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ABSTRACT

In this paper, I will describe how the mechanisms by which the Dalitz and Goldstein method for
measuring the Top Quark mass work and the techniques used in this analysis.
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Geometrical Construction

The Dalitz and Goldstein[2] method for measuring the Top Quark mass in the Dilepton channel
employs a geometrical interpretation of the equations of constraint.

Those equations are:

(l+ + ν)2 = M2
W (1)

(l− + ν̄)2 = M2
W (2)

(t− l+ − b)2 = M2
ν = 0 (3)

(t̄− l− − b̄)2 = M2
ν = 0 (4)

t2 = M2
t = M2

t̄ = t̄2 (5)

−P t
x ∼ P t̄

x (6)

−P t
y ∼ P t̄

y (7)

where t, l, b, and ν are the top quark, lepton, bottom quark, and neutrino 4-momenta. MW ,
Mt, and Mν are the masses of the W boson, Top quark, and neutrino. P t

x and P t
y are the x

and y components of the Top and anti-Top quarks’ transverse momenta. Equations 6 and 7 are
only approximate and are considered ”weak” constraints while the rest are ”hard” constraints.
Equations 6 and 7 are ”weak” due to the possibility that the partons inside of the protons may
have some transverse momentum. If this were not the case, then both equations 6 and 7 would
be ”hard” constraints.

The geometrical construction begins by rewriting equations 1 - 4 in terms of the Top and
Bottom quark kinematics.

(~Pt − ~Pb)
2 = (Et − Eb)2 −M2

W ≡ R2
W (8)

(~Pt − ~Pb − ~Pl+)2 = (Et − Eb − El+)2 ≡ R2
ν (9)

~Pt, ~Pb, and ~Pl+ are the 3-momenta for the Top, Bottom, and charged lepton; and Et, Eb, and
El+ are their corresponding energies. A second pair of equations can be written for the anti-Top
quark and its decay products in exactly the same way. These equations have a similar form to the
equation for a sphere, in this case in 3-dimensional momentum space.

X2 + Y 2 = R2 (10)

This suggests that the Top 3-momentum vector ~Pt must lie on the intersection of two spheres
of radii RW and Rν . The centers of these two spheres are separated by the charged lepton’s
3-momentum ~Pl+.(Figure 1) The intersection of these two spheres is a circle with radius r. If we
neglect the lepton masses, the Top Quark energy will be constant on this circle, where E0 is the
lowest possible energy for the Top Quark given the kinematic of the event.
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Figure 1: The two spheres of radii RW and Rν , whose centers are separated by ~Pt, and intersect
in a circle.

r2 =
M2

W

| ~Pl+ |
(Et − Eo) (11)

Eo = Eb − El +
M2

W

4El
(12)

Given a different Top Quark 3-momentum ~Pt, a different pair of spheres can be constructed. It
is possible to choose a ~Pt where the two spheres intersect only at a point, which would correspond
to a Top Quark energy equal to E0. For each pair of spheres that intersect, a new circle is created
which will correspond to a different Top Quark energy Et. The Top Quark energy will increase in
the direction of ~Pl+. These circles form the surface of a paraboloid. While the Top Quark energy
is constant on these circles, the Top Quark mass , Mt, is not; however, if the mass is fixed the
Top Quark 3-momentum vector will be confined to a conic section of the paraboloid which is, by
definition, an ellipse. The orientation and eccentricity of the ellipse will depend on the assumed
mass and the 4-momenta of the leptons and Bottom Quarks. A similar ellipse can be constructed
in the same way for the anti-Top Quark.

Once both ellipses are constructed, they are projected into the x-y plane of the detector, one
of which is reflected about the origin. Using the ”weak” constraints, the problem becomes fully
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Figure 2: The two spheres of radii RW and Rν , showing a circle of intersection with constant
energy Et. O is the point where Et − E0 = 0, the minimum energy allowed for the Top Quark
as determined by the kinematics of the event.

constrained where each pair of points, one from each ellipse, corresponds to a possible solution
consistent with the assumed top mass and the measured lepton and jet momenta. If these final
constraints were ”hard”, then only the points of intersection of the two ellipses would need to be
considered as possible solutions. It is because they are ”weak” that every pair of points needs
to be considered. Given a pair of points from the projection of the two ellipses, the transverse
momentum, Pttt̄, of the Top-anti-Top system can be calculated. Each pair of points is weighted by
a likelihood factor, P (Pttt̄), from the Pttt̄ spectrum. The expected shape of the Pttt̄ distribution
is determined from Monte Carlo simulation. If a different top mass is assumed, a different pair
of ellipses will be created whose projections into the x-y plane will give another set of possible
solutions.

The Likelihood

To determine the most likely mass of the Top Quark a probability distribution is constructed
for each combination of leptons and jets in an event. Given an assumed top quark mass, a
likelihood value Li is projected onto the Mt-axis of this distribution. The most likely top quark
mass corresponds to the peak of this distribution. The likelihood values, Li, are a product of six
probability factors.
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Figure 3: The two spheres of radii RW and Rν , showing a circle of intersection with constant
energy Et. O is the point where Et − E0 = 0, the minimum energy allowed for the Top Quark
as determined by the kinematics of the event. Also seen here is a second circle of constant Et
corresponding to a different Pt (not drawn) resulting from the intersection of two other spheres
(also not drawn). Both circles begin to form the paraboloid surface.

Li = P (Ptt̄)×G(b)×G(b̄)× P (x1, x2)× P (l+)× P (l−) (13)

P (Pttt̄) is the factor related to the transverse momentum of the Top-anti-Top system

G(b) and G(b̄) are the factors related to Jet Energy Smearing

P (x1, x2) is the factor related to the Structure Functions

P (l+) and P (l−) are the factors related to V-A Calculations
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Figure 4: The two spheres of radii RW and Rν showing a circle of intersection with constant
energy Et. O is the point where Et − E0 = 0, the minimum energy allowed for the Top Quark
as determined by the kinematics of the event. Also seen here is a second circle of constant Et
corresponding to a different Pt (not drawn) resulting from the intersection of two other spheres
(also not drawn). Both circles begin to form the paraboloid surface. Assuming a constant Mt

confines Pt to a conic section of the paraboloid which is an ellipse.

i. P (Pttt̄)

See Geometrical Construction.

ii. P (x1, x2)

A relative likelihood factor is assigned that describes the level of agreement between the
Feynman-x values, x1 and x2 , that are calculated from the event and those predicted by theory,
i.e. the structure functions for the event,

Px1,x2 =

∑
i=qq,gg Fi(x1)Fi(x2)dσ

dt̂
(ŝ, t̂)i∑

i=qq,gg
dσ
dt̂

(ŝ, t̂)i
(14)

x1,2 = (Et + Et̄ ± (tL + t̄L))/2P (15)

ŝ = x1x2s (16)

t̂ = M2
t − x1

√
s(Et − tL) (17)
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where i labels the qq̄ and gg processes; Fi are the structure functions; ŝ is the center-of-mass
energy; t̂ is the momentum transfer of the Top-anti-Top quark production subprocess; P is the
proton momentum; s is the square of the proton-anti-proton system in the center-of-mass frame;
and tL is the longitudinal momentum of the Top Quark in the lab frame of the proton-anti-proton
system.

iii. P (l+) and P (l−)

For each point a likelihood factor is calculated to describe the agreement of the charged lepton
energies calculated in the Top Quark rest frame with the values predicted by V-A calculations.

dP (El) = (24/M2
t )El(1− 2El/Mt)dEl (18)

iv. G(b) and G(b̄)

Since the b-jet and b-quark measured energies have large errors, the true energies can differ
from the measured values. A range of energies is defined which is centered about the measured
energy of each of the jets in an event. The range is chosen to be 3σ, where σ is the width of jet
energy resolution distribution. A probability, G(b), is assigned for each point within the 3σ range.
Points that correspond to b-jet energies that deviate from the measured value will be downgraded
by a Gaussian probability factor giving them a lower probability than ones closer to the measured
value. This smearing of the jet energies will give a family of ellipses for each jet.

Pairing together all the combinations of ellipses from each family will create a 2-dimensional
grid where the axes are indexed by the smeared jet energies. Each point on the grid will have a
value which is the Li that corresponds to smeared jets momenta and the given lepton momenta
and assumed top mass. There will be a different grid for each assumed top mass. All together,
this will create a 3-dimensional space where the third axis is the assumed top mass. Summing
over the assumed top mass axis of this space will reduce it back to a 2-dimensional grid with
the smeared jet energies as the remaining axes, however, now the value at each point is a total
likelihood. The point on the grid with the greatest total likelihood will be chosen as the most
probable solution given this combination of leptons and jets.

It should be noted that this is an important difference in methodology between this analysis
and the Run 1 analysis done by Kristo Karr[1]. In that analysis the 2-D smeared jet energy grid
was summed over to get the total likelihood for the event instead of picking the best smeared jet
combination.

This total likelihood and its corresponding probability distribution will be compared to other
combinations of leptons and jets (Bottom Quarks) from the same event where the greater one is
favored.

MET Probability

There is an additional probability calculated for each combination based on the measured
missing transverse energy. During the analysis of each combination, the energy and momentum
of the neutrinos are obtained. The difference between the two missing neutrinos’ x and y momenta
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in the transverse plane and the missing transverse energy’s x and y components are compared and
assigned a probability based on a Gaussian shape.

The Joint Likelihood

Once a combination from an event is chosen via the method described above, and all events
have been analyzed, a joint likelihood is created. The joint likelihood is the product of the prob-
ability distributions from the chosen combinations from each event. The shape of the probability
distribution for each event will not necessarily be the same. Some will be asymmetrical and some
may have more than one peak. Choosing the mean or the peak value as the top mass for an
individual event may include biases from the shape of the distribution. By taking the product of
the event distributions, the joint distribution becomes more Gaussian in shape. Multiple peaks
and asymmetries in the individual events are eliminated in the joint distribution as are the possible
biases that these characteristics may produce. Since the true top mass for all of the events is the
same, the joint probability distribution reveals where all the events are consistent with a given
Mt, which should point toward the true mass. The arithmetic mean of the joint distribution is
the Top Quark Mass.

The Construction of the Pseudo Experiments

The real data and the Monte Carlo data are treated in exactly the same way in every detail
of this analysis except for how the joint likelihood is constructed. When analyzing real data, all
of the candidate events take part in the product that forms the Joint Likelihood. When analyzing
the Monte Carlo data, all of the events that pass cuts and have a solution are put into a pool.
Next, events are randomly selected from the pool and multiplied together to produce the joint
likelihood, which forms one pseudo experiment. The number of events selected from the pool
to form one pseudo experiment depends on the number of candidate events expected in the real
data. The number of events is randomly generated based on a Poisson distribution whose mean
is the number of candidate events. Care is taken to not allow an event to appear more than
once in the same pseudo experiment, however, all events in the pool are available to every pseudo
experiment. The mean and RMS from each pseudo experiment are used to calculate the delta
and the pull. The mean, delta, pull, and RMS are each put into histograms to produce their own
distributions.

The RMS Correction

When building the pseudo experiments using the joint likelihood method described above, it
becomes necessary to make a correction to the RMS in order to relate it to the errors. If a simple
distribution populated by the means of the events in a pseudo experiment was used to make the
measurement of the mass, the error on that measurement would be related to the RMS of the
distribution by 1/

√
N . This is, however, not the case for a joint likelihood distribution. A joint

likelihood distribution is too narrow and a correction factor is needed.
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In order to explain how the correction factor is calculated, a simple model is needed. The
model is a box filled with cards, and on each card is a number. The number of cards in the box
is N . The sum of all the numbers on the card is Sbox, the average of all the numbers is Abox and
the standard deviation of the numbers in the box is σbox. Now, n cards are draw from the box at
random without replacement. The expectation value for the sum of the draws, SEVdraw, is n ∗Abox
and the standard error on the sum of the draws from the box is

√
n ∗ σbox. The expectation value

for the average of the draws, AEVdraw, is SEVdraw/n which is simply Abox and the standard error for
the average of the draws is

√
n ∗ σbox/n which simplifies to σbox/

√
n.

The pool of events in this analysis is very similar to the box of cards. Each event is a card
and the number on the card is the mean of the distribution that corresponds to the event. All of
the same statistics that applied to the box of cards will apply to the pool of events in exactly the
same way. However, in this analysis, the average is not taken, but instead a joint distribution is
made. While at first glance this seems to be very different, making a joint distribution out of the
individual mass distributions for each event is like taking the average of the numbers on the cards.
So, the standard error for a joint distribution should be similar to that of the random draws from
a box and the RMS of a joint distribution is related to that error.

RMSJD ∝ σpool/
√
n (19)

If all possible combinations of n events were drawn from the pool and the mean of each sample
was put into a histogram, that histogram would be a total probability distribution. It would be
normal in shape even if the parent distribution is not. Its mean would be similar to the mean of
the parent distribution and its width would be the error on the mean of the sample distributions.
Since the number of possible combinations is an extremely large number, it is not practical to
compute every possible combination. Instead, it is sufficient to draw n events at random from
the pool X number of times as long as X is large. When this is done, the resulting histogram
will not be a complete total probability histogram, however its mean and width, σXPE, will be the
same as if all possible combinations were sampled. Since the widths of these distributions are the
same, σXPE describes the error on the PEs.

σXPE ≈ σpool/
√
n (20)

It follows that

RMSJD ∝ σXPE (21)

This gives the correction factor, C to the RMS of the joint distributions.

C = σXPE/RMSJD (22)

and

8



RMScorr = C ×RMSraw (23)

where RMScorr and RMSraw are the corrected and uncorrected widths of the individual joint
distributions of each PE.

The Mapping Function

Analyses of a range of Top Mass MC samples are used to study the correlation between the
generated and reconstructed mass. Each mass MC sample has its own mean, delta, pull, and
RMS distribution. Given the mean distribution for each mass MC sample, a plot of reconstructed
mass as a function of MC mass is made and to it a line is fit. It is possible to fit other shapes to
the points, however a line does the job very well. That fit is the mapping function that will be
used to make the final correction to the measurement.

Figure 5: Mapping function from signal only MC to be used as a correction on the real data
(Left). Delta, Delta Width, Pull, and Pull Widths for the signal MC data samples after
corrections has been applied from the mapping function (Right).

Additional Types of Combination Selection

In addition to selecting a combination of leptons and jets according to their relative prob-
abilities, three other methods are also studied. The first method is to combine both the most
likely combination with its ”twin”. The ”twin” is simply the combination where the jets-leptons
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assignment is switched. Both probability distributions are added together for each event before
the pseudo experiments are constructed. The second method is to select only the combinations
in an event that have both of the two leading jets, the jets with the highest transverse energy.
After the two combinations are found, the one with the highest probability is chosen. The final
method differs from the second in that the two combinations that contain the two leading jets
are added together, just like in the first additional method.

Figure 6: Mapping functions, Deltas, Delta Widths, Pulls, and Pull Widths for the signal MC
data samples where the most probable combination is added to its ”twin”.
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Figure 7: Mapping functions, Deltas, Delta Widths, Pulls, and Pull Widths for the signal MC
data samples where the most probable combination is selected out of the combination which
contain both of the leading jets.
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Figure 8: Mapping functions, Deltas, Delta Widths, Pulls, and Pull Widths for the signal MC
data samples where the most probable combination is selected out of the combination which
contain both of the leading jets and is added to its ”twin”.
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