎜⎜⎜⎝

A+
e,x

A−
e,x

A+
e,y

A−
e,y

⎞
⎟⎟⎟⎟⎠

= M

⎛
⎜⎜⎜⎜⎝

A+
s,x

A−
s,x

A+
s,y

A−
s,y

⎞
⎟⎟⎟⎟⎠

(16)

where M is a 4 × 4 matrix called the characteristic matrix
of the multilayer. This matrix can be calculated step by step
by solving numerically a 4 × 4 linear system of equations
corresponding to the appropriate boundary conditions that
must be fulfilled by the electric field at the interface between
two adjacent layers. Noting that A−

s,x = A−
s,y = 0 and taking

A+
e,x = 1 and A+

e,y = 0, we get

A−
e,x = M21

(M11 − M13M31
M33

)
− M23M31

M33(M11 − M13M31
M33

)
, (17)

A−
e,y = M41

(M11 − M13M31
M33

)
− M43M31

M33(M11 − M13M31
M33

)
. (18)

The induced ellipticity per reflection ψM is then given by

tanψM = |A−
e,y |

|A−
e,x |

. (19)

Since measured phase retardations presented in the previ-
ous section are small, we only consider small birefringence.
To fully reproduce the experimental technique we calculate
ψM as a function of the angle between the polarization and
the birefringent axis of the simulated mirror. We checked
that it behaves as a standard wave plate from which we can
extract the intrinsic phase retardation δM.

3.3 Results

Using the code based on the methods detailed in the previous
section, we have simulated several simple configurations. In
the trivial case in which every layer gives the same contri-
bution to the total effect, the straightforward result was that
phase retardation per reflection increases with the number
of layers, i.e., with the mirror reflectivity. Random phase re-
tardation and axis orientation per layer has also been tested
varying the range of variation of these two parameters. No
result similar to the experimental trend has been obtained.
The configurations which can reproduce this trend are the
ones in which the birefringent layers are only the ones close
to the substrate.

Figure 6 presents two different numerical calculations
for the induced phase retardation per reflection as a func-
tion of (1 − R) where R is the multilayer reflectivity we
got from our simulations. Crosses represent the measure-
ments plotted in Fig. 3. To match these experimental data,
we have chosen the parameters of our simulations such that
numerical results reproduce the experimental data for the
highest (1 − R) available value. Dots with error bars cor-
respond to the result of random calculations with δnL(H)

(resp. θj ) randomly distributed inside the interval [0,0.001]
(resp. [−π,π ]) for each layer. The error bar for each point
corresponds to the dispersion obtained with 10 tries. This
result does not reproduce the experimental data. On the
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Fig. 6 Two different numerical calculations for the induced phase re-
tardation per reflection as a function of (1 − R). Solid curve: birefrin-
gence only for the first layer just after the substrate. Dots with error
bars: calculation with random birefringence per each layer. Crosses:
measurements plotted in Fig. 3

other hand, the solid curve has been obtained by includ-
ing birefringence only for the layer lying directly on the
substrate. The parameters we used are: δnH = 0.13 for the
(2N + 1)th layer (zero for the others). This result repro-
duces quite well the trend of the experimental data, i.e.,
the intrinsic phase retardation decreases by three orders of
magnitude as (1 − R) decreases by three orders of magni-
tude.

4 Conclusion

Existing experimental data on interferential mirrors intrin-
sic phase retardation, together with the two new measure-
ments reported in this work, clearly indicate that some phys-
ical effect decreases the birefringence per reflection when
the mirror reflectivity R increases, i.e., when one increases
the number of layers used to realize the interferential mirror.
Our numerical calculations show that it can be explained
with a simple model in which only the layers close to the
substrate are birefringent. We could not find any other rea-
sonable configuration giving a trend similar to the experi-
mental one.

Our study cannot unveil the physical origin but it seems
to indicate in which part of the mirror the problem resides:
the reflecting layers close to the substrate. We believe that
it is a crucial piece of information for mirror manufacturers
in order to realize birefringence-free mirrors or at least to
control and minimize the effect.

Finally, although experimental data have been obtained
by using different mirrors that in principle have not been
realized using exactly the same manufacture protocol, we

obtain a clear decreasing of the phase retardation per refec-
tion as R increases. But to fully understand the origin of
interferential mirror phase retardation, we believe that next
step should be to study a series of mirrors, all made with the
same industrial process, but with different values of reflec-
tivity R.
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Abstract In this paper we present a theoretical and exper-
imental study of the dynamical behaviour of birefringent
cavities. Our experimental data show that usual hypothe-
sis which provides that a Fabry–Perot cavity is a first-order
low-pass filter cannot explain the behaviour of a birefringent
cavity. We explain this phenomenon and give the theoretical
expression of the equivalent cavity filter which corresponds
to a second-order low-pass filter.

1 Introduction

Fabry–Perot cavities are widely used in experiments de-
voted to the detection of very small optical effects, e.g. in
the framework of gravitational wave interferometers [1–5],
optomechanical noise studies [6], frequency measurements
via optical clocks [7–11], Lorentz invariance experimental
tests [12], or vacuum magnetic birefringence measurements
[13–15].

Fabry–Perot cavities made with interferential mirrors are
birefringent [16–19]. For most of the Fabry–Perot funda-
mental applications, this property can be neglected, at least
at first sight, since the studied effects do not depend on po-
larization. Obviously, this is not the case of birefringence
studies reported in [13–15].
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The dynamical behaviour of nonbirefringent cavities has
been studied in details [20]. The cavity acts as a first-order
low-pass filter whatever the polarization of the incident light
is, and the frequency spectrum of the transmitted light is
modified consequently. As far as we know, nothing has been
published so far regarding birefringent cavities. In this pa-
per we present a theoretical and experimental study of the
dynamical behaviour of birefringent cavities in the presence
of a time variation of the incident light intensity and in the
presence of a time variation of the birefringence itself.

Our experimental data show that a birefringent cavity
cannot be described as a first-order low-pass filter as it
is generally assumed. We explain this phenomenon and
give the theoretical expression of the equivalent cavity fil-
ter which corresponds to a second-order low-pass filter. We
also discuss the implications of this cavity behaviour in the
case of existing experiments for measuring very low bire-
fringence effects using Fabry–Perot cavities.

2 Experimental setup

Our study is performed in the framework of the BMV exper-
iment [15] whose goal is to measure vacuum magnetic bire-
fringence. Briefly, as shown on Fig. 1, a linearly polarized
Nd:Yag laser beam (λ = 1064 nm) is injected into a Fabry–
Perot cavity made of mirrors M1 and M2. The length of the
cavity is L = 2.2 m. The laser frequency is locked to the
cavity resonance frequency using the Pound–Drever–Hall
method [21]. To this end, the laser is phase-modulated at
10 MHz with an electro-optic modulator (EOM). The beam
reflected by the cavity is then analyzed on the photodiode
Phr. This signal is used to drive the acousto-optic modulator
(AOM) frequency for a fast control and the Peltier element
of the laser for a slow control.
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Fig. 1 Experimental setup. An Nd-YAG laser is frequency locked to
the Fabry–Perot cavity made of mirrors M1 and M2. The laser beam
is linearly polarized by the polarizer P and analyzed with the polar-
izer A. This analyzer allows one to extract the extraordinary beam sent
on photodiode Phe and the ordinary beam sent on photodiode Pht. The
beam reflected by the cavity analyzed on the photodiode Phr is used for
the cavity locking. A transverse magnetic field B can be applied inside
the cavity in order to study the magnetic birefringence of the medium.
EOM = electro-optic modulator; AOM = acousto-optic modulator

Our birefringence measurement is based on an elliptic-
ity measurement. Light is polarized just before the cavity
by the polarizer P. The beam transmitted by the cavity is
then analyzed by the analyzer A crossed at maximum ex-
tinction and collected by a low-noise photodiode Phe. The
analyzer has an escape window which allows us to extract
the reflected ordinary beam. This beam is collected by the
photodiode Pht. Both signals are simultaneously used in the
data analysis as follows: Ie/It = σ 2 + Ψ 2

tot, where Ψtot is the
total ellipticity acquired by the beam going from P to A, and
σ 2 is the polarizer extinction ratio. Our polarizers are Glan
Laser Prism manufactured by Karl Lambrecht Corporation
(Chicago, USA) which have an extinction ratio of 4 × 10−7.

The origin of the total ellipticity cavity is firstly due to the
mirror intrinsic birefringence. Mirrors are similar to wave
plates. For small birefringence, combination of both wave
plates gives a single wave plate. The phase retardation and
the axis orientation of this equivalent wave plate depends
on the birefringence of each mirror and on their respective
orientation [23, 24]. We define the ellipticity induced on the
linearly polarized laser beam by the Fabry–Perot cavity as
Γ which is set to about 10−2 in the experiment described in
this paper.

A second component of the total ellipticity appears when
a birefringent medium is placed inside the cavity. For exam-
ple, on magnetic birefringence measurements, a transverse
magnetic field B is applied inducing an ellipticity Ψ ∝ B2l

where l is the optical path in the magnetic field.
Finally, if ellipticities are small compared with unity, one

gets:

Ie/It = σ 2 + (Γ + Ψ )2. (1)

The goal of the experiment presented in this paper is to
have a complete understanding of birefringent cavity dy-
namical behaviour. For this study, two different methods

have been implemented. In the next section we present the
cavity behaviour in the case of a time variation of the inci-
dent light intensity, whereas in the last section, the ellipticity
inside the cavity is modulated.

3 Time variation of the incident light intensity

In this part, we study the cavity dynamical behaviour to a
time variation of the incident laser beam intensity while the
total ellipticity remains constant. Two approaches have been
used: study of the cavity response to a step function or to
an intensity frequency modulation of the incident beam. The
first section is devoted to the presentation of both approaches
when looking at the ordinary beam collected by Pht, i.e.
when the transmitted beam polarization is parallel to the in-
cident one. In the second section, this study is performed on
the extraordinary beam, i.e. when the beam polarization is
perpendicular to the incident one.

3.1 Cavity dynamical behaviour towards the ordinary beam

3.1.1 Time response of the cavity to a step function

The simplest way to study the cavity response is to abruptly
switch off the intensity of the incident beam locked to the
cavity and then to look at the intensity decay of the beam
transmitted by the cavity. This method allows one to deter-
mine typical cavity parameters as the photon lifetime, the
cavity finesse, the full width at half maximum, or the cavity
quality factor.

Experimentally, the intensity is switched off thanks to the
acousto-optic modulator (AOM) shown on Fig. 1 and used
as an ultrafast commutator. Its switched-off time is less than
1 µs, far less than the photon lifetime as we will see below.
On Fig. 2 the intensity of the ordinary beam is plotted as a
function of time. For t < t0, the laser is locked to the cavity.
The laser intensity is switched off at t0. For t > t0, one sees
the typical exponential decay [22]:

It(t) = It(t0)e
−(t−t0)/τ , (2)

where τ is the photon lifetime. This lifetime is related to
the finesse F � π/(1 − R) of the cavity through the re-
lation: τ = LF/πc with c the speed of light and R the
mirror reflectivity, which is supposed to be the same for
both mirrors. By fitting our data with this expression one
gets τ = (245 ± 10) µs corresponding to a finesse of F =
(105 ± 5) × 103. The uncertainty results from statistical un-
certainty.
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Fig. 2 Time evolution of the intensity of the ordinary beam (grey line).
The laser is switched off at t = t0. Experimental data are fitted by
an exponential decay (black dashed line) giving a photon lifetime of
τ = (245 ± 10) µs and a finesse of F = (105 ± 5) × 103

3.1.2 Frequency response of the cavity to an intensity
modulation

In order to complete our understanding of the experiment,
we also study the frequency response of the Fabry–Perot
cavity to an intensity modulation. Theoretically, for an in-
cident light modulated in intensity at pulsation ωF and for a
small depth of modulation, the complex response function is
given by [20]

Ht(ωF) = I
(ωF)
t

I
(ωF)
i

∝ 1

1 + i ωF
ωc

. (3)

I
(ωF)
t (I (ωF)

i ) is the ωF component of the ordinary (incident)
beam intensity. The response function operates as a first-
order low-pass filter with a cutoff frequency νc = ωc/2π =
1/4πτ .

Experimentally, to study the cavity frequency response,
the laser is locked to the cavity, and the intensity is modu-
lated with a small depth of modulation thanks to the AOM.
The intensity of the incident beam and of the ordinary beam
transmitted by the cavity is recorded at different modulation
frequencies.

Results are presented on Fig. 3. Figure 3a presents the
gain of the response function normalized to 1 at low fre-
quency, and Fig. 3b presents the phase delay. Data are fitted
by the response function of a first-order low-pass filter. Cut-
off frequency is equal to νc = (310 ± 20) Hz when fitting
the gain, and νc = (315 ± 20) Hz when fitting the phase
delay. These values correspond to a finesse of respectively
F = (109 ± 9) × 103 and F = (108 ± 8) × 103, which is
in agreement with the finesse measured with the previous
approach.

While in the second approach we are looking at the fre-
quency response of the cavity, the first approach is per-
formed in the time domain. Both areas of analysis are equiv-
alent and can be connected thanks to Laplace transform.

Fig. 3 Experimental cavity response function towards the ordinary
beam. (a) Gain of the response function normalized to 1 at low fre-
quency, i.e. |I (ωF)

t /I
(ωF)
i | as a function of the modulation frequency ωF.

Data are fitted by the gain of a first-order low-pass filter. (b) Phase de-
lay between I

(ωF)
t and I

(ωF)
i as a function of the modulation frequency.

Data are fitted by the phase delay of a first-order low-pass filter

However, the time analysis is usually preferred to the fre-
quency analysis since it is simpler and quicker to implement
on the experiment.

Finally, the study performed on the ordinary beam shows
that the dynamical behaviour of our cavity is the same as the
one obtained on nonbirefringent cavities. The typical expo-
nential decay is observed when the incident light is suddenly
switched off and the frequency response shows that the cav-
ity behaves as a first-order low-pass filter.

3.2 Cavity dynamical behaviour towards the extraordinary
beam

We now turn to the study on the extraordinary beam col-
lected by Phe, i.e. the beam transmitted by the cavity with a
polarization perpendicular to the polarization of the incident
one.

3.2.1 Time response of the cavity to a step function

Time evolution of the extraordinary beam when the incident
beam is suddenly switched off is shown on Fig. 4. By com-
paring this curve to the one plotted on Fig. 2, we see that the
cavity does not have the same behaviour for It and Ie. When
one fits Ie with an exponential decay, the experimental be-
haviour is not reproduced, and it gives a photon lifetime of
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Fig. 4 Time evolution of the intensity of the extraordinary beam
(grey line). The laser is switched off at t = t0. Experimental data
are fitted by (5) (black dashed line) giving a photon lifetime of
τ = (245 ± 10) µs. The fit with an exponential decay (dots) does not
correspond to the experimental behaviour and gives a photon lifetime
of τ = 735 µs in disagreement with previously given values.

τ = 735 µs in disagreement with previously given values.
We will show that this is due to the intrinsic birefringence of
the cavity.

Let us calculate the transmitted intensity along the round-
trip inside the cavity:

– For t ≤ t0, the laser is continuously locked to the cavity.
According to (1), the intensities of the ordinary and the
extraordinary beams are related by

Ie(t ≤ t0) = Γ 2It(t ≤ t0).

The polarizer extinction ratio is neglected since we have
σ 2 � Γ 2 and no birefringence is applied inside the cavity.

– At t = t0, the laser beam is abruptly switched off, the
cavity empties gradually. The ordinary and extraordinary
beams are slightly transmitted at each reflection on the
mirrors. However, because these mirrors are birefringent,
some photons of the ordinary beam are converted into the
extraordinary one. The reverse effect is neglected because
Ie � It.

As shown on (1), the total ellipticity corresponds to
the sum of ellipticities when they are small. Furthermore,
following [24], the ellipticity Γ induced by the cavity is
related to the ellipticity induced per round-trip γ through
the relation γ = Γ π/F .

Thus after one round-trip inside the cavity, i.e. at time
t0 + tD = t0 + 2L/c, we get:

Ie(t0 + tD) = (Γ + γ )2It(t0 + tD).

– After p round-trips, one gets the intensity of the extinc-
tion beam:

Ie(t0 + ptD) = (Γ + pγ )2It(t0 + ptD). (4)

Fig. 5 Cavity response function towards the extraordinary beam.
(a) Gain of the response function normalized to 1 at low frequency,
i.e. |I (ωF)

e /I
(ωF)
i | as a function of the modulation frequency ωF. Data

are fitted by the gain of a second-order low-pass filter. (b) Tangent of
the phase delay between I

(ωF)
e and I

(ωF)
i as a function of the modu-

lation frequency. Data are fitted by the phase delay of a second-order
low-pass filter

Assuming that (4) holds not only at times t0 + ptD but also
at any time t > t0 and using (2) for It, we can write:

Ie(t) = Ie(t0)

(
1 + t − t0

2τ

)2

e− t−t0
τ . (5)

This expression is used to fit our experimental data plotted
on Fig. 4. We find a photon lifetime of τ = (245 ± 10) µs,
which is in good agreement with the value found in the pre-
vious section.

3.2.2 Frequency response of the cavity to an intensity
modulation

As done before, we also study the frequency response of
the cavity towards the extraordinary beam to an intensity
modulation. Results are presented on Fig. 5.

To calculate the complex response function expected the-
oretically, we use (5) and the Laplace transform, and we get:

He(ωF) = I
(ωF)
e

I
(ωF)
i

∝
(

1

1 + i ωF
ωc

)2

.

I
(ωF)
e corresponds to the ωF component of the extraordinary

beam intensity. The response function operates as a second-
order low-pass filter with the same cutoff frequency νc found
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previously for the ordinary beam. Data of Fig. 5 are fitted by
the following expressions:

∣∣He,n(ωF)
∣∣ = 1

1 + (ωF
ωc

)2
, (6)

arg
[
He,n(ωF)

] = − 2ωF
ωc

1 − (ωF
ωc

)2
. (7)

Cutoff frequencies given by the fits are νc = (325 ± 20) Hz
and νc = (350 ± 20) Hz and are consistent with the values
found in the previous section.

The study presented in this part shows that a birefringent
cavity cannot be described as a first-order low-pass filter as
it is generally assumed for usual cavities. For the extraordi-
nary beam, the cavity acts as a second-order low-pass filter
instead of a first-order one. This filter represents the com-
bined action of two successive first-order low-pass filters.
While the first filter characterizes the usual cavity behav-
iour as seen in Sect. 3.1, we can interpret the second filter in
terms of pumping or filling: due to the mirror birefringence,
some photons of the ordinary beam are gradually converted
into the extraordinary beam at each reflection.

4 Time variation of the birefringence

The second method implemented to study the cavity dynam-
ical behaviour consists in varying the cavity birefringence
itself. The intrinsic cavity birefringence can hardly be mod-
ulated. We have chosen to obtain a time variation of the cav-
ity birefringence by a variation of the birefringence of the
medium placed inside the cavity.

According to (1), the measured signal is given by

Ie(t)/It = σ 2 + Γ 2 + 2Γ Ψ (t).

We assume that Ψ � Γ . Let us consider that the ellipticity
per round-trip ψ applied inside the cavity is modulated with
a pulsation ωF:

ψ(t) = ψ0 sin(ωFt).

Following calculations performed in [15], the ellipticity out-
side of the cavity induced by the applied birefringence is

Ψ (t) = Ψ0√
1 + (

ωF
ωc

)2
sin(ωFt + φ) (8)

with tanφ = −ωF/ωc and Ψ0 = ψ0F/π . We see that this el-
lipticity corresponds to an ellipticity filtered by a first-order
low-pass filter with a cutoff frequency corresponding to the
one of the cavity. In other words, if the ellipticity ψ varies
over the photon lifetime in the cavity, the ellipticity out-
side of the cavity is attenuated and does not remain in phase
with ψ .

Fig. 6 (a) Dashed curve: Square of the magnetic field as a function of
time. Line: Signal Ie/It as a function of time while the laser is locked
to the cavity. (b) Dashed curve: Square of the magnetic field filtered by
a first-order low-pass filter corresponding to the cavity filtering. Line:
Signal Ie/It as a function of time while the laser is locked to the cavity.
Shifts of both maxima are compensated when the cavity filtering is
taken into account. Noise observed on the transmitted intensities after
2 ms of magnetic pulse are due to vibrations induced on the cavity
by the magnetic pulse. This part is not taken into account in the data
analysis

From the experimental point of view, the birefringence
inside the cavity corresponds to a magnetic birefringence.
The induced ellipticity per round-trip is given by ψ ∝
B2 sin 2θ where θ is the angle between light polarization and
the direction of the transverse magnetic field. To modulate
this ellipticity, one can modulate the value of the magnetic
field or modulate the direction of the magnetic field.

On our experiment, the magnetic field is created thanks
to pulsed coils. Thus, the time variation of the applied bire-
fringence corresponds to a time variation of the square of
the magnetic field. On Fig. 6a, a typical magnetic pulse is
plotted. It reaches its maximum of 2.9 T within less than
2 ms.

The cavity finesse is 100000, which corresponds to a pho-
ton lifetime of 230 µs. About 15 mbar of air was inserted
inside the vacuum chamber which contains the cavity and
the polarizers. The applied birefringence is always smaller
compared to the mirror birefringence. The observed signal
is shown on Figs. 6a and b on the right axis and compared to
the magnetic field. We see that both maxima of B2 and Ie/It

do not coincide. However, as expected by (8) and shown on
Fig. 6b, this shift is actually compensated if we apply a first-
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order low-pass filter corresponding to the cavity filtering on
the square of the magnetic field.

Finally, the value of the magnetic birefringence is cal-
culated through the correlation between Ψ (t) and B2(t) fil-
tered [15]. In the case of Fig. 6 this analysis is not performed
for t > 2 ms where vibrations are induced on the cavity due
to the magnetic pulse. Improvements are currently under de-
velopment to minimize this effect. If the filter is not applied
on the magnetic field, i.e. if the cavity influence is not taken
into account, a systematic uncertainty of a few percents is
added on the value of the magnetic birefringence.

5 Conclusion

We have studied the dynamical behaviour of birefringent
Fabry–Perot cavities. Actually, because of the intrinsic mir-
ror birefringence, all Fabry–Perot cavities are birefringent,
and our study applies to all of them. We have shown that the
cavity dynamical behaviour depends on polarization.

For intensity modulation of the incoming beam, its fre-
quency spectrum is filtered by the cavity differently depend-
ing on the polarization of the light exiting the cavity. This
filtering also applies to the intensity noise frequency spec-
trum.

We have also considered the case of a cavity birefrin-
gence time variation. To study how a cavity filters such a
modulation, we have measured a magnetic birefringence in-
duced by a pulsed magnetic field on a medium inside a
Fabry–Perot cavity. We have experimentally shown that de-
pending on the photon lifetime in the cavity, i.e. the cavity
cutoff frequency, the induced ellipticity is attenuated and be-
comes out of phase with respect to the magnetic field pulse.
The finesse of the cavity we used is of the order of 100000.
A higher finesse will correspond to a more important filter-
ing and to a bigger systematic uncertainty correction.

The problem is exactly the same if the value of the mag-
netic field remains fixed while its direction compared to the
cavity birefringence axis is rotated as it is the case on other
experiments measuring magnetic birefringence. For exam-
ple, in [25], where the Cotton–Mouton effect in helium is
measured, a superconducting dipole magnet rotating at a
frequency of 0.35 Hz is used. The finesse is 100000 cor-
responding to a cavity cutoff frequency of νc = 116.5 Hz.
Taking into account the cavity filtering allows us to avoid a
systematic uncertainty of 1.8×10−3% on the final magnetic
birefringence. In the same way, in [26], where the Cotton–
Mouton effect of different gases is measured, a dipole per-
manent magnet is rotating at about 6.8 Hz inside a cavity
with a cutoff frequency of 725 Hz. The systematic uncer-
tainty is then 1.7 × 10−2%. Systematic uncertainty on such
experiments is negligible compared to statistical uncertain-
ties but it will become more important if the rotating fre-
quency increases and/or the cavity finesse increases.
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C H A P I T R E 3

Biréfringence magnétique dans les

gaz et dans le vide

3.1 Biréfringence magnétique dans les gaz

L'objectif �nal du projet BMV est d'observer, à l'aide de l'ellipsomètre décrit
dans le chapitre précédent, la biréfringence magnétique linéaire (ou e�et Cotton-
Mouton) du vide prédit dans le cadre de l'électrodynamique quantique. Comme
nous l'avons vu en introduction, l'e�et à mesurer est extrêmement faible, avec une
biréfringence de ∆n ' 4 × 10−24 T−2. L'observation d'un si petit e�et requiert
un ellipsomètre de très grande sensibilité qui doit pouvoir être préalablement
testé, tant en termes de sensibilité que d'exactitude. Ces tests sont réalisés avec
des mesures d'e�et Cotton-Mouton dans des gaz à faible pression. A cette �n,
la mesure dans l'hélium est particulièrement appropriée. C'est en e�et le gaz qui
présente le plus faible e�et Cotton-Mouton après le vide quantique. La valeur
de sa biréfringence est en outre calculée par des méthodes qui sont considérées
comme exactes. La comparaison de nos valeurs expérimentales avec les prédic-
tions théoriques nous permettent alors de valider le dispositif et le traitement de
nos données.

Mais les mesures de biréfringence magnétique dans les gaz vont bien au-delà
du simple test de notre dispositif expérimental. Elles permettent en particulier de
tester notre connaissance de l'interaction entre les champs électromagnétiques et
la matière. En e�et, la valeur de la biréfringence dépend des propriétés microsco-
piques de la matière comme la polarisabilité électrique, la susceptibilité magné-
tique ou l'hypersusceptibilité magnétique. Ces propriétés sont calculées dans le
cadre de la chimie quantique. La comparaison entre nos mesures et les prévisions
théoriques peut alors permettre de valider les modèles théoriques utilisés. Ceci
est d'autant plus vrai pour les atomes de numéro atomique élevé, comme le xé-
non, où les e�ets de corrélations électroniques et les e�ets relativistes deviennent
importants.
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3.1.1 Biréfringence magnétique circulaire : e�et Faraday

La biréfringence magnétique induite par l'e�et Faraday est celle la plus faci-
lement mesurable. En e�et, comme nous l'avons vu dans le chapitre précédent,
cette mesure ne requiert que des champs magnétiques modestes, délivrés par
exemple par un solénoïde travaillant à l'air libre. Nous avons mesuré l'e�et Fa-
raday de deux gaz nobles : l'hélium qui est le gaz présentant le plus petit e�et et
le xénon qui est le gaz noble non radioactif de numéro atomique le plus élevé.

Le traitement des données et les résultats sont présentés en détails dans les
articles que nous avons publiés dans Phys. Rev. A pour l'hélium [78] et dans J.
Chem. Phys. pour le xénon [79] ainsi que dans la thèse d'Agathe Cadène [57].
Dans la suite, je ne présente que les étapes principales de notre méthode d'analyse
ainsi que les résultats mis à jour.

Principe de la mesure

L'e�et Faraday est extrait du rapport entre les intensités transmises par le po-
lariseur de sortie (voir �gure 2.2 et équation (2.29)) et qui correspond à l'équation
suivante :

Ie(t)

It,f(t)
= σ2 + Γ2 + [ε+ ΘF,f(t)]

2 , (3.1)

= σ2 + Γ2 + ε2 + 2εΘF,f(t) + Θ2
F,f(t). (3.2)

Le champ magnétique est longitudinal. Il n'y a donc pas d'ellipticité Ψ induite
par un champ magnétique transverse correspondant à l'e�et Cotton-Mouton. Les
indices �f� rappellent qu'il faut tenir compte du �ltrage de la cavité Fabry-Perot.
Le champ magnétique longitudinal est modulé à la fréquence ν = 18Hz :

B‖ = B‖,0 sin(2πνt+ φ). (3.3)

D'après la partie 2.1, l'angle de rotation de la polarisation incidente induit par le
champ magnétique longitudinal est :

ΘF = ΘF,0 sin(2πνt+ φ), (3.4)

avec ΘF,0 =
2F

λ
kFB‖,0LB =

2F

π
V B‖,0LB. (3.5)

Le signal mesuré, donné par l'équation (3.2), présente trois composantes fré-
quentielles : une composante DC, une composante à la fréquence ν et une com-
posante à la fréquence 2ν. Pour mesurer la constante de Verdet V , nous utilisons
l'amplitude du signal à la fréquence double qui permet de s'a�ranchir des valeurs
de σ2, Γ2 et ε. Cette amplitude est donnée par :

A2ν =
Θ2

F,0

2

(
1 +

(
ν
νc

)2
) , (3.6)
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en tenant compte du �ltrage de la cavité 1. L'amplitude A2ν est mesurée pour
di�érentes amplitudes de champ magnétique. Les données sont ensuite ajustées
par une courbe quadratique : KVB

2
‖,0. La constante de Verdet dépend �nalement

des paramètres expérimentaux de la façon suivante :

V (T, P ) =
√

2KV

√
1 +

(
ν

νc

)2
π

2FLB
, (3.7)

=
√

2KV

√
1 + (4πτν)2

4τ∆ISLLB
, (3.8)

avec T et P la température et la pression du gaz dans l'enceinte à vide. L'équa-
tion (3.8) est celle que nous utilisons car elle relie directement la constante de
Verdet aux paramètres réellement mesurés expérimentalement.

La température du gaz reste constante, avec T = 294± 1K. Nous mesurons
la constante de Verdet pour di�érentes pressions de gaz, de 10mbar à 60mbar
pour l'hélium et de 1mbar à 5mbar pour le xénon. A de telles pressions, les
gaz peuvent être considérés comme parfaits : la constante de Verdet est alors
proportionnelle à la pression. Les données sont donc ajustées par une droite :

V (T, P ) = V nP, (3.9)

de manière à extraire la constante de Verdet normalisée V n à P = 1 atm.

Résultats dans l'hélium

Les mesures d'e�et Faraday dans l'hélium nous donnent la constante de Ver-
det correspondante à T = 294± 1K et à λ = 1064nm :

V n(T ) = (3.77± 0.11)× 10−5 rad.T−1m−1atm−1. (3.10)

Les données théoriques sont habituellement données à T0 = 273.15K. Toujours
en supposant un gaz parfait, la constante de Verdet à cette température devient :

V N = V n(T )
T

T0

, (3.11)

= (4.06± 0.12)× 10−5 rad.T−1m−1atm−1. (3.12)

Les incertitudes, données à 1σ, tiennent compte des incertitudes de type A et de
type B 2. Elles sont listées dans le tableau 3.1.

1. Cette équation di�ère de celle qui a été utilisée dans les références [78,79] où nous avions
fait l'erreur d'appliquer le �ltre dû à la cavité au signal Θ2

F au lieu de ΘF. Les résultats présentés
dans ce manuscrit di�èrent donc légèrement des résultats publiés. Compte tenu de la fréquence
de modulation, la di�érence est cependant inférieure à l'incertitude des données et ne modi�e
pas les conclusions obtenues dans ces articles.

2. Nous utilisons ici la convention préconisée par le GUM [80]. Les incertitudes de type A
sont évaluées par une analyse statistique. Toutes les autres correspondent au type B.
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Paramètre Incertitude relative Incertitude relative
de type A de type B

τ 2.0× 10−2

KV hélium : ' 1.7× 10−2 3.2× 10−2

xénon : ' 2.6× 10−3 3.2× 10−2

LB 1.9× 10−2

∆ISL 3× 10−4

P 2× 10−3

Table 3.1 � Paramètres utilisés pour la mesure de la constante de Verdet avec leurs
incertitudes relatives à 1σ.

Notre valeur peut être comparée aux autres valeurs expérimentales publiées.
Les références [81,82] présentent le travail le plus complet avec des mesures dans
di�érents gaz et à di�érentes longueurs d'onde. Les valeurs mesurées dans l'hé-
lium sont présentées sur la �gure 3.1 par les triangles blancs. Aucune valeur n'est
donnée à 1064 nm. Elle peut cependant être extrapolée en ajustant les données
par a/λ2 [57]. La courbe d'ajustement correspond à la courbe en pointillés. La
constante de Verdet ainsi calculée est, à T = 273.15K et P = 1 atm :

V N = (4.15± 0.05)× 10−5 rad.T−1m−1atm−1. (3.13)

L'incertitude, donnée à 1σ, tient compte de l'incertitude donnée par l'ajustement
et de celle donnée par les auteurs pour chaque mesure et qui est inférieure à 1%.
Cette dernière est cependant sous-estimée. En e�et, leurs mesures ont été réalisées
en étalonnant au préalable le dispositif expérimental avec des mesures dans de la
vapeur d'eau dont la constante de Verdet est supposée connue et sans incertitude.
Notre mesure est représentée par le triangle noir. Elle est compatible à 1σ avec
la valeur extrapolée des données de la référence [82].

Nous comparons �nalement notre mesure avec les prédictions théoriques qui
sont représentées graphiquement sur la �gure 3.2. Les données les plus récentes
ont été publiées en 2005 en utilisant un calcul Hartree-Fock [83], et en 2012 avec
une méthode d'interaction de con�guration [84]. Les premières, représentées par
les ronds gris, sont tout juste compatibles avec la notre à 3σ. Le calcul tient
compte des e�ets relativistes mais pas des corrélations électroniques. Les données
publiées en 2012 correspondent aux ronds blancs. Elles sont elles aussi extrapolées
à 1064 nm avec l'ajustement en a/λ2. Le résultat est en accord à 1σ avec notre
mesure. Dans ce cas, les répulsions électroniques sont prises en compte de manière
beaucoup plus précise, ce qui montre l'importance de la prise en compte de cette
correction.

L'ensemble des données expérimentales et théoriques est �nalement résumé
dans le tableau 3.2. Elles ont été publiées dans Phys. Rev. A [78].
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Figure 3.1 � Données expérimentales de la constante de Verdet de l'hélium. Les
triangles blancs correspondent aux données publiées dans la référence [82]. Les données
sont ajustées par a/λ2 (courbe pointillée) de façon à calculer la valeur à 1064 nm. Notre
mesure est représentée par le triangle noir avec son incertitude à 1σ. L'encart permet
de zoomer autour de λ = 1064nm.
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Figure 3.2 � Comparaison de notre valeur expérimentale (triangle noir) aux valeurs
théoriques publiées en 2005 [83] (ronds gris) et en 2012 [84] (ronds blancs) et extrapo-
lées à 1064 nm (courbe pointillée).
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Référence
105 × V N

Remarques
(rad.T−1m−1atm−1)

Théorie
[83] 3.72 sans corrélation électronique
[84] 4.09± 0.02 valeur extrapolée

Expérience
[82] 4.15± 0.05 valeur extrapolée et non absolue

ce travail, [78] 4.06± 0.12

Table 3.2 � Bilan des valeurs expérimentales et théoriques de la constante de Verdet
de l'hélium gazeux à λ = 1064 nm et T0 = 273.15 K.

Résultats dans le xénon

Les mesures d'e�et Faraday réalisées sur notre expérience avec un gaz de
xénon donne une constante de Verdet à T = 273.15K de :

V N = (3.47± 0.10)× 10−3 rad.T−1m−1atm−1. (3.14)

L'incertitude est donnée à 1σ.
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Figure 3.3 � Données expérimentales de la constante de Verdet du xénon. Les tri-
angles blancs correspondent aux données publiées dans la référence [82]. Les données
sont ajustées par a/λ2 + 2b/λ4 (courbe en trait plein) de façon à calculer la valeur à
1064 nm. Notre mesure est représentée par le triangle noir avec son incertitude à 1σ.
L'encart permet de zoomer autour de λ = 1064nm.

Cette valeur est comparée aux données expérimentales publiées dans la ré-
férence [82]. Ces dernières sont de nouveau interpolées pour pouvoir extraire la
valeur à 1064 nm. Toutefois, pour avoir un bon ajustement des données, il est
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nécessaire d'aller à l'ordre supérieur en 1/λ2. Les données sont ajustées par la
courbe a/λ2 + 2b/λ4, donnant :

V N = (3.46± 0.04)× 10−3 rad.T−1m−1atm−1. (3.15)

Notre mesure est là encore compatible à 1σ avec cette valeur. La �gure 3.3 fait
la synthèse de toutes ces données.

Le calcul théorique de la constante de Verdet du xénon est quant à lui loin
d'être trivial et il est régulièrement utilisé pour tester de nouvelles méthodes de
calculs. Pour obtenir des résultats précis, il est en particulier important de tenir
compte des corrélations électroniques et des e�ets relativistes. Ceci est d'autant
plus important pour les atomes de numéro atomique élevé : alors que la prise
en compte des e�ets relativistes n'apporte qu'une correction de -0.03% pour
l'hélium, elle peut s'élever à 3 ou 4% dans le cas du xénon.
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Figure 3.4 � Comparaison de notre valeur expérimentale (trait plein) avec son incer-
titude à 1σ (traits pointillés) aux valeurs théoriques à λ = 1064 nm et T = 273.15K
publiées en 2005 par Ekström et al [83], en 2012 par Ikäläinen et al [85], en 2012 par
Savukov [84] et de nouveau par Savukov en 2015 [86]. Les données théoriques calculées
dans le cadre d'une collaboration avec S. Coriani et A. Rizzo sont regroupées sous le
titre �ce travail�. Icônes noires : e�ets relativistes pris en compte. Icônes blanches : ef-
fets relativistes non pris en compte. Ronds : corrélations électroniques prises en compte.
Triangles : corrélations électroniques non prises en compte.

La �gure 3.4 permet de comparer notre valeur expérimentale (trait plein, les
traits pointillés correspondant à l'incertitude à 1σ) aux prévisions théoriques pu-
bliées dans les références [79,83�86]. Les icônes noires correspondent aux calculs
incluant les e�ets relativistes, contrairement aux icônes blanches. Les corrélations
électroniques sont prises en compte pour les ronds, contrairement aux triangles.
L'ensemble de ces données est également résumé dans le tableau 3.3. Les détails
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concernant les di�érentes méthodes de calculs sont donnés dans la thèse d'Agathe
Cadène [57] et dans notre publication [79]. Notre travail a en outre été réalisé en
collaboration avec Sonia Coriani et Antonio Rizzo pour les aspects théoriques.
Leurs résultats sont indiqués sur la �gure 3.4 sous le titre �ce travail�.

Référence
103 × V N

Remarques
(rad.T−1m−1atm−1)

Théorie
[84] 3.86± 0.01 CI, valeur extrapolée
[86] 3.52 CI-MBPT
[83] 3.35 TDHF
[83] 3.46 TDHF
[85] 3.34 NR
[85] 3.48 X2C
[85] 3.46 DHF
[85] 3.52 NR-CCSD
[79] 3.49 CCSD
[79] 3.52 CC3

Expérience
[82] 3.46± 0.04 valeur extrapolée et non absolue

ce travail, [79] 3.47± 0.10

Table 3.3 � Bilan des valeurs expérimentales et théoriques de la constante de Verdet
du xénon gazeux à λ = 1064 nm et T0 = 273.15 K.

Hormis la valeur extrapolée à partir des données théoriques publiées par Savu-
kov en 2012 [84], notre mesure expérimentale est compatible avec les prévisions
théoriques. On constate par ailleurs un meilleur accord lorsque les e�ets relati-
vistes sont pris en compte, ainsi que les corrélations électroniques.

3.1.2 Biréfringence magnétique linéaire : e�et Cotton-Mouton

Principe de la mesure

Les mesures d'e�et Cotton-Mouton dans les gaz datent des années 1930 [87]
et les premières mesures systématiques ont été publiées en 1967 par Buckin-
gham et ses collaborateurs [88]. Les mesures ont été réalisées à l'époque sur un
grand nombre de gaz tels que le benzène, le dihydrogène, le diazote, le monoxyde
d'azote ou encore le dioxygène et l'éthane. Depuis, de nombreuses mesures ont
été publiées et les résultats sont en particulier utilisés pour tester les propriétés
de l'interaction électromagnétique avec les atomes ou les molécules.
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Parmi tous les gaz possibles, le diazote est l'un des gaz le plus souvent uti-
lisé pour calibrer les dispositifs expérimentaux [21,60,89]. Il présente l'avantage
d'être relativement peu coûteux, ino�ensif pour la santé, facile à utiliser et avec
un e�et Cotton-Mouton relativement grand. C'est le gaz que nous avons utilisé
pour nos premières mesures.

Sur notre ellipsomètre, le signal Cotton-Mouton Ψ est extrait du rapport des
intensités transmises par le polariseur de sortie (voir �gure 2.1 et équation (2.29))
correspondant à l'équation suivante :

Ie(t)

It,f(t)
= σ2 + [Γ + Ψf(t)]

2 . (3.16)

Dans le cas du diazote, les mesures ont été réalisées avec une ellipticité statique
de l'ordre de 10−3 rad. La rotation statique ε peut être négligée. Le champ ma-
gnétique longitudinal, induisant une rotation ΘF de la polarisation incidente est
dans un premier temps négligé.

Les signaux bruts typiques obtenus sont présentés sur la �gure 3.5 avec une
pression de 32.1 × 10−3 atm de diazote et une �nesse de cavité de l'ordre de
480 000. La puissance du faisceau ordinaire It reste constante (haut) alors que la
puissance du faisceau extraordinaire Ie (milieu) varie lorsque le champ magné-
tique est appliqué (bas). Le champ magnétique atteint son maximum de 5.2T en
moins de 2ms, contrairement au signal Ie qui atteint son extremum en presque
3ms. Le temps de montée du champ magnétique étant ici comparable à la du-
rée de vie des photons dans la cavité, l'in�uence du �ltrage de la cavité y est
particulièrement visible.

L'ellipticité Ψf induite par le champ magnétique est extraite de l'équation (3.16).
En supposant |Ψf | � |Γ|, on obtient :

±Ψf(t) = −|Γ|+
√

Ie(t)

It,f(t)
− σ2. (3.17)

L'ellipticité statique |Γ| est mesurée quelques millisecondes avant chaque tir de
champ magnétique, lorsque Ψf(t) = 0. L'e�et Cotton-Mouton étant quadratique
en champ (partie 2.1), l'ellipticité induite est ajustée par l'équation suivante :

Ψf(t) = αB2
⊥,f(t), (3.18)

avec B2
⊥,f(t) le champ magnétique au carré �ltré numériquement par le �ltre

passe-bas du premier ordre correspondant à la cavité [76, 77]. Sur la �gure 3.6
sont tracés le champ magnétique au carré �ltré ainsi que l'ellipticité Ψ(t) au cours
du temps. Nous remarquons que les deux quantités atteignent leur extremum en
même temps et que leur variation se superpose parfaitement, donnant ainsi une
mesure précise de la valeur de la biréfringence magnétique.
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Figure 3.5 �Mesure de l'e�et Cotton-Mouton dans 32.1× 10−3 atm de diazote. Haut :
Puissance du faisceau ordinaire en fonction du temps. Milieu : Puissance du faisceau
extraordinaire en fonction du temps. Bas : Champ magnétique au carré en fonction du
temps.

La constante Cotton-Mouton est �nalement calculée à partir de l'équation (2.6)
et du paramètre α donné par l'ajustement :

kCM =
αλ

2FLB

1

sin 2θ
, (3.19)

=
αλ

4πτ∆ISLLB

1

sin 2θ
. (3.20)

Comme pour les mesures d'e�et Faraday, la constante Cotton-Mouton est me-
surée pour di�érentes pressions de gaz. L'ensemble des données est �nalement
ajusté par une droite :

kCM(T, P ) = kn
CM(T )P (3.21)
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Figure 3.6 � Mesure de l'e�et Cotton-Mouton dans 32.1× 10−3 atm de diazote.
Courbe grise : Ellipticité en fonction du temps. Courbe pointillée : Carré du champ
magnétique �ltré par un �ltre passe-bas du premier ordre correspondant au �ltrage de
la cavité.

pour extraire la constante Cotton-Mouton normalisée kn
CM à P = 1 atm. Cette

constante Cotton-Mouton à la température T0 = 273.15K devient :

kN
CM = kn

CM(T )
T

T0

. (3.22)

Résultats dans le diazote

Nous avons mesuré la biréfringence magnétique du diazote à di�érentes pres-
sions entre 2.1× 10−3 et 32.1× 10−3 atm. La constante Cotton-Mouton en fonc-
tion de la pression est présentée sur la �gure 3.7. L'ajustement par une droite
donne une ordonnée à l'origine compatible avec zéro et une biréfringence à
P = 1 atm et T = 293± 1K de :

kn
CM = (−2.00± 0.08± 0.06)× 10−13 T−2atm−1. (3.23)

La première incertitude correspond à l'incertitude de type A à 1σ et la deuxième
à celle de type B. Un bilan d'incertitude précis, listé dans le tableau 3.4, a été
réalisé pour cette mesure. Tous les résultats sont présentés en détails dans la
référence [77].

Notre valeur est comparée à celles mesurées sur d'autres expériences dans le
tableau 3.5. Notre valeur est en accord avec les autres mesures et est 1.8 fois plus
précise.

D'un point de vue théorique, l'e�et Cotton-Mouton a été tout d'abord étudié
par Buckingham et Pople en 1956 [91]. On montre en particulier que la constante
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Figure 3.7 � Biréfringence magnétique du diazote en fonction de la pression (points
noirs). La ligne pointillée correspond à l'ajustement linéaire des données expérimentales.
La zone grisée correspond à l'incertitude à 1σ de type A.

Paramètre Incertitude relative Incertitude relative
de type A de type B

τ 2× 10−2

α diazote : ' 3.5× 10−2 2.2× 10−2

hélium : ' 8× 10−4 2.2× 10−2

xénon : ' 7× 10−4 2.2× 10−2

vide : ' 4× 10−1 2.2× 10−2

LB 2.2× 10−2

∆ISL 3× 10−4

sin 2θ 9× 10−4

λ < 5× 10−4

Table 3.4 � Paramètres utilisés pour la mesure de la constante Cotton-Mouton avec
leurs incertitudes relatives à 1σ.

Cotton-Mouton pour les molécules axiales est donnée par [87] :

kCM =
nv
4ε0

(
∆η +

2

15kBT
∆α∆χ

)
, (3.24)

avec nv la densité moléculaire, ∆η l'anisotropie d'hypersusceptibilité magnétique,
∆α l'anisotropie de polarisabilité électrique et ∆χ l'anisotropie de susceptibilité
magnétique. Le deuxième terme de l'équation (3.24) dépend de la température et
correspond à l'e�et d'orientation de la molécule. A température ambiante, il est
en général bien plus élevé que le premier terme qui est quant à lui indépendant de
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Référence
kn

CM × 10−13

Remarques
(T−2atm−1)
Théorie

[87] -2.21 λ =∞
[87] -2.14 λ =∞

Expérience
[89] -2.17 ± 0.21
[90] -2.02 ± 0.16 ± 0.08

Ce travail -2.00 ± 0.08 ± 0.06

Table 3.5 � Bilan des valeurs expérimentales et théoriques des biréfringences magné-
tiques linéaires du diazote à λ = 1064nm et T = 293K.

la température. En revanche, pour les atomes ou pour les molécules sphériques,
le terme dépendant de la température disparaît et seul le terme en ∆η subsiste.
Les mesures réalisées sur les gaz rares, comme l'hélium et le xénon, s'avèrent
alors intéressantes puisqu'elles permettent de tester uniquement le calcul de ∆η.

Le tableau 3.5 permet de comparer notre valeur expérimentale aux prévisions
théoriques. Elles sont en accord à 2σ, mais il est important de noter que les
calculs ne sont pas réalisés à la longueur d'onde utilisée sur notre expérience.

Prise en compte des e�ets systématiques

La mesure dans le diazote correspond à la première validation du disposi-
tif expérimental. A�n de tester la sensibilité de l'expérience, nous avons ensuite
mesuré l'e�et Cotton-Mouton de l'hélium qui est le gaz présentant le plus petit
e�et Cotton-Mouton après le vide. Cette mesure permet en outre de s'a�ranchir
du terme dépendant de la température de l'équation (3.24) dans la constante
Cotton-Mouton et de se concentrer uniquement sur le terme d'anisotropie d'hy-
persusceptibilité magnétique ∆η.

Nous avons dans un premier temps appliqué la même méthode d'analyse que
pour le diazote. La �gure 3.8 présente le signal calculé à partir de l'équation (3.17)
utilisée pour le diazote et qui doit correspondre à l'ellipticité induite Ψf . La
pression d'hélium est ici de 550×10−3 atm. Nous avons également superposé à ce
signal le signal Cotton-Mouton théoriquement attendu. Nous voyons clairement
que le signal attendu ne correspond pas au signal expérimental, tant par sa forme
que par son signe. Une nouvelle procédure de traitement des signaux a donc dû
être mise en place.

Reprenons l'équation générale du rapport entre les intensités transmises par
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Figure 3.8 � Evolution temporelle de l'ellipticité mesurée à partir de l'équation (3.24)
à 550 × 10−3 atm d'hélium. Courbe continue : données expérimentales. Courbe poin-
tillée : signal attendu en ne considérant que l'e�et Cotton-Mouton.

le polariseur de sortie donnée par l'équation (2.29) :

Ie(t)

It,f(t)
= σ2 + [ε+ ΘF,f(t)]

2 + [Γ + Ψf(t)]
2, (3.25)

= σ2 + ε2 + Γ2

︸ ︷︷ ︸
terme statique

+ 2εΘF,f + Θ2
F,f︸ ︷︷ ︸

e�et Faraday

+ 2ΓΨf + Ψ2
f︸ ︷︷ ︸

e�et Cotton-Mouton

. (3.26)

Pour les mesures dans le diazote, nous avons négligé la rotation statique ε ainsi
que l'e�et Faraday ΘF,f . Or la bobine X-coil délivrant le champ magnétique
transverse a également une composante longitudinale, environ 230 fois plus faible.
De plus, pour l'hélium ou le xénon, la constante Cotton-Mouton est beaucoup
plus faible que dans le cas du diazote. L'e�et Faraday devient alors, pour ces gaz,
non négligeable par rapport à l'e�et Cotton-Mouton [57].

A�n d'extraire l'ellipticité induite par le champ magnétique transverse Ψf ,
nous utilisons les propriétés de symétrie des di�érents termes de l'équation (3.26)
vis à vis du signe de Γ et de la direction du champ magnétique ~B⊥. Celles-ci sont
résumées dans le tableau 3.6. Par exemple, le signal dû à l'e�et Cotton-Mouton
2ΓΨ est impair avec Γ et pair en B. L'e�et Faraday 2εΘF est quant à lui impair
en Γ et B. Les signaux sont donc collectés pour les deux signes de Γ et pour les
deux directions du champ magnétique. Ceci donne quatre séries de données :

� série �>>� : Γ > 0 et ~B⊥ parallèle à l'axe x,
� série �><� : Γ > 0 et ~B⊥ anti-parallèle à l'axe x,
� série �<<� : Γ < 0 et ~B⊥ anti-parallèle à l'axe x,
� série �<>� : Γ < 0 et ~B⊥ parallèle à l'axe x.
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terme signe de Γ direction de ~B⊥
2εΘF,f - -
Θ2

F,f + +
2ΓΨf - +
Ψ2

f + +

Table 3.6 � Propriétés de symétrie des di�érents termes dépendant du champ de
l'équation (3.26), vis-à-vis du signe de Γ et de la direction de ~B⊥. Le signe + représente
un terme pair, le signe − un terme impair.

Pour chaque série, le signal suivant est calculé :

Y (t) =

Ie(t)
It,f(t)

− ADC

2|Γ| , (3.27)

avec ADC = σ2 + ε2 +Γ2 la composante continue du signal Ie/It,f . Le signal ayant
la symétrie correspondant à l'e�et Cotton-Mouton 2ΓΨf est extrait grâce à une
combinaison linéaire des quatre séries de données. La méthode est expliquée en
détails dans la référence [78] et a été améliorée dans les références [57, 79]. Les
résultats présentés dans le suite sont basés sur la méthode d'analyse la plus
aboutie [57] et peuvent donc légèrement di�érer des résultats publiés [78,79] qui
restent toutefois compatibles à 1σ.
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Figure 3.9 � Evolution temporelle de l'ellipticité à 550× 10−3 atm d'hélium. Courbe
grise : données expérimentales. Courbe noire : ajustement en αB2

⊥,f .
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Résultats dans l'hélium

Cette méthode d'analyse a tout d'abord été appliquée pour les mesures dans
l'hélium gazeux. Le signal correspondant à l'e�et Cotton-Mouton est représenté
sur la �gure 3.9 pour 550×10−3 atm d'hélium. L'ajustement en αB2

⊥,f colle parfai-
tement aux données expérimentales. Ceci montre l'importance de cette procédure
d'analyse pour ôter les e�ets systématiques tels que l'e�et Faraday.

Nous avons réalisé ces mesures pour des pressions allant de 40 à 550×10−3 atm.
Après une ajustement linéaire des données, nous obtenons pour la constante
Cotton-Mouton à T = 273.15K et P = 1 atm :

kN
CM = (2.63± 0.29)× 10−16 T−2atm−1. (3.28)

L'incertitude inclut celle de type A et celle de type B. Cette valeur est comparée
dans le tableau 3.7 et dans la �gure 3.10 aux autres valeurs expérimentales et
théoriques publiées. Au moment de sa publication, notre valeur était seulement
la deuxième publiée à 1064 nm. Notre valeur est la seule en accord avec la théorie
à mieux que 1σ. Cette valeur théorique est considérée comme exacte par la com-
munauté. Ceci constitue donc un véritable test de notre dispositif expérimental
et de notre méthode d'analyse pour les mesures de biréfringence magnétique du
vide.

λ (nm)
Résultats expérimentaux Prédiction théorique [95]

Référence 1016 × kN
CM (T−2atm−1) 1016 × kN

CM (T−2atm−1)
514.5 [92] 1.80± 0.36 2.3959
532 [94] 2.08± 0.16 2.3966
790 [93] 3.95± 1.40 2.4018
1064 [94] 2.22± 0.16 2.4036
1064 Ce travail 2.63± 0.29 2.4036
1064 [24] 2.90± 0.32 2.4036

Table 3.7 � Valeurs expérimentales et théoriques de la constante Cotton-Mouton de
l'hélium. Les valeurs sont normalisées à T = 273.15K et P = 1 atm. Les incertitudes
sont données à 1σ.
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Figure 3.10 � Comparaison des constantes Cotton-Mouton de l'hélium en fonction
de la longueur d'onde (haut) et à 1064 nm (bas). Les valeurs expérimentales ont été
publiées par Cameron et al [92], Muroo et al [93] et Bregant et al [94]. Après la
publication de notre résultat [78], une valeur supplémentaire a été publiée en 2014 par
Della Valle et al [24]. Les incertitudes sont données à 1σ. Le triangle noir correspond
à notre mesure. Les ronds blancs correspondent à la prévision théorique [95].

Résultats dans le xénon

Les dernières mesures sur les gaz ont été e�ectuées dans un gaz de xénon.
La pression a été variée de 3 à 8mbar. Nous obtenons pour la constante Cotton-
Mouton à T = 273.15K et P = 1 atm :

kN
CM = (2.59± 0.40)× 10−14 T−2atm−1. (3.29)

Le tableau 3.8 résume les constantes Cotton-Mouton du xénon publiées pré-
cédemment et mesurée avec notre expérience. Elles sont également représentées
sur la �gure 3.11. Notre valeur est la deuxième publiée à λ = 1064 nm et elle
est compatible à 1σ avec celle publiée dans la référence [96]. Notre incertitude
est d'environ 15%. Elle est plus importante en particulier que celles établies à
λ = 514.5 nm [97] et λ = 632.8 nm [98]. Cependant, il est important de noter



100 Chap 3 - Biréfringence magnétique dans les gaz et dans le vide

que notre incertitude a été calculée avec un bilan d'incertitudes complet. Pour
la valeur publiée à 632.8 nm, aucune information n'est donnée concernant le dis-
positif, le nombre de pressions utilisées pour la mesure, le budget d'erreur ou
l'évaluation des incertitudes. La mesure réalisée à 514.5 nm n'a été faite qu'à la
pression atmosphérique et en calibrant les mesures par rapport à celles obtenues
avec du diazote dans les mêmes conditions expérimentales. Aucune incertitude
sur la valeur de la biréfringence magnétique du diazote n'a été néanmoins appli-
quée. Il est donc probable que cette dernière incertitude ait été sous-estimée.
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Figure 3.11 � Comparaison des constantes Cotton-Mouton du xénon en fonction de la
longueur d'onde (haut) et à 1064 nm (bas). Les valeurs expérimentales ont été publiées
par Carusotto et al [97] et Bregant et al [89,96]. La valeur expérimentale de W.Hüttner
est rapportée dans la référence [98]. Les prévisions théoriques sont représentées par les
ronds [79] et la ligne pointillée [99].

Concernant les prédictions théoriques, très peu de calculs ont été réalisés.
Celles obtenues par Bisphop et al [99] sont représentées par la ligne pointillée
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λ (nm)
Résultats expérimentaux Prédictions théoriques

Référence
1014 × kN

CM Référence
1014 × kN

CM

(T−2atm−1) (T−2atm−1)
CCSD CC3

514.5 [97] 2.29± 0.10 [79] 2.803 2.778
632.8 W. Hüttner 2.41± 0.12 [79] 2.808 2.784
1064 [89, 96] 3.02± 0.27 [79] 2.804 2.782
1064 Ce travail 2.59± 0.40 [79] 2.804 2.782

SCF
∞ [99] 2.665

Table 3.8 � Valeurs expérimentales et théoriques de la constante Cotton-Mouton du
xénon. Les valeurs sont normalisées à T = 273.15K et P = 1 atm. Les incertitudes sont
données à 1σ. La valeur expérimentale de W. Hüttner est rapportée dans la référence
[98].

sur la �gure 3.11. Elles ont été calculées sans tenir compte des e�ets relativistes
ni des corrélations électroniques. Les valeurs théoriques calculées dans le cadre
de ce travail, grâce à une collaboration avec les théoriciens de chimie quantique
A. Rizzo et S. Coriani, incluent les corrections relativistes et les corrélations
électroniques. Le niveau d'approximation CC3 correspond à l'heure actuelle au
calcul le plus précis.

La valeur expérimentale à λ = 514.5 nm n'est pas compatible à 3σ avec les
prévisions théoriques. Celle à λ = 632.8 nm est compatible à 3σ avec celle de
Bishop et al mais pas avec celles calculées par Rizzo et Coriani. Cela semble
con�rmer la sous-estimation de leurs incertitudes. Notre valeur expérimentale
est quant elle compatible à 1σ avec les deux prédictions théoriques. Notre incer-
titude de 15% est en e�et trop élevée pour pouvoir observer la contribution des
e�ets relativistes et des corrélations électroniques qui s'élève à environ 5%. Une
amélioration de nos incertitudes est donc, dans ce cadre, indispensable.

3.2 Biréfringence magnétique linéaire du vide

Les mesures de biréfringence magnétique sur les gaz permettent de valider le
dispositif expérimental. Les mesures sur l'hélium ont été particulièrement impor-
tantes car elles ont été l'occasion de la mise en place et de la validation d'une
procédure d'acquisition et de traitement des données originale, basée sur l'utilisa-
tion des symétries des signaux. Cette procédure a été �nalement appliquée pour
les mesures dans le vide. Les résultats �naux ont été publiés dans EPJD [23].
Les résultats présentés dans ce manuscrit di�érent légèrement de ceux publiés.
Comme pour l'hélium et le xénon, l'ensemble des signaux a en e�et été repris lors
de la rédaction de la thèse d'Agathe Cadène [57] et a été traité avec la méthode
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d'analyse la plus aboutie. Les résultats sont compatibles entre eux à 1σ et l'ordre
de grandeur de la sensibilité expérimentale obtenue reste identique.

3.2.1 Résultats

Pour les mesures dans le vide, tout comme pour les mesures dans l'hélium et le
xénon, nous nous sommes placés dans les meilleures conditions possibles en terme
de sensibilité optique. Pour cela, nous avons aligné précisément l'orientation des
miroirs par rapport à la polarisation incidente pour avoir une biréfringence sta-
tique totale de la cavité Γ la plus faible possible, de l'ordre de σ. Ceci correspond
aux meilleures conditions de travail lorsque l'on est en présence de bruit en el-
lipticité [55, 57]. Ceci a été con�rmé par des mesures de sensibilité optique (i.e.
sans champ magnétique), en fonction de Γ, où nous observons en e�et une amé-
lioration de la sensibilité lorsque Γ diminue. La valeur de Γ et son signe sont
réajustés précisément avant chaque tir.

Environ 200 tirs de champ magnétique ont été appliqués dans le vide, avec
un champ maximum de 6.5T. Les signaux ne sont pas analysés sur l'ensemble
du tir. Nous constatons en e�et une perturbation sur le signal de rétroaction de
l'asservissement de la fréquence du laser sur la fréquence de résonance de la cavité
quelques millisecondes après le déclenchement du tir. Cette perturbation est due
à une onde sonore provoquée par le tir et qui atteint les miroirs de la cavité.
Ceci ayant également pour e�et de modi�er l'ellipticité statique de la cavité,
nous stoppons l'analyse des signaux à tfin = 3.1ms, bien avant l'arrivée de l'onde
sonore mais après que le carré du champ magnétique �ltré par la cavité ait atteint
son maximum. Par symétrie, nous commençons l'analyse à tdébut = −3.1ms.

Une sélection des tirs est dans un premier temps e�ectuée. Pour cela, nous
calculons le signal suivant :

Φ(t) =

√
Ie(t)

It,f(t) t<0

− (σ2 + Γ2). (3.30)

Le terme Ie(t)
It,f(t) t<0

correspond à Ie(t)/It,f(t) pris entre les instants tdébut et le

début du tir à t = 0. Le champ magnétique étant nul pour t < 0, les termes
ΘF et Ψ sont égaux à zero. D'après l'équation (3.26) et en négligeant le terme ε,
Φ doit donc lui aussi être nul en moyenne. Nous traçons ensuite l'histogramme
de ce signal. Deux histogrammes typiques sont tracés sur la �gure 3.12. Celui de
gauche correspond à une distribution normale. En revanche, celui de droite ne
peut être ajusté correctement par une gaussienne. Ce type de signal est rejeté
pour l'analyse. Il correspond en général à une dérive de l'ellipticité statique Γ
avant le tir. Sur les 200 tirs e�ectués, une centaine est conservée pour la suite de
l'analyse.
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Figure 3.12 � Histogrammes du signal calculé à partir de l'équation (3.30). Le signal
de gauche correspond à une distribution normale et est en conséquence gardé pour la
suite de l'analyse. Celui de droite n'est pas correctement ajusté par une gaussienne et
est rejeté de l'analyse.

Nous utilisons la même procédure de prise et de traitement des données que
celle présentée pour l'hélium, de façon à isoler les e�ets systématiques. Une ana-
lyse statistique de la distribution de nos mesures nous donne la valeur moyenne
de l'ellipticité Ψf . L'écart type divisé par la racine carré du nombre de tirs corres-
pond à l'incertitude statistique. Le signal d'ellipticité ainsi obtenu est tracé sur
la �gure 3.13. La courbe en pointillé correspond à l'ajustement en αB2

⊥,f . Nous
constatons que celle-ci n'a pas la même variation temporelle que les données.
Nous sommes donc en présence d'un e�et systématique qui est en particulier
déclenché dès le début du tir.
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Figure 3.13 � Signal d'ellipticité obtenu dans le vide. L'incertitude à 1σ est repré-
sentée en gris clair. La courbe en pointillé correspond à l'ajustement en αB2

⊥,f .

L'origine de cet e�et systématique peut être multiple. Mais l'hypothèse la plus
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probable est que l'on vient exciter les résonances mécaniques de notre enceinte à
vide, induisant donc un mouvement des montures de miroirs et donc une oscilla-
tion de l'ellipticité statique Γ. Nous savons en particulier que diverses fréquences
de résonance existent entre 100Hz et 600Hz. La fréquence de résonance la plus
proche de celle observée sur le signal de la �gure 3.13 est de 177Hz. A�n de sous-
traire cet e�et systématique, nous ajustons le signal par un sinus commençant à
t = 0, la fréquence étant �xée à 177Hz, comme le montre la �gure 3.14.
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Figure 3.14 � Signal d'ellipticité obtenu dans le vide ajusté en pointillé par un sinus de
fréquence �xe f = 177Hz correspondant à une des fréquences de résonance mécanique
du dispositif.

Les résidus de cet ajustement par une fonction sinus sont présentés sur la
�gure 3.15. Ils sont ajustés par la fonction αB2

⊥,f . Nous obtenons un plancher de
bruit à 1σ de :

|kCM| = (3.8± 2.0)× 10−21T−2. (3.31)

Cette méthode d'analyse suppose que le signal parasite est prépondérant par
rapport à l'e�et Cotton-Mouton résiduel. Pour s'a�ranchir de cette hypothèse,
nous pouvons directement ajuster le signal d'ellipticité de la �gure 3.13 par un
sinus plus un e�et Cotton-Mouton. On trouve alors :

|kCM| = (6.1± 2.5)× 10−21T−2. (3.32)

L'incertitude est donnée à 1σ. Le résultat est compatible à 3σ avec la prédiction
théorique établie dans la cadre de la QED. Rappelons qu'une incertitude à 3σ
correspond à un niveau de con�ance de 99.8% qui est couramment utilisé pour
souligner l'évidence d'un signal non nul en cas de non compatibilité avec zéro.
Ces résultats nous permettent �nalement de montrer que la sensibilité de notre
dispositif est de l'ordre de quelques 10−21 T−2.
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Figure 3.15 � Résidus du signal d'ellipticité ajusté par une fonction sinus. Ces résidus
sont ajustés par la fonction αB2

⊥,f correspondant à l'e�et Cotton-Mouton.

3.2.2 Comparaison

Cette dernière valeur est comparée dans la �gure 3.16 aux constantes Cotton-
Mouton du vide expérimentales publiées. Les incertitudes sont données à 3σ.
Avant 2014, les meilleures valeurs correspondaient à celles publiées par la colla-
boration PVLAS [20, 100]. Néanmoins, les expériences étaient particulièrement
dépendantes des e�ets systématiques. En 2008, un signal était toujours présent à
5T [20]. En 2012, les données ont été collectées seulement lorsque "no spurious
peaks are observed", permettant de ne donner qu'un bruit plancher et pas une va-
leur absolue [100]. Ceci montre qu'un appareil avec une très bonne sensibilité en
ellipticité n'est pas su�sante, mais qu'elle doit être associée à une minimisation
des e�ets systématiques.

Notre valeur a été publiée en 2014 dans EPJD [23]. Elle correspondait alors
à la meilleure limite donnée dans le vide, prouvant ainsi que les champs magné-
tiques pulsés sont un outil particulièrement puissant pour ce genre d'expérience.
Depuis, la collaboration PVLAS a publié une nouvelle limite à 3σ de 2×10−22 T−2

�n 2014 [24].
Le tableau 3.9 présente un bilan des dispositifs expérimentaux ayant donné

des limites sur la biréfringence magnétique du vide. Le B2
⊥LB du projet BMV

a été calculé en utilisant le champ magnétique maximal utilisé pour les mesures
dans le vide en tenant compte du �ltrage de la cavité. Les incertitudes et sen-
sibilités en ellipticité sont données à 1σ. La sensibilité en ellipticité pour les
expériences fonctionnant en régime continu est donnée par :

Ψsens =
√
tintΨlim, (3.33)

avec tint le temps d'integration total ayant permis d'obtenir l'incertitude �nale
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Figure 3.16 � Comparaison des valeurs expérimentales publiées de biréfringence ma-
gnétique du vide. Les barres d'erreur sont à 3σ. Les �èches indiquent que l'on parle
d'un plancher de bruit. La valeur de Cameron et al correspond à la référence [60], celle
de Zavattini et al en 2008 à [20], celle de Zavattini et al en 2012 à [100], et celle de
Della Valle et al à [24].

Ψlim calculée à partir de l'incertitude sur kCM :

Ψlim =
2F

λ
B2
⊥LB∆kCM. (3.34)

Pour notre expérience fonctionnant en régime pulsé, la sensibilité est calculée de
la manière suivante :

Ψsens =
√
NΨlim, (3.35)

avec N le nombre total de tirs.
Nous avons �nalement calculé le temps d'intégration nécessaire, à partir des

sensibilités en ellipticité obtenues, pour observer la biréfringence magnétique du
vide. Pour notre expérience, le calcul a été réalisé en considérant 10 tirs par jour.
Aucune expérience ne semble encore en mesure de pouvoir observer l'e�et prédit
par la QED.
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BFRT PVLAS 2008 PVLAS 2012 BMV PVLAS 2014
[60] [20] [100] [23] [24]

Finesse
34 ré�exions

70 000 240 000 445 000 670 000
multi-passage

Lc (m) 14.9 6.4 0.4 2.27 3.3

Technologie supraconducteur supraconducteur
aimants bobine aimants

permanents résistive permanents

Régime continu continu continu pulsé continu

B2
⊥LB (T2m) 35.2 5.3 2.1 3 10.25

Sensibilité 4× 10−8 1.4× 10−6 3.8× 10−7 6.8× 10−8 2.2× 10−6

en ellipticité rad/
√

Hz rad/
√

Hz rad/
√

Hz rad/tir rad/
√

Hz

Intégration 16 375 s 65 200 s 8 192 s 101 tirs 7.6× 105 s

Meilleure limite
(2.2± 0.3)× 10−19 (1.4± 0.8)× 10−20 < 4.4× 10−21 (6.1± 2.5)× 10−21 (0.4± 2.0)× 10−22

en kCM (T−2)

Remarques -
Signal observé �when no spurious

- -
à 5T peaks are observed�

Ellipticité attendue
- 2.8× 10−12 3.8× 10−12 1.0× 10−11 5.2× 10−11

dans le vide (rad)

Intégration pour
-

2.5× 1011 s 1010 s 4× 107 tirs 1.8× 109 s
observer l'e�et ' ' ' '
du vide 3× 106 jours 105 jours 4× 106 jours 2× 104 jours

Table 3.9 � Résumé des expériences ayant donné des résultats sur la biréfringence magnétique du vide. Le B2
⊥LB du projet

BMV a été calculé en utilisant le champ magnétique maximal utilisé pour les mesures dans le vide en tenant compte du �ltrage de
la cavité. Les sensibilités et les incertitudes sont données à 1σ. Les temps d'intégration pour observer la biréfringence magnétique
du vide avec un rapport signal sur bruit de un n'ont été donnés que pour les expériences ayant trouvé un signal compatible avec
la prévision théorique à 3σ.
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3.3 Conclusion

L'expérience de Biréfringence Magnétique du Vide a débuté en 2001. Depuis,
des mesures précises de biréfringence magnétique sur le diazote, l'hélium et le
xénon gazeux ont été réalisées. Elles ont permis de valider le dispositif expérimen-
tal et la procédure d'acquisition et de traitement des données a�n de s'a�ranchir
des e�ets systématiques tels que l'e�et Faraday. Toutes ces mesures ont été com-
parées aux prévisions théoriques. La mesure de l'e�et Faraday du xénon a en
particulier permis de mettre en évidence l'importance de la prise en compte des
e�ets relativistes et des corrélations électroniques dans les calculs.

Nous avons également donné une limite sur la biréfringence magnétique du
vide. Notre dispositif actuel correspond au montage de première génération, dont
l'objectif était de montrer la faisabilité de l'expérience. Notre mesure a en par-
ticulier permis de mettre en évidence les limites de notre dispositif et il est clair
qu'il ne permettra pas d'aller jusqu'à l'observation de la biréfringence magnétique
du vide.

Un montage de deuxième génération est en cours de construction. La sensi-
bilité sera améliorée en particulier grâce à l'augmentation du champ magnétique
et grâce à une meilleure stabilité optique de l'expérience. Comme nous l'avons
vu dans la dernière partie, une attention particulière devra être portée à l'amé-
lioration de la sensibilité de l'expérience mais aussi à la gestion des e�ets systé-
matiques. Ces points seront présentés dans le dernier chapitre de ce manuscrit.

3.4 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références [77], [78], [79] et [23].
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In this paper we present the realization of further steps toward the measurement of the magnetic birefringence
of a vacuum using pulsed fields. After describing our experiment, we report the calibration of our apparatus
using nitrogen gas and discuss the precision of our measurement giving a detailed error budget. Our best present
vacuum upper limit is �n � 5.0 × 10−20 T−2 per 4 ms acquisition time. We finally discuss the improvements
necessary to reach our final goal.
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I. INTRODUCTION

Experiments on the propagation of light in a transverse
magnetic field date from the beginning of the 20th century.
Kerr [1] and Majorana [2] discovered that linearly polarized
light, propagating in a medium in the presence of a transverse
magnetic field, acquires an ellipticity. In the following years,
this linear magnetic birefringence was studied in detail by
Cotton and Mouton [3] and it is known nowadays as the Cotton-
Mouton effect. It corresponds to an index of refraction n‖
for light polarized parallel to the magnetic field B, which
is different from the index of refraction n⊥ for light polarized
perpendicular to the magnetic field. For symmetry reasons, the
difference between n‖ and n⊥ is proportional to B2. Thus, an
incident linearly polarized light exits from the magnetic-field
region elliptically polarized. For a uniform B over an optical
path L, the ellipticity is given by

� = π
L

λ
�nB2 sin 2θ, (1)

where λ is the wavelength of light in vacuum, �n=n‖-n⊥ at
B = 1 T, and θ is the angle between light polarization and the
magnetic field.

The Cotton-Mouton effect exists in any medium and
quantum electrodynamics predicts that magnetic linear bire-
fringence exists also in vacuum, which has been shown [4,5]
as a result of the effective Lagrangian established by Kochel,
Euler, and Heisenberg [6,7]. At the lowers two orders in α, the
fine-structure constant �n can be written (in units of T−2) as

�n = 2

15

α2h̄3

m4
ec

5μ0

(
1 + 25

4π
α

)
, (2)

where h̄ is the Planck constant over 2π , me is the electron
mass, c is the speed of light in vacuum, and μ0 is the magnetic
constant. The term α2 is given in Ref. [4]. The term α3

was reported in Ref. [8] and corresponds to the lowest-order
radiative correction. Its value is about 1.5% of the α2 term.
Using the CODATA recommended values for the fundamental

*carlo.rizzo@lncmi.cnrs.fr

constants [9], Eq. (2) gives �n = (4.031 699 ± 0.000 002) ×
10−24 T−2.

As we see, the error due to the uncertainty of fundamental
constants is negligible compared to the error coming from the
fact that only the first-order QED radiative correction has been
calculated. The QED α4 radiative correction should affect the
fourth digit and the QED α5 radiative correction the sixth digit.
Thus, a measurement of �n up to a precision of a few parts
per 106 (ppm) remains a pure QED test.

Experimentally, the measurement of the Cotton-Mouton
effect is usually very challenging, especially in dilute matter,
thus all the more so in vacuum. Several groups have attempted
to observe vacuum magnetic birefringence [10,11], but this
very fundamental prediction still has not been experimentally
confirmed.

Gas measurements date back to the late 1930s [12] and
the first systematic work of Buckingham et al. was published
in 1967 [13]. Investigations concerned benzene, hydrogen,
nitrogen, nitrogen monoxide, and oxygen at high pressures as
well as ethane. Since then, many more papers concerning the
effect in gases have been published and Cotton-Mouton effect
experiments have been employed as sensitive probes of the
electromagnetic properties of molecules [12].

The measurement of the Cotton-Mouton effect in gases is
not only important to test quantum chemical predictions. It is a
crucial test for any apparatus that is dedicated to the search for
vacuum magnetic birefringence. Measurement of the Cotton-
Mouton effect in a gas is a milestone in the improvement of
the sensitivity of such an apparatus. Typically measurements
of the linear magnetic birefringence in nitrogen gas are used
to calibrate a setup [10,11,14].

In the following we present magnetic linear birefrin-
gence measurements performed in the framework of our
biréfringence magnétique du vide (BMV) project. It is based
on the use of strong pulsed magnetic fields, which is different
compared to other experiments searching for vacuum magnetic
birefringence, and on a very high finesse Fabry-Pérot cavity
to increase the effect to be measured by trapping the light
in the magnetic-field region. The use of pulsed fields for
such measurements was proposed in Ref. [15]. In principle,
pulsed magnetic fields can be as high as several tens of teslas,
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which increases the signal, and they are rapidly modulated,
which decreases the 1/f -flicker noise resulting in an increase
of the signal-to-noise ratio. Both advantages are supposed to
compensate for the loss of duty cycle since only a few pulses
per hour are possible. A feasibility study, which discusses
most of the technical issues related to the use of pulsed fields
coupled to precision optics for magnetic linear birefringence
measurements, can be found in Ref. [16].

In this paper we present the realization of further steps
toward the measurement of the magnetic birefringence of
the vacuum using pulsed fields. After describing our BMV
experiment, we report the calibration of our apparatus with
nitrogen gas and discuss the precision of our measurement,
giving a detailed error budget. Finally, the present vacuum
upper limit is reported and we discuss the perspectives to reach
our final goal.

II. EXPERIMENTAL SETUP AND SIGNAL ANALYSIS

A. Apparatus

The BMV experiment is detailed in Ref. [16]. Briefly, as
shown in Fig. 1, 30 mW of a linearly polarized Nd:YAG laser
beam (λ = 1064 nm) is injected into a Fabry-Pérot cavity
consisting of the mirrors M1 and M2. The laser frequency is
locked to the cavity resonance frequency using the Pound-
Drever-Hall method [17]. To this end, the laser is phase
modulated at 10 MHz with an electro-optic modulator. The
beam reflected by the cavity is then detected by the photodiode
Phr . This signal is used to drive the acousto-optic modulator
(AOM) frequency for a fast control and the Peltier element of
the laser for a slow control of the laser frequency.

Our birefringence measurement is based on an ellipticity
measurement. Light is polarized just before entering the cavity
by polarizer P . The beam transmitted by the cavity is then
analyzed by analyzer A crossed at maximum extinction and
collected by a low-noise photodiode Phe (the intensity of
the extraordinary beam Ie). The analyzer also has an escape
window that allows us to extract the ordinary beam (intensity

Nd:YAG
=1064 nm

AOM

M
O

E P

A

Ph r

Ph t

PheM
1

M
2

PDH lock

/4

B

FIG. 1. Experimental setup. A Nd:YAG laser is frequency locked
to the Fabry-Pérot cavity consisting of mirrors M1 and M2. The
laser beam is linearly polarized by polarizer P and analyzed with
polarizer A. This analyzer allows one to extract the extraordinary
beam sent on photodiode Phe as well as the ordinary beam sent on
photodiode Pht . The beam reflected by the cavity analyzed on the
photodiode Phr is used for the cavity locking. A transverse magnetic
field B can be applied inside the cavity in order to study the magnetic
birefringence of the medium. The following denotations are used:
EOM, electro-optic modulator; AOM, acousto-optic modulator; and
PDH, Pound-Drever-Hall.

It ), which corresponds to the polarization parallel to P . This
beam is collected by the photodiode Pht .

All the optical components from polarizer P to analyzer A

are placed in an ultrahigh-vacuum chamber. In order to perform
birefringence measurements on high-purity gases, the vacuum
chamber is connected to several gas bottles through leak valves
that allow one to precisely control the amount of injected
gas. Finally, since the goal of the experiment is to measure
magnetic birefringence, magnets surround the vacuum pipe.
The transverse magnetic field is created due to pulsed coils
described in Ref. [18] and briefly detailed in the following
section.

Both signals collected by the photodiodes outside the cavity
are simultaneously used in the data analysis as follows:

Ie

It

= σ 2 + �2
tot, (3)

where �tot is the total ellipticity acquired by the beam going
from P to A and σ 2 is the polarizer extinction ratio. Our
polarizers are Glan laser prisms, which have an extinction
ratio of 2 × 10−7.

The origin of the total ellipticity of the cavity is due to
the intrinsic birefringence of mirrors M1 and M2, as will be
discussed in Sec. II C 2. We define the ellipticity imparted to the
linearly polarized laser beam when light passes through each
mirror substrate as 	s1,2 and the one induced by the reflecting
layers of the mirrors as 	c. An additional component � of
the total ellipticity can be induced by the external magnetic
field. Since we use pulsed magnetic fields, this ellipticity is a
function of time. Finally, if the ellipticities are small compared
to unity, one gets

Ie(t)

It (t)
= σ 2 + [	 + �(t)]2, (4)

where 	 = 	s1 + 	s2 + 	c is the total static birefringence.

B. Magnetic field

It is clear from Eq. (1) that one of the critical parameter
for experiments looking for magnetic birefringence is B2L.
Our choice has been to reach a B2L as high as possible while
having a B as high as possible with an L such as to set up a
tabletop low-noise optical experiment. This is fulfilled using
pulsed magnets that can provide fields of several tens of teslas.
Our apparatus consists of two magnets, called X-coils. The
principle of these magnets and their properties are described
in detail in Refs. [16,18].

The magnetic-field profile along the longitudinal zaxis,
which corresponds to the axis of propagation of the light beam,
has been measured with a calibrated pickup coil. Figure 2
shows the normalized profile of an X-coil. The magnetic field
is not uniform along z. We define Bmax as the maximum field
provided by the coil at its center and LB as the equivalent
length of a magnet producing a uniform magnetic field Bmax

such that ∫ +∞

−∞
B2(z)dz = B2

maxLB, (5)

where LB is about the half of the X-coil’s length. Each X-coil
currently used has reached more than 14 T over 0.13 m of
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FIG. 2. Normalized profile of the square of the magnetic field
along the longitudinal zaxis (solid line) inside one X-coil. This is
compared to the equivalent uniform magnetic field (dashed line) over
the effective magnetic length LB (see the text).

effective length corresponding to 25 T2 m. The total duration
of a pulse is a few milliseconds. The magnetic field reaches its
maximum value within 2 ms.

The pulsed coils are immersed in a liquid-nitrogen cryostat
to limit the consequences of heating, which could be a cause
of permanent damage to the coil’s copper wire. The pulse
duration is short enough that the coil, starting at liquid-nitrogen
temperature, always remains at a safe level i.e., below room
temperature. A pause between two pulses is necessary to let
the magnet cool down to the equilibrium temperature, which is
monitored via the X-coils’ resistance. The maximum repetition
rate is 5 pulses per hour.

C. Fabry-Pérot cavity

The other key point of our experiment is to accumulate the
effect due to the magnetic field by trapping the light between
two ultrahigh-reflectivity mirrors constituting a Fabry-Pérot
cavity. Its length has to be large enough to leave a wide space
so as to insert our two cylindrical cryostats (with a diameter
of 60 cm for each cryostat) and vacuum pumping system. The
length of the cavity is Lc = 2.27 m, which corresponds to a
free spectral range of �FSR = c/2nLc � 66 MHz, with n the
index of refraction of the considered medium in which the
cavity is immersed. This index of refraction can be considered
equal to one. The total acquired ellipticity � is linked to the
ellipticity ψ acquired in the absence of a cavity and depends
on the cavity finesse F as follows [19]:

� = 2F

π
ψ, (6)

where F is given by

F = π
√

RM

1 − RM

, (7)

with RM the intensity reflection coefficient, which is supposed
to be the same for both mirrors. A finesse as high as possible
is essential to increase the induced signal.

1. Cavity finesse and transmission

Experimentally, the finesse is inferred from a measurement
of the photon lifetime τ inside the cavity as presented in Fig 3.
For t < t0, the laser is locked to the cavity. The laser intensity
is then switched off at t0 due to the AOM shown in Fig. 1

FIG. 3. Time evolution of the intensity of the ordinary beam (gray
solid line). The laser is switched off at t = t0. Experimental data are
fitted by an exponential decay (black dashed line), giving a photon
lifetime of τ = 1.16 ms, a finesse of F = 481 000, and a linewidth
of �ν = c/2nLcF = 137 Hz.

and used as an ultrafast commutator. For t > t0, one sees the
typical exponential decay of the intensity of the transmitted
ordinary beam [20]

It (t) = It (t0)e−(t−t0)/τ . (8)

The photon lifetime is related to the finesse of the cavity
through the relation

τ = nLcF

πc
. (9)

By fitting our data with Eq. (8) we get τ = 1.16 ms, which
corresponds to a finesse of F = 481 000 and a cavity linewidth
of �ν = c/2nLcF = 137 Hz. We summarize in Table I the
performances of some well-known sharp cavities at λ =
1064 nm, showing the quality of our cavity.

The transmission of the cavity Tc is another important
parameter. It corresponds to the intensity transmitted by the
cavity divided by the intensity incident on the cavity when the
laser frequency is locked. Indeed, in order not to be limited
by the noise of photodiodes Pht and Phe, It and Ie have to
be sufficiently high. This point is particularly critical for Ie,
which corresponds to the intensity transmitted by the cavity
multiplied by σ 2. With a Phe noise equivalent power of 11
fW/

√
Hz, we need an incident power greater than 0.2 nW so

as not to be limited by the electronic noise of Phe.
Our cavity transmission is 20%. The measurements of the

finesse and the transmission allow us to calculate mirrors
properties such as their intensity transmission TM and their
losses PM as a result of the following relations:

F = π

TM + PM

, (10)

Tc =
(

TMF

π

)2

, (11)

supposing that the mirrors are identical. We found TM = 3 ppm
and PM = 3.5 ppm, which correspond to the specifications
provided by the manufacturer.

To conclude, our high-finesse cavity enhances the Cotton-
Mouton effect by a factor 2F/π = 306 000 and its transmis-
sion allows measurements that are not limited by the noise of
the detection photodiodes.
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TABLE I. Performance summary of the sharpest infrared interferometers in the world. The following denotations are use: Lc is the length
of the Fabry-Pérot cavity, �FSR is its full spectral range, F is the cavity finesse, τ is the photon lifetime, �ν is the frequency linewidth, and
Q = νlaser/�ν is the quality factor of the interferometer, with νlaser the laser frequency.

Interferometer Ref. Lc(m) �FSR (kHz) F τ (μs) �ν (Hz) Q

VIRGO [21] 3000 50 50 160 1000 2.8 × 1011

TAMA300 [22] 300 500 500 160 1000 2.8 × 1011

PVLAS [11] 6.4 23 400 70 000 475 335 8.4 × 1011

LIGO [23] 4000 37 230 975 163 17 × 1011

BMV this work 2.27 66 000 481 000 1160 137 21 × 1011

2. Cavity birefringence

The origin of the total static ellipticity is due to the mirror
intrinsic phase retardation. Mirrors can be regarded as wave
plates and for small birefringence, the combination of both
wave plates gives a single wave plate. The phase retardation
and the axis orientation of this equivalent wave plate depend
on the birefringence of each mirror and on their respective
orientations [19,24].

The intrinsic phase retardation of the mirrors is a source of
noise limiting the sensitivity of the apparatus. Moreover, since
our signal detection corresponds to a homodyne technique, the
static ellipticity 	 is used as a zero-frequency carrier. To reach
a shot-noise-limited sensitivity, one needs 	 to be as small
as possible [16], implying that the phase retardation axes of
both mirrors have to be aligned. For magnetic birefringence
measurements, both mirrors’ orientation is adjusted in order
to have 10−3 < 	 < 3 × 10−3 rad.

The measurement of the total ellipticity as a function of
mirror orientation allows us to calculate the mirror intrinsic
phase retardation per reflection. The experimental procedure
is presented in Ref. [25]. The deduced phase retardation for
our mirrors is δM = (7 ± 6) × 10−7 rad. Although the origin
of the mirrors’ static birefringence is still unknown, a review
of the existing data shows that for interferential mirrors, the
phase retardation per reflection decreases when reflectivity
increases [25]. This observation is confirmed by our present
measurement. It is also in agrement with the empirical trend
given in Ref. [25]: δM � 0.1(1 − RM ). Numerical calculations
show that this trend can be explained by assuming that the
effect is essentially due to the layers close to the substrate.

As previously stated, mirror birefringence has two contri-
butions: One comes from the substrate and the other is due to
the reflecting layers. Whereas previous measurements do not
allow one to distinguish between the two contributions, we
will see that this can be achieved with the measurement of Ie

decay.
A typical time evolution of Ie when the incident beam

locked to the cavity is switched off is shown in Fig. 4. We
see that this curve cannot be fitted by an exponential decay.
As explained in Ref. [26], one has to take into account
the intrinsic birefringence of the cavity. Nevertheless, the
expression derived in Ref. [26], which takes into account only
the reflecting layer’s birefringence, does not always fit our
data. The evolution of Ie sometimes presents an unexpected
behavior: Whereas photons no longer enter the cavity at t = t0,
the extraordinary intensity starts growing before decreasing.
To reproduce this behavior, one has to take into account the
substrate birefringence.

We now calculate the transmitted intensity along the round-
trip inside the cavity.

For t � t0, the laser is continuously locked to the cavity.
According to Eq. (4), the intensities of the ordinary and
extraordinary beams are related by

Ie(t � t0) = [σ 2 + (	s2 + 	s1 + 	c)2]It (t � t0). (12)

At t = t0, the laser beam is abruptly switched off and
the cavity empties gradually. The ordinary and extraordinary
beams are slightly transmitted at each reflection on the mirrors;
however, because these mirrors are birefringent, some photons
of the ordinary beam are converted into the extraordinary one.
The reverse effect is neglected because Ie � It .

We then follow the same procedure as in Ref. [26] to
calculate the time evolution of Ie. For t > t0, one gets

Ie(t) = It (t)

{
σ 2 +

[
	s1 + 	s2 + 	c

(
1 + t − t0

2τ

)]2
}

.

(13)

The behavior shown in Fig. 4 is reproduced if 	s1 + 	s2 �
−	c. This expression is used to fit our experimental data
plotted in Fig. 4. We find a photon lifetime of τ = 960 μs,
which is in good agreement when fitting It [27], 	s1 + 	s2 =
2 × 10−3 rad, and 	c = −7 × 10−3 rad. We have evidence
that the substrate is birefringent and that this birefringence
contributes to the total ellipticity due to the cavity.

D. Signal analysis

The voltage signals Ve and Vt provided by Phe and Pht

are the starting point of our analysis. Voltage signals have to

FIG. 4. Time evolution of the intensity of the extraordinary beam
(gray solid line). The laser is switched off at t = t0. Experimental
data are perfectly fitted by Eq. (13) (black dashed line).
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be converted into intensity signals by using the photodiode
conversion factors ge and gt :

Ie = geVe, (14)

It = gtVt . (15)

As demonstrated in Ref. [26], before analyzing raw signals
one has to take into account the first-order low-pass filtering
of the cavity. In Fourier space It,filtered is given by

It,filtered(ω) = 1

1 + i ω
ωc

It (ω), (16)

where νc = ωc/2π = 1/4πτ is the cavity cutoff frequency.
Then, according to Eq. (4), the ellipticity �(t) to be measured
can be written as

�(t) = −	 +
√

Ie(t)

It,filtered(t)
− σ 2. (17)

The total static birefringence 	 is measured a few milliseconds
just before the beginning of the magnetic pulse, thus when
�(t) = 0.

In contrast, � is proportional to the square of the magnetic
field and thus can be written as

�(t) = κB2
filtered(t). (18)

Since the photon lifetime is comparable with the rise time
of the magnetic field, the first-order low-pass filtering of the
cavity also has to be taken into account for the quantity B2(t) as
in Ref. [26]. To recover the value of the constant κ we calculate
for each pulse the correlation between �(t) and B2

filtered(t):

κ =
∫ Ti

0 �(t)B(t)2
filtereddt∫ Ti

0 [B(t)2
filtered]2dt

, (19)

where Ti is the integration time. A statistical analysis gives the
mean value of κ and its uncertainty.

The magnetic birefringence �n is finally given by

�n(T ,P ) = κ

4πτ�FSR

λ

LB

1

sin 2θ
(20)

and �n is thus expressed in T−2. The terms T and P corre-
spond to the gas temperature and pressure when measurements
of magnetic birefringence on gases are performed. We define
the normalized birefringence �nu as �n for P = 1 atm and
B = 1 T.

III. EXPERIMENTAL PARAMETERS AND
ERROR BUDGET

In the following, to evaluate the precision of our apparatus
in the present version, we list the uncertainties at 1σ on the
measurement of the parameters of Eq. (20) as recommended
in Ref. [28]. The uncertainty of the magnetic birefringence
has two origins. The evaluation of the uncertainty by a
statistical analysis of a series of observations is termed a type-A
evaluation and mainly concerns the measurement of τ and κ .
An evaluation by means other than the statistical analysis of
a series of observations, calibrations for instance, is termed
a type-B evaluation and especially affects the parameters B,
�FSR, LB , λ, and θ .

A. Photon lifetime in the Fabry-Pérot cavity

The photon lifetime τ is measured by analyzing the
exponential decay of the intensity of the transmitted light.
Several measurements have been performed both before and
after almost each magnetic pulse. The uncertainty of the value
of τ comes from the fact that mirrors can move slightly because
of thermal fluctuations and acoustic vibrations. Measurements
conducted under the same experimental conditions have been
studied statistically, leading to a relative variation of τ that does
not exceed 2 at the 1σ level. Data taken during the operation,
i.e., before and after magnetic pulses, show the same statistical
properties as the ones taken without any magnetic field. Thus,
the magnetic field does not cause additional change in τ .

B. Correlation factor

The correlation factor κ is given by Eq. (19). The type-A
uncertainty of κ depends on the measurement of � and thus
on the experimental parameters given in Eq. (17). In practice,
we pulse the magnets several times in the same experimental
conditions to obtain a set of values of κ . The distribution of
the κ values is found to be Gaussian and we assume that its
standard deviation corresponds to the type-A uncertainty of κ .
For our measurements performed with nitrogen and presented
in Sec. IV B, the type-A relative uncertainty is typically 3.5%.
The standard uncertainty of the average value of κ can then be
reduced, thus increasing the number of pulses.

Type-B uncertainties depend on those of the square of the
magnetic field, the photodiode conversion factors, and the
filter function applied to the field. To measure the magnetic
field during operation, we measure the current that is injected
in our X-coil. As mentioned in Ref. [18], the form factor
B/I has been determined experimentally during the test phase
by varying the current inside the X-coil (modulated at room
temperature or pulsed at liquid-nitrogen temperature) and
by measuring the magnetic field induced on a calibrated
pickup coil. These measurements have led to a relative
type-B uncertainty of δB/B = 0.7% for the magnetic field
corresponding to a type-B uncertainty of κ of 1.4%.

The ratio ge/gt is measured from time to time by sending
the same light intensities to each photodiode. The relative
uncertainty in this parameter is 1.5%, which corresponds to
the same amount of relative uncertainty in κ .

The terms It (t) and B2(t) are also filtered by a function that
involves the parameter τ . We have empirically determined that
a τ variation of 2% led to a κ variation of 0.8%. We can finally
add quadratically the uncertainties above and deduce that a
type-B uncertainty of 2.2% must be taken into account for
every measurement of the correlation factor κ .

C. Frequency splitting between perpendicular polarizations

In this section we evaluate the attenuation of the extraor-
dinary beam transmitted by our sharp resonant Fabry-Pérot
cavity on which the laser’s ordinary beam is frequency
locked. Let us suppose that the ordinary (extraordinary) beam
resonates in the interferometer at the frequency νt (νe). The
laser is locked to the cavity due to the ordinary beam. Thus νt
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FIG. 5. Airy function of our Fabry-Pérot cavity (with a linewidth
of �ν = 137 Hz, a transmission of Tc = 20%, and where m is an
integer). The frequency of the ordinary beam is assumed to be locked
at the top of the transmission function (solid line) and the frequency νe

of the extraordinary beam is shifted from νt by a quantity δν (dashed
line).

corresponds to the top of the transmission Airy function A of
the Fabry-Pérot cavity, which is given by

A(ν) = Tc

1 + 4F 2

π2 sin2
( 2πnLc

c
ν
) . (21)

The frequency νe is shifted from νt by a quantity δν, as
shown in Fig. 5. The frequency splitting δν = νt − νe can be
expressed as a function of the phase retardation δ acquired
along a round-trip between the ordinary and extraordinary
beams:

δν = c

2πnLc

δ = F�ν

π
δ. (22)

This formula indicates that in order to have a splitting that is
very small compared to the cavity linewidth (δν � �ν), the
phase retardation δ must satisfy the following condition:

δ � π

F
, (23)

which is equivalent to the condition on the acquired total
ellipticity �:

� � 1. (24)

By combining Eqs. (21) and (22), we obtain the factor of
attenuation a of the transmitted extraordinary beam’s intensity
given by

a = A(νe)

A(νt )
= 1

1 + 4F 2

π2 sin2
( 2πnLc

c
δν

)
= 1

1 + 4F 2

π2 sin2(δ)
. (25)

The attenuation factor a is plotted as a function of δ in
Fig. 6 for a finesse F = 481 000. The real intensity Ie of the
extraordinary beam transmitted by the cavity is obtained from
the corrected measured intensity Imeas

e as Ie = Imeas
e /a.

First, the frequency splitting can be due to our birefringent
cavity. As in Ref. [19], we consider both cavity mirrors to be
equivalent to a single wave plate with phase retardation δw = δ

between both polarizations. The total phase retardation δw is
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FIG. 6. Attenuation factor a as a function of the phase retardation
δ between both polarizations.

linked to the cavity mirrors’ M1and M2own phase retardation
δ1 and δ2 as [19]

δw =
√

(δ1 − δ2)2 + 4δ1δ2 cos2(θm). (26)

To set a δw as small as possible so as to minimize the correction
to Imeas

e , one needs to adjust the angle θm between the neutral
axes of both mirrors. This way, we set a δw of the order of a few
10−8 rad, corresponding to a correction smaller than 0.001%
on Imeas

e .
Second, the frequency splitting between both polarizations

can be due to the induced magnetic birefringence of the
medium inside the chamber. As seen above, the induced
ellipticity given by Eq. (24) must be well below 1 rad. This
condition is always satisfied in the range of pressure and
field we are working. The induced ellipticity does not exceed
10−2 rad. This corresponds at worst to a phase retardation of
δ = 10−7 rad. The attenuation factor Imeas

e is thus smaller than
0.1%.

In principle, this attenuation generates an error that has to
be taken into account in the measured ratio Ie/It ,filtered in
Eq. (17), which implies an error in the value of κ . At present,
since the attenuation is smaller than 0.1%, this error can be
neglected compared to the others uncertainties in κ .

D. Cavity-free spectral range

The dedicated experimental setup for the measurement of
the cavity free spectral range �FSR = c/2nLc is shown in
Fig. 7. The principle is to inject into the cavity two laser beams
that are shifted relative to each other by a given frequency. This
frequency is then adjusted to coincide with the free spectral
range.

Experimentally, the main beam is divided into two parts due
to a polarizing beam splitting cube. The first part is directly
injected into the cavity and the other one is frequency shifted
by the acousto-optic modulator AOM2 with a double-pass
configuration before injection. The main beam is frequency
modulated with a voltage ramp applied on a piezoelement
mounted on the crystal resonator of the laser.

The intensity transmitted by the cavity is observed on Pht

as shown in Fig. 8. The solid line corresponds to the intensity
of the first beam. We observe typical Fabry-Pérot peaks whose
frequency gap corresponds to �FSR. Peaks due to the second
beam (dashed line) are frequency shifted by 2fAOM2. We finally
adjust fAOM2 in order to superimpose both series of peaks. The
precise knowledge of the driven frequency fAOM2 enables us to
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FIG. 7. Experimental setup for the cavity length measurement.
Two laser beams that are frequency shifted relative to each other by
the AOM2 are injected into the cavity. The frequency of the laser is
frequency modulated with a voltage ramp applied on a piezoelement
(PZT) mounted on the crystal resonator of the laser. Photodiode Pht

allows us to observe the typical Fabry-Pérot peaks from which the
�FSR measurement is performed.

determine with the same precision the value of the free spectral
range and thus the cavity length.

A typical value is �FSR = (65.996 ± 0.017) MHz. This
corresponds to a cavity length of Lc = (2.2713 ± 0.0006) m.
Since this length can be prone to variation, the �FSR value is
regularly checked and updated.

E. Effective magnetic length

Following Eq. (5), the effective magnetic length LB has
been calculated by numerically integrating the field mea-
sured with a calibrated pickup coil. Taking into account the
experimental uncertainties, for one X-coil we obtain LB =
(0.137 ± 0.003) m, which corresponds to a relative type-B
uncertainty of LB of 2.2%.

F. Laser wavelength

As mentioned above, infrared light enters the cavity.
The wavelength of the Nd:YAG laser is 1064 nm and its
uncertainty is given by the width of the laser transition. The
natural linewidth of Nd:YAG lasers is not usually given by
the manufacturers. However, we can estimate it from the
bandwidth of the gain curve of the amplifying medium. It
is typically of the order of 30 GHz [29]. This corresponds
to an uncertainty on the laser wavelength of 0.3 nm. In

FIG. 8. Transmission peaks of the Fabry-Pérot cavity as a func-
tion of the laser frequency. Two beams are sent to the interferometer:
The second beam (dashed line) is frequency shifted by 2fAOM2 relative
to the first beam (solid line). The adjustment of fAOM2 in order to
superimpose both series of peaks allows us to precisely measure the
free spectral range �FSR of the cavity.

FIG. 9. Correlation factor κ between the square of the magnetic
field and the ellipticity as a function of the angle θP of the incident
polarization.

order to be conservative, we use λ = (1064.0 ± 0.5) nm. The
relative uncertainty is negligible in our case, compared to main
uncertainties.

G. Angle between the incident polarization and the
magnetic-field direction

The angle between the incident light polarization and the
magnetic-field direction is adjusted to 45◦ as a result of
magnetic birefringence measurements as a function of the
polarizer direction θP . In order to be more sensitive, this is
performed close to the position where the magnetic field is
parallel to the polarizer P (θ = 0◦).

Measurements are realized with about 7×10−3 atm of air.
The analyzer direction is crossed at maximum extinction each
time the polarizer is turned. Figure 9 represents the evolution
of the correlation factor κ as a function of θP . Data are fitted
by a sinusoidal trend κ(θP ) = κ0 sin[2(θP − θ0)] giving θ0 =
(2.6 ± 0.2)◦. This measurement allows us to set θ = (45.0 ±
1.2)◦. The uncertainty is mainly due to the mechanical system
that holds and turns the polarizer.

H. Error budget

We summarize in Table II the typical values of the experi-
mental parameters that have to be measured and their type-B
associated uncertainty. These uncertainties are quadratically
added to give a type-B relative uncertainty of the birefringence
�n of 3.1% at 1σ .

TABLE II. Parameters that have to be measured to infer the
value of the birefringence �n and their respective relative type-B
uncertainty at 1σ .

Relative type-B
Parameter Typical value uncertainty

κ 10−5 rad T−2 2.2 × 10−2

�FSR 65.996 MHz 3 × 10−4

LB 0.137 m 2.2 × 10−2

λ 1064.0 nm <5 × 10−4

sin 2θ 1.0000 9 × 10−4

Total 3.1 × 10−2
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FIG. 10. Profile of the temperature inside the vacuum pipe along
the longitudinal zaxis. The X-coil is also schematized at the center.
The temperature variation does not exceed 1 K inside the tube that
runs through it.

I. Temperature and pressure of gases

Gas magnetic birefringence measurements are performed
at room temperature T = 293 K. The experimental room is air
conditioned. A flow of compressed air between the outer wall
of the vacuum pipe and the liquid-nitrogen cryostat containing
the magnet maintains the room temperature in the gas chamber.

A temperature profile has been realized along the length of
the vacuum pipe and is plotted in Fig. 10. The temperature
variation does not exceed 1 K inside the tube that passes
through the magnetic field. Concerning gases, we consider
that our birefringence measurements are given at (293±1) K.
The pressure of the gas inside the chamber is measured at each
side of the vacuum pipe getting into magnets with pressure
gauges. The relative uncertainty provided by the manufacturer
is 0.2%.

IV. MAGNETIC BIREFRINGENCE MEASUREMENTS

A. Raw signals

Figure 11 presents signals obtained with 32.1×10−3 atm
of molecular nitrogen. The intensity of the ordinary beam
It (top) remains almost constant while the intensity of the
extraordinary beam Ie (middle) varies when the magnetic field
(bottom) is applied. The magnetic field reaches its maximum
of 5.2 T within less than 2 ms.

The laser beam remains locked to the Fabry-Pérot cavity,
despite mechanical vibrations caused by the shot of magnetic
field. The intensities It and Ie start oscillating after about
4 ms. Seismometers placed on mirror mounts show that these
oscillations are mainly due to acoustic perturbations produced
by the magnet pulse and propagating from the magnet to the
mirror mounts through the air. We also see that the minimum
of Ie does not coincide with the maximum of B2. This
phenomenon is due to the cavity filtering, as explained in
detail in Ref. [26].

In Fig. 12 we plot the square of the magnetic field filtered
by the cavity and the ellipticity calculated with Eq. (17) as a
function of time. Since the acoustic perturbations affect both
signals It and Ie, by taking into account the cavity filtering
between It and Ie, oscillations on � are strongly reduced to
a few 10−5 rad and thus are not visible in this figure. These
oscillations induce uncertainty to the measurement, but are
already included in the type-A uncertainty on κ measured in
Sec. III B.

FIG. 11. Cotton-Mouton effect measurements on 32.1×10−3 atm
of molecular nitrogen: top, normalized intensity of the ordinary beam
as a function of time; middle, intensity of the extraordinary beam
divided by the mean of It as a function of time; and bottom, square
of the magnetic field as a function of time.

Finally, we note that both quantities B2
filtered and � reach

their extremum at the same time and their variation can be
perfectly superimposed, thus providing a precise measurement
of magnetic linear birefringence of nitrogen gas.

B. Apparatus calibration

In order to calibrate our apparatus and to evaluate its present
sensitivity we have measured the magnetic birefringence of

FIG. 12. Cotton-Mouton effect measurement on 32.1×10−3 atm
of molecular nitrogen. The gray line denotes the total ellipticity as
a function of time and the dashed line denotes the square of the
magnetic field filtered by a first-order low-pass filter corresponding
to the cavity filtering.
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FIG. 13. Magnetic birefringence of molecular nitrogen as a
function of pressure. The solid line corresponds to the linear fit of the
experimental data.

molecular nitrogen. These measurements have been performed
at different pressures from 2.1×10−3 to 32.1×10−3 atm and
are summarized in Fig. 13. In this range, nitrogen can be
considered as an ideal gas and the pressure dependence of its
birefringence is thus linear:

�n[T−2] = �nu[atm−1 T−2]P [atm]. (27)

We have checked that our data are correctly fitted by a linear
equation. Its �n axis intercept is consistent with zero within
the uncertainties. Its slope gives the normalized magnetic
birefringence at B = 1 T and P = 1 atm (in atm−1 T−2):

�nu = (−2.00 ± 0.08 ± 0.06) × 10−13.

The first uncertainty 0.08 × 10−13 atm−1T−2 corresponds
to the fitting uncertainty and represents the type-A total
uncertainty at 1σ ; the second one 0.06 × 10−13 atm−1T−2

represents the type-B uncertainty at 1σ .
Our value of the normalized birefringence is compared

in Table III to other published experimental values at λ =
1064 nm [30,31]. The table shows that our value agrees
perfectly well with other existing measurements. Our total
uncertainty is 10−14 atm−1 T−2, calculated by quadratically
adding the type-A and type-B uncertainties. This is 1.8 times
more precise than the other results. It therefore provides a
successful calibration of the whole apparatus.

C. Upper limit on vacuum magnetic
birefringence measurements

Once the calibration had been performed we evaluated
the upper limit of the present apparatus on vacuum magnetic
birefringence. To this end, several pulses were performed in
vacuum. A typical ellipticity measured during a magnetic pulse
is plotted in Fig. 14. Acoustic perturbations induce oscillations

TABLE III. Comparison between our value of the nitrogen
normalized magnetic birefringence and other experimental published
values at λ = 1064 nm.

�nu × 10−13

Ref. (at P = 1 atm and B = 1 T)

[30] −2.17 ± 0.21
[31] −2.02 ± 0.16 ± 0.08
this work −2.00 ± 0.08 ± 0.06

FIG. 14. Typical ellipticity (gray) measured during a magnetic
pulse (black) performed in vacuum. Acoustic perturbations generate
ellipticity oscillations starting at 4 ms.

of � starting at about 4 ms, with variations of the order of
10−5 rad. In order to infer our best upper limit for the value of
the vacuum magnetic birefringence, we limit the integration
time to 4 ms. We get �n < 5.0 × 10−20 T−2 per pulse.

During operation, the pressure inside the UHV system was
better than 10−10 atm. To be conservative, let us assume that
residual gases are mainly 78% nitrogen and 21% oxygen. The
normalized magnetic birefringences of these gases are of the
order of −2 × 10−13 and −2 × 10−12 atm−1 T−2, respectively
[12]. The total residual magnetic birefringence is then of the
order of 6 × 10−23 T−2, which is well below our current upper
limit. In the final setup, vacuum quality will be monitored with
a residual gas analyzer.

V. CONCLUSION

The successful calibration we report in this paper is a
crucial step toward the measurement of vacuum magnetic
birefringence. It shows our capability to couple intense
magnetic fields with one of the sharpest Fabry-Pérot cavities
in the world. It is worthwhile to note that an energy of about
100 kJ is discharged in our coils during a few milliseconds.
These 10 MW of electrical power generate acoustic perturba-
tions and mechanical vibrations that tend to misalign the cavity
mirrors. The linewidth �ν of our Fabry-Pérot cavity is of the
order of 150 Hz. A relative displacement �Lc = Lc�ν/νlaser

= 1 pm of both mirrors is enough to get out of resonance. The
sharper the cavity, the bigger the challenge.

The sensitivity per pulse we got in both gases and vacuum is
outstanding. For the sake of comparison, the best birefringence
limit obtained in vacuum with continuous magnets is �n �
2.1 × 10−20 T−2 with an integration time of tint = 65 200
s [11]. In order to compare both methods, we need to translate
the best limit obtained in the continuous regime to the one
obtained with our integration time Ti = 4 ms. Assuming white
noise for both methods, the best limit reported in Ref. [11]
corresponds to �n(Ti) = �n(tint)

√
tint/Ti � 8.5 × 10−17 in

4 ms of integration. This value is more than three orders of
magnitude higher than ours, proving that pulsed fields are a
powerful tool for magnetic birefringence measurements.

The long-term prospective is to get a value of �n =
4 × 10−24 T−2, corresponding to the vacuum magnetic bire-
fringence, with at most 1000 pulses. This corresponds to a
sensitivity better than 1.3 × 10−22 T−2 per pulse. A factor of
the order of 10 of optical sensitivity will be achievable with
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better acoustic insulation and a more robust locking system, in
particular reducing the noise of the measured light intensities
transmitted by the cavity. Further improvements depend on the
possibility of having higher magnetic fields. We have designed
a pulsed coil, called the XXL-coil, which has already reached
a field higher than 30 T when a current higher than 27 000 A
is injected. This corresponds to more than 300 T2 m [32]. Two
XXL-coils will allow us to improve our current sensitivity by
a factor 100. We plan to modify the apparatus in order to host
these XXL-coils. Therefore, the final version of the experiment
will be ready for operation.
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Faraday and Cotton-Mouton effects of helium at λ = 1064 nm
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We present measurements of the Faraday and the Cotton-Mouton effects of helium gas at λ = 1064 nm. Our
apparatus is based on an up-to-date resonant optical cavity coupled to longitudinal and transverse magnetic fields.
This cavity increases the signal to be measured by more than a factor of 270 000 compared to the one acquired
after a single passage of light in the magnetic field region. We have reached a precision of a few percent for both
the Faraday and the Cotton-Mouton effect. Our measurements give the experimental value of the Faraday effect
at λ = 1064 nm. This value is compatible with the theoretical prediction. Concerning the Cotton-Mouton effect,
our measurement agrees at better than 1σ with theoretical predictions.

DOI: 10.1103/PhysRevA.88.043815 PACS number(s): 42.25.Lc, 78.20.Ls, 12.20.−m

I. INTRODUCTION

In 1845 Faraday discovered that a magnetic field affects
the propagation of light in a medium [1]. In particular, he
observed that a magnetic field parallel to the light wave vector
k induces a polarization rotation of linearly polarized light.
This effect is known now as the Faraday effect. With such
experiments, Faraday was looking for proof that light and
magnetic fields have a common origin. These revolutionary
findings represented one of the most important steps towards
Maxwell’s theory of electromagnetism.

At the very beginning of the 20th century, Kerr [2]
and Majorana [3] discovered that linearly polarized light,
propagating in a medium in the presence of a magnetic field,
also acquires an ellipticity when the field is perpendicular to
k. In the following years, this phenomenon was studied in
detail by Cotton and Mouton [4] and it is known now as the
Cotton-Mouton effect.

The Faraday and Cotton-Mouton effects are both due to the
fact that the magnetic field creates an anisotropy in the medium
which then becomes birefringent. The term “birefringent”
indicates that different states of polarization do not have the
same propagation velocity. The Faraday effect corresponds to a
magnetic circular birefringence, i.e., the index of refraction n−
for left circularly polarized light is different from the index of
refraction n+ for right circularly polarized light. The difference
�nF = n− − n+ is proportional to the longitudinal magnetic
field B‖:

�nF = kFB‖, (1)

where kF is the circular magnetic birefringence per tesla. On
the other hand, the Cotton-Mouton effect corresponds to a
magnetic linear birefringence, i.e., the index of refraction n‖
for light polarized parallel to the magnetic field is different
from the index of refraction n⊥ for light polarized perpendic-
ular to the magnetic field. The difference �nCM = n‖ − n⊥ is
proportional to the square of the transverse magnetic field B2

⊥:

�nCM = kCMB2
⊥, (2)

where kCM is the linear magnetic birefringence per tesla
squared.

*carlo.rizzo@lncmi.cnrs.fr

Such magnetic birefringences are usually very small
(�nF,�nCM � 1) for magnetic fields available in laboratories,
especially in the case of dilute matter. Magnetic birefringence
measurements are therefore an experimental challenge. The
value of the birefringence depends on microscopic matter
response properties like (hyper)susceptibilities. In the case
of dilute matter, these responses can be calculated ab initio
using the computational methods developed in the framework
of quantum chemistry [5]. Experimental measurements are
then a fundamental test of our knowledge of the interaction of
electromagnetic fields and matter.

Among all known gases, helium presents the smallest
Faraday and Cotton-Mouton effects. Ab initio calculations of
the helium Faraday effect at λ = 1064 nm, with λ the light
wavelength, have been published only recently [6]. From the
experimental point of view, Faraday effect measurements in
helium date back to the 1950s [7], but not at λ = 1064 nm.
The Cotton-Mouton effect in helium was first measured at
λ = 514.5 nm in 1991 [8]. At the same time, the first numerical
calculation at a different wavelength in the coupled Hartree-
Fock approximation was published [9]. Actually, these two first
values were not in agreement. While some other theoretical
calculations exist in the literature [10], to our knowledge only
three more experimental values have been published since
1991 [8,11,12], with only one at λ = 1064 nm [12].

Ab initio calculations of both the Faraday and Cotton-
Mouton effects of helium are benchmark tests for computa-
tional methods. In practice they can be considered as error-free,
especially when compared with the error bars associated with
the experimental values. Experimental measurement precision
has therefore to be as good as possible to be able to test the
different computational methods.

Experimentally, one generally measures the Faraday effect
by measuring the polarization rotation angle θF, related to the
circular birefringence by the formula

θF = π
LB

λ
�nF, (3)

where LB is the length of the magnetic field region. The
Cotton-Mouton effect is measured through the induced
ellipticity related to the linear birefringence by the formula

ψ = π
LB

λ
�nCM sin 2θP, (4)

043815-11050-2947/2013/88(4)/043815(11) ©2013 American Physical Society
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where θP is the angle between the light polarization and the
magnetic field. Experiments are difficult because one needs a
high magnetic field coupled to optics designed to detect very
small variations of light velocity. One also needs an LB as
large as possible. To this end, optical cavities are used to trap
light in the magnetic field region and therefore increase the
ellipticity to be measured (see, e.g., Ref. [8]).

In this paper, we present measurements of the Faraday and
Cotton-Mouton effects of helium gas at λ = 1064 nm. Our
apparatus is based on an up-to-date resonant optical cavity
coupled to longitudinal and transverse magnetic fields. This
cavity increases the signal to be measured by more than a factor
of 270 000 compared to the one acquired after a single passage
of light in the magnetic field region. This allows us to reach a
measurement precision of a few percent for both the Faraday
and Cotton-Mouton effects. Our results are finally compared
to the theoretical predictions and they agree to within better
than 1σ .

II. EXPERIMENTAL SETUP AND SIGNAL ANALYSIS

A. Apparatus

Our apparatus is described in detail in Refs. [13,14]. Briefly,
as shown in Fig. 1, 30 mW of linearly polarized light provided
by a Nd:YAG laser (λ = 1064 nm) is injected into a high-
finesse Fabry-Pérot cavity consisting of the mirrors M1 and M2.
The laser frequency is locked onto the cavity using the Pound-
Drever-Hall method [15]. To this end, the laser passes through
an electro-optic modulator creating sidebands at 10 MHz. The
beam reflected by the cavity is detected by the photodiode
Phr. This signal is used to adjust the laser frequency with a
bandwidth of 80 kHz via an acousto-optic modulator and with
a bandwidth of a few kilohertz via the piezoelectric element of
the laser. A slow control with a bandwidth of a few millihertz
is also applied by the Peltier element of the laser.

Before entering the optical cavity, the light is linearly
polarized by the polarizer P. The light transmitted by the
cavity is then analyzed with the analyzer A crossed at
maximum extinction. Both polarizations are extracted: parallel
and perpendicular to P. The extraordinary beam (power Ie),
corresponding to the light polarization perpendicular to P, is
collected by the low-noise photodiode Phe, while the ordinary
beam (power It), corresponding to the light polarization
parallel to P, is detected by Pht. All the optical components
from the polarizer P to the analyzer A are placed in a

FIG. 1. Experimental setup. EOM, electro-optic modulator;
AOM, acousto-optic modulator; PDH, Pound-Drever-Hall; Ph, pho-
todiode; P, polarizer; A, analyzer. See text for more details.

high-vacuum chamber which can be filled with high-purity
gases. During this work, magneto-optical measurements have
been done using a bottle of helium gas with a global purity
higher than 99.9999%. This bottle is connected to the chamber
through a leak valve allowing injection of less than 10−3 atm
of gas.

Magnets providing a field perpendicular to the light wave
vector k and a field parallel to k surround the vacuum pipe. The
transverse magnetic field (B⊥ ⊥ k) used for Cotton-Mouton
effect measurements is created by pulsed coils as described in
Refs. [14,16] and briefly detailed in Sec. IV A. For the Faraday
effect measurements, a modulated longitudinal magnetic field
(B‖ ‖ k) is applied via a solenoid. More details are given in
Sec. III A.

B. Fabry-Pérot cavity

A key element of the experiment is the Fabry-Pérot cavity.
Its aim is to accumulate the effect of the magnetic field by
trapping the light between two ultrahigh-reflectivity mirrors
M1 and M2. The length of the cavity is Lc = (2.2713 ±
0.0006) m. This corresponds to a cavity free spectral range of
�FSR = c/2nLc = (65.996 ± 0.017) MHz, with c the speed
of light in vacuum and n the index of refraction of the medium
in which the cavity is immersed. This index of refraction
will be considered equal to 1. All these parameters and their
uncertainties were measured previously. Details concerning
the measurement are given in Ref. [13]. Using the Jones matrix
formalism, we can calculate the total acquired ellipticity due
to the Cotton-Mouton effect, �(t). It is linked to the ellipticity
without any cavity, ψ(t), by

�(t) = 2F

π
ψ(t). (5)

Likewise, the total rotation angle 	F(t) due to the Faraday
effect is

	F(t) = 2F

π
θF(t), (6)

where F is the finesse of the cavity and θF(t) the rotation angle
without any cavity.

1. Cavity birefringence

The cavity induces a total static ellipticity 
. This is due to
the mirrors’ intrinsic phase retardation [17]. Each mirror can
be regarded as a wave plate and a combination of both wave
plates gives a single wave plate. The total phase retardation
δeq and the axis orientation of the wave plate equivalent to the
cavity depend on the phase retardation of each mirror and on
their relative orientation [18,19]. Thus the value of 
 can be
adjusted by rotating the mirrors M1 and M2 around the z axis
corresponding to the axis of light propagation.

We first set 
 = 0. To this end, we align the axis of the
equivalent wave plate on the incident polarization. This is done
by rotating the mirrors while the laser frequency is locked
onto the cavity. As the polarizers are crossed at maximum
extinction, we can measure the extinction ratio σ 2 of the
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polarizers by measuring the following ratio:

σ 2 = Ie

It

∣∣∣∣

=0

. (7)

The value of σ 2 is regularly measured, in particular be-
fore each shot for the Cotton-Mouton effect measurements.
This extinction ratio can typically vary from 4 × 10−7

to 8 × 10−7.
As shown in Ref. [14], because of the ellipticity noise, the

optical sensitivity improves when 
 decreases. Starting from

 = 0 and rotating M1 in the clockwise or counterclockwise
direction, we choose the sign of 
 as well as its value, with
typically 
2 ∼ σ 2. The sign of 
 is known by filling the
vacuum chamber with nitrogen gas and by measuring its
Cotton-Mouton effect, whose sign and value are perfectly
known. This measurement has already been done with this
apparatus and the results are reported in Ref. [13]. We
performed several measurements with different signs and
values of 
, showing that this parameter is perfectly controlled.
The value and the sign of 
 are set before each magnetic
shot.

The static birefringence of the cavity changes the incident
linear polarization into an elliptical polarization of elliptic-
ity 
. But it also induces a rotation angle ε of the major axis of
the ellipse compared with the polarizer axis. The value of this
angle can be calculated by considering the Fabry-Pérot cavity
as an equivalent wave plate of phase retardation δeq. The angle
between the incident linear polarization and the fast axis of
the equivalent wave plate corresponds to ϕ, as represented in
Fig. 2. The ellipticity induced by the wave plate is given by


 = sin(2ϕ) sin(δeq)

2
. (8)

As we set 
 � 1, the fast axis is almost aligned with P and
thus we have ϕ � 1. Assuming that δeq � 1, we get

ϕ = 


δeq
. (9)

FIG. 2. Rotation of the major axis of the elliptical polarization
due to the static birefringence of the Fabry-Pérot cavity.

We also have

tan(2θ ) = tan(2ϕ) cos(δeq), (10)

θ = ϕ

(
1 − δ2

eq

2

)
, (11)

where θ is the angle between the major axis of the ellipse and
the fast axis of the wave plate. Combining Eqs. (9) and (11),
we obtain the angle ε between the major axis of the elliptical
polarization and the incident linear polarization:

ε = θ − ϕ = −
δeq

2
. (12)

The value of the phase retardation of our cavity is about |δeq| ∼
0.1 rad. This has been inferred by measuring the value of 
 as
a function of the mirrors’ orientation, as explained in detail in
Ref. [17]. With a typical value of |
| varying from 8 × 10−4

to 3 × 10−3, we obtain 40 < |ε| < 150 μrad.

2. Cavity finesse and cavity filtering

The finesse of the cavity is inferred from the measurement
of the photon lifetime τ inside the cavity. At t = t0 the intensity
of the laser, previously locked onto the cavity resonance, is
switched off. The exponential decay of the intensity of the
ordinary beam for t > t0 is fitted with

It(t) = It(t0)e−(t−t0)/τ (13)

to obtain τ . The cavity finesse is related to the photon lifetime
through

F = πcτ

Lc
. (14)

The value of the photon lifetime is regularly checked during
data taking. In this experiment, it ranges from 1.06 to 1.12 ms,
corresponding to a finesse of 438 000 to 465 000. During a
run of data taking, the relative variation of the photon lifetime
does not exceed 2% at the 1σ confidence level.

Due to the photon lifetime, the cavity acts as a first-order
low-pass filter, as explained in detail in Ref. [20]. Its complex
response function H (ν) is given by

H (ν) = 1

1 + i ν
νc

, (15)

with ν the frequency and νc = 1/4πτ � 70 Hz the cavity
cutoff frequency. This filtering has to be taken into account
in particular for the time-dependent magnetic field applied
inside the Fabry-Pérot cavity.

The cavity also acts as a first-order low-pass filter for
the ordinary beam It(t) compared to the beam incident on
the cavity. But, due to the cavity birefringence, the cavity
acts as a second-order low-pass filter for the extraordinary
beam Ie(t). This effect is explained in detail in Ref. [20]. The
second-order low-pass filter represents the combined action
of two successive identical first-order low-pass filters. Their
complex response function is given by Eq. (15). While the first
one characterizes the usual cavity behavior, we can interpret
the second filter in terms of pumping or filling: due to the
mirror birefringence, some photons of the ordinary beam
are gradually converted into the extraordinary beam at each
reflection. Thus, if we want to directly compare It(t) and Ie(t),
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we have to apply the first-order low-pass filter to It(t). The
filtered signal It,f (t) is then used for the analysis.

C. Signals

The ellipticity �(t) and the rotation of the polarization
	F(t) induced by the transverse and the longitudinal magnetic
fields can be related to the ratio of the extraordinary and
ordinary powers as follows:

Ie(t)

It,f (t)
= σ 2 + [
 + �(t)]2 + [ε + 	F(t)]2. (16)

This formula, which can be obtained using the Jones formal-
ism, clearly shows that our experiment is sensitive to both
ellipticities and rotations.

III. FARADAY EFFECT OF HELIUM GAS

As stated above, the Faraday effect corresponds to a
magnetic circular birefringence �nF induced by a longitudinal
magnetic field B‖. From Eqs. (1), (3), and (6), we deduce that
the polarization rotation to be measured depends on kF as
follows:

	F(t) = 2F
LB

λ
kFB‖(t). (17)

For historical reasons, the Faraday effect is usually given in
terms of the Verdet constant V [21], which is related to the
Faraday constant by

V = πkF

λ
. (18)

Equation (17) becomes

	F(t) = 2F

π
V B‖(t)LB. (19)

A. Magnetic field

To measure the Faraday effect, we need a longitudinal
magnetic field. It is delivered by a 300-mm-long solenoid. Its
diameter is 50 mm and it corresponds to 340 loops of copper
wire. The magnetic field profile along the longitudinal z axis
has been measured with a gaussmeter. Figure 3 shows the
normalized profile. We define B‖,0 as the maximum magnetic
field, thus at the center of the coil, and LB as the equivalent
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FIG. 3. Normalized profile of the longitudinal magnetic field
inside the solenoid along the longitudinal z axis. The crosses
correspond to the measurements.

magnetic length such that∫ +∞

−∞
B‖(z)dz ≡ B‖,0LB. (20)

This equivalent magnetic length has been calculated by numer-
ically integrating the measured field. Taking into account the
experimental uncertainties, we obtain LB = (0.308 ± 0.006)
m at 1σ . We can reach a maximum magnetic field of about
4.3 mT corresponding to an injected current of 3 A.

To measure the magnetic field during operation, we measure
the current injected into the coil. The form factor B‖/I
has been determined experimentally using the gaussemeter
and an ammeter. This form factor remains constant for
frequency modulation ranging from dc to 50 Hz. Finally
we have estimated the relative uncertainty u(B‖)/B‖ = 1.4%
at 1σ , taking into account the uncertainties coming from
the gaussmeter and the ammeter and from a possible small
misalignment of the laser beam inside the solenoid.

Faraday effect measurements were performed at room
temperature T = 293 K in an air-conditioned room. When a
current is injected into the solenoid, the temperature increases
inside the coil. Nevertheless, for a maximum current of 3 A,
the increase is lower than 2 K. This will be taken into account
in the final uncertainty.

B. Analysis of Faraday signal

The magnetic field at the center of the coil is modulated at
the frequency ν: B‖ = B‖,0 sin(2πνt + φ). The rotation of the
polarization due to the Faraday effect is thus given by

	F = 	0 sin(2πνt + φ), (21)

with 	0 = 2F

π
V B‖,0LB. (22)

Expanding Eq. (16), we obtain

Ie(t)

It,f (t)
= σ 2 + ε2 + 2ε	F(t) + 	2

F(t)

+
2 + 2
�(t) + �2(t). (23)

We define the ratio between the Faraday and the Cotton-
Mouton signals as

RF/CM = 2ε	F + 	2
F

2
� + �2
. (24)

For the Faraday measurements, our typical static ellipticity
is 
 = 3 × 10−3 rad, and Eq. (12) gives |ε| = 150 μrad. We
evaluate the value of RF/CM using the theoretical values of
the Verdet and Cotton-Mouton constants of helium which are
given later in this article. For this experiment, our typical
helium pressure is 30 × 10−3 atm and the cavity finesse is
of the order of 465 000, corresponding to a cavity cutoff
frequency of about 70 Hz. The solenoid mainly induces a
longitudinal magnetic field, but, for the sake of argument, let
us perform the calculation with the same value 4.3 mT for
the longitudinal and the transverse magnetic fields. One gets
RF/CM ∼ 106. The Cotton-Mouton effect is thus negligible.
Equation (23) thus becomes

Ie(t)

It,f (t)
= σ 2 + 
2 + [ε + 	F(t)]2. (25)
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This equation results in three main frequency components:

Idc = σ 2 + 
2 + ε2 + 	2
0

2
, (26)

Iν = 2ε	0√
1 + (

ν
νc

)2
sin

[
2πνt + φ − arctan

(
ν

νc

)]
, (27)

I2ν = − 	2
0

2
√

1 + (
2ν
νc

)2
cos

[
4πνt + 2φ − arctan

(
2ν

νc

)]
.

(28)

As mentioned before, the cavity acts as a first-order low-pass
filter, with a cavity cutoff frequency νc. This filtering has been
taken into account in Eqs. (27) and (28).

The amplitude of the ν component, Iν depends on 	0 but
also on ε, whose value is not precisely known. On the other
hand, I2ν depends only on 	0. Consequently it is the only
component used to measure the Verdet constant. The amplitude
of the 2ν frequency component, proportional to (B‖,0LB)2, is
measured as a function of the magnetic field amplitude. We fit
our data with KV B2

‖,0. The Verdet constant V finally depends
on the measured experimental parameters as follows, using
Eq. (22) and the amplitude of the 2ν component given in Eq.
(28):

V (T ,P ) =
√

KV

2

[1 + (8πτν)2]1/4

2τ�FSRLB

. (29)

C. Results

1. Our result

We report in Fig. 4 the Fourier transform of the Ie/It,f − Idc

signal with about 60 × 10−3 atm of helium and with B‖,0LB =
1.3 × 10−3 T m. The magnetic frequency modulation is fixed
to ν = 18 Hz in order to have the 2ν frequency lower than
the cavity cutoff frequency. We can observe both components
at frequencies ν and 2ν. During the Faraday data taking, the
photon lifetime was τ = (1.12 ± 0.02) ms corresponding to a
cavity finesse of (465 000 ± 8000).

We plot in Fig. 5 the amplitude of the 2ν component as a
function of B‖,0. We fit our data by a quadratic law KV B2

‖,0.
We also study the ν frequency component as a function of the
magnetic field amplitude. According to the relation (27), we
obtain a linear dependence. By fitting these data by a linear
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FIG. 4. Fourier transform of Ie/It − Idc with about 60 × 10−3 atm
of helium and with B‖,0LB = 1.3 × 10−3 T m. The magnetic
frequency modulation is ν = 18 Hz.
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FIG. 5. Amplitude of the 2ν frequency component as a function of
B‖,0 with about 60 × 10−3 atm of helium. The solid line corresponds
to a quadratic fit of the experimental data.

equation and using the value of the Verdet constant measured
with the 2ν frequency component, we infer the value of the
ε parameter. We obtain ε � 10−4 rad, in agreement with the
value calculated with Eq. (12).

We performed Faraday constant measurements at different
pressures from 10−2 to 6 × 10−2 atm. They are summarized
in Fig. 6. We measure the gas pressure in the chamber with
pressure gauges which have a relative uncertainty given by the
manufacturer of 0.2%. In this range of pressure, helium can
be considered as an ideal gas and the pressure dependence of
the Verdet constant is thus linear. As shown in Fig. 6, our data
are correctly fitted by a linear equation. Its V -axis intercept
is consistent with zero within the uncertainties. Its slope
gives the normalized Verdet constant at λ = 1064 nm and at
T = (294 ± 1) K:

V = (3.87 ± 0.12) × 10−5 atm−1 rad T−1 m−1. (30)

With a scale law on the gas density and considering an ideal
gas, this corresponds to a normalized Verdet constant at T =
273.15 K of

V = (4.17 ± 0.13) × 10−5 atm−1 rad T−1 m−1. (31)

The uncertainty is given at 1σ . It is calculated from the relative
A- and B-type uncertainties summarized in Table I and detailed
in Ref. [13]. Using Eq. (18), we can also give the normalized
Faraday constant. At T = 273.15 K, one gets

kF = (1.41 ± 0.04) × 10−11 atm−1 T−1. (32)
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FIG. 6. Verdet constant of helium as a function of pressure. The
solid line corresponds to a linear fit of the experimental data.
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TABLE I. Parameters and their respective relative A- and B-type
uncertainties at 1σ that have to be measured to infer the value of the
normalized Verdet constant V .

Parameter Relative A-type Relative B-type
uncertainty uncertainty

τ 2 × 10−2

KV 8 × 10−3

B‖,0 1.4 × 10−2

LB 2.0 × 10−2

�FSR 3 × 10−4

P 2 × 10−3

2. Comparison

Our value of the normalized Verdet constant can be
compared to other published values. Reference [7] presents the
most extensive experimental values in helium. They have been
measured at different wavelengths, from 363 to 900 nm, and
they correspond to the open triangles in Fig. 7 at T = 273.15 K.
As stated by the authors in Refs. [7,22], “the average absolute
probable error is considered to be about 1%,” but “the scale of
measurement was determined by a comparison of these results
with accepted values for water.” This is an important difference
from our experiment since we do not need to calibrate our setup
with another gas. All parameters on which the measured Verdet
constant depends are accurately monitored, yielding therefore
a Verdet constant of high precision.

As far as we know, no value has been reported at 1064 nm,
our working wavelength. Nevertheless, it can be quadratically
interpolated from the data of Ref. [7] with a fit A/λ2 (solid
line in Fig. 7). This gives a normalized Verdet constant at
λ = 1064 nm and T = 273.15 K of V = (4.15 ± 0.05) ×
10−5 atm−1 rad T−1 m−1. The uncertainty is the one given by
the fit. This value is compatible with ours, which is represented
as the open circle in the inset of Fig. 7.

We finally compared our value with the theoretical pre-
dictions at T = 273.15 K. The most recent ones were pub-
lished in 2005 [6] exploiting a four-component Hartree-Fock
calculation and in 2012 [23] using a relativistic particle-hole
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FIG. 7. �: Experimental values of helium normalized Verdet
constant at T = 273.15 K reported in Ref. [7] for wavelengths from
363 to 900 nm. These values are fitted by the law A/λ2 (solid line).
◦: Our experimental value at T = 273.15 K. •: Theoretical predic-
tions at T = 273.15 K reported in Ref. [6]. Inset: Zoom around
λ = 1064 nm. The error bar corresponds to the 1σ uncertainty of our
measurement.

TABLE II. Experimental and theoretical values of the nor-
malized Verdet constant at T = 273.15 K, λ = 1064 nm and
with uncertainties at 1σ .

Ref. V × 105 Remarks
(atm−1 rad T−1 m−1)

Theory
[6] 4.06
[23] 4.09 ± 0.02 Quadratically interpolated.

Experiment

[7] 4.15 ± 0.05 Quadratically interpolated.
Not absolute: scaled to

water.
This work 4.17 ± 0.13

configuration-interaction method. Reference [6] gives values
at different wavelengths that are plotted in Fig. 7 with the
filled points. The value at λ = 1064 nm is V = 4.06 ×
10−5 atm−1 rad T−1 m−1 and it is plotted in Fig. 7 with the
filled point. Reference [23] does not give a value at 1064 nm,
but it can be obtained by a quadratic interpolation of the
data provided by the author. One obtains V = (4.09 ± 0.02) ×
10−5 atm−1 rad T−1 m−1, with an uncertainty given by the fit.
Both theoretical values are compatible with our experimental
Verdet constant. All these theoretical and experimental values
are summarized in Table II.

IV. COTTON-MOUTON EFFECT OF HELIUM GAS

The Cotton-Mouton effect consists in a linear birefringence
�nCM induced by a transverse magnetic field B⊥. From
Eqs. (4) and (5) we deduce that the ellipticity �(t) to be
measured is linked to kCM by

�(t) = 2F
LB

λ
kCMB2

⊥(t) sin 2θP. (33)

The angle θP is adjusted to 45◦ with the experimental procedure
explained in Ref. [13].

A. Magnetic field

One can see that � is proportional to B2
⊥LB . In order to have

� as high as possible, we have to maximize this parameter.
This is fulfilled using pulsed fields delivered by one magnet,
named the “X-coil”, especially designed by the Laboratoire
National des Champs Magnétiques Intenses (LNCMI). The
principle of this magnet and its properties are described in
detail in Refs. [14,16]. It can provide a maximum field of
more than 14 T over an equivalent length LB of 0.137 m [13].
The high-voltage connections can be remotely switched to
reverse the direction of the field. Thus we can set B parallel or
antiparallel to the x direction, as shown in Fig. 1.

The pulsed coil is immersed in a liquid-nitrogen cryostat
to limit its heating. A pause between two pulses is necessary
to let the magnet cool down to the equilibrium temperature.
We do not need to use the coil at its maximum field since
the sensitivity of our experiment is largely sufficient. We have
chosen to apply a maximum field of 3 T in order to limit
the aging of the magnet. From one shot to another, a relative
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time for a maximum field of 3 T. Solid black curve, B2
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⊥,f .

variation of the maximum of the field lower than 1.5% was
observed due to variation of the power supply voltage.

The pulse duration is less than 10 ms, with the maximum
of the field reached within 2 ms. Since the pulse duration is of
the same order of magnitude as the photon lifetime inside the
cavity, the filtering of the Fabry-Pérot cavity has to be taken
into account for the magnetic field, as we said in Sec. II B2. We
calculate the filtered field B2

⊥,f from B2
⊥ by using the first-order

low-pass filter corresponding to the cavity. The time profiles of
B2

⊥ and B2
⊥,f are shown in Fig. 8, for a maximum field of 3 T.

B. Analysis of Cotton-Mouton signal

As mentioned in Sec. II C, the ratio of the powers Ie and It,f

is linked to the birefringence �(t) to be measured as follows:

Ie(t)

It,f (t)
= σ 2 + [
 + �(t)]2 + [ε + 	F(t)]2, (34)

where 	F(t) is the rotation angle due to the longitudinal
component of the pulsed magnetic field inducing a Faraday
effect in helium. This component B‖(t) is first due to the
X structure of the coil. It is around 230 times smaller than
the transverse field, i.e., around 10 mT for a pulse of 3 T.
Moreover a contribution to B‖ appears if the cryostat is not
perfectly aligned with the optical axis. The diameter of the
cryostat is 60 cm. A typical misalignment of 2 mm over this
length, i.e., around 3 mrad, leads to a longitudinal component
of 10 mT. Finally the estimated longitudinal magnetic field is
about 20 mT. It can be present during a shot over an equivalent
length LB = 0.137 m.

Using Eq. (19) and the value of the Verdet constant given
in Eq. (30), we can calculate the rotation of the polarization
	F due to B‖. It is about 30 mrad per atmosphere of helium
gas. We then calculate the ratio of the Faraday effect to the
Cotton-Mouton effect, RF/CM, given by Eq. (24). Since the
static ellipticity is typically |
| � 8 × 10−4 rad corresponding
to ε � 40 μrad as stated in Sec. II B1, this ratio goes from 200
at 40 × 10−3 atm to 2600 at 550 × 10−3 atm. This shows that
the Faraday effect component is not negligible and thus needs
to be taken into account.

From Eq. (34), we obtain

Ie(t)

It,f (t)
= σ 2 + 
2 + ε2 + 2
�(t) + �2(t)

+ 2ε	F(t) + 	2
F(t). (35)

This formula shows that the angle ε carries the Faraday effect
of the gas. During a Cotton-Mouton effect measurement we
want to have the Faraday effect as small as possible. We
therefore minimize ε before the shot, once the value of 


is set, by turning the analyzer A. As we can see in Fig. 2,
this consists in aligning A, which was initially adjusted at 90◦
compared to the incident polarization, on the minor axis of
the elliptical polarization. Nevertheless, in order to take into
account the imperfections of this experimental adjustment, we
still keep ε in the formula, assuming that ε2 � 
2.

To extract the ellipticity �(t), we calculate the following
Y (t) function:

Y (t) =
Ie(t)
It,f (t)

− Idc

2|
|
= γ�(t) + �2(t)

2|
| + γ
|ε|	F(t)

2|
| + 	2
F(t)

2|
| , (36)

where γ corresponds to the sign of 
. Idc is the static signal:

Idc = σ 2 + 
2 + ε2 =
〈

Ie(t)

It,f (t)

〉
t<0

, (37)

and it is measured just before each shot, the magnetic field
being applied at t = 0. We also measure the extinction ratio σ 2

before each shot using the experimental procedure described
in Sec. II B1. The absolute value of the static ellipticity is then
calculated as follows:

|
| =
√〈

Ie(t)

It,f (t)

〉
t<0

− σ 2. (38)

Two parameters are adjustable in the experiment: the sign
γ of the static ellipticity 
 and the direction of the transverse
magnetic field. We acquire signals for both signs of 
 and
both directions of B: parallel to x is denoted as >0 and
antiparallel is denoted as <0. This gives four data series:
(
 > 0, B⊥ > 0), (
 > 0, B⊥ < 0), (
 < 0, B⊥ < 0), and
(
 < 0, B⊥ > 0). For each series, signals calculated with
Eq. (36) are averaged and denoted as Y
, Y><, Y�, and Y<>.
The first subscript corresponds to 
 > 0 or 
 < 0 while the
second one corresponds to B parallel or antiparallel to x.

The Y signals are the sum of different effects with different
symmetries, denoted as S:

Y
 = a
S++ + b
S+− + c
S−− + d
S−+,

Y>< = a><S++ − b><S+− − c><S−− + d><S−+,
(39)

Y� = a�S++ − b�S+− + c�S−− − d�S−+,

Y<> = a<>S++ + b<>S+− − c<>S−− − d<>S−+.

The first subscript in S corresponds to the symmetry with
respect to the sign of 
 and the second one with respect to the
direction of B. The subscript + indicates an even parity while
the subscript − indicates an odd parity. In practice w
 �
w>< � w� � w<> (with w = a, b, c, or d) depend on the
experimental parameters. These values are not perfectly equal
because the experimental parameters slightly vary from one
shot to another, in particular the value of |
|.

Possible physical effects contributing to the different S

signals are summarized in Table III. The S+− signal does
not appear in Eq. (36) but it has to be taken into account. It
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TABLE III. Possible physical effects contributing to the S signals.

S signal Physical effect

S++(t) 	2
F(t), �2(t)

S+−(t) B effects on photodiodes
S−−(t) γ	F(t)
S−+(t) γ�(t)

corresponds to a signal with odd parity towards the direction
of B and even parity towards the sign of 
 that could be, for
example, a spurious effect on the photodiodes Pht and Phe

induced by the magnetic field.
Linear combinations of the Y signals allow the effects

corresponding to the different symmetries to be highlighted:

J1 = Y
 + Y>< + Y� + Y<>

4
,

= aS++ + �b1S+− + �c1S−− + �d1S−+,

J2 = Y
 − Y>< − Y� + Y<>

4
,

= bS+− + �a2S++ + �c2S−− + �d2S−+,
(40)

J3 = Y
 − Y>< + Y� − Y<>

4
,

= cS−− + �a3S++ + �b3S+− + �d3S−+,

J4 = Y
 + Y>< − Y� − Y<>

4
,

= dS−+ + �a4S++ + �b4S+− + �c4S−−,

with �wi � 0 (w = a, b, c, or d and i = 1, 2, 3, or 4). The
signal we want to measure is �(t) which corresponds to the
main part of S−+(t), and is thus proportional to B2

⊥,f . We can
write

J4 = αB2
⊥,f + �a4S++ + �b4S+− + �c4S−−

� αB2
⊥,f . (41)

We fit the function J4 with αB2
⊥,f to obtain α. The Cotton-

Mouton constant kCM finally depends on the measured exper-
imental parameters as follows:

kCM(T ,P ) = α

4πτ�FSR

λ

LB

1

sin 2θP
. (42)

The terms T and P correspond to the gas temperature and
pressure.

C. Results

1. Our result

We have taken data for helium pressures ranging from
40 × 10−3 to 550 × 10−3 atm. Before injecting the gas, we
pumped the vacuum chamber and the initial pressure was
about 10−10 atm. Several series of four shots (
 > 0, B⊥ > 0;

 > 0, B⊥ < 0; 
 < 0, B⊥ < 0; and 
 < 0, B⊥ > 0) were
acquired for each pressure. The vacuum chamber was pumped
between two measurements at different pressures, which made
them totally independent. The temperature of the gas during
the magnetic pulse was measured previously [13] and was
T = (293 ± 1) K. For this set of measurement the mean
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FIG. 9. Time evolution of the Y (t) signals at a pressure of
550 × 10−3 atm. Solid black curve, experimental data; dashed curve,
expected signal from the theoretical prediction considering only the
Cotton-Mouton effect.

photon lifetime inside the cavity is τ = (1.06 ± 0.02) ms,
corresponding to a finesse of 438 000 ± 8000.

The signals Y
, Y><, Y�, and Y<> obtained for a pressure
of 550 × 10−3 atm are plotted in Fig. 9. We calculate the
signals expected from the theoretical prediction considering
only the Cotton-Mouton effect [5]. The theoretical signals
(dashed line) are superimposed on the experimental data (solid
line). One can see that the Y signals do not match at all with the
expected signals. A more refined study is thus needed to extract
the Cotton-Mouton effect. The Y signals are in fact linear
combinations of different effects with different symmetries
with respect to the sign of 
 and the direction of B, as predicted
in Eqs. (39).

We then calculate the corresponding J signals, plotted in
Fig. 10. In order to validate the physical origin of J1, J2, J3,
and J4, we have studied the evolution of the values of their
maxima as a function of pressure. They are shown in Fig. 11.
In this range of pressure, helium can be considered as an ideal
gas and the pressure dependence of the Faraday and Cotton-
Mouton effects is thus linear. We see that the maxima of J3 and
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FIG. 10. Time evolution of the J (t) signals at a pressure of 550 ×
10−3 atm.
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FIG. 11. Evolution of the maximum of the J (t) signals as a
function of pressure.

J4 are proportional to the pressure, which is consistent with
the Faraday effect due to the residual longitudinal magnetic
field B‖ and the Cotton-Mouton effect due to the transverse
magnetic field B⊥. The maximum of J1 increases with the
square of the pressure. This confirms that this signal contains
the terms 	2

F and �2. The value of the J2 maximum does
not have a clear dependence on the pressure. Moreover the
shape of J2(t) is not the same from one pressure to another.
Finally, the J2 signals can be fitted by a linear combination of
J1, J3, and J4. Thus, we deduce that J2 is essentially a linear
combination of the other signals, and that the signal bS+− is
almost zero.

Thus we can write

J1 � aS++, J2 � �a2S++ + �c2S−− + �d2S−+,
(43)

J3 � cS−−, J4 � dS−+.

The main contribution to J4 comes from the Cotton-Mouton
effect. We thus fit J4(t) with αB2

⊥,f (t). The value of kCM is then
calculated using Eq. (42).

For the lowest pressures, the Cotton-Mouton signal, pro-
portional to αB2

⊥,f , also decreases. In this case, �a4 S++ and
�c4 S−− are not completely negligible compared to αB2

⊥,f .
This is shown in Fig. 12 where a typical signal obtained for a
helium pressure of 162 × 10−3 atm is plotted. We see that the
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1086420-2
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FIG. 12. Gray: Time evolution of J4 for a pressure of 162 ×
10−3 atm. Black dashed curve: fit with αB2

⊥,f . White solid curve: fit
with αB2

⊥,f + α1J1 + α3J3, the value of α being fixed at the value
obtained with the previous fit αB2

⊥,f .
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FIG. 13. Linear magnetic birefringence of helium gas as a
function of pressure. The solid line corresponds to a linear fit of
the experimental data.

fit of J4 with αB2
⊥,f does not perfectly match the experimental

data. To obtain a better fit, we have to add parameters. To this
end, we first fix the value of α at the value obtained with the
first fit αB2

⊥,f . Then we fit J4 with αB2
⊥,f + α1J1 + α3J3. J2 is

not used in this fit because, as we said before, it is mainly a
linear combination of the other signals. One can see in Fig. 12
that this fit now matches the data much better. We can conclude
that, in this case, we have

J4 = αB2
⊥,f + �a4S++ + �c4S−− (44)

= αB2
⊥,f + �a4

a
J1 + �c4

c
J3, (45)

with α2 = �a4/a and α3 = �c4/c. This fit procedure repeated
for each pressure shows that we always have α2 and α3 lower
than 0.1.

The value of kCM as a function of the pressure is shown in
Fig. 13. A linear fit of this data gives kCM = (2.19 ± 0.09) ×
10−16 T−2 atm−1 at T = (293 ± 1) K. Its kCM-axis intercept is
consistent with zero within the uncertainties.

The A-type uncertainties come from the fit and from the
photon lifetime with a relative variation lower than 2%.
The B-type uncertainties have been evaluated previously and
detailed in Ref. [13]. They essentially come from the length
of the magnetic field LB . They are summarized in Table IV.
We obtain for the value of the Cotton-Mouton constant at
T = (293 ± 1) K

kCM = (2.19 ± 0.12) × 10−16 T−2 atm−1. (46)

TABLE IV. Parameters that have to be measured to infer the
value of the Cotton-Mouton constant kCM and their respective relative
B-type uncertainties at 1σ .

Relative B-type
Parameter Typical value uncertainty

α 10−5 rad T−2 2.2 × 10−2

�FSR 65.996 MHz 3 × 10−4

LB 0.137 m 2.2 × 10−2

λ 1064.0 nm <5 × 10−4

sin 2θP 1.0000 9 × 10−4

Total 3.1 × 10−2
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FIG. 14. Comparison of reported values of the Cotton-Mouton
effect of helium gas. �, experimental values of helium Cotton-
Mouton constant reported in Refs. [8,11,12]; ◦, our experimental
value; • and dashed line, theoretical predictions reported in Ref. [24].

The value of kCM normalized at 273.15 K is calculated with a
scale law on the gas density:

kCM = (2.35 ± 0.13) × 10−16 T−2 atm−1, (47)

at λ = 1064 nm, taking into account the uncertainty on the
temperature.

2. Comparison

The value of the Cotton-Mouton effect in helium is
calculated very precisely by ab initio quantum chemistry
computational methods [5]. Theoreticians concentrate on the
calculation of the hypermagnetizability anisotropy �η while
experimentalists measure the birefringence �nCM = kCMB2.
The Cotton-Mouton constant kCM is linked to �η by [10]

kCM (atm−1 T−2) = 6.18381 × 10−14

T
�η (a.u.). (48)

Few experiments have been realized to measure the Cotton-
Mouton effect of helium. The results are summarized in
Table V. The theoretical values correspond to those of Ref.
[24]. The latter have been obtained using the full configuration-
interaction (FCI) method and the most extended wave function
basis. They are expected therefore to be very accurate.

Our result is compatible at better than 1σ with the
theoretical prediction. In Fig. 14 we summarize the results
for the Cotton-Mouton measurements at 273.15 K.

V. DISCUSSIONS AND CONCLUSION

In this paper we report a measurement of the Faraday and
Cotton-Mouton effects at λ = 1064 nm. Both measurements
have precisions that are of the order of a few percent,

TABLE V. Experimental and theoretical values of the Cotton-
Mouton constant for helium gas. Values are normalized for a
temperature of 273.15 K and a pressure of 1 atm. Uncertainties are
given at 1σ .

Experimental results Theoretical prediction [24]

Ref. λ (nm) 1016kCM (T −2) 1016kCM (T −2)

[8] 514.5 1.80 ± 0.36 2.3959
[12] 532 2.08 ± 0.16 2.3966
[11] 790 3.95 ± 1.40 2.4018
[12] 1064 2.22 ± 0.16 2.4036

This work 1064 2.35 ± 0.13 2.4036

corresponding to one of the most precise birefringence
measurements. Our measurements are also in agreement with
theory at better than 1σ . It is worthwhile to stress that our
Faraday measurement is absolute, while previous results [7,22]
were given with respect to the Faraday effect of water.

Our Cotton-Mouton measurement agrees well with the
recent theoretical prediction obtained using theFCI method
and the most extended wave function basis. This solves the
problem of the discrepancy between experiment and theory
originating from the first 1991 measurements and calculation
[10] and that still persisted (see Table V).

The measurement of such small Cotton-Mouton effects,
like that of helium, is important not only to test the quantum
chemistry predictions. It is also a crucial test for the appara-
tuses devoted to the search for vacuum magnetic birefringence.
Quantum electrodynamics predicts that a vacuum, like any
other centrosymmetric medium, should exhibit a Cotton-
Mouton effect [25]. This fundamental prediction has not yet
been experimentally proven. Several attempts have been made
and a few are still under way [25]. The vacuum Cotton-Mouton
effect should be about eight orders of magnitude smaller than
that of helium at 1 atm. Measurement of the Cotton-Mouton
effect of helium is therefore compulsory in the search to
improve the sensitivity of such apparatuses.

Our experimental method based on pulsed fields coupled to
a Fabry-Pérot cavity seems very appropriate to reach the sen-
sitivity needed for vacuum measurement. The measurements
reported here validate the whole procedure of data taking and
signal analysis that allow isolation of the main effect from the
spurious ones due to signal symmetries. They are therefore a
significant step in the road towards vacuum linear magnetic
birefringence.

ACKNOWLEDGMENTS

We thank all the members of the BMV Collaboration,
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The circular and linear magnetic birefringences corresponding to the Faraday and the Cotton-Mouton
effects, respectively, have been measured in xenon at λ = 1064 nm. The experimental setup is based on
time dependent magnetic fields and a high finesse Fabry-Pérot cavity. Our value of the Faraday effect
is the first measurement at this wavelength. It is compared to theoretical predictions. Our uncertainty
of a few percent yields an agreement at better than 1σ with the computational estimate when
relativistic effects are taken into account. Concerning the Cotton-Mouton effect, our measurement, the
second ever published at λ = 1064 nm, agrees at better than 1σ with theoretical predictions. We also
compare our error budget with that established for other experimental published values. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4916049]

I. INTRODUCTION

Magnetic birefringence corresponds to an anisotropy of
the (generally complex) refractive index induced in a medium
by a magnetic field.1,2 A circular birefringence arises when the
magnetic field changes the angular velocity of the two eigen
modes of polarization in which a linearly polarized beam is
split, without deforming them. The net result is a rotation of
the plane of linear polarization, a phenomenon also seen in
the absence of external fields in chiral samples (natural optical
rotation). When the presence of the external magnetic field
yields a different phase of two perpendicular components of
the linear polarization vector, the net result is the appearance
of an ellipticity, and we are observing an example of linear
birefringence.

Two well known examples of magnetic birefringences are
the Faraday and the Cotton-Mouton effects. The former corre-
sponds to a circular birefringence induced by a longitudinal
magnetic field B∥ (aligned parallel to the direction of propaga-
tion of light). After going through the birefringent medium, the
real part of the index of refraction for left circularly polarized
light n− is different from that for right circularly polarized light
n+. The difference ∆nF = n− − n+ is proportional to B∥,

∆nF = kFB∥, (1)

kF being the circular magnetic birefringence per unit magnetic
field intensity. For historical reason, the Faraday effect is usu-
ally given in terms of the Verdet constant,

V =
πkF

λ
, (2)

a)Electronic mail: carlo.rizzo@lncmi.cnrs.fr

where λ is the light wavelength. On the other hand, the Cotton-
Mouton effect corresponds to a linear magnetic birefringence
induced by a transverse magnetic field B⊥. The field induces
a difference between the real parts of the refraction index
for light polarized parallel n∥ with respect to that polarized
perpendicular to the magnetic field n⊥. The difference ∆nCM
= n∥ − n⊥ is proportional to the square of the magnetic field,

∆nCM = kCMB2
⊥, (3)

with kCM the linear magnetic birefringence per square unit
magnetic field intensity.

For the Cotton-Mouton effect, kCM has two contributions,
the first one due to the distortion of the electronic structure
while the second one corresponds to a partial orientation of
the molecules. When working in the conditions of constant
volume, the orientational contribution is proportional to the
inverse of the temperature T , and it usually dominates, often
hiding the first temperature independent contribution. For axial
molecules, for example, kCM is given by the expression3

kCM =
πNA

Vm4πϵ0

(
∆η +

2
15kBT

∆α∆χ
)
. (4)

Above NA is the Avogadro constant, Vm the molar volume,
kB the Boltzmann constant, ϵ0 the electric constant, ∆η the
frequency dependent hypermagnetizability anisotropy, ∆α the
optical electric dipole polarizability anisotropy, and ∆χ the
magnetic susceptibility anisotropy. For spherical molecules or
for atoms, such as xenon, however, the temperature depen-
dent contribution vanishes. Measurements on noble gases, for
example, allow to focus on the hypermagnetizability anisot-
ropy ∆η term. On the other hand, since the Langevin-type
orientational term vanishes, the magnetic birefringence is
much lower than the one observed in nonspherical molecules.

0021-9606/2015/142(12)/124313/10/$30.00 142, 124313-1 © 2015 AIP Publishing LLC
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From an experimental point of view, measurements on such
gases require a very sensitive apparatus, with a ∆nCM of the
order of 10−16 for helium and 10−14 for xenon at 1 atm and
with a magnetic field of 1 T. In comparison, ∆nF is typically
105 bigger.

The computational determination of the Verdet constant
and of the Cotton-Mouton effect requires the far-from-trivial
calculation of higher-order response functions,2,3 and it has
often served as a test bed for the validation of new electronic
structure methods. For atoms, in order to obtain accurate re-
sults, one must properly account for the appropriate description
of one-electron (basis set), N-electron (correlation), and rela-
tivistic effects. As far as correlation is concerned, coupled clus-
ter (CC) methods are nowadays among the most accurate tools
in electronic structure theory.4,5 Both birefringences treated
here, and in particular, the Cotton-Mouton effect, require a
good description of the outer valence space of the system at
hand. Therefore, the presence of diffuse functions in the one-
electron basis set is mandatory.2,4 Whereas for light atoms,
relativistic corrections are minor, their importance increases
and they become significant for heavier atoms. For example,
Ekström et al.6 have calculated that for helium, the relativistic
effects add −0.03% to the non-relativistic Verdet value. For
xenon, the heaviest non-radioactive noble atom, relativistic
corrections add 3%–4%, depending on the chosen wavelength.
In this case, relativistic effects cannot be ignored in accurate
calculations.

In this article, we report both measurements and calcula-
tions of Faraday and Cotton-Mouton effects at λ = 1064 nm.
We perform the first measurement of the Faraday effect of
xenon at this wavelength, and our estimate bears an uncer-
tainty of a few percent. Concerning the Cotton-Mouton effect,
our measurement, the second ever published at λ = 1064 nm,
agrees at better than 1σ with theoretical predictions and we
also compare our error budget with that established for other
experimental published values. Our theoretical predictions,
that can be considered of state-of-the-art quality, were ob-
tained at the coupled cluster singles and doubles (CCSD)7–9

and coupled cluster singles, doubles and approximate triples
(CC3)10–13 levels of theory, and they include estimates of rela-
tivistic effects. For both effects, our theoretical predictions are
within 1σ of our experimental data.

II. EXPERIMENTAL SETUP

A. Principle of the measurement

Experimentally, we determine the Faraday and the Cotton-
Mouton effects by measuring, respectively, the rotation induced
by a longitudinal magnetic field and the ellipticity induced by a
transverse magnetic field on an incident linear polarization. For
small angles, the induced rotation θF depends on the circular
birefringence as follows:

θF = π
LB

λ
∆nF, (5)

where LB is the length of the magnetic field region. The
induced ellipticity ψCM is related to the linear birefringence

by the formula,

ψCM = π
LB

λ
∆nCM sin 2θP, (6)

where θP is the angle between the light polarization and the
magnetic field.

B. General setup

The apparatus has already been described in detail else-
where.14,15 Briefly, light comes from a Nd:YAG laser at λ
= 1064 nm (see Fig. 1). It is linearly polarized by a first polar-
izer P, before going through either a transverse or a longitudinal
magnetic field. The polarization is then analyzed by a second
polarizer A, crossed at maximum extinction compared to P.
The beam polarized parallel to the incident beam, reflected
by the polarizer A as the ordinary ray, is collected by the
photodiode Pht. Its power is denoted by It. The beam polarized
perpendicular to the incident beam (power Ie), corresponding
to the extraordinary ray that passes through the polarizer A, is
collected by the low noise and high gain photodiode Phe.

This setup has been designed to measure the linear mag-
netic birefringence of vacuum16 and its sensitivity allows to
perform precise measurements on gases.15,17 All the optical
components from A to P are placed in an ultrahigh-vacuum
chamber. To perform birefringence measurement on gases,
we fill the vacuum chamber with a high-purity gas. For this
particular measurement, we have used a bottle of xenon with
a global purity higher than 99.998%.

C. Fabry-Pérot cavity

Magnetic birefringence measurements on dilute gases are
difficult, especially at low pressure, because one has to detect
very small variations of light polarization. To increase the
measured signal, one needs high magnetic fields. One also
needs an as large as possible path length in the field LB (cf.
Eqs. (5) and (6)). To this end, optical cavities are used to trap
light in the magnetic field region and therefore enhance the
signal to be measured.

As shown in Fig. 1, the cavity is formed by two mirrors M1
and M2, placed at both sides of the magnetic field region. The
laser frequency is locked to the cavity resonance frequency,
using the Pound-Drever-Hall technique.18 The electro-optic
modulator generates 10 MHz sidebands, and the signal re-
flected by the cavity is detected by the photodiode Phr. The
laser frequency is adjusted with the acousto-optic modulator,
the piezoelectric, and the Peltier elements of the laser.

This cavity increases the distance traveled by light in the
magnetic field by a factor 2F/π, where F is the cavity finesse.
Therefore, the rotation induced by the longitudinal magnetic
field becomes

ΘF(t) = 2F
π
θF(t), (7)

with θF the rotation acquired without any cavity. In the same
way, the ellipticity induced by the transverse magnetic field
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FIG. 1. Experimental setup. EOM
= electro-optic modulator; AOM
= acousto-optic modulator; PDH
=Pound-Drever-Hall; Ph= photodiode;
P= polarizer; and A= analyzer. See
text for more details.

becomes

ΨCM(t) = 2F
π
ψCM(t), (8)

with ψCM denoting the ellipticity acquired without any cavity.
The cavity finesse is inferred from the measurement of the
photon lifetime τ inside the cavity,19

F = 2π∆FSRτ, (9)

with ∆FSR as the cavity free spectral range. For the Faraday ef-
fect, the cavity finesse was about F = 475 000. For the Cotton-
Mouton effect, two sets of mirrors were used with a respective
finesse of about 400 000 and 480 000.

D. Raw signals

We measure the circular and the linear magnetic birefrin-
gence by measuring the ratio Ie/It,

Ie(t)
It,f(t) = σ

2 + [Γ + ΨCM(t)]2 + [ϵ + ΘF(t)]2. (10)

As said previously, Ie (It) corresponds to the power of light
polarized perpendicular (parallel) to the incident beam. The
subscript f indicates that we need to take into account the cavity
filtering, as explained in detail in the previous papers.15,19 The
term σ2 corresponds to the extinction ratio of polarizers P and
A, Γ is the total static ellipticity due to the cavity mirrors, and
ϵ is the static angle between the major axis of the elliptical
polarization and the incident polarization. The extinction ratio
and the static birefringence are measured before each magnetic
pulse. The static angle ϵ can be estimated but its value is not
needed for the analysis.

III. CIRCULAR MAGNETIC BIREFRINGENCE

A. Magnetic field

The magnetic field is generated by a solenoid previously
used for Faraday effect measurement in helium.15 Its charac-
teristics have already been explained in detail.15 Here, we just
briefly recall its main features. It generates a longitudinal mag-
netic field with an equivalent length LB = (0.308 ± 0.006) m
at 1σ. This magnetic field is modulated at the frequency ν
= 18 Hz: B∥ = B∥,0 sin(2πνt + φ). The rotation of the polari-

zation due to the Faraday effect is thus given by

ΘF = Θ0 sin(2πνt + φ), (11)

with Θ0 =
2F
π

V B∥,0LB. (12)

B. Data analysis

Expanding Eq. (10), the raw signal becomes

Ie(t)
It,f(t) = σ

2 + Γ2 + ϵ2 + 2ϵΘF(t) + Θ2
F(t). (13)

This gives three main frequency components: a DC signal, a
signal at the frequency ν, and a signal at the double frequency
2ν. To measure the Verdet constant, we use the amplitude of
the signal at 2ν15

A2ν =
Θ2

0

2


1 +
� 2ν
νc

�2 , (14)

where νc = 1/4πτ is the cavity cutoff frequency, introduced
to take into account the cavity filtering.19 A2ν is measured
for different magnetic field amplitudes, from 0 to about 50
× 10−3 T. The whole is fitted by KVB2

∥,0. The Verdet constant
finally depends on the measured experimental parameters as
follows:

V (T,P) =


KV

2


1 + (8πτν)21/4

2τ∆FSRLB

, (15)

where T and P are, respectively, the temperature and pressure
of the gas.

C. Measurement and error budget

The A- and B-type uncertainties associated to the mea-
surement of V are detailed in Table I.15,17 They are given at 1σ
(coverage factor k = 1). The A-type uncertainty is dominated
by the photon lifetime uncertainty. The main contributions
to the B-type uncertainty come from the uncertainty of the
magnetic length and of the fit constant KV which includes the
B-type uncertainty of the magnetic field and of the photodiodes
conversion factor.17

We have measured the Verdet constant in xenon at T
= (294 ± 1) K and for 5 pressures from 1.01 × 10−3 to 5.01
× 10−3 atm. In this range of pressure, xenon can be considered
as an ideal gas and the Verdet constant is thus proportional to
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TABLE I. Parameters and their respective relative A- and B-type uncertain-
ties at 1σ that have to be measured to infer the value of the Verdet constant
V . Typical values are given at P = 5×10−3 atm.

Parameter
Typical
value

Relative A-type
uncertainty

Relative B-type
uncertainty

τ (ms) 1.14 2.0 × 10−2

KV (rad T−1) 1.07 3 × 10−3 3.2 × 10−2

∆FSR (MHz) 65.996 3 × 10−4

LB (m) 0.308 1.9 × 10−2

V ×105 (rad T−1 m−1) 1.66 1.8 × 10−2 2.5 × 10−2

the pressure. Data are fitted by a linear equation,

V (T,P) = V nP, (16)

giving a normalized Verdet constant (P = 1 atm) at λ = 1064
nm and T = (294 ± 1) K,

V n = (3.31 ± 0.09) × 10−3 atm−1 rad T−1 m−1. (17)

The uncertainty is given at 1σ and is detailed in Table II. With
a scale law on the gas density, this corresponds to a normalized
Verdet constant at T = 273.15 K of

V N = (3.56 ± 0.10) × 10−3 atm−1 rad T−1 m−1. (18)

Using Eq. (2), we can also give the normalized Faraday con-
stant at T = 273.15 K,

kN
F = (1.21 ± 0.03) × 10−9 atm−1 T−1. (19)

IV. LINEAR MAGNETIC BIREFRINGENCE

A. Magnetic field

The transverse magnetic field B⊥ is generated by an X-
Coil, specially designed by the High Magnetic Field National
Laboratory (LNCMI-Toulouse, France) for the measurement
of the vacuum magnetic birefringence. This coil has been
presented and discussed in great detail in several previous
papers.14,20 Very briefly, the magnet delivers a pulsed magnetic
field over an equivalent length LB of 0.137 m. The total dura-
tion of the pulse is about 10 ms with a maximum reached within
2 ms. For the present measurements, a maximum magnetic
field of 3 T has been used. Finally, the high-voltage connections
can be remotely switched to reverse the direction of the field.

TABLE II. Parameters and their respective relative A- and B-type uncertain-
ties at 1σ that have to be measured to infer the value of the normalized Verdet
constant V n. The uncertainty given by the linear fit takes into account the
A-type uncertainty of V .

Parameter
Typical
value

Relative
A-type

uncertainty

Relative
B-type

uncertainty

V ×105 (rad T−1 m−1) 1.66 1.8 × 10−2 2.5 × 10−2

P×103 (atm) 5 2 × 10−3

Linear fit×103

(atm−1 rad T−1 m−1)
3.31 1.5 × 10−2

V n×103 (atm−1 rad T−1 m−1) 3.31 1.5 × 10−2 2.5 × 10−2

Thus, we can set B⊥ parallel or antiparallel to the x direction,
as shown in Fig. 1.

B. Data analysis

The data analysis follows the one described for the Cotton-
Mouton effect measurement in helium.15 We will, however,
detail the main steps, since a slightly different method was used
in the present case.

To extract the ellipticity ΨCM(t) from Eq. (10), we calcu-
late the following Y (t) function:

Y (t) =
Ie(t)
It,f(t) − IDC

2|Γ|
= γΨCM(t) +

Ψ2
CM(t)
2|Γ| + γ

|ϵ |ΘF(t)
2|Γ| +

Θ2
F(t)

2|Γ| , (20)

where γ stands for the sign of Γ. IDC is the static signal
measured just before the application of the magnetic field.
The absolute value of the static ellipticity |Γ| is also measured
before each pulse.

Two parameters are adjustable in the experiment: the sign
γ of the static ellipticity Γ and the direction of the transverse
magnetic field. We acquire signals for both signs of Γ and both
directions of B⊥: parallel to x is denoted as > 0 and antiparallel
is denoted as < 0. This gives four data series: (Γ > 0, B⊥ > 0),
(Γ > 0, B⊥ < 0), (Γ < 0, B⊥ < 0), and (Γ < 0, B⊥ > 0).

For each series, signals calculated with Eq. (20) are aver-
aged and denoted as Y>>, Y><, Y<<, and Y<>. The first subscript
corresponds to Γ > 0 or < 0 while the second one corresponds
to B⊥ parallel or antiparallel to x. This average function can be
written in a more general form than the one of Eq. (20). It is the
sum of different effects with different symmetries, denoted as s

Y>> = +Ψ +
1
2

 1
Γ>>


s++ +

 1
Γ>>


s−− +

1
2

 1
Γ>>


s+−,

Y>< = +Ψ +
1
2

 1
Γ><


s++ +

 1
Γ><


s−− +

1
2

 1
Γ><


s+−,

Y<< = −Ψ +
1
2

 1
Γ<<


s++ +

 1
Γ<<


s−− +

1
2

 1
Γ<<


s+−,

Y<> = −Ψ +
1
2

 1
Γ<>


s++ +

 1
Γ<>


s−− +

1
2

 1
Γ<>


s+−.

(21)

The first subscript in s corresponds to the symmetry with
respect to the sign of Γ and the second one to the symmetry
with respect to the direction of B⊥. The subscript+ indicates an
even parity while the subscript− indicates odd parity. The ratio
⟨1/Γ⟩ is the average of 1/|Γ| measured during corresponding
series. The terms Ψ2

CM and Θ2
F are included in s++, γ |ϵ |ΘF

included in s−−, and s+− corresponds to a spurious signal with
an odd parity towards the direction of B⊥ and an even parity
with respect to the sign of Γ. The ellipticity γΨCM corresponds
to s−+.

From this set of four equations with four unknown quan-
tities (ΨCM, s++, s−−, and s+−), we extract ΨCM(t), which is
fitted by αB2

⊥,f. The cavity filtering should again be taken
into account, as indicated by the subscript f.15,19 The Cotton-
Mouton constant kCM finally depends on the measured
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TABLE III. Parameters that have to be measured to infer the value of the
Cotton-Mouton constant kCM and their respective relative A- and B-type
uncertainties at 1σ. Typical values are given at P = 8×10−3 atm.

Parameter
Typical
value

Relative A-type
uncertainty

Relative B-type
uncertainty

τ (ms) 1.14 2.0 × 10−2

α×105 (T−2) 2.82 2.8 × 10−4 2.2 × 10−2

∆FSR (MHz) 65.996 3 × 10−4

LB (m) 0.137 2.2 × 10−2

λ (nm) 1064.0 <5 × 10−4

sin2θP 1.0000 9 × 10−4

kCM×1016 (T−2) 2.31 2.0 × 10−2 3.1 × 10−2

experimental parameters as follows:

kCM(T,P) = α

4πτ∆FSR

λ

LB

1
sin 2θP

. (22)

C. Measurement and error budget

The A- and B-type uncertainties associated to the mea-
surement of kCM are detailed in Table III and are given at 1σ.
The B-type uncertainties have been evaluated previously and
detailed in Ref. 17. They essentially come from the length of
the magnetic field LB and the fit constant α.

We have measured the Cotton-Mouton constant in xenon
at T = (293 ± 1) K and for nine pressures ranging from 3
× 10−3 to 8 × 10−3 atm. The data as a function of the pressure
are fitted by a linear equation, and we obtain for the value of
the Cotton-Mouton constant at P = 1 atm,

kn
CM = (2.41 ± 0.37) × 10−14 T−2 atm−1. (23)

The uncertainty given at 1σ is detailed in Table IV. The
dominant uncertainty comes from the linear fit of the Cotton-
Mouton constant versus pressure (A-type). The value of kn

CM
normalized at 273.15 K is calculated with a scale law on the
gas density,

kN
CM = (2.59 ± 0.40) × 10−14 T−2 atm−1. (24)

V. OUR CALCULATIONS

The Verdet constant and the Cotton-Mouton birefringence
were computed within Coupled Cluster response theory,4,5 at

TABLE IV. Parameters and their respective relative A- and B-type uncer-
tainties at 1σ that have to be measured to infer the value of the normalized
Cotton-Mouton constant kn

CM.

Parameter
Typical
value

Relative A-type
uncertainty

Relative B-type
uncertainty

kCM×1016 (T−2) 2.31 2.0 × 10−2 3.1 × 10−2

P×103 (atm) 5 2 × 10−3

Linear fit×1014

(T−2 atm−1)
2.41 1.5 × 10−1

kn
CM×1014 (T−2 atm−1) 2.41 1.5 × 10−1 3.1 × 10−2

the CCSD7–9 and CC310–13 levels of approximation. Specif-
ically, the Verdet constant was obtained from the following
frequency-dependent quadratic response function:4,21–23

V (ω) = Cω⟨⟨µx; µy,Lz⟩⟩ω,0, (25)

with C = Ne
8meϵ0c0

= 0.912 742 × 10−7 in atomic units, N the
number density (N = P

kBT
for ideal gases), e the elementary

charge, me the electron mass, c0 the speed of light in vacuo,
ω/2π the frequency of the probing light, and µx and Lz

are Cartesian components of the electric dipole and angular
momentum operators, respectively. The hypermagnetizability
anisotropy ∆η entering the Cotton-Mouton birefringence in
Eq. (4) (the only term contributing for atoms) is given by the
combination of a quadratic and a cubic response functions,3

∆η = −1
4
⟨⟨µx; µx,Lz,Lz⟩⟩ω,ω,0 −

1
4
⟨⟨µx; µx,Θxx⟩⟩ω,0

≡ ∆ηp + ∆ηd , (26)

with Θxx the xx Cartesian component of the traceless quad-
rupole operator. At the CC3 level, calculations were per-
formed at three different wavelengths, namely, 1064, 632.8,
and 514.5 nm. At the CCSD level, we computed the dispersion
coefficients, as done in our previous study,24 i.e., for the Verdet
constant,

V (2n) = 2nS(−2n − 2); (27)

V (ω) = C
∞
n=1

ω2nV (2n); (28)

whereas for the Cotton-Mouton constant,

∆η(2n) = −1
4
[(2n + 1)(2n + 2)S(−2n − 4) + B(2n)];

(29)

∆η(ω) =
∞
n=0

ω2n
∆η(2n). (30)

Above, S(k) is the Cauchy moment,

S(k) =

m,0

2ωk+1
m0 ⟨0 | µz | m⟩⟨m | µz | 0⟩, (31)

with ~ωm0 indicating the excitation energy from the ground
state 0 to the excited state(s) m, and B(2n) being the disper-
sion coefficient introduced when expanding, for frequencies
below the lowest excitation energy, the electric dipole–
electric dipole–electric quadrupole quadratic response func-
tion Bx,x,xx(−ω;ω,0) = ⟨⟨µx; µx,Θxx⟩⟩ω,0 in a convergent
power series in the circular frequency ω,

Bx,x,xx(−ω;ω,0) =
∞
n=0

ω2nB(2n). (32)

For further details on how the above Cauchy moments and
dispersion coefficients of the given quadratic response func-
tion are computed within coupled cluster response theory, the
reader should refer to Refs. 24–26.

Relativistic effects were approximately accounted for by
employing relativistic effective core potentials (ECPs)27 and
specifically pseudo-potentials (PPs). “Small core” effective
pseudo-potentials were used to describe the 28 inner electrons
(that is, the [Ar]3d10 core), whereas the remaining 26 valence
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TABLE V. Dispersion coefficients of the Verdet and Cotton-Mouton response functions at the CCSD level of theory (atomic units).

n B(2n) S(−2n−4) S(−2n−2) V (2n) ∆η(2n)
aug_cc_pvqz_pp

0 −654.894 71 126.505 95 100.470 70
1 −8 903.382 5 763.598 99 126.505 95 253.011 90 −64.951 345
2 −92 298.251 5 369.048 6 763.598 99 3 054.396 0 −17 193.302
3 −860 869.9 41 692.560 5 369.048 6 32 214.292 −368 478.36
4 41 692.560 333 540.48

d-aug_cc_pvqz_pp

0 −739.156 30 126.971 74 121.303 23
1 −9 822.912 7 774.871 90 126.971 74 253.943 48 131.112 47
2 −106 369.19 5 553.232 1 774.871 90 3 099.487 6 −15 056.943
3 −1 074 975.1 44 095.369 5 553.232 1 33 319.393 −348 591.39
4 44 095.369 352 762.95

t-aug_cc_pvqz_pp

0 −748.341 87 126.919 27 123.625 83
1 −9 940.721 8 774.472 34 126.919 27 253.838 54 161.763 43
2 −107 513.63 5 551.377 1 774.472 34 3 097.889 4 −14 756.921
3 −1 084 127.2 44 088.280 5 551.377 1 33 308.263 −346 204.12
4 44 088.280 352 706.24

electrons were correlated as in standard non-relativistic calcu-
lations. The basis sets used were constructed starting from the
singly augmented aug_cc_pvxz_pp (x = t,q) sets of Peterson
et al.28 Since single augmentation is usually not sufficient
to ensure converged results, at least for the Cotton-Mouton
birefringence, additional sets of diffuse functions were added
by applying an even-tempered generation formula commonly
used for this purpose to the orbital functions describing the
valence electrons, while retaining the pseudo-potential of the
original set. The resulting sets are labeled d-aug and t-aug, for
double and triple augmentation, respectively.

Where pseudo-potentials parametrically account for rela-
tivistic effects on the innermost orbitals, other relativistic ef-
fects (e.g., higher-order and picture change effects, and spin-

orbit coupling) could play a significant role.29,30 When dealing
with valence properties like electric hyperpolarizabilities, the
higher-order relativistic effects and picture change effects (for
the dipole operator and also the electron-electron interaction)
are expected to be not so important. Also, spin-orbit coupling
should be quite weak. Both the Faraday and Cotton Mouton
birefringences, however, involve the magnetic dipole operator.
In general, relativistic effects on magnetic properties can be
more significant and more difficult in terms of picture change
(the operators look different in relativistic and non-relativistic
theory, and this may require a correction of the property oper-
ator that one uses as a perturbation).29,30

Nonetheless, also given that the most stringent require-
ment in terms of basis set convergence is the inclusion of

TABLE VI. CC3 values of the response function components (in atomic units) involved in the Verdet and Cotton-Mouton birefringences. The Verdet constant
VN(ω) is given in atm−1 rad T−1 m−1 and the Cotton-Mouton constant kN

CM is in T−2 atm−1 at 273.15 K.

λ (nm) ⟨⟨µx;µy, Lz⟩⟩ω,0 VN(ω)×103 ⟨⟨µx;µx,Θxx⟩⟩ω,0 ⟨⟨µx;µx, Lz, Lz⟩⟩ω,ω,0 ∆η kN
CM×1014

aug_cc_pvqz_pp

1064 11.1587 3.505 −668.242 272.564 98.9195 2.239
632.8 19.5823 10.35 −700.706 308.069 98.1593 2.222
514.5 24.9438 16.22 −728.260 339.617 97.1607 2.200

d-aug_cc_pvqz_pp

1064 11.2155 3.522 −755.936 274.099 120.459 2.727
632.8 19.6927 10.40 −791.994 310.285 120.427 2.726
514.5 25.0963 16.32 −822.705 342.514 120.048 2.718

t-aug_cc_pvqz_pp

1064 11.2127 3.521 −765.680 274.031 122.912 2.782
632.8 19.6878 10.40 −802.186 310.210 122.994 2.784
514.5 25.0901 16.31 −833.274 342.435 122.710 2.778
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diffuse functions as in the case of the electric hyperpolar-
isability, it is reasonable to assume that both properties are
essentially valence properties, for which picture change effects
are typically small, and we reckon therefore that the use of
(PP)ECPs can be considered accurate enough.

The results obtained in the x = q basis sets are summarized
in Tables V and VI, for CCSD and CC3, respectively.

All calculations were performed with the Dalton code.31

VI. RESULTS AND DISCUSSION

A. Faraday effect

1. Experiments

We can compare our value of the normalized Verdet con-
stant to the other published values. The most extensive
experimental compilation of Verdet constants has been re-
ported by Ingersoll and Liebenberg in 1956, for several gases
including xenon32 for wavelengths ranging from 363.5 to
987.5 nm, with a total uncertainty of about 1%. These values
are plotted in Fig. 2.

No datum has ever been reported for λ = 1064 nm. Never-
theless, we can extrapolate its value from the points of Fig. 2,
by fitting the data with a function of form V = A/λ2 + B/λ4

(solid curve in Fig. 2).32,33 A supplementary systematic uncer-
tainty should also be added, since the authors measured the
ratio between Faraday effects in xenon and in distilled water
and rescaled their measurements with accepted values for wa-
ter.32,33 Thus, it does not correspond to absolute measurements
of the Faraday effect, contrary to ours.

At λ = 1064 nm and T = 273.15 K, we obtain V N

= (3.46 ± 0.04) × 10−3 atm−1 rad T−1 m−1. The 1σ uncertainty
includes the one given by the fit. This value is compatible
with our experimental value (Eq. (18)), represented as the open
circle in Fig. 2 and as the straight and dashed lines in Fig. 3.

2. Theory

We can also compare our experimental value with theo-
retical predictions (both ours and from the literature), plotted
in Fig. 3 and summarized in Table VII at 1 atm, 273.15 K
and with the gas number density of an ideal gas. To convert
from theoretical results given in atomic units into the units used

FIG. 2. △: Experimental values of xenon normalized Verdet constant at T
= 273.15 K reported by Ingersoll and Liebenberg32 for wavelengths ranging
from 363 nm to 987.5 nm. These values are fitted by the law A/λ2+B/λ4

(solid line). ◦: Our experimental value at T = 273.15 K.

FIG. 3. Normalized Verdet constant of xenon at T = 273.15 K at λ= 1064 m.
Solid line: Our experimental mean value. Dashed lines: Our experimental
value with 1σ uncertainty. Points: Theoretical predictions (both ours and
from the literature). See text and Table VII for the references.

experimentally, we exploited the relation

V (atm−1 rad T−1 m−1) = V (a.u.) × 8.039 617 × 104.

(33)

Our experimental value is compatible within 1σ with our
“best” coupled cluster results (t-aug_cc_pvqz_pp basis) and
also with the most complete theoretical predictions by Ekström
et al.6 and by Ikäläinen et al.34 (see below), and within 3σ with
that of Savukov.35

The uncertainty of a few percent obtained on our experi-
mental value allows to comment on the agreement with theo-
retical predictions as a function of the theoretical approxi-
mation or model. Savukov35 has used a relativistic particle-
hole configuration interaction (CI) method. He does not give
a value at 1064 nm, but the latter can be interpolated, as
done with the previous experimental data of Ingersoll and
Liebenberg,32 obtaining the value of Table VII, with an uncer-
tainty given by the fit. The agreement between Savukov’s
interpolated result and experiment is only within 3σ, even
if relativistic effects are taken into account. Ekström et al.6

have used the non-relativistic time-dependent Hartree-Fock
(TDHF in Fig. 3) and the relativistic time-dependent Dirac-
Hartree-Fock (TDDHF in Fig. 3). There is clearly a better

TABLE VII. Experimental and theoretical values of the normalized Verdet
constant at T = 273.15 K, λ= 1064 nm, with uncertainties at 1σ.

References
VN×103

(atm−1 rad T−1 m−1) Remarks

Experiment
Ingersoll et al.32 3.46±0.04 Interpolated with A/λ2+2B/λ4.

Scaled to water.
This work 3.56±0.10

Theory
Savukov35 3.86±0.01 Interpolated in this work with

A/λ2+B/λ4.
Ekström et al.6 3.35 TDHF
Ekström et al.6 3.46 TDDHF
Ikäläinen et al.34 3.34 NR
Ikäläinen et al.34 3.48 X2C
Ikäläinen et al.34 3.46 DHF
Ikäläinen et al.34 3.52 NR-CCSD
This work 3.49 CCSD/t-aug_cc_pvqz_pp
This work 3.52 CC3/t-aug_cc_pvqz_pp
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TABLE VIII. Experimental (uncertainties of 1σ) and theoretical values of
the Cotton-Mouton constant of xenon at T = 273.15 K.

References λ (nm) kN
CM×1014 (T−2 atm−1)

Experiment
Carusotto et al.36 514.5 (2.29±0.10)
Hüttner37 632.8 (2.41±0.12)
Bregant et al.38,39 1064 (3.02±0.27)
This work 1064 (2.59±0.40)
Theory
Bishop et al.40 ∞ 2.665
This work,
CCSD/t-aug_cc_pvqz_pp

514.5 2.803

This work,
CCSD/t-aug_cc_pvqz_pp

632.8 2.808

This work,
CCSD/t-aug_cc_pvqz_pp

1064 2.804

This work, CC3/t-aug_cc_pvqz_pp 514.5 2.778
This work, CC3/t-aug_cc_pvqz_pp 632.8 2.784
This work, CC3/t-aug_cc_pvqz_pp 1064 2.782

agreement (better than 1σ) between their calculations and
our experimental value when relativistic effects are taken
into account. Finally, Ikäläinen et al.34 have used the non-
relativistic Hartree-Fock method (NR in Fig. 3), the exact
two-component method (X2C in Fig. 3), and the fully rela-
tivistic four-component method (DHF in Fig. 3). The same
authors also report (in the supplementary material34) a non-
relativistic CCSD result (NR-CCSD in Fig. 3). While their
uncorrelated results confirm that relativistic effects should be
taken into account to improve agreement with experiment,
their non-relativistic CCSD result highlights how the inclusion
of correlation effects is equally important. Also worth noticing
is the rather poor performance of the Becke Lee Yang and
Parr (BLYP) and its 3-parameters variant (B3LYP) functionals,
which overestimate the value of the Verdet constant in both
non-relativistic and relativistic calculations. This also applies
for the Becke-Half-and-Half-LYP functional (BHandHLYP)
in the relativistic calculations, whereas the non-relativistic
BHandHLYP value is still within 1σ of our experimental result
(see Table S5 of the supplementary material of Ref. 34).

FIG. 4. Reported values of Cotton-Mouton constant of xenon for λ ranging
from 514.5 nm to 1064 nm and with 1σ uncertainty. Experimental values:
black triangle: Carusotto et al.,36 open triangle: Hüttner (private communica-
tion by Bishop et al.),37 black diamond: Bregant et al.,38,39 and open diamond:
this work. Theoretical predictions: dashed line: self-consistent-field (SCF)
method for λ=∞ by Bishop,40 open circle: this work, CCSD, and black circle:
this work, CC3.

B. Cotton Mouton effect

1. Experiments

Only a few measurements of the Cotton-Mouton effect
in xenon have been discussed in the literature. There is one
at λ = 514.5 nm by Carusotto et al.,36 one at λ = 632.8 nm
by Hüttner (reported as a private communication by Bishop
et al.),37 and finally one at λ = 1064 nm by Bregant et al.38,39

Our experimental value, referring to λ = 1064 nm is compat-
ible within 1σ with the data of Refs. 38 and 39. The set of
results is shown in Table VIII and plotted as a function of the
wavelength in Fig. 4.

Our measurement has an uncertainty of about 15%. This
value, which is larger than that of the other reported values,
especially those given for wavelengths of 514.5 nm and
632.8 nm, was established via a complete error budget. Note
that no information is available on the setup, the number of
pressures, the error budget, and the evaluation of the uncer-
tainty for the value reported at λ = 632.8 nm by Bishop et al.37

as a private communication of Hüttner. The value reported at
λ = 514.5 nm by Carusotto et al.36 was measured only at 1
atm, and by comparing the observed magnetic birefringence
with that of nitrogen under the same experimental conditions,
therefore taking as a reference, assumed as free of uncertainty,
the Cotton-Mouton constant of nitrogen. It is safe to say
therefore that the uncertainty associated to their datum might
be underestimated. Finally, the value reported by Bregant
et al.38,39 at λ = 1064 nm corresponds to the weighted average
between measurements at two different pressures (9 pressures
for our measurement) and the uncertainty is similar to ours.

2. Theory

The Cotton-Mouton constant kCM is linked to ∆η by the
relationship3

kCM (atm−1 T−2) = 6.183 81 × 10−14

T
∆η (a.u.). (34)

Only one theoretical prediction has been published so-
far for the Cotton-Mouton effect in xenon.40 The calculation
of Bishop and Cybulski was performed at the SCF level of
approximation, and it yielded the static hypermagnetizability
anisotropy ∆η. As stated by the authors, relativistic effects
were not taken into account, even though the authors expected
them to play a substantial role. Our experimental value agrees
with that theoretical prediction within 1σ.

Our computed coupled cluster results, both CCSD and
CC3, in the largest (t-aug_cc_pvqz_pp) basis sets for the three
wavelengths at which experimental results are available are
given in Table VIII. Both the CCSD and CC3 values at 1064 nm
are well within 1σ of our experimental measurement, and just
within 1σ of the result by Bregant et al.38,39 At 632.8 nm, the
agreement of our CC3 value with the experimental result of
Hüttner37 is just outside 3σ. At 514.5 nm, our computed values
fall well outside 3σ of the estimate of Carusotto et al.36 This
apparently confirms that the error associated to this measured
value might be underestimated.
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VII. CONCLUSION

We have carried out a thorough analysis of the Faraday
(circular) and Cotton Mouton (linear) birefringences of xenon,
at a wavelength of 1064 nm. The study involves both an exper-
imental segment, exploiting the capabilities of a state-of-the-
art optical setup, and a computational element, where sophisti-
cated wavefunction structure and optical response models (and
with an estimate of the effect of relativity) were employed.

Our experimental estimate for the normalized Verdet con-
stant of xenon at a temperature of 273.15 K and λ = 1064 nm,
V N = (3.56 ± 0.10) × 10−3 atm−1 rad T−1 m−1, is very well
reproduced by our theoretical approach, which yields a value
(V N = 3.52 × 10−3 atm−1 rad T−1 m−1 using the CC3 approxi-
mation) within 1σ of the measured datum.

With respect to the Cotton Mouton effect, at T = 273.15 K
and λ = 1064 nm, experiment yields a normalized constant
kN

CM = (2.59 ± 0.40) × 10−14 atm−1 T−2, whereas we compute
(again with our most sophisticated model, CC3) a value of
kN

CM = 2.78 × 10−14 atm−1 T−2, therefore within 1σ of experi-
ment.
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Abstract. We present the current status of the BMV experiment. Our apparatus is based on an up-to-
date resonant optical cavity coupled to a transverse magnetic field. We detail our data acquisition and
analysis procedure which takes into account the symmetry properties of the raw data with respect to the
orientation of the magnetic field and the sign of the cavity birefringence. The measurement result of the
vacuum magnetic linear birefringence kCM presented in this paper was obtained with about 200 magnetic
pulses and a maximum field of 6.5 T, giving a noise floor of about 8 × 10−21 T−2 at 3σ confidence level.

1 Introduction

It is known since the beginning of the 20th century that
any medium shows a linear birefringence in the presence
of a transverse external magnetic field B . This effect is
usually known as the Cotton-Mouton (CM) effect (see
Ref. [1] and references therein). The existence of such a
magnetic linear birefringence has also been predicted in
vacuum around 1970 in the framework of quantum elec-
trodynamics (QED) [2,3]. It is one of the non-linear op-
tical effects described by the Heisenberg-Euler effective
lagrangian (see Ref. [4] and references therein) and it can
be seen as the result of the interaction of the external
magnetic field with quantum vacuum fluctuations. In a
vacuum therefore the index of refraction n‖ for light po-
larized parallel to B is expected to be different from the
index of refraction n⊥ for light polarized perpendicular
to B such that [4]:

ΔnCM = n‖ − n⊥, (1)

= kCMB
2. (2)

At the first order in the fine structure constant α, kCM

can be written as:

kCM = 2α2�3/15μ0m
4
ec

5, (3)

with � the Planck constant over 2π, me the electron mass,
c the speed of light in vacuum, and μ0 the magnetic
constant. Using the CODATA recommended values for
fundamental constants [5], one obtains:

kCM ∼ 4.0 × 10−24 T−2. (4)

In spite of several experimental attempts, the experimen-
tal proof of such a very fundamental QED prediction is

a e-mail: carlo.rizzo@lncmi.cnrs.fr

still lacking [4]. All recent experiments, both completed or
running, measure ΔnCM via the ellipticity ψ induced on
a linearly polarized light propagating in the birefringent
vacuum:

ψ = πkCM
LB

λ
B2 sin 2θP, (5)

where λ is the light wavelength, LB is the path length in
the magnetic field, and θP = 45◦ is the angle between the
light polarization and the birefringence axis. This equation
clearly shows that the critical experimental parameter is
the product B2LB. In order to increase the ellipticity to be
measured, one usually uses an optical cavity to store light
in the magnetic field region as long as possible. The total
acquired ellipticity Ψ is linked to the ellipticity ψ acquired
in the absence of cavity and depends on the cavity finesse
F as:

Ψ =
2F

π
ψ. (6)

After the theoretical calculations in the 70s, a first mea-
surement of the kCM value was published by the BFRT
collaboration [6]. It was based on a superconducting mag-
net providing a maximum field of 3.9 T, and a multi-
pass optical cavity. Spurious signals were always present
(see table V(b) in [6]). Final results gave kCM = (2.2 ±
0.8) × 10−19 T−2 at 3σ confidence level for 34 refections
inside the cavity, and kCM = (3.2 ± 1.3) × 10−19 T−2 for
578 reflections. In 2008 a new measurement was published
by the PVLAS collaboration using a Fabry-Pérot optical
cavity and a superconducting magnet providing a 2.3 T
field: kCM = (1.4 ± 2.4) × 10−20 T−2 at 3σ [7]. The same
experiment at 5 T gave kCM = (2.7 ± 1.2) × 10−20 T−2

at 3σ. More recently a new version of the PVLAS appara-
tus based on two 2.5 T permanent magnets and a Fabry-
Pérot optical cavity reached a noise floor corresponding
to kCM = 1.3 × 10−20 T−2 at 3σ, but “only when no



Page 2 of 7 Eur. Phys. J. D (2014) 68: 16

35x10
-20

30

25

20

15

10

5

0

|k
C

M
| (

T
-2
)

Measurement

BFRT [6]

PVLAS, 2008 [7]

noise floor,
PVLAS, 2012

This work
2.3 T 5 T

[8]
34 reflections

578 reflections

Fig. 1. Comparison of reported absolute values of the vac-
uum magnetic linear birefringence and their uncertainties
represented at 3σ.

spurious signal was observed” [8]. All over our paper, we
give error bars at 3σ corresponding to a confidence level
of 99.8%, that usually indicates an evidence for a non-
zero signal. All these measurements are summarized in
Figure 1. This clearly shows that vacuum CM measure-
ments are true experimental challenges and that one has
to focus not only on getting the best optical sensitivity
and maximizing the signal to be measured, but also on
minimizing all the unwanted systematic effects by decou-
pling the apparatus from their sources and by performing
an appropriate data analysis.

In this paper we present a measurement of kCM

obtained using the first generation setup of the BMV
(Biréfringence Magnétique du Vide) experiment at the
National High Magnetic Field Laboratory of Toulouse,
France – (LNCMI-T) [9]. The novelty of this experiment
is the use of pulsed magnetic fields. This method allows to
provide the highest magnetic fields in terrestrial laborato-
ries without destroying the coil itself [4]. Our apparatus
is also based on the use of an infrared Fabry-Pérot cavity
among the sharpest in the world [10]. We calibrated our
experiment using nitrogen gas [10], and recently published
a high precision measurement of the Cotton-Mouton ef-
fect of helium gas compatible with the theoretical predic-
tion [11]. We present our data acquisition and analysis
procedure that takes into account the symmetry proper-
ties of the raw data with respect to the orientation of the
magnetic field and the sign of the cavity birefringence. The
measurement result of the vacuum magnetic linear bire-
fringence kCM presented in this paper was obtained with
about 200 magnetic pulses and a maximum field of 6.5 T.
It corresponds to the best noise floor ever reached. It is
therefore a clear validation of our innovative experimental
method.

2 Experimental setup

2.1 Apparatus

Our experimental setup is described in reference [11]. As
shown in Figure 2, 30 mW of a linearly polarized Nd:YAG
laser beam (λ = 1064 nm) goes through an acousto-optic
modulator (AOM) used in double pass for an adjustment

Nd:YAG

=1064 nm�

AOM

E
O

M

P

A

Ph
r

Ph t

Ph
eM

1
M

2

PDH lock

�/4
x

y z

B

Fig. 2. Experimental setup. EOM, electro-optic modulator;
AOM, acousto-optic modulator; PDH, Pound-Drever-Hall; Ph,
photodiode; P, polarizer; A, analyzer. See text for more details.
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Fig. 3. Square of the magnetic field amplitude as a function
of time for a maximum field of 6.5 T. Solid black curve, B2;
dashed curve, B2

f .

of the laser frequency. It is then injected into a monomode
optical fiber before entering a high finesse Fabry-Pérot
cavity of length Lc = 2.27 m, consisting of the mirrors M1

and M2. This corresponds to a cavity free spectral range
of ΔFSR = c/2Lc = 65.996 MHz. The laser passes through
an electro-optic modulator (EOM) creating sidebands at
10 MHz. We analyze the beam reflected by the cavity
on the photodiode Phr. This signal is used to lock the
laser frequency to the cavity resonance frequency using
the Pound-Drever-Hall method [12], via the acousto-optic
modulator and the piezoelectric and Peltier elements of
the laser.

To measure the ellipticity induced by the Cotton-
Mouton effect one needs a transverse magnetic field as
high as possible. This is fulfilled using pulsed fields deliv-
ered by one magnet, named X-coil, especially designed in
our laboratory. The principle of this magnet and its prop-
erties are described in details in references [9,13]. It can
provide a maximum field of more than 14 T over an equiv-
alent length LB of 0.137 m [10]. Data have been taken with
a maximum magnetic field of 6.5 T reached within 1.70 ms
while the total duration of a pulse is less than 10 ms as
shown in Figure 3. Moreover, we can remotely switch the
high-voltage connections to reverse B in order to set it
parallel or antiparallel to the x direction. The maximum
repetition rate is 6 pulses per hour.

We infer the cavity finesse from the measurement of the
photon lifetime τ [10]. Its value is regularly checked during
data taking and we get τ = 1.07 ms. The corresponding
finesse is:

F =
πcτ

Lc
. (7)
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We get F = 445 000 with a relative variation that does not
exceed 6% at the 3σ confidence level. This corresponds to
a cavity linewidth Δν = c/2FLc of 148 Hz. This is one of
the sharpest infrared cavity in the world [10].

Before entering the Fabry-Pérot cavity, light is polar-
ized by the polarizer P. The beam transmitted by the cav-
ity is then analyzed by the analyzer A crossed at maxi-
mum extinction. We extract both polarizations: parallel
and perpendicular to P. The extraordinary ray, whose po-
larization is perpendicular to the incident polarization, is
detected by the photodiode Phe (power Ie), while the or-
dinary ray, whose polarization is parallel to the incident
polarization, is detected by Pht (power It).

All the optical devices from the polarizer to the ana-
lyzer are placed in an ultrahigh-vacuum chamber. During
operation, the pressure inside the UHV vessel was about
10−7 mbar. We have monitored the vacuum quality with a
residual gas analyzer. Residual gases can cause a measur-
able CM effect. Most important contributions come from
N2 and O2 leading to a kCM of 1.5×10−23 T−2. Moreover
dielectric mirrors also induce a CM effect corresponding
to an ellipticity of 8 × 10−10 rad T−2 per reflection, as
reported in reference [14]. The stray transverse magnetic
field at the mirror position is smaller than 150 μT, giving
in our case kCM < 1 × 10−24 T−2. We expect these CM
effects to be smaller than the measured noise floor.

2.2 Signals

The ellipticity Ψ(t) induced by the transverse magnetic
field is related to the ratio of the extraordinary and
ordinary powers as follows:

Ie(t)

It,f(t)
= σ2 + [Γ + Ψ(t)]2,

� σ2 + Γ 2 + 2ΓΨ(t) for Ψ � Γ, (8)

with σ2 the polarizer extinction ratio and Γ the total
static ellipticity. This static ellipticity is due to the mir-
rors’ intrinsic phase retardation [15]. Each mirror can be
regarded as a wave plate. The combination of both wave
plates gives a single wave plate with a total phase retar-
dation and an axis orientation that depend on each mirror
phase retardation and on their relative orientation [16,17].
Thus, we adjust the value of Γ by rotating the mirrors M1

and M2 around the z-axis corresponding to the axis of
light propagation.

To measure the polarizer extinction ratio, we first set
Γ = 0, with no magnetic field. We get Ie/It,f = σ2 ∼
7 × 10−7. Then, to reach the best sensitivity, we need
Γ 2 ∼ σ2 [9]. Starting from Γ = 0 and rotating M1 in
the clockwise or counterclockwise direction, we choose the
value of Γ , as well as its sign determined by CM measure-
ments in nitrogen and helium gas. The measurement of σ2

and the adjustment of the value and sign of Γ are done
before each magnetic pulse.

Due to the photon lifetime, the cavity acts as a first or-
der low pass filter, as explained in details in reference [18].

Its complex response function H(ν) is given by:

H(ν) =
1

1 + i ν
νc

, (9)

with ν the frequency and νc = 1/4πτ � 74Hz the cavity
cutoff frequency. This filtering has to be taken into account
in particular for the time dependent magnetic field applied
inside the Fabry-Pérot cavity. The ellipticity Ψ induced by
the external magnetic field is thus proportional to B2

f :

Ψ(t) = αB2
f (t), (10)

where the filtered field B2
f is calculated from B2 taking

into account the cavity filtering. The time profile of B2
f is

plotted in Figure 3 with the dashed curve. In particular,
the cavity filtering induces an attenuation and a shift of
the maximum. The cavity filtering has also to be applied
to It as explained in details in references [11,18].

The calculated signals used for the analysis are de-
scribed in details in reference [11]. In order to extract
the ellipticity Ψ(t) from equation (8), we calculate the
following Y (t) signal after each pulse:

Y (t) =

Ie(t)
It,f (t)

− Idc

2 | Γ | , (11)

� γΨ(t), (12)

where γ corresponds to the sign of Γ . We calculate the
static signal Idc = σ2 + Γ 2 before the pulse as follows:

Idc =

〈
Ie(t)

It,f(t)

〉∣∣∣∣
tΓ <t<0

, (13)

where tΓ corresponds to the beginning of the analysis
and t = 0 to the beginning of the applied magnetic field.
The absolute value of the cavity ellipticity is measured a
few milliseconds before each magnetic pulse thanks to the
following equation:

|Γ | =

√〈
Ie(t)

It,f(t)

〉∣∣∣∣
tΓ <t<0

− σ2. (14)

Signals Y (t) are collected for both signs of Γ and for both
directions of B: parallel to x is denoted as >0 and an-
tiparallel is denoted as <0. This gives four data series:
(Γ > 0, B > 0), (Γ > 0, B < 0), (Γ < 0, B < 0)
and (Γ < 0, B > 0). For each series, signals calculated
with equation (11) are averaged and denoted as Y�, Y><,
Y� and Y<>. The first subscript corresponds to Γ > 0
or < 0 and the second one corresponds to B parallel or
antiparallel to x.

3 Data analysis and results

The raw signals, such as It(t), Ie(t), B(t) or the cavity
locking signal, are recorded 25 ms before the beginning of
the magnetic field and 25 ms after. A typical cavity locking
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Fig. 4. Time evolution of the locking signal during a magnetic
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Fig. 5. Typical histogram of Ψ(t) before the magnetic pulse.
(a) The histogram can be fitted by a gaussian function (dashed
curve): the shot is selected. (b) Rejected shot.

signal is plotted in Figure 4. We clearly see a perturba-
tion which begins at about 3.2 ms. This corresponds to
the acoustic perturbation triggered at t = 0 by the mag-
netic pulse. This perturbation travels trough the air to the
mirror mounts. We have confirmed the arrival time on the
mirror mounts with accelerometers. This perturbation in-
duces an ellipticity noise which degrades our sensitivity.
We have thus decided to stop the analysis at t = 3.1 ms.
Symmetrically, we start the analysis at tΓ = −3.1 ms. It
also allows to avoid drifts and long time variations of Γ .

For each pulse applied in vacuum, we first calculate
the |Γ | value following equation (14). To check that this
corresponds to a meaningful value, we plot the histogram
of the following signal for tΓ < t < 0:

Ψ(t) =

√
Ie(t)

It,f(t)
− σ2 − Γ. (15)

This corresponds to 3100 values acquired every 1 μs. With
white noise and because no induced ellipticity is present
at t < 0, the histogram is centered on 0 and corresponds
to a gaussian distribution, as shown in Figure 5a.

However, some of the histograms cannot be fitted by
a gaussian function, as shown in Figure 5b. The main ori-
gin of this type of distributions is mechanical oscillations
of the setup induced by the environment and leading to
static ellipticity fluctuations, event if the magnetic field is
not applied. These mechanical oscillations can be directly
observed on the power spectral density (PSD) of the el-
lipticity Ψ in the absence of the magnetic field, as shown
in Figure 6. In the case corresponding to Figure 5b, we
cannot give a statistical and significant value of Γ . The
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Fig. 6. Power spectral density of Ψ in the absence of the mag-
netic field. We observe the different mechanical resonances of
the setup.

corresponding shots are thus rejected. Finally we selected
101 pulses. It should be noted that this selection is per-
formed for t < 0, thus before the magnetic pulse. We do
not select or reject pulses with an analysis on the signal
we want to measure, thus induced by the magnetic field
at t > 0.

From the 101 selected pulses, we calculate the signals
Y�, Y><, Y�, and Y<>, denoted by Yj with j =�, ><,
�, <>. As explained in Section 2.2, they correspond
to the average of the Y (t) signals calculated with equa-
tion (11) for each of the four series. The Yj uncertainties

are calculated at each time ti, ΔYj(ti) = σj(ti)/
√
Nj ,

with σj(ti) the standard deviation of the Yj(ti) distribu-
tion and Nj the number of shots for the j series.

As explained in details in reference [11], one has to con-
sider systematic effects that mimic the CM effect we want
to measure. We thus analyze our data following a general
expression taking into account the symmetry properties
of Yj towards experimental parameters:

Y� = a�S++ + b�S+− + c�S−− + d�S−+,

= a�S++ + b�S+− + c�S−− + Ψ,

Y>< = a><S++ − b><S+− − c><S−− + d><S−+,

= a><S++ − b><S+− − c><S−− + Ψ,

Y� = a�S++ − b�S+− + c�S−− − d�S−+,

= a�S++ − b�S+− + c�S−− − Ψ,

Y<> = a<>S++ + b<>S+− − c<>S−− − d<>S−+,

= a<>S++ + b<>S+− − c<>S−− − Ψ.

The S functions correspond to a given symmetry towards
the sign of Γ and the direction of B. The first subscript +
(resp. −) indicates an even (resp. odd) parity with respect
to the sign of Γ . The same convention is used for the sec-
ond subscript corresponding to B. Each S function has a
different physical origin which are summarized in Table 1.
CM effect signal contributes to S−+ since it depends on
the cavity birefringence Γ and on the square of the mag-
netic field amplitude as shown in equations (5) and (12).
We can thus replace dS−+ by γΨ .
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Table 1. Possible physical effects contributing to the S signals.
The ΘF signal corresponds to a polarization rotation angle due
to the circular birefringence induced by a longitudinal magnetic
field (Faraday effect).

S signal Physical effect

S++(t) g Θ2
F(t), Ψ2(t)

S+−(t) B effects on photodiodes
S−−(t) γΘF(t)
S−+(t) γΨ(t)
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Fig. 7. Time evolution of J1, J2, J3 and J4 (dark grey curve)
and their uncertainties at 3σ confidence level (light grey).

The S functions are then extracted with a linear com-
bination of Yj as follows:

J1 ≡ Y� + Y>< + Y� + Y<>

4
,

= a S++ +Δb1 S+− +Δc1 S−− +Δd1 S−+,

J2 ≡ Y� − Y>< − Y� + Y<>

4
,

= Δa2 S++ + b S+− +Δc2 S−− +Δd2 S−+,

J3 ≡ Y� − Y>< + Y� − Y<>

4
,

= Δa3 S++ +Δb3 S+− + c S−− +Δd3 S−+,

J4 ≡ Y� + Y>< − Y� − Y<>

4
,

= Δa4 S++ +Δb4 S+− +Δc4 S−− + d S−+. (16)

J1(t), J2(t), J3(t) and J4(t) are plotted in Figure 7. Their
uncertainties are calculated from the Yj uncertainties. The
weighting parameters a, b, c and d depend on the exper-
imental adjustment from pulse to pulse and from day to
day. Their relative variations are small:Δa/a,Δb/b,Δc/c,
Δd/d � 1. Δa, Δb and Δc are mainly due to the Γ vari-
ation from one shot to another and we can precisely cal-
culate them since Γ is measured for each shot. We ob-
tain Δa4/a = 5.97 × 10−2, Δb4/b = −7.67 × 10−2 and
Δc4/c = −8.27×10−2. These values are of the same order
of magnitude as the one obtained during the CM mea-
surement of helium gaz [11]. Δd is independent of the Γ
variation. It mainly comes from a variation of the magnetic
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J 4
' x
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06
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time (ms)

Fig. 8. Dark grey curve: time evolution of J ′
4 and its 3σ uncer-

tainties (light grey). Black curve: αB2
f function superimposed

to guide the eyes.

field from one pulse to another. As the B relative variation
is small compared to the Γ relative variation we consider
Δd � 0. The variation of Ψ is thus neglected.

We thus write:

J1 � a S++,

J2 � b S+−,

J3 � c S−−,

J4 � Δa4

a
J1 +

Δb4

b
J2 +

Δc4
c
J3 + Ψ. (17)

We then calculate:

J ′
4 ≡ J4 −

[
Δa4

a
J1 +

Δb4

b
J2 +

Δc4
c
J3

]
,

� Ψ, (18)

which corresponds to the Cotton-Mouton signal. It is plot-
ted in Figure 8 together with a αB2

f function superim-
posed to guide the eyes. Nevertheless, we see that the
major component of J ′

4 is not αB2
f but a supplementary

systematic effect.
As said before, the setup is subject to several mechan-

ical resonances which can be excited both by the environ-
ment and the magnetic field. The latter could thus trigger
a mechanical oscillation of the setup at t = 0. We try
to fit J ′

4 by a sine function starting at t = 0. The fit
gives a frequency of (180 ± 3) Hz and it is superimposed
to J ′

4 in Figure 9a. We finally fit the residues by αB2
f .

The fit is superimposed to the residues of J ′
4 in Figure 9b.

The Cotton-Mouton constant kCM is deduced from the
measured experimental parameters as follows [10]:

kCM =
α

4πτΔFSR

λ

LB

1

sin 2θP
. (19)

We obtain:

kCM = (−0.9 ± 6.2) × 10−21 T−2, (20)

at 3σ confidence level. As said before we give error bars
at 3σ corresponding to a confidence level of 99.8%, that
usually indicates an evidence for a non-zero signal. The
uncertainty takes into account the A-type and B-type un-
certainties. The A-type uncertainties come from the fit
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Fig. 9. Time evolution of J ′
4 and its residues (dark grey). The

3σ uncertainties are superimposed in light grey. (a) Time evo-
lution of J ′

4. Black curve: Fit with a sine function at 180 Hz.
(b) Time evolution of the residues of J ′

4. Black curve: Fit
with αB2

f .

and from the photon lifetime with a relative variation
lower than 6% at 3σ. The B-type uncertainties have been
evaluated previously and detailed in reference [10]. They
essentially come from the length of the magnetic field LB

with a relative uncertainty of 6.6% at 3σ. The value of
equation (20) gives an estimate of our noise floor, which is
half the one of the PVLAS collaboration in 2012 obtained
with an integration time of 8192 s [8].

In order to assess more precisely the physical origin of
the systematic effect, we zoom in the power spectral den-
sity of Ψ , depicted in Figure 6, on the frequencies around
180 Hz. We find several resonances at 177 Hz, 200 Hz and
above. The signal J ′

4 is then fitted by a sine function but
with the frequency fixed to each of the resonance frequen-
cies. The best fit, corresponding to the best χ2, is obtained
for 177 Hz, which is compatible with the frequency given
by the previous fit. Fitting the residues by αB2

f gives our
final value for the CM constant:

kCM = (5.1 ± 6.2) × 10−21 T−2, (21)

at 3σ confidence level.
On the other hand, if we fit the data corresponding

to Figure 8 with the sum of the sine function of 177 Hz
frequency and αB2

f , we obtain:

kCM = (8.3 ± 8.0) × 10−21 T−2, (22)

at 3σ confidence level.
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Fig. 10. Comparison of the latest absolute reported values
of the vacuum CM effect. Error bars are given at 3σ. This
work: black dot, value obtain with the fit combining the sine
function at 177 Hz and the αB2

f function; arrow, noise floor of
8.0 × 10−21 T−2.

All this shows that our noise floor given by the un-
certainties is of a few 10−21 T−2 while the central value
depends on the fitting procedure. Establishing what is the
most statistically appropriate fitting procedure is out of
the scope of this paper. Our goal is to report on our noise
floor and to highlight the main contributions to system-
atic effects in order to improve the overall sensitivity of
the next version of the apparatus.

Nevertheless, for the sake of comparison we show in
Figure 10 our typical value given in equation (22) together
with the already published values. We see that our value
is slightly better than the previous one.

4 Conclusions and perspectives

We presented the last advances of our BMV apparatus in
terms of the best noise floor of vacuum magnetic birefrin-
gence ever realized. Our result validates our experimen-
tal method based on pulsed fields. In particular, it proves
that the sensitivity obtained in a single pulse compen-
sates the loss of duty cycle. To reach the QED value, the
needed improvement is of three orders of magnitude. This
is not conceivable with this first-generation experiment.
Our strategy is therefore to increase the magnetic field
thanks to the pulsed technology. At the moment, we have
B2LB = 5.8 T2 m but we conceptualized and tested a
pulsed coil that has already reached a B2LB higher than
300 T2 m. Two coils of this type will be inserted in the
experiment in the near future. This essential step really
makes the vacuum birefringence measurement within our
reach.

On the other hand, our analysis has allowed us to iden-
tify some systematic effects. Obviously, a special care will
be devoted to limit them in order to improve the accu-
racy. The magnetic field induces an excitation on the setup
which resonates at different frequencies. Since it affects
the signal J4, the resonance at 177 Hz has an odd sym-
metry with respect to the sign of Γ . This implies that it
concerns the mirror mounts. In order to get rid of this
effect, a new setup was designed, providing a better mag-
netic insulation of the mirrors. It will also provide a better
acoustic insulation of the mirror mounts, improving the
overall sensitivity and decreasing the number of rejected
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shots. Moreover in the new version of our setup we will be
able to measure the ellipticity both with θP equal to 0◦

(no induced ellipticity) and 45◦ (maximal induced elliptic-
ity). This will allow us to subtract from the raw data the
systematic effects that do not depend on the polarization
direction, as the sine function at 177 Hz.
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Mauchain, M. Nardone, J.-P. Nicolin and G. Rikken for strong
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C H A P I T R E 4

Au-delà du modèle standard

4.1 Introduction

4.1.1 �Weakly Interacting Massive Particles� (WIMPs)

L'étude de la propagation de la lumière dans le vide et sous champ magné-
tique permet également de tester la physique hors modèle standard qui prévoit
alors, par exemple, l'oscillation de photons en particules de faible masse inter-
agissant très peu avec la matière. Ces particules, hypothétiques pour le moment,
sont appelées de manière générale des WIMPs (pour Weakly Interacting Massive
Particles), parmi lesquelles l'axion est généralement la particule la plus connue.
L'axion a été introduit en 1978 par Weinberg [101] et Wilczek [102] suite à la
proposition de Peccei et Quinn en 1977 pour résoudre un problème théorique,
le �strong CP problem� 1 [16]. Des preuves de son existence sont depuis recher-
chées activement. Sa détection serait également une avancée majeure dans la
compréhension de notre univers puisque l'axion pourrait également être l'un des
constituants possibles de la matière noire.

La détection de ce type de particules est particulièrement compliquée. Elles
sont en e�et théoriquement de faible masse, neutres, sans spin, stables et elles
interagiraient très peu avec la matière - des particules donc pratiquement indé-
tectables. En revanche, en présence d'un champ magnétique ou électrique, elles
devraient se coupler aux photons avec une probabilité de conversion caractérisée
par une constante de couplage appelée g [103]. Cette propriété est celle qui est
généralement utilisée expérimentalement pour tenter d'observer une WIMP.

4.1.2 Principe de détection des WIMPs

Le principe de la détection repose sur la conversion sous champ magnétique
des photons en WIMPs et inversement. Le diagramme correspondant est rap-
pelé sur la �gure 4.1.2. Concrètement, les expériences consistent à mesurer cette
probabilité de conversion après propagation des WIMPs ou des photons dans
un champ magnétique B sur une longueur z. Celle-ci dépend de la constante de

1. Le problème CP fort correspond à l'observation expérimentale de la non-violation de la
symétrie CP en chromodynamique quantique bien que celle-ci soit théoriquement possible.
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couplage photons-WIMP g et de la masse de la particule WIMP ma de la façon
suivante [104] :

P (z) =

∣∣∣∣
∫ z

0

dz′∆g (z′) ei∆az′
∣∣∣∣
2

, (4.1)

avec ∆g(z
′) =

gB(z′)

2
et ∆a = −m

2
a

2ω
, (4.2)

où ω est l'énergie du photon 2. L'orientation du champ magnétique par rapport
à la polarisation de la lumière dépend de la particule hypothétique considérée.
Dans le cas de l'axion, le champ magnétique est parallèle à la polarisation de la
lumière.

Figure 4.1 � Schéma correspondant au cou-
plage WIMP (trait pointillé) - photon (courbe
ondulée) via un champ magnétique externe
(courbe ondulée terminée d'une croix).

Pour un champ magnétique constant sur une longueur L, la probabilité de-
vient :

P =

(
gBL

2

)2

sinc2

(
m2

aL

4ω

)
. (4.3)

Pour être expérimentalement mesurable, cette probabilité de conversion doit être
la plus grande possible, nécessitant donc l'utilisation de champ magnétique le plus
intense possible. Le terme oscillant indique que la zone de masse explorée est celle
satisfaisant sin(m2

aL/4ω) < 1 et donc ma <
√

2πω/L. Donc, plus la longueur de
l'aimant sera petite, plus la zone de masse explorée sera importante. A champ
magnétique constant, la probabilité de conversion maximale, proportionnelle à
(BL)2, sera en revanche plus faible. Un compromis doit donc être trouvé concer-
nant les paramètres de l'aimant. En�n, la zone de masse explorée est d'autant
plus importante que l'énergie du photon est grande. Il serait donc préférable de
s'orienter vers des sources à rayons X ou gamma plutôt que dans le domaine
visible. En revanche, le nombre de photons délivrés par ces sources étant plus
faible que dans le visible, le nombre de WIMPs générés est moins important.

Aucune expérience n'a pour le moment détecté une particule WIMP. Les
limites obtenues sur la probabilité de conversion permettent cependant d'exclure

2. Tous les paramètres sont exprimés en unités naturelles (~ = c = 1) : g[eV−1], B[eV2]≡
1/195B[T], ma[eV] ≡ 5.6× 1035ma[kg], ω [eV], z

′[eV−1] ≡ 2× 10−7z′[m].
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certaines régions de l'espace des paramètres (g-ma). Celui-ci est représenté sur
la �gure 4.2 avec les prédictions théoriques pour l'axion [105, 106] qui prévoient
en particulier que la constante de couplage g est proportionnelle à la masse de
l'axionma. Ainsi, plus l'axion est léger, plus la constante de couplage est faible : sa
détection est alors plus di�cile puisqu'il se convertit moins volontiers en photon.
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Figure 4.2 � Espace des paramètres (g-ma) caractérisant l'axion (ou une WIMP). La
zone pointillée correspond aux prédictions théoriques pour l'axion [105,106].

4.1.3 Observations astrophysiques

CAST

Expérimentalement, les résultats les plus précis sont obtenus via l'observation
de sources astrophysiques où siègent un champ magnétique important, comme le
soleil. Le principe de ces expériences a été imaginé pour la première fois par P.
Sikivie [103]. Les axions seraient créés à partir des photons thermiques dans le
plasma solaire et s'en échapperaient pratiquement sans interagir. Le principe de
détection de ces axions solaires est présenté sur la �gure 4.3 et correspond à ce
que l'on pourrait appeler un �télescope magnétique�. Il est tout d'abord constitué
d'un �mur� permettant de stopper les nombreux photons provenant du soleil tout
en laissant passer les axions qui interagissent très peu avec la matière. Un champ
magnétique transverse est placé après ce mur permettant de convertir les axions
en photons avec une probabilité de conversion donnée par l'équation (4.1) ou
(4.3). Ces photons �reconvertis� sont �nalement détectés à l'aide d'un détecteur
bas bruit.

L'expérience la plus sensible basée sur ce principe est celle développée au
CERN sous le nom de CAST (CERN Axion Solar Telescope). Les meilleures
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Figure 4.3 � Principe de la détection des axions solaires (gauche) et diagramme équi-
valent (droite). Une partie des axions solaires, après avoir traversé le mur permettant
de stopper la lumière du soleil, est convertie en photons. Un détecteur placé à la sortie
de l'appareil permet de mesurer le nombre de photons ainsi convertis.

limites actuelles sont indiquées sur la �gure 4.4 [107]. De nombreuses améliora-
tions ont été apportées depuis sa construction, permettant d'ores et déjà d'exclure
certaines prévisions théoriques.
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ADMX

ADMX (Axion Dark Matter Experiment) donne également d'excellentes li-
mites, mais dans un domaine de masse beaucoup plus restreint. Le principe de
l'expérience est le même que pour les axions solaires, mais le �télescope magné-
tique� est ici à la recherche des axions pouvant constituer la matière noire. Ces
axions seraient dotés d'une masse très faible, de 1 à 100µeV, et se convertiraient
en photons dans le domaine des micro-ondes. La sensibilité du télescope est ici
accrue à l'aide d'une cavité résonante dont les miroirs sont placés de part et
d'autre du champ magnétique. Aucun axion n'a été pour le moment détecté, cor-
respondant aux limites de la �gure 4.4 [108]. Ces limites permettent elles aussi
d'exclure une partie des prévisions théoriques.

4.1.4 Expériences purement terrestres

Les expériences basées sur la détection de WIMPs non créés sur Terre donnent
actuellement les meilleures limites. Elles sou�rent en revanche d'un handicap :
l'interprétation des mesures et le calcul des limites font appel à la modélisation.
Pour les axions solaires par exemple, le calcul du taux d'axions créés et arrivant
jusqu'au télescope CAST est basé sur notre connaissance du noyau solaire. Une
certaine imprécision persiste donc sur ces résultats.

Pour contourner ce problème, il est alors nécessaire de développer des expé-
riences purement terrestres qui permettent de détecter les WIMPs mais égale-
ment de les créer. Trois types d'expériences existent : la photorégénération, la
biréfringence magnétique du vide et le dichroïsme magnétique du vide.

Photorégénération ou expérience du �mur brillant�

Le principe de l'expérience, proposé initialement par K. Van Bibber et al [19],
est relativement simple. Il est présenté sur la �gure 4.5. Il consiste à injecter de
la lumière dans une première zone de champ magnétique B1 transverse sur une
longueur L1. Les photons sont alors convertis en WIMPs avec une probabilité P1

donnée par l'équation (4.1). Un mur est placé à la sortie du premier aimant que
seules les WIMPs peuvent traverser. Un deuxième aimant délivrant un champ
magnétique B2 sur une longueur L2, placé après le mur, permet de reconvertir
une partie des WIMPs en photons avec une probabilité P2. Un détecteur très
sensible est �nalement placé à la sortie de façon à compter le nombre de photons
ainsi régénérés.

Le taux de détection de photons régénérés est donné par :

R = P1P2
P
ω
η, (4.4)

avec P la puissance lumineuse incidente et η l'e�cacité de détection totale. Les
équations (4.1) et (4.4) montrent qu'un taux de détection élevé nécessite un
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Figure 4.5 � Principe de la photorégénération (haut) et diagramme correspondant
(bas).

taux de photons incidents important, un paramètre BL élevé et une e�cacité de
détection la meilleure possible.

Biréfringence magnétique

Le deuxième type d'expérience purement terrestre correspond à celles déve-
loppées pour la mesure de la biréfringence magnétique du vide. En e�et, le cou-
plage photon-WIMP via le champ magnétique induit également une biréfringence
venant s'ajouter à celle prévue dans le cadre de la QED [104]. Le diagramme
correspondant est présenté sur la �gure 4.6. La création virtuelle d'une WIMP
induit un retard de phase entre les photons polarisés parallèlement au champ
magnétique, et étant sujet aux créations virtuelles de WIMPs, et les photons
polarisés perpendiculairement au champ magnétique.

L'ellipticité induite par cette oscillation virtuelle photon-WIMP est donnée
par [60] :

Ψ =
F

2π

(
B⊥g

ma

)2

ωLB

[
1− sinc

m2
aLB
2ω

]
sin 2θ, (4.5)

avec θ l'angle entre la polarisation incidente et la direction du champ magnétique
transverse. Pour augmenter l'e�et, il faut maximiser le champ magnétique B⊥ et
la longueur d'interaction LB entre les photons et le champ magnétique.
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Figure 4.6 � Gauche : création virtuelle d'une WIMP induisant une ellipticité dans
les mesures de biréfringence magnétique du vide. Droite : création réelle d'une WIMP
responsable d'un dichroïsme.

Dichroïsme magnétique

En�n, sur l'expérience précédente, nous pouvons également avoir création
réelle de WIMPs à partir des photons polarisés parallèlement au champ magné-
tique dans le cas des axions. Le diagramme correspondant est présenté sur la
droite de la �gure 4.6. Ainsi, une lumière polarisée à 45˚ du champ magnétique
verra sa composante parallèle au champ magnétique atténuée dû à la conversion
d'une partie des photons correspondant en axions, induisant donc un dichroïsme.
L'angle de rotation E est donné par la formule suivante [60] :

E =
2F

π

(
B⊥LBg

4

)2

sinc2m
2
aLB
4ω

sin 2θ, (4.6)

Les paramètres importants restent la �nesse de la cavité, le champ magnétique
et la longueur sur laquelle il est appliqué.

Les mesures réalisées par une mesure de biréfringence magnétique ou par
photorégénération sont complémentaires. Dans ce cadre, nous avons réalisé deux
expériences de photorégénération : une dans le domaine visible, l'autre dans le
domaine des rayons X. Celles-ci sont décrites dans les deux prochaines parties.
Les limites obtenues avec la mesure de biréfringence magnétique du vide sont
�nalement présentées dans la dernière partie.

4.2 Photorégénération dans le visible

Cette expérience de photorégénération a débuté en 2006 suite aux résultats de
l'équipe italienne PVLAS [109] travaillant elle aussi sur la biréfringence magné-
tique du vide à l'aide d'une cavité optique. En cherchant à mettre en évidence
la biréfringence magnétique du vide, cette équipe a en e�et détecté un signal
bien plus intense que celui prédit dans le cadre de la QED. L'interprétation la
plus plausible de leurs mesures était alors la détection de l'axion. Cependant,
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Figure 4.7 � Schéma de l'expérience de photorégénération réalisée au LULI.

la constante de couplage photons-axion déduite des mesures de PVLAS était
en sérieux désaccord avec les limites données par CAST [110]. Une expérience
indépendante et complémentaire était donc capitale pour con�rmer ou non ces
résultats [111]. De nombreux groupes à la renommée internationale, comme le
DESY en Allemagne, le FERMILAB et le Je�erson Lab aux États-Unis, ou le
CERN en Suisse, se sont également lancés dans l'aventure, ce qui a rendu le
contexte particulièrement concurrentiel.

4.2.1 Description de l'expérience

Les résultats ont été publiés dans PRL [112] et PRD [113]. Je ne décris dans
la suite que les points principaux de l'expérience ainsi que les résultats.

Le problème principal de cette expérience résidait dans la détection. Le taux
de régénération attendu était en fait extrêmement faible � moins de 10−20 �
ce qui imposait un blindage optique parfait contre tout photon parasite et un
niveau de bruit de fond du détecteur très bas. La solution originale et e�cace que
nous avons mise en place pour résoudre ce problème de détection a été d'utiliser
des éléments pulsés à la fois pour le laser, le champ magnétique et le détecteur.
Contrairement aux autres expériences de photorégénération qui requièrent de
long temps d'intégration, nous ne sommes pas limités par le bruit du détecteur
puisque les photons sont concentrés dans des tirs laser puissants et très courts.

Le laser

Le schéma de principe de l'expérience est présenté sur la �gure 4.7. A�n
d'avoir un maximum de photons incidents à une longueur d'onde facilement
détectable, l'équipe a choisi d'installer l'expérience au LULI à Palaiseau sur la
chaîne laser Nano 2000. Cette chaîne permet de délivrer en moyenne 1.5 kJ dans
une fenêtre de 4.8 ns comme cela est montré dans l'insert de la �gure 4.8 avec
ω=1.17 eV. Ceci correspond à 8×1021 photons incidents par tir laser. Le taux de
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Figure 4.8 � Champ magnétique au centre de la bobine en fonction du temps. Le
maximum est atteint en moins de 1.75ms et peut être considéré comme constant pen-
dant 150µs. Le tir laser de 5 ns est appliqué durant cet intervalle. Insert : pro�l temporel
du tir laser.

répétition est d'un tir toutes les deux heures. Le faisceau est focalisé juste avant
le mur à l'aide d'une lentille de focale 20,4m. Pour éviter toute ionisation de l'air,
un vide meilleur que 10−3 mbar est nécessaire. Le mur est constitué d'une plaque
en dural et est incliné à 45˚ par rapport à l'axe de propagation du laser ce qui
permet d'augmenter l'aire de l'impact laser et d'éviter toute retroré�exion.

Le champ magnétique

Comme le montrent les équations (4.1) et (4.2), la probabilité de conversion
est quadratique en champ magnétique. Il faut donc un champ le plus intense
possible. Les bobines les plus adaptées sont alors des bobines pulsées. Avec nos
paramètres, la longueur caractéristique des aimants pour pouvoir détecter l'axion
de PVLAS doit être inférieure à 1m. La géométrie des bobines est la même
que celle utilisée sur le projet BMV, soit une géométrie en X décrite dans la
partie 2.2.2 [59]. La puissance est fournie par un générateur transportable, lui
aussi développé au LNCMI.

Comme pour tous les aimants pulsés, les bobines sont plongées dans des
cryostats à azote liquide pour limiter les conséquences de l'échau�ement lors
du tir. Un délai entre deux tirs magnétiques est nécessaire pour permettre à la
bobine de retrouver sa température d'équilibre. Ceci limite le nombre de tirs à
cinq par heure.

Le champ maximum est obtenu au centre de la bobine qui peut délivrer
jusqu'à 13,5T sur une longueur de 365mm. Cependant, pendant toutes les cam-
pagnes de mesure, un champ magnétique plus faible de 12 T a été utilisé a�n
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d'augmenter la durée de vie de la bobine. La �gure 4.8 montre l'allure du champ
magnétique au centre de la bobine au cours du temps. La durée totale est de
quelques millisecondes. Le champ magnétique atteint son maximum en moins de
2ms et reste constant à 0.3% près pendant 150µs, un temps long comparé à la
durée d'un tir laser.

Le détecteur

Le dernier élément clé de l'expérience est le détecteur de photons. A�n d'avoir
une sensibilité la plus grande possible, nous nous sommes tournés vers les détec-
teurs de photons uniques. De plus, le temps d'intégration est limité par la durée
d'un tir laser qui est inférieur à 5 ns. Nous comptions réaliser une centaine de
tirs laser, soit 500 ns de temps d'intégration total. Il fallait donc que le bruit
d'obscurité, autrement dit le nombre de photons détectés lorsqu'il n'y a aucun
photon incident sur le détecteur, soit bien plus petit que 1 pendant ces 500 ns.

Nous avons choisi un détecteur de photons uniques basé sur une photodiode
à avalanche, commercialisé par Princeton Lightwave Instruments, et qui a une
grande e�cacité de détection à 1.05 µm. La lumière est couplée au détecteur à
l'aide d'une �bre multimode. Un point important de l'expérience a été de mettre
en place un coupleur de �bre dans une monture stable a�n que le couplage dans
la �bre ne change pas au cours des tirs de champs magnétiques.

Nous avons précisément caractérisé le détecteur. L'e�cacité de détection et
le bruit d'obscurité ont été mesurés en fonction des divers paramètres ajustables,
comme la température de la photodiode ou la tension qui y est appliquée. Fina-
lement, une fois ces paramètres optimisés, nous avons obtenu une e�cacité de
détection d'environ 50% avec un bruit d'obscurité de 2.5× 10−2 sur 500 ns.

Protocole expérimental et test

Le montage et le test de l'expérience se sont déroulés de février à mai 2007 au
LULI. Les trois points suivants ont été caractérisés et optimisés avec attention :

� L'alignement. Après le second aimant, les photons régénérés sont injectés
dans le détecteur à l'aide d'un coupleur et d'une �bre optique. Cette �bre
a un diamètre de c÷ur de 62.5µm et une ouverture numérique de 0.27. Ces
paramètres ont été choisis a�n d'assurer un couplage élevé même lorsque
l'on prend en compte l'instabilité du faisceau laser tir après tir.
L'alignement du faisceau haute puissance est réalisé avec un laser basse
puissance parfaitement aligné avec le faisceau haute puissance. Pour cela, le
mur est relevé pour laisser passer la lumière. Cet alignement est véri�é entre
chaque tir. En�n, la dernière source de désalignement provient des e�ets
thermiques durant le tir haute énergie. Ce désalignement est reproductible
et peut donc être corrigé. De plus, le champ lointain est imagé pour chaque
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tir à la sortie de la chaîne d'ampli�cation laser ce qui nous permet de
connaître le couplage dans la �bre pour chaque tir.

� Bruit optique et électro-magnétique. Pour avoir la meilleure sensibilité pos-
sible, nous avons besoin d'avoir un blindage optique contre tout photon pa-
rasite. Le mur a une épaisseur de quelques centimètres. Des �asques pleines
sont placées à la sortie du premier aimant et à l'entrée du deuxième aimant.
Des sou�ets opaques sont placés entre le deuxième cryostat et l'entrée de la
�bre. Ceci permet de placer la zone de régénération dans une chambre par-
faitement noire tout en découplant mécaniquement l'aimant qui peut vibrer
au cours du tir et le coupleur de �bre qui doit rester parfaitement stable.
A�n d'éviter tout comptage de photon dû à un bruit électro-magnétique,
le détecteur est placé dans une baie faisant o�ce de cage Faraday. La �bre
ayant une longueur de 30 m, nous avons placé le détecteur loin des aimants.

� Synchronisation. Notre expérience étant basée sur des éléments pulsés, une
attention particulière a été portée sur la synchronisation de tous les élé-
ments : le tir laser doit être appliqué au maximum de champ magnétique
et doit arriver sur la photodiode au cours de la fenêtre temporelle de détec-
tion. Tous les signaux de synchronisation ainsi que les instants d'ouverture
et de fermeture de la fenêtre de détection sont enregistrés à chaque tir. Ceci
nous permet d'avoir la certitude que le fait de ne compter aucun photon
ne vient pas d'un défaut de synchronisation.

4.2.2 Résultats

Au cours des 80 tirs réalisés, aucune photorégénération n'a été observée. Ce
résultat nous permet de conclure avec certitude que l'interprétation particulaire
des résultats de PVLAS est erronée puisqu'au moins un photon régénéré par
tir aurait dû être détecté. La courbe représentant les limites de la constante de
couplage axion-photons g en fonction de la masse de l'axion ma est représentée
sur la �gure 4.9 pour notre expérience (gris foncé) et est comparée aux limites
données par d'autres expériences au moment de la publication de nos résultats
sur la �gure 4.10.

4.2.3 Conclusion

La force de cette expérience a été de combiner de façon presque idéale le laser
Nano 2000 du LULI, les bobines pulsées développées au LNCMI et un compteur
de photons uniques commercial adapté à nos besoins. Ceci nous a permis d'être
les premiers à in�rmer les résultats italiens devançant les grands laboratoires en
course. Ces résultats ont été publiés dans :

� Physical Review Letters en 2007 pour les premiers résultats [112]. Ces ré-
sultats ont été particulièrement importants pour nous puisqu'ils nous ont
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Figure 4.9 � Gris foncé : Limite à 3σ de la constante de couplage g axion-photon, en
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cours des tirs. L'aire grisée est exclue. Gris clair : Limite obtenue par la collaboration
BFRT en 1993 [60]. Noire : Limite donnée par PVLAS [109] et non exclue par BFRT
pour l'observation de l'axion.

permis de devancer les autres équipes s'étant lancées sur les traces de l'axion
comme le FermiLab et le Je�erson Lab aux États-unis, le CERN en Suisse
ou le DESY en Allemagne.

� Physical Review D en 2008 pour les résultats �naux [113].

4.3 Photorégénération dans le domaine des rayons

X

Nous avons également réalisé une autre expérience du même type, mais dans
un domaine de longueur d'onde complètement di�érent. Alors que nous travail-
lions dans le domaine proche infrarouge au LULI, cette nouvelle expérience a
été réalisée dans le domaine des rayons X. Nos résultats ont �nalement permis
d'apporter de nouvelles données dans un domaine d'énergie où aucune expérience
n'avait encore été réalisée.

Toutes les expériences sur la recherche de l'axion purement terrestres, au-
trement dit dans lesquelles l'axion est créé expérimentalement puis détecté, qui
ont été réalisées jusqu'à maintenant ont travaillé avec des énergies de photon
de l'ordre de 1 eV (domaine visible et proche infrarouge). Or, les limites don-
nées habituellement ne sont valables que pour des masses d'axions très petites
devant l'énergie du photon (ma � ω), l'axion formé à partir du photon devant
être relativiste. Augmenter l'énergie du photon dans une expérience de photo-
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Figure 4.10 � Comparaison des zones d'exclusion de l'axion obtenues sur diverses
expériences au moment de la publication de nos résultats �naux obtenus au LULI [113] :
GammeV en 2008 [114], PVLAS en 2008 [20], expériences avec des micro-cavités comme
celles développées sur le projet ADMX [115�119] et CAST en 2007 [110] � et zone de
présence de l'axion attendue théoriquement.

régénération permettrait donc de tester de nouvelles régions dans l'espace des
paramètres (ma − g).

4.3.1 Présentation de l'expérience

La source de rayons X

Le principe de l'expérience est présenté sur la �gure 4.11. L'expérience a été
montée sur la ligne ID26 de l'ESRF. Deux énergies ont été utilisées : ω = 50.2 keV
et 90.7 keV. Ces énergies sont sélectionnées à l'aide d'un monochromateur situé
sur le trajet du faisceau de rayons X. Le faisceau voyage quasiment intégralement
sous vide a�n d'éviter la perte de photons incidents due à l'absorption par l'air.
Le �ux incident est mesuré précisément avec une chambre à ionisation remplie
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Figure 4.11 � Schéma de l'expérience de photorégénération dans le domaine des
rayons X.

d'un bar de krypton. Les autres chambres à ionisation placées le long du trajet
permettent de véri�er l'alignement. Durant les prises de données, nous avons
obtenu environ 1.2×1012 photons par seconde à 50.2 keV et 3.1×1010 à 90.7 keV.

Le champ magnétique

Le champ magnétique est délivré par deux aimants supraconducteurs avec
un champ magnétique parallèle à la polarisation du faisceau. Le premier aimant
fournit 3T sur une longueur de 150mm alors que le deuxième aimant fournit 3T
sur 97mm.

Les aimants sont placés dans les deux salles expérimentales EH1 et EH2 qui
sont blindées par du plomb. Le mur permettant de bloquer les rayons X entre
les deux aimants correspond à l'obturateur de sécurité entre EH1 et EH2 et qui
est constitué d'une épaisseur de plomb de 50mm. La zone de régénération, qui
se trouve au niveau de la deuxième bobine, et la zone de détection se trouvent
blindées dans la cabane EH2. Cette con�guration permet d'avoir un niveau de
bruit de fond bas, essentiellement dominé par les rayons X cosmiques.

Le détecteur

Le dernier élément clé de l'expérience est le détecteur. Le détecteur est consti-
tué de 5mm de Germanium refroidi à l'azote liquide. Les rayons X arrivant sur le
détecteur créent des charges électriques proportionnelles à l'énergie du photon.
Le signal de sortie est ensuite �ltré a�n de rejeter les événements dont l'énergie
ne correspond pas à l'énergie des photons incidents sélectionnée par le mono-
chromateur. L'e�cacité de détection est d'environ 99.98% à 50.2 keV et 84% à
90.7 keV. Le taux de comptage mesuré alors que le faisceau de rayons X est éteint,
correspondant donc au bruit de fond, est de (7.2±0.7)×10−3 photon par seconde.
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Figure 4.12 � Comparaison des zones d'exclusion de l'axion obtenues sur diverses
expériences au moment de la publication de notre résultat [120], avec un indice de
con�ance de 95% pour nos résultats et ceux de CAST [121] et 90% pour les résultats
obtenus avec les cavités micro-ondes [108,117,118]. Pour le détail : voir texte.

4.3.2 Résultats

Aucun excès de comptage au-dessus du bruit de fond n'a été observé. Les
limites sur la constante de couplage g WIMP-photon en fonction de la masse
de la particule WIMP ma sont représentées sur la �gure 4.12 en gris foncé et
sont comparées aux limites données par d'autres expériences au moment de la
publication de nos résultats [120].

Les meilleures limites obtenues à l'époque sur une expérience purement ter-
restre ont été données par la collaboration ALPS au DESY en Allemagne en
2010 [122] et sont représentées par la zone d'exclusion au-dessus de la ligne
en trait plein. Les meilleures limites établies par les recherches d'axions extra-
terrestres sont représentées par les zones hachurées : les hachures horizontales
correspondent à CAST [121] alors que les hachures horizontales correspondent
aux recherches d'axions galactiques à l'aide de micro-cavités [108, 117, 118]. La
bande à pois correspond aux prévisions théoriques. Cette �gure montre que nous
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avons testé une nouvelle région dans l'espace des paramètres (ma − g) en ce qui
concerne les expériences purement terrestres.

4.3.3 Conclusion

Ces résultats ont été publiés dans PRL �n 2010 [120]. Notre expérience a
permis d'étendre à de plus hautes énergies la recherche des oscillations photons -
WIMPs en présence d'un champ magnétique. Aucune limite avec des expériences
purement terrestres, donc indépendantes de modèles, n'avait été donnée jusqu'à
maintenant dans cette région. De plus, cette expérience représente la première
étude expérimentale de la propagation des photons sous champ magnétique dans
le domaine des rayons X, ouvrant ainsi un nouveau domaine d'étude expérimen-
tale.

4.4 Axions et projet BMV

Comme nous l'avons vu dans la partie 4.1.4, les mesures de biréfringence ma-
gnétique du vide par ellipsométrie permettent également de donner des limites sur
les paramètres des WIMPs. L'ellipticité induite par le couplage photons-WIMPs
via le champ magnétique est donnée par l'équation (4.5). La limite obtenue sur
le projet BMV est :

|kCM| = (6.1± 7.5)× 10−21 T−2 (4.7)

à 3σ. Les mesures ayant été réalisées avec une �nesse F = 445 000, un paramètre
B2
⊥,fLB ' 3T2m et un angle de 45˚ entre la polarisation incidente et la direction

du champ magnétique, l'ellipticité mesurée en sortie de cavité est :

|Ψ| =
2F

λ
B2
⊥,fLBkCM (4.8)

= (1.5± 1.8)× 10−8. (4.9)

Injectée dans l'équation (4.5), on trouve les limites dans l'espace des paramètres
(ma − g) tracées sur la �gure 4.13. Nous avons également tracé sur cette �gure
les meilleures limites obtenues jusqu'à maintenant avec l'observation des axions
solaires [107], les cavités micro-ondes avec en particulier le projet ADMX [108],
et les expériences de photorégénération avec les projets ALPS [122] et OSQAR
[123].

4.5 Conclusion

Les expériences de photorégénération mises en place dans le cadre du projet
BMV ont permis de donner des limites sur les paramètres des axions, et de
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Figure 4.13 � Comparaison des meilleures zones d'exclusion obtenues jusqu'à main-
tenant concernant les paramètres des WIMPs, que ce soit avec les expériences à
la recherche de l'axion solaire (CAST) [107], celles observant les axions galactiques
(ADMX) [108, 117, 118] ou les expériences purement terrestres de photorégénération
ou de biréfringence magnétique du vide [120, 122, 123]. L'indice de con�ance est de
95% pour CAST et pour la photorégénération dans le domaine des rayons X ou visible
(projets ALPS et OSQAR), de 90% pour les résultats obtenus avec les cavités micro-
ondes et de 99.7% pour les limites obtenues sur le projet BMV. La courbe pointillée
correspond à la limite obtenue si la biréfringence magnétique du vide est observée avec
un rapport signal sur bruit de un.
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manière plus générale sur les paramètres des WIMPs. Celle réalisée au LULI dans
le domaine du visible a été la première à in�rmer l'interprétation des résultats
de l'équipe PVLAS en 2006 [109]. Celle réalisée dans le domaine des rayons X a
permis quant à elle de donner des limites pour des masses encore jamais explorées
par des expériences purement terrestres.

Nous voyons clairement sur la �gure 4.13 que les limites sur la constante
de couplage données par les expériences purement terrestres sont de plusieurs
ordres de grandeur plus basses que celles données par les recherches sur les axions
solaires ou galactiques, ou encore celle de l'axion prévue théoriquement. Ces
expériences restent néanmoins importantes puisqu'elles ne dépendent d'aucun
modèle. En�n, parmi les expériences purement terrestres, il est important de
noter la complémentarité des expériences de photorégénération et de mesures
de la biréfringence magnétique du vide. Alors que les premières permettent de
donner des limites aux faibles masses, les deuxièmes permettent d'étendre les
limites aux masses plus grandes. Le projet BMV est dans ce cadre prometteur
comme le montrent les limites obtenues si la biréfringence magnétique du vide
est observée avec un rapport signal sur bruit de un.

4.6 Articles en relation avec ce chapitre

Les articles reproduits ci-dessous en lien avec ce chapitre correspondent aux
références [112], [113] et [120].
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Recently, axionlike particle search has received renewed interest. In particular, several groups have
started ‘‘light shining through a wall’’ experiments based on magnetic field and laser both continuous,
which is very demanding in terms of detector background. We present here the 2� limits obtained so far
with our novel setup consisting of a pulsed magnetic field and a pulsed laser. In particular, we have found
that the axionlike particle two photons inverse coupling constant M is >8� 105 GeV provided that the
particle mass ma � 1 meV. Our results definitively invalidate the axion interpretation of the original
PVLAS optical measurements with a confidence level greater than 99.9%.
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The axion was first proposed 30 years ago to solve the
strong CP problem [1], but other models also support the
existence of such light, neutral, spin-zero bosons [2,3]
called axionlike particles. Although no axion has been
definitely detected yet, several experiments and astronomi-
cal observations have limited the range of possible axion-
like particle mass ma and inverse axionlike particle two
photons inverse coupling M [4].

Last year, an Italian collaboration (PVLAS) announced
an unexpected observation of a magnetic dichroism in
vacuum which they suggested might be due to photoregen-
eration of axionlike particles [5]. However, their mass and
two photon inverse coupling constant inferred from these
PVLAS measurements were seriously inconsistent with the
CAST limits [6], albeit the latter are model dependent.
There was an urgent need for a direct independent experi-
mental test of the observed dichroism [7].

All of that has raised a renewed interest in axionlike
particle search, in particular, for model independent purely
laboratory-based experiments [8]. The most popular setup,
commonly called ‘‘light shining through a wall’’, is a
photoregeneration experiment based on the Primakoff ef-
fect coupling an axionlike particle with two photons (a real
one from the laser field and a virtual one from an external
magnetic field) [9]. The experiment consists of converting
photons into axionlike particles of identical energy in a
transverse magnetic field, then blocking the photon beam
with a wall. The axionlike particles hardly interact with the
wall and are converted back to photons in a second magnet.
Finally, the regenerated photons are counted with an ap-
propriate detector. Such an experiment was conducted in
the 1990s by the BFRT Collaboration without detecting
any regenerated photon signal, which led to limits on the
axion parameters [10]. Mainly motivated by the PVLAS
astonishing results, several ‘‘light shining through a wall’’
experiments have been proposed and are currently under

construction [11]: at DESY the Axion-Like Particle Search
project (ALPS), at CERN, the Optical Search for QED
Vacuum Magnetic Birefringence, Axions and Photon
Regeneration project (OSQAR), at Jefferson Laboratory,
the LIght PseudoScalar Search project (LIPSS), and at
Fermilab, the GammeV Particle Search Experiment
project. Eventually, the PVLAS Collaboration disclaimed
their previous observations [12].

Experimentally, the main difficulty lies in detection. The
expected regeneration rate is indeed very weak—less than
10�20—so that optical shielding has to be perfect and the
detector background very low.

In this Letter, we detail our project, and we present the
limits on the axionlike particle mass and two photons
inverse coupling constant we have obtained so far. We
have found an original and efficient way to solve the
detection problem as both the laser and the magnetic field
are pulsed, as well as our detector. Contrary to other similar
experiments requiring long integration times, we are not
limited by the background of the detector as the photons
are concentrated in very intense and short laser pulses. We
are the first to present here the results of a pulsed ‘‘light
shining through a wall’’ experiment, specially designed to
test the PVLAS claims. In particular, we have found that
the axionlike particle two photons inverse coupling con-
stant M is >8� 105 GeV provided that the particle mass
ma � 1 meV. Our results definitively invalidate the axion
interpretation of the original PVLAS optical measurements
with a confidence level greater than 99.9%.

Our experimental setup shown in Fig. 1 is based on three
synchronized pulsed elements: a very energetic laser, two
pulsed magnets which are placed on each side of the wall,
and a time-gated single photon detector. We have chosen
this pulsed approach as it allows us to measure very small
conversion rates free from the inevitable background
counts of photon detectors.
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The conversion and reconversion transition rate (in natu-
ral units @ � c � 1, with 1 T � 195 eV2 and 1 m � 5�
106 eV�1) after propagating over a distance z in the in-
homogeneous magnetic field B writes [13]:

 P�z� �
��������
Z z

0
dz0�M�z

0� exp�i�az
0�

��������
2
; (1)

where �M �
B

2M and �a � �
m2
a

2! with the photon energy!.
Note that this equation is valid both for pseudoscalar and
scalar particles, but pseudoscalar (respectively scalar) par-
ticles couple to photons with a polarization parallel (re-
spectively orthogonal) to the magnetic field. We have two
identical magnets; the detection rate of regenerated pho-
tons is given by

 R � P2 P

!
�; (2)

with P the laser power and � the global detection
efficiency.

Studying Eqs. (1) and (2), we can easily see that the
number of incident photons, the integral of the transverse
magnetic field over the magnet length L:

 

Z �L=2

�L=2
Bdz � B0Leq; (3)

and the detection efficiency have to be maximized. We
define B0 as the maximum field and Leq as the equivalent
length of a magnet producing a uniform magnetic field B0.
On the other hand, P�z� oscillates for too long magnets.
The length leading to the highest conversion rate for a
homogeneous magnetic field is Lopt � 2�!=m2

a. For opti-
cal frequencies and an axionlike particle mass on the order
of 1 meV, this length is on the order of 1 m.

In order to have the maximum number of incident
photons for the laser source at a wavelength that can be
efficiently detected, we have chosen to set up the experi-
ment at LULI, Palaiseau, France, on the Nano 2000 chain.
It can deliver up to 1.5 kJ over 4.8 ns (FWHM)—as shown
in the inset of Fig. 2—with ! � 1:17 eV. This corre-
sponds to Ninc � 8� 1021 photons per pulse. The repeti-
tion rate is 1 pulse every 2 hours. The vertically linearly
polarized incident beam has a 186 mm diameter and is
almost perfectly collimated. A deformable mirror included

in the middle of the amplification chain corrects the spatial
phase of the beam to obtain at focus a spot better than two
diffraction limits. It is then focused just behind the wall
using a lens which focal length is 20.4 m. The beam is
apodized to prevent the incoming light from generating a
disturbing plasma on the sides of the vacuum tubes. Before
the wall where the laser beam propagates, a vacuum better
than 10�3 mbar is necessary in order to avoid air ioniza-
tion. Two turbo pumps along the vacuum line give
10�3 mbar near the lens and better than 10�4 mbar close
to the wall. The wall is made of a 15 mm width aluminum
plate to stop every incident photon while axionlike parti-
cles continue. It is tilted by 45	 compared to the axis of the
laser propagation in order to increase the area of the laser
impact and to avoid backreflected photons. In the second
magnetic field region, a vacuum better than 10�3 mbar is
also maintained.

For the magnets, we use a pulsed technology. The pulsed
magnetic field is produced by a transportable generator
developed at LNCMP, Toulouse, France, which consists
of a capacitor bank releasing its energy in the coils in a few
milliseconds [14]. A typical time dependence of the mag-
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netic field in our coils is shown in Fig. 2. Besides, a special
coil geometry has been developed in order to reach the
highest and longest transverse magnetic field [15]. A
12 mm diameter aperture has been made inside the mag-
nets for the laser beam. As for usual pulsed magnets, the
coils are immersed in a liquid nitrogen cryostat to limit the
consequences of heating. When the magnetic field is maxi-
mum, the repetition rate is set to 5 pulses per hour. A delay
between two pulses is necessary to get back to the tem-
perature of equilibrium which is monitored via the coil
resistance. During data acquisition, our coils provide B0 �
12:3 T over an equivalent length Leq � 365 mm. The
magnetic field B0 remains constant (
0:3%) during �B �
150 �s, a very long time compared to the 5 ns laser pulse.
During operation the magnetic pulse is triggered by a
signal from the laser chain which has a stability ensuring
that the laser pulse happens within these 150 �s. In order
to detect pseudoscalar particles, the transverse magnetic
field is parallel to the laser polarization.

The last principal element is the single photon detector
that has to meet several criteria. In order to have a sensi-
tivity as good as possible, the regenerated photon detection
has to be at the single photon level. The integration time is
limited by the 5 ns laser pulse. This imposes a detector with
a dark count far lower than 1 over this integration time so
that a nonzero regenerated photon counting would be
significant.

Our detector is a commercially available single photon
receiver from Princeton Lightwave which has a high de-
tection efficiency at 1:05 �m. It integrates a 80� 80 �m2

InGaAs Avalanche Photodiode (APD) thermoelectrically
cooled, with all the necessary bias, control, and counting
electronics. Light is coupled to the photodiode through a
FC/PC connector and a multimode fiber. When the detector
is triggered, the APD bias voltage is raised above its
reverse breakdown voltage Vbr to operate in ‘‘Geiger
mode’’. For our experiment, the bias pulse width is 5 ns
to correspond with the laser pulse.

The APD bias voltage is then adjusted to obtain the best
compromise between the detection efficiency and the dark
count rate per pulse. The detection efficiency � is mea-
sured by illuminating the detector with a calibrated laser
intensity, � � 0:50�0:02�. The dark count rate is about 5�
10�4 counts per pulse.

After the second magnet, regenerated photons are in-
jected into the detector through a coupling lens plus a
graded index multimode fiber with a 62:5 �m core diame-
ter, a 0.27 numerical aperture, and an attenuation lower
than 1 dB=km. These parameters ensure that we can easily
inject light into the fiber with a high coupling ratio, even
when one takes into account the pulse by pulse instability
of the propagation axis that can be up to 9 �rad. During
data acquisition, a typical coupling efficiency through the
fiber was found to be about �c � 0:85. This efficiency is
measured by removing the wall and the blind flanges (see

Fig. 1) and by using the laser beam from the pilot oscillator
without chopping nor amplifying it. This procedure en-
sures that the pulsed kJ beam is perfectly superimposed to
the alignment beam.

The only remaining source of misalignment lies in ther-
mal effects during the high energy laser pulse, which could
slightly deviate the laser beam, hence generating supple-
mentary losses in fiber coupling. This misalignment is
reproducible. This means that it can be corrected by prop-
erly changing the initial laser pointing. By monitoring the
optical path followed by the high energy beam for each
pulse, we were able to take such misalignment losses into
account, and we have observed a maximum value of 20%
of coupling reduction.

The detector gate is triggered with the same fast signal
as the laser, using delay lines. We have measured the
coincidence rate between the arrival of photons on the
detector and the opening of the 5 ns detector gate as a
function of an adjustable delay. We have chosen our work-
ing point in order to maximize the coincidence rate (see
Fig. 3). To perform such a measurement we used the laser
pilot beam which was maximally attenuated and chopped
with a pulsed duration of 5 ns, exactly as the kJ beam.

The fiber to inject the detector is 30 m long so that it can
be placed far from the magnets to avoid potential electronic
noise during magnetic shots. In addition, the detector is
placed in a shielding bay to prevent electromagnetic noise
during laser pulses.

So far, during data acquisition, a total amount of about
17.4 kJ has reached the wall in 14 different pulses. This
corresponds to about 9:3� 1022 photons. To evaluate the
actual number of incident photons that could yield a re-
generated photon observable by the detector, we took into
account for each pulse the fiber coupling �c, the misalign-
ment due to thermal effects during the pulse. We have also
evaluated the percentage of the whole laser energy (see
inset of Fig. 2) actually contained in the 5 ns detection gate,
which is 93%. All of these experimental parameters are

FIG. 3. Coincidence rate between the arrival of photons on the
detector and its 5 ns detection gate as a function of an arbitrary
delay time. The arrow indicates our working point, chosen in
order to maximize the coincidence rate.

PRL 99, 190403 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 NOVEMBER 2007

190403-3



known with a few percent errors. The effective number of
photons is about 6:7� 1022, which corresponds to about
12.5 kJ. No regenerated photon has been detected. In this
case, the measurement error is given by the number of
photons that could have been missed due to the non perfect
detection. The probability Pn that n incident photons have
been missed by the detector is Pn � �1� ��n. Dark count
is negligible. A standard deviation � means that a result
outside the window
2� corresponds to Pn < 0:05, which
yields about 4 missed photons for our value of �.

The limits at 95% and 99.9% confidence level that we
have reached so far are plotted on Fig. 4. These have been
calculated by numerically solving Eq. (1). The area below
our curve is excluded by our null result. In particular, the
axionlike particle two photons inverse coupling constantM
is >8� 105 GeV provided that the particle mass ma �
1 meV. This improves the exclusion region obtained on
BFRT photon regeneration experiment [10]. In this mass
region their results were limited by the axionlike particle
photon oscillation due to the length of their magnets. Using
shorter magnets, we are able to enlarge the mass range
exclusion area.

In Ref. [5], the PVLAS Collaboration suggested that
their claimed observation of a vacuum magnetic dichroism
could be explained by the existence of an axionlike particle

with a two photons inverse coupling constant 1� 105 �
M � 6� 105 GeV and a mass around 1 meV. This is
excluded by us with a confidence level greater than 99.9%.

We plan to improve our apparatus so that with about 100
laser pulses, we will be able to give more stringent limits
onM than the one given by the BFRT experiment for all the
values of ma.
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G. Rikken, and J. Vigué for strongly supporting this
project. This work has been possible thanks to the ANR-
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Recently, axionlike particle search has received renewed interest, and several groups have started

experiments. In this paper, we present the final results of our experiment on photon-axion oscillations in

the presence of a magnetic field, which took place at the Laboratoire pour l’Utilisation des Lasers

Intenses, Palaiseau, France. Our null measurement allowed us to exclude the existence of axions with

inverse coupling constant M> 9:� 105 GeV for low axion masses and to improve the preceding

Brookhaven-Fermilab-Rochester-Trieste (BFRT) Collaboration limits by a factor of 3 or more for axion

masses 1:1<ma < 2:6 meV. We also show that our experimental results improve the existing limits on

the parameters of a low mass hidden-sector boson usually dubbed ‘‘paraphoton’’ because of its similarity

with the usual photon. We detail our apparatus which is based on the ‘‘light shining through the wall’’

technique. We compare our results to other existing ones.

DOI: 10.1103/PhysRevD.78.032013 PACS numbers: 12.20.Fv, 14.80.�j

I. INTRODUCTION

Ever since the standard model was built, various theories
have been proposed to go beyond it. Many of these involve,
if not imply for the sake of consistency, some light, neutral,
spinless particles very weakly coupled to standard model
particles, and hence difficult to detect.

One famous particle beyond the standard model is the
axion. Proposed more than 30 years ago to solve the strong
CP problem [1,2], this neutral, spinless, pseudoscalar par-
ticle has not been detected yet, in spite of constant experi-
mental efforts [3–6]. Whereas the most sensitive
experiments aim at detecting axions of solar or cosmic
origin, laboratory experiments including the axion source
do not depend on models of the incoming axion flux.
Because the axion is not coupled to a single photon but
to a two-photon vertex, axion-photon conversion requires
an external electric or—preferentially—magnetic field to
provide for a virtual second photon [7].

At present, purely terrestrial experiments are built ac-
cording to two main schemes. The first one, proposed in
1979 by Iacopini and Zavattini [8], aims at measuring the
ellipticity induced on a linearly polarized laser beam by the
presence of a transverse magnetic field, but is also sensitive
to the ellipticity and, slightly modified, to the dichroism
induced by the coupling of low mass, neutral, spinless
bosons with laser beam photons and the magnetic field
[9]. The second popular experimental scheme, named
‘‘light shining through the wall’’ [10], consists of first
converting incoming photons into axions in a transverse

magnetic field, then blocking the remaining photonic beam
with an opaque wall. Behind this wall with which the
axions do not interact, a second magnetic field region
allows the axions to convert back into photons with the
same frequency as the incoming ones. Counting these
regenerated photons, one can calculate the axion-photon
coupling or put some limits on it. This setup was first
realized by the BFRT Collaboration in 1993 [3].
Because of their impressive precision, optical experi-

ments relying on couplings between photons and these
hidden-sector particles seem most promising. Thanks to
such couplings, the initial photons oscillate into the mas-
sive particle to be detected. The strength of optical experi-
ments lies in the huge accessible dynamical range: from
more than 1020 incoming photons, one can be sensitive to 1
regenerated photon.
In fact, the light shining through the wall experiment

also yields some valuable information on another hidden-
sector hypothetical particle [11]. After the observation of a
deviation from a blackbody curve in the cosmic back-
ground radiation [12], some theoretical works suggested
photon oscillations into a low mass hidden-sector particle
as a possible explanation [13]. The supporting model for
such a phenomenon is a modified version of electrodynam-
ics proposed in 1982 [14], based on the existence of two U
(1) gauge bosons. One of the two can be taken as the usual
massless photon, while the second one corresponds to an
additional massive particle usually called a paraphoton.
Both gauge bosons are coupled, giving rise to photon-
paraphoton oscillations. Several years later, more precise
observations did not confirm any anomaly in the cosmic
background radiation spectrum [15] and the interest for*mathilde.fouche@irsamc.ups-tlse.fr
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paraphoton decreased, although its existence was not ex-
cluded. More recently, it was found out that similar addi-
tional U(1) gauges generally appear in string embeddings
of the standard model [16], reviving the interest for experi-
mental limits on the paraphoton parameters [17–19].

Some limits on the mass and the coupling constant of the
paraphoton have already been obtained by a photoregen-
eration experiment [3]. Astrophysical limits on paraphoton
parameters also exist. They have been derived from the
agreement of the cosmic microwave background with the
blackbody radiation [20], and more recently by the absence
of distortions in the optical spectrum of distant type Ia
supernovae [21].

Our effort was motivated by the observation published
by the PVLAS Collaboration, and subsequently retracted
[22], which they claimed could be explained by the exis-
tence of axions in the mass range 1–2 meV. We have
therefore designed an apparatus optimized for that mass
region to rapidly prove or disprove the interpretation in
terms of axionlike particles of the PVLAS signal. Our
preliminary results, excluding at a 3� confidence level
the existence of axions with parameters consistent with
the PVLAS observation, have been published in
November 2007 [23]. This paper is devoted to the final
results of our light shining through the wall experiment,
sensitive to axionlike particles and to paraphotons. We first
derive the detection probabilities for both particles. We
then detail our apparatus whose strength lies in pulsed
laser and magnetic fields, thus reducing the demand on
the detector noise. Finally, we present our latest experi-
mental results and compare them with the limits obtained
by other searches.

II. PHOTOREGENERATION PROBABILITY

A. Axionlike particle

The photon to axionlike particle conversion and recon-
version transition probability (in natural units @ ¼ c ¼ 1,
with 1 T � 195 eV2 and 1 m � 5� 106 eV�1) after prop-
agating over a distance z in the inhomogeneous magnetic
field B writes [7,24]

paðzÞ ¼
��������
Z z

0
dz0�Mðz0Þ � expði�az

0Þ
��������

2

; (1)

where �M ¼ B
2M and �a ¼ � m2

a

2! , ! is the photon energy,

ma the axionlike particle mass, and M its inverse coupling
constant with two photons. Note that this equation is valid
for a light polarization parallel to the magnetic field since
the axion has to be a pseudoscalar [1]. Finally, as we have
two identical magnets, the photon regeneration probability
due to axionlike particles is

Pa ¼ p2
aðLÞ; (2)

with L the magnet length.

In order to have a number of regenerated photons as
large as possible, the number of incident photons, the
detection efficiency, and the integral of the transverse
magnetic field over the magnet length L have to be maxi-
mized. We define B0 as the maximum field and Leq as the

equivalent length of a magnet producing a uniform mag-
netic field B0 such that

Z þL=2

�L=2
Bdz ¼ B0Leq: (3)

On the other hand, paðzÞ oscillates for too long magnets.
Actually, for a homogeneous magnetic field B0, Eq. (1)
gives

pa ¼
�
B0L

2M

�
2 sin2ð�osc

2 LÞ
ð�osc

2 LÞ2 ; (4)

where�osc ¼ ��a. In our case, our search was focused on
the 1<ma < 2 meV, so that a length larger than 1 m
would have been useless.
Finally, very recently a detailed theoretical study of the

photon to axionlike particle conversion probability pointed
out that an enhancement of this probability is predicted at
ma ¼ ! [25]. In this particular condition, the probability
of getting a photon after the wall is

Pa ¼ 3�4

16qm4
a

log

�
2qm4

a

�4

�
; (5)

with � ¼ B0=M and q ¼ �=! the quality factor of the
laser source, and � is the laser bandwidth.

B. Paraphoton

In the modified version of electrodynamics developed in
1982 [14], the paraphoton weakly couples with the photon
through kinetic mixing. Contrary to axionlike particles,
photon-paraphoton oscillations are therefore possible with-
out any external field and are independent of photon
polarization.
Recently, the experimental signatures of paraphoton

have been discussed in detail in Ref. [19]. The conversion
probability of a photon into a paraphoton of mass � and
vice versa after a distance L is given by

p� ¼ 4�2sin2
�
�2L

4!

�
; (6)

where � is the photon-paraphoton coupling constant,
whose arbitrary value is to be determined experimentally.
This equation is valid for a relativistic paraphoton satisfy-
ing � � !.
Comparing Eqs. (4) and (6), one notes that from a

mathematical point of view the two are equivalent, �

corresponding toma, and� to B0!
Mm2

a
. This analogy originates

from the fact that both formulas describe the same physical
phenomenon, i.e., quantum oscillations of a two level
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system. Using this mathematical equivalence between par-
aphoton parameters and axionlike particle parameters, we
were able to derive for the enhancement of the paraphoton
conversion probability at � ¼ ! a formula equivalent to
Eq. (5):

P� ¼ 3�4

16q
log

�
2q

�4

�
: (7)

In the case of a typical photoregeneration experiment,
the incoming photons freely propagate for a distance L1

and might oscillate into paraphotons before being stopped
by a wall, after which the paraphotons propagate for a
distance L2 and have a chance to oscillate back into
photons that are detected with efficiency �det. The photon
regeneration probability due to paraphotons can therefore
be written as

P� ¼ p�ðL1Þp�ðL2Þ ¼ 16�4sin2
�
�2L1

4!

�
sin2

�
�2L2

4!

�
:

(8)

In our experiment, L1 is the distance between the focusing
lens at the entrance of the vacuum system, which focuses
photons but not paraphotons, and the wall, which blocks
photons only. Similarly, L2 represents the distance separat-
ing the blind flange just before the regenerating magnet and
the lens coupling the renegerated photons into the optical
fiber (see Fig. 1).

Note that Eq. (8) is a priori valid in the absence of a
magnetic field. If a magnetic field is applied, the formula
remains valid provided that it can be considered as static
during the experiment and its transverse spatial extent is
larger than 1=� [17], which is the case in our experiment
for paraphoton masses larger than 2� 10�5 eV.

III. EXPERIMENTAL SETUP

As shown in Fig. 1, the experimental setup consists of
two main parts separated by the wall. An intense laser
beam travels through a first magnetic region (generation
magnet) where photons might be converted into axionlike
particles. The wall blocks every incident photon while
axionlike particles would cross it without interacting and
may be converted back into photons in a second magnetic

region (regeneration magnet). The regenerated photons are
finally detected by a single-photon detector.
The three key elements leading to a high detection rate

are the laser, the generation, and regeneration magnets
placed on each side of the wall and the single-photon
detector. Each element is described in the following
sections.

A. Laser

In order to have the maximum number of incident
photons at a wavelength that can be efficiently detected,
the experiment has been set up at the Laboratoire pour
l’Utilisation des Lasers Intenses (LULI) in Palaiseau, on
the Nano 2000 chain [26]. It can deliver more than 1.5 kJ
over a few nanoseconds with ! ¼ 1:17 eV. This corre-
sponds to Ni ¼ 8� 1021 photons per pulse.
The nanosecond pulse is generated by a yttrium lithium

fluoride seeded oscillator with a � ¼ 1:7 meV bandwidth.
It delivers 4 mJ with a duration adjustable between 500 ps
and 5 ns. Temporal shaping is realized with five Pockels
cells. Then this pulse seeds single-pass Nd:pPhosphate
glass rods and disk amplifiers. During our 4 weeks of
campaign, the total duration was decreased from 5 ns the
first week to 4 ns and finally 3 ns while keeping the total
energy constant. (A typical time profile is shown in the
inset of Fig. 6 with a full width at half maximum of 2.5 ns
and a total duration of 4 ns.)
The repetition rate of high energy pulses is imposed by

the relaxation time of the thermal load in the amplifiers
which implies wave-front distortions. Dynamic wave-front
correction is applied by use of an adaptive-optics system
[27]. To this end a deformable mirror is included in the
middle of the amplification chain. It corrects the spatial
phase of the beam to obtain at focus a spot of about once or
twice the diffraction limit, as shown in Fig. 2. This system
allows one to increase the repetition rate while maintaining
good focusability although the amplifiers are not at thermal
equilibrium. During data acquisition, the repetition rate has

z

FIG. 1. Sketch of the apparatus. The wall and the blind flanges
are removable for fiber alignment.

FIG. 2. Focal spot without correction (a) and with wave-front
correction (b). This correction allows one to maintain a spot of
one or two diffraction limits despite the amplifiers’ not being in
thermal equilibrium.
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typically varied between 1 pulse per hour and 1 pulse every
other hour.

At the end of the amplification chain, the vertically
linearly polarized incident beam has a 186 mm diameter
and is almost perfectly collimated. It is then focused using
a lens with focal length 20.4 m. The wall is placed at L1 ¼
20:2 m from the lens in order to have the focusing point a
few centimeters behind this wall. The beam is well apo-
dized to prevent the incoming light from generating a
disturbing plasma on the sides of the vacuum tubes.

Before the wall where the laser beam propagates, a
vacuum better than 10�3 mbar is necessary in order to
avoid air ionization. Two turbo pumps along the vacuum
line easily give 10�3 mbar near the lens and better than
10�4 mbar close to the wall. The wall is made of a 15 mm
width aluminum plate to stop every incident photon. It is
tilted by 45� with respect to the laser beam axis in order to
increase the area of the laser impact and to avoid retrore-
flected photons. In the second magnetic field region, a
vacuum better than 10�3 mbar is also maintained.

Figure 3 shows a histogram of laser energy per pulse for
the 82 laser pulses performed during our campaign. The
laser energy per pulse ranges from 700 J to 2.1 kJ, with a
mean value of 1.3 kJ.

B. Magnetic field

Concerning the magnets, we use a pulsed technology.
The pulsed magnetic field is produced by a transportable
generator developed at LNCMP [28], which consists of a
capacitor bank releasing its energy in the coils in a few
milliseconds. Besides, a special coil geometry has been
developed in order to reach the highest and longest trans-
verse magnetic field. Coil properties are explained in
Ref. [29]. Briefly, the basic idea is to get the wires gen-
erating the magnetic field as close as possible to the light
path. As shown in Fig. 4, the coil consists of two interlaced
racetrack shaped windings that are tilted one with respect
to the other. This makes room for the necessary optical
access at both ends in order to let the laser in while

providing a maximum B0Leq. Because of the particular

arrangement of wires, these magnets are called Xcoils.
The coil frame is made of G10 which is a nonconducting

material commonly used in high stress and cryogenic
temperature conditions. External reinforcements with the
same material have been added after wiring to contain the
magnetic pressure that can be as high as 500 MPa. A
12 mm diameter aperture has been dug into the magnets
for the light path.
As for usual pulsed magnets, the coils are immersed in a

liquid nitrogen cryostat to limit the consequences of heat-
ing. The whole cryostat is double walled for a vacuum
thermal insulation. This vacuum is in common with the
vacuum line and is better than 10�4 mbar. A delay between
two pulses is necessary for the magnet to cool down to the
equilibrium temperature which is monitored via the
Xcoils’ resistance. Therefore, the repetition rate is set to
5 pulses per hour. Furthermore, the coils’ resistance is
precisely measured after each pulse and when equilibrium
is reached, in order to check the Xcoils’ nonembrittlement.
Indeed variations of the resistance provide a measurement
of the accumulation of defects in the conductor material
that occur as a consequence of plastic deformation. These

FIG. 3. Number of high energy pulses versus laser energy
during the four weeks of data acquisition.

FIG. 4. Scheme of XCoil. Magnetic fields ~B1 and ~B2 are
created by each of the racetrack shaped windings. This yields
a high transverse magnetic field ~B while allowing the necessary
optical access for the laser photons �.

FIG. 5. Transverse magnetic field inside the magnet along the
laser direction. At the center of the magnet we have a mean
maximum magnetic field B0 ¼ 12 T. Integrating B along the
optical path yields 4.38 Tm.
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defects lead to hardening and embrittlement of the con-
ductor material, which ultimately leads to failure.

The magnetic field is measured by a calibrated pickup
coil. This yields the spatial profile shown in Fig. 5. The
maximum field B0 is obtained at the center of the magnet.
Xcoils have provided B0 � 13:5 T over an equivalent
length Leq ¼ 365 mm. However, during the whole cam-

paign a lower magnetic field of B0 ¼ 12ð0:3Þ T was used
to increase the coils’ lifetime.

A typical time dependence of the pulsed magnetic field
at the center of the magnet is represented in Fig. 6. The
total duration is a few milliseconds. The magnetic field
reaches its maximum value within less than 2 ms and
remains constant (� 0:3%) during �B ¼ 150 �s, a very
long time compared to the laser pulse.

C. Detector

The last key element is the detector that has to meet
several criteria. In order to have a sensitivity as good as
possible, the regenerated photon detection has to be at the
single-photon level. The integration time is limited by the
longest duration of the laser pulse which is 5 ns. Since we
expected about 100 laser pulses during our four week
campaign, which corresponds to a total integration time
of 500 ns, we required a detector with a dark count rate [30]
far lower than 1 over this integration time, so that any
increment of the counting would be unambiguously asso-
ciated to the detection of one regenerated photon.

Our detector is a commercially available single-photon
receiver from Princeton Lightwave which has a high de-
tection efficiency at 1:05 �m. It integrates a 80� 80 �m2

InGaAs avalanche photodiode (APD) with all the neces-
sary bias, control, and counting electronics. Light is
coupled to the photodiode through a FC/PC connector
and a multimode fiber. When the detector is triggered,
the APD bias voltage is raised above its reverse breakdown
voltage Vbr to operate in ‘‘Geiger mode.’’ A short time

later—adjustable between 1 and 5 ns—the bias is reduced
below Vbr to avoid false events. For our experiment, the
bias pulse width is 5 ns to correspond with the longest laser
pulse.
Typical output signals available on the detector are

plotted in Fig. 7. Let us first consider Fig. 7(a) with no
incident photon. The upper signal corresponds to the am-
plified APD output. The application of such a short pulse to
a reverse-biased APD produces a capacitive transient. The
first two transients temporally shifted by 5 ns correspond to
the bias pulse. This signal enables one to precisely deter-
mine the moment when detection starts. The last transients
are due to an electronic reflection of the bias pulse.
When a photon is detected [Fig. 7(b)], the signal result-

ing from a photon-induced avalanche superimposes upon
transients. The transient component may be much larger
than the photon-induced component, making it difficult to
discern. The detector uses a patented transient cancellation
scheme to overcome this problem [31]. A replica of the
unwanted transient is created and subtracted from the
initial signal. The photon-induced signal will thus appear
against a flat, low-noise background, as it is observed in
Fig. 7(b) between the initial bias pulse and the reflected
one. It can then be easily detected using a discriminator. To
this end, this signal is sent to a fast comparator with
adjustable threshold that serves as a discriminator and
outputs a logic pulse, as shown by lower traces on Fig. 7.
To optimize the dark count rate and the detection effi-

ciency �det, three different parameters can be adjusted: the
APD temperature, the discriminator threshold Vd set to

FIG. 7. Amplified APD output (upper curve) and logic signal
(lower curve) of the detector as a function of time. The capaci-
tive transients on the APD output signals are due to the gated
polarization of the photodiode in Geiger mode. (a) Signals with
no incident photon. (b) Signals when a photon is detected.

FIG. 6. Magnetic field B0 at the center of the magnet as a
function of time. The maximum is reached within 1.75 ms and
can be considered as constant (� 0:3%) during �B ¼ 150 �s.
The 3–5 ns laser pulse is applied during this interval. Inset:
temporal profile of a 4 ns laser pulse.
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reject electronic noise, and the APD bias voltage VAPD. The
dark count rate is first optimized by choosing the lowest
achievable temperature which is around 221 K. This rate is
measured with no incident light, a trigger frequency of
5 kHz, and an integration time of at least 1 s. Dark counts
for a 5 ns detection gate as a function of Vd is shown in
Fig. 8(a). It increases rapidly when Vd is too low. On the
other hand, �det remains constant for a large range of Vd.
We set Vd to a value far from the region where the dark
count increases and where �det is still constant. This cor-
responds to less than 2:5� 10�2 dark count over 500 ns
integration time.

The detection efficiency is precisely measured by illu-
minating the detector with a laser intensity lower than 0.1
photon per detection gate at 1:05 �m. The probability to
have more than one photon per gate is thus negligible. Such
a low intensity is obtained with the setup described in
Fig. 9. A cw laser is transmitted through two supermirrors
with a reflectivity higher than 99.98% [32]. The angle of
incidence is near normal in order to intercept the reflected
beam and avoid spurious light without increasing trans-
mission. This gives a measured transmission of 0.015% for
each mirror. Finally, to calculate the number of incident
photons on the detector, we measure the laser power before
the two supermirrors with a precise power sensor.

The detection efficiency as a function of the bias voltage
is plotted in Fig. 8(b). Our measurements show that �det

slowly increases with VAPD until a threshold where it
increases dramatically for a value of VAPD shortly below
the dark count runaway value. The best compromise be-
tween detection efficiency and dark count rate is found at
VAPD ¼ 78:4ð0:05Þ V with �det ¼ 0:48ð0:025Þ.
As mentioned in the Introduction, other similar experi-

ments generally require long integration times which im-
plies an experimental limitation due to the detection noise.
Using pulsed laser, magnetic field and detection is an
original and efficient way to overcome this problem.
Photons are concentrated in very intense short laser pulses
during which the detection background is negligible. This
also means that if a photon is detected in our experiment in
correlation with the magnetic field, it will be an unambig-
uous signature of axion generation inside our apparatus.

IV. EXPERIMENTAL PROTOCOL AND TESTS

A. Alignment

After the second magnet, the regenerated photons are
injected into the detector through a coupling lens and a
graded index multimode fiber with a 62:5 �m core diame-
ter, a 0.27 numerical aperture, and an attenuation lower
than 1 dB=km. These parameters ensure that we can inject
light into the fiber with a high coupling ratio, even when
one takes into account the pulse by pulse instability of the
propagation axis that can be up to 9 �rad.
Injection is adjusted thanks to the fiber coupler and by

removing the wall and the blind flanges (see Fig. 1). As the
high energy laser beam, the alignment beam comes from
the pilot oscillator without chopping nor amplifying it.
This procedure ensures that the pulsed kJ beam is perfectly
superimposed to the alignment beam. During data acquis-
ition, the mean coupling efficiency through the fiber was
found to be �c ¼ 0:85.
The alignment of the high energy beam is performed

with a low energy 5 ns pulsed beam, allowing for a 10 Hz
repetition rate. During alignment, several black crosses are
distributed along the laser path to mark the optical axis.
Mirrors mounted on stepper motors allow one to align the
beam very precisely on this axis. This procedure is carried
out a few minutes before each high energy pulse.

APD

FIG. 8. Detection efficiency (d) and dark count per 5 ns bias
pulse (4) as a function of the discriminator threshold (a) (VAPD

fixed to 78.4 V) or APD bias voltage (b) (Vd fixed to 0.760 V).
The APD temperature is fixed to the lowest achievable value
221.5 K. Dashed lines indicate the chosen working point.

supermirrors

continuous
laser

/2

~100 W

FIG. 9. Experimental setup to measure the detection efficiency
of the single-photon detector. The detector is illuminated with a
laser intensity lower than 0.1 photon per 5 ns. This intensity is
calculated through the measurement of the supermirrors trans-
mission and the laser power before those supermirrors. A half
wave plate and a polarizer are used to change the number of
incident photons.
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The only remaining source of misalignment lies in ther-
mal effects during the high energy pulse, which could
slightly deviate the laser beam, hence generating supple-
mentary losses in fiber coupling. This misalignment is
mostly reproducible. This means that it can be corrected
by a proper offset on the initial laser pointing. The far field
of the high energy beam is imaged for each pulse at the
output of the amplification chain (see Fig. 10). Since the
focal length of the imaging system is similar to that of our
focalization lens, the position of the far field image on the
alignment mark is a fair diagnosis of the alignment on the
fiber coupler. The best offset was determined by a trial and
error method after a few high energy pulses.

B. Optical and electromagnetic noise

In order to have the best sensitivity, a perfect optical
shielding is necessary. As shown in Fig. 1, an aluminum
blind flange closes the entrance to the regeneration magnet.
A black soft PVC bellow placed between the exit of the
magnet and the fiber coupler prevents stray light while
mechanically decoupling the magnet which vibrates during
its pulse and the fiber coupler which should stay perfectly
still. Finally, another aluminum blind flange closes the exit
of the generation area in order to stop any incident photon
scattered inside the vacuum line.

A count on the single-photon receiver is most probably
due to an incident photon on the photodiode but it may also
originate from electromagnetic noise during laser or mag-
netic pulses. To avoid such noise, the detector is placed in a
Faraday shielding bay. In addition, a 30 m long fiber is used
so that the detector can be placed far away from the
magnets.

To test our protective device, laser and magnetic pulses
were separately applied while triggering the detector. No
fake signal was detected, validating the optical and elec-
tromagnetic shielding.

C. Synchronization

Our experiment is based on pulsed elements which
require a perfect synchronization: the laser pulse must
cross the magnets when the magnetic field is maximum
and fall on the photodiode during the detection gate.
The magnetic pulse is triggered with a transistor–tran-

sistor logic signal from the laser chain. The delay between
this signal and the laser trigger is adjusted once and for all
by monitoring on the same oscilloscope the magnetic field
and the laser trigger. Then, the magnetic trigger has a jitter
lower than 10 �s, ensuring that the laser pulse travels
through the magnets within the 150 �s interval during
which the magnetic field is constant and maximum.
Synchronization of the laser pulse and the detector needs

to be far more accurate since both have a 5 ns duration. The
detector gate is triggered with the same fast signal as the
laser, using delay lines. We have measured the coincidence
rate between the arrival of photons on the detector and the
opening of the 5 ns detector gate as a function of an
adjustable delay. We have chosen our working point in
order to maximize the coincidence rate (see Fig. 11). To
perform such a measurement we used the laser pilot beam
which was maximally attenuated by shutting off 4 Pockels
cells along the amplification chain and chopped with a
pulsed duration of 5 ns, which corresponds to the longest
duration of the kJ beam.

V. DATA ANALYSIS

A. Detection sensitivity

The best experimental limits are achieved when no fake
signal is detected during the experiment. In this case, to
estimate the corresponding upper conversion probability of
regenerated photons, we have to calculate the upper num-
ber of photons that could have been missed by the detector
for a given confidence level (CL).
The probability Pn that n incident photons have been

missed by the detector is Pn ¼ ð1� �detÞn when dark
count is negligible. Therefore, the probability that n pho-

FIG. 10. Monitoring of the optical path followed by the high
energy beam. Losses due to misalignment are estimated by
comparing the center of the beam to the center of the black
cross. The upper image corresponding to an uncorrected laser
beam pointing exhibits 30% injection losses, while the lower one
is perfectly corrected.

FIG. 11. Coincidence rate between the arrival of photons on
the detector and its 5 ns detection gate as a function of an
arbitrary delay time. The dashed line indicates our working
point, chosen in order to maximize the coincidence rate.
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tons at most were missed by the detector writes
P

n
k¼0 PkP1
k¼0 Pk

¼ 1� ð1� �detÞnþ1

and has to be compared with the required CL. This yields
the upper number of possibly missed photons nmissed as the
smallest integer n satisfying

1� ð1� �detÞnþ1 � CL;

which writes

nmissed ¼ logð1� CLÞ
logð1� �detÞ � 1: (9)

For example, with our value of �det, a confidence level of
99.7% corresponds to less than eight missed photons. The
upper photon regeneration probability is then

Pa or � ¼ nmissed

Neff

; (10)

where Neff is the number of effective incident photons over
the total number of laser shots, taking into account the
losses described hereafter. Our experimental sensitivity
limit for the coupling constant versus mass is finally calcu-
lated by numerically solving Eqs. (1) and (2) for axionlike
particles, and Eqs. (6) and (8) for paraphotons.

B. Photon losses

The number of photons per laser pulse Ni is measured at
the end of the amplification chain with a calibrated calo-
rimeter. Then the number of effective incident photons on
the detector Neff should take into account every loss. The
first source of loss is due to the coupling efficiency through
the fiber. This is precisely calibrated once a day. Injection
is checked before each pulse, just after the alignment of the
high energy beam. The mean coupling efficiency is �c ¼
0:85.

As said before, the main source of misalignment lies in
thermal effects during the high energy laser pulse, whose
mean value was corrected. Furthermore, using the cw
alignment beam we calibrated the injection losses in the
fiber as a function of the misalignment visible on the far
field imaging. Thanks to this procedure, we were able to
estimate the actual alignment losses for each pulse: they
amounted to 30% for a noncorrected pulse and varied
between 0% and 10% for corrected pulses, because of
pulse-to-pulse instabilities.

Possible jitter between the beginning of the detection
and the arrival of the laser pulse on the detector is also
taken into account. For each pulse, a single oscilloscope
acquires the laser trigger and the detector trigger as well as
the detection gate. Those curves allow one to precisely
calculate the moment t0 when detection actually starts
compared to the laser pulse arrival. Furthermore, the tem-
poral profile of each laser pulse is also monitored. By
integrating this signal from t0 and during the 5 ns of

detection, the fraction �f of photons inside the detection

gate is calculated. This fraction has fluctuated between 0.6
and 1 at the beginning of our data acquisition with the 5 ns
pulse, mainly due to a 1 ns jitter that was then reduced to
about 200 ps. Then, with the 4 and 3 ns laser pulses, jitter is
less critical and �f ¼ 1 is obtained almost all the time.

Finally, for axionlike particles the numerical solving of
Eq. (1) is performed with a fixed magnetic field B0.
Variations of this magnetic field along data acquisition
are taken into account by multiplying each number of
incident photons by the factor ðB0;i=B0Þ4, where B0;i is

the maximum field for the ith pulse.
Integration of every loss yields a total number of effec-

tive photons

Neff;a ¼ X

i

�c;i�p;i�f;i

�
B0;i

B0

�
4
Ni; (11)

the sum being taken over the total number of laser and
magnetic pulses.
Concerning paraphotons, given that the magnetic fields

have no effect on the oscillations, the formula is written as

Neff;� ¼ X

i

�c;i�p;i�f;iNi: (12)

VI. RESULTS

Data acquisition was spread over four different weeks.
As shown in Fig. 3, 82 high energy pulses have reached the
wall with a total energy of about 110 kJ. This corresponds
to 5:9� 1023 photons. During the whole data acquisition,
no signal has been detected.

A. Axionlike particles

The magnetic field was applied during 56 of those laser
pulses, with a mean value of 12 T. The laser pulses without
magnetic field aimed at testing for possible fake counts.
Our experimental sensitivity limits for axionlike particle

at 99.7% confidence level are plotted in Fig. 12. They

FIG. 12. 3� limits for the axionlike particle—two-photon in-
verse coupling constantM, as a function of the axionlike particle
massma, obtained from our null result. The area below our curve
is excluded.
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correspond to a detection probability of regenerated pho-
tons Pa ¼ 3:3� 10�23 and give M> 9:1� 105 GeV at
low masses. The dark gray area below our curve is ex-
cluded. This improves the limits we have published in [23],
which already excluded the PVLAS results [22].

We also compared our limits to other laboratory experi-
ments in Fig. 13. They are comparable to other purely
laboratory experiments [3,33,34], especially in the meV
region of mass. On the other hand, they are still far from
experiments in which limits (stripes) approach models
predictions [4,5,35,36].

Using Eq. (5), our experimental results correspond to
M> 8 GeV at ma ¼ 1:17 eV. Despite this enhancement,
our limits are still very far from the inverse coupling
constant of model predictions which is around 109 GeV
for a 1 eV mass.

B. Paraphotons

In the case of paraphotons, we take into account the laser
bandwidth � by averaging P�ð!Þ over �:

�P � ¼ 1

�

Z !�ð�=2Þ

!�ð�=2Þ
P�ð!Þd!: (13)

The experimental sensitivity is then calculated by numeri-
cally solving

�P� ¼ nmissed

Neff

; (14)

where Neff is given by Eq. (12). In the regime of low mass

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
!=Lq

p
, it is equivalent to �P� ¼ P� and the mixing

parameter oscillates as a function of the paraphoton mass.
For higher masses, oscillations are smoothed to a mean
value. Note that the relevant mass ranges concerning axi-
onlike particles are situated in the low mass regime, which
explains why the averaging over the laser bandwidth was
not useful.
The deep gray area in Fig. 14 represents the parameters

for a paraphoton that our measurements exclude with a
95% confidence level. It corresponds to a maximum photon
regeneration probability P� ¼ 9:4� 10�24. This sets a

limit �< 1:1� 10�6 for 1<�< 10 meV [for higher
masses, Eq. (6) is not valid anymore]. This improves by
almost 1 order of magnitude the exclusion area obtained by
the BFRT photon regeneration experiment [3]. The en-
hanced probability at � ¼ ! given by Eq. (7) corresponds
to �< 1:9� 10�7. For other ranges of mass, a more
complicated calculation is required [25] which is beyond
the scope of this article. Nevertheless, comparing to other
laboratory experiments [37,38] (see [39] for review), we

FIG. 13. Limits on the axionlike particle—two-photon inverse
coupling constant M as a function of the axionlike particle mass
ma obtained by experimental searches. Our exclusion region is
first compared to other purely laboratory experiments such as the
BFRT photon regeneration experiment [3], the GammeV experi-
ment [33], and the PVLAS Collaboration [34] with a 3� con-
fidence level. Those curves are finally compared to the 95%
confidence level exclusion region obtained on CAST [5] and the
more than 90% confidence level on microwave cavity experi-
ments [4,35,36]. Model predictions are also shown as a dotted
stripe between the predictions of the KSVZ model (lower line,
E=N ¼ 0) [44] and of the DFSZ model (upper line, E=N ¼ 8=3)
[45].

FIG. 14. 95% confidence level limits on photon-paraphoton
mixing parameter as a function of the paraphoton mass obtained
to our null result (deep gray area). Shaded regions are excluded.
This is compared to excluded regions obtained by the BFRT
photon regeneration experiment [3] (light gray area), to searches
for deviations of the Coulomb law [37] (points) and to compari-
sons of the Rydberg constant for different atomic transitions [38]
(stripes).
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were able to constrain the paraphoton parameters in a
region which had not been covered so far by purely terres-
trial experiments.

VII. CONCLUSION AND OUTLOOKS

We have presented the final results of our photon regen-
eration experiment which exclude the PVLAS results. Our
null measurement leads to limits similar to other purely
terrestrial axion searches and improves the preceding lim-
its by more than 1 order of magnitude concerning para-
photons [17].

As far as axionlike particles are concerned, improving
the sensitivity of our apparatus in order to test the axion
model predictions seems rather unrealistic, especially as
the possible mass and two-photon coupling constant ranges
are still several orders of magnitude wide. In that respect,
magnetic birefringence experiments like the one presently
under development in Toulouse [40] seem more promising:
aimed at measuring for the first time the long predicted
QED magnetic birefringence of vacuum [41], it will im-
prove by 1 to 2 orders of magnitude the precision of purely
terrestrial axion searches.

Generally speaking, let us argue that such precision
optical experiments may prove useful for experimentally
testing the numerous theories beyond the standard model in
the low energy window, a range in which the large particle
accelerators are totally helpless. For example, our appara-
tus can be modified to become sensitive to chameleon
fields [42].
Finally, very intense laser beams such as those planned

at ELI [43] will become available in the forthcoming years.
Such facilities should open new exciting opportunities for
our field.
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In this Letter we describe our novel photon regeneration experiment for the axionlike particle search

using an x-ray beam with a photon energy of 50.2 and 90.7 keV, two superconducting magnets of 3 T, and

a Ge detector with a high quantum efficiency. A counting rate of regenerated photons compatible with

zero has been measured. The corresponding limits on the pseudoscalar axionlike particle–two-photon

coupling constant is obtained as a function of the particle mass. Our setup widens the energy window of

purely terrestrial experiments devoted to the axionlike particle search by coupling to two photons. It also

opens a new domain of experimental investigation of photon propagation in magnetic fields.

DOI: 10.1103/PhysRevLett.105.250405 PACS numbers: 12.20.Fv, 14.80.�j

Photon propagation in magnetic fields is a long-standing
domain of research for QED tests [1] and for particle
searches beyond the standard model [2]. All the experi-
ments performed up to now have used a photon energy of
the order of 1 eV (see [3] and references therein). Higher
photon energies have been proposed to increase the signal,
in particular, � rays [4] for QED tests, or to increase the
parameter space for particle searches, in particular, x rays
[5,6].

As far as particle searches are concerned, photon regen-
eration experiments [7–9], also called ‘‘light shining
through the wall’’ experiments, are an important tool in
the search for massive particles that couple to photons in
the presence of magnetic fields. Such particles are pre-
dicted by many extensions of the standard model. A very
well-known example is the standard axion, a pseudoscalar
chargeless boson proposed to solve the strong CP problem
[10–12], i.e., the difference between the value of the neu-
tron electric dipole moment predicted by QCD and its
experimental value [13].

The principle of a photon regeneration experiment is to
send a polarized photon beam through a region where a
transverse magnetic field is present, and then to stop the
photons by a wall. Since they hardly interact with matter,
axionlike particles (ALPs) generated in the magnetic re-
gion upstream of the wall can pass through it. Behind the
wall, a second magnetic field region allows us to convert
back ALPs into photons. Several photon regeneration ex-
periments have been performed [14–20]: none of them has
ever detected regenerated photons. They have therefore set
limits on the ALP–two-photon coupling constant g and the
particle massma. The best limits can be found in Ref. [20].

Limits are usually given for masses ma � ! [21],
where ! is the photon energy, but a detailed theoretical
analysis of ALP-photon and photon-ALP conversion am-
plitudes valid forma � ! can be found in Ref. [22]. Again,
for all the photon regeneration experiments performed up
to now,! is of the order of 1 eV. Experiments searching for

ALPs of astrophysical origin, such as ADMX [23] and
CAST [24], provide better limits than the purely terrestrial
ones. ADMX looks for galactic cold dark matter�eV ALP
conversion into microwave photons in a resonant cavity
immersed in a static magnetic field, while CAST looks for
axions or ALPs generated in the core of the sun. These
ALPs travel to Earth and are converted back into photons
of a few keV in a static laboratory magnetic field. Because
of the higher photon energy, the CAST limits extend up to
masses on the order of a few electron volts [24]. These
limits, however, depend on the model used to calculate the
flux of ALPs to be detected. The critical sensitivity to these
models is exposed by the recent proposal of an ALP with a
17 meV mass which could explain the observed spectral
shape of the x-ray solar emission [25]. In this case ALPs
coming from the sun’s interior would be reconverted into
photons near the sun’s surface, thus escaping the detection
by CAST.
Increasing the photon energy in photon regeneration

experiments allows us to test new regions of the ma and
g parameter space. The use of soft x rays has been pro-
posed in Ref. [5], namely, at the VUV-FEL free electron
laser at DESY, providing photons of energy between 10
and 200 eV. The use of hard x rays from a synchrotron light
source has been proposed in Ref. [6]. Synchrotron light
sources provide photons with energy of several tens of keV,
much higher than the photon energy available nowadays at
free electron lasers.
In this Letter we describe our photon regeneration ex-

periment using x-ray beams with a photon energy of 50.2
and 90.7 keV, carried out at the European Synchrotron
Radiation Facility (ESRF), France, on beam line ID06
[26]. Our setup consists of two superconducting magnets
that provide magnetic fields of 3 Tover a length of 150 and
97 mm, respectively, and a Ge detector with a high quan-
tum efficiency for the stated photon energies. This con-
figuration widens the energy domain probed by purely
terrestrial ALP searches. A counting rate of regenerated

PRL 105, 250405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

17 DECEMBER 2010

0031-9007=10=105(25)=250405(4) 250405-1 � 2010 The American Physical Society



photons compatible with zero has been measured. We
present the corresponding limits on the ALP–two-photon
coupling constant as a function of the particle mass.
Thanks to the high photon energy, our limits extend to a
parameter region where no model-independent limits have
been set so far. In particular, our experimental results
provide limits on the existence of 17 meVALPs.

Our experimental setup is shown in Fig. 1. We use two
different photon energies, ! ¼ 50:2 keV and 90.7 keV,
corresponding to slightly different settings of the x-ray
beam line. For 50.2 keV (resp. 90.7 keV), a Si(111)
[resp. Si(311)] double crystal monochromator is adjusted
to select x rays emitted by the 5th (resp. 9th) harmonic of
the cryogenic permanent magnet multipole undulator
source U18, closed to a gap of 6.0 mm [27,28]. The energy
bandwidth is 7.3 eV (resp. 6.8 eV). For both energies, the
size of the beam is 2� 2 mm2 and the synchrotron x rays
are horizontally polarized. The beam direction is stabilized
by a feedback loop adjusting the pitch of the second
monochromator crystal to ensure a position stability better
than 0.1 mm at the entrance of the second magnet.

Most of the beam path is under vacuum in order to avoid
air absorption. The incident flux is measured thanks to
ionization chambers filled with 1 bar of nitrogen or kryp-
ton. Different ionization chambers placed along the beam
path let us check for any photon loss due to beammisalign-
ment, for example. During data acquisition, the 30 cm-long
krypton filled ionization chamber, located just before the
first magnet, is used to precisely monitor the incident flux.
The beam line has delivered about 1:2� 1012 photons per
second at 50.2 keV and 3:1� 1010 photons per second at
90.7 keV.

The magnetic fields are provided by two superconduct-
ing magnets with the field direction parallel to the x-ray
polarization; the experiment being thus sensitive to pseu-
doscalar particles [29]. Their diameter aperture is about
2 cm and the pressure inside the magnets is less than
10�4 mbar. Both magnets have been manufactured by
Oxford Instruments. The first one has provided a maximum

magnetic field B1 ¼ 3 Twhich can be regarded as uniform
along the beam path over a length of L1 ¼ 150 mm. The
second magnet was lent to us by the DUBBLE beam line
(BM26) [30] at the ESRF. It has also delivered B2 ¼ 3 T.
The shape of its magnetic field along the beam direction
can be approximated by a triangular shape with a half base
length of L2 ¼ 97 mm, the maximum of 3 T being at the
center of the magnet.
The magnets are located separately in the two lead-

shielded experimental hutches, EH1 and EH2, respectively,
of the beam line. The safety shutter between EH1 and
EH2 serves as the wall to block the x-ray beam. It consists
of a 50 mm-thick lead plate. Similarly, the x-ray regenera-
tion and detection section is shielded by the radiation hutch
EH2. The complete enclosure of the primary x-ray beam in
EH1 and the additional shielding of EH2 lead to a comfort-
ably low level of x-ray background radiation dominated by
cosmic events.
The detection system is based on a 5 mm thick Ge

detector (Canberra GL0055) cooled with liquid nitrogen.
The sensitive area is 6 mm in diameter. X-ray photons
arriving on the detector create electric charges proportional
to the photon energy, which are amplified (Canberra 2024)
and filtered by a single channel analyzer (Ortec 850) to
reject events that do not correspond to the photon energy
selected by the monochromator. This detection system
combines an acceptable quantum efficiency of � 99:98%
at 50.2 keVand � 84% at 90.7 keV, with a reasonably low
dark count rate. This background count rate was measured
at ð7:2� 1:4Þ � 10�3 photons per second while the x-ray
beam was turned off, as shown on the first line of Table I.
The error corresponds to 95% confidence level.
The following experimental protocol is used before each

data acquisition. First, the monochromator is adjusted to
select the desired energy while keeping an incident flux as
high as possible. Then, the detector is moved about 20 cm
sideways from the direct beam position. The safety shutter
is opened, allowing the x-ray beam to propagate through
both experimental hutches. In this position, the dominant
radiation received at the detector are photons elastically
scattered by air [31]. This is used to adjust the upper and
lower thresholds of the single channel analyzer such that
only photons of the selected energy are counted. The upper
(lower) threshold is 10% above (20% below) the voltage
generated by the elastically scattered photons. Next, the
detector is protected by Cu absorbers and it is moved back
into the direct beam position to check its geometrical
alignment. Finally, before data collection the safety shutter
is closed and the Cu absorbers are removed. The procedure
is repeated after data collection.
Results are summarized in Table I. The integration time

ti is about 2 hours for each photon energy in two different
configurations, with or without the magnetic fields. The
count rateNc is the number of photons detected per second.
The error onNc corresponds to 95% confidence level and is

Undulator
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B2B1monochromator

Kr
ionization
chamber
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FIG. 1. Experimental Setup. The double crystal monochroma-
tor is adjusted to select the desired photon energy. The first
experimental hutch corresponds to the ALP generation area with
the transverse magnetic field B1. The second experimental hutch
contains the second magnetic field B2 which allows us to
reconvert ALPs to photons. These photons are detected by a
liquid nitrogen cooled Ge detector with a high quantum effi-
ciency. Ionization chambers placed along the beam path measure
the incident flux or serve for alignment purposes. The synchro-
tron x rays are polarized parallel to the magnetic fields.
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given by 2
ffiffiffiffiffiffiffiffiffiffiffiffi

Nc=ti
p

since the distribution of the detected
photons is a Poisson distribution. The number of regener-
ated photons per secondNp is the difference between count

rates measured with and without the magnetic fields.
We see that no excess count above the background level
has been detected. Finally the upper photoregeneration
probability at 95% confidence level corresponds to the
error on Np over the incident photon rate Ninc. It is P ¼
2:2� 10�15 at 50.2 keVand P ¼ 9:7� 10�14 at 90.7 keV.

The photon-to-ALP conversion and reconversion tran-
sition probability after propagating in vacuum over a dis-
tance z in an inhomogeneous magnetic field B may be
written as [32]

pðzÞ ¼ j
Z z

0
dz0�gðz0Þ expði�az

0Þj2; (1)

where �gðzÞ ¼ gBðzÞ=2 and �a ¼ �m2
a=2!. Finally, the

photoregeneration probability is

P ¼ �p1p2; (2)

with � the detection efficiency, p1 the conversion proba-
bility in the first magnet, and p2 the reconversion proba-
bility in the second magnet. These equations are correct for
ma � !.

Our experimental sensitivity limit for the ALP–two-
photon coupling constant versus mass is calculated by
numerically solving Eqs. (1) and (2), using the upper
photon regeneration probability experimentally measured.
To this end, the real profiles of the magnetic fields along the
beam direction provided by the manufacturers are used.
Our limits at 95% confidence level are plotted in Fig. 2. In
particular, g < 1:3� 10�3 GeV�1 for masses lower than
0.4 eV, and g < 6:8� 10�3 GeV�1 for masses lower than
1 eV. Our limits could be extended up to 90 keV [22], but
because of the phase mismatching they decrease very

rapidly when ma �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!=L1;2

q

, thus becoming less interest-

ing. Moreover, for such masses the probability oscillates so
rapidly that its actual value depends critically on the exact
value of the experimental parameters L1;2 and !. In this

case the level of confidence of corresponding limits is
mostly limited by the confidence level on these experimen-
tal values. We believe that a detailed discussion of this
issue is out of the scope of our Letter.

We compare our limits to other limits obtained with
laboratory experiments in Fig. 3. Our exclusion region is
presented as the grey area. The best limits obtained on a
purely laboratory experiment by the ALPS collaboration
[20] with a 95% confidence level is the region above the
solid line. The best limits set by the search of extraterres-
trial ALPs are the two hashed areas, namely, the 95%
confidence level exclusion region of CAST (diagonally
hashed) [24], and the 90% confidence level exclusion
region on microwave cavity experiments (horizontally
hashed) [23,33–35]. Model predictions [36] are also shown
as a dotted stripe (line in between: E=N ¼ 0 [37,38]). This
figure shows that we have tested a new region of the ma

and g parameter space for purely terrestrial—model-
independent—experiments.
Our experiment could certainly be upgraded. A longer

acquisition time would improve the limits, but an improve-
ment of a factor of 2 requires a 16 times longer acquisition.
This also applies for the photon flux and for detector noise
rate. The latter could likely be improved by using the x-ray
detector in anticoincidence with cosmic ray detectors put
around it or in coincidence with the electron bunches
circulating in the synchrotron ring. Using higher magnetic
fields increases limits linearly, which is obviously more
interesting. A static 15 T field can be reasonably envisaged.
Longer magnets could provide higher limits but only at low
masses since longer magnets reduce the coherence length
of the photon-ALP oscillations and limits at higher masses.

FIG. 2. Confidence level limits of 95% on the ALP-two photon
coupling constant g as a function of the particle mass ma. The
grey area is excluded. The dashed line represents limits obtained
with a photon energy of 50.2 keV while the solid line corre-
sponds to 90.7 keV.

TABLE I. Summary of our data acquisition taken with magnets on or off, x-ray beam on or off. The integration time is denoted as ti,
while Ninc is the number of incident photons per second, Nc is the number of detected photons per second, and Np is number of

regenerated photons per second. Errors correspond to 95% confidence level. No excess count rate above background has been detected.

X-Ray Beam Magnets ! (keV) ti (s) Ninc (Hz) Nc (Hz) Np (Hz)

OFF OFF 13913 0 ð7:2� 1:4Þ � 10�3

ON OFF 50.2 7575 1:2� 1012 ð5:7� 1:8Þ � 10�3

ON ON 50.2 7276 1:2� 1012 ð6:2� 1:8Þ � 10�3 ð0:5� 2:6Þ � 10�3

ON OFF 90.7 7444 3:2� 1010 ð7:9� 2:0Þ � 10�3

ON ON 90.7 7247 3:1� 1010 ð8:1� 2:2Þ � 10�3 ð0:2� 3:0Þ � 10�3
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The best solution would be to increase the magnetic field B
and reduce the magnet length L keeping the product B� L
as high as possible.

Our experiment extends the search of photon oscilla-
tions into massive particles in the presence of magnetic
fields to higher energies. The observed low background
count rate clearly demonstrates the sensitivity of ‘‘shining
through the wall’’ experiments with a synchrotron light
source. Moreover we studied for the first time the propa-
gation of x-ray photons in magnetic fields opening a new
domain of experimental investigations.
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C H A P I T R E 5

Conclusion et perspectives

5.1 Biréfringence magnétique du vide

J'ai présenté dans ce manuscrit le projet principal sur lequel j'ai travaillé ces
dernières années : le projet BMV visant à mesurer la biréfringence magnétique
du vide. Le dispositif mis en place dans ce cadre a �nalement permis de donner
la limite suivante :

|kCM| = (6.1± 7.5)× 10−21T−2, (5.1)

avec une incertitude à 3σ. Ce résultat, parmi les meilleurs au monde, a prouvé
notre capacité à coupler des champs magnétiques pulsés avec des cavités Fabry-
Perot de très haute �nesse.

Nous ne sommes désormais plus qu'à trois ordres de grandeur de la valeur
prédite par la QED qui, rappelons le, est :

kCM,QED ' 4× 10−24T−2. (5.2)

L'étude de notre dispositif a permis en outre de mettre en évidence ses principales
limitations, tant en termes de sensibilité qu'en termes d'e�ets systématiques. Il
est maintenant clair qu'il ne permettra pas d'aller jusqu'à l'observation de la
prédiction théorique.

Pour atteindre cet objectif, un dispositif de deuxième génération a été mis
au point. Il a été monté durant l'année 2015 et il est désormais en cours de
test. Les principales améliorations permettront d'une part d'augmenter le signal
à mesurer et d'autre part d'améliorer la sensibilité en ellipticité et de réduire les
e�ets systématiques.

5.1.1 Augmentation de l'ellipticité à mesurer

Comme nous l'avons vu dans le chapitre 2, l'ellipticité à mesurer est :

Ψ =
2F

λ
kCMB

2
⊥LB, (5.3)

la polarisation de la lumière incidente étant réglée à 45˚ du champ magnétique.
Augmenter cette ellipticité va donc consister à augmenter encore davantage la
�nesse de la cavité et le champ magnétique.
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Cavité Fabry-Perot

Les besoins concernant les miroirs de la cavité sont les suivants :
� une haute ré�ectivité. Le signal à mesurer est directement proportionnel à
la �nesse. Cette dernière doit donc être la plus grande possible, correspon-
dant à une ré�ectivité des miroirs la plus grande possible.

� de faibles pertes. Comme nous l'avons montré dans le chapitre 2, la mesure
de l'ellipticité est réalisée sur les faisceaux de sortie de la cavité optique.
A�n de ne pas être limité par le bruit des photodiodes de détection, la puis-
sance de sortie, et donc le couplage en transmission de la cavité, doivent
être maximales. Ce couplage est donné par : T 2/(T +P )2, avec T la trans-
mission et P les pertes en intensité de chaque miroir. Un couplage le plus
élevé possible correspond donc à des pertes les plus faibles possibles.

L'objectif est donc d'augmenter la ré�ectivité des miroirs tout en gardant de
faibles pertes comparées à la transmission.

Les meilleurs miroirs utilisés sur le dispositif de première génération avaient
une �nesse de 480 000 avec un couplage de l'ordre de 35%. Ils provenaient de
la compagnie ATFilms chez qui nous avions commandé des miroirs avec une
�nesse cible de 500 000. Un nouveau lot a été commandé depuis, avec une �nesse
cible de 800 000. Deux miroirs ont été récemment testés. La �nesse obtenue est
de l'ordre de 550 000. Bien que plus élevée qu'avec les précédents miroirs, nous
n'atteignons pas la �nesse cible souhaitée. D'autres miroirs seront prochainement
testés mais il est probable que nous obtenions les mêmes résultats, les miroirs
correspondant tous à une même cloche de fabrication. La société ATFilms est
connue dans le monde entier pour être la seule capable de fournir des miroirs de
très haute ré�ectivité avec de très faibles pertes, mais les processus de fabrication
restent compliqués et les résultats aléatoires. De plus, même si la �nesse cible
peut être adaptée sur mesure, ATFilms ne garantit qu'une �nesse de l'ordre de
300 000. Aucun miroir commercial avec une �nesse garantie supérieure à 300 000
n'est donc disponible sur le marché.

Pour contourner ce problème, l'équipe collabore avec le Laboratoire des Ma-
tériaux Avancés (LMA) à Villeurbanne. Les miroirs fournis par ce laboratoire
en 2006 nous ont permis d'obtenir une �nesse de 529 000, mais avec une trans-
mission de la cavité trop faible. Depuis, une amélioration d'un facteur deux sur
les pertes par absorption a été réalisée, avec parfois un niveau exceptionnel de
0.3 ppm. Les pertes par di�usion sont quant à elles gouvernées par deux para-
mètres : la micro-rugosité du substrat et le nombre de défauts ponctuels sur la
surface. Des substrats de très haute qualité seront utilisés pour cette expérience.
De plus, avant le dépôt, les défauts de chaque substrat seront caractérisés a�n
de ne traiter que les meilleurs. La même analyse des défauts sera réalisée après
dépôt pour ne sélectionner que les meilleurs en termes de pertes par di�usion.
En�n, les mesures �nales de �nesse seront réalisées directement au LMA à l'aide
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d'un banc de mesure dédié que nous avons d'ores et déjà commencé à mettre
en place. L'objectif �nal est de pouvoir travailler avec des �nesses de l'ordre de
1 000 000.

Champ magnétique

Les aimants utilisés pour le dispositif de première génération ont atteint un
champ magnétique maximal de 14.3T sur une longueur LB de 137mm. Depuis, de
nouveaux aimants ont été développés permettant d'atteindre des champs magné-
tiques bien plus importants sur une longueur également plus grande. La �gure 5.1
présente les pro�ls temporel et spatial du champ magnétique maximal obtenu
sur l'un des prototypes, juste avant la rupture de l'aimant. Les valeurs obtenues
donnent un B2

⊥LB supérieur à 300T2m avec une longueur LB de 320mm.
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Figure 5.1 � Bobine �XXL-Coil� juste avant son champ de rupture. Gauche : pro�l
temporel du champ magnétique au centre de la bobine. Droite : pro�l longitudinal.

L'autre avantage de ce nouvel aimant, appelé �XXL-Coil�, est la plus faible
densité de courant circulant dans le �l le constituant. Pour un même champ
magnétique maximal, l'échau�ement de la bobine est donc maintenant bien moins
important. Ceci nous permettra d'augmenter sensiblement le nombre de tirs avec
plus d'une dizaine de tirs par heure contre un tir toutes les 10 minutes avec
l'aimant précédent.

Une bobine de ce type a été fabriquée et testée, ainsi que le cryostat dans
lequel elle est placée. L'ensemble est désormais prêt à être mis en place sur le
nouveau dispositif, ce qui devrait être réalisé en début d'année 2016. La bobine
sera alimentée dans un premier temps par les générateurs utilisés pour le dispositif
de première génération. Ceci permettra de faire les premiers tests avec un champ
maximal relativement limité. Le générateur 6MJ du LMCMI sera �nalement
utilisé avec pour objectif d'obtenir un B2

⊥,fLB de l'ordre de 100T2m 1, contre

1. Le calcul de B2
⊥,f tient compte du �ltrage de la cavité en supposant une �nesse de

1 000 000.
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environ 3T2m sur le dispositif de première génération.

5.1.2 Amélioration de la sensibilité en ellipticité

Stabilisation mécanique

La sensibilité du dispositif de première génération était principalement limitée
par la stabilité mécanique du montage. Le plan de la �gure 5.2 montre la manière
dont étaient montés les miroirs de la cavité Fabry-Perot : ceux-ci étaient placés
sur un cylindre relativement long de 20 cm lui-même solidaire de l'enceinte à vide
soutenue par de �nes équerres. Ceci rend le système particulièrement sensible à
toutes perturbations extérieures mécaniques et acoustiques.

Figure 5.2 � Schéma du montage
de première génération centré sur
l'une des montures de miroirs de la
cavité Fabry-Perot.

Le principe du nouveau montage est présenté sur la �gure 5.3. Les montures
de miroirs et les supports de polariseurs sont désormais montés sur une rehausse
en inox vissée directement sur le fond de l'enceinte à vide. Ils sont donc ainsi
découplés des parois de l'enceinte à vide. Cela permettra de diminuer fortement
la sensibilité de ces montures aux vibrations extérieures. Les montures de miroirs
ont également été modi�ées par des montures de la société PI, plus massives.

Biréfringence statique de la cavité

Comme nous l'avons vu, l'ellipticité statique Γ du dispositif est due au retard
de phase intrinsèque induit par les miroirs. Celle-ci est une source de bruit qui
limite la sensibilité de l'expérience. Nous avons en particulier observé que la
sensibilité est d'autant meilleure que la biréfringence totale est faible [55�57].
L'optimum est actuellement obtenu lorsque Γ2 est de l'ordre de σ2, l'extinction
des polariseurs.
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Figure 5.3 � Schéma du montage
de deuxième génération centré sur
l'une des montures de miroirs de la
cavité Fabry-Perot.

L'extinction des polariseurs sur le montage de première génération était gé-
néralement de quelques 10−7. Pour améliorer encore la sensibilité en ellipticité,
il est nécessaire de diminuer encore σ2. Des extinctions de l'ordre de 10−10 ont
été publiées [124,125]. Elles ont été obtenues en ajoutant des montures tip-tilts
permettant de régler précisément l'angle d'incidence du faisceau sur les polari-
seurs. Nous avons testé ce type de montage sur un banc dédié nous permettant
d'obtenir des extinctions inférieures à 10−8. Le montage de deuxième génération
inclut donc ce nouveau réglage. L'objectif est d'obtenir un Γ de l'ordre de 10−4.

L'obtention d'une faible ellipticité statique Γ nécessite de régler précisément
les axes neutres de chaque miroir l'un par rapport à l'autre et par rapport à la
polarisation incidente. Ce réglage doit être réalisé avec d'autant plus de précision
que le retard de phase intrinsèque de chaque miroir est important. Il serait donc
intéressant de pouvoir disposer de miroir de faible biréfringence intrinsèque.

La collaboration que nous avons avec le LMA pour la fabrication de miroirs de
très haute ré�ectivité vise également à étudier cette propriété. Cette biréfringence
intrinsèque semble être intimement liée au stress intrinsèque des couches minces
déposées par pulvérisation par faisceaux d'ions. Un traitement thermique est
réalisé après dépôt permettant de baisser le niveau d'absorption mais aussi de
diminuer le stress induit par ces couches. L'étude de l'in�uence de la durée de ce
recuit est alors primordial pour obtenir potentiellement de faible biréfringence.
Les résultats préliminaires semblent très positifs en vue de réaliser des miroirs de
haute ré�ectivité et de faibles pertes ayant une anisotropie de phase intrinsèque
réduite par rapport à ce qui se fait actuellement.
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Gestion des e�ets systématiques

Une fois la sensibilité en ellipticité améliorée, la principale di�culté restera
la gestion des e�ets systématiques qui peuvent masquer l'e�et Cotton-Mouton
du vide. Une attention particulière est portée tout d'abord sur la diminution de
ces e�ets systématiques. Ensuite, la procédure d'acquisition des données, tenant
compte des propriétés de symétrie du signal recherché, devrait permettre de s'af-
franchir des faibles e�ets systématiques restants.

Pression
Le gaz résiduel peut être l'une des sources principales d'e�et systématique.

Le tableau 5.1 liste la contribution de quelques gaz ainsi que la pression cor-
respondante pour que l'e�et Cotton-Mouton de ce gaz soit équivalent à l'e�et
Cotton-Mouton du vide. En ultra-vide, le dihydrogène est généralement le gaz
limitant. Dans ce cas, une pression de l'ordre de 10−9 mbar devrait su�re.

Gaz kn
CM (T−2atm−1)

P (mbar)
pour avoir ∆ngaz = ∆nvide

H2 8.5× 10−15 5× 10−7

N2 −2× 10−13 2× 10−8

O2 −2.5× 10−12 2× 10−9

H2O 6.7× 10−15 6× 10−7

CO2 −5.9× 10−13 7× 10−9

CnHm < 10−13 < 4× 10−8

Ar 6.3× 10−15 6× 10−7

Table 5.1 � Biréfringence magnétique de quelques gaz typiques (référence [126] pour
la valeur de kn

CM de H2O, référence [77] pour N2 et référence [87] pour les autres gaz)
et la pression correspondante pour que l'e�et Cotton-Mouton de ce gaz soit équivalent
à l'e�et Cotton-Mouton du vide.

Sur le montage de première génération, nous avons obtenu une pression de
10−8 mbar. Pour réduire encore davantage cette pression, les tubes à vide passant
au travers de l'aimant seront traités par la société Saes Getters. En�n, un analy-
seur de gaz sera placé sur l'enceinte a�n d'analyser en permanence la nature du
gaz résiduel.

Blindage magnétique
La réduction des champs magnétiques de fuite est également particulièrement

importante. Ces champs de fuite sont en e�et responsables d'un e�et Cotton-
Mouton et Faraday au niveau des optiques les plus proches des aimants, autre-
ment dit les miroirs de la cavité optique et les polariseurs. Ils peuvent également
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induire des forces sur le système à vide, induisant alors un mouvement des miroirs
et des polariseurs et donc en particulier une modi�cation de l'ellipticité statique.

L'enceinte à vide du dispositif de seconde génération a entièrement été conçue
en inox amagnétique. Les champs de fuite sont tout d'abord réduits au maximum
au niveau de la bobine. Pour cela, des plaques de cuivre sont placées à l'intérieur
du cryostat dans lequel est �xée la bobine. En�n, de manière à éviter tout ef-
fet Cotton-Mouton au niveau des miroirs de la cavité, un blindage y sera placé,
constitué de feuilles de cuivre et/ou de mu-métal.

Procédure d'acquisition des données
La priorité sur le dispositif de seconde génération est de réduire au maximum

les e�ets systématiques. La procédure d'acquisition tenant compte des propriétés
de symétrie de signal Cotton-Mouton, et qui a été testée sur le dispositif de
première génération, sera également mise en place et automatisée. Finalement,
pour s'a�ranchir des derniers e�ets systématiques ayant la même symétrie que
l'e�et Cotton-Mouton, des tirs seront également réalisés en modi�ant l'angle de
la polarisation incidente par rapport à la direction du champ magnétique, avec en
particulier le polariseur d'entrée réglé parallèle ou à 45˚ du champ magnétique.

5.1.3 Objectifs �naux

Le tableau 5.2 résume les di�érentes propriétés des expériences de première et
seconde génération. Une amélioration de plus d'un facteur 10 est attendue pour la
sensibilité en ellipticité. Ceci permettra l'observation de la biréfringence magné-
tique du vide avec un rapport signal sur bruit de un en 730 tirs. L'automatisation
de l'expérience, qui est actuellement déjà partiellement en place, permettra de
réaliser un dizaine de tirs par heure. L'observation de l'e�et Cotton-Mouton du
vide devrait donc être possible en quelques journées d'acquisition de données.

5.2 E�ets magnéto-optiques dans les gaz

5.2.1 E�ets Faraday et Cotton-Mouton

Amélioration de l'incertitude

Les mesures d'e�ets Faraday et Cotton-Mouton nous ont permis de valider
notre dispositif expérimental et d'identi�er les principales di�cultés comme la
gestion des e�ets systématiques. Ces mesures ont été en particulier l'occasion de
mettre en place une procédure d'acquisition des données originale permettant la
prise en compte des propriétés de symétrie des signaux recherchés.

Nous avons également montré que ces mesures permettent de tester les cal-
culs de chimie quantique, en particulier dans le cas de l'e�et Faraday du xénon



194 Chap 5 - Conclusion et perspectives

Paramètre
BMV BMV

1ère génération 2ème génération

Finesse F 445 000 1 000 000
Longueur de cavité Lc (m) 2.27 1.83
Champ magnétique maximal

B2
⊥,f (T

2) 21.5 310
avec �ltrage de la cavité
Longueur magnétique LB (m) 0.137 0.319

Sensibilité en ellipticité
Ψsens 6.3× 10−8 2× 10−8

rad/tir

Ellipticité attendue dans le
Ψvide (rad) 1.0× 10−11 7.4× 10−10

vide

-
4× 107 tirs 730 tirs

Intégration pour observer ' '
l'e�et du vide 4× 106 jours quelques jours

Table 5.2 � Résumé des propriétés de l'expérience BMV de première et deuxième
génération.

qui permet de montrer l'importance de la prise en compte des e�ets relativistes
et des corrélations électroniques. Pour l'e�et Cotton-Mouton, nos incertitudes
expérimentales restent trop élevées. Elle est en e�et de 15% pour la mesure dans
le xénon alors que la contribution des e�ets relativistes et des corrélations s'élève
à 5%.

L'amélioration de notre incertitude est donc ici indispensable si l'on veut
pouvoir se comparer précisément aux prédictions théoriques. Mais elle semble
cependant di�cile. Une piste intéressante pourrait être de mieux controller la
température au sein du tube à vide passant au travers de la bobine. Ce point est
en e�et l'une des di�érences majeures comparé aux mesures d'e�ets Faraday pour
lesquelles l'incertitude n'est que de 3%. Alors que ces dernières sont réalisées avec
un aimant fonctionnant à température ambiante, la bobine générant le champ
magnétique pour l'e�et Cotton-Mouton baigne dans l'azote liquide. Malgré le
vide d'isolation thermique du cryostat, la température du tube à vide chute très
rapidement. Pour y remédier, un �ux d'air à température ambiante est envoyé
en continu entre le tube à vide et le tube du cryostat. Cependant, ce �ux induit
des vibrations mécaniques. Il est donc arrêté quelques minutes avant chaque tir
induisant une diminution de la température au sein du tube à vide et un gradient
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Figure 5.4 � Courbe gris clair : ellipticité obtenue avec une pression de 10−2 mbar
de gaz résiduel. Courbe noire : champ magnétique au carré �ltré par la cavité.

de température entre le tube à vide et le reste de l'enceinte. Ceci peut être source
d'instabilité pour le gaz et peut donc augmenter la dispersion de nos mesures tir
après tir. Une solution serait alors de stabiliser la température de l'ensemble à
l'aide d'un câble chau�ant correctement placé autour du tube à vide.

E�et Cotton-Mouton du gaz résiduel

L'étude de l'e�et Cotton-Mouton du gaz résiduel est elle aussi un sujet à
part entière. Nous avons en e�et observé des variations de l'ellipticité tout à
fait singulières lorsque des mesures sont réalisées à des pressions inférieures au
millibar. Pour ce type de mesures, l'enceinte est dans un premier temps pompée
jusqu'à quelques 10−7 mbar. Le pompage est ensuite arrêté et la pression remonte
ensuite doucement par dégazage des parois de l'enceinte à vide.

La �gure 5.4 présente l'évolution temporelle de l'ellipticité en fonction du
temps pour une pression de gaz résiduel de l'ordre de 10−2 mbar. Le champ ma-
gnétique au carré �ltré par la cavité y est superposé. Nous constatons clairement
que les deux signaux n'ont pas la même évolution temporelle. En particulier,
l'ellipticité change de signe et ne revient à zéro que bien après l'annulation du
champ magnétique. Le processus physique induisant cette évolution n'est pour
le moment pas compris et devra être étudié en détails. Une première étude sys-
tématique serait d'étudier l'amplitude et la variation temporelle des signaux en
fonction de la pression du gaz résiduel.

Les résultats obtenus pourraient être particulièrement importants pour la
mesure de la biréfringence magnétique du vide. En e�et, l'ellipticité due à l'e�et
Cotton-Mouton du vide doit suivre l'évolution de B2

⊥,f . Si tel n'est pas le cas
pour le gaz résiduel, ceci serait un moyen supplémentaire de s'a�ranchir de l'e�et
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systématique correspondant.

5.2.2 Vers l'observation de nouveaux e�ets

L'ellipsomètre de très grande sensibilité que nous mettons en place peut être
utilisé pour toute mesure de biréfringence, qu'elle soit induite par un champ
magnétique et/ou un champ électrique que nous pouvons rajouter au sein de la
cavité. On peut citer dans ce cadre l'e�et Kerr, où la biréfringence est proportion-
nelle au carré du champ électrique, ou des biréfringences plus exotiques telles que
la biréfringence de Jones magnéto-électrique [127]. Cette dernière, bilinéaire en
champ électrique et champ magnétique, apparaît lorsque un champ magnétique
et électrique, parallèles entre eux, sont appliqués perpendiculairement au trajet
du faisceau lumineux. De nombreux calculs, de plus en plus précis, ont été réali-
sés pour di�érents atomes et molécules [128]. Malheureusement, aucune mesure
n'a encore été réalisée en milieu gazeux permettant de valider les calculs. Cette
mesure, réalisée par exemple avec notre appareil, serait donc particulièrement
intéressante.

En�n, notre dispositif peut être utilisé de manière plus large pour des mesures
d'e�ets non-linéaires. L'un des objectifs est par exemple de pouvoir mettre en
évidence pour la première fois la génération de seconde harmonique induite par
un champ magnétique dans un gaz, appelé également BFISH (Magnetic Field
Induced Second Harmonic). Le principe de l'expérience est présenté sur la �-
gure 5.5. Le faisceau de pulsation ω se propage dans le milieu non-linéaire qu'est
le gaz. La génération de photons à la pulsation double 2ω a lieu dans la zone de
champ magnétique. Le nombre de photons N2ω ainsi émis à la fréquence double
est donné par la formule suivante :

N2ω ∝ χ(3)B2N2
ωsinc2

(
πLB
2Lcoh

)
, (5.4)

avec Lcoh =
2πc

4ω(n2ω − nω)
. (5.5)

Le paramètre χ(3) correspond à la susceptibilité non-linéaire d'ordre 3, Nω repré-
sente le nombre de photons à la pulsation ω, LB est la longueur sur laquelle le
champ magnétique est appliqué et Lcoh correspond à la longueur sur laquelle il
y a accord de phase et qui dépend des indices du milieu à la pulsation ω et 2ω.

La cavité Fabry-Perot permet ici d'avoir un nombre de photons Nω impor-
tant. Les miroirs de la cavité sont transparents pour les photons de fréquence
double qui traversent donc ces miroirs. Un miroir dichroïque est placé en sortie
de cavité de façon à rejeter tous les photons de pulsation ω. Les photons à 2ω
sont �nalement détectés à l'aide d'un détecteur de photons uniques par exemple.

La stratégie envisagée pour pouvoir observer cet e�et est la suivante. Nous
souhaitons dans un premier temps mesurer l'e�et Kerr à l'aide d'électrodes pla-



5.2 E�ets magnéto-optiques dans les gaz 197

Figure 5.5 � Schéma de principe pour l'observation de la génération de seconde
harmonique induite par un champ magnétique. Les photons de pulsation double 2ω
sont générés à partir des photons de pulsation ω stockés au sein de la cavité Fabry-
Perot et où règne un champ magnétique transverse. Les photons de pulsation double
traversent les miroirs de la cavité Fabry-Perot et sont détectés à l'aide d'un détecteur
type compteur de photons uniques. Les photons de pulsation ω sont rejetés à l'aide
d'un miroir dichroïque.

cées de part et d'autre du tube à vide. Une fois les résultats comparés aux pré-
visions théoriques et validés, nous passerons à l'observation de la génération de
seconde harmonique induite par un champ électrique, appelée également EFISH.
Cet e�et, observé pour la première fois en 1962 [129], a été depuis étudié dans
de nombreux systèmes, en particulier en milieu gazeux [130]. Outre la validation
du dispositif expérimental, cette étape permettra de valider la longueur de cohé-
rence de l'équation (5.5). En e�et, pour une conversion optimale, la longueur sur
laquelle est appliquée le champ électrique ou magnétique doit être de l'ordre de
cette longueur de cohérence. Alors que pour la génération de champs électriques,
il est aisé de mettre en place des électrodes de longueurs di�érentes, la longueur
sur laquelle sera appliqué le champ magnétique ne peut être modi�ée facilement.
La longueur de cohérence sera donc adaptée à LB en ajustant la valeur des in-
dices nω et n2ω par l'intermédiaire de la pression du gaz injecté dans l'enceinte.

L'appareil développé dans le cadre du projet BMV est donc un outil ex-
trêmement sensible dont les applications vont des tests très fondamentaux de
l'électrodynamique quantique, en passant par l'étude très large des propriétés de
l'interaction lumière-matière.
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� TD d'électrostatique : 17 heures
� TP d'électrostatique : 3 heures

2013 - 2014
Enseignement à l'INSA de Toulouse, niveau L1
� TD de mécanique du point : 15 heures
� TD d'optique géométrique : 22 heures
� TP d'optique géométrique : 12 heures
� TD d'électrostatique : 17 heures
� TP d'électrostatique : 3 heures

2012 - 2013
Enseignement à l'INSA de Toulouse, niveau L1
� TD de mécanique du point : 15 heures
� TD d'optique géométrique : 22 heures
� TP d'optique géométrique : 12 heures
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2011 - 2012
Enseignement à l'INSA de Toulouse, niveau L1
� TP de mécanique du point : 8 heures

2004 - 2005
Enseignement à l'École Supérieure d'Optique à Orsay
� TD d'électronique numérique, niveau L3 : 9 heures
� TP d'électronique, niveau M1 : 45 heures
� TD d'optique physique et polarisation, niveau L3 : 10,5 heures

2003 - 2004
Enseignement à l'École Supérieure d'Optique à Orsay
� TD d'électronique numérique, niveau L3 : 9 heures
� TP d'électronique, niveau M1 : 45 heures
� TD d'optique physique et polarisation, niveau L3 : 10,5 heures

2002 - 2003
Enseignement à l'École Supérieure d'Optique à Orsay
� TD d'électronique numérique, niveau L3 : 9 heures
� TP d'électronique, niveau M1 : 45 heures

Enseignement à l'Université Paris XI d'Orsay, niveau L1
� TD de projet professionnel, niveau L1 : 12 heures

2001 - 2002
Enseignement à l'École Supérieure d'Optique à Orsay
� TP d'électronique, niveau M1 : 45 heures

C.1.3 Di�usion de la culture scienti�que

2014 - 2015
� Partenariat avec une classe de terminale
Ce partenariat s'axe autour de 4 phases : une première rencontre avec les
chercheurs au lycée pour une présentation de notre parcours, de la recherche
et de nos thèmes de recherche, une seconde rencontre avec la visite du la-
boratoire parrain, une phase de remédiation au lycée sur la visite et les
résultats recueillis par les élèves, et une dernière rencontre avec la présen-
tation des travaux des élèves aux chercheurs.
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2014
� Nuit des chercheurs
Présentation d'un atelier laser à la Cité de l'Espace à Toulouse.

2012
� Nuit des chercheurs
Présentation d'un atelier laser à la Météopole à Toulouse.

2011 - ...
� Fête de la science au sein du LNCMI
Présentation auprès de lycéens du domaine de la biréfringence à l'aide de
di�érentes expériences spécialement conçues pour pouvoir être manipulées
par les élèves.

2010
� 50 ans du laser
Des ateliers de présentation du laser ont été mis en place dans la cadre des
50 ans du laser à Toulouse. Ces ateliers ont été présentés durant 3 jours
au cours de la Novela (Festivals des savoirs) à l'automne 2010. J'ai été
plus particulièrement co-responsable de l'atelier "historique et anatomie
du laser".

� Nuit des chercheurs
Présentation d'un atelier laser à la Cité de l'Espace à Toulouse.

2008 - 2009
� Club CNRS jeunes et citoyens "Atelier scienti�que"
Encadrement de 3 lycéennes.
Sujet : étude autour de la biréfringence magnétique du vide (compréhension
et expérimentation).
Lieu : lycée Toulouse-Lautrec les jeudis midi hors vacances scolaires et au
Laboratoire Collisions Agrégats et Réactivité durant les stages.
Durée : chaque jeudi midi d'octobre 2008 à mars 2009 + 2 semaines de
stage au laboratoire.

� Journée d'accueil d'une dizaine d'enseignants en sciences de col-
lèges et lycées (dans le cadre de la formation continue des enseignants du
2nd degré en continuité du plan académique de valorisation des �lières
scienti�ques et technologiques)
Présentation du thème de recherche "l'optique en cavité" et visite de l'ex-
périence en laboratoire.

� Exposition tout public "Nature Magnétique : des atomes aux
étoiles" dans le cadre de l'année mondiale de l'astronomie
Élaboration d'un poster visible à l'adresse suivante :
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http://www.ast.obs-mip.fr/users/donati/expo/3.7.pdf

Sujet : "Magnétisme et vide quantique"
� Exposition tout public "Nature Magnétique : des atomes aux
étoiles"dans le cadre de l'année mondiale de l'astronomie
Participation à l'élaboration d'un �lm visible à l'adresse suivante :
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique57

Sujet : "Magnétisme et vide quantique" - présentation de l'expérience de
"biréfringence magnétique du vide".
Contribution : enregistrement de la voix o� et présentation de l'expérience
pour l'enregistrement des images.

2008
� Fête de la science au sein de l'IRSAMC.
Présentation auprès de collégiens (classe de 3ème) du domaine des cavités
optiques à l'aide d'un poster et d'une expérience spécialement conçue pour
pouvoir être manipulée par les élèves.

2007
� Aide à la mise en place d'un TIPE (Travaux d'Initiative Personnelle
Encadrés)
Le thème étant "le temps" , deux étudiants de 2ème année de classe pré-
paratoire ont choisi de réaliser leur travail autour de notre expérience de
photorégénération de bosons de faible masse et en particulier autour des
di�érents problèmes de synchronisation liés à cette expérience. Ma partici-
pation a tout d'abord consisté à leur expliquer dans le détail notre expé-
rience puis à leur proposer di�érentes expériences pouvant être réalisées en
salle de Travaux Pratiques.

� Exposition autour du thème de la lumière à l'occasion de la journée
de la femme
Participation à cette exposition qui a été présentée à des élèves de 1ère S
sur le campus de l'Université Paul Sabatier.

2007 - ...
� Site internet du LNCMI
Mise en place et mise à jour des pages de l'équipe sur le site
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique116.

http://www.ast.obs-mip.fr/users/donati/expo/3.7.pdf
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique57
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique116
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C.2 Transfert Technologique, Relations Industrielles

et Valorisation

Les études menées sur l'e�et Cotton-Mouton inverse (ICME) [132] ont donné
lieu à un dépôt de brevet par le CNRS (numéro FR 10 57007 déposé le 03 sep-
tembre 2010, inventeurs : Andrei Ben-Amar Baranga, Rémy Battesti, Mathilde
Fouché, Carlo Rizzo, Geert L.J.A. Rikken) [131]. Rémy Battesti et moi-même
nous sommes ensuite investis dans la valorisation de ce brevet. Nous avons ren-
contré un soutien fort de la part du CNRS dans cette démarche, en particulier
de la part de la directrice de la valorisation du CNRS Mme Chantal Vernis. Je
liste ici les dates clés des �nancements, prix et avancées obtenus dans ce cadre.

Printemps 2011
Financement pour une durée d'un an d'un ingénieur de recherche par le CNRS

pour le développement d'un prototype.
Membre du projet lauréat au concours d'aide à la création d'entreprise tech-

nologique innovante catégorie " émergence " (porteur de projet : Rémy Battesti).
La somme remportée a en particulier permis de �nancer une étude de marché.

Eté 2011
Financement pour une durée d'un an d'un deuxième ingénieur de recherche

par le PRES de Toulouse et la région Midi-Pyrénées, et obtention d'une aide
�nancière pour le développement du prototype.

Automne 2011
Entrée à l'incubateur Midi-Pyrénées (porteur de projet : Mathilde Fouché)

en vue d'une création de start-up autour du brevet.

2011 - 2013
Elaboration d'un prototype. Cette phase nous a permis d'étudier la pertinence

de créer rapidement une entreprise ou de travailler en lien avec des entreprises
intéressées par un transfert technologique.

La construction du prototype a comporté trois phases importantes : la géné-
ration du champ magnétique transverse, la mise en place du système optique et
l'élaboration de la sonde de détection. Alors que les deux premiers points sont
désormais parfaitement maîtrisés, l'élaboration de la sonde de détection a pré-
senté plus de di�cultés. Il s'est avéré en particulier compliqué d'avoir une sonde
de grande sensibilité mais correctement blindée des bruits électromagnétiques
extérieurs. Ceci correspond au point dur dans l'élaboration du prototype.

Suite à ces résultats, il a été décidé de suspendre la création d'une start-up
et de poursuivre les recherches en laboratoire. Des collaborations sont eu cours
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pour la partie sonde de détection. J'ai en particulier obtenu le �nancement pour
un chercheur invité sur 4 mois, permettant à Andrei Ben-Amar Baranga, co-
inventeur du brevet, de revenir travailler sur ce sujet. Une collaboration avec une
équipe israëlienne spécialiste dans la détection des très faibles aimantations est
depuis sérieusement envisagée.

C.3 Encadrement, Animation et Management de

la Recherche

2014 - ...
Membre du Collège Scienti�que "Physique-SDU" de l'Université Toulouse III

- Paul Sabatier.

2013 - ...
Membre du comité de sélection pour le poste 34 MCF 1708 en qualité de

membre externe de l'Université Toulouse III - Paul Sabatier.

2011 - ...
Organisation des séminaires internes du LNCMI. L'objectif est de permettre

aux membres du laboratoire de présenter régulièrement leurs résultats.

2010 - 2012
Membre du comité d'organisation de l'école internationale "QED and Quan-

tum Vacuum, Low Energy Frontier", 16-27 avril 2012, Cargèse, France
� Cette école s'est inscrite dans la lignée des précédents workshops concernant
les �uctuations du vide quantique, en Italie en 1993, en Bulgarie en 1998,
en Italie en 2000 et �nalement aux Houches, France en 2005. L'objectif
était dans un premier temps de réunir di�érentes communautés, à la fois
de théoriciens et d'expérimentateurs, dont les thèmes de recherche peuvent
aller des tests de QED en laboratoire à l'astrophysique, en passant par
l'étude de la physique hors modèle standard. Le second objectif a été de
donner l'opportunité à de jeunes physiciens de progresser dans ce domaine
très prometteur.

� Cette école a permis d'accueillir 65 personnes allant d'étudiants en master
2 aux professeurs con�rmés. Cependant, la grande majorité des partici-
pants (plus de 70 %) était constituée d'étudiants en master 2 et thèse,
de post-doctorants et de jeunes chercheurs, ce qui était l'objectif de cette
école. Cette conférence internationale a permis de réunir pas moins de 18
nationalités di�érentes.

� Site web de l'école : http://qed2012.cnrs.fr/
� Cette école a été approuvée comme école thématique du CNRS.

http://qed2012.cnrs.fr/
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� Contributions : Rédaction du dossier de demande à l'IESC de Cargèse,
participation à l'élaboration du programme et du choix des intervenants,
rédaction des demandes de subvention (CNRS, EMFL, GDR AS-GRAM,
GDR PECH), gestion des liens avec l'IESC de Cargèse, mise en place du
site web de l'école, gestion des inscriptions, mise en place des proceedings.

2009 - ...
Membre du Groupement de Recherche "Phénomènes Cosmiques de Haute

Énergie" (GdR PCHE) qui unit astrophysiciens observateurs et théoriciens et
physiciens des particules du CNRS (INSU, IN2P3, INP) et du CEA. La par-
ticipation à ce GdR concerne les recherches de l'équipe autour des particules
massives au-delà du modèle standard telles que les axions.

2009 - 2014
Membre du projet ASPHON
� ASPHON est un projet qui a été approuvé par le Conseil Scienti�que de
l'Université Paul Sabatier et qui a en particulier pour objectif de proposer
une série de séminaires portant sur l'Astrophysique et la Physique Fonda-
mentale.

2009 - 2010
Organisation des séminaires du LCAR. L'objectif était à la fois :
� de permettre aux membres du laboratoire, et plus particulièrement aux
étudiants en thèse, de présenter régulièrement leurs résultats,

� et d'inviter des personnes extérieures au laboratoire ayant des thématiques
proches de celles des di�érentes équipes du laboratoire.

2007 - 2010
Membre du conseil de laboratoire du LCAR.
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Resumé

Depuis le début du 20ème siècle, il est connu que n'importe quel milieu
devient biréfringent lorsqu'il est soumis à un champ magnétique transverse.
Cette biréfringence est appelée e�et Cotton-Mouton. Concernant le vide,
alors qu'aucun e�et non-linéaire n'est autorisé dans le cadre classique du fait
de la linéarité des équations de Maxwell, l'e�et Cotton-Mouton du vide est
permis dans le cadre de l'électrodynamique quantique (QED). Celui-ci peut
être vu comme le résultat de l'interaction entre le champ magnétique et les
�uctuations du vide quantique.

La biréfringence magnétique du vide prédite par la QED est extrêmement
faible ce qui rend son observation particulièrement di�cile. Pour tenter de
l'observer, un dispositif expérimental de grande sensibilité a été mis en place
au Laboratoire National des Champs Magnétiques Intenses de Toulouse. Il
est basé sur l'utilisation de champs magnétiques intenses pulsés et d'une ca-
vité Fabry-Perot de très haute �nesse. Ce manuscrit présente les avancées
sur ce projet, connu sous le nom de projet BMV.

Abstract

It is known since the beginning of the 20th century that any medium shows a
birefringence in the presence of a transverse magnetic �eld. This birefringence
is usually known as the Cotton-Mouton e�ect. Concerning vacuum, whereas
no non-linear e�ect is possible in the framework of classical physics due to
the linearity of Maxwell's equations, the Cotton-Mouton e�ect is predicted in
the framework of quantum electrodynamics (QED). This e�ect can be seen
as the result of the interaction of the magnetic �eld with quantum vacuum
�uctuations.

The value of the vacuum magnetic birefringence predicted by QED is extre-
mely small and its observation is an experimental challenge. To be able to
observe it for the �rst time, a setup has been built at the High Magnetic
Field National Laboratory in Toulouse, based on intense pulsed magnetic
�elds and a high �nesse Fabry-Perot cavity. This manuscript describes the
current status of the project, also known as the BMV project.
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