

Angular Dependence of Multiplicity Classes and Transverse-momentum Spectra within Non-extensive Statistical Approach in pp Collisions at $\sqrt{s} = 13$ TeV

3 Aditya Nath Mishra¹, Gergely Gábor Barnaföldi¹, and Guy Paic²

4 ¹Wigner Research Centre for Physics, 29-33 Konkoly-Thege Miklós str., 1121 Budapest, Hungary and

5 ²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

6 Apartado Postal 70-543, México City 04510, México

7 (Dated: September 19, 2021)

8 Transverse momentum spectra of produced primary charged-particles and their evolution have been
 9 studied in function of the position of the azimuthal of the particles associated to the leading particle.
 10 for proton-proton collisions at $\sqrt{s} = 13$ TeV using PYTHIA8 Monte Carlo event generator.
 11 Additionally, the behavior of the spherocity distribution in the same azimuthal bins is reported.
 12 The Multiplicity and midrapidity transverse momentum spectra of charged hadrons in azimuthal
 13 bins have been analyzed in the non-extensive statistical framework. The results on the findings
 14 corresponding to the Underlying Event are cross-checked with the Tsallis-parameter derivatives and
 15 spherocity-classified events.

I. INTRODUCTION

17 In this work, the aim is to qualitatively and quantitatively classify high-energy events in comparison to
 18 the well known event shape observable. The method
 19 here is to generate hadron spectra in ultra-relativistic
 20 proton-proton collisions, extract the Tsallis-parameters
 21 in given multiplicity classes, which provide an entropy-
 22 based event classification. This led us to understand the
 23 strongly correlated, non-perturbative regime and to de-
 24 termine the absolute and quantitative properties of the
 25 Underlying Event (UE). The results reported in this pa-
 26 per are obtained from 1 billion non-diffractive events for
 27 pp collisions at $\sqrt{s} = 13$ TeV simulated using PYTHIA
 28 version 8.240 with the default Monash 2013 tune [1]. The
 29 events and particles are selected for this analysis accord-
 30 ing to the following criteria. The events having at least
 31 three primary charged particle with transverse momen-
 32 tum $p_T > 0.15$ GeV/c within the pseudorapidity $|\eta| <$
 33 0.8 are analyzed, which selection is required by the later-
 34 defined event-shape variable calculations.

II. ANALYSIS METHOD AND DEFINITIONS

37 To understand the particle production mechanism, by
 38 exploring the contributions of UE activity, in the azi-
 39 muthal space we consider two Cases to divide azimuthal
 40 space, $\Delta\phi$, in 18 different sections, where $\Delta\phi$ is the an-
 41 gle between the leading charged particle and associated
 42 charged particles of the event.

43 **Case I:** : We open $\Delta\phi$ angle in steps of 20° , named
 44 “opening angle”. The binning starts from $-10 -$
 45 10° and the last bin covers full azimuthal space i.e.
 46 $-180 - 180^\circ$. It is easy to recognize, that the last
 47 bin is the Minimum Bias (MB) and, therefore the
 48 ratio of the largest $\Delta\phi$ bin to the MB found exactly
 49 one. Case I is useful to investigate the evolution of
 50 the thermodynamical observables of the system.

51 **Case II:** : We make slices of the $\Delta\phi$ of size 20° , named
 52 “sliding angle”. In this case, the results for the first
 53 bin $0 - 20^\circ$ are reported in two ways: including and
 54 excluding the leading particle in the result. Case II
 55 is a tool for exploring the geometrical structure of
 56 the Underlying Event.

57 Note, Case I and Case II can be cross-checked within
 58 the 1st bin with and without including the leading par-
 59 ticle. This first bin is important, since this is the per-
 60 turbative region, therefore well-described by theoretical
 61 models. Moreover one has to take into account, that an-
 62 gle opening for Case I and Case II is treated differently,
 63 which will present as different structures in the $\Delta\phi$ plots.
 64 Case I definition includes both sides of the leading parti-
 65 cles, while Case II has mirror symmetry for $\Delta\phi = \pi$.

III. TRANSVERSE MOMENTUM SPECTRA WITH NON-EXTENSIVE TSALLIS STATISTICS

68 In the present study, we use one particular form
 69 of Tsallis distribution, named Tsallis–Pareto distribu-
 70 tions [2, 3], which satisfy the thermodynamic consistency
 71 relations and given by:

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s} (m_T - m) \right]^{-\frac{1}{q-1}}, \quad (1)$$

72 where A is scale parameter, q is the non-extensive pa-
 73 rameter, T_s is a temperature-like parameter, called Tsal-
 74 lis temperature and $m_T = \sqrt{p_T^2 + m^2}$ is the transverse
 75 mass of the given (identified) hadron species.

76 Since our aim here is to characterise the events by
 77 analysing different the UE contributions in the azimuthal
 78 space therefore, we fit p_T -spectra of charged particle
 79 with Tsallis–Pareto fitting function and explored the
 80 evolution of the Tsallis–Pareto parameters A , T_s and
 81 q in different $\Delta\phi$ bins for both cases. We found that
 82 the standard definition of the Underlying Event can
 83 be extended with about 66% in geometry within the

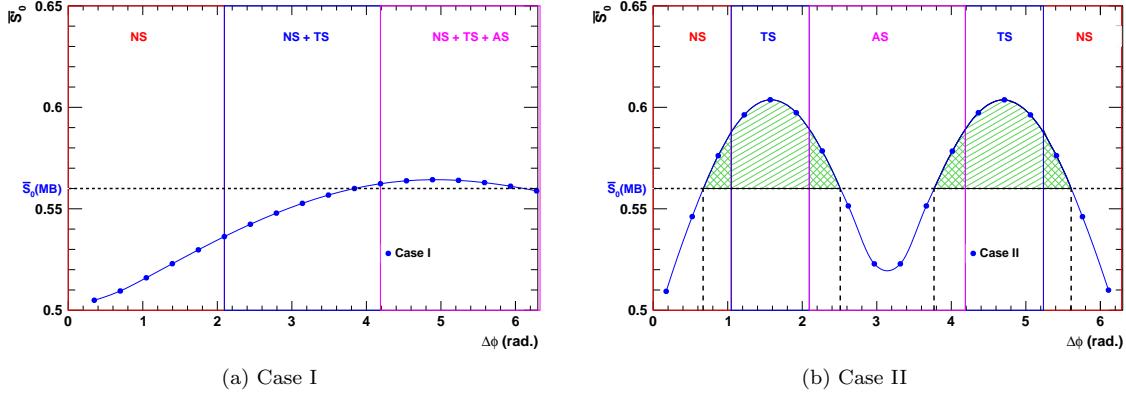


FIG. 1. Average spherocity (\bar{S}'_0) in $\Delta\phi$ bins are shown for Case I (left) and Case II (right). The horizontal dashed line corresponds to the minimum bias (MB) average spherocity for both cases.

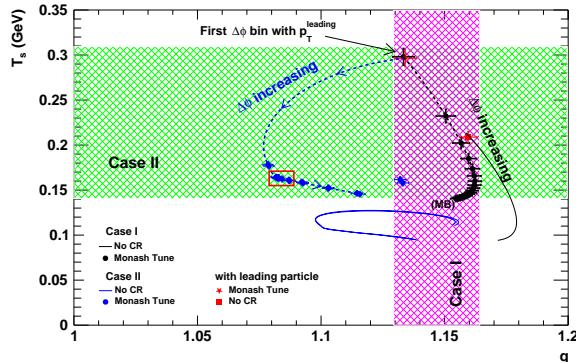


FIG. 2. The Tsallis-thermometer, which presents the relation between Tsallis temperature T_s and non-extensivity parameter (q) for both Case I and Case II. Red box represents the region obtained for new UE definition for Case II as defined in Fig. 1(b).

range, $[\pm 40^\circ, \pm 140^\circ]$ in comparison to the widely-used CDF-definition, $[\pm 60^\circ, \pm 120^\circ]$. Indeed we found an upper transverse-momentum threshold, $p_T \lesssim 3\text{-}4 \text{ GeV}/c$ for hadrons with Underlying Event origin. Location of the Underlying Event on the Tsallis-thermometer has been also presented at $T_s = 160 \pm 10 \text{ MeV}$ and at $q = 1.085 \pm 0.05$. Non-extensivity value was found to be the closest to the Boltzmann–Gibbs limit ($q = 1.0$) of the Tsallis–Pareto distribution's in isotropic events.

These findings were cross-checked with the parameter derivatives and spherocity-classified events. The ob-

tained, nearly-zero angular variation of the spectral parameters in the Transverse Side region can support the identification and better localization of the Underlying Event by the Tsallis–Pareto parameters. Finally our quantified values correlated well with the spherocity-classified parameter trends.

Plotting the corresponding T_s and q values one can identify a compact locations at $T_s = 160 \pm 10 \text{ MeV}$ and at $q = 1.085 \pm 0.05$ marked as red box in Fig. 2. Interestingly this region is the lowest in non-extensivity, thus as the most isotropic Transverse Side bins seem to be the closest to the special case of the Tsallis–Pareto distribution, the $q = 1$ Boltzmann–Gibbs description. Following the obtained geometrical structure from Fig. 1, the Underlying Event can be associated with the $[\pm 40^\circ, \pm 140^\circ]$ ($[\pm 2\pi/9, \pm 7\pi/9]$), region in Case II, indeed the more strict CDF-definition in $[\pm 60^\circ, \pm 120^\circ]$ ($[\pm \pi/3, \pm 2\pi/3]$).

ACKNOWLEDGEMENTS

Authors would like to thank the Hungarian National Research, Development and Innovation Office (NKFIH) under the contract numbers OTKA K135515, K123815 and NKFIH 2019-2.1.11-TET-2019-00078, 2019-2.1.11-TET-2019-00050, Wigner GPU Laboratory, Mexican Conacyt project CF2042 and the support of the Coordinación de la Investigación Científica, Mexico. Discussion on the fit procedure with G. Báró and T.S. Biró is highly appreciated.

[1] P. Z. Skands, S. Carrazza and J. Rojo, Eur. Phys. J. C **74** 3024 (2014).
[2] T. S. Biró, G. G. Barnaföldi and P. Ván, Physica A **417** (2015) 215.

[3] T. S. Biró, G. G. Barnaföldi and P. Ván, Eur. Phys. J. A **49** (2013) 110.