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ABSTRACT 

The behavior of elastic scattering and of the electroproduction of 

nucleon resonances is shown to be closely related to the behavior of deep in- 

elastic electron-nucleon scattering. This relation is discussed in the context 

of duality ideas taken from strong interaction processes. These ideas suggest 

that a substantial part of the observed behavior of inelastic electron-nucleon 

scattering is due to a non-diffractive component of virtual photon-nucleon scat- 

tering. Through finite energy sum rules quantitative relations between the 

elastic and resonance electroproduction form factors and the deep inelastic 

scattering are derived and the behavior of inelastic scattering near threshold 

is calculated. 
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1. INTRODUCTION 

High energy inelastic electron-nucleon scattering is a unique probe of the 

charge distribution inside the nucleon and provides a method for searching for 

possible substructure. Since experiments have revealed a large cross section 

for inelastic electron-proton scattering, there have been many different attempts 

to understand the physical origin of the observed regularities of the scattering, 

particularly the deep inelastic scattering at high energies and large momentum 

transfers. In this paper we will show that the behavior of the deep inelastic 

scattering is related in a striking way to the behavior of elastic scattering and of 

nucleon resonance elec troproduction. The relation between resonance electro- 

production and deep inelastic scattering is tied up closely with theoretical ideas, 

particularly about duality, which arise from the behavior of purely hadronic 

scattering processes. This leads us to a discussion of sum rules, and finally to 

quantitative relations between the elastic and inelastic form factors and the in- 

elastic structure functions. While we have dealt with these questions in a previous 

short paper’, we present here an extended discussion of the theoretical ideas as 

well as their consequences in quantitative detail. 

We focus our attention on the process of inelastic electron-nucleon scattering 

where an electron of known energy (E) is scattered by a nucleon through a measured 

angle (0) to a smaller final energy (E’) due to the exchange of a single photon. 2 

In general the nucleon breaks up due to the scattering and if only the final electron 

is observed, then the double differential cross section can be written as 

d2a 4dEf2 28 26 - 
dG?‘dE’ q4 2Wl( v, q2) sin 5 +w2(zJ’q2)cos z * (1) 
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The results of the scattering are thus summarized in the structure functions Wl 

and W2 which depend on the exchanged photon’s laboratory energy, v = E - E’ , 

and minus the invariant mass squared, q2 28 = 4EE’sin 2. Knowing v and q2 

from measuring the incident and scattered electron, the invariant mass W of the 

final hadrons is fixed by 

s = 2 = 2MNv+ dN -cl2 . (2) 

We can also consider inelastic electron scattering as a collision between 

the exchanged virtual photon and the target nucleon. One is then simply studying 

the total cross section of the process v y If + p - hadrons, where the hadrons 

have an invariant mass W and we are able to vary the energx mass,and polarization 

of the incident photon beam. This leads one to define total virtual photon-nucleon 

cross sections for transversely and longitudinally polarized photons, aT(v, q2) 

and gs(u,q2), which are related to Wl and W2 by2 

K w2 =- 9” (OT + OS) 
41r20! q2+zJ2 

(3) 

where K = u - q2/2MN = d-‘&(2MN). h 1 T e ongitudinal total cross section us 

2 is forced to vanish at q = 0 by gauge invariance, while oT at q 
2 

= 0 is simply the total 

photoabsorption cross section (into hadrons) for real photons. By the optical 

theorem, the total cross section is proportional to the imaginary part of the 

forward virtual photon-nucleon (or virtual Compton) amplitude. From this view- 

point one regards the two structure functions Wl and W2 as two invariant ampli- 

tudes in a tensor decomposition2 of the imaginary part of the virtual Compton 
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amplitude, and which are therefore linearly related to the total cross sections 

(by 3. (3)). 

Having established the kinematic framework and notation, we can turn to 

the physics. In the next section we briefly review the experimental situation for 

inelastic electron-nucleon scattering and discuss the experimental indications of 

scaling behavior in deep inelastic scattering. In Section III we turn to the behavior 

of elastic scattering and of nucleon resonance electroproduction and show that 

their behavior is closely related to that of the deep inelastic scattering. We then 

discuss the relation between resonance electroprcduction and deep inelastic scat- 

tering in the context of duality ideas taken from strong interactions, which suggest 

that a substantial part of the observed behavior of inelastic electron-nucleon scat- 

tering is due to a non-diffractive component of virtual photon-nucleon scattering. 

This leads in Section IV to a discussion of finite energy sum rules and quantitative 

relations between the elastic and resonance electroproduction form factors and 

the inelastic structure functions. In particular, we derive and discuss the behavior 

of the inelastic scattering near threshold. Finally, a summary and discussion 

is given in Section V. 

II. DEEP INELASTIC SCATTERING EXPERlMENTS AND SCALING 

The large cross sections observed for deep inelastic electron-proton scat- 

tering3 have led to descriptions of the scattering in terms of point-like constituents 

(partons) of the nucleon. 4 In the parton descriptions, both the point-like magni- 

tude of the deep inelastic scattering data and the scaling behavior proposed earlier 

by Bjorken’ arise in a natural manner. lYScaling*’ is the statement that as 1, 

and q2 - 03, vW2 and Wl become non-trivial functions of the dimensionless ratio 
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w = 2MNV/q2 only, rather than functions of both v and q2 separately, as would 

be the case a priori. Since from a theoretical standpoint scaling is a statement 

of behavior in the Bjorken limit as v and q2 - 03, any other dimensionless vari- 

able uV, such thatw’-Lwasv andq2-w, is in principle just a suitable as w 

for studying the scaling behavior of the experimental data, which exists only at 

’ finite values of I, and q2. Use of another variable, w’, could lead to scaling 

sooner in the sense that “W2 and Wl would become independent of q2 (and thus 

equal to their q2 - m limiting values) if they are studied as functions of q2 for 

fixed w1 rather than fixed w. 

This is in fact the case for inelastic electron-proton scattering. 6 If we 

take the data with q2 1 1 Ge+ and for the moment we stay away from the low 

W region with prominent nucleon resonances, then there is a more rapid approach 

to scaling behavior if one uses the variable6 

ti M2 w’=l+-= w+N . 
q2 q2 

(4) 

Clearly w’ is dimensionless and is the same as w in the Bjorken limit of 

v, q2-+4 There is some indication7 from inelastic neutrino-nucleon scattering 

data that scaling also occurs there sooner using ci’ rather than w. Since a best 

fit6’ 8 (in the sense of best scaling behavior) for m2 in an expression of the form 

w 1 = w + m2/q2 gives a value of m2 consistent with 43 and since w ’ = 1 + w2/s2 

is a simple form, we will use w1 as the scaling variable 9,lO in the remainder of 

this paper. 

In order to test for scaling behavior one must separate the contributions of 

Wl and W2 to the double differential cross section in Eq. (l), and then consider 
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vW2 and Wl at fixed w’ and see if they approach limits as q2 (and V) -3 ~10 . 

The separation of Wl and W2 is accomplished by measuring the scattering at the 

same value of I, and q2, but at different angles, and is equivalent to a knowledge of 

R=a/a S T’ The value of R obtained8 by averaging over the present data between 

w’ of 1 and 10 is 0.18 i 0.10. The values of R do not show any strong dependence on 

v, q2 or w’. Using a fixed value’l of R = 0.18, Figure 1 shows ~v1’2 

and 2MNWl as functions of w’ for various q2 intervals and W 1 2.0 GeV (beyond 

the prominent resonances). Both “W2 and Wl scale (i. e., are finite and inde- 

pendent of q2 at fixed w’) to within the accuracy of the data for w’ in the range 

1 < w’ < 10, as long as q2 5 1 Ge v2 and WZ 2.0 GeV. 8 

It will be useful later to have a smooth curve which passes through the data 

for vW2(w’). 
12 For this purpose we have taken a fit in the form of a polynomial 

in (l-l/a’ ). An excellent fit is obtained with three terms, as 

vW2(ti’) = 0.55+- -+)‘+ 2.1978k-+)4- 2.5954@,)5 , (5) 

and is valid in the range 0.8 > -$ > 0.1. Figure 2 shows this function and the data 

for vW2 assuming R = 0, 0.18, and 0.30 plotted versus x’ = l/w’ = q2/(q2 +W2,. 

we emphasize that we are using this fit as a convenient parametrization of the 

data only, and it is not to be given any theoretical significance nor to be used 

outside the range quoted above where it was fit to the data. 

From the relation of Wl and W2 to the total cross sections us and uT in 

Eq. (3) one expects that as w’ - 00, “W2 and Wl/w’ go as (w’) a-l , where (Y is 

the Regge intercept (at t = 0) of the leading J-plane singularity in forward virtual 

photon-nucleon scattering. If the leading singularity is that of the Pomeron, 
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corresponding to diffractive virtual photon-nucleon scattering, then vW2 and w,/ti’ 

tend to constants as w’ - to. On the other hand, if a non-diffractive component 

of forward virtual photon-nucleon scattering is present, then W2 and Wl/u’ should 

decrease as w’ - *. Unfortunately, for values of w’ > 10 there is presently no 

data over a large range of q2, nor is there a separation of Wl and W2. If we use 

the same (small) value of R = us/uT found for w1 < 10, then the data that are 

available 396 are consistent with scaling behavior and vW2 decreasing for large 

values of w ’ . In fact, either or both vW2 and Wl/w ’ must decrease by - 20% 

between their maxima at w’ G 5 and w’e 25 if we assume 13 that scaling holds for 

all w’ aslongasq2Z 1Ge v? This is because for R = 0, both vW2 and Wl/w’ 

decrease by this amount for large w’ (with the restrictions above), and as we 

increase the assumed value of R for (LI’ > 10, the values of uW2 obtained from the 

differential cross section measurements go up compared to those obtained 

assuming R = 0, but those of WI/w’ go down. Since Wl and “W2 are now known 

rather well for CL’ < 10, one cannot tamper with Wl or vW2 in this region, and 

therefore one or both must decrease at large w’ as noted above. One may 

alternately directly consider the values of uT at points where a separation has 

been made. One then finds that at q2 = 1.5 GeV2, uT is a maximum near w ’ = 4 

and falls with increasing energy at least as much as the total photoabsorption 

cross section does over the same v or w2 range at q2 = 0. 8 Thus, there is ex- 

perimental evidence14 from the energy dependence of the measured cross sections 

for a non-diffractive component to virtual photon-nucleon scattering at values 

of q2 for which there is scaling for w’ c 10. 

More direct evidence for the presence of an isospin dependent and therefore 

non-diffractive component of the amplitude is to be found in the difference between 
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inelastic scattering from protons and neutrons. 6 Neglecting corrections for 

internal motion, final state interactions, and Glauber corrections, the 

neutron cross sections are given by the difference of the derterium and hydrogen 

cross sections. 15 The data indicate that the neutron cross sections are smaller 

than the proton cross sections over a large kinematic range. In particular, 

assuming the same value of R = us/uT for the neutron and proton, 

vW2n/VW 2P 
is smaller than unity at least for w1 2 6, and vW2n scales 

within the accuracy of the data. If one plots vWzp- I/W~., then there appears’ 

to be a maximum near w1 = 4, at which point VW 
2P 

- vW2n = 0.1 and the ratio 

vwzn/vw 2P 
M 2/3. While the neutrino data may also suggest that the scattering 

of neutrinos on neutrons and protons is different7, the electroproduction data is 

the most direct and conclusive experimental evidence for an isospin dependent, 

non-diffractive component of the amplitude for forward virtual photon-nucleon 

scattering. 

III. THE BEHAVIOR OF NUCLEON RESONANCE ELECTROPRODUCTION AND 
DUALITY 

A non-diffractive component of a forward amplitude and the corresponding 

decreasing total cross section at high energy are correlated with the presence 

and behavior of resonances a low energy, at least for purely hadronic processes. 16 

In particular, total cross sections for processes like K+p and pp scattering, which 

have no obvious s-channel resonances at low energy, have essentially constant 

total cross sections above laboratory energies of a few GeV, while processes like 

K-p and pp scattering, which have many strong s-channel resonances at low 

energy, have total cross sections which decrease substantially as the energy is 

increased above a few GeV. This correlation of the behavior of total cross 
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sections and the presence of resonances is part of the I1 two component’! 16 picture 

of duality for two body amplitudes. In this picture, I1 Pomeron exchange” or 

diffraction at high energies is connected to the low energy non-resonant “back- 

ground”, while u ordinary If exchanges (non-Pomeron Regge trajectories or cuts) 

are connected to the low energy s-channel resonances. The connection of 

resonances at low energies to 0 ordinary” exchanges at high energies takes quanti- 

tative form in terms of finite energy sum rules. 17 These sum rules relate inte- 

grals over the imaginary part of the amplitude at low energies to the properties 

(residue functions, Regge trajectories) of the t-channel exchanges at high energies. 18 

Given the presence of a non-diffractive component of the forward virtual 

photon-nucIeon amplitude in the scaling region (from the experimental observations 

of energy dependence and neutron-proton differences in inelastic electron-nucleon 

scattering at values of q2 where scaling is observed), we expect that 

for q2 2 1 GeV3 nucleon resonance electroprcduction will have a behavior which is 

correlated with other features of deep inelastic scattering. In particular, we 

would like to compare the behavior of the resonances with the behavior of vW2 

and w1 in the region where scaling behavior is observed. 

Thebehavior of the resonances in comparison to vW2 in the scaling limit can 

be seen from Figures 3 and 4 where we have plotted the function vW2 versus WI 

at various values of q2 (assuming R = us/u* = 0.18). The solid line, which is the 

same in all cases is the fit12 described in Section II to the data for W 11.8 GeV 

and q2 2 1 Ge ? where scaling in w1 is observed. We shall call this curve, 

therefore, the I1 scaling-limit-curve!l. The values of vW2 at fixed q2 are obtained 

by interpolating the 6’ and 10’ data3 up to a hadron mass, W, of 3 GeV. Above 

W % 1.8 GeV, where there are no prominent resonances visible, the interpolated values 
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of vW2 at fixed q2 agree with the scaling-limit-curve, vW2 (w I), as they should. 12 

We first of all note that we can easily distinctly see the prominent N* 

resonances at values of q2 where vW2 scales for W 2 2 GeV. A given resonance 

(including the elastic peak) occurs at wk = 1 + dR/q2 and moves toward w ’ = 1 

as q2 increases. We also note that the prominent resonances do not disappear 

with increasing q2 relative toa lfbackground’l under them which has the scaling 

behavior. (Note that for values of q2 beyond about 3 GeV2 the present data is 

not of sufficiently high statistical quality in the low W region to reveal whether 

the prominent resonances are still present. ) Instead, the prominent resonances 

(and the background) seem to roughly follow in magnitude the scaling-limit-curve 

at the corresponding value of w’. This can be seen even more clearly in Figures 

5, 6, and 7 where the heights of the N*(l238), N*(1520), and N*(l688) nucleon 

resonance bumps in vW2 divided by vW2 (WI = 1 -t M!R/q2) are plotted versus q2 

at points taken from 6’ and 10’ spectra. The height of the resonance bumps in 

vW2 is taken from fits of M. Breidenbach 19 in terms of Breit-Wigner resonance 

forms and a polynomial background made directly to the measured double dif- 

ferential cross set tions. The quantity IJW,(WI) is again the value of the scaling- 

limit-curve evaluated at a value of w1 which corresponds to the given resonance 

at the particular value of q2 measured in the 6’ and 10’ experiments. Clearly, 

the ratio of the height of the resonance bump to the magnitude of the scaling- 

limit-curve remains roughly constant for the prominent N* resonances as q2 

changes from 1 to 3 GeV2. 

Thus at least the prominent nucleon resonances have a behavior which is 

strongly correlated with the scaling behavior of vW2. Furthermore, a recent 

analysis 20 of R = us/uT for W < 2 GeV shows the same small value (consistent 
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with zero) that is found in the scaling region. In addition, we know that elastic 

scattering is less from neutrons than from protons, just as is the deep inelastic 

scattering. One, of course, cannot determine without a detailed partial wave 

analysis what the q2 dependence is of the many broad, low spin N* resonances 

that we know exist from pion- nucleon phase shifts. But the behavior of the prom- 

inent N* resonances that we can see gives us the clue as to what is happening. 

We thus propose1’21 that a substantial part of the scaling behavior of the virtual 

photon- nucleon amplitude is due to a non- diffractive component of the amplitude. 

In a duality framework we say that the nucleon and N* resonances at low energy 

are an intrinsic part of the scaling behavior and correspond to the presence of 

non- Pomeron exchanges at high energy. The resonances build up, in the sense of 

finite energy sum rules, the non- diffractive part of the amplitude on the average 

and yield the non- Pomeron exchanges at high energy, resulting in a falling 

aT or vW2 (wv ) curve at high energies and a difference between neutron and proton 

inelastic scattering. 

Note that neither the decrease of vW2 or oT at high energies, nor the 

difference between neutron and proton elastic scattering and the similar difference 

between neutron and proton inelastic scattering, nor the small value of R measured 

in both the resonance region and deep inelastic scattering, nor the presence of 

prominent resonance bumps in vW2 for values of q2 where scaling holds above 

W zz 2.0 GeV, nor even the survival of the prominent resonances relative to 

(1 background 11 depend on using the variable w1 . All of these important aspects 

of the physics which are basic to our arguments can be seen when we look at the 

data when plotted with respect to other variables like w. In some ways the par- 

ticular choice of variable is similar to the situation in the choice of vlab or s in 
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extrapolating high energy fits or models of pion- nucleon charge exchange into 

the low energy region. While extrapolation with some variables results in 

better averaging of the resonance region, the essential physics, which was 

the impetus for much of the origina thinking about duality, does not change, 

e. g. , the correlation between zeroes in the angular distributions of the prom- 

inent resonances and the zeroes at fixed t in the high energy spin flip and spin 

nonflip amplitudes. l7 Similarly in electroproduction, much of the physics does 

not depend on w’ . 

That is not to say that w ’ does not have advantages. First, as we saw 

in Section II, scaling occurs earlier in w’ . Second, if VW2 is considered as 

a function of w, the nucleon pole term in vW2, corresponding to elastic scat- 

tering, always occurs at w = 1. All the other resonances are at values of CL > I 

2 and move toward w = 1 as q increases. Using w’ = 1 + wvs2, however, the 

nucleon and all other resonances occur at values of w’ > 1. The nucleon is then 

not treated in a special way compared to the other resonances. As we will see 

in the next section, this allows one to understand in an alternate way the connection 

found previously between the behavior of the elastic form factors and of yW2 as 

w’-1. Third, the use of w ’ allows a much more local averaging of the region 

below W N 2 GeV where there are prominent resonances. 

What is unique to studying duality in electroproduction is of course the 

experimentally observed scaling behavior. This allows one to consider data at 

fixed values of w ’ , but different values of q2 and w2 , both within and outside the 

region of prominent resonances. Thus we can compare the data where there are 

prominent narrow resonances directly with e for vW2 (w ’ ) for large q2 and w2 

where nature has accomplished the appropriate averaging of the many broad 
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resonances and background or t- channel exchanges present there. Hence, without 

any extrapolation to low energies using a model or theory valid in the high energy 

region, one can directly see the beautiful oscillations of W2 in the low W region 

about the scaling limit curve, which represents the average of many resonances 

and background at large W. We will give this comparison quantitative form in 

terms of finite energy sum rules in the next set tion. 

IV. FINITE ENERGY SUM RULES FOR ELECTROPRODUCTION STRUCTURE 
FUNCTIONS 

The possibility of making a quantitative connection using finite energy sum 

rules between the low W region where there is N* resonance excitation and the 

deep inelastic region where scaling takes place is already suggested by Figs. 3 

and 4 where the scaling- limit- curve appears to roughly average the resonances 

in vw2. To derive the relevant sum rule let us consider a fixed value of q2 2 1 Ge?, 

where “W2 and WI exhibit scaling in w 1 to within the accuracy of the data if the hadron 

mass W is outside the region of the prominent resonances, i.e., W 2 2 GeV. The 

usual derivation of a finite energy sum rule 17 proceeds by forming the difference of 

vW2(v, q2) and the leading terms in its high energy behavior, which we choose to 

parametrize in the Regge form, c ci(q2)(wl) o!i(O)-l . 
i 

We need only consider here the 

terms with Regge intercepts ‘~~(0) > 0, which conventionally are taken to be those due 

to the Pomeron with o(O) = 1 and to the P’ and A, with a(0) = $ . If we then consider 

the amplitude whose imaginary part is vW,(v,q2) - Fc i(q2)(wf) Qi(O)-l , it vanishes 

faster than l/v as v e 00 and, neglecting a possible real term with a(O) = 0, we 

22 have a superconvergence relation , 
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- c ci(q2)(w’) 
CL(O)-1 

= 0. 
i 1 

III the limit where q2 -+ ~0, this superconvergence relation multiplied by 2MN/q2 

becomes 

00 

(w’) - c ci(~)cc:’ 
LX(O)-1 1 = 0 

i 

since vW2(V,q2) - VW,(W’) as q2 - 03. If, for some fixed value of q2, we multiply 

the first relation by 2MN/q2 and subtract the second with w’ = (2MNv + Mi)/q2 = 

1 + W2/q2, we obtain 

vw2(w’) - C jci(q2)-‘i(“)) w’ 
CL(O)-1 

i I 
(6) 

CL(O)-1 
- vw,(w') - c (ci (q2) -ci(m))w’ = o . 

i I 

To obtain Eq. (6) we must assume that a possible extra real term (a term with 

a(O) = 0) in the high energy forward virtual photon-nucleon amplitude either is 
23 

absent or is the same in the amplitudes corresponding to vW2(v, q2) and ~W,(U’). 

Introduction of extra real terms which are not the same in both amplitudes results 

in the replacement of the zero on the right hand side of Eq. (6) with an arbitrary 

function of q2. The success of the sum rule in Eq. (7) below can then be taken as 

a posteriori evidence against the presence of different extra real terms in the high 

energy behavior of the amplitudes corresponding to vW2(v, q2) and vW2( u’). 

Above some sufficiently large value of v = vR (and corresponding value of 

W’ = wk) the functions vW,(v,q’) and uW,(~c;‘) must agree with the leading terms 
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in their asymptotic behavior to any desired accuracy. The upper limit in the 

integral in Eq. (6) may then be changed to “R (or uR). Furthermore, we recall 

that to within the accuracy of the data we have scaling in w’ for q2z 1 GeV2 and 

values of I, greater than urn = ti m - M”N + s2)/W,L where Wm is a hadron mass 

= 2 GeV. Thus empirically, the quantities I “W2 (v, q2) - vW2 (w’) 1 /J’W,(U~) and 

I ‘i(q2) - ci(“) ’ /‘i(“) are consistent with being << 1 for I/ > v m. We assume that 

this is in fact the case. Then the upper limit on the integral in Eq. (6) can be 

lowered still further to vm (or o ’ = 1+ w2m/q2), an we can rewrite Eq. (6) as d 

the following sum rule: 

1 + w;/q2 

dv uW2(“,q2) =s dw’ VW,@‘) . 

1 
(7) 

In comparison to the usual finite energy sum rules 17 , Eq. (7) appears very 

similar except that the usual sum over Regge terms on the right hand side has 

effectively been replaced by vW2(w’), which contains the relevant information on 

high energy behavior. In the present case we do not need to extrapolate a high 

energy Regge expansion to threshold. We will in fact use Eq. (7) in regions where 

an expansion in terms of a few powers of I, or w’ is out of the question. Because 

we can vary the external photon mass in electroproduction and have scaling, we 

can directly measure a smooth curve which averages the resonances in the sense 

of finite energy sum rules. 

We have tested the validity of the sum rule in Eq. (7) by using the in- 

terpolations of YW2(1/, q2) to fixed q2 (shown in Figs. 3 and 4) for the integrand 

on the left- hand side, and the scaling-limit- curve 
12 of Eq. (5) for vW2(tir ) 

on the right- hand side. The results for the value of Wm = 2.0 GeV is shown in 

Table I for values of q2 from 1.0 Ge 3 up to 3.0 Ge v? The agreement of the two 

sides of ~q. (7) is on the order of 10% orbetter over thewhole range of values of q2 

while each side is changing by about an order of magnitude. Changing Rfrom 0.18 to 

zero leads to slightly better agreement. 25 Considering the statistical as well as 

systematic errors present in both the data and the interpolation to fixed q2, the 
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agreement is extremely good. Furthermore, the removal of the prominent 

resonance contributions to vW2( v, q2) would destroy this agreement, the 

elastic contribution alone being roughly 10% of the integral on the left-hand 

side. Thus, at least in the region of q2 where there are still prominent 

resonance peaks visible the two sides of Eq. (7) agree, and the resonance con- 

tributions are a significant part of that agreement. In Fig. 8 the difference of tl-e 

two sides of Eq. (7), IR - IL; divided by IR are shown for q2 =l. 0, 2.0, and 3.0 

GeV2 as functions of the cut- off, Wm. The figure indicates that the sum rule 

is in fact well satisfied for values of W m considerably below 2 GeV. 

The success of the sum rule in Eq. (7) leads one to investigate whether 

a more local version of the sum rule could also be true. Specifically, if we 

form the difference between two versions of Eq. (7) with different upper limits 

of integration, we obtain 

2MN 
‘b 

-f dv “W2 (ZJ, q2) = dw’ vW2(“‘) , (8) 

q2 va 

where Y a = (Wa2 - MN2 + q2)/ (2 MN) and vb = (Wb2 - MN2 + q2)/ (2 MN) correspond 

to W, and Wb respectively. If both W, and Wb are greater than about 2 GeV then 

Eq. (8) will be satisfied because of the scaling of vW2. Eq. (8) then becomes 

interesting only if the masses Wa and Wb are in the low energy region of prominent 

resonances. To test Eq. (8), we have again used the interpolations to fixed q2 

for “W2 (shown in Figs. 3 and 4) and the scaling-limit- curve of Eq. (5) for VW, (u’ ), 

and have somewhat arbitrarily chosen the limits on the integrals to correspond 

to the region of the nucleon and first resonance (Wa = 0, Wb = I.4 GeV); the second 

resonance (Wa = 1.4 GeV, Wb = 1.6 GeV); the third resonance (Wa = 1.6 GeV, 

Wb = 1.8 GeV); and the fourth resonance (Wa = 1.8 GeV, Wb = 2.0 GeV). The 
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results are presented in Tables II, III, IV, and V, and show agreement between 

the two sides of Eq. (8) to20% or better over the range 1 Ge $2 q2 5 3 Ge? 

with the limits of integration given above. 

The success of the sum rules in Eqs. (7) and (8) and the behavior of the 

prominent resonances in Figs. 5, 6, and 7 in llfollowing” vW2(w’ ) is at first 

surprising if one thinks of the deep inelastic scattering as being characterized 

by a cross section with a slow falloff in q2, while elastic scattering and N* 

elec troproduc tion fall rapidly with increasing q2. That there is no contradiction 

here is shown in Fig. 9 where the experimentally measured combination of 

+ coS,is plotted against q2/W 2 
total cross set tions, aT for various hadron 

masses W. Also shown is Gi (q2) + (q2/ 4dN) G2M (q2), the analogue of 

OT + as for W = 0. 94 GeV, i. e., elastic scattering. Notice in particular the 

slow (like l/q2) falloff of aT + COB when l/9 < q2/W2< l/3 corresponding 

to the relatively flat part of vW2 between w’ of 4 and 10 in Fig. 1. But when 

q2/W2 becomes large we come below the knee in vW2 and aT + 608 falls 

rapidly, roughly like l/q6 for fixed W. From Eq. (3), a l/ q6 behavior for 

OT 
+ oS as q2-m implies that8 

“W2 cc (W2/ q2)3 = (w ’ - Q3 (9) 

as s2/ w2 -00 or w1 -1. The behavior aT + ~8 oc l/q6 as q2-+oo at fixed 

W is of course just the behavior of the elastic analogue of aT + aS, 

c2,h2) + (s2/4M2,) G2,(s2h at large q2 if we take dipole forms for G -&i2) 

and GMp(q2). As noted many times previously, the deep inelastic (W > 2 GeV) 

cross section does fall with increasing q2 more slowly than elastic scattering 

at the same value of q2, particularly for values of q2 of a few Ge j: for which 

w’ is in the range where VW2 is approximately constant. But for sufficiently 

large values of q2 the cross section for any fixed W falls rapidly, very much as 

elastic scattering does already at much lower values of q2, 
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What then must be the large q2 behavior of the form 

factor of a given hadronic final state of mass W if it is to participate in the 

scaling behavior of vW2? It is rather simple to show’ that if G(q2) is the ex- 

citation form factor 26 of the hadronic final state of mass W and 

G(q 2 ) -H&-)~‘~ 
q 

00) 

2 
asq-00, and if “W2 can be parametrized as 

vw2-c’ (cd’ -1) P 01) 

as w’ -+ 1, then these two behaviors can coexist only if 

n = p+l. (12 1 

Thus each hadronic final state of mass W, if it is to participate in the scaling 

behavior, must have an excitation form factor with a specific power of falloff 

2 in q as q2-Fco, and this power is the same for all W and is related to the 

power with which VW2 rises at threshold. If we apply this in the low energy 

region to a given resonance of mass WR, then a11 resonances which follow 

vW2 (w* ) in magnitude (as we have seen the prominent N* resonances do) must 

have the same power of falloff in q2 as q2-+ 00 (including presumably the 

zeroeth resonance or elastic contribution to VW2 which has n 11z 4), and again 

this is related to the behavior of vW2 at threshold. That the resonance ex- 

citation form factors all have a behavior at large q 2 which is similar to the behavior 

of the elastic form factor (with n = 4) has been previously indicated. 6,27 As we have 

p = 3 from Eq. (9), it also follows that Eq. (12) is at least approximately satis- 

fied. For the case of the elastic peak in vW2, Eq. (12) is just the relation of 

Drell and 27 Yan first found in the parton model. Clearly, in deriving Eq. (12) 

we did not need or predict the magnitude of the coefficients in Eqs. (10) and (11). 
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One should note, however, that the larger the mass of the resonance or hadronic 

state, the larger must be the value of q2 to be in the region of wt =l +W2/q2 

near 1 where the behavior expressed in Eq. (12) holds. Said in another way, if 

2 we now parameterize all resonance form factors at large q as dipoles, the 

mass appearing in the dipole expression will increase as the mass of the 

resonance increases. 29 

The possibility, suggested by Figs. 5, 6, and 7, that the scaling behavior 

is reflected in the resonances on an almost resonance by resonance basis leads 

us to try taking the finite energy rum rule average over very local regions of W. 

Consider, for example, the region of w* from w’ = 1 to an w’ corresponding 

approximately to the threshold for single pion electroproduction. This is the 

one region of w ’ where we know exactly what resonances are present and 

their quantitative contribution to the sum rules- -only the elastic delta function 

in “W2( v, q2) makes a contribution to the left- hand side of Eq. (7) or (8). It 

is very instructive to carry the assumption of local duality to an extreme and 

assume that the area (in the sense of the left-hand side of Eq. (7)) under the 

elastic peak in vW2 for large q2 is also the same as the area (in the sense of 

the right- hand side of Eq. (7)) under the scaling-limit-curve between (L’ * = 1 

and a value of w 1 corresponding to a hadron mass Wt around physical pion 

threshold, i. e. , 

VW2(“’ ) = 

= 

elastic 
vw2 

[ 1 2 
G(s2) = 

[ Fltq2) 1 2 2 

1 + $/4tiN 



I 

-2o- 

Taking the derivative of this equation with respect to q2, we obtain 

Vw2(-1 =I+;) = & (-: --+ [G@2)]2), (14) 

which allows us to calculate vW~(U’ ) near threshold in terms of the elastic 

form factors once we have chosen Wt. 

However, note that no matter what value we choose for Wt we again obtain 

the relation of Eq. (12) between the behavior of the elastic form factor at large 

q2 and the threshold behavior of vW2(ti1 ). For if G(q2) - (l/q 
2”/2 2 

) asq -m, 

and vW2(ti’ ) - (WI -1)’ as WI - 1, then Eq. (14) demands that n = p + 1, as before. 

Furthermore, by comparing Eq. (14) for neutrons and protons, using the same 
I 

value of Wt, one obtains 30 

W2n = 
w2P - -1 

$ + cm 

.47. 

(15) 

Ignoring deuterium corrections 15 , this is in agreement with at least the trend of 

the present data6 (which only extend down to w1 N 1. 7). Finally, if we apply the 

same assumptions of elastic dominance in a finite energy sum rule for Wl, we 

obtain 31 

R = gS/oT - 0, Of-3 ) 
w’ - 1 
q2 -co 

which is again quite consistent with experiment. 8 
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While these semiquantitative results are all in rough agreement with present 

experimental results, a more quantitative investigation of Eq. (l4) reveals some 

difficulties. In particular, using parametrizations of the measured proton form 

32 factors , we have used Eq. (l4) to calculate vW2 (w ‘) for various choices of Wt. 

We should only expect the very strong assumptions made in deriving Eq. (l4) to 

work when scaling in WI holds and when the elastic peak is pushed into the threshold 

region of vW2(w ‘), i. e. , when q2 >>-l Ge ? and ~‘-1 = ti/q2) i< 1. The results 

of the calculation 32 are shown in Figure 10 for two values of Wt together with the 

available large angle data points8 near w1 = 1. Although the correct shape of 

vW2(w1) for ~‘-1 5 0.5 is obtained when Wt = 1.08 GeV, corresponding to physical 

pion threshold, the resulting curve is too high by a factor of 2 to 3. To obtain a 

calculated curve which passes through the data below w 1 = 1.5 one must use a value 

of wt = 1.23 GeV, corresponding to an energy just below the peak of the first 

resonance. Stated another way, the elastic contribution to the left-hand side of 

Eq. (7) equals the area under vW2(w1) from w 1 = 1 all the way up to an w 1 which 

corresponds to a hadron mass just below the peak of the first resonance. The 

proton pole is doing more than its share in satisfying the sum rule in Eq. (7) at 

high q2. 

In the calculation of VWzp from the elastic form factors using Eq. (l4) one 

is actually hampered by the lack of knowledge 32 of GE(q2) at large q2. The lack 

of knowledge of the elastic form factors hampers even more the calculation of 

vW~~(WI) which may be obtained from the analogue of Eq. (l4) for the neutron, but 

turns out to depend rather strongly on exactly what we choose for the neutron 

electric form factor. In Figure 11 we have plotted the ratio of vW2 for the neutron 

to that of the proton obtained from Eq. (14) for Wt = 1.23 GeV and two possible 
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neutron electric form factors. 32 While both results agree with Eq. (15) in the 

limit where o’ - 1, there are strong differences for w1 > 1, representative of 

effects depending on what the neutron electric form factor does at large q2 in 

comparison to the proton form factors and to the neutron magnetic form factor. 

Hence, surprisingly, the calculation of the inelastic structure functions through 

Eq. (14) presently runs into difficulties because of lack of knowlege of elastic 

scattering. 

Quite apart from these difficulties in practice, there are also those of 

principle. In deriving Eq. (14) we have carried the ideas of duality to the ex- 

treme point of using local averaging (in the sum rule sense) over a single infi- 

nitely narrow resonance, the nucleon. That this should work even qualitatively 

is surprising. But why not apply the same local averaging to, say, the first 

resonance, which, while giving the Drell-Yan relation and Eq. (l6) for R, would 

predict from isospin invariance equal scattering from the neutron and proton 

instead of Eq. (l5) ? The only objection to this is that in practice the nucleon pole 

is the only place where we know exactly what resonances are present; at the first 

resonance there is already a considerable non-resonant amplitude. While the 

non-resonant amplitude (mostly due to s-wave pion production) is also roughly 

the same for neutrons and protons in photoproduction, the situation for large q2 

electroproduction is unknown at yet. It will clearly be quite interesting to have 

data on the neutron elastic and resonance excitation form factors for q2 2 1 Ge v2 

to compare with the deep inelastic electron-neutron data in the scaling region. 

We suspect that neutron and proton inelastic scattering for hadrons masses in the 

first resonance region are roughly equal, even at large q2. If this is the case 

then one will have to abandon extreme local averaging, and regard it as illustrative 
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only. One must then average over larger W regions and include, for example, 

at least the nucleon and first resonance region in the left-hand side of Eq. (7) 

or (8) to obtain agreement with the right-hand side. However, we may yet find 

ourselves in the embarrassing position of having the predictions of Eq. (15) and 

(16) found to be true experimentally at values of w1 away from 1 where the elastic 

form factors and Eq. (l4) predict deviations from the asymptotic (w’- 1) behavior. 

Up to this point we have considered only sum rules for vW2 in detail. 

Similar considerations could be applied to Wl. However, a knowledge 

of R = cS/oT allows one to calculate Wl from vW2 through Eq. (3), and so finite 

energy sum rules for Wl are essentially equivalent to those for VW2 plus a know- 

ledge of R(v,q2). Although detailed knowledge of R is not extant, we know that it 

is quite small, both in the region of prominent resonances 
20 and in the deep in- 

elastic region. 8 The functions vW2 and W1 are thus closely related quantities, and 

it is easy to show that for a (small) constant value of R the lowest moment finite 

energy sum rule for Wl is simply a linear combination of the zeroth moment 

Eq. (7) and second moment sum rules for vW2. We have explicitly checked the 

second moment sum rule of vW2 and found that it is somewhat better satisfied than 

the zeroth moment sum rule for Wm 2 2 GeV and R = 0.18, with I IRN II, I / IR 5 7% 

at Wm = 2 GeV, q2 between 1 and 3 Ge V? versus 10% for Eq. (7). Hence, the sum 

rules for Wl and vW2 seem to be equivalently satisfied given that R is small. 
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V. DISCUSSION AND SUMMARY 

Similar considerations to those we have been discussing can of course be 

applied to inelastic neutrino scattering. In this case both vector and axial-vector 

currents contribute and there are three structure functions, 34 Wl, W2 and W,. 

The parts of Wl and W2 due to the weak vector current are related by the con- 

served vector current hypothesis to the isovector parts of the corresponding 

electromagnetic structure functions. 

Unfortunately, the experimental information necessary to make any com- 

parisons of the resonance and deep inelastic regions for the structure functions 

of inelastic neutrino scattering is lacking at present. It is interesting to note 

though, that if we expect the deep inelastic contributions of the vector and axial- 

vector currents to vW2 for inelastic neutrino-nucleon scattering to be equal, 
34 

and we apply the observations and arguments of this paper to the vector and axial- 

vector currents separately, then the axial vector form factor, gA(q’), of the 

nucleon and those of the nucleon resonances should all fall-off at large q’: approxi- 

mately as l/q4, and the axial vector contribution to vW2 should behave as 

(~‘-1)~ near w’=l. Indeed, if we were to apply extreme local duality to the 

region around the nucleon pole as in Section IV, equal vector and axial-vector 

contributions to vW2 would imply that at large q2 

g ts2, 2 5% [GE(q2)j2+$ [GMtq2j2 
A 

1+ q2/4n;“, 

where GE(q2) and GM(q2) are the form factors of the isovector component of the 

vector current (GE(O) = 1, GM(O) = 4.7). 
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More generally, given information on the axial-vector transitions in the 

resonance region (up to W = 2 GeV), it should be possible to calculate the 

structure functions in the deep inelastic region using the analogues of J3q. (7). 

Also, given that a substantial nondiffractive component is present in the scattering, 

one expects that at least below w’ -N 5, neutrino and antineutrino inelastic scat- 

tering will be quite different, and vW3 for inelastic neutrino and anti- 

neutrino scattering will be appreciable compared to Wl. 

In summary, we have concentrated in this paper on the relation of N* 

resonance electroproduction to that of deep inelastic electron-nucleon scattering, 

and discussed this relation in the context of duality. We have found that both 

qualitatively and quantitatively the behavior of the resonances is remarkably 

correlated with the scaling behavior of deep inelastic scattering. In particular, 

as q2 changes,the prominent N* resonance bumps in vW2 closely follow the magni- 

tude of the scaling-limit-curve at the corresponding value of the scaling variable 

cd’. This leads to relations between the behavior of the resonance excitation or 

elastic form factors at large q2 and the behavior of vW2(wr) as wf - I. 

A quantitative connection between resonance electroproduction and scaling 

behavior has been made in terms of finite energy sum rules. When integrated 

over the region of the prominent N* resonances (up to Wm= 2 GeV) the sum rule 

in Eq. (7) is satisfied to within 10% or better, which is within the statistical and 

systematic errors inherent in the data and its interpolation to fixed q2. This led 

us to consider asking the sum rule average over regions of W of order a few 

hundred MeV. As an illustration, we applied the idea of extreme local averaging 

to the region around the elastic peak, and obtained an equation directly relating 

the values of vW2 (o I) near w r = 1 to the nucleon’s elastic form factors and the 
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upper limit of final hadron mass, W t, to which the integral in the sum rule is 

carried. While a number of semi-quantitative results which roughly agree with 

experiment near wr = 1 follow from this, a large value of Wt must be used to obtain 

good agreement with the deep inelastic electron-proton data near w’ = 1. Also, 

there are difficulties in principle with the approximation of keeping only one s- 

channel resonance in the sum rule. Still, given the extreme assumptions necessary 

to obtain this result, even qual&tive agreement with experiment is surprising. 

The connection to ideas of duality taken from purely strong interaction pro- 

cesses is very close and interesting. Qualitatively, the correlation between the 

height of the prominent resonance bumps and the scaling-limit-curve’s magnitude, 

the fact that R = aS,/gT is small both in the deep inelastic region and in the low 

energy resonance region, the prediction of neutron-proton differences, etc., pro- 

vide examples of the correlation between low and high energy phenomena which is 

at the heart of duality ideas. Quantitatively, the agreement of the finite energy sum 

rule, Eq. (7), over a large range of q2 where on can still see that there are 

resonance bumps present in vW2 and the averaging of the resonance bumps by the 

scaling-limit-curve, vW,(w I), provides a spectacular example of the averaging of 

resonances to a smooth curve even outside the Regge regime. 

The averaging of the resonances by the scaling-limit-curve is exactly the 

behavior one expects in dual resonance models of electroproduction where the 

hadronic final state is completely expressible as a sum of resonances. There have 

been many models of this kind proposed, 
35 mostly within the framework of the 

Veneziano model. 36 Up to now, all such models have been affected with at least 

one of two diseases 37 : either they have bad asymptotic behavior in v or q2, or they 

lack factorization, which must be a basic property of any model based on resonances. 
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In addition, many of the models which agree with experiment quantitatively have 

additional ad hoc assumptions or parameters. Nevertheless, such models are 

important at least as theoretical laboratories, and show the consistency of scaling 

with a world made purely out of resonances. 

The success of duality ideas in relating the deep inelastic scattering to the 

resonances in electroproduction opens some interesting questions. In our discus- 

sion we have related various properties, particularly those of resonance electro- 

production, to the scaling behavior observed to hold for deep inelastic scattering, 

but we have not predicted scaling. It is tempting to assume a common origin for 

both properties of electroproduction in terms of point-like substructure within the 

nucleon, e. g. , quark partons which are responsible both for the deep inelastic 

scattering and for forming N* resonances when they are excited to specific levels. 

It is difficult to make this into more than a suggestive picture, particularly since 

one deals with incoherent scattering (the impulse approximation) in the parton 

model, while resonance phenomena are certainly coherent properties of the whole 

nucleon. Establishing a connection between the duality approach we have discussed 

and the point-like constituent approach of the parton model remains an unsolved 

problem. 

What has been shown by the arguments in this paper, by models, and by the 

experimentally observed difference between deep inelastic electron-proton and 

electron-neutron scattering is that there is a substantial non-diffractive component 

present in virtual photon-nucleon scattering at large q2. Our arguments, though, 

14 do not rule out the presence of some diffractive component , especially at 

large wr. 
14 

However, the substantial non-diffractive component that we know exists , 

already leads us to expect, as noted before, that at least for wr 5 5, neutrino and 
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anti-neutrino scattering will be quite different, that vW3 will be appreciable com- 

pared to WI, and also that there will be a sizeable spin dependence exhibited if 

polarized electrons or muons are scattered on a polarized nucleon target. Hope- 

fully, information on these processes as well as further experiments on inelastic 

electron-nucleon scattering, particularly with observation of some or all the final 

hadrons, will permit us to extend the nature of the interconnections we have con- 

sidered in this paper. 
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(a) (b) (c) 
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2.00 0.239 0.245 

2.25 0.189 0.191 

2.50 0.150 0.150 

2.75 0.122 0.120 

3.00 0.0995 0.0973 

td) 

+ 10.4 

+ 8.0 

+ 6.0 

+ 4.0 

+ 2.4 

+ 1.0 

0.0 

- 1.7 

- 2.3 

(a) q2 (GeV2) 
V 

J m 

(b) IL = q 
q 0 

dv VW2 P, s2) 

1 +wgq2 

tc) ‘R = 
J 

dw ’ vW2 (w ‘) 

1 

(d) (lR-lL)/lR (%) 
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TABLE II 

Values of the left and right hand sides of the sum rule, Eq. (8), for values 

of q2 between 1.0 and 3.0 Ge Vf for R = 0.18, and limits of integration corresponding 

to the region of the nucleon and first resonance (Wb= 1.4 GeV). 

(a) @I (c) (d) 
1.00 0.186 0.235 +20.8 

1.25 0.122 0.143 + 14.7 

1.50 0.0827 0.0925 + 10.6 

1.75 0.0583 0.0623 + 6.4 

2.00 0.0423 0.0435 -I- 2.8 

2.25 0.0314 0.0312 - 0.6 

2.50 0.0238 0.0230 - 3.5 

2.75 0.0187 0.0173 - 8.1 

3.00 0.0147 0.0132 - 11.4 

(a) q2 WV? 

2MN ‘b 
(b) IL= - f 

q2 0 
dv VW2 P, s2) 

1 +~~/q2 

tc) ‘R = s do’ 
1 

vW2(w’) 

(4 (‘R-IL)& (%) 
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TABLE III 

Values of the left and right hand sides of the sum rule, Eq. (8), for values 

of q2 between 1.0 and 3.0 GeV2, for R = 0.18, and limits of integration corresponding 

to the second resonance region (Wa = 1.4 GeV, Wb = 1.6 GeV). 

(a) 

1.00 

(b) (c) 

0.144 0.166 

1.25 0.100 0.115 

1.50 0.0722 0.0815 

1.75 0.0537 0.0595 

2.00 0.0410 0.0444 

2.25 0.0320 0.0337 

2.50 0.0264 0.0261 

2.75 0.0207 0.0204 

3.00 0.0167 0.0162 

W 

+ 13.2 

c13.0 

+ 11.4 

+ 9.7 

+ 5.4 

+ 5.0 

- 1.1 

- 1.5 

- 3.1 

(4 q2 Ge 3) 

(b) IL = 2+ 
‘b 

s dv VW2 (v, q2) 
’ ‘a 

1 +$b/q2 

(‘) ‘R = f 
1 +w2,/q2 

ya-4 

(d) (IR-I#R (%) 
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TABLE IV 

Values of the left and right hand sides of the sum rule, Eq. (8), for values 

of q2 between 1.0 and 3.0 Ge 9, for R = 0.18, and limits of integration corresponding 

to the third resonance region (Wa = 1.6 GeV, Wb = 1.8 GeV). 

(a) 

1.00 

1.25 

1.50 

1.75 

2.00 

2.25 

2.50 

2.75 

3.00 

tW- 
0.207 

0.151 

0.113 

0.0871 

0.0678 

0.0537 

0.0431 

0.0353 

0.0292 

(c) td) 

0.211 -+ 1.9 

0.153 + 1.3 

0.114 + 1.0 

0.0863 - 0.9 

0.0667 - 1.6 

0.0523 - 2.9 

0.0416 - 3.6 

0.0334 - 5.7 

0.0272 - 7.4 

(a) q2 GeV2 1 

2MN ‘b 
@) IL = - s 

q2 va 
dv vW2P,q2) 

1 +w$2 
(‘1 IR = / 1 +ga/q2 

dw ’ vW2 (w ‘) 

(d) (IR- IL)& (%) 
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TABLE V 

Values of the left and right hand sides of the sum rule, Eq. (8), for values 

of q2 between 1.0 and 3.0 Ge 3, for R = 0.18, and limits of integration corresponding 

to the fourth resonance region ma = 1.8 GeV, Wb = 2.0 GeV). 

(4 @) (c) 

1.00 0.246 0.250 

1.25 0.179 0.189 

1.50 0.139 0.145 

1.75 0.110 0.114 

2.00 0.0883 0.0908 

2.25 0.0718 0.0732 

2.50 0.0581 0.0596 

(d) 

+ 1.6 

+ 5.3 

+ 4.1 

-F 3.5 

f 2.7 

-I- 1.9 

+ 2.5 

2.75 0.0472 0.0491 -I- 3.9 

3.00 0.0390 0.0407 -f- 4.7 

(a) q2 t@V2 ) 

dU VWz(Vj q2) 

1 + Gb/q2 
tc) ‘R = J 

1 +da/s2 
dw’ vW2(w’) 

(@ (‘R- k,hR (%) 
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FIGURE CAPTIONS 

Fig. 1 - The functions 2MNW1 and vW2 plotted versus w ’ = 1 + W2/q2 for 

W 1 2 GeV and various q2 ranges assuming R = us /flT = 0.18. 

Fig. 2 - The fit (solid line) of G. 12 Miller to vW2 compared to the large angle 

data assuming R = 0, 0.18, and 0.3. 

Fig. 3 - The function vW2(v,q2) plotted versus w1 = 1 + W2/q2 from an inter- 

polation of data to fixed q2 values of 0.75, 1.00, 1.25, 1.50, and 1.75 

GeV2. The solid line is the scaling-limit-curve, vW2(wt), a smooth 

fit12 to the data in the scaling region. The arrow indicates the position 

of the elastic peak. 

Fig. 4 - Same as Figure 3, but for q2 =2.0, 2.25, 2.50, 2.75, and 3.0 GeV2. 

Fig. 5 - The ratio of the height of the N*(l238) bump in vW2 to the value of the 

scaling-limit-curve, vW2 (w t), at the corresponding value of wt = 

1 + IvrfN,/S2 f or values of q2 between 1.0 and 3.0 Ge v? Values for the 

height of the resonance bump are taken from fits to the 6’ and 10’ 

inelastic spectra by M. Breidenbach. 19 The values of vW2 ( wt) are 

from G. Miller.12 

Fig. 6 - Same as Figure 5, but for the N*(1520). 

Fig. 7 - Same as Figure 5, but for the N”(1688). 
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Fig. 8 - The difference of the right and left hand sides of Eq. (7), IR- IL, 

divided by IR as a function of the cutoff, Wm, for values of q2 of 

1.0, 2.0, and 3.0 GeV2. 

Fig. 9 - Measured values 338 of aT + E us for various hadron masses, W, plotted 

versus q / 2w? The solid line is G2 Ep (q2 ) + tq2/4M2,) Gip tq2 ) > the 

elastic analogue of u 
T + as, under the assumption of dipole form 

factors. Values for the N*(l520) cross section are from 

M. Breidenbach. 19 

Fig. 10 - Computed values of vW~~(W’) for Wt = 1.08 and 1.23 GeV using Eq. (l4) 

and the measured proton elastic form factors. The data points are 

from reference 8, assuming R = 0.18. 

Fig. 11 - Values of vWZn/vW 2p for Wt = 1.23 GeV computed using Eq. (14) 

assuming the magnetic form factors GMn(q2)/GMn(0) = G MP 
(q2)/G 

MP 
(0) 

and two different assumptions for the neutron electric form factor, 

GEn(q2). The single data point is from reference 6 and neglects 

deuterium corrections. 
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