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Abstract

Supergravity theories admit a large variety of extended-object solutions that
are characterized by the saturation of a Bogomol'ny bound, with a consequent

partial preservation of unbroken supersymmetry. We present a scheme [1] for the
classification of such solutions into families related by dimensional reduction and
oxidation, each headed by a maximal non-isotropically-oxidizable, or “stainless”

solution.

The effective field theory for the massless modes of the bosonic string is described,

up to order o, by the effective action
Lg = / dPzy/=ge > [(D—26)- 1o/ (R+4V*¢~4(Ve) ~ HHunp H MNPLLO()?, (1)

containing the following massless fields: the metric gapn, the antisymmetric tensor gauge
field By, with field strength Hynp = OuBnp + OnBpr + dpBun, and the dilaton
field ¢. A similar set of fields occurs as a subset of the effective field theory for any string
theory, and in a superstring theory corresponds to the Neveu-Schwarz, Neveu-Schwarz

(NS-NS) sector of the theory. The effective action (1) provides a summary of the effective
field equations of the theory. These equations are themselves directly derived by making
a self-consistent coupling of the string to a background “condensate” of its own massless

modes, requiring self-consistency with the background through the cancellation of BRST

anomalies [2], or by the vanishing of sigma-model beta functions (39, BB, 3°) [3]. The
] dimension; in the effective action for

(D — 26) “cosmological term” indicates the critica

superstrings, this changes to (D — 10).
One should note several major differences from General Relativity in the theory de-
scribed by the effective action (1). First of all, the o' corrections continue on to infinite

order, with finite, calculable coefficients. This gives rise to apparent ghost states, owing
s under contracts SC1*-
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to the occurrence of higher-derivative terms in the effective action. The string theory is
unitary, however, so these apparent ghost states must be purely artifactual. They are
similar to analogous artifacts that would occur in the QED effective action for the mass-
less photon after integrating out the massive electrons. As in that case, the apparent
ghosts herald the onset of new physical effects not properly described by the effective ac-
tion, once a certain energy scale is reached. In QED, this effect is electron-positron pair
creation. In string theory, it is the excitation of massive-level string oscillations. One also
needs to take account of the physical effects of the additional massless fields Bysy and ¢
in (1). The scalar dilaton field ¢ plays an especially important réle, because its presence
blurs the identification of the physically-relevant spacetime metric, owing to the possibil-
ity of conformal redefinitions gy v — €’ g, giving rise to different “conformal frames”.
The effective action (1) is written in a conformal frame such that lg = [ dP\/=ge=*°3°.
Another frame that is frequently used is the “Einstein frame,” in which the e~%° factor
in front of the Einstein-Hilbert Lagrangian \/—gR is scaled away.

In superstring theories, there appear additional massless-level antisymmetric tensor
gauge fields. These fields couple to bilinears in the fermionic variables of these theories,
and so belong to the Ramond, Ramond (RR) sector. For example, in the type IIA theory,
the RR sector has a 3-form gauge-field potential Apyp and a 1-form potential Ay in
addition to the NS-NS fields. In the type IIB theory, there is a second 2-form potential,
making up a doublet Bi,y, together with a 4-form potential Ayypg (Whose 5-form field
strength is self-dual), in the superstring critical dimension D=10.

In the following, we shall simplify our discussion and at the same time shall encompass
the effects of all of the scalar and antisymmetric-tensor contributions to the effective
theory by restricting attention to one scalar field, denoted ¢, and one (n — 1)-form
gauge potential By,..as,_,, with an n-form field strength Hps, . as,. The D-dimensional
Lagrangian for these fields will be taken to be

1 —-a
L= V=9[R~ 4(06) - 5 Hpn"] | (2)
where the parameter a governing the coupling of the scalar ¢ to the antisymmetric tensor
kinetic terms will play a central réle in our discussion. We have given a reminder of the
order of the form Hp, in its subscript. The equations of motion following from (2) are

Q¢ = “'%ff'wH[n]2
Ryn = 10M@On0 + Sun
1 —ad n—1
Smun = me *[Hyn — mH29A1N]
Vi (e"@HM My = 0. (3)

Kaluza-Klein Dimensional Reduction

Now we consider the reduction of the system described by (2, 3) from D' = D + 1 to
D-dimensional space-time. We shall consider only consistent truncations of the fields,
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i.e. restrictions of the fields such that solutions of the restricted theory are at the same
time solutions of the unrestricted theory. We shall let the (D + 1)-dimensional quantities
be indicated with careted indices: ™ = (z*, 2). The line element in D + 1 dimensions
1s taken to be

ds* = **%ds® + €2 (dz + Apda™)? | (4)

The Kaluza-Klein ansatz for the metric is then (4) together with a restriction to z-
independent fields ¢(z) and Ay (z). The constants a and B will be chosen shortly.
Insertion of the ansatz (4) into the Einstein-Hilbert action produces an action for a D-
dimensional theory. Now fix 8 = —(D — 2)a, to maintain the Einstein-frame form of the
D-dimensional action, and fix o2 = [2(D — 1)(D —2)]7! to normalize the ¢ kinetic term.

We also need to specify an ansatz for the antisymmetric tensor gauge field B[n—l]
(where the superscript indicates the order of the form). Since only one of the (n — 1)
antisymmetrized indices may take the value z, one has

B[n~1] = B[n_l](.’lf) + B[n_g](x) Adz . (5)

For the field strength H[n} = dB[n—l] it is convenient to define an] = G — Gy A 4,
Gy = dB,_y and G[n—l] = dB[n—2]7 giving

Hip) = Gioy + Giayy A (d2 + 4) . (6)

Substituting these decompositions into (2), one obtains the dimensionally-reduced La-
grangian

L = \ -Q[R - %(8@5)2 - %(a(p)Q _ 4le—?(l)—l)ag_ol;ﬂ

__1_6—2(n—1)acp—d¢Gin]2 _ e2(D—n)aap—d¢>G[n_1]2] ’ (7)

2n! 2(n — 1)

where /" = dA is the field strength for the Kaluza-Klein vector emerging from the (D+1)-

dimensional metric §pn and a is the ¢ coupling parameter for fl[n] in the (D + 1)-

dimensional theory. )
Note that the prefactors of the terms an]Q and G|,-yj? are both of the form e~%ni%w

where the 45[,,] are SO(2)-rotated combinations of ¢ and ¢. Restriction of the fields
in the original (D + 1)-dimensional Lagrangian (2) to obtain the dimensionally-reduced
Lagrangian (7) is a consistent truncation of the theory. Further restriction to keep just
one of the three n-form terms. F? (corresponding to n = 2), G’[n]Q, or G[n—1]2, together

with an appropriately-rotated scalar-field combination q;[n} while setting the orthogonal
scalar-field combination to zero is also a consistent truncation. This last truncation
gives once more again a Lagrangian of our standard simple form (2). Since all of the
restrictions made have been consistent truncations, solutions of the restricted theory will
also be solutions of the original unrestricted theory. Consequently, studying solutions of
(2) in the diverse possible spacetime dimensions D for supergravity theories will also give
us sets of solutions of the original superstring effective field theories.



p-brane solutions

Now we concentrate on solutions to the standard system of field equations (3) following
from (2). For the line-element in D dimensions, we make the metric ansatz

ds? = e*Adztdatn,, + e2Pdy™dy 6mn (8)

where z# (1 = 0,...,d — 1) are coordinates on a translationally invariant d-dimensional
subsurface embedded in the D-dimensional spacetime; these are to be interpreted as the
“worldvolume” coordinates of the p-brane. The y* (m =1,...,D — d) are coordinates
of the “transverse’ space to the p-brane. The functions A(r) and B(r) are taken to
depend isotropically on the y™ coordinates, i.e. only through the SO(D — d) rotationally-
symmetric combination r = /y™y™.

For the (n — 1)-form gauge potential Bus,..a,_1 there are two types of ansatz for the
solutions that we shall consider:
Elementary p-branes
In this case, the antisymmetric tensor By .., _; couples directly to the worldvolume of
the p-brane, sod =p+1=n -1, and we make the ansatz

Cl(r
Burps = €€ (9)

where the as-yet undetermined function C(r) again depends isotropically on the trans-
verse y™ coordinates. Components of Bas,..a,_, with indices pointing into any of the
transverse directions are set to zero. As a consequence of this and of isotropicity, the
field strength Hi, takes the form

Hunpy ot = ful---un—xamec(r) ' (10)

Solitonic p-branes

This case is dual to the elementary case above, and for it the worldvolume dimension is
d =D —n — 1. The antisymmetric tensor ansatz is most conveniently given directly in
terms of the field strength,

yP
Hm1-~mn = Qfml-»‘mnp;ﬁf s (11)
where @ is a magnetic charge.
Given the above ansitze, one finds solutions by direct substitution into the equations
of motion (3). First, define the worldvolume dual dimension by

d=D—-d-2. (12)
Then one finds solutions with
B = -4
d
a(D — 2)
= —A
¢ ed
kA k
€ = 1+ — s (13)
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where k = d+ (2d)"'a?(D - 2), e = +1(—1) for the elementary (solitonic) solution, and &
is a constant related to the charge Q by k = [2(D—=2)]"'[(D—2)2%a?/d*+2d(D—2)/d]'/%¢Q.
In the elementary case (9), the function C(r) is determined by

0

2-(e5(r)) = Qe (14)

The line element determined by the solution (13) may be written in a nicely sym-
metrized form

2 ko ___4d k. __4d _
ds® = (1+ —) @-28 detdz*ny, + (1 + —)®-22 dy™dy™ , (15)
T T

where the constant A is defined by

2
a®=A D3 (16)
The importance of the quantity A introduced here goes beyond the nice symmetrical
form it gives to (15), for we shall see that A is invariant under dimensional reduction {1].
Within the present context of solutions derived from the ansatze (8-11), the values of
A that have been found are A = 4,2, 4. Generalisation of this ansatz to excite multiple
scalar-antisymmetric combinations yields further A values [11,12].
The elementary and solitonic solutions (13,14) derived from the ansatze (8-11) have
a special structure that permits Kaluza-Klein dimensional reduction to be carried out
directly on the solution, and not only on the equations of motion. The special feature of
these solutions permitting this is translational invariance along the worldvolume direc-
tions, as manifested in the coordinates used in (13,14) by the lack of dependence of A(r)
and C(r) upon the worldvolume coordinates z#. Thus, dimensional reduction may be
effected directly upon such a solution by letting the reduction coordinate z be taken to be
any one of the z#. Such a reduction automatically preserves isotropicity in the transverse
coordinates and maps elementary — elementary and solitonic — solitonic solution types.

Oxidation, Rustiness and Stainlessness

The converse of Kaluza-Klein dimensional reduction has been called “dimensional oxida-
tion.” Whenever a theory in D spacetime dimensions may be obtained by dimensional
reduction from a theory in D + 1 dimensions. then any solution of the D-dimensional
theory may be promoted, or “oxidized” to a solution of the D + 1-dimensional theory.
This procedure does not, however, guarantee that specific features of a solution, such as
isotropicity in the transverse dimensions, will be preserved under oxidation. Thus, we
introduce some more terminology (traditionally fanciful in the subject of supergravity):
if an isotropic p-brane solution in D dimensions can successfully be oxidized into an
isotropic (D + 1)-dimensional solution in accordance with our ansitze (8-11), then we
shall call such a solution “rusty.” As is immediately apparent, isotropicity in the new



D + 1 — d transverse dimensions requires that the value of the worldsheet dimension d
increase by one in this process (but note that d remains constant). Thus, a rusty p-brane
in D dimensions oxidizes into a (p + 1)-brane in (D + 1) dimensions.

Clearly, all of the 'brane solutions that can be obtained by dimensional reduction from
solutions in higher spacetime dimensions using translational symmetries along worldvol-
ume directions are rusty. The process of isotropic dimensional oxidation and reduction
of such solutions corresponds to the process of double dimensional reduction of p-brane
worldsheet actions as originally discussed in [4]. We shall not concentrate here on the
dynamics of the zero-mode fluctuations of our translationally-invariant p-brane solutions,
but these should be described by worldvolume actions generalizing the Nambu-Goto ac-
tion for the string. Several of the present families of solutions fit cleanly into known
actions of this type [5]; others appear to require an extension of the known class of
worldvolume actions.

A sequence of p-brane solutions related by isotropic dimensional oxidation must end
somewhere. This can happen in two ways. One of these occurs at the top of a dimensional
reduction/oxidation sequence of theories, where the top theory is not itself obtainable by
reduction from any theory in a higher dimension. The other way involves a theory that
can be oxidized to a theory in a higher dimension, but where the solution in question
cannot be oxidized without loosing its isotropic transverse structure in the process, i.e.
without going outside the form of our p-brane ansétze (8-11). In either of these cases
where the solution cannot be isotropically oxidized, we shall call the solution “stainless.”
Classifying the stainless solutions will give us a classification of all p-brane solutions.

Examples

The D = 10 effective action for any supergravity theory includes the fields present in
the bosonic string effective action (1). After a conformal rescaling to put the action into
Einstein frame, one has

_ 1 10 2 1 MNP
1ﬁ__Z§/d V=9[R = 1(89)" — 5 HynpH ] (17)
This is of our general form (2), with @ = 1, n = 3. The two-form gauge field Byx
supports an elementary string (p = 1) solution [6]

ko v 2 m g n
dsi, = (1+r—é) 3/417Wd:r“dx +(1+E)1/46mndy dy
ko _ - N k
Bm=-%wm+§)l ewzeMQ+§y (18)

This solution has d =2, d =10—-2—-2=6,a =1, giving l = A —2-2-6/(10 — 2), so
A =4

The simplified action (17) is obtained from a consistent truncation of D = 10, N = 24
supergravity, whose bosonic sector is:



_ 1 10 2 L —opp2 1
[QA“E{/E/d :Ev—g[R—%(G@ - 2.3!6 H[3]_2-2!

1

5 4!e¢/2Hf412] — $Hy NHg A By, (19)
where H [’4] = dBjg + Ay A Hyg- This action is in turn obtained from a consistent Kaluza-
Klein dimensional reduction of the bosonic sector of D = 11 supergravity:

= g [ 12V TB(R = e ] i

Since the action (17) giving rise to the elementary string solution (18) is obtained
from a sequence of consistent truncations starting from the D = 11 action (20), the
D = 10 string solution automatically oxidizes to a solution of the D = 11 theory. After a
preliminary conformal rescaling to account for the canonical Einstein-frame normalization
of the D = 10 action, one obtains the D = 11 solution

e Fy

H[4] A Hiyy A By (20)

ke, _ v ks mq,n
dsty = (14 =) et da"n + (1+ =) dy™dy

ko _
Bu, = —ew,,(1+T—§) 1, (21)

This is the isotropic elementary membrane solution (p = 2) of D = 11 supergravity [7].
Note that the D = 10 dilaton has disappeared, having been absorbed into the D = 11
metric as gi111 = €**/3. Since the D = 11 theory does not contain a dilaton, one should
consider that the coupling parameter a takes the value zero, giving 0 = A—2-3-6/(11-2),
so A = 4, the same as for the string solution in D = 10.

By the above discussion, we have verified the rusty character of the (p = 1) elementary
string in D = 10, since it is isotropically oxidizable to the (p = 2) elementary membrane in
D = 11. The D = 11 membrane solution is itself stainless, since the D = 11 supergravity
theory is the largest supergravity theory, and is not obtainable by dimensional reduction
from any higher dimension. The D = 11 elementary membrane sits at the top of an
oxidation/reduction pathway that reduces down to the D = 10 elementary string that
we began this example with, and then to a D = 9 elementary particle solution, which
turns out to be an extreme Reissner-Nordstrom black hole.

Now consider an example of a solution where oxidation can be performed, but where
the isotropic character is lost. In D = 9, there are two independent 5-brane solitonic
solutions, whose metrics are:

k k
dsfacy = (1+2) Videbden, + (L4 Ddy™dy®  p=0-5  (22)

k k
dsiacy = (1+ )2 Mdetdan + (1+2)*dy"dy® m=6-.8. (23)

In both cases, there is a 1-form potential Ay, with field strength

— 9k yP
A2

Hyp = (24)
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Since the D = 9 theory can be obtained by a consistent Kaluza-Klein reduction from D =
10, both solutions (22,23) can be oxidized, but with different results. The A = 4 solution
(22) can oxidize isotropically, since the D = 10 theory has a Basy 2-form potential with
a A = 4 scalar coupling and so can support an isotropic solitonic 6-brane solution:

k k
dstoacs = (14 ;)_I/de“dzun#u +(1+ —1:)7/8dymdy
H. = —ke y—q (25)
. mnp = mnpq e

Since it can isotropically oxidize, the D = 9, A = 4 solution (22) is rusty.

By contrast, the D =9, A = 2 solution can only oxidize by having the A = 2 1-form
Ajs become part of the D = 10 metric, since there is no appropriate A = 2 2-form gauge
field in D = 10. One then finds the D = 10 metric

k k
dsfo“,arped =(1+ —;)“1/7(d:1:“d:r”77u,, + (dz + Apdz™)?) + (1 + ;)7/4dymdym . (26)
In this metric, z has become a coordinate on a non-trivial U(1) fibre bundle: the metric
has become “warped.” Thus, we have an example of the second kind of stainless p-brane
in the D = 9, A = 2 solution (23): although it can be oxidized to a higher-dimensional
spacetime, this oxidation does not preserve the isotropic character of our p-brane metric

ansatz (8).

Supersymmetry

All of the solutions so-far discussed have been purely bosonic; although they are solutions
to supersymmetric theories, fermion fields have been set to zero in these backgrounds. As
with the simplest flat-space solution, however, such solutions may nonetheless preserve
several supersymmetries unbroken. Since we are dealing with supergravity theories, the
full supersymmetries of the action are local; what might remain unbroken in a given
background is generally only a rigid supersymmetry. Nonetheless, since in gravitational
theories one is frequently dealing with solutions that asymptotically tend to flat space,
the standard of comparison for the unbroken supersymmetries is not the original full local
supersymmetry of the action, but the asymptotic supersymmetry of flat space. Thus, one
may speak of “half” of the supersymmetry being preserved by a solution, meaning that
the solution leaves unbroken half as many supersymmetries as the usual asymptotic flat
spacetime. The preservation of half of the flat-space supersymmetry turns out to be a
hallmark of the class of solutions considered here.

To see how some supersymmetry may remain unbroken in a purely bosonic back-
ground, consider once more the membrane solution of D = 11 supergravity, in which
the spin-2 gravitino field ¥, is set to zero. Under the full local D = 11 supersymme-
try transformations, but restricted to a vanishing gravitino background, the gravitino
transformation is

6wM = DME = <aM + %WffBFAB — §§§(FPQRSM + 8FPQR(55M)HPQ35) €. (27)
=0



Now make a 3 + 8 split of the I matrices:

Fa = (1.0T76,10%,) pu=0,1,2, m=3,...,10
Dy = 384y ; fi=1. (28)

Using this split, one may retain covariance under the unbroken SO(2,1) ® SO(8) sym-
metry of the membrane solution (21). In searching for unbroken supersymmetries, we
shall take the SO(2,1) ® SO(8)-covariant ansatz for the supersymmetry parameter

ez, y") = e@n(r), (29)

where € is a constant spinor under SO(2,1) and n(r) is an as-yet undetermined SO(8)
spinorial function of the isotropic transverse coordinate r = VY™

Using now the fact that the membrane solution (21) obeys our elementary-form ansatz
(8,9) with A = C/3, B = —C/6 + const., one finds that one can make a supersymmetry
transformation that maintains §¢,, = 0 with the parameter ansatz (29) provided n(r)
satisfies

n(r) = e 0oy, (30)
(1=T¢)p = 0, (31)

where 7 is a constant SO(8) spinor, and the condition (31) requires 7 to be chiral with
respect to SO(8). The chirality condition and the functional-dependence condition (30)
reduce the number of independent components (e, 79) in the supersymmetry parameter
(29) to half the number of rigid supersymmetries of D = 11 flat space, t.e. to 16 real
constant spinor components. Thus, we say that the solution (21) preserves half the
supersymmetry [7]. Half-supersymmetry preservation also characterizes all the other
p-branes that we are considering here.

The preservation of half of the supersymmetry is closely related to another feature
of the class of solutions that we have discussed. Although these solutions describe “win-
dows” of infinite extent, and hence have an infinite amount of field energy, their field
energy per spatial unit volume remains finite [6]. For example, for the D = 11 mem-
brane, one has a finite ADM mass/unit area expressed as an integral over the transverse
coordinates,

M = / &y 6o | (32)

where oo is a stress-tensor component. From the local D = 11 supersymmetry algebra,
it follows (subject to certain assumptions about nonsingularity) that the mass/unit area
satisfies the Bogomol'ny inequality [7]

WM2|Pl; P=i[ CH+3BAH), (33)
S7

where P is the conserved Page charge [8] of the D = 11 theory. Preservation of half the
supersymmetry implies that the inequality (33) is saturated.

KM = |P| . (34)
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The saturation of the Bogomol'ny inequality guarantees the stability of the solution.

Given the preservation of half of the supersymmetry, one can organize the fluctuations
about p-brane solutions into multiplets. Especially important among these fluctuations
are the Goldstone zero-modes, for which there is no restoring potential, so they behave like
massless wave-like excitations superimposed on the flat background p-brane “window.”
Each broken rigid symmetry gives rise to a Goldstone mode. Thus, for the membrane
solution in D = 11, one has 11 — 3 = 8 bosonic Goldstone modes coming from the broken
translational symmetries (corresponding to the transverse location of the membrane) and
32/2 = 16 fermionic Goldstone modes, coming from the broken supersymmetries. This
set of 8 bosonic and 16 fermionic fields is just what is needed to fill out a multiplet of the
unbroken supersymmetries, which may be considered to be an N = 8,d = 3 worldvolume
supermultiplet. Recall that supersymmetry requires a balance of bosonic and fermionic
degrees of freedom, but that fermionic wave equations are of first-order in derivatives
while bosonic wave equations are of second order, so that twice as many fermionic fields
are needed to describe the zero modes as for the bosonic fields.

The Stainless Brane Scan

To summarize the classification of p-brane solutions to supergravity theories, one may
plot just the stainless solutions, as we have discussed. Each of these gives rise to a
dimensional-reduction family of descendant p-branes in lower dimensions, following a di-
agonal trajectory on the (D, d =p+ 1) plane. The status of these solutions as possibly
ezact string-theory solutions varies according to the different cases [9]. There is accumu-
lating evidence, however, that the saturation of Bogomol'ny bounds for these solutions
gives a strong possibility that such solutions will persist in the full theory, perhaps with
some renormalizations.

In the following diagram of the stainless p-branes are included only purely elementary
or purely solitonic solutions; dyonic solutions are also known to exist, but are not shown.
To simplify the diagram, the various dual formulations of supergravity have also been
factored out, with theories being considered in their forms with antisymmetric tensor field
strengths satisfying n < D/2. Next to each stainless solution is indicated its A value.
The p-brane solutions discussed here preserve ; of the supersymmetry of the smallest
supergravity theory in which the given solution can exist, or an amount (4,%,1) of the
maximal possible supersymmetry (corresponding to dimensional reductions of D = 11
supersymmetry) for the cases A = (4,2,4). The D = 10 7-brane was recently obtained
in [10]. Additional recent solutions preserving lower amounts of supersymmetry with
new values A = (1, 4,2, 4) involving generalizations of our ansitze (8-11) have also been
found in [11,12]. Another class of recently-found solutions for supergravity theories with
dilaton potentials, but without n > 1 antisymmetric tensor field strengths, has been
discussed in [13-15]; the relation of these solutions (not shown in the diagram) to the
p-branes and dimensional-reduction classification discussed here remains to be clarified.

Clearly, an interesting kind of p-brane “chemistry” seems to be emerging.
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The Stainless Supersymmetric p-branes
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