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ABSTRACT

The behavior of elastic scattering and of the electroproduction of
nucleon resonances is shown to be closely related to the behavior of deep in-
elastic electron-nucleon scattering. This relation is discussed in the context
of duality ideas taken from strong interaction processes. These ideas suggest
that a2 substantial part of the observed behavior of inelastic electron-nucleon
scattering is due to a non-diffractive component of virtual photon-nucleon scat-
tering. Through finite energy sum rules quantitative relations between the
elastic and resonance electroproduction form factors and the deep inelastic
scattering are derived and the behavior of inelastic scattering near threshold

is calculated.
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I. INTRODUCTION

High energy inelastic electron-nucleon scattering is a unique probe of the
charge distribution inside the nucleon and provides a method for searching for
possible substructure. Since experiments have revealed a large cross section
for inelastic electron-proton scattering, there have been many different attempts
to understand the physical origin of the observed regularities of the scattering,
particularly the deep inelastic scattering at high energies and large momentum
transfers. In this paper we will show that the behavior of the deep inelastic
scattering is related in a striking way to the behavior of elastic scattering and of
nucleon resonance electroproduction. The relation between resonance electro-
production and deep inelastic scattering is tied up closely with theoretical ideas,
particularly about duality, which arise from the behavior of purely hadronic
scattering processes, This leads us to a discussion of sum rules, and finally to
quantitative relations between the elastic and inelastic form factors and the in-
elastic structure functions. While we have dealt with these questions in a previous
short paperl, we present here an extended discussion of the theoretical ideas as
well as their consequences in quantitative detail.

We focus our attention on the process of inelastic electron-nucleon scattering
where an electron of known energy (E) is scattered by a nucleon through a measured
angle (6) to a smaller final energy (E') due to the exchange o£ a single photaon.:2
In general the nucleon breaks up due to the scattering and if only the final electron
is observed, then the double differential cross section can be written as
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The results of the scattering are thus summarized in the structure functions W1
and W, which depend on the exchanged photon's laboratory energy, v = E-E',
and minus the invariant mass squared, q2 = 4EE! sinzzg . Knowing v and q2
from measuring the incident and scattered electron, the invariant mass W of the

final hadrons is fixed by

s=W2=2MNv+M:lz\I-—q2. 2)

We can also consider inelastic electron scattering as a collision between
the exchanged virtual photon and the target nucleon. One is then simply studying
the total cross section of the process 'y " + p — hadrons, where the hadrons
have an invariant mass W and we are able to vary the energy, mass,and polarization
of the incident photon beam. This leads one to define total virtual photon-nucleon
cross sections for transversely and longitudinally polarized photons, O'T(V, qz)

and O'S(V,qz), which are related to w, and W, by2
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where K = v - qz/ZMN = (WZ'MI%I)/@MN)' The longitudinal total cross section og
is forced to vanish at q2= 0 by gauge invariance, while O ap q2 =0 is simply the total
photoabsorption cross section (into hadrons) for real photons. By the optical
theorem, the total cross section is proportional to the imaginary part of the

forward virfual photon-nucleon (or virtual Compton) amplitude. From this view-

point one regards the two structure functions W1 and W2 as two invariant ampli-

tudes in a tensor decomposition2 of the imaginary part of the virtual Compton



amplitude, and which are therefore linearly related to the total cross sections
(by Eq. (3)).

Having established the kinematic framework and notation, we can turn to
the physics. In the next section we briefly review the experimental situation for
inelastic electron-nucleon scattering and discuss the experimental indications of
scaling behavior in deep inelastic scattering. In Section III we turn to the behavior
of elastic scattering and of nucleon resonance electroproduction and show that
their behavior is closely related to that of the deep inelastic scattering, We then
discuss the relation between resonance electroproduction and deep inelastic scat-
tering in the context of duality ideas taken from strong interactions, which suggest
that a substantial part of the observed behavior of inelastic electron-nucleon scat-
tering is due to a non-diffractive component of virtual photon-nucleon scattering.
This leads in Section IV to a discussion of finite energy sum rules and guantitative
relations between the elastic and resonance electroproduction form factors and
the inelastic structure functions. In particular, we derive and discuss the behavior
of the inelastic scattering near threshold. Finally, a summary and discussion

is given in Section V.
II. DEEP INELASTIC SCATTERING EXPERIMENTS AND SCALING

The large cross sections observed for deep inelastic electron-proton scat-
tering3 have led to descriptions of the scattering in terms of point-like constituents
(partons) of the nucleon.4 In the parton descriptions, both the point-like magni-
tude of the deep inelastic scattering data and the scaling behavior proposed earlier
by Bjorken5 arise in a natural manner. 'Scaling" is the statement that as »

and q2 - 0 VWZ and W1 become non-trivial functions of the dimensionless ratio



w = ZMNv/qz only, rather than functions of both v and q2 separately, as would
be the case a priori. Since from a theoretical standpoint scaling is a statement
of behavior in the Bjorken limit as v and q2 -~ o any other dimensioniess vari-
able «', such that w' — w as v and q2 ~» o, is in principle just a suitable as w
for studying the scaling behavior of the experimental data, which exists only at
finite values of v and q2. Use of another variable, w', could lead to scaling
sooner in the sense that ¥W, and W1 would become independent of q2 (and thus
equal to their q2 == « limiting values) if they are studied as functions of q2 for
fixed w' rather than fixed w.

This is in fact the case for inelastic electron-proton scattering. 6 If we
take the data with cg[2 =1 GeV2 and for the moment we stay away from the low
W region with prominent nucleon resonances, then there is a more rapid approach
to scaling behavior if one uses the Variable6

W M

5 (4)
Clearly w! is dimensionless and is the same as w in the Bjorken limit of
v, q2 — w0, There is some indication7 from inelastic neutrino-nucleon scattering
data that scaling also occurs there sooner using «' rather than w. Since a best
fit6’ 8 (in the sense of best scaling behavior) for m2 in an expression of the form
w!'=w + mz/q2 gives a value of m2 consistent with M?\I’ and since w' =1 + W2/q2

10 in the remainder of

is a simple form, we will use w' as the scaling variable9
this paper.
In order to test for scaling behavior one must separate the confributions of

W1 and W2 to the double differential cross section in Eqg. (1), and then consider



VW, and W1 at fixed w' and see if they approach limits as q2 (and V) — oo .
The separation of W1 and W2 is accomplished by measuring the scattering at the
same value of » and q2, but at different angles, and is equivalent to a knowledge of
R = O'S/O'T. The value of R obtained8 by averaging over the present data between
w' of 1 and 10 is 0.18 £ 0.10. The values of R do not show any strong dependence on
v, q2 or w'. Using a fixed vatlue11 of R =0.18, Figurel shows IJVVz
and ZMNW1 as functions of w' for various q2 intervals and W = 2.0 GeV (beyond
the prominent resonances). Both sz and W1 scale (i.e., are finite and inde-
pendent of q2 at fixed w') to within the accuracy of the data for w' in the range
1< o <10, as long as qzz 1 GeV2 and W= 2.0 GeV.8

It will be useful later to have a smooth curve which passes through the data
for VW2 (w"). Tor this purpose we have taken a fitlz in the form of a polynomial

in (I-1/w"). An excellent fit is obtained with three terms, as

13 1\4 135
PWy(w!) = 0.557<1—2-0—,> +2.1978<1-5,-> -2.59546-5,-> , (5)

and is valid in the range 0.8 > —(5—, > 0.1. Figure 2 shows this function and the data

for vW, assuming R =0, 0.18, and 0.30 plotted versus x' =1/w' = qz/(qz +WZ).
We emphasize that we are using this fit as a convenient parametrization of the
data only, and it is not to be given any theoretical significance nor to be used
outside the range quoted above where it was fit to the data.

From the relation of W, and W, to the total cross sections ¢ and ¢__ in
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Eq. (3) one expects that as w! — =, VW2 and Wl/w' go as (w')a—l, where ¢ is

the Regge intercept (at t = 0) of the leading J-plane singularity in forward virtual

photon-nucleon scattering. If the leading singularity is that of the Pomeron,
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corresponding to diffractive virtual photon-nucleon scattering, then vwz and Wl/ w!
tend to constants as w' — =, On the other hand, if a non-diffractive component

of forward virtual photon-nucleon scattering is present, then W2 and WI/ w' should
decrease as w' -~ ©, TUnfortunately, for values of w' > 10 there is presently no
data over a large range of q2, nor is there a separation of W1 and W2. If we use
the same (small) value of R = (TS/O'T found for w' < 10, then the data that are

3

availab1e3 are consistent with scaling behavior and VW, decreasing for large
values of w'. In fact, either or both IJWZ and Wl/w' must decrease by ~ 20%
between their maxima at w'~ 5 and w'~ 25 if we alssume13 that scaling holds for
all w' as long as q2 =1 GeVZ. This is because for R =0, both VWZ and Wl/w'
decrease by this amount for large w' (with the restrictions above), and as we
increase the assumed value of R for «' > 10, the values of W, obtained from the
differential cross section measurements go up compared to those obtained
assuming R = 0, but those of Wl/w' go down. Since W1 and VW, are now known
rather well for «'< 10, one cannot tamper with W1 or vW, in this region, and
therefore one or both must decrease at large w' as noted above. One may

alternately directly consider the values of o,, at points where a separation has

T

been made. One then finds that at qz =1.5 GeVZ, Orr is a maximum near w' =4

and falls with increasing energy at least as much as the total photoabsorption
cross section does over the same v or W2 range at q2 = 0, 8 Thus, there is ex-
perimental evidence14 from the energy dependence of the measured cross sections
for a non-diffractive component to virtual photon-nucleon scattering at values

of q2 for which there is scaling for w' < 10.

More direct evidence for the presence of an isospin dependent and therefore

non-diffractive component of the amplitude is to be found in the difference between



inelastic scattering from protons and neufrons. 6 Neglecting corrections for
internal motion, final state interactions, and Glauber corrections, the

neutron cross sections are given by the difference of the derterium and hydrogen
Cross sections.15 The data indicate that the neutron cross sections are smaller
than the proton cross sections over a large kinematic range. In particular,
assuming the same value of R = O'S/ O'T for the neutron and proton,

szn/VWZp is smaller than unity at least for w' < 6, and YW,  scales

within the accuracy of the data. If one plots YW, -vW then there appears6

2p 2n’
to be a maximum near w' =4, at which point szp— VWZn =~ 0,1 and the ratio
VWZn/VWZp ~ 2/3. While the neutrino data may also suggest that the scattering
of neutrinos on neutrons and protons is different7, the electroproduction data is
the most direct and conclusive experimental evidence for an isospin dependent,
non-diffractive component of the amplitude for forward virtual photon-nucleon
scattering.

III. THE BEHAVIOR OF NUCLEON RESONANCE ELECTROPRODUCTION AND
DUALITY

A non-diffractive component of a forward amplitude and the corresponding
decreasing total cross section at high energy are correlated with the presence
and behavior of resonances a low energy, at least for purely hadronic processes. 16
In particular, total cross sections for processes like K+p and pp scattering, which
have no obvious s-channel resonances at low energy, have essentially constant
total cross sections above laboratory energies of a few GeV, while processes like
K p and pp scattering, which have many strong s-channel resonances at low
energy, have total cross sections which decrease substantially as the energy is

increased above a few GeV. This correlation of the behavior of total cross



sections and the presence of resonances is part of the '"two component" picture16
of duality for two body amplitudes. In this picture, ' Pomeron exchange' or
diffraction at high energies is connected to the low energy non-resonant "back-
ground™, while ""ordinary'" exchanges (non-Pomeron Regge trajectories or cuts)
are connected to the low energy s-channel resonances. The connection of
resonances at low energies to " ordinary" exchanges at high energies takes quanti-
tative form in terms of finite energy sum rules.17 These sum rules relate inte-
grals over the imaginary part of the amplitude at low energies to the properties
(residue functions, Regge trajectories) of the t-channel exchanges at high energies.18
Given the presence of a non-diffractive component of the forward virtual
photon-nucleon amplitude in the scaling region (from the experimental observations
of energy dependence and neutron-proton differences in inelastic electron-nucleon
scattering at values of q2' where scaling is observed), we expect that
for q2 21 GeVz nucleon resonance electroproduction will have a behavior which is
correlated with other features of deep inelastic scattering. In particular, we
would like to compare the behavior of the resonances with the behavior of VW2

and W, in the region where scaling behavior is observed.

1
Thebehavior of the resonances in comparison to VW2 in the scaling limit can

be seen from Figures 3 and 4 where we have plotted the function sz versus w!

at various values of q2 (assuming R = O'S/O'T = 0,18). The solid line, which is the

same in all cases is the fit12 described in Section II to the data for W=1.8 GeV

and q2 =1 GeV2 where scaling in w' is observed. We shall call this curve,

therefore, the !"scaling-limit-curve'. The values of VW, at fixed q2 are obtained

by interpolating the 6° and 10° data3 up to a hadron mass, W, of 3 GeV. Above

W = 1.8 GeV, where there are no prominent resonances visible, the interpolated values
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of VW2 at fixed q2 agree with the scaling-limit-curve, vW2 (w"), as they should. 12
We first of all note that we can easily distinctly see the prominent N*
resonances at values of q2 where VW2 scales for W2 2 GeV. A given resonance

(including the elastic peak) occurs at wi{ =1+ Mi{/ q2 and moves toward w' =1
as q2 increases. We also note that the prominent resonances do not disappear
with increasing q2 relative to.a "background' under them which has the scaling
behavior. (Note that for values of qz beyond about 3 GeV2 the present data is
not of sufficiently high statistical quality in the low W region to reveal whether
the prominent resonances are still present.) Instead, the prominent resonances
(and the background) seem to roughly follow in magnitude the scaling-limit-curve
at the corresponding value of w'. This can be seen even more clearly in Figures
5, 6, and 7 where the heights of the N*(1238), N*(1520), and N*{(1688) nucleon
resonance bumps in VW2 divided by sz (w'=1+ M?:{/q2) are plotted versus q2
at points taken from 6° and 10° spectra. The height of the resonance bumps in
W, is taken from fits of M. Breidenbach19 in terms of Breit-Wigner resonance
forms and a polynomial background made directly to the measured double dif-
ferential cross sections. The quantity VW2 (w') is again the value of the scaling-
limit-curve evaluated at a value of w' which corresponds to the given resonance
at the particular value of q2 measured in the 6° and 10° experiments. Clearly,
the ratio of the height of the resonance bump to the magnitude of the scaling-
limit-curve remains roughly constant for the prominent N* resonances as q2
changes from 1 to 3 GeVz.

Thus at least the prominent nucleon resonances have a behavior which is
strongly correlated with the scaling behavior of vW2. Furthermore, a recent

analysis20 of R = O’S/O' for W < 2 GeV shows the same small value (consistent

T
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with zero) that is found in the scaling region. In addition, we know that elastic
scattering is less from neutrons than from protons, just as is the deep inelastic
scattering. One, of course, cannot determine without a detailed partial wave
analysis what the q2 dependence is of the many broad, low spin N* resonances
that we know exist from pion- nucleon phase shifts. But the behavior of the prom-
inent N* resonances that we can see gives us the clue as to what is happening.

We thus proposel’21 that a substantial part of the scaling behavior of the virtual
photon- nucleon amplitude is due to a non- diffractive component of the amplitude.
In a duality framework we say that the nucleon and N* resonances at low energy
are an intrinsic part of the scaling behavior and correspond to the presence of
non- Pomeron exchanges at high energy. The resonances build up, in the sense of
finite energy sum rules, the non-diffractive part of the amplitude on the average
and yield the non- Pomeron exchanges at high energy, resulting in a falling

05 or VW, (w') curve at high energies and a difference between neutron and proton
inelastic scattering.

Note that neither the decrease of VW, or O at high energies, nor the

T
difference between neutron and proton elastic scattering and the similar difference
between neutron and proton inelastic scattering, nor the small value of R measured
in both the resonance region and deep inelastic scattering, nor the presence of
prominent resonance bumps in VW, for values of q2 where scaling holds above

W =~ 2.0 GeV, nor even the survival of the prominent resonances relative to
"background' depend on using thé variable w'. All of these important aspects

of the physics which are basic to our arguments can be seen when we look at the

data when plotted with respect to other variables like w. In some ways the par-

ticular choice of variable is similar to the situation in the choice of Vlab or s in
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extrapolating high energy fits or models of pion- nucleon charge exchange into
the low energy region. While extrapolation with some variables results in
better averaging of the resonance region, the essential physics, which was

the impetus for much of the original thinking about duality, does not change,
e.g., the correlation between zeroes in the angular distributions of the prom-
inent resonances and the zeroes at fixed t in the high energy spin flip and spin
nonflip amplitudes.17 Similaf'ly in electroproduction, much of the physics does
not depend on w'.

That is not to say that w' does not have advantages. First, as we saw
in Section II, scaling occurs earlier in w'. Second, if l/W2 is considered as
a function of w, the nucleon pole term in VW2, corresponding to elastic scat-
tering, always occurs at w =1. All the other resonances are at values of « > 1
and move toward w =1 as q2 increases. Using w' = 1+ W2/ qz, however, the
nucleon and all other resonances occur at values of w' > 1. The nucleon is then
not treated in a special way compared to the other resonances. As we will see
in the next section, this allows one to understand in an alternate way the connection
found previously between the behavior of the elastic form factors and of VW2 as
w'— 1. Third, the use of w' allows a much more local averaging of the region
below W ~ 2 GeV where there are prominent resonances.

What is unique to studying duality in electroproduction is of course the
experimentally observed scaling behavior. This allows one to consider data at
fixed values of w' , but different values of q2 and W2, both within and outside the
region of prominent resonances., Thus we can compare the data where there are
prominent narrow resonances directly with data for vWy(w' ) for large q2 and W2

where nature has accomplished the appropriate averaging of the many broad
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resonances and background or t- channel exchanges present there. Hence, without
any extrapolation to low energies using a model or theory valid in the high energy
region, one can directly see the beautiful oscillations of W2 in the low W region
about the scaling limit curve, which represents the average of many resonances
and background at large W. We will give this comparison quantitative form in
terms of finite energy sum rules in the next section.

IVv. FINITE ENERGY SUM RULES FOR ELECTROPRODUCTION STRUCTURE
FUNCTIONS

The possibility of making a quantitative connection using finite energy sum
rules between the low W region where there is N* resonance excitation and the
deep inelastic region where scaling takes place is already suggested by Figs. 3
and 4 where the scaling-limit- curve appears to roughly average the resonances

in VW2. To derive the relevant sum rule let us consider a fixed value of qzz 1 GeVz,

where vW, and W1 exhibit scaling in w' to within the accuracy of the data if the hadron
mass W is outside the region of the prominent resonances, i.e., W > 2 GeV. The
usual derivation of a finite energy sum rule17 proceeds by forming the difference of

v, q2) and the leading terms in its high energy behavior, which we choose to
Oli(O)—].

YWy (

parametrize in the Regge form, Z ci(qz)(w') We need only consider here the
i

terms with Regge intercepts ai(O) > 0, which conventionally are taken to be those due

to the Pomeron with «(0) =1 and to the P' and A2 with a(0) =~ 3 . If we then consider

ai(o)_l, it vanishes

2
the amplitude whose imaginary part is sz (v,qz) - Zi:c i(q Yw?)
faster than 1/v as v — = and, neglecting a possible real term with ¢(0) =0, we

. 22
have a superconvergence relation ,
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- o.(0)-1
Ofd“ [”Wz(”’q2> - e@ren ! ] = 0.
L

In the limit where q2 - = this superconvergence relation multiplied by 2MN/ q2

becomes

F a.(0)-1
fdw'[vwz (w'y - Zc,(oo)w' ! ] = 0
1 i !

. 2
since vWq (¥, ( } - VW2(w') as q2 ~= o, If, for some fixed value of q2, we multiply

the first relation by ZMN/q2 and subtract the second with w' = (2MNV + M?\T)/q2 =

1+ W2/q>, we obtain

a.(0)-1
T de [VW v, q ) - VWy(w') - Z<ci(q2)'ci(°°)>w' i ]

1

o0

- .[dw'[vwz(v,q2> VW, (@) - }1: (¢, @) - et} a"(OH] _—
To obtain Eq. (6) we must assume that a possible extra real term (a term with
a(0) = 0) in the high energy forward virtual photon-nucleon amplitude either is
absent or is the same23 in the amplitudes corresponding to VW2 W, q2 } and sz (w).
Introduction of extra real terms which are not the same in both amplitudes results
in the replacement of the zero on the right hand side of Eq. (6) with an arbitrary
function of q2. The success of the sum rule in Eg. (7) below can then be taken as
a posteriori evidence against the presence of different extra real terms in the high
energy behavior of the amplitudes corresponding to VWZ(V, q2) and vwz(w').

Above some sufficiently large value of v = 2 (and corresponding value of

w' = wh) the functions sz(v,qz) and VWy (w') must agree with the leading terms
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in their asymptotic behavior to any desired accuracy. The upper limit in the

integral in Eq. (6) may then be changed to YR (or wi%). Furthermore, we recall
that to within the accuracy of the data we have scaling in w' for q22 1 GeV2 and
2 2.,

nv_ = (Wo Mo+ g/
m m N

valiipa o
vaiutcs OL v g

=~ 2 GeV. Thus empirically, the quantities | VW2 v, q2) - VW, {w') J/VW2 (w') and

| c.l(qz) -ci(°°) l/ci(w) are consistent with being << 1 for v > Voo We assume that
this is in fact the case. Then the upper limit on the integral in Eq. (6) can be
lowered still further to Y (or w' =1+ an/qz), and we can rewrite Eq. (6) as

the following sum rule: -

2,2
ZMN A 2 1+Wm/q
g f dv VW2(V9q ) :f dw'sz(w') . (7)
g 0 1

In comparison to the usual finite energy sum rules”, Eq. (7) appears very
similar except that the usual sum over Regge terms on the right hand side has
effectively been replaced by sz (w"), which contains the relevant information on
high energy behavior. In the present case we do not need to extrapolate a high
energy Regge expansion to threshold. We will in fact use Eq. (7) in regions where
an expansion in terms of a few powers of ¥ or w' is out of the question. Because
we can vary the external photon mass in electroproduction and have scaling, we
can directly measure a smooth curve which averages the resonances in the sense

of finite energy sum rules.

We have tested the validity of the sum rule in Eg. (7) by using the in-
terpolations of VW, (¥, qz) to fixed q2 (shown in Figs. 3 and 4) for the integrand
on the left-hand side, and the scaling-limit- curve12 of Eq. (5) for VW2 (w')
on the right- hand side. The results for the value of Wm =2,0 GeV is shown in
Table I for values of q2 from 1. 0 GeV2 up to 3.0 GeVz. The agreement of the two
sides of Eq. (7) is on the order of 10% orbetter over the whole range of values of q2
while each side is changing by about an order of magnitude. Changing Rfrom 0.18 to

zero leads to slightly better agreement. 25 Considering the statistical as well as

systematic errors present in both the data and the interpolation to fixed q2, the
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agreement is extremely good. Furthermore, the removal of the prominent
resonance contributions to VWZ(V’ qz) would destroy this agreement, the
elastic contribution alone being roughly 10% of the integral on the left- hand
side. Thus, at least in the region of q2 where there are still prominent
resonance peaks visible the two sides of Eq. (7) agree, and the resonance con-
tributions are a significant part of that agreement. In Fig. 8 the difference of the
two sides of Eq. (7), IR - IL; divided by IR are shown for q2 =1.0, 2.0, and 3.0
GeV2 as functions of the cut~ off, Wm. The figure indicates that the sum rule
is in fact well satisfied for values of Wm considerably below 2 GeV,

The success of the sum rule in Eq. (7) leads one to investigate whether
a more local version of the sum rule could also be true., Specifically, if we
form the difference between two versions of Eq. (7) with different upper limits

2
b 1+Wf)/q

___2_1\1 dv VW2 v, qz) = 2 dw! VWZ(CL«") s (8)
q 1+Wi/q

of integration, we obtain
vV

14
a
2 2 2 2 2
where v, = (Wa ~ MN +q)/ @ MN) and vy = (Wb - MN
to Wa and Wb respectively. If both W, and W, are greater than about 2 GeV then

+ qz)/ (2 MN) correspond

Eq. (8) will be satisfied because of the scaling of vWy. Eg. (8) then becomes
interesting only if the masses Wa and Wb are in the low energy region of prominent
resonances. To test Eq. (8), we have again used the interpolations to fixed q[2

for VWy (shown in Figs. 3 and 4) and the scaling-limit-curve of Eq. (5) for qu {wh),
and have somewhat arbitrarily chosen the limits on the integrals to correspond

to the region of the nucleon and first resonance (Wa =0, Wb =1.4 GeV); the second
resonance (Wa =1.4 GeV, Wb =1.6 GeV); the third resonance (Wa =1.6 GeV,

=2.0 GeV). The

Wb =1.8 GeV); and the fourth resonance (Wa =1.8 GeV, W

b
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results are presented in Tables II, III, IV, and V, and show agreement between
the two sides of Eq. (8) to20% or better over the range 1 Gevz < qZS 3 GeV2
with the limits of integration given above.

The success of the sum rules in Egs. (7) and (8) and the behavior of the
prominent resonances in Figs. 5, 6, and 7 in "following" sz(w' ) is at first
surprising if one thinks of the deep inelastic scattering as being characterized
by a cross section with a slow falloff in qz, while elastic scattering and N*
electroproduction fall rapidly with increasing q2. That there is no contradiction
here is shown in Fig. 9 where the experimentally measured combination of
total cross sections,orT + eos,is plotted against qz/ W2 for various hadron
masses W. Also shown is G% (q2) + (q2/ 41\’[?\1) G?V[ (q2), the analogue of
ot 0

T S
slow (like 1/ q2) falloff of 0. + €0

for W = 0. 94 GeV, i.e., elastic scattering. Notice in particular the

3 when 1/9 < q2/ WZ< 1/ 3 corresponding

to the relatively flat part of IJW2 between w! of 4 and 10 in Fig. 1. But when
q2/W2 becomes large we come below the knee in VW2 and O + €0g falls
rapidly, roughly like 1/ q6 for fixed W. From Eg. (3), a1/ q6 behavior for

o+ 0gas q2—>oo implies that8

T S
2,2
Wy o (W) 4 = @' -1)° ©)
as qz/W2—+oo or w' — 1. The behavior 2 +og X l/q6 as q2 —»00 at fixed
W is of course just the behavior of the elastic analogue of ort 0g
2 qz) +(q /41\/[2 q ), at large q if we take dipole forms for GEp(qz)

and GMp(qz). As noted many times previously, the deep inelastic (W > 2 GeV)

cross section does fall with increasing q2 more slowly than elastic scattering

at the same value of q2, particularly for values of q2 of a few GeVz for which

w' is in the range where VW, is approximately constant. But for sufficiently
large values of q2 the cross section for any fixed W falls rapidly, very much as

elastic scattering does already at much lower values of qz,
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What then must be the large q2 behavior of the form
factor of a given hadronic final state of mass W if it is to participate in the
scaling behavior of vW,? It is rather simple to show1 that if G(qz) is the ex-

citation form factor26 of the hadronic final state of mass W and

2 1 n/2
c(a) — (5" 10)
q
2 . ) .

as g — o0, and if VW2 can be parametrized as

PW,—>c' (@' -1)P a
as w' —1, then these two behaviors can coexist only if

n =p+l. (12)

Thus each hadronic final state of mass W, if it is to participate in the scaling
behavior, must have an excitation form factor with a specific power of falloff

in q2 as q2-—>oo, and this power is the same for all W and is related to the

power with which L’W2 rises at threshold. If we apply this in the low energy

region to a given resonance of mass WR’ then all resonances which follow

sz (w') in magnitude (as we have seen the prominent N* resonances do) must
have the same power of falloff in q[2 as q2—+ oo (including presumably the

zeroeth resonance or elastic contribution to VW2 which has n ~ 4), and again

this is related to the behavior of VW2 at threshold. That the resonance ex-

citation form factors all have a behavior at large q2 which is similar to the behavior
of the elastic form factor (wif;h n = 4) has been previously indicated. 6,27 As we have
p = 3 from Eqg. (9), it also follows that Eq. (12) is at least approximately satis-
fied. For the case of the elastic peak in VVVZ, Eq. (12) is just the relation of

Drell and Yan27 first found in the parton model. Clearly, in deriving Eq. (12)

we did not need or predict the magnitude of the coefficients in Egs. (10) and (11).
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One should note, however, that the larger the mass of the resonance or hadronic
state, the larger must be the value of q2 to be in the region of w' =1+ WZ/ q2
near 1 where the behavior expressed in Eq. (12) holds. Said in another way, if
we now parameterize all resonance form factors at large q2 as dipoles, the
mass appearing in the dipole expression will increase as the mass of the
resonance increases. 29

The possibility, suggested by Figs. 5, 6, and 7, that the scaling behavior
is reflected in the resonances on an almost resonance by resonance basis leads
us to try taking the finite energy rum rule average over very local regions of W.
Consider, for example, the region of w' from w' =1 to an w' corresponding
approximately to the threshold for single pion electroproduction. This is the
one region of w' where we know exactly what resonances are present and
their quantitative contribution to the sum rules- -only the elastic delta function
in vwz(u, qz) makes a contribution to the left- hand side of Eq. (7) or (8). It
is very instructive fo carry the assumption of local duality to an extreme and
assume that the area (in the sense of the left-hand side of Eq. (7)) under the
elastic peak in VW, for large q2 is also the same as the area (in the sense of
the right- hand side of Eq. (7)) under the scaling-limit-curve between «' =1
and a value of w' corresponding to a hadron mass Wt around physical pion

threshold, i.e.,

1+Wif/q2
de! qu(w' _ 2_2Mf lastlc (V’qz)
l q 2 2
2 q Hoa 2 2
= F(q) t = |Fo@)
4My

(q) + Gy (@)
Cg 4MN M

1+ q2/4M§I
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Taking the derivative of this equation with respect to q2, we obtain

VWQJ'=1+Wf =—-—l— P G22 14
2 -2 wf -1 q;;g a) ’ (14)

q

which allows us to calculate W, (w') near threshold in terms of the elastic

form factors once we have chosen Wt‘

However, note that no matter what value we choose for W, we again obtain

t

the relation of Eq. (12) between the behavior of the elastic form factor at large

2 . 2 20/2 9
g~ and the threshold behavior of ¥Wy(w'). For if G(q") — 1/q7) asq — »,

and sz(w' ) — (w! —1)p as w' — 1, then Eq. (14) demands that n =p + 1, as before.
Furthermore, by comparing Eq. (14) for neutrons and protons, using the same

’

value of Wt’ one obtains30

2
2 d 2
2n  _ dg 2
W = 5 (un/up) = .47,
2p 2 d G (2) wt — 1
4 a2 LP q g2 — (15)

Ignoring deuterium correctionslS, this is in agreement with at least the trend of
the present data6 (which only extend down to w'= 1,7). Finally, if we apply the

same assumptions of elastic dominance in a finite energy sum rule for Wl’ we

obt:ain31

—_ 0, (16)
w' - 1
g2 —

R = US/UT

which is again quite consistent with experiment. 8
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While these semiquantitative results are all in rough agreement with present
experimental results, a more quantitative investigation of Eq. (14) reveals some
difficulties. In particular, using parametrizations of the measured proton form
factorsgz, we have used Eq. (14) to calculate sz (w') for various choices of Wt'
We should only expect the very strong assumptions made in deriving Eq. (14) to
work when scaling in w' holds and when the elastic peak is pushed into the threshold
‘region of vwz(w'), i.e., when q2 >>_1 GeV2 and w'-1= (W%/qz) << 1. The results
of the calculation32 are shown in Figure 10 for two values of Wt together with the
available large angle data points8 near w'=1, Although the correct shape of
W, (w") for w'-1< 0.5 is obtained when Wt =1.08 GeV, corresponding to physical
pion threshold, the resulting curve is too high by a factor of 2 to 3. To obtain a
calculated curve which passes through the data below w' =1.5 one must use a value
of Wt ~ 1,23 GeV, corresponding to an energy just below the peak of the first
resonance. Stated another way, the elastic contribution to the left-hand side of
Eg. (7) equals the area under YW, (w") from w' =1 all the way up to an w' which
corresponds to a hadron mass just below the peak of the first resonance. The
proton pole is doing more than its share in satisfying the sum rule in Eq. (7) at
high q2.

In the calculation of VW2p from the elastic form factors using Eq. (14) one
is actually hampered by the lack of knowledge 32 of GE(qz) at large q2. The lack
of knowledge of the elastic form factors hampers even more the calculation of
vW2n(w‘) which may be obtained from the analogue of Eq. (14) for the neutron, but
turns out to depend rather strongly on exactly what we choose for the neutron
electric form factor. In Figure 11 we have plotted the ratio of VW2 for the neutron

to that of the proton obtained from Eg. (14) for Wt =1.23 GeV and two possible
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neutron electric form factors. 32 While both results agree with Eq. (15) in the
limit where w' — 1, there are strong differences for w'> 1, representative of
effects depending on what the neutron electric form factor does at large q2 in
comparison to the proton form factors and to the neutron magnetic form factor.
Hence, surprisingly, the calculation of the inelastic structure functions through
Eq. (14) presently runs into difficulties because of lack of knowlege of elastic
scattering. i

Quite apart from these difficulties in practice, there are also those of
principle. In deriving Eq. (14) we have carried the ideas of duality to the ex-
treme point of using local averaging (in the sum rule sense) over a single infi-
nitely narrow resonance, the nucleon. That this should work even qualitatively
is surprising. But why not apply the same local averaging to, say, the first
resonance, which, while giving the Drell-Yan relation and Eq. (16) for R, would
predict from isospin invariance equal scattering from the neutron and proton
instead of Eq. (15)? The only objection to this is that in practice the nucleon pole
is the only place where we know exactly what resonances are present; at the first
resonance there is already a considerable non-resonant amplitude. While the
non-resonant amplitude (mostly due to s-wave pion production) is also roughly
the same for neutrons and protons in photoproduction, the situation for large q2
electroproduction is unknown at yet. It will clearly be quite interesting to have
data on the neutron elastic and resonance excitation form factors for q2 >1 GeV2
to compare with the deep inelastic electron-neutron data in the scaling region.
We suspect that neutron and proton inelastic scattering for hadrons masses in the
first resonance region are roughly equal, even at large qz. If this is the case

then one will have to abandon extreme local averaging, and regard it as illustrative
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only. One must then average over larger W regions and include, for example,

at least the nucleon and first resonance region in the left-hand side of Eq. (7)

or (8) to obtain agreement with the right-hand side. However, we may yet find

ourselves in the embarrassing position of having the predictions of Eq. (15) and

(16) found to be true experimentally at values of w' away from 1 where the elastic

form factors and Eq. (14) predict deviati_ons from the asymptotic (w'~ 1) behavior.
Up to this point we have considered only sum rules for sz in detail.

Similar considerations could be applied to Wl' However, a knowledge

of R = O’S/(TT allows one to calculate Wl from sz through Eq. (3), and so finite

energy sum rules for W1 are essentially equivalent to those for VW, plus a know-

ledge of R(V,qz). Although detailed knowledge of R is not extant, we know that it

is quite small, both in the region of prominent resonanceszO and in the deep in-

elastic region. 8 The functions vW2 and Wl are thus closely related quantities, and

it is easy to show that for a (small) constant value of R the lowest moment finite

energy sum rule for W1 is simply a linear combination of the zeroth moment

Eg. (7) and second moment sum rules for vW,. We have explicitly checked the

second moment sum rule of VW2 and found that it is somewhat better satisfied than

the zeroth moment sum rule for ng 2 GevV and R =0.18, with |1 < 7%

L 2%
at WIn =2 GeV, q2 between 1l and 3 GeVz, versus 10% for Eq. (7). Hence, the sum

rules for W1 and VW2 seem to be equivalently satisfied given that R is small.
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V. DISCUSSION AND SUMMARY

Similar considerations to those we have been discussing can of course be
applied to inelastic neutrino scattering. In this case both vector and axial-vector
currents contribute and there are three structure functions, 34 Wl’ W2 and Wg,
The parts of W, and Wy due to the weak vector current are related by the con-
served vector current hypothesis to the isovector parts of the corresponding
electromagnetic structure functions.

Unfortunately, the experimental information necessary to make any com-
parisons of the resonance and deep inelastic regions for the structure functions
of inelastic neutrino scattering is lacking at present. It is interesting to note
though, that if we expect the deep inelastic contributions of the vector and axial-
vector currents to VW2 for inelastic neutrino-nucleon scattering to ve equal, 34
and we apply the observations and arguments of this paper to the vector and axial-
vector currents separately, then the axial vector form factor, g A(qz), of the
nucleon and those of the nucleon resonances should all fall-off at large q2 approxi~
mately as 1/q4, and the axial vector contribution to VW, should behave as
(w! —1)3 near w'=1. Indeed, if we were to apply extreme local duality to the
region around the nucleon pole as in Section IV, equal vector and axial-vector

contributions to W, would imply that at large q2

[ 2]2 < [ 2}2
1Gg@)| + Gy(@)
2 E a2 LM

2
g ad) =
A : 1+q221:M?\I

where GE(qz) and GM(qz) are the form factors of the isovector component of the

vector current (GE(O) =1, GM(O) = 4.7).
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More generally, given information on the axial-vector transitions in the
resonance region (up to W = 2 GeV), it should be possible to calculate the
structure functions in the deep inelastic region using the analogues of Eg. (7).
Also, given that a substantial nondiffractive component is present in the scattering,
one expects that at least below w! =~ 5, neutrino and antineutrino inelastic scat-
tering will be quite different, and VW, for inelastic neutrino and anti-
‘neutrino scattering will be appreciahle compared to Wl'

In summary, we have concentrated in this paper on the relation of N*
resonance electroproduction to that of deep inelastic electron-nucleon scattering,
and discussed this relation in the context of duality. We have found that both
qualitatively and quantitatively the behavior of the resonances is remarkably
correlated with the scaling behavior of deep inelastic scattering. In particular,
as q2 changes,the prominent N* resonance bumps in VWZ closely follow the magni-
tude of the scaling-limit-curve at the corresponding value of the scaling variable
w'. This leads to relations between the behavior of the resonance excitation or
elastic form factors at large qz and the behavior of VW2 (w') as wf—~1.

A quantitative connection between resonance electroproduction and scaling
behavior has been made in terms of finite energy sum rules. When integrated
over the region of the prominent N* resonances (up to Wmu 2 GeV) the sum rule
in Eq. (7) is satisfied to within 10% or better, which is within the statistical and
systematic errors inherent in the data and its interpolation to fixed qz. This led
us to consider asking the sum rule é.verage over regions of W of order a few
hundred MeV. As an illustration, we applied the idea of extreme local averaging
to the region around the elastic peak, and obtained an equation directly relating

the values of sz(w') near w! =1 to the nucleon's elastic form factors and the
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upper limit of final hadron mass, Wt’ to which the integral in the sum rule is
carried. While a number of semi-quantitative results which roughly agree with
experiment near w' =1 follow from this, a large value of Wt must be used to obtain
good agreement with the deep inelastic electron-proton data near w' =1, Also,
there are difficulties in principle with the approximation of keeping only one s-
channel resonance in the sum rule. Still, given the extreme assumptions necessary
to obtain this result, even qualitative agreement with experiment is surprising.

The connection to ideas of duality taken from purely sirong interaction pro-
cesses is very close and interesting. Qualitatively, the correlation between the
height of the prominent resonance bumps and the scaling-limit-curve's magnitude,

the fact that R = Us/o is small both in the deep inelastic region and in the low

T
energy resonance region, the prediction of neutron-proton differences, etc., pro-
vide examples of the correlation between low and high energy phenomena which is
at the heart of duality ideas. Quantitatively, the agreement of the finite energy sum
rule, Eq. (7), over a large range of q2 where on can still see that there are
resonance bumps present in VW, and the averaging of the resonance bumps by the
scaling-limit-curve, sz (w", provides a spectacular example of the averaging of
resonances to a smooth curve even outside the Regge regime.

The averaging of the resonances by the scaling-limit-curve is exactly the
behavior one expects in dual resonance models of electroproduction where the
hadronic final state is completely expressible as a sum of resonances. There have
been many models of this kind proposed,35 mostly within the framework of the
Veneziano model. 36 Up to now, all such models have been affected with at least

one of two diseases37: either they have bad asymptotic behavior in v or q2, or they

lack factorization, which mustbe a basic property of any model based on resonances.
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In addition, many of the models which agree with experiment quantitatively have
additional ad hoc assumptions or parameters. Nevertheless, such models are
important at least as theoretical laboratories, and show the consistency of scaling
with a world made purely out of resonances.

The success of duality ideas in relating the deep inelastic scattering to the
resonances in electroproduction opens some interesting questions. In our discus-
sion we have related various properties, particularly those of resonance electro-
production, to the scaling behavior observed to hold for deep inelastic scattering,
but we have not predicted scaling. It is tempting to assume a common origin for
both properties of electroproduction in terms of point-like substructure within the
nucleon, e.g., quark partons which are responsible both for the deep inelastic
scattering and for forming N* resonances when they are excited to specific levels,
It is difficult to make this into more than a suggestive picture, particularly since
one deals with incoherent scattering (the impulse approximation) in the parton
model, while resonance phenomena are certainly coherent properties of the whole
nucleon. Establishing a connection between the duality approach we have discussed
and the point-like constituent approach of the parton model remains an unsolved
problem.

What has been shown by the arguments in this paper, by models, and by the
experimentally observed difference between deep inelastic electron-proton énd
electron-neutron scattering is that there is a substantial non-diffractive component
present in virtual photon-nucleon écattering at large q2. Our arguments, though,
do not rule out the presence of some diffractive component14, especially at
large w'. However, the substantial non-diffractive component that we know existsM,

already leads us to expect, as noted before, that at least for w' < 5, neutrino and
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anti-neutrino scattering will be quite different, that VW3 will be appreciable com-
pared to Wl’ and also that there will be a sizeable spin dependence exhibited if
polarized electrons or muons are scattered on a polarized nucleon target. Hope-
fully, information on these processes as well as further experiments on inelastic
electron-nucleon scattering, particularly with chservation of some or all the final
hadrons, will permit us to extend the nature of the interconnections we have con-

sidered in this paper.
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TABLE 1

Values of the left and right hand sides of the sum rule, Eq. (7), for values
of q2 between 1.0 and 3.0 GeVZ, R = 0.18,and for upper limits of the integrands

corresponding to Wm =2.0 GeV.

(a) (b) (c) d)
1.00 0.773 0.863 +10.4
1.25 0.551 0.599 + 8.0
1.50 0.407 0.433 + 6.0
1.75 0.309 0.322 + 4.0
2.00 0.239 0.245 + 2.4
2.25 0.189 0.191 + 1.0
2.50 0.150 0.150 0.0
2.75 0.122 0.120 - 1.7
3.00 0.0995 0.0973 - 23

@ o (Gev)

m
(b) I = %%/ dv VWZ(V,qz)
q 0
1+W2 /o
(c) I dw! VWZ(LU')
1
(d) (Iz-1 /g B

R
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TABLE II

Values of the left and right hand sides of the sum rule, Eq. (8), for values
of q2 between 1.0 and 3.0 GeVz, for R =0.18, and limits of integration corresponding

to the region of the nucleon and first resonance (Wb= 1.4 GeV).

(a) (b) (©) ()
1.00 0.186 0.235 +20.8
1.25 0.122 0.143 +14.7
1.50 0.0827 0.0925 +10.6
1.75 0.0583 0.0623 + 6.4
2.00 0.0423 0.0435 + 2.8
2.25 0.0314 0.0312 - 0.6
2.50 0.0238 0.0230 - 3.5
2,75 0.0187 0.0173 ~ 8.1
3.00 0.0147 0.0132 -11.4

@) o (GevD)
2M b

(o) I} = ?li _{ dv VWZ(V,QZ)
1+W%/q2

{(c) IR = A dw! VW2(w')

@ (p-1)/1; (%)
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TABLE II
Values of the left and right hand sides of the sum rule, Eq. (8), for values
of q2 between 1.0 and 3.0 GeVz, for R = 0.18, and limits of integration corresponding

to the second resonance region (Wa= 1.4 GeV, Wb= 1.6 GeV).

(@) (b) (c) )
1.00 0.144 0.166 +13.2
1.25 0.100 0.115 +13.0
1.50 0.0722 0.0815 +11.4
1.75 0.0537 0.0595 + 9.7
2.00 0.0410 0.0444 + 5.4
2.25 0.0320 0.0337 + 5.0
2.50 0.0264 0.0261 - 1.1
2.75 0.0207 0.0204 - 1.5
3.00 0.0167 0.0162 - 3.1

2
@ q (Gev?)

2M b o

o) IL = -3 f dv VW2(v,q)
q 14

a

1+Wf)/q2

R 1+Wi/q2

@ (Ig- IL)/ I (%)

(c) I YW, (w)
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TABLE IV

Values of the left and right hand sides of the sum rule, Eq. (8), for values

of q2 between 1.0 and 3.0 GeVz, for R = 0.18, and limits of integration corresponding

to the third resonance region (Wa =1.6 GeV, Wb =1.8 GeV).

(2) () (c) @)
1.00 0.207 0.211 + 1.9
1.25 0.151 0.153 + 1.3
1.50 0.113 0.114 + 1.0
1.75 0.0871 0.0863 - 0.9
2.00 0.0678 0.0667 - 1.6
2.25 0.0537 0.0523 - 2.9
2.50 0.0431 0.0416 - 3.6
2.75 0.0353 0.0334 - 5.7
3.00 0.0292 0.0272 - 7.4

@ o (Gev)
v
2M b
2
(b) IL - -—Z—N-f dv VWz(v,q)
q Va
1+W§/q2
¢ I, = dw'! YW (w')
R 1+W2/q2 2
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TABLE V

Values of the left and right hand sides of the sum rule, Eq. (8), for values

of q2 between 1.0 and 3.0 GeVz, for R = 0.18, and limits of integration corresponding

to the fourth resonance region (Wa =1,8 GeV, Wb = 2.0 GeV).

@) (o) (c) (d)
1.00 0.246 0.250 + 1.6
1.25 0.179 0.189 + 5.3
1.50 0.139 0.145 + 4.1
1.75 0.110 0.114 + 3.5
2.00 0.0883 0.0908 + 2.7
2.25 0.0718 0.0732 + 1.9
2.50 0.0581 0.0596 + 2.5
2.75 0.0472 0.0491 + 3.9
3.00 0.0390 0.0407 + 4.7

@ o (Gev?)
V.

2M b
b) I; = ———;—i _[ dv sz(v,qz)
q v
a
2
/_1+W§/q
(¢) I, = dw' YW, (wh)
R 1+W2/q2 2

(© (p-1)/T (B
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FIGURE CAPTIONS

Fig. 1 - The functions 2MNW1 and VW2 plotted versus w' =1 + W2/q2 for

W = 2 GeV and various q2 ranges assuming R = ch /0,1_ = 0.18.

Fig. 2 - The fit (solid line) of G. Millerlz to VW2 compared to the large angle

data assuming R = 0, 0.18, and 0.3,

Fig. 3 - The function VWZ(V,q2) plotted versus w' =1 + Wz/q2 from an inter-
polation of data to fixed q> values of 0.75, 1.00, 1.25, 1.50, and 1.75
GeVz. The solid line is the scaling-limit~curve, vW2 (w", a smooth
12

fit'™ to the data in the scaling region. The arrow indicates the position

of the elastic peak.
Fig., 4 - Same as Figure 3, but for q2 =2.0, 2.25, 2,50, 2.75, and 3.0 GeV2.

Fig. 5 - The ratio of the height of the N*(1238) bump in sz to the value of the
scaling-limit-curve, YW, (@), at the corresponding value of w' =
1+ M?\I,k/q2 for values of q2 between 1.0 and 3.0 GeVZ. Values for the
height of the resonance bump are taken from fits to the 6° and 10°
inelastic spectra by M. Breidenbach. 19 The values of vWZ(w') are

from G. Miller. 12

Fig. 6 - Same as Figure 5, but for the N*(1520).

Fig. 7 - Same as Figure 5, but for the N*(1688).



Fig. 8 -

Fig. 9 -

Fig. 10 -

Fig. 11 -
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The difference of the right and left hand sides of Eq. (7), I R L’
divided by IR as a function of the cutoff, Wm’ for values of q2 of

1.0, 2.0, and 3.0 GeV.

Measured values?”8 of T + € g for various hadron masses, W, plotted
versus g /W2 The solid line is G q )+ (Q /4:M2 (q ), t

elastic analogue of GI + Ogs under the assumption of dlpole form
factors. Values for the N*(1520) cross section are from

M. Breidenbach. 19

Computed values of W, (w') for W, = =1.08 and 1 23 GeV using Eq. (14)
and the measured proton elastic form factors. The data points are

from reference 8, assuming R = 0.18.

Values of vwzn/vw2 for W, =1.23 GeV computed using Eq. (14)

_ 2
assuming the magnetic form factors Gy, )/GMn(O) = GMp(q )/GMp(O)
and two different assumptions for the neutron electric form factor,
GFn(qz). The single data point is from reference 6 and neglects

deuterium corrections.
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