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Abstract

Power Corrections and Rapidity Logarithms

in Soft-Collinear Effective Theory

Matthew Inglis-Whalen

Doctor of Philosophy

Graduate Department of Physics

University of Toronto

2022

In this thesis a recent formulation of Soft-Collinear Effective Theory is used to study power corrections

to collider observables. The techniques and concepts developed here are primarily demonstrated in the

context of the Drell-Yan process, but are also broadly applicable in processes involving high-energy

collimated colored particles.

First, we make progress towards the resummation of power-suppressed logarithms in processes which

involve the hard interaction of two jets. We identify and compute the anomalous dimensions of all the

operators that contribute to two-sector processes at O(1/q2). These anomalous dimensions are necessary

to resum hard processes at next-to-leading power, although an additional observable-dependent step of

matching and running is necessary to complete the full resummation. We also demonstrate how the

overlap subtraction prescription for loops extends to these subleading operators.

Next, we study the origin of rapidity logarithms using a formulation of Soft-Collinear Effective

Theory in which infrared degrees of freedom are not explicitly separated into modes. We consider

the Sudakov form factor with a massive vector boson and Drell-Yan production of lepton pairs at

small transverse momentum as demonstrative examples. We find that rapidity divergences introduce

a scheme dependence into the effective theory and are associated with large logarithms appearing in

the soft matching conditions. This scheme dependence may be used to derive corresponding rapidity

renormalization group equations.

Finally, we examine the Drell-Yan process at next-to-leading power, where we derive a factorization

of the differential cross section in the small-qT hierarchy with q2 � q2
T � Λ2

QCD. We show that the

cross section may be written in terms of matrix elements of power-suppressed operator products which

contribute to O(q2
T /q

2) coefficients of the usual parton distribution functions. The factorization formula

allows power-suppressed logarithms in each of the relevant factors to be resummed. We discuss the

cancellation of rapidity divergences and the overlap subtractions required to eliminate double counting

at next-to-leading power.
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Chapter 1

Introduction

The Standard Model of particle physics (SM) is currently our best description of the fundamental

building blocks of Nature. This SU(3)C×SU(2)L×SU(1)Y chiral gauge theory has three generations of

fermionic fields for each of the quarks and leptons, and their coupling to a massive scalar field generates

the fermion masses after spontaneous symmetry breaking to SU(3)c × SU(1)em.

It is well known, however, that the Standard Model cannot be a complete description of matter and

its interactions. Since the discovery of neutrino oscillations [1, 2] it has remained undecided whether

neutrinos are Dirac or Majorana fermions [3]. It is also unknown how Einstein’s theory of gravity can

be merged with the Standard Model in a way that will be applicable at all energy scales [4, 5], and

little is known about Dark Energy other than the fact that it exists [6, 7]. Furthermore, astronomical

data has long implied the presence of a non-SM form of matter [8], and it is widely believed that

this Dark Matter has a particle-based description in some as-yet-unknown extension of the Standard

Model [9, 10]. Though these theoretical and cosmological issues provide no specific indication about

the field-theoretical properties of physics beyond the Standard Model, recent terrestrial experiments

are also finding tentative evidence that the Standard Model cannot describe all the acquired data, and

together are beginning to produce a coherent picture of the nature of new physics. For example, the

short-baseline MiniBooNe experiment has found excess electron-neutrinos appearing in a muon-neutrino

beam [11], confirming previously measured excesses at LSND [12]. Additionally, measurements of the

muon’s anomalous magnetic moment g−2 at Fermilab have increased [13] the already large discrepancy

[14] between experiment and SM predictions. Even further, decays of B-mesons to electrons or muons

at LHCb have shown evidence for lepton non-universality [15]. Though none of these experiments

individually cross the discovery threshold, in combination they provide a hint that new physics perhaps

lies in the lepton sector.

Measuring the coupling of leptons to the Higgs boson or other particles present in high-energy

scattering experiments could further pinpoint the origin of non-SM physics. The current energy frontier

is being explored by the Large Hadron Collider (LHC), which has a design center-of-mass energy of

14 TeV. The LHC has now been collecting data for over a decade, with perhaps its most important

observation being the discovery of the Higgs boson during the course of its first run [16, 17]. Its second

run, now complete, continued to gather important information about how the Higgs couples to matter

[18]. In order to determine the properties of the Higgs, and particularly in order to determine whether

these properties are predicted by the Standard Model, it is important to have a thorough and precise

1



Chapter 1. Introduction 2

understanding of how the LHC’s high-energy hadrons interact to produce the various particles seen in

its detector.

Hadronic matter, being made of colored particles, is described by Quantum Chromodynamics (QCD).

In this thesis, effective theories of QCD are studied and developed in order to better understand how

colored particles interact, and ultimately to improve the theoretical precision of collider observables

according to the Standard Model. In the following section we provide some context for these goals by

briefly describing the history of QCD and, through the lens of Effective Field Theory (EFT), discussing

the fundamental limitations for which types of quantities are calculable in hadronic environments. We

then introduce the Drell-Yan process [19], the main observable studied in this thesis, and review recent

theoretical developments which motivate a continued interest in an observable that has been well-studied

for 40 years [20]. We finish this chapter with an overview of the three papers that form the main contents

of this thesis.

1.1 The Trouble with QCD

By the late 1950s it appeared that the list of fundamental particles numbered in the many dozens [21],

with pions, kaons, cascade particles, vector mesons, and many others making up the “particle zoo” [22].

In order to explain certain symmetries between these hadrons, it was proposed in the early 1960s that

these particles were not fundamental, but rather were composed of pointlike particles called quarks [23–

25]. This was first confirmed in high-energy electron-proton scattering experiments that were able to

probe the internal structure of the proton [26, 27], the results of which were soon framed in the parton

model of nuclear substructure [28, 29]. While these Deep Inelastic Scattering (DIS) experiments showed

that protons contained spin-1/2 electromagnetically-charged quarks, it was later argued that quarks

alone did not properly account for the total momentum of a proton [30]. This indirect evidence for the

existence of some electromagnetically-neutral type of parton aligned perfectly with the co-developing

knowledge of non-Abelian gauge theories [31–34]. In particular, it was proposed that quarks come in

three distinct colors and that the color force is mediated by color-charged gluons [35], as is now described

in the Standard Model by Quantum Chromodynamics. By the mid 1970s it was well accepted that the

remaining momentum of a proton was accounted for by the existence of the spin-1 gluons [36]. It was

not until the late 1970s, however, that the gluon was directly confirmed to exist by observing 3-jet events

in electron-positron colliders [37].

The difficulty in confirming the existence of quarks and gluons is due to the phenomenon of confine-

ment, where the overwhelming long-range attraction between colored objects ensures that quarks and

gluons can never be observed in isolation. Rather, the only objects that are measurable in experiments

are color-neutral bundles of quarks and gluons that we call hadrons. This disparity between the funda-

mental building blocks of QCD, the quarks and gluons, and the objects that are observed in experiments,

the hadrons, has deep implications for the types of calculations and predictions that can be made by

studying QCD without reference to experiment. For example, confinement is related to the fact that

at low energies (E . ΛQCD ∼ 300 MeV) the coupling strength between colored particles is large. This

strong coupling prevents the use of perturbation theory and so analytically extracting theoretical predic-

tions from QCD becomes a completely intractable problem. If we could somehow calculate the partonic

composition of hadrons we could establish a link between the disparate experimental and theoretical

degrees of freedom, but the large coupling strength in the relevant energy regime prevents us from using
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the only tool we have at our disposal to make such a calculation1. How then are we supposed to describe

the transition probabilities between the incoming and outgoing hadronic states that are prepared and

measured in experiments?

Fortunately, there are ideas and tools that still allow progress to be made. Qualitatively, one often

observes that low-energy dynamics need not know about high-energy physics in order for calculations

at low energies to be predictive [43]. The classic example is that atomic models don’t need to include

information about the top quark (Mtop ∼ 200 GeV) or the complicated internal dynamics of the proton

(Epartons ∼ 300 MeV) in order to adequately describe the hydrogen atom (with energy splittings Ekin ∼
10 eV). The reverse situation is also observed: high-energy (short-distance) physical properties need

not know about the intricate details of low-energy (long-distance) physics in order to be predictive; the

proton’s internal structure does not depend on the location of the moon or the stars.

A mathematical consequence of this decoupling of energy scales is that observables tend to factorize

in the presence of large scale separations; when an observable involves two or more widely separated

energy scales, the observable can often be decomposed into multiple factors, with each factor depending

on only one energy scale. Consider a toy observable Σ(Q,E) that depends on two widely separated

scales Q � E, where Q is some experimentally tunable energy scale, and E is some fixed energy scale

representing the internal dynamics of the system we are studying. We will discuss various examples of

such systems in Chapter 2, but for now it can be useful to imagine that Q represents the center-of-mass

energy of two composite particles and E represents the binding energy of each particle. In many such

systems the scales Q and E will decouple, and Σ will schematically have the factorization

Σ(Q,E) = C(Q,µ)f(E,µ) +O

(
E

Q

)
, (1.1)

where µ is some arbitrary energy scale called the factorization scale. Having such a factorization is

quite beneficial; if C(Q,µ) is some calculable function of Q, then even if f(E,µ) is some incalculable

function of E, only one measurement of Σ is necessary in order to predict Σ for all possible experimental

energies Q. This is because, when C(Q,µ) is known, then a measurement of Σ(Q,E) also represents

a measurement of f(E,µ). Since f(E,µ) remains unchanged when a new experimental energy Q′ is

explored, all factors of the observable Σ(Q′, E) = C(Q′, µ)f(E,µ) are therefore known.

Effective Field Theory [44–48] is a framework that allows such factorization formulae to be derived

in a straightforward manner. Though this toy example is simply meant to demonstrate some benefits of

applying the techniques of EFT, it is not so different from the actual situation encountered when studying

hadron scattering. Experimental setups can tune the initial-state collision energy Q of hadrons, while

the internal dynamics with E ∼ ΛQCD of the colliding hadrons do not depend on the energies at which

they collide with one another. In EFT, the Standard Model is replaced with an effective model that

does not include the high-energy dynamics, but exactly reproduces the low-energy dynamics. Hadronic

matrix elements in the EFT generate non-perturbative and incalculable factors similar to f(E,µ), and

a process called matching uses perturbative partonic calculations to determine matching coefficients

1Lattice QCD [38] provides a non-perturbative numerical method for studying low-energy phenomena, but it faces the
reciprocal issue encountered by perturbation theory in the sense that it cannot be used to study high-energy processes.
This is because lattice methods rely on simulating the QCD vacuum on a grid with lattice spacing a; since the maximum
resolvable momentum on a grid scales like pmax ∼ 1/a, a process involving a momentum transfer Q requires a grid with
N ∼ Q4 lattice sites in 4 dimensions [39]. At nuclear energy scales Q ∼ 1 GeV the number of gridpoints is manageable, but
at the Q & 1 TeV energies encountered at modern colliders the processing power is still not available. Moreover, since the
grid in Lattice QCD exists in Euclidean spacetime, measuring matrix elements involving timelike separations (like parton
distribution functions) introduces a host of new problems to solve, and is still an active area of research [40–42].
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similar to C(Q,µ).

The incalculable factor f(E,µ) can either be measured in experiment or, in some cases, it can be

determined non-perturbatively using lattice methods. However, even Lattice QCD requires externally-

acquired measurements in order to fix its length and energy scales. In effect, there is no way to determine

f(E,µ) without reference to experiment. Therefore, since a hadronic observable Σ(Q,E) is composed

of both perturbative factors C(Q,µ) and non-perturbative factors f(E,µ), QCD does not provide an

ab initio method for predicting the experimental results of hadron scattering. The only calculations

that can be done in QCD without reference to experiment are thus only those quantities that do not

depend on non-perturbative factors. The list of such quantities is quite short; a non-exhaustive list might

include the matching coefficients C(Q,µ), the anomalous dimensions γC(µ) and γf (µ) that determine

how the factors change with the factorization scale µ, and sufficiently inclusive cross sections for processes

involving hadron-free initial states.

In the end, EFT provides a powerful set of tools for determining the factorization structure for

each observable of interest. It methodically decomposes observables into matching coefficients that only

depend on a single one of the various perturbative energy scales in the problem, and encapsulates all

the non-perturbative dynamics in a small set of non-perturbative functions that can be measured once

and for all. QCD still has the inherent problem that hadronic observables are incalculable from first

principles, but scale separation and the tools of EFT allow for QCD to achieve predictive power for

factorizable processes.

1.2 Drell-Yan and its Small-qT Power Corrections

Since it is important to study the properties of the Higgs boson, and especially its interaction with

leptons, it is also important to understand similar processes that may mimic the signature of Higgs

production in collider environments. One such process is the scattering of hadrons to produce a vector

boson that subsequently decays into a lepton pair, also known as the the Drell-Yan (DY) process. This

is shown in Fig. 1.1.

Figure 1.1: A cartoon of hadron (H) scattering, producing a lepton pair (L), jets (J), and remnants (R)
of the colliding hadrons.
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In the seminal work of Collins, Soper, and Sterman (CSS, [49–51]), it was rigorously proven that the

leading power differential cross section for the Drell-Yan process HA(PA)HB(PB)→ V ∗(q) +X can be

written in the factorized form

1

σ0

dσ

dq2 dy dq2
T

=
∑

ab

∫
d2bT
(2π)2

eibT ·qT
∫
dξA
ξA

dξB
ξB

H(Q,µT )

× Ca
(
xA
ξA
, µT

)
Cb

(
xB
ξB

, µT

)
fa/A(ξA, µT )fb/B(ξB , µT ) +O

(
q2
T

Q2
,

Λ2
QCD

Q2

) (1.2)

when both Λ2
QCD � Q2 and q2

T � Q2. Here the sum runs over parton flavors a and b, while Q =
√
q2

is the hard momentum transfer. The variables xA,B = e±yQ/
√
s are roughly the fractions of the

hadronic large momentum components given to the off-shell photon, and ξA,B may be interpreted as

the lightcone momentum fractions of the incoming hadrons given to the initial-state partons. The scale

µT = 1/|bT | ∼ qT � Q is an appropriate low-energy scale for matching transverse momentum dependent

parton distribution functions (TMDPDFs), with matching coefficient Ca,b, onto the PDFs fi/H(ξ, µ) that

are measured in Deep Inelastic Scattering experiments.

In the CSS formalism each of the perturbative factors that appear in Eq. (1.2) originates from a

region of momentum space where, due to the location of propagator poles in the complex plane, the

path of integration cannot be deformed to avoid every pole. The momentum regions where this occurs

are called pinched singular surfaces, and factorization follows from the notion that these surfaces create

non-overlapping contributions to the parton-level cross section. Each of the factors – and hence the entire

differential cross section – of the leading power CSS formula are available in resummed form up to N3LL

[52–58]. Estimates for the relative sizes of N4LL effects versus power-corrected contributions suggest that

it is now more beneficial to extend the factorization and resummation programs beyond leading power.

While the CSS formula has been extended to include the non-perturbative power corrections which scale

like O
(
Λ2

QCD/Q
2
)

[59–63], little is known about the factorization structure of the perturbative power

corrections which scale like O
(
q2
T /Q

2
)
.

It has been shown in multiple ways how effective theory techniques can be used to reproduce these

classic CSS results at leading power [64–67]. The relevant effective theory for jet-like observables,

which includes hadron scattering, is called Soft-Collinear Effective Theory (SCET, [68–74]). The usual

formulation of SCET takes a parallel approach to CSS, where each of the relevant CSS regions can be

mapped onto a distinct degree of freedom (a distinct mode) in the EFT. Factorization then arises from

the decoupling of these modes in the effective Lagrangian. Though EFT techniques provide a methodical

framework for extending factorization formulae beyond leading power, up until recently the community’s

focus has mostly been directed towards improving the precision of leading power calculations. Some

recent calculations have determined the fixed order contributions from perturbative power corrections at

[75, 76], but none of these achieve a factorization formula in terms of operators that can be renormalized

and hence resummed.

This SCET approach to factorizing and resumming collider observables has been wildly successful, but

there are certain drawbacks to its usual construction that have initiated a recent reformulation of SCET

[77]. Notably, the usual formulation of SCET has different variations (e.g. SCETI[78], SCETII[79, 80],

SCET+[81]) and different sets of modes depending on the observable being studied, despite the fact that

they all share the same high-energy origin of QCD interacting with a hard momentum transfer. Moreover,

when constructed using modes, SCET is linked to and defined in terms of the full theory of QCD (see the
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end of Section 2.3.2). This link to the full high energy theory induces hard scale dependence in the low

energy effective Lagrangian. Since low energy matrix elements should be evaluated at a correspondingly

low energy renormalization scale (in order to minimize the dynamically-generated logarithms involving

infrared energy scales), the appearance of a high energy parameter in a low energy Lagrangian endangers

the usual benefits of having a factorization formula.

These drawbacks can be alleviated by constructing a version of SCET that does not depend on the

relative hierarchy of energy scales which are parametrically smaller than the hard interaction scale. The

new formulation of SCET which we use in this thesis only segregates degrees of freedom based on their

mutual invariant mass, and thus does not rely on modes or regions. The effective theory and the hard-

scale matching is the same for all observables, and it is only when observable dependence is asserted that

an observable-dependent matching process is initiated. Moreover, the new formulation is treated as a

Quantum Field Theory in its own right, and is therefore required to exist independently from – and make

predictions without reference to – its parent theory. Relevant limits of QCD tree-level diagrams provide

the hard scattering operator basis for our new formalism, but any quantum corrections beyond tree

level do not refer back to the equivalent diagrams in QCD. This is in contrast to the method of regions

interpretation of SCET [82], where SCET radiative corrections are taken directly from an appropriate

expansion of QCD corrections. This is also in contrast to the usual mode formulation of SCET [80],

where having correlated rapidity schemes across different modes is motivated by the expected agreement

of infrared and rapidity divergences in SCET when compared with QCD. Our formulation is not given

any information about QCD beyond tree level, and so as expected from a low energy field theory it

does not have any dynamical dependence on the hard scale. It is only when a matching calculation

is performed in order to determine the appropriate Wilson coefficient that our formulation of SCET

is forced to agree with QCD. Finally, since the new formulation we use here has fewer partitions of

the low-energy degrees of freedom, there are fewer operators to find and renormalize in the effective

Lagrangian at subleading powers. Since we wish to study power corrections to collider observables, a

smaller basis of effective operators makes a full analysis more feasible.

1.3 Contents of Thesis

In Chapter 2 we outline some of the properties that make EFTs such a popular and powerful modern

tool for systematically improving the precision of collider-based experimental predictions. We use the

4-Fermi Effective Field Theory as an explicit demonstration of these tools, and use this to help explain

the ideas behind the new formulation of Soft-Collinear Effective Theory, which we briefly contrast with

the usual SCET construction. Chapters 3, 4, and 5 then describe my original research, which I outline

in the following subsections. Finally, Chapter 6 summarizes the main contents of this thesis and finishes

with a discussion of possible future research topics.

1.3.1 Renormalization of NLP Operators

If an operator’s counterterm is known then its anomalous dimension can be calculated. The renormal-

ization group can then be used to find an all-orders resummed expression that evolves the operator from

the high-energy matching scale down to the next low-energy matching scale. The anomalous dimension

for the leading power SCET operator O2 was found long ago [78], and the anomalous dimensions have

recently been calculated for the relevant SCET operators which are suppressed by O(1/Q) in the power
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counting [83]. However, the observables which we study here begin at O
(
1/Q2

)
, and so all operators

which are suppressed by O
(
1/Q2

)
must be determined and subsequently renormalized in order to obtain

a complete resummation for any chosen observable at NLP. This is done in Chapter 3.

1.3.2 Rapidity Divergences and Logarithms

In [84] it was noted that the massive Sudakov form factor has the factorization

〈p2| JµQCD |p1〉 = F

(
Q2

M2

)
ū2γ

µu1 = C2(Q,µ) 〈p2|O2(µ) |p1〉 , (1.3)

where up to one loop

C2(Q,µ) =

[
1 +

α

2

(
−L2

Q + 3LQ +
π2

6
− 8

)]
, and

〈p2|O2(µ) |p1〉 =

[
1 +

α

2

(
−L2

M − LM (3− 2LQ)− 5π2

6
+

9

2

)]
ū2γ

µu1 .

(1.4)

On the basis of scale separation and factorization, matrix elements of effective operators are expected

to only contain infrared dynamics and to only generate infrared energy scales. However, the matrix

element of the effective operator O2 depends on the scale Q2, which should have been integrated out of

the EFT. In the conventional language of tree-level symmetries that are broken by loop effects, some

authors have called this unexpected appearance of Q2 in the EFT the collinear anomaly [64, 85, 86].

The broken symmetry here is the RPIIII boost invariance p−n → βnp
−
n in the n-sector and p+

n̄ → βn̄p
+
n̄ in

the n̄-sector, which are assumed symmetries of the theory that become broken by regularizing rapidity

divergences. The anomalous logQ2/µ2 then originates from the two terms log(p−n /µ)+log(p+
n̄ /µ), each of

which comes from a different boost-broken sector. In the sum these reproduce the required QCD result,

but the full symmetry group is broken to the subgroup generated by βn = 1/βn̄. The same anomaly

occurs when studying the Drell-Yan process at small qT [64] and when calculating the event shape called

jet broadening [85]. More generally the collinear anomaly occurs in all SCETII-type observables, where

the isotropic modes are only separated from the collinear modes by boosts.

The problem with the anomalous log(Q2/µ2) in the effective operator’s matrix element is that the

logarithm is large when matching onto the next EFT at µ = M . To solve this issue, the authors in

[64, 84] proved that logF is linear in logQ2/µ2 at all orders in αs, thus showing that the large logarithm

exponentiates and therefore is under theoretical control. The authors of [80] take another approach,

finding that these large logarithms come from an ambiguity in the partitioning of collinear and soft

modes that lie on the same mass hyperbola. Noting that the large logarithms are associated with rapidity

divergences in the radiative corrections for jet and soft functions, they define a regularization scheme

similar to dimensional regularization in order to control the divergences. Exploiting the partitioning

ambiguity, they then derive a rapidity RGE that sums the anomalous logarithms in the same manner

as the usual RGE.

Since the mass-hyperbola ambiguity in [80] was first noted in the context of soft-collinear mode

factorization, it is unclear how such a structure might arise in our formulation of SCET which does not

contain explicit soft modes. After all, the rapidity divergences in the jet and soft functions of [80] cancel

in the sum. This implies that perhaps the divergences, and thus the ambiguity itself, are simply artifacts



Chapter 1. Introduction 8

of the form of the factorization2, and therefore that a different divergence-free factorization might be

unable to sum rapidity logarithms. In Chapter 4 we verify without an explicit rapidity regulator that

rapidity divergences in both the massive Sudakov form factor and the Drell-Yan cross section at small-qT

indeed cancel in the sum. We also show how rapidity logarithms can be summed due to an integration

ambiguity which arises when summing together divergent diagrams. This integration ambiguity gives

rise to a logarithm log(ν2/µ2) that is only fixed by matching onto QCD to be equal to log(Q2/µ2). This

provides an additional perspective on the origin of the anomalous Q2-dependence at leading power, and

in the process also shows that boost invariance actually remains unbroken in SCET.

1.3.3 Factorization of Small-qT Power Corrections

In the usual formulation of SCET it has been shown how power corrections can be factorized using bare

functions for real emissions [91]. To achieve an equivalent renormalized factorization formula the power-

suppressed radiative functions in that formalism still need to be renormalized. It is expected that their

renormalization will not be straightforward, since it has been pointed out that radiative jet functions

contain double counting with respect to their accompanying soft functions [92]. It therefore still needs

to be determined how the requisite zero-bin subtractions beyond leading power will be incorporated

into the definitions of subtracted radiative jet functions while also preserving the factorization structure

found in [91].

In the formulation of SCET used in this thesis, however, there are no subleading terms in the

SCET Lagrangian beyond the hard scattering operators which we find and renormalize in Chapter

3. Consequently, we do not need radiative functions to describe real emissions, and factorization is a

straightforward consequence of successive matching steps at the appropriate perturbative energy scales.

We demonstrate this in Chapter 5, where we show how the first q2
T /Q

2 power corrections to Drell-Yan

process can be factorized. We also introduce a prescription for removing double counting at next-

to-leading power, and show how this prescription again leads to an integration ambiguity for power-

suppressed rapidity divergences. All soft-scale matching coefficients are determined at O(αs), but further

work is required to determine all entries in the rapidity anomalous dimension matrix. Once these entries

are found, a full leading-log resummation will be available for power corrections in the Drell-Yan process.

2The first signs of this can be noted by the form of the anomaly exponent in [64]. There the original factorization of
the cross section into separate xT -dependent PDFs, defined in terms of collinear modes, must be refactorized due to the
collinear anomaly. The refactorized xT -dependent PDFs have no operator definition, hinting that perhaps the original
mode decomposition was not appropriate for describing the low-energy degrees of freedom. Refactorization is also a feature
of the “infinity-bin” formalism of [87–90].



Chapter 2

Effective Field Theories

A comprehensive review of Effective Field Theories can be found in any of [43, 93–97]. From the

classic Wilsonian perspective [38], EFTs are the field theories which result from working at a particular

energy scale Λ and discarding all the dynamics and degrees of freedom with energies E > Λ. The

degrees of freedom used to construct the resulting effective Lagrangian below the cutoff energy are

only those relevant to the low-energy dynamics, and while these low-energy degrees of freedom can be

entirely different from the degrees of freedom that existed before a cutoff was imposed, the low-energy

dynamics are exactly reproduced by the effective Lagrangian when the effective coupling constants are

appropriately chosen.

This picture of integrating out degrees of freedom naturally comes from Wilson’s statistical mechanics

picture of placing fields on a lattice: since energy transfers on the lattice are limited to momenta p < π/a,

the lattice spacing a acts as a high-energy cutoff for the theory. Zooming out from the lattice gives

semigroup scaling relations between the coupling constants at different zoom levels that maintain the

long-distance dynamics and correlations on the lattice.

This discrete picture of an energy-momentum cutoff is different, however, from most modern ap-

plications of EFTs in the continuum [94, 97]. While the tree-level construction is the same in both

the Wilsonian and the continuum pictures – that large mass and large virtuality degrees of freedom

are removed in the EFT – the treatment of radiative corrections differs. Instead of an explicit cut-

off, modern calculations use dimensional regularization to suppress the contributions from high-energy

degrees of freedom. All loop momenta go to infinity, and instead of removing high-energy degrees of

freedom by hand, the focus of continuum EFT is ensuring that the effective Lagrangian exactly repro-

duces low-energy amplitudes and probabilities of the full-theory. The long-distance non-local dynamics

are contained in the non-analytic dependence on infrared energy scales in matrix elements, while the

short-distance effects of the neglected high-energy modes are placed in the coupling constants of local

operators in the EFT.

In this continuum picture, EFTs enjoy a variety of properties that work in tandem to make the

framework very powerful. In this chapter we will outline some of these properties, and hope to paint

a cohesive picture for how they work together to provide an improved understanding of our universe.

We then showcase how this works with the 4-Fermi Effective Field Theory as an explicit example, and

proceed to describe the basic ideas of Soft-Collinear Effective Theory.

9
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2.1 EFT Generalities

Before we explicitly discuss the mechanisms behind the factorization and resummation formulae of ob-

servables in Effective Field Theory, it should be helpful to first discuss the overall structure of observables

which arises after the methods of EFT have been employed.

In Section 1.1 we wrote down a toy factorization for an observable involving two widely separated

energy scales. In various important processes there can be many energy scales, so we first begin by

considering the various energy scales an observable might involve. Then we note that while factorization

is a useful property in and of itself, without any further input each factor will suffer from large logarithms.

When combined with the renormalization group, however, an all-orders resummed form of each factor

can be achieved. This resummation has the dual benefits of taming the large logarithms, and also being

able to predict terms at higher orders in perturbation theory. We finish this section by discussing the

uncertainties associated with the best resummations of various observables at leading power, and how

these compare with the uncertainties associated with neglecting power corrections.

2.1.1 Many Energy Scales

The QCD scale ΛQCD sets the energy scale below which perturbative QCD predictions may no longer

be trusted. Thus, ΛQCD is the lowest possible energy scale in the hierarchy of scales for any observable

with hadrons in the initial or final state. In the previous chapter we discussed a simplified example

where an observable factorizes into a hard factor and a soft factor, but this is often not the end of the

factorization. Many observables contain additional intermediate scales corresponding to mass thresholds

for propagating degrees of freedom. For instance, in semileptonic B-decays (e.g. B → Xc`ν̄` decays,

shown in Fig. 2.1 in the parton model), there are multiple perturbative mass and energy scales associated

with the transition. The transition is mediated by the propagation of a virtual W boson with mass

mW ∼ 80.4 GeV, while the natural energy scale of the initial state corresponds to the mass of the

b-quark mb ∼ 4.18 GeV. The natural energy scale of the final hadronic state is given by the mass

of the charm quark mc ∼ 1.28 GeV, which is parametrically smaller than either mb or mW and also

parametrically larger than ΛQCD ∼ 0.3 GeV. At each of these energy thresholds the methods of EFT

add a new factor to the factorization formula which depends only on that threshold scale. Explicitly,

the decay width for this process can be written [98–102]

Γ(Bu → Du`ν̄`) = Γ0CW (mW , µ)Cb(mb, µ)Cc(mc, vB · vD, µ)ξ0(vB · vD, µ) +O

(
mb,c

mW
,

ΛQCD

mW

)
. (2.1)

b c

`

ν̄`
W−

Figure 2.1: Parton-level process b→ c`ν̄`.

The non-perturbative form factor ξ0(vB · vD, µ) is incalculable, but can be measured in laboratory

experiments. The other factors are associated with each of the widely separated mass scales, and these

arise naturally in EFT as a consequence of matching onto new effective theories at each mass threshold.
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The factors associated with perturbative energy scales are calculable in perturbation theory and have

the general form

Ci(mi, µ) = 1 + αs

(
A1 log

mi

µ
+B1

)
+ α2

s

(
A2 log2 mi

µ
+B2 log

mi

µ
+ C2

)
+ . . . . (2.2)

If µ � mi or µ � mi then the logarithm is large and the perturbative series in powers of αs � 1

becomes a perturbative series in powers of αs logmi/µ ∼ 1, implying that the asymptotic expansion of

QCD is no longer under theoretical control. From Eq. (2.1) it is clearly not possible to set µ to a scale

which keeps the logarithms small in each factor. This is an issue which is handled in a general manner

in Section 2.1.2, with a further explicit example in Section 2.2.2.

2.1.2 Logarithmic Precision Counting

In each of the factorization formulae that have been written up to this point, the neglected terms are

suppressed by powers of small mass ratios. For many phenomenologically important observables (e.g.

event shapes [103], decay widths [104], and fiducial phase-space restricted cross sections [55, 56]) the

leading power factorization formulae have been derived, and the perturbative factors at each relevant

energy scale have been calculated to very high levels of precision.

Typical perturbative calculations count the number of loops (equivalently, the highest power of the

coupling constant relative to tree level) that have been accounted for in Feynman diagrams contributing

to the observable, giving a rough estimate of the precision achieved by the calculation. A tree-level

calculation is called leading order (LO), a one-loop calculation is called next-to-leading order (NLO),

etc. For example, a 3-loop calculation in a field theory with coupling constant α whose perturbative

expansion begins at O(α0) will include terms up to and including O(α3) corrections. In QED the

neglected terms would then begin at O(α4
em) ∼ (1/137)4 ≈ 3× 10−9 (ignoring the appropriate factors of

1/π and the factorial growth in the number of diagrams). Such calculations which classify their precision

based on the number of loops (or the relative suppression by the coupling constant) is called a fixed

order (FO) expansion.

However, when relevant energy scales in a physical process are widely separated (e.g. Q � E),

diagrams will generate logarithms of the scale ratio; depending on whether or not there exist one or two

types of infrared singularities in the diagrams, each power of α will be also accompanied by one or two

powers of log(Q/E). With this hierarchy of scales, the effective coupling constant is α log(Q/E), so that

if the separation of scales is large enough, i.e. log(Q/E) ∼ 1/α, then the asymptotic FO expansion of

the observable in powers of αi becomes unreliable.

Fortunately in such situations the separation of scales allows for a renormalization group (RG)

improved representation of the observable. For any factor P with double logarithms, rather than writing

the FO expansion of the factor as

P(Q,µ) =
∑

n

αn
(
pn,2n log2n Q

µ
+ pn,2n−1 log2n−1 Q

µ
+ . . .+ pn,0

)
, (2.3)

it can be shown in RG-improved perturbation theory that the logarithm P has the equivalent expansion

logP = log
Q

µ

∑

n

cn

(
α log

Q

µ

)n
+
∑

n

dn

(
α log

Q

µ

)n
+ αi

∑

n

fn

(
α log

Q

µ

)n
. (2.4)
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The coefficients cn, dn, fn, etc., of the log expansion precisely reproduce the coefficients pn,m of the fixed

order expansion when expanded order-by-order in α.

In this form, however, it is difficult to determine the number of loops required in order to calculate

each of the coefficients. A more convenient basis can be found by transmuting the log dependence into

a function of the coupling constants evaluated at the relevant energy scales. Since the logarithm of the

scale ratio obeys the relation

log

(
Q

µ

)
∼ 1

α(Q)
g (α(Q), α(µ)) , (2.5)

where g(α(Q), α(M)) is determined by the beta function of the theory, the log expansion can also be

rewritten in the exponentiated form

P = exp

[
1

α(Q)
f0(z)

]
exp [f1(z)] exp [α(Q)f2(z)] · · · (2.6)

where z = α(µ)/α(Q). At this point, it can be simply stated that the function f0(z) is entirely determined

by 1-loop diagrams, the function f1(z) is entirely determined by 2-loop and 1-loop diagrams, etc. [69,

105–108]. A calculation which determines f0(z) is said to have summed the leading-log (LL) series of

coefficients cn, while the function f1(z) gives the next-to-leading-log (NLL) series dn, and so on and so

forth.

The benefits are twofold: most importantly, the exponentiated form brings the fixed order expansion

under perturbative control, but it also predicts fixed order coefficients at all orders in α, which can later

serve as a cross-check for subsequent higher-loop calculations.

These RG-improvement techniques have been applied to many observables to achieve high levels of

precision. For example, e+e− → hadronic event shapes like thrust [109] and the C-parameter [110] have

been calculated to N3LL at leading power. The same impressive logarithmic order has been achieved

at leading power in the Drell-Yan process in the endpoint region [111] and in the small-qT region [52].

Leading-power DIS has even been analyzed up to N4LL [112].

2.1.3 The Need to Study Power Corrections

For many observables the logarithmic precision achieved in the leading power factorization formula has

reached the point where the neglected terms in the factorization formulae, the power corrections, are now

the limiting entities in understanding and predicting probabilities in physical processes. For example,

a N3LL calculation of the simple scalar observable P used above will have no information about the

exponentiated factor exp[α3(Q)f4(z)]. If the process is mediated via QCD, and the largest energy scale in

the interaction is roughly Q ∼ 1 TeV, then αs(Q) ∼ 1/10 and the relative uncertainty from the neglected

factor is α3
s(Q) ∼ 1/1000. Compared to the uncertainty associated with the neglected power corrections,

which will be of the order E/Q, then computing the unknown function f4(z) – which would require a

heroic 5-loop calculation – will only be more important for precision improvement if E/Q < 1/1000.

Most important observables do not have such a wide scale separation.

Of course, power corrections are not been completely neglected in practice, it is only their factorization

and resummation structures that are not fully understood. Indeed, the leading power factorization of

an observable is only valid when a wide separation of scales E/Q � 1 exists. In the absence of such

a hierarchy, as can be the case when E represents a dynamically-generated energy scale (e.g. E ∼ qT

for the Drell-Yan process), the fixed order cross section is under perturbative control and provides the
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exact all-orders dependence on the scale ratio E/Q. In order to describe the cross section of a process

across the entire phase space of possible scale hierarchies, and in order to maintain RG-improvement

properties when E/Q� 1, the cross section is often written as [103, 113]

σ̂smoothed = σ̂ summed
LP +

(
σ̂ − σ̂ summed

LP

)
FO

. (2.7)

Here σ̂ represents the partonic fixed order cross section, and σ̂ summed
LP is the RG-improved cross section

at leading power when E � Q. This formula smoothly links the regions E � Q, where resummation is

important and the leading power factorization allows for a resummation, with the region E ∼ Q, where

no factorization exists but the cross section is known at all orders in E/Q. The parenthesized term then

represents the fixed order power corrections.

The aim of this thesis is to improve the understanding of power corrections for observables that are

already well understood at leading power. In the past 30 years there has been a great deal of work done

to explore the fixed order structure of power corrections in EFT. For example, FO power corrections in

HQET have been explored since the early 90s [114–116], and the next-to-leading power (NLP) SCET

Lagrangian was worked out shortly after SCET was first created [117]. However, just like the leading

power fixed order expansion of Eq. (2.3), power corrections also have spoiled perturbative expansions

from large logarithms, and it is only recently that efforts have turned towards deriving RG-improved

formulae for the power corrections themselves. Before my degree began there were only a few papers

concerned with the exponentiation of power corrections [83, 118], but since then there has been a growing

industry of authors seeking to exponentiate various observables at NLP [75, 87–89, 119–130].

(a) (b)

Figure 2.2: The qT spectrum (left) and its associated uncertainties (right), where CMS fiducial cuts

p
`1,2
T > 25 GeV and |η`1,2 | < 2.5 have been applied. Figures are taken from [55], with experimental data

from [131].

In this thesis, we will focus on studying the Drell-Yan process at small qT . Fig. 2.2 shows the qT

spectrum for the DY process1. Fig. 2.2b shows that experimental uncertainties currently outpace theory

uncertainties. A decomposition of these theory uncertainties is also shown in Fig. 2.3. There, resum-

mation (∆res) and non-perturbative (∆Λ) contributions dominate in the peak and post-peak shoulder

regions. Uncertainties associated with power corrections (∆FO), and with matching the resummed spec-

1In [55] fiducial phase space cuts are applied to the leptonic final state according to the typical detector acceptance
regions of CMS. The effects of these cuts can formally be expanded in a power series in the small ratio qT /Q, with non-
vanishing linear terms from whence they might identify “linear power corrections”. However, those authors argue that this
expansion is not strictly required, and instead keep the exact, all-powers qT /Q dependence from phase-space cuts.
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trum onto the fixed order power corrections via an equation like Eq. (2.7) (∆match), dominate in the

tail region. A better understanding of power corrections is thus important for increasing theoretical

precision in the tail.

Figure 2.3: Uncertainties associated with various theory inputs. These include the uncertainties from the
freeze-out energy Λfr of the QCD coupling, the uncertainties from choosing the canonical scales for the
resummation scheme, uncertainties associated with the profile-scale scheme for turning off resummation
in the matching of Eq. (2.7), and uncertainties associated with the fixed-order scale at which the power
corrections are evaluated. Figure taken from [55], with experimental data from [131].

In fact, in other applications it can be more important to understand the tail region than the peak

region. For example, in [103], the fit region for determining αs from the thrust distribution is 6 GeV/Q <

τ < 1/3, while in [132] the fit region is 25 GeV/Q < C < 0.7. These fit regions are chosen to avoid

non-perturbative effects, and correspond to the tail region of each distribution.

For the Drell-Yan process at small qT with totally inclusive hadronic final states, the QCD portion

of the cross section has power corrections that first begin to contribute at O(q2
T /Q

2). These quadratic

corrections, which we will call the NLP power corrections in this thesis, have not yet been resummed,

and in the main body of this thesis we take steps towards their exponentiation.

2.2 The 4-Fermi Effective Theory

In Chapter 1 we provided some examples of the mathematical structure of various observables when

following the process set out by Effective Field Theory. These formulae generically have a factorized

structure, where each factor depends only on a single energy scale. In this section we demonstrate the

mechanism and process behind how this factorization structure is achieved using the 4-Fermi EFT as a

demonstrative example.

Observables in Quantum Field Theory are generated by the interactions allowed in the Standard

Model Lagrangian; for example, the hadronic decay of a B-meson into a charmed final state is mediated

by the two Standard Model interaction terms

L(cWb) =
g2√

2
Vcb c̄L /W

+
bL

L(dWu) =
g2√

2
V ∗ud d̄L /W

+
uL .

(2.8)
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These interactions generate the transition amplitude (in Feynman gauge)

iMb→cdū = 〈cdu|b〉 = 〈cdū|T{iL(cWb), iL(dWu)} |b〉+ . . .

=
ig2√

2
V ∗udū

d
Lγ

αvuL
−igαβ
q2 −m2

W

ig2√
2
Vcbū

c
Lγ

βubL + . . .
(2.9)

where the tree-level term is included (see Fig. 2.4) and higher-loop corrections are included in the ellipses.

b c

d

u
W−(q)

(a)

b c

d

u

(b)

Figure 2.4: Hadronic B → Xc decay in the parton model. (a) Full-theory tree-level diagram for the
parton-level process b→ cdū. (b) Effective interaction for the same process when q2 � m2

W .

When working at energy transfers q2 � m2
W (e.g. here the typical energy transfer is q2 . m2

b) the

W boson cannot propagate as an external state; since the W boson cannot freely propagate, one can

think of the propagator in Fig. 2.4 as contracting to a point, shown in Fig. 2.4(b). The Lagrangian of

the full theory (the Standard Model) is then replaced with the effective Lagrangian

Leff = C1 c̄Lγ
αbL d̄LγαuL + C2 c̄Lγ

αuL d̄LγαbL +O

(
q2

m2
W

,
Λ2

QCD

m2
W

)
. (2.10)

The Wilson coefficients C1,2 play the role of coupling constants, and the field contents of each term

define the effective operators

O1 = c̄Lγ
αbL d̄LγαuL , O2 = c̄Lγ

αuL d̄LγαbL . (2.11)

In order to determine the Wilson coefficients C1,2 a matching calculation – in which matrix elements

are calculated in both the full theory and the effective theory – is performed, which fixes the effective

couplings in terms of the coupling constants of the full theory. Since the effective operators reproduce

all the low-energy dynamics of the full theory the Wilson coefficients C1,2 are independent of the chosen

external state for the matching calculation, provided that the external states lie in a configuration where

the scale separation is maintained. This is quite important; though the actual process being studied is

a transition between hadronic external states, matching calculations can be performed by calculating

partonic matrix elements.

Matching calculations therefore involve calculating the simplest matrix elements which describe the

desired parton-level process (instead of, say, the same parton-level process but with N initial-state
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gluons). In the case of hadronic B-decay, then from Eq. (2.9),

〈cdū|T{iL(cWb), iL(dWu)} |b〉 =
q2�m2

W

− i g2
2

2m2
W

V ∗udVcb ū
d
Lγ

αvuL ū
c
Lγαu

b
L +O

(
q2

m2
W

,
Λ2

QCD

m2
W

)

↓

〈cdū| iLeff |b〉+ . . . = iC1 ū
d
Lγ

αvuL ū
c
Lγαu

b
L + iC2 ū

d
Lγ

αvbL ū
c
Lγαu

u
L + . . .

(2.12)

giving the tree-level Wilson coefficients C1 = −g2
2V
∗
udVcb/2m

2
W [1 +O

(
g2

1 , g
2
2 , g

2
3

)
] and C2 = O

(
g2

1 , g
2
2 , g

2
3

)
.

The higher corrections to the Wilson coefficients come from loop diagrams, i.e. the g2
1 and g2

2 corrections

come from considering electroweak loop diagrams, and the g2
3 corrections come from QCD loops.

The matching requires that C2 = 0 at tree level, making it unclear why the operator O2 was required

in the first place. From a physically motivated standpoint, the operator O1 originated from a charged-

current interaction changing the flavor of the b-quark to a c-quark. Similarly, O2 has the appearance

of a neutral-current interaction changing the flavor of a b-quark to a d-quark. In the Standard Model

the unitarity of the CKM matrix ensures that no flavor-changing neutral currents exist at tree level.

Since the weak bosons, and thus their associated currents, have been integrated out of the EFT, there

is no similar mechanism which a priori prevents such a transition in the EFT and therefore O2 must be

generically included in the EFT’s Lagrangian. As we will see in the next subsection O2 is also required

for the renormalization of O1, so we often say that O2 is induced by renormalization.

2.2.1 Beyond Tree Level

Loop effects give a great deal of structure to the matching relation in Eq. (2.12). Loops in the full

theory induce logarithms of large scale ratios which can be separated into logarithms involving only a

single energy scale and an arbitrary factorization scale µ. Meanwhile, the reason factorization works at

all is because EFTs entirely reproduce the infrared physics of the full theory, and as a consequence the

matching coefficients depend only on the scale that was integrated out.

When calculating matrix elements in the full theory and in the effective theory, ultraviolet divergences

require a regulator to be introduced. The most common regulator in modern calculations is dimensional

regularization, where the spacetime dimension is analytically continued from d = 4 to d = 4 − 2ε.

With this regulator all continuous and discrete symmetries are preserved with the exception of scale

invariance, causing coupling constants and operators to become dependent on a renormalization scale µ.

After renormalization the factors in the effective Lagrangian in Eq. (2.10) then have scale dependence

Leff = C1(µ)O1(µ) + C2(µ)O2(µ) +O

(
q2

m2
W

,
Λ2

QCD

m2
W

)
. (2.13)

Generally speaking, observables calculated in the parton model have complicated non-analytic de-

pendence on the various ratios Rij = m2
i /m

2
j of the mass scales in the problem. Since there is a large

hierarchy of scales in this process, the matching onto an effective theory entails expanding these com-

plicated full-theory results in powers of Rij � 1. The expanded non-analytic functions then reduce to

logarithmic functions of the ratio, e.g.

iM1−loop
full theory ∝ αs logRij +O(Rij) . (2.14)
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For our example of hadronic B-decay, the perturbative ratios could be e.g. RbW = m2
b/m

2
W , RcW =

m2
c/m

2
W , RqW = q2/m2

W , etc. Since logm2
1/m

2
2 = logm2

1/µ
2 +logµ2/m2

2, the full-theory matrix element

separates into high-energy and low-energy pieces. For example, after expanding the QCD 1-loop matrix

element for b→ cdū, we might find that

iM1−loop
b→cdū ∝ αs

(
A log

m2
b

m2
W

+B log
m2
c

m2
W

+ C log
q2

m2
W

)
(2.15)

for some constants A, B, C. This then separates into a high-energy piece and a low-energy piece as

iM1−loop
b→cdū ∝ αs(A+B + C) log

µ2

m2
W

+ αs

(
A log

m2
b

µ2
+B log

m2
c

µ2
+ C log

q2

µ2

)
. (2.16)

The effective theory, if properly constructed, will reproduce all the infrared physics of the full theory. Here

the infrared dynamics are represented by the non-analytic functional dependence on the low-energy scales

m2
b , m

2
c , q

2, or any other dynamically generated infrared scale. Meanwhile, the high-energy scale m2
W no

longer exists in the effective theory (matrix elements of the operator do not generate m2
W dependence).

Thus, in order for the effective field theory to match onto the full theory, the m2
W dependence must be

fully accounted for by the Wilson coefficient CW . This separation into high- and low-energy terms is

how factorization arises. The matching coefficients C1,2(µ,mW ) then only depend on the scales µ and

mW , and after explicit calculations of the full-theory and EFT matrix elements it can be shown that

C1(µ,mW ) = − g2
2

2m2
W

V ∗udVcb

(
1− αs(µ)

4π
log

µ2

m2
W

+O
(
α2
s

))

C2(µ,mW ) = − g2
2

2m2
W

V ∗udVcb

(
3
αs(µ)

4π
log

µ2

m2
W

+O
(
α2
s

))
.

(2.17)

This finishes the 1-loop summary of matching the full theory onto the effective theory for B-decay at

leading power in q2/m2
W .

2.2.2 Log Minimization and Summation

While our matching procedure has successfully separated high-energy from low-energy effects, it remains

to be determined what should be done with the factorization scale µ. Recall from our discussion in Section

2.1.2 that large logarithms spoil the fixed order expansion of the observable. If µ is chosen to be near

the high-energy scale µ2 ∼ m2
W , then there are large logarithms in the matrix elements 〈O1,2(µ)〉. If

µ is chosen to be a low-energy scale µ2 ∼ m2
b , m

2
c , q

2, then there are large logarithms in the Wilson

coefficient CW (µ,mW ).

This issue is solved through the power of the renormalization group. In dimensional regularization,

the relation between a bare operator and its renormalized counterpart is written as

Obare
i = Zij(µ)Oj(µ) (2.18)

where we have allowed for operator mixing. Since the bare operator is scale invariant, we are led to the
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renormalization group equation (RGE)

d

d logµ
Oi(µ) =

(
−Z−1

ik (µ)
d

d logµ
Zkj(µ)

)
Oj(µ)

≡ γij(µ)Oj(µ) ,

(2.19)

where we have implicitly defined the anomalous dimension γij . The form of this differential equation is

not always so simple – in various applications the RGE can involve sums and convolutions over continuous

labels, making it much more difficult to solve the RGE. In the case of hadronic B-decays, however, the

1-loop anomalous dimension matrix is well known [133, 134]

γ =
αs
2π

(
1 −3

−3 1

)
. (2.20)

From diagonalizing the matrix and solving the RGE in the new basis of operators, it can be shown that

the effective Lagrangian may be written in the resummed form

Leff = C1(µH ,mW )U1(µH , µ)O1(µ) + C2(µH ,mW )U2(µH , µ)O2(µ) +O

(
m2
b,c

m2
W

,
Λ2

QCD

m2
W

)
, (2.21)

where µH is some hard energy scale µH ∼ mW , and

U1(µH , µ) =
1

2

[
exp

(
2

β0
log

α(µH)

α(µ)

)
+ exp

(
− 4

β0
log

α(µH)

α(µ)

)]

U2(µH , µ) =
1

2

[
exp

(
2

β0
log

α(µH)

α(µ)

)
− exp

(
− 4

β0
log

α(µH)

α(µ)

)]
.

(2.22)

Two points here should be emphasized. Firstly, the unitary evolution factors Ui(µH , µ) have the same

form as the summation exponent f1(z) in Eq. (2.6) (there is no f0(z) here because there are no double logs

for this observable). The expansion of the evolution factors order-by-order in αs(µ) will contain large

logarithms of the ratio µ2/µ2
H , but the entire series has been summed and thus perturbative control

has been restored. Secondly, the Wilson coefficient CW (µH ,mW ) can been evaluated at µH = mW ,

eliminating all large logs from that factor, while the renormalization scale µ only appears in Ui and

Oi, and can thus be chosen to be a low-energy scale µ ∼ mb,c. The matching and running procedures,

in tandem, have separated the high-energy physics from the low-energy physics, and have summed the

infinite series of large logarithms between these two hierarchical scales.

This process of matching and running can continue as long as there are perturbative scales that can

be accessed by either the initial or the final state. In the case of inclusive B → Xc decay, both the initial

and final states have invariant masses that are proportional to m2
b , and thus once the renormalization

scale reaches µ . mb both initial and final states are integrated out of the EFT. For other observables

of interest, there could be many successively lower perturbative energy scales to explore, giving further

factors and requiring further renormalization-group resummations.
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2.3 Jets and Soft-Collinear Effective Theory

When quarks and gluons are produced in a high energy collision they must eventually decay to form

color-neutral hadronic bound states which we observe in our detectors. Due to angular-ordering theorems

which show that radiated particles become increasingly collimated as more emissions occur [135, 136],

we observe the spectacular phenomenon that final state hadrons create a distinctive conelike appearance

inside a detector (see Fig. 2.5). These jets of hadrons have been observed since the 1970s [36, 137], but

since there is no way to calculate how quarks and gluons become hadrons, we can only empirically model

the various processes which lead to the formation of hadrons from a given configuration of quark and

gluon progenitors [135, 138, 139].

For carefully-chosen observables, however, EFT techniques place all hadronization effects into uni-

versal non-perturbative factors akin to f(E) in Chapter 1, transmuting the problem of calculating cross

sections into the problem of calculating matching coefficients at perturbative scales. The basic idea of

SCET is that when studying jet-like observables the typical collimated and conelike signature of jets in

colliders endows the observable with additional perturbative low-energy scales. It is in these cases, when

additional infrared energy scales are widely separated from the large center-of-mass energy producing

the jets, that small ratios of scales can be used to expand QCD and allow EFT techniques to be used.

(a) (b)

Figure 2.5: Cartoons of dijet (a) and trijet (b) events in the style of the TASSO detector at the electron-
positron collider PETRA [140, 141]. Cutaways show possible short-distance interactions which generate
the event.

For concreteness, picture an electron-positron collision producing two back-to-back jets, as in Fig.

2.5 (a). It is useful to first define some of the relevant kinematic quantities: after a collision with center-

of-mass energy Q, one of the resulting jets will travel approximately in the n̂ direction and will draw

from the interaction vertex a significant fraction of the total energy available (En ∼ O(Q)). It will also

have some invariant mass M and some 4-momentum pµ =
∑
i p
µ
i , where the sum is over all the jet’s

constituent partons2. Effective field theory is generally only useful when there is a hierarchical separation

between scales so we will take M � E ∼ Q. In this case, where the energy is much larger than its mass,

2The particular clustering algorithm used to define a jet is unimportant for our analysis. For observables which can be
described using SCET, the observable’s hierarchy of scales will enforce collimated configurations of hadrons, (e.g. 1−T � 1
for thrust or 1−x� 1 for endpoint DIS). If the jet algorithm itself is the observable being studied [142, 143], the kinematics
here capture the relevant features of non-pathological jet definitions [144, 145].
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the jet is relativistic and nearly lightlike: it is thus convenient to use a lightcone basis to represent

its 4-momentum. This is often defined in terms of the components p− = E + p · n̂, p+ = E − p · n̂,

pT = p− n̂(p · n̂), giving the 4-momentum

pµ = p+ n̄
µ

2
+ p−

nµ

2
+ pµ⊥ , (2.23)

where nµ = (1, n̂), n̄µ = (1,−n̂), and p2
⊥ = −p2

T .

With this coordinate system the jet’s energy-momentum relation is M2 = p2 = p+p− − p2
T . Since n̂

is chosen to align very closely with the jet’s direction of travel |pT | � p · n̂ =
√
E2 −M2 − p2

T ∼ O(Q),

and then from the hierarchy of scales p− ∼ O(Q) and p+ ∼ O
(
M2/Q,p2

T /Q
)
. The 4-momenta pµi of the

jet’s constituents must sum to each of the jet’s lightcone components so each of the parton constituents

of the jet then have the scaling p−i < p− ∼ O(Q) and p+
i < p+ ∼ O

(
M2/Q,p2

T /Q
)
� Q. In this thesis

we treat partons as massless, so each of their on-shell relation reads p2
i = 0 = p+

i p
−
i − p2

iT , giving the

scaling piT ∼ O(M,pT )� Q.

These scaling relations for each jet constituent allow QCD Feynman diagrams that describe jet

production to be expanded in a power series of the small ratio piT /E. While it has been convenient

to explain these ideas through the viewpoint of jet production, these techniques are generally useful

whenever there exists a collection of colored particles which are collimated. For instance, these techniques

are also applicable when hadrons exist in the initial state of a reaction, since hadrons are nothing more

than a tightly bound bundle of partons travelling in the same direction.

2.3.1 Analogy to the 4-Fermi EFT

Equipped with the kinematics of a jet and its constituents we now examine some Feynman diagrams in

QCD which correspond to jet production. We will expand these diagrams in the appropriate kinematic

regime and determine which EFT operators are required to reproduce the expanded amplitudes.

q

p2

p1

ke

ē

γ

(a)

q

p2

p1

k

e

ē

γ

(b)

Figure 2.6: Electron-positron annihilation mediated by a virtual photon with energy transfer q2 = Q2,
with a gluon emitted from either (a) the quark or (b) the antiquark.

Consider the tree level graphs for dijet production from e+e− annihilation with one final state gluon,
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shown in Figure 2.6. The QCD portions of these graphs are

iMµ
a = −igT acc′ ūc1γα

/p1
+ /k

2p1 · k
γµvc

′

2 ε
∗
α, iMµ

b = igT acc′ ū
c
1γ
µ /p2

+ /k

2p2 · k
γαvc

′

2 ε
∗
α . (2.24)

In the dijet region of phase space, i.e. when n̂ defines a jet axis and the transverse momenta relative to

this axis are small, then |p1T | � Q, |p2T | � Q, and |kT | � Q. There are three possible partitions of the

particles which obey momentum conservation: either the quark and gluon travel in the same direction

and recoil against the antiquark, or the gluon travels in the same direction as the antiquark, or the quark

and antiquark travel in the same direction.

For our purposes, let us analyze the first case, where the quark and gluon become the progenitors of

the jet moving in the n̂ direction (the n-jet), and the antiquark becomes the progenitor of the jet moving

in the −n̂ direction (the n̄-jet). We can then derive from the free-quark equations of motion that the

spinors obey the expansion

ū(p1) =
p1∈n

ū(p1)

(
Pn̄ −

/p1⊥
p−1

/̄n

2

)
, v(p2) =

p2∈n̄

(
Pn̄ −

/n

2

/p2⊥
p+

2

)
v(p2) , (2.25)

where Pn̄ = /̄n/n/4 is a projection operator. These equations serve to project away the small components

of the spinors in an expansion in powers of 1/p−1 ∼ 1/Q ∼ 1/p+
2 .

In this topology, let us examine the virtualities of the propagators in Fig. 2.6 (a) and (b). In Fig.

2.6 (a), the quark propagator has virtuality (p1 +k)2, which corresponds to the mass of the jet. In events

where the jet mass is small compared to the energy transfer, M2 = (p1 + k)2 � Q2, this represents an

infrared energy scale. This propagator thus contains no high-energy scales which need to be integrated

out, so there is no expansion necessary, and the dynamics of the diagram must be reproduced exactly

by the effective theory.

By contrast, in Fig. 2.6 (b), the antiquark propagator has virtuality (p2 + k)2 which corresponds to

a large energy scale. To see this quickly we choose n̂ so that the net transverse momentum of each jet

is precisely zero; this provides vanishing momentum components p2T = 0 and p−2 = 0 for the antiquark.

The virtuality of the propagator then reads (p2 + k)2 = p+
2 k
−, and from the arguments of the previous

section k− ∼ O(Q) and p+
2 ∼ O(Q), so (p2 + k)2 ∼ O(Q2).

As with the 1/(q2 −m2
W ) W -propagator in the 4-Fermi example, here the antiquark propagator has

a large virtuality. Since a high energy scale is present, the propagator must be integrated out of the

theory when µ < Q. However, since k−p+
2 is not precisely equal to the high energy scale Q2, there are

still some residual dynamics which will remain in the expanded amplitude.

To make this concrete, we examine the full propagator along with the adjacent spinor expansion.

Expanding in powers of small over large momentum components, we find that

/p2
+ /k

2p2 · k
γα
(
Pn̄ −

/n

2

/p2⊥
p+

2

)
v(p2)ε∗α )

k∈n, p2∈n̄
Pn̄

(
n̄α

n̄ · k
+ . . .

)
v(p2)ε∗α (2.26)

The overall result of these expansions is that when the quark and gluon both travel in the n̂ direction,

the net QCD result of graphs (a) and (b) has the expansion

iMµ
a+b )

p1, k∈n, p2∈n̄
− igT acc′ ūc1

(
γα
/p1

+ /k

2p1 · k
− n̄α

n̄ · k

)
Pn̄γ

µPn̄v
c′

2 ε
∗
α + . . . . (2.27)
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Technical details and higher corrections for these expansions are collected in Appendix A.

To motivate the form of the operator which reproduces this expanded matrix element, let us examine

the large momentum component of the propagator in each diagram. In diagram (a), the intermediate

quark has a large momentum component p′−1 , and after the gluon emission the final-state quark has

large momentum component p−1 = p′−1 − k−. Since k− is large, the large momentum component of the

quark changes by a large amount. In contrast, in diagram (b), the intermediate antiquark has a large

momentum component p′+2 , and after the gluon emission the final-state antiquark has large momentum

component p+
2 = p′+2 − k+ ∼ p′+2 ; the large momentum component of the antiquark does not change.

Thus at leading power in the 1/Q expansion any radiation emitted by the antiquark in the opposite

direction cannot change the energy nor the direction of travel of the antiquark. From the perspective of

the emitted gluon the antiquark represents an immovable color source travelling in the opposite direction

at the speed of light. Such an object is represented in field theory as a Wilson line,

Wn(x) = P exp

(
−ig

∫ ∞

0

ds n̄ ·An(x+ n̄s)e−0+s

)
. (2.28)

In words, the Wilson line Wn – which acts as a lightlike color source for n-gluons – is given by the anti-

path-ordered exponential of gluon fields along the n̄ direction. The path ordering simply preserves the

usual color ordering of multiple gluon emissions when walking backwards along the arrows of a fermion

line, and the e−0+s provides a damping factor required for convergence of the integral and precisely aligns

with the usual iε prescription of the antiquark propagator.

The operator building block which reproduces the dynamics the expanded diagrams (a) and (b) is

χ̄n(x) = ψ̄n(x)Wn(x)Pn̄ . (2.29)

All emissions off the quark field in the n-direction are the same as those in QCD, while all emissions in

the n-direction off the Wilson line reproduce the dynamics of QCD emissions off the antiquark, if these

QCD emissions are expanded in the same kinematic regime.

The analysis is symmetric: the building block which reproduces the dynamics of both expanded

diagrams (a) and (b) in the alternate case where the gluon instead travels in the n̄-direction is

χn̄(x) = Pn̄W
†
n̄(x)ψn̄(x) . (2.30)

Together, each of these operator fragments reproduce all possibilities for quarks and antiquarks travelling

in opposite directions. At leading power, the overall operator which produces small-mass dijets is

Oµ2 (x) = χ̄n(x)γµχn̄(x) . (2.31)

This is shown in Fig. 2.7. It can be shown that the final topology, where the quark and antiquark travel

in the same direction, produces amplitudes which are strictly subleading in powers of 1/Q.

The effective Lagrangian for SCET can thus be summarized as the usual QCD Lagrangian for each

jet, augmented by effective operators for the vector current which couples the separate jet sectors. In

short,

LQCD + gemVµψ̄γ
µψ −→ LQCD,n + LQCD,n̄ + gemVµ (C2(µ,Q)Oµ2 (x, µ) + . . . ) , (2.32)
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where gem corresponds to the electromagnetic charge of the quark flavor in the current. 1-loop calcula-

tions then give both the Wilson coefficient and the anomalous dimension for O2 up to O(αs),

C2(µ,Q) = 1 +
αsCF

4π

(
− log2 −Q2

µ2
+ 3 log

−Q2

µ2
+ ζ2 − 8

)
,

γO2
(µ) =

αsCF
2π

(
3− 2 log

−Q2

µ2

)
.

(2.33)

This provides the renormalization-group kernel needed to evolve O2 from the hard scale µH ∼ Q at

which we match onto SCET down to µ, where the leading-log contribution is

logUH(Q,µ) =
1

αs(Q)

8πCF
β2

0

[
1− αs(Q)

αs(µ)
+ log

αs(Q)

αs(µ)

]
. (2.34)

−igµν
q2−m2

W

igµν

m2
W

+ . . .

m2
W � q2 q2 � p2

J

×

(/p2
+/k)

(p2+k)2 γ
αv(p2)

n̄α

k−Pn̄v(p2)

Figure 2.7: Expanding Feynman diagrams in the presence of a hierarchy of scales. In (a) a heavy W -
propagator beyond the cutoff of the theory contracts to a point, leaving the 4-Fermi effective vertex. In
(b) a high-virtuality antiquark propagator beyond the cutoff of the theory becomes a non-local Wilson-
line propagator in SCET. Some authors take the analogy even further and depict Wilson-line emissions
as emanating from the vertex, as if to signify that the antiquark had also contracted to a point.

In summary, when expanding the full-theory amplitudes relevant to either the 4-Fermi EFT or to

SCET, a propagating particle in the full theory which contains a large energy scale is replaced with an

effective operator in the EFT. In the 4-Fermi EFT the hierarchy of scales is known a priori based on

the initial state’s available energy. In SCET the hierarchy of scales only applies to particular regions of

phase space, yet in these regions the principles of EFT still apply: matching coefficients only depend on

the hard matching scale, effective operators reproduce all the infrared dynamics of the full theory, and

the renormalization group can be applied to sum the large logarithms which appear as a result of the

dynamically-induced scale separation.

This finishes the methodology we use in this thesis for defining the EFT for jet-like processes below

the hard scale Q. Further low-energy thresholds ΛIR exist for jet observables, each of which require a

further matching calculation to determine the effective operators below that threshold. The resulting

soft effective theories will depend on the observable, and so can only be discussed on a case-by-case basis.
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Crucially, however, the version of SCET we have defined here is observable independent – as long as

there is a hard interaction then between the scales ΛIR < µ < Q the operators and matching coefficients

are universal.

2.3.2 The Usual SCET Formulation

The way I have described SCET so far is different from its usual formulation. More often, external

momenta of particles and the fields which create these particles are partitioned into modes, each of

which are assigned scaling relations indicating the size of their lightcone components. Typical mode

scalings of the lightcone components (p+, p−, |pT |) include

phard ∼ Q(1, 1, 1)

phard−collinear ∼ Q(λ2, 1, λ)

panti−hard−collinear ∼ Q(1, λ2, λ)

psoft ∼ Q(λ, λ, λ)

pultrasoft ∼ Q(λ2, λ2, λ2)

pGlauber ∼ Q(λ2, λ2, λ) .

(2.35)

The exact value of λ � 1 depends on the observable, e.g. for the massive Sudakov form factor λ =

M/Q [84], for thrust λ =
√

1− T [146], for the small-qT Drell-Yan process λ = qT /Q [64], etc. Some

observables require further scaling parameters in order to decouple the scale-dependence of modes.

For instance, in endpoint DIS it has been argued [147, 148] (and counter-argued [149]) that the soft-

collinear mode psoft−collinear = Q(ε, λ2,
√
ελ) is required to reproduce the infrared dynamics of QCD,

where λ = ΛQCD/Q and ε =
√

1− x. The proliferation of these modes is part of the motivation for

exploring a different formulation of SCET without modes.

A long sequence of manipulations, and a detailed exposition of various transformation properties, are

required to fully define the consequences of partitioning QCD fields into n modes, n̄ modes, soft modes,

etc. [91]. In the canonical example where n, n̄, and ultrasoft modes are required for a SCETI-type

observable, the QCD fields are partitioned into the appropriate modes via

ψ = ξn + ξn̄ + qus , Aµ = Aµn +Aµn̄ +Aµus . (2.36)

After applying the BPS field redefinition [71, 72, 150]

ξn → Y †n ξn +O(λ)

Aµn → Y †nA
µ
nYn +O(λ) ,

(2.37)

where the Wilson lines Yn,n̄ create and annihilate ultrasoft fields, the SCET Lagrangian reads

LQCD + gemVµψ̄γ
µψ −→ Ln + Ln̄ + Lus + gemVµJ

µ
SCET (2.38)



Chapter 2. Effective Field Theories 25

where [91]

Ln = ξ̄n

(
in ·Dn + i /Dn⊥W

†
n

1

in̄ · ∂
Wni /Dn⊥

)
ξn

+
1

2g2
Tr
[
W †niD

µ
nWn,W

†
niD

ν
nWn

]2
+ gauge fixing + ghost fields +O(λ)

Lus = q̄usi /Dusqus +
1

2g2
Tr [iDµ

us, iD
ν
us]

2
+ gauge fixing + ghost fields

JµSCET = C2(Q,µ)ξ̄nWnY
†
nγ

µYn̄W
†
n̄ξn̄ +O(λ) .

(2.39)

From here the BPS field redefinition can be used to factorize each term in the SCET Lagrangian into in-

dividually gauge-invariant n, n̄, and ultrasoft factors. At leading power, a convenient consequence is that

all the inter-mode couplings are placed into the hard-interaction portion JµSCET of the SCET Lagrangian.

Derivations of factorization formulae are thus quite straightforward at leading power, generically pro-

ducing factorization formulae for cross sections of the form

σ ∝
∫
d4x e−iq·x 〈XnXn̄Xus| Jµ†(x)Jν(0) |XnXn̄Xus〉

→
∫
d4x e−iq·x 〈XnXn̄Xus| |C2|2(ξ̄nWnY

†
nγ

µYn̄W
†
n̄ξn̄)(x)(ξ̄n̄Wn̄Y

†
n̄γ

νYnW
†
nξn)(0) |XnXn̄Xus〉

= γµαβγ
ν
ρσ|C2(Q)|2

∫
d4x e−iq·x 〈Xn| (ξ̄nWn)α(x)(W †nξn)σ(0) |Xn〉 〈Xn̄| (W †n̄ξn̄)β(x)(ξ̄n̄Wn̄)ρ(0) |Xn̄〉

× 〈Xus| (Y †nYn̄)(x)(Y †n̄Yn)(0) |Xus〉

≡ γµαβγ
ν
ρσH(Q)

∫
d4x e−iq·xJ̃ασ(x, λQ)Jβρn̄ (x, λQ)S(x, λ2Q)

= γµαβγ
ν
ρσH(Q) Jασn (Pn, λQ)⊗ Jβρn̄ (Pn̄, λQ)⊗ S(Pus, λ

2Q) ,

(2.40)

where the convolution theorem has been used to write the cross section in terms of convolutions, denoted

by ⊗. The energy scales in the argument of the jet functions Jn,n̄ and soft function S come from

the scaling of the modes which make up the function. Fierz identities and multipole expansions are

then used to further simplify the structure of the cross section, but the general form still remains

H(Q)× Jn(λQ)⊗ Jn̄(λQ)⊗ S(λ2Q).

By matching QCD onto this usual formulation of SCET the hard, jet, and soft scales have been

disentangled. Typically in EFT a matching at the hard scale will only disentangle hard dynamics,

producing a factor H(Q), and subsequent matching steps need to be performed to separate the various

infrared energy scales. Here, the infrared dynamics have separated automatically. While this is useful,

the drawback is that for a different observable – say one that depends on soft (λ, λ, λ) or csoft modes

(ε, λ2,
√
ελ) – a different Lagrangian must be constructed, and a different factorization formula must be

derived. In effect, a different version of SCET is required for each observable3.

The formulation of SCET used in this thesis does not classify degrees of freedom using λ-scaling, and

instead partitions particles into sectors based on where their mutual interactions fall in the hierarchy

3A potential complication from having a separate version of SCET for each observable is that multi-differential cross
sections – involving the simultaneous measurement of multiple observables – might prove incompatible with a SCET
treatment. However, it has been shown that these joint observables can be analyzed using the formalism of SCET+

[81, 151–155], which outlines a phase space of effective theories depending on the relative hierarchy of scales from each
distinct observable and which results in a continuous multi-differential spectrum.
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relative to the hard cutoff scale Q2. Our formulation also does not depend on the specific hierarchy or

relative scaling of any of the infrared energy scales, and thus can be used for any observable with a hard

interaction and jet-like kinematics. Finally, we do not need to define our theory in reference to QCD. In

the method of regions approach to SCET [82] the reference to QCD is quite clear, where EFT diagrams

are explicitly calculated as limiting cases of full-theory diagrams. In the usual formulation of SCET

the connection is less explicit, but is still used implicitly; for example, when defining rapidity regulators

[80], the n, n̄, and soft modes are connected through the use of the same rapidity scale ν and regulating

parameter η for each mode. If these modes were truly independent then each mode would be free to

choose its own rapidity parameters.



Chapter 3

Renormalization of Dijet Operators

at 1/Q2

In this chapter, we take important steps towards the resummation of power-suppressed logarithms in

processes which involve the hard interaction of two collimated collections of colored particles. Using

a newly developed formalism for Soft-Collinear Effective Theory (SCET), we identify and compute

the anomalous dimensions of all the operators that contribute to event shapes at order 1/Q2. These

anomalous dimensions are necessary to resum power-suppressed logarithms in hard processes, although

an additional matching step and running of observable-dependent soft functions will be necessary to

complete the resummation. In contrast to standard SCET, the new formalism does not make reference

to modes or λ-scaling. Since the formalism does not distinguish between collinear and ultrasoft degrees of

freedom at the matching scale, fewer subleading operators are required when compared to recent similar

work. We demonstrate how the overlap subtraction prescription extends to these subleading operators.

The contents of this chapter appear in [77].

3.1 Introduction

Event shapes such as thrust, broadening, and the C-parameter are strong probes of the predictive power

of perturbative quantum chromodynamics. Thrust [103, 109, 156] and the C-parameter [132] have been

used to precisely determine αs from e+e− collision data with the help of Soft-Collinear Effective Theory

(SCET) [68–71] . The value of αs determined by these event shape measurements deviates from the

world average [157], and a better understanding of QCD power corrections could help understand this

discrepancy.

For a concrete example, we consider the event shape thrust. Thrust is defined as

τ = 1− T = 1−max
t̂

∑

i∈X

∣∣∣∣
t̂ · pi
Q

∣∣∣∣ , (3.1)

where t̂ is the unit vector that maximizes the weighted sum over all final state momenta X. The value of

τ ranges between 1/2 for spherically symmetric distribution of momenta in the final state to 0 for exactly

collinear back-to-back jets. A corresponding observable for thrust is the cumulative thrust distribution

27
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for e+e− → jets. Normalizing to the Born cross section σ0 this cumulative distribution R(τ) is given by

R(τ) =
1

σ0

1

2Q2

∑

i

Liµν
∑

X

∫
d4x 〈0| J µ †i (x) |X〉 θ(τ − τ̂(X)) 〈X| J νi (0) |0〉 , (3.2)

where τ̂(X) is the function that computes eq. (3.1) for each final state X. The dependence on the

leptonic current has been absorbed in Lµνi , and the current J µi = e−iq·x
∑
f,c ψ̄

c
f Γµi ψ

c
f is either the

vector (ΓµV = γµ) or axial (ΓµA = γµγ5) QCD quark current. In the limit τ � 1 the cumulative thrust

distribution can be computed in a perturbative expansion in both αs and τ , and takes the value [158]

R(τ) = 1 +
αsCF

2π
(−2 log2 τ − 3 log τ + 2ζ2 − 1) +

αsCF
2π

τ(2 log τ − 4) +O
(
α2
s, τ

2
)
. (3.3)

For sufficiently small values of τ , the quantity αs log τ becomes large and the validity of the asymptotic

expansion in fixed-order perturbation theory breaks down. Effective field theories and renormalization

group techniques can been used to resum infinite subsets of these logarithmic terms, which improves

the validity of the approximation. Summing the infinite subset of Sudakov (double) logarithms, starting

with the term proportional to αs ln2 τ , is called the leading logarithm (LL) approximation, with NLL

describing the summation of the terms starting with αs ln τ , and so on. SCET has enjoyed a great deal

of success in summing these logarithmic terms up to N3LL
′

in the thrust distribution[109, 146, 159].

However, the terms suppressed by powers of τ still limit the theoretical uncertainty in the regime

where τ is small but still large enough that perturbation theory is valid, i.e. Qτ � ΛQCD (also known as

the “tail” region of the distribution). Power corrections have been included in thrust calculations using

direct and effective field theory methods [103, 109, 156, 160, 161], however these have been at fixed-order

in perturbation theory, which computes only the leading terms in the infinite subset.

In this chapter we make progress towards the goal of summing the whole series of leading logarithms

suppressed by τ in the cumulative thrust distribution by computing the anomalous dimensions of all

the necessary scattering operators in SCET that contribute to the O(αsτ) cumulative distribution. We

use a new formalism for SCET developed in [77]. The remaining ingredient required to complete the

summation is to match onto and renormalize the subleading soft functions. The soft functions in this

formalism will correspond exactly to the soft functions discussed in standard SCET for event shapes,

which encode the effect of low energy radiation on the event shape. They are therefore observable-

dependent, in contrast to the operators we consider in this chapter, which apply to any event shape for

e+e− → dijets. A detailed analysis of soft function matching and renormalization in this formalism is

currently a work in progress and so we will not discuss it further here1.

3.2 Formalism Review

The formalism for SCET developed in [77] expanded on the work of [163], in which SCET was constructed

as an effective field theory of decoupled copies of QCD interacting with each other via Wilson lines. This

idea was further explicated in [164, 165] to study factorization in QCD. In [77], the formalism was

modified to remove the ultrasoft sector from dijet operators in the effective theory below the matching

scale, while modifying the standard “zero-bin” prescription to make the theory consistent. In this section

1Definitions of subleading soft functions were given in [162], although the formalism of SCET used there is different
from the one used here.
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we briefly review the notation and formalism used in this framework for SCET and demonstrate the

matching calculation onto the subleading operators.

3.2.1 Notation

Throughout this chapter we will use the usual lightcone coordinates:

pµ = n · pn̄
µ

2
+ n̄ · pn

µ

2
+ pµ⊥ = p+ n̄

µ

2
+ p−

nµ

2
+ pµ⊥ , (3.4)

where nµ = (1,n), n̄µ = (1,−n) and n · n̄ = 2; we will also use the shorthand pµ = (p+, p−,p⊥). In

standard SCET specific “λ-scaling” is assigned to each light-cone component depending on which sector

the particle is in. In contrast, in this formalism there is no need to compare the relative scaling of

collinear modes to soft, ultrasoft, or other modes2, and so defining a λ-counting for different components

of momenta will not be necessary. When matching onto the effective theory we will consider the limits of

QCD in which p+ or p− are much less than the matching scale Q, considering all such perturbations to

be of the same order. The power counting of subleading operators in this formalism is then determined

entirely by their dimension, as will be made evident below. In the dijet limit, thrust scales like the

hemispherical mass-squared τ ∼ M2
H/Q

2 [166], so to calculate the cumulative thrust distribution up to

O(τ) it is necessary to determine the subleading operators up to a suppression of 1/Q2.

We define the following gauge-invariant operator building-blocks which we will use to construct

subleading operators, using notation familiar from existing SCET literature:

χni(x) = W †ni(x)Pniψni(x),

Bµ1···µN
ni (x) = W †ni(x)iDµ1

ni (x) · · · iDµN
ni (x)Wni(x),

(3.5)

where Pni = /ni /̄ni/4, and ni are the directions of each jet. For dijets, we always work in a reference

frame where n1 = n and n2 = n̄, such that n̄1 = n2 and n̄2 = n1. The Wilson lines are defined in the

usual way,

Wni(x) = P exp

[
−ig

∫ ∞

0

ds n̄i ·Aani(x+ n̄is)T
ae−εs

]
, (3.6)

where P denotes antipath ordering and ε is the Feynman pole prescription. The only distinction between

these objects and their equivalents in standard SCET literature is that in the present formalism, fields

are regular QCD fields with quantum numbers labeling their corresponding sector.

While the operators in the effective theory depend on the choice of a direction n, they are in fact

invariant under boosts along that direction; i.e. the form of the operators does not depend on which

reference frame one uses to define nµ = (1, 0, 0, 1), provided n points along the same axis. Thus, following

[77], we define new vectors η and η̄,3

ηµ =

√
q · n̄
q · n

nµ, η̄µ =

√
q · n
q · n̄

n̄µ , (3.7)

where qµ = (Q/α,Qα,0) is the momentum transfer of the process, and in the case of e+e− → X it is

the momentum of the virtual electroweak boson. The parameter α defines the relative boost from the

2See Section 2.3.2.
3Note that these differ by a sign from the definitions in [77], since in our case q is timelike rather than spacelike.
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frame in which nµ = (1, 0, 0, 1). The four-vectors η and η̄ have been defined so that p · η and p · η̄ don’t

depend on α for any p, and are therefore useful for making this boost symmetry of the effective theory

manifest.

For brevity, we define some shorthand notation to denote the displacement of fields from the inter-

action vertex in position space, which will be necessary for renormalization:

Bµ1···µN
ni (x, t) = Bµ1···µN

ni (x+ η̄it/Q)

χni(x, t) = χn(x+ η̄it/Q).
(3.8)

Here t is dimensionless parameter that displaces the fields from the vertex at x along the ni direction.

Following the lead of [167–169] we will also find it useful to build subleading operators using a set

of building blocks that project out states with definite helicity. We find that this both simplifies the

structure of subleading operators but also allows us to take advantage of the compact form of matrix

elements of massless QCD between states with definite helicity.

Using the standard basis for transverse polarization vectors,

ξµ± =
1√
2

(0, 1,∓i, 0), (3.9)

we define the following combinations of quark-antiquark fields,

J ijnn̄±(x, t1, t2) = χ̄in±(x, t1)/ξ∓χ
j
n̄±(x, t2)

J ijn0(x, t1, t2) = χ̄in+(x, t1)/̄ηχ
j
n+(x, t2)

J ij
n0̄

(x, t1, t2) = χ̄in−(x, t1)/̄ηχ
j
n−(x, t2) ,

(3.10)

where χni±(x) = P±χni = (1±γ5)
2 χni(x) (these correspond to helicity projections for massless quarks).

Here and in the following equation, superscripts i and j are fundamental color indices. We will oc-

casionally drop the second and third arguments denoting the shifts when they are not necessary, i.e.

J ijnn̄±(x) ≡ J ijnn̄±(x, 0, 0). We also define helicity projections of the gluon fields:

Bijnih1···hN (x, t) = ξh1µ1 · · · ξhNµNBijµ1···µN
ni (x, t) , (3.11)

where hi ∈ ± are helicity labels, and µi are Lorentz indices.

We would like to finish this section by noting that the power counting of an operator in this formalism

is determined entirely by the total mass dimension of its constituent fields. By way of example, each

field χni(x, t) contributes 3/2 to the mass dimension of any operator in which it appears, while each

insertion of a covariant or partial derivative contributes 1 to the mass dimension. In what follows, the

leading power operator O
(0)
2 has a mass dimension of 3, and so an operator with a mass dimension of

3 + n is said to be suppressed by n powers of 1/Q relative to the leading power operator.
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3.2.2 Matching

We match the QCD current onto a series of subleading operators organized in an expansion in inverse

powers of Q, the energy of the hard interaction:

J µ(x) = e−iq·x

[
C

(0)
2 O

(0)
2 (x) +

1

Q

∑

i

∫
dtC

(1i)
2 (t)O

(1i)
2 (x, t)

+
1

Q2

∑

i

∫
dtC

(2i)
2 (t)O

(2i)
2 (x, t) +O

(
1

Q3

)]
,

(3.12)

where, as above, qµ is the momentum transfer of the process.

The leading power operator in eq. (3.12) is the usual leading power dijet operator. Using the building

blocks defined in the previous section, it takes the form

O
(0)
2 (x) =

(
−ξµ+J iinn̄+(x)− ξµ−J iinn̄−(x)

)
(3.13)

which has matching coefficient [78, 170]

C
(0)
2 (µ) = 1 +

αsCF
4π

(
− log2 −Q2 − i0+

µ2
+ 3 log

−Q2 − i0+

µ2
+ ζ2 − 8

)
. (3.14)

In this section we demonstrate tree-level matching from QCD onto SCET currents up to order 1/Q2.

In [77], details of the matching calculation for O
(0)
2 , O

(1⊥)
2 and O

(1a)
2 were presented using this formalism

in the context of deep inelastic scattering. The details of the matching procedure for dijets are very

similar, but for completeness we will include them here.

Following [77], we take advantage of the simplified form of matrix elements in massless QCD when the

helicities of the external states are specified. It is especially useful to use the spinor-helicity formalism

for these calculations, and we follow all of the conventions that can be found in the appendix of [77].

We first match onto a general quark-antiquark final state, denoting

Mq± ≡ 〈p1 ∓ p2 ± |J µ|0〉 , (3.15)

where the quark (p1) and anti-quark (p2) are forced to have opposite helicities by angular momentum

conservation. The exact result in the full theory is then given by

Mq± =−√ p1 · η
√
p2 · η η̄µ +

√
p1 · η̄

√
p2 · η̄ ηµ

−
√

2eiφ(p2)√ p1 · η̄
√
p2 · η ξµ+ +

√
2e−iφ(p2)√ p1 · η

√
p2 · η̄ ξµ− .

(3.16)

We expand this to leading power in the limit where the quark is collinear to the n direction while the

antiquark is collinear in the opposite direction, −n. According to the definitions in the previous section,

this limit corresponds to the limit p1·η
Q � 1 and p2·η̄

Q � 1. Using M(i) to refer to the ith order term in

this power expansion, we have

M(0)
q± = −

√
2e±iφ(p2)

√
Q
√
p1 · η̄ ξµ± . (3.17)

As expected, this is reproduced by the leading power operator O
(0)
2 defined in eq. (3.13). At next-to-
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leading power in this limit, we find

M(1)
q± =

√
Q
(√

p2 · η̄ ηµ −
√
p1 · η η̄µ

)
, (3.18)

which is reproduced by the operator

O
(1⊥)
2 (x) =− η̄µ (i (ξ+ · ∂n) Jnn̄+(x) + i (ξ− · ∂n) Jnn̄−(x))

− ηµ (i (ξ+ · ∂n̄) Jnn̄+(x) + i (ξ− · ∂n̄) Jnn̄−(x))
(3.19)

where the subscripts on the derivatives ∂i indicate that the derivative only acts on fields in the i-sector;

for example,

(ξ± · ∂n) J±nn̄ = (ξµ±∂µχ̄
±
n )/ξ∓χ

±
n̄ . (3.20)

As was noted in [77], the O
(1⊥)
2 operator can be absorbed into the leading power operator O

(0)
2 by a

small rotation of n, and therefore reparameterization invariance implies that the matching coefficient

and anomalous dimension of this operator will be the same as the leading power operator to all orders

in αs.

There are additional subleading operators at this order in the power counting that only appear with

at least one gluon in the final state, and thus we must expand the QCD matrix elements with three-body

final states. However, we can take advantage of the fact that matrix elements of the operator O
(1⊥)
2

are proportional to the total perpendicular momentum of a whole sector. By choosing to match onto

three body final states with zero perpendicular momentum in each sector we ensure that O
(1⊥)
2 does not

contribute, which also serves to simplify the matching procedure.

The relevant diagrams in QCD for a three-body final state are shown in Fig. 3.1. For three external

particles, there are three ways to combine them into back-to-back sectors. The quark and antiquark can

be in different sectors, in which case the gluon can be aligned with either one. Due to the CP symmetry

of QCD, these two limits are equivalent, and it will be sufficient to consider the gluon being aligned

with the quark. The remaining possibility is that the gluon can be in a sector by itself with the quark

and antiquark recoiling together. For brevity, we will refer to these limits by listing the sector of each

particle in a superscript, so the first possibility above is the qnq̄n̄gn limit, which is equivalent to the

qnq̄n̄gn̄ limit, and the remaining case is the qnq̄ngn̄ limit.

We first consider the qnq̄n̄gn limit in which case we arrange the gluon-quark system to have zero

perpendicular momentum. Denoting

Mq±g±′ ≡ 〈p1 ∓ p2±; k ±′ |J µ|0〉, (3.21)

where we note that angular momentum conservation ensures the quark and antiquark have opposite

helicity, while the helicity of the gluon is independent. We find that the exact result in massless QCD

for the diagrams in Fig. 3.1 is

Mg±q± =−
√

2gT a
√
p1 · η̄√
p2 · η

(
(η̄µ − ηµ)−

√
2e∓iφ(k)

√
p1 · η√
p1 · η̄

ξµ∓ +
√

2e±iφ(k)

√
p1 · η̄√
p1 · η

ξµ±

)

Mg±q∓ =− 2ge∓iφ(k)T a
√
p2 · η√
p1 · η

ξµ± .

(3.22)

The leading-power terms of eq. (3.22) in the qnq̄n̄gn limit are already reproduced by the three-body
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p1

p2

q k

p1

p2

q

k

Figure 3.1: QCD graphs contributing to three-body final states.

matrix elements of the leading power operator O
(0)
2 . Expanding to next-to-leading power in this limit

we have

M(1)
g±q± =−

√
2gT a

√
p1 · η̄
Q

(η̄µ − ηµ)

M(1)
g±q∓ =0,

(3.23)

and we find that this is reproduced by the operator

O
(1a)
2 (x, t) = (η̄µ − ηµ)

(
Bijn−(x, t)J ijnn̄+(x) + Bijn+(x, t)J ijnn̄−(x)

)
(3.24)

where C
(1a)
2 (t, µ) = δ(t) +O(αs). Note that we’ve included the shift parameter t to displace some fields

from the interaction vertex. Despite the fact that matching at tree-level sets t = 0, a general t will be

necessary in order to renormalize this operator, as discussed in the following section.

Now we can match at next-to-next-to-leading power in the qnq̄n̄gn limit onto operators suppressed

by factors of 1/Q2. Care must be taken in this limit when performing a matching calculation, since

momentum conservation relates the three small parameters, i.e. p1 ·η, p2 ·η̄, and k ·η are not independent.

The leading power operator O
(0)
2 has matrix elements that can be expanded in p1 · η and k · η, and the

higher-power terms must be included consistently to match at 1/Q2 (such ambiguities do not appear at

1/Q). Expanding eq. (3.22) in the qnq̄n̄gn limit to second order in the power counting and subtracting

the corresponding matrix elements of all lower-power effective operators, the lowest-power terms are

M(2)
g±q± =2gT a

(
e∓iφ(k)√ p1 · η√

Q
ξµ∓ −

e±iφ(k)
√
k · η
√
p1 · η̄√

Q
√
k · η̄

ξµ±

)

M(2)
g±q∓ =0 .

(3.25)

These terms are reproduced in the effective theory by introducing the operators

O
(2a1)
2 (x, t) =

(
ξ+
µJ ijnn̄+(x)Bijn+−(x, t) + ξ−

µJ ijnn̄−(x)Bijn−+(x, t)
)

O
(2a2)
2 (x, t) =

(
ξ−
µJ ijnn̄+(x, t, 0)Bijn−−(x) + ξ+

µJ ijnn̄−(x, t, 0)Bijn++(x)
) (3.26)

where C
(2a1)
2 (t, µ),= 2iθ(t) +O(αs) and C

(2a2)
2 (t, µ) = −2iθ(t) +O(αs).

There will also be operators at this order in the qnq̄n̄gn limit formed by acting total perpendicular

derivatives on lower-power operators, in analogy with the relationship between O
(1⊥)
2 and O

(0)
2 . As in

that case, the operators with total perpendicular derivatives can always be absorbed into their lower-
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power counterparts by slight rotation of n and must therefore share the same anomalous dimension

as their lower-power counterparts. In this chapter we choose to focus only on the operators with new

anomalous dimensions and so it will be sufficient to match onto states with zero total perpendicular

momentum.

The qnq̄n̄gn̄ limit is completely analogous to the qnq̄n̄gn limit and so we won’t repeat the details.

One can match onto the equivalent operators with n-collinear gluon fields replaced by n̄-collinear gluon

fields and they will have the same matching coefficient and anomalous dimension as the qnq̄n̄gn limit

operators.

The qnq̄ngn̄ limit, where the gluon is in a sector by itself with the quark and antiquark in the other

sector, requires different types of operators. The exact result in QCD, now considering a configuration

where the quark and antiquark have zero total perpendicular momentum, is

Mg±q± =
√

2g

√
p1 · η√
p2 · η̄

Q

k · η
e∓iφ(p2)

(
(η̄µ − ηµ)

−
√

2e∓iφ(p2)√ p1 · η√
p1 · η̄

ξµ∓ +

√
2e±iφ(p2)√ p1 · η̄√

p1 · η
ξµ±

)

Mg±q∓ =
√

2g

√
p1 · η√
p2 · η̄

Q

k · η
e±iφ(p2)

(
(η̄µ − ηµ)

−
√

2e∓iφ(p2)√ p2 · η̄√
p2 · η

ξµ∓ +

√
2e±iφ(p2)√ p2 · η√

p2 · η̄
ξµ±

)
.

(3.27)

Expanding eq. (3.27) up to lowest power in the qnq̄ngn̄ limit we find

M(0)
g±q± =2g

√
p1 · η̄
p2 · η̄

ξµ±

M(0)
g±q∓ =− 2g

√
p2 · η̄
p1 · η̄

ξµ±

(3.28)

which is reproduced by the operator

O
(1c)
2 (x, t) =

(
ξ+
µJ ijn0(x, 0, t)Bijn̄+(x)− ξ−µJ ijn0(x, t, 0)Bijn̄−(x)

ξ−
µJ ij

n0̄
(x, 0, t)Bijn̄−(x)− ξ+µJ ijn0̄

(x, t, 0)Bijn̄+(x)
) (3.29)

where C
(1c)
2 (t, µ) = 2iθ(t). There is no need to continue the expansion in the qnq̄ngn̄ limit to higher

powers, because operators with this configuration of external states can only interfere with other oper-

ators of the same configuration in the calculation of an event shape. Since the operators in eq. (3.29)

are the lowest power operators in this limit and are already suppressed by 1/Q in eq.(3.12), they are

sufficient to consider contributions to the observable at order 1/Q2.

This completes the matching procedure required to calculate the fixed-order cumulative thrust dis-

tribution to O(αsτ) in e+e− scattering. Once finished, our 1-loop resummation program is expected

to capture the entire leading-logarithmic behaviour of the cumulative thrust distribution. Pushing the

scope of this work to O
(
α2
sτ
)

would require additional tree-level matching with a four-body final state.

Further extending the theory to allow for hadronic initial states would require new gluon-only operators,

as shown in [167–169], though it should be noted that the formalism in those references is different than

the one used here.
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3.3 Renormalization of Subleading Operators

The anomalous dimension of the leading power operatorO
(0)
2 has been calculated to three loops [103, 171],

and the anomalous dimensions of the subleading O(1/Q) operators O
(1a)
2 and O

(1c)
2 have been calculated

to one loop [83]. Relevant to the resummation of the O(αsτ) cumulative thrust distribution, there are

two operators remaining that have not been renormalized: O
(2a1)
2 and O

(2a2)
2 , and these will be the

main results of this chapter. In this section, we first review the definition of the overlap subtraction

procedure that is used to properly define loop integrals in this formalism, and then we will discuss the

definitions and the results of the anomalous dimensions for all the operators we matched onto in the

previous sections.

3.3.1 Overlap Subtraction

In order to properly define loop integrals in standard SCET, one must introduce the zero-bin subtraction

prescription [172] or the equivalent, and include both collinear and ultrasoft degrees of freedom in the

loops. Formally, the zero-bin removes the overlap of each collinear sector with the ultrasoft sector so as

to not double-count degrees of freedom.

In this formalism ultrasoft degrees of freedom are not included separately from collinear degrees of

freedom in the effective theory, so the subtraction prescription must be modified in order to correctly

remove the double-counting, as discussed in [77]. Formally, rather than subtract the overlap of each

collinear sector with the ultrasoft sector, one subtracts the overlap between the two collinear sectors.

For the calculations we perform here there is little distinction between the two procedures since in each

case the zero-bin, overlap, and ultrasoft amplitudes are equal.

We note that for the operators discussed in this chapter the overlap subtraction amounts to dividing

by the vacuum expectation value of light-like Wilson lines:

〈X|O(i)(x) |0〉
〈0| 1

dR
trWR†

n̄ (x)WR
n (x) |0〉

, (3.30)

where each Wilson line is directed along one of the jets and lives in a representation determined by the

field content of the operator in the numerator, and where dR is the dimension of the representation

R. For operators in which the quark and antiquark are in different sectors, the Wilson lines are in the

fundamental representation and dR = Nc, while for the operators in which the quark and antiquark

are in the same sector the Wilson lines are in the adjoint representation and dR = N2
c − 1. When eq.

(3.30) is expanded in perturbation theory to NLO, it includes a diagram corresponding to the one-loop

amplitude of the denominator convoluted with the tree-level amplitude of the numerator, along with a

minus sign; this formula thus implements the desired subtraction.

Using eq. (3.30) to define the procedure for calculating the one-loop matrix elements of the SCET

operator O(i)(x), we proceed to compute their ultraviolet counterterms and determine their anomalous

dimensions.

3.3.2 Organization of the Calculation

To regulate the ultraviolet divergences we use the MS dimensional regularization scheme in D = 4− 2ε

dimensions, and to regulate the infrared divergences we use a gluon mass. This choice for an infrared
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regulator provides relatively simple expressions for each loop diagram, with the tradeoff that individual

diagrams may contain unregulated divergences [173]. Despite this drawback, the sum of all diagrams,

including the overlap subtraction, is well-defined provided that the integrands are combined before

integrating4. Since we are computing diagrams with an external gauge boson, we use the background

field method [174] to make the counterterms gauge-invariant.

We find it most convenient to compute matrix elements in terms of the position-space variable t

and then Fourier transform to a momentum space variable u before extracting the counterterms and

computing the anomalous dimensions. Formally, the Fourier transformed operators are defined by

O(j)
2 (x, u) =

∫
dt

2π
e−iutO(j)

2 (x, t) (3.31)

and matching coefficients

C
(j)
2 (x, u) =

∫
dt eiutC

(j)
2 (x, t) (3.32)

which together satisfy

∫
dtC

(j)
2 (x, t)O(j)

2 (x, t) =

∫
duC

(j)
2 (x, u)O(j)

2 (x, u). (3.33)

Operators of the same (j)-label but different value of u mix under renormalization, so that countert-

erms of O
(j)
2 (x, u) are non-diagonal in u. We write the relation between bare and renormalized operators

as

O
(j)
2,bare(x, u) =

∫
dv Z2(j)(u, v)O

(j)
2,ren(x, v), (3.34)

and we find that operators of different (j)-label do not mix under renormalization.

As usual, we note that the bare operators cannot depend on the MS scale µ, so taking the logarithmic

derivative of both sides of eq. (3.34) and defining the inverse counterterm via the relation

∫
dwZ−1

2(j)(u,w)Z2(j)(w, v) = δ(u− v) (3.35)

we find the renormalization group equation that governs the running of O
(j)
2 (x, u)

d

d logµ
O

(j)
2 (x, u) = −

∫
dv γ

(j)
2 (u, v)O

(j)
2 (x, v) (3.36)

where the anomalous dimension is

γ
(j)
2 (u, v) =

∫
dwZ−1

2(j)(u,w)
d

d logµ
Z2(j)(w, v). (3.37)

Since the combination
∫
duC

(j)
2 (µ, u)O

(j)
2 (µ, u) must be µ-independent, the Wilson coefficient C

(j)
2 (u)

must flow in the opposite manner from its corresponding operator, and in the transposed form

d

d logµ
C

(j)
2 (u) =

∫
dv C

(j)
2 (v)γ

(j)
2 (v, u) . (3.38)

4This was the prevailing viewpoint when the paper associated with this thesis chapter was originally written. However,
as we will see in Chapter 5, this viewpoint is now outdated, since an ambiguity arises from combining rapidity-divergent
integrals. Accounting for this integration ambiguity, the only resulting changes to this chapter are the replacement of
log−Q2/µ −→ log−ν2/µ2, where ν is the rapidity scale.
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(a) (b) (c) (d) (e) (f)







(g)

Figure 3.2: The Feynman diagrams for any operator with the qnq̄n̄gn configuration. The Feynman rules
for the effective vertex are determined by the structure of each operator. Diagram (g) is the overlap
amplitude, and must be subtracted.

Writing the counterterm as a series in αs,

Z2(j)(u, v) = δ(u− v) +
αs
2π
Z

(1)
2(j)(u, v) +O(α2

s) , (3.39)

the anomalous dimension is then given by:

γ
(j)
2 (u, v) =

αs
π

(
∂

∂ logµ2
− ε
)
Z

(1)
2(j)(u, v) +O(α2

s) . (3.40)

3.3.3 Results

We first reproduce the results from [83], in which the anomalous dimensions of the operators O
(1a)
2 and

O
(1c)
2 were computed.

The relevant diagrams for O
(1a)
2 operators are shown in Fig. 3.2. To find the counterterms we add

together the divergent parts of the diagrams (a) − (f), subtract off the overlap diagram (g), and also

include the wavefunction graphs. For O
(1c)
2 the diagrams are shown in Fig. 3.3; the counterterm is

determined by adding diagrams (a) − (d), subtracting the overlap (e), and including the wavefunction

graphs. After collecting all the terms and computing the anomalous dimensions according to the notation

defined above we find the following results. Note that u corresponds to the fraction of the light-cone

momentum q · n̄ carried by the particle that was displaced from the vertex in position space; thus, it

should be understood that the anomalous dimensions below vanish unless u ∈ (0, 1). For brevity we

denote ū = 1− u and v̄ = 1− v.

(a) (b) (c) (d)







(e)

Figure 3.3: The Feynman diagrams for any operator with the qnq̄ngn̄ configuration. The Feynman rules
for the effective vertex are determined by the structure of each operator. Diagram (e) is the overlap
amplitude, and must be subtracted.
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γ(1a)(u, v) =
αsδ(u− v)

π

[
CF

(
log
−Q2

µ2
− 3

2
+ log v̄

)
+
CA
2

(
1 + log

v

v̄

)]

+
αs
π

(
CF −

CA
2

)
ū

(
uv

ūv̄
θ(1− u− v) +

uv + u+ v − 1

uv
θ(u+ v − 1)

)

+
αs
π

CA
2
ū

(
v̄ − uv
uv̄

θ(u− v) +
ū− uv
vū

θ(v − u)

− 1

ūv̄

[
ū
θ(u− v)

u− v
+ v̄

θ(v − u)

v − u

]

+

)

(3.41)

γ(1c)(u, v) =
αsδ(u− v)

π

[
1

2
CF + CA

(
log
−Q2

µ2
− 1 +

1

2
log vv̄

)]

− αs
π

(
CF −

CA
2

)
1

vv̄

(
vūθ(u− v) + uv̄θ(v − u)

+

[
ūv
θ(u− v)

u− v
+ v̄u

θ(v − u)

v − u

]

+

)
.

(3.42)

We define the symmetric plus-distribution as

[
q(u, v)θ(u− v) + q(v, u)θ(v − u)

]

+

= lim
β→0

d

du

(
θ(u− v − β)

∫ u

1

dw q(w, v)

+ θ(v − u− β)

∫ u

0

dw q(v, w)

) (3.43)

which satisfies

∫ 1

0

du

[
q(u, v)θ(u− v) + q(v, u)θ(v − u)

]

+

f(u)

=

∫ 1

0

du

(
q(u, v)θ(u− v) + q(v, u)θ(v − u)

)
(f(u)− f(v)) .

(3.44)

Note that we have included fewer operators than in [83], since those authors used a formalism in which

ultrasoft degrees of freedom were included in the effective theory below the hard scale. Since we are

using a formalism where ultrasoft degrees of freedom are not distinguished from the collinear degrees of

freedom below the hard scale, some of the operators defined in that paper have no equivalents in this

formalism. We also note that there are some minor errors in the coefficients of the logarithms in the

diagonal terms for the equivalent results in [83]; we have confirmed that the above results, using the

definition of the plus distribution (3.43), are correct.

We now come to the main result of this chapter, in which we present the results for the anomalous

dimensions of the O
(2a1)
2 and O

(2a2)
2 operators, which have been computed for the first time here. The

relevant diagrams are also given by Fig. 3.2, as the structure of the graphs will be the same for any

operator in which the quark and antiquark are in different sectors. Of course, the Feynman rules

to produce a gluon from the vertex is different for each operator. Computing the divergent parts of

the graphs, subtracting the overlap graph, and including the wavefunction contributions, we find the
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anomalous dimensions:

γ
(2a1)
2 (u, v) =

αs
π
δ(u− v)

[
CF

(
log
−Q2

µ2
+ log(v̄)− 3

2

)
+
CA
2

(
log

v

v̄
+

5

2

)]

+
αs
π

(
CF −

CA
2

)
1

vv̄2

(
ū2v̄2 θ(u+ v − 1) + uv(ūv̄ + ū+ v̄ − 1)θ(1− u− v)

)

− αs
π

CA
2

1

vv̄2

(
vū2(1 + v̄)θ(u− v) + uv̄2(1 + ū)θ(v − u)

+

[
vū2 θ(u− v)

u− v
+ uv̄2 θ(v − u)

v − u

]

+

)
,

(3.45)

γ
(2a2)
2 (u, v) =

αs
π
δ(u− v)

[
CF

(
log
−Q2

µ2
+ log(v)− 3

2

)
+
CA
2

(
log

v̄

v
+

5

2

)]

+
αs
π

(
CF −

CA
2

)
1

v̄v2

(
uv

ūv̄
(ū− v)(v̄ − u)θ(1− u− v)

)

− αs
π

CA
2

1

v̄v2

(
vū(v̄ − u)

v̄
θ(u− v) +

uv̄(ū− v)

ū
θ(v − u)

+

[
ūv2 θ(u− v)

u− v
+ v̄u2 θ(v − u)

v − u

]

+

)
.

(3.46)

We have used plus-distribution identities to ensure the anomalous dimensions have the form

γ2(u, v) = δ(u− v)W (v) + f(u, v)S(u, v) , (3.47)

where W (v) is the diagonal part of the anomalous dimension, f(u, v) is analytic in u and v, and S(u, v)

is symmetric in u and v. This property could be important to some readers, since it has previously

been exploited to solve the renormalization group equation for the heavy-to-light equivalent of O
(1a)
2 in

terms of Jacobi polynomials [118]. Extending these methods to the operators O
(1b)
2 , O

(2a1)
2 , and O

(2a2)
2

is outside the scope of this work.

3.4 Conclusion

We have computed the anomalous dimensions of all operators required to compute subleading corrections

to event shapes such as thrust in SCET. We have used a new formalism for SCET that does not make

reference to momentum modes or λ-scaling, and have demonstrated how to match onto a series of

higher-dimension operators suppressed by inverse powers of the matching scale Q. These anomalous

dimensions will be necessary to resum series of subleading logarithms in event shapes, such as those

suppressed by powers of τ in the cumulative thrust distribution, as well as a variety of other event

shapes and dijet observables. To complete this program of resummation, an additional matching step

onto observable-dependent soft functions will be necessary, and we leave this for future work.



Chapter 4

Rapidity Logarithms in SCET

Without Modes

In this chapter, we re-examine observables with rapidity divergences in the context of a formulation of

Soft-Collinear Effective Theory in which infrared degrees of freedom are not explicitly separated into

modes. We consider the Sudakov form factor with a massive vector boson and Drell-Yan production

of lepton pairs at small transverse momentum as demonstrative examples. In this formalism, rapidity

divergences introduce a scheme dependence into the effective theory and are associated with large log-

arithms appearing in the soft matching conditions. This scheme dependence may be used to derive the

corresponding rapidity renormalization group equations, and rates naturally factorize into hard, soft and

jet contributions without the introduction of explicit modes. Extending this formalism to study power

corrections is straightforward. The contents of this chapter appear in [175].

4.1 Introduction

Effective Field Theory (EFT) offers an elegant framework for systematically separating the physics at

different scales in a given process. When working with a cutoff µ, physics at high energy scales µH > µ is

integrated out of the theory, and its effects on physics at lower energy scales µS < µ is taken into account

with a series of effective operators of increasing dimension whose effects are suppressed by powers of

the ratios of the two scales. One advantage of this approach is that observables depending on multiple

scales may be systematically factorized into functions that each depend only on a single energy scale

and an arbitrary factorization scale µ. Each factor may then be evaluated at its natural scale, and using

renormalization group evolution (RGE) can be brought under perturbative control at an arbitrary scale

µ. In multi-scale processes, the theory is matched at each relevant scale µi to a new effective theory

where physics at scales above µi is integrated out, allowing physical quantities to be factorized into

multiple terms, each of which depends on a single scale.

Soft-Collinear Effective Theory (SCET) [68–74] achieves this factorization in hard scattering processes

by explicitly introducing separate fields, or modes, for each relevant scaling of the various momentum

components of the field. A typical SCET factorization theorem separates physical processes into hard,

collinear, and soft/ultrasoft pieces. Hard physics (above the cutoff) is incorporated as usual into the

matching coefficients of operators in the effective Lagrangian, whereas the factorization of low energy

40
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degrees of freedom occurs dynamically in the effective theory: soft, ultrasoft and collinear degrees of

freedom are described by distinct fields which decouple at leading power in the SCET Lagrangian. This

allows factorization theorems for many observables to be derived. Processes factorizing into collinear

and ultrasoft modes, such as Deep Inelastic Scattering (DIS) in the x→ 1 limit, are referred to as SCETI

processes, whereas those factorizing into collinear and soft modes, such as Drell-Yan (DY) with q2
T � q2,

are referred to as SCETII processes. More complicated processes may require additional modes, and

have more complex factorization theorems; some examples are given in [81, 152, 176–178].

In [77] it was proposed that the introduction of separate modes in SCET is not necessary to factorize

hard processes in QCD, and in fact complicates the theory. In general, if a theory has a number of

physical scales, lowering the cutoff and constructing a new EFT at each threshold Λi of the theory

automatically factorizes physics at different distance scales, including the factorization which results

from splitting the low-energy degrees of freedom into modes. SCET is an EFT describing multiple jets

of particles in which the invariant mass of pairs of particles within a jet is much less than the invariant

mass of any pair of jets. The degrees of freedom of SCET in a given jet are therefore just those of QCD

with a UV cutoff Λ. SCET is more complicated than many canonical EFTs such as four-fermi theory or

HQET because of the interactions between the various sectors and the necessity to avoid double counting

of degrees of freedom which could be consistently be assigned to more than one sector.

In the formalism presented in [77], each low invariant mass sector of the theory is described by

a different copy of QCD, with interactions between sectors occurring via Wilson lines in the external

current. This simplifies the EFT by reducing the number of degrees of freedom and interactions, while

also making manifest the scales at which different factorizations occur. It also simplifies the structure of

power corrections in the theory, since individual modes in SCET do not manifestly factorize at subleading

order due to soft-collinear mixing terms in the Lagrangian1, and these are not present in this approach.

In addition, since at the matching scale Q the degrees of freedom below Q are not factorized into separate

modes, there is no distinction between the EFT for SCETI and SCETII processes immediately below

Q; this distinction occurs at a lower scale where a process-dependent matching onto a soft theory is

performed.

In [77], this approach was demonstrated for a simple SCETI observable, DIS in the x → 1 limit,

up to subleading order in 1/Q. The EFT, including operators up to O(1/Q2), was renormalized in this

framework in [179]. It was observed in [77] that it is necessary to subtract the double-counting of low-

energy degrees of freedom which are below the cutoff in different sectors. This is required to reproduce

the correct cross section at tree level, and is analogous to zero-bin subtraction in SCET [172]. Without

this overlap subtraction, ultraviolet divergences in the EFT would be sensitive to the infrared scales of

the theory, so the EFT could not be consistently renormalized.

In this chapter we consider SCETII observables in the same framework. Soft-collinear factorization

in SCETII is quite different from ultrasoft-collinear factorization in SCETI; since the invariant mass of

ultrasoft degrees of freedom is parametrically smaller than that of collinear degrees of freedom, ultrasoft-

collinear factorization automatically occurs in SCETI as the renormalization scale of the EFT is lowered.

For example, in DIS the SCET Lagrangian is run from Q down to an intermediate scale Q
√

1− x, at

which point the Operator Product Expansion (OPE) of the external current and its conjugate is matched

onto a parton distribution function (PDF), effectively integrating the collinear degrees of freedom out

of the theory. The matching conditions onto the PDF are the usual jet functions of SCET.

1This factorization was demonstrated at subleading power in [91].
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In contrast, soft-collinear factorization is not achieved by lowering the cutoff of the theory, because

soft and collinear degrees of freedom have the same invariant mass. In the standard SCET formalism

with distinct collinear and soft modes, soft-collinear factorization is required to sum rapidity logarithms

of the form αs ln µ
Q ln µ

M which arise in SCETII processes, where Q, M and µ are the hard, soft and

renormalization scales, respectively. Without resummation, these show up as large logarithms in the

matching condition at the scale µ ∼M . Individual soft and collinear graphs contain rapidity divergences

which are unregulated in dimensional regularization. In order to define the individual graphs, an addi-

tional regulator (examples include the δ regulator [173], the analytic regulator [180, 181], the η-regulator

[80, 182], or the pure rapidity regulator [76]) must be introduced, which allows soft and collinear terms

to be factorized in a scheme dependent manner. The scheme dependence introduced by the choice of

regulator allows a set of rapidity renormalization group (RRG) evolution equations to be derived which

sum rapidity logarithms [80, 84, 108, 173, 182, 183].

Since the formalism in [77] does not factorize collinear and soft degrees of freedom in the SCET

Lagrangian, it is not immediately clear how soft-collinear factorization arises in this approach. As we

will show in this chapter, rapidity logarithms arise because at the loop level there is an ambiguity in

defining the sum of individually divergent contributions from the different sectors of the theory, and the

scheme dependence of this ambiguity is analogous to the rapidity cutoff usually introduced to factorize

soft and collinear modes in SCET. The ambiguity and corresponding resummation occurs in the matching

conditions onto the soft theory, so does not affect the running in the intermediate EFT.

In the next section, we illustrate this with the simplest SCETII process, the massive Sudakov form

factor. In the subsequent section we consider the Drell-Yan (DY) process at q2
T � q2. Our conclusions

are presented in Sec. 4.4.

4.2 The Massive Sudakov Form Factor

...

...

Figure 4.1: The massive Sudakov form factor.

The massive Sudakov form factor provides a simple example of a physical quantity with rapidity

logarithms [184]. In a theory with a vector boson of mass M the vector form factor F (Q2/M2) is defined

by

〈p2| jµ |p1〉 = F

(
Q2

M2

)
ū2γ

µu1 (4.1)

where

jµ(x) = ψ̄(x)γµψ(x), (4.2)
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and qµ = pµ2 − p
µ
1 and Q2 ≡ −q2 = 2p1 · p2. The one-loop QCD calculation gives

F

(
Q2

M2

)
= 1 +

α

2

(
−L2

Q/M + 3LQ/M −
4π2

6
− 7

2

)
(4.3)

where α ≡ αsCF /(2π) and LQ/M ≡ log(Q2/M2). The large logarithms of Q2/M2 in the fixed-order

expansion indicate that for Q2 �M2, perturbation theory is not well behaved and must be resummed.

This is achieved by splitting F (Q2/M2) into separate factors, each of which depends only on a single

dynamical scale as well as an arbitrary factorization scale; consistency of the factorization formula to

all orders in αs then places sufficient constraints on the perturbative series to allow resummation of the

logarithmically enhanced terms to any order in the leading-log expansion.

4.2.1 Soft-Collinear Factorization

First we review the standard SCET approach to factorization for this quantity. In this standard frame-

work, the EFT below µ = Q is SCETII [173] with contributions from n-collinear, n̄-collinear and soft

(or mass) modes, pn ∼ Q(λ2, 1, λ), pn̄ ∼ Q(1, λ2, λ) and ps ∼ Q(λ, λ, λ), where λ ∼ M/Q. Matching

from QCD onto SCET factors out at the hard matching coefficient at the scale µ = Q, giving

F

(
Q2

M2

)
=

[
1 +

α

2

(
−L2

Q + 3LQ +
π2

6
− 8

)][
1 +

α

2

(
−L2

M − LM (3− 2LQ)− 5π2

6
+

9

2

)]
(4.4)

where LQ = log(Q2/µ2) and LM = log(M2/µ2). The first factor is the hard matching coefficient

C2(µ) = 1 +
α

2

(
−L2

Q + 3LQ +
π2

6
− 8

)
(4.5)

from the QCD current to the leading SCET current, and is independent of the infrared scale M , while

the second factor is the matrix element of the vector current in the effective theory.

As discussed in [84], the matrix element of the vector current in SCET is problematic, as it has a

logarithmic dependence on the ultraviolet scale Q, which is above the cutoff of the EFT. Typically in an

EFT, logarithms of ultraviolet scales are replaced by logarithms of the cutoff, which allows them to be

summed using RGE techniques. As noted in [64], the scale Q enters the EFT because the contributions

to the loop graph from individual modes are not separately well-defined, so even though Q is not a

dynamical scale associated to any single mode, the sum of the graphs re-introduces Q into the result

(this was dubbed the “collinear anomaly” in [64]). As a result, integrating the massive gauge boson out

of the theory at µ = M gives matching conditions onto the soft theory containing logarithms of Q/M

which are not resummed by the usual RGE evolution.

Rapidity logarithms are resummed in SCET by exploiting an additional scheme dependence in the

theory, beyond the choice of renormalization scale µ. In SCETII processes with rapidity logarithms,

individual collinear and soft graphs are not well-defined; only the sum is. In order to regulate the

individual soft and collinear contributions, an additional regulator must be added to the theory. Using,

for example, the rapidity regulator of [80], individual soft and collinear contributions are separately

well-defined, and the form factor factorizes into individual hard, soft and jet functions,

F

(
Q2

M2

)
= C2 (µ)S

(
M

ν
,
M

µ

)
Jn

(
p−2
ν
,
M

µ

)
Jn̄

(
p+

1

ν
,
M

µ

)
(4.6)
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where p+
1 and p−2 are the large light-cone components of pµ1 and pµ2 satisfying p+

1 p
−
2 = Q2, and, to one

loop,

Jn

(
p−2
ν
,
M

µ

)
= 1 + α

[
LM

(
log

p−2
ν
− 3

4

)
− π2

6
+

9

8

]

Jn̄

(
p+

1

ν
,
M

µ

)
= 1 + α

[
LM

(
log

p+
1

ν
− 3

4

)
− π2

6
+

9

8

]

S

(
M

ν
,
M

µ

)
= 1 +

α

2

[
L2
M − 4LM log

M

ν
− π2

6

]
.

(4.7)

The rapidity scale ν defines a scheme-dependent way to separate soft and collinear contributions. While

the individual soft and jet functions depend on ν, their product is ν-independent, thus allowing a

renormalization group equation (the rapidity renormalization group) to be derived. Each of the terms

may then be evolved from its natural rapidity scale in ν, summing the rapidity logarithms.

Similar results have also been derived in the collinear anomaly formalism [64, 85, 185], in which the

product of JnJn̄S in Eq. (4.6) is re-factorized as the product of two functions: an anomaly exponent F

in which the rapidity logarithms appear and a remainder function W independent of the hard scale.

4.2.2 Scheme Dependence Without Modes

In the formalism introduced in [77], there are no explicit modes, so rapidity logarithms are not resummed

by exploiting the scheme dependent separation into soft and collinear degrees of freedom. Instead, as

we now discuss, the contributions from the individual n and n̄ sectors of the theory, along with the

corresponding overlap subtraction, are individually divergent, and the scheme dependence in defining

their sum allows rapidity logarithms to be summed.

In this formalism, the incoming and outgoing states are each described by two decoupled copies of

QCD. Each sector interacts with the other sector as a lightlike Wilson line, contained in the hard external

current, since gluons with sufficient momentum to deflect the worldline of the other sector have been

integrated out of the theory. While the theory is frame-independent, for simplicity we work in the Breit

frame and label the sectors by the light-like directions nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), with the

light-cone coordinates of a four-vector pµ defined as p+ ≡ p ·n, p− ≡ p · n̄. The incoming quark is in the

n̄-sector, p+
1 � (p−1 , |p1⊥|), while the outgoing is in the n-sector, p−2 � (p+

2 , |p2⊥|).
At leading order, the hard QCD current matches onto the scattering operator O2 via the matching

relation

jµ(x)→ jµSCET = C2(µ)Oµ2 (x) +O

(
1

Q

)
, (4.8)

where C2(µ) is given in Eq. (4.5), and the neglected subleading operators are known up to order 1/Q2

when there are two sectors [179]. The operator Oµ2 (x) is defined as

Oµ2 (x) = [ψ̄n(xn)Wn(xn)]Pn̄γ
µPn̄[W †n̄(xn̄)ψn̄(xn̄)] (4.9)

where the fields ψn and ψn̄ are QCD quark fields in the two sectors, and

Pn =
/n/̄n

4
, Pn̄ =

/̄n/n

4
. (4.10)

The square brackets separate the field content of each sector. The (un)barred Wilson lines are (outgoing)
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incoming, and are defined [164, 186, 187]) as

Wn(x) = P exp

(
ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)es0

+

)

W †n̄(x) = P exp

(
ig

∫ ∞

0

ds n ·An̄(x+ ns)e−s0
+

) (4.11)

where again the subscript in the gluon fields Aµn,n̄ labels the sector. Note that we are using the labelling

convention that W †n̄ is a Wilson line along the n direction, coupling to fields in the n̄ sector.

Finally, consistently expanding the QCD amplitude in powers of 1/Q also means that the energy-

momentum conserving delta function must also be expanded, giving

δSCET(Q; pn, pn̄) ≡ 2δ(p−n −Q−)δ(p+
n̄ −Q+)δ(pnT + pn̄T − qT ) + . . . (4.12)

where pn and pn̄ are the total momenta in the n and n̄ sectors, respectively. This is achieved by multipole

expanding the xµ dependence of the current in Eq. (4.9), where we have defined

xµn ≡ x+ n̄
µ

2
+ xµ⊥, xµn̄ ≡ x−

nµ

2
+ xµ⊥. (4.13)

Multipole expanding the energy-momentum conserving delta function has no effect on the renormal-

ization of O2 since the sectors are decoupled, but ensures correct power counting when calculating

production rates, as we will see in the next section for Drell-Yan production.

As described in [77], this theory double counts quarks and gluons whose momentum is below the cutoff

of both sectors, and the effects of this double counting must be explicitly subtracted from diagrams. This

“overlap subtraction” is similar to the familiar zero-bin subtraction in SCET [172], or the equivalent soft

subtraction prescription discussed in [188–190]. At tree level it is required to ensure that external states

are not double counted in the rate. At one loop this corresponds to subtracting the overlap graph in Fig.

4.2(c), which is equivalent to either the n- or n̄-sector graph, but with the quark propagator replaced by

the corresponding lightlike Wilson line. Formally this corresponds to dividing matrix elements of O2 by

the vacuum expectation value of Wilson lines,

〈p2|O2(x) |p1〉subtracted =
〈p2|O2(x) |p1〉

1
NC

Tr 〈0|W †n̄(x)Wn(x) |0〉
. (4.14)

This prescription means that the one-loop matrix element of O2 is given by the combination

M1 = Γn + Γn̄ − Γsub − 2
Γψ
2

, (4.15)

where the Γi represent the one-loop n-sector, n̄-sector, and overlap subtraction graphs in Fig. 4.2(a),

(b) and (c), and Γψ is the wavefunction renormalization contribution,

Γψ =
1

2
αM0

(
1

ε
− LM −

1

2

)
(4.16)

where M0 = ū2Pn̄γ
µPn̄v1 and we work in d = 4− 2ε dimensions.

As described in [77] (and, in a different context, [83, 173, 189]), while the terms Γn, Γn̄ and Γsub

are all individually divergent even when the theory is regulated in dimensional regularization, adding
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(a) (b) (c)

Figure 4.2: Renormalization of O2. Diagram (c) is the overlap subtraction. In (a), the gluon is in the n
sector; in (b), it is in the n̄ sector. In (c), the dashed lines represent Wilson lines Wn,n̄, depending on
their direction.

together the individual graphs before doing the final momentum integral results in a finite answer in d

dimensions:

M1 =
α

2
M0

[
2

ε2
+

(
1

ε
− LM

)
(3− 2LQ)− L2

M −
5π2

6
+

9

2

]
. (4.17)

After adding the appropriate counterterm, this reproduces the second line in Eq. (4.4). This result was

used in [77] to define the one-loop renormalization of O2 in this formalism.

However, one must be careful here, because naıv̈ely adding together divergent graphs is not a well-

defined procedure. In particular, adding the integrands before performing the final integration corre-

sponds to only one possible scheme to define the sum of the divergent graphs. We can illustrate this

scheme dependence by doing the k+ integrals for Γn,n̄,sub by contours for each graph and then doing the

(d− 2)-dimensional k⊥ integrals, but leaving the divergent k− integrals unevaluated. This gives for the

n-sector graph, Fig. 4.2 (a),

Γn = Cε

∫ p−2

0

dk−

−k−

(
1− k−

p−2

)1−ε

(4.18)

where

Cε ≡ αM0

(
µ2eγE

M2

)ε
Γ(ε). (4.19)

The n̄-sector graph gives

Γn̄ = Cε


 1

1− ε
+

∫ ∞

0

p+
1 dk

−

M2

1−
(
p+

1 k
−

M2

)−ε

1− p+
1 k
−

M2




= Cε

[
1

1− ε
+ π csc(πε)(−1 + i0+)−ε +

∫ ∞

0

p+
1 dk

−

M2

1

1− p+
1 k
−

M2

] (4.20)

and finally the overlap subtraction graph gives

Γsub = Cε

∫ ∞

0

dk−

−k−
. (4.21)

The n-sector and n̄-sector graphs are divergent as k− → 0 and k− →∞, respectively. When the graphs

are added together before doing the final integral, these divergences are canceled by the overlap graph,

giving the result in Eq. (4.17). However, the individual terms Γi each arise from loops containing distinct

particles in the EFT (n- and n̄-collinear gluons and their overlap), so we are free to individually rescale

the momenta in the individual integrals before combining them. For example, rescaling the integration
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variable in Γn̄ by k− → ζ2

Q2 k
− will instead give the sum of the three graphs

In + In̄ − Isub =

∫ p−2

0


 1

−k−

(
1− k−

p−2

)1−ε

+
ζ2p+

1

M2Q2

1

1− k−ζ2p+
1

M2Q2

+
1

k−


 dk−

+

∫ ∞

p−2


 ζ2p+

1

M2Q2

1

1− k−ζ2p+
1

M2Q2

+
1

k−


 dk−

= 1 + log
M2

ζ2
+ iπ +

(
1− π2

6

)
ε+O(ε2) ≡ I(ζ)

(4.22)

which gives the ζ-dependent matrix element

M1 =
α

2
M0

[
2

ε2
+

(
1

ε
− LM

)
(3− 2Lζ)− L2

M −
5π2

6
+

9

2

]
(4.23)

where Lζ = log(ζ2/µ2). Choosing ζ = Q corresponds to the näıve result (Eq. (4.17)), but leaving ζ free

makes the scheme dependence manifest. This also underscores the fact that SCET has no dynamical

dependence on the scale Q, which has been integrated out of the theory: the Q dependence in the näıve

matrix element is in fact ζ dependence, which parameterizes the scheme-dependence of the rapidity

divergent integrals. A similar calculation was performed with massless gluons in [189] where the authors

noted that the scaleless SCET integrals had the scale Q inserted by hand; any other scale ζ could

similarly be inserted by hand, but the choice ζ = Q was “justified a postieri by the requirement that

SCET reproduce the IR divergences of QCD”.

This simple one-loop example demonstrates how rapidity logarithms of the hard scale Q enter into

the EFT: they are not logarithms of Q in matrix elements, but rather logarithms of some dimensionful

scheme parameter which defines how individually rapidity divergent graphs in different sectors are added

together. The scheme dependence of the matrix element in Eq. (4.23) suggests that we introduce a

corresponding scheme dependence in the one-loop matching coefficient from QCD onto SCET,

C2(µ)→ C2(µ, ζ) = 1 +
α

2

(
−L2

Q + 3LQ + 2LMLQ/ζ +
π2

6
− 8

)
(4.24)

where LQ/ζ ≡ logQ2/ζ2, so that physical quantities are independent of ζ. However, as we will discuss

in detail in the next section, the Wilson coefficient C2 must be independent of the infrared scale M ,

which requires choosing ζ = Q at the matching scale µ = Q, eliminating the nonanalytic dependence on

M in Eq. (4.24). Thus, it would seem that there is no freedom to choose ζ in SCET, since it is fixed to

ζ = Q by the requirement that the scales M and Q factorize. However, the fact that logarithms of Q in

matrix elements of O2 are in fact logarithms of a scheme parameter allows us to sum rapidity logarithms

in low-energy matrix elements. Since the ζ-scheme defined in this section was introduced for illustrative

purposes and is not obviously defined beyond the simple one-loop graphs considered here, we will discuss

resummation of rapidity logarithms with a well-defined regulator in the next section.

4.2.3 Resummation

There are a number of regulators in the literature which regulate rapidity divergences [51, 76, 80, 173,

180, 191]; the most instructive for our purposes is to use a version of the δ-regulator [173]. In its original
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formulation, quark propagators and Wilson lines were both modified by adding a quark mass term to

the Lagrangian and using the new quark propagator to derive the new Wilson line propagator. Here we

leave quark and gluon propagators unchanged and simply redefine the Wilson lines by shifting the pole

prescription i0+ → −δn + i0+ for both the W and W † in Eq. (4.11), and we allow each sector label ni

to have a separate value of δ (i.e. δn̄ in the n̄-sector and δo in the overlap between the sectors2). With

this modification, the n-sector graph becomes

Γδn = αM0

[(
1

ε
− LM

)(
log

δn

p−2
+ 1

)
− π2

6
+ 1

]
, (4.25)

and the n̄ sector gives the same result but with δn → δn̄ and p−2 → p+
1 . The overlap graph contributes

Γδsub = αM0

[
− 1

ε2
+

(
1

ε
− LM

)
log

δ2
o

µ2
+
L2
M + π2

6

2

]
, (4.26)

so that together with the wavefunction graphs we find

Mδ
1 =

α

2
M0

[
2

ε2
+

(
1

ε
− LM

)(
3− 2 log

ν2

µ2

)
− L2

M +
9

2
− 5π2

6

]
, (4.27)

where the parameter ν, defined by
δnδn̄
δ2
o

≡ Q2

ν2
, (4.28)

plays a role analogous to ζ in the previous section. We can take the regulators δi to zero while keeping ν

fixed, and the scheme-dependence of the rapidity log is then reflected in the ν dependence of the result.3

We note that Q as introduced here is not a dynamical scale in the EFT, but simply serves to define the

dimensionful parameter ν.

Setting ν = Q in Eq. (4.27) gives the näıve result, Eq. (4.17). More generally, the scheme dependence

of the matrix element in Eq. (4.27) requires a corresponding scheme dependence in the Wilson coefficient

of O2 so that physical quantities are independent of ν. We must be careful, however, in defining the

rapidity scheme. It is a general feature of EFTs that Wilson coefficients do not have nonanalytic

dependence on infrared scales; otherwise, the EFT would not factorize the physics of short and long

distance scales. At scales µ parametrically larger than M , this can only be achieved by choosing ν = Q;

otherwise the Wilson coefficient C2(µ) would contain a factor of LM logQ2/ν2, which is sensitive to the

IR scale M . As with the ζ-scheme in the previous section, it would therefore seem that there is no

freedom to choose the rapidity regulator in SCET, since it is fixed to ν = Q by the requirement that

the scales M and Q factorize. However, after running the theory down to the scale µ = µS ∼ M , the

gluon mass is no longer an infrared scale, and we are then free to run ν from νH ≡ Q to νS = M

when calculating the matching conditions onto the free theory, summing the rapidity logarithms in the

matching condition at µS .

After running the matching coefficient C2 from µ = Q down to µS ∼M , we integrate out the massive

gluon and match O2 onto a free theory,

Oµ2 (x)→ CSO
µ
S(x) (4.29)

2This differs from the prescription in [77], where the overlap Wilson lines had the same value of δ as the corresponding
sector.

3The scheme dependence in taking the δi → 0 limit was also stressed in [66].
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where

OµS(x) = ψ̄(x)Pn̄γ
µPn̄ψ(x) (4.30)

and the ψ’s are free fermions. However, the resulting matching coefficient

CS = 1 +
α

2

[
− LM

(
3− 2 log

ν2
H

µ2
S

)
− L2

M −
5π2

6
+

9

2

]
(4.31)

contains a large rapidity logarithm. To resum this, we must effectively run the matching condition CS in

rapidity from ν from ν = νH to ν = νS ∼ µS before integrating out the gluon, which we do by running

the operator O2 in rapidity at the matching scale µS . We define

C2O
µ
2 (x)|µ=µS

= C2 (µS)VJ

(
µS
M
,
ν

Q

)
Oµ2 (x, ν) (4.32)

where Oµ2 (x, ν) denotes O2(µS) defined with ν 6= Q, and at one loop,

VJ

(
µ

M
,
ν

Q

)
= 1 + αLM log

Q2

ν2
. (4.33)

The fact that the Q dependence of O2 factorizes according to Eq. (4.32) means that the logarithm of Q

in Eq. (4.33) exponentiates. Explicitly, differentiating Eq. (4.32) with respect to log ν gives the equation

d

d log ν
VJ =

(
−〈Oµ2 (x, ν)〉−1 d

d log ν
〈Oµ2 (x, ν)〉

)
VJ ≡ γJν VJ (4.34)

where

γJν = −2αLM . (4.35)

This has the solution

log VJ

(
µS
M
,
νS
Q

)
=

∫ νS

Q

dν

ν
γJν = α(µS) log

M2

µ2
S

log
Q2

ν2
S

(4.36)

which corresponds to running the rapidity scale from ν = Q to νS .

Having resummed the large rapidity logarithms into VJ , the heavy gauge boson is then integrated

out, and Eqs. (4.29) and (4.31) become

Oµ2 (x, νS)→ CS

(
µS
M
,
νS
µS

)
OS(x) (4.37)

and

CS

(
µ

M
,
ν

µ

)
= 1+

α

2

[
− LM

(
3− 2 log

ν2

µ2

)
− L2

M −
5π2

6
+

9

2

]
(4.38)

which has no large logarithms at µ ∼ ν ∼ M . We can then combine all of these steps to obtain the

resummed factorization formula

F

(
Q2

M2

)
= U2(µS , µH)C2 (µH)VJ

(
µS
M
,
νS
Q

)
CS

(
µS
M
,
νS
µS

)
(4.39)
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where

logU2(µS , µH) =

∫ µS

µH

dµ

µ
γLL2 (µ)

=
4C2

F

β2
0

[
1

α(µH)
− 1

α(µS)
− 1

α(Q)
log

(
α(µS)

α(µH)

)] (4.40)

is the usual leading-log renormalization group evolution of C2 [105–107], and

γLL2 (µ) = 2ᾱ(µ) log
Q2

µ2
≡ Γcusp[ᾱ] log

Q2

µ2
. (4.41)

This reproduces the results of [80], with the caveat that, since this formalism explicitly performs the

RRG at the scale µ = µS ∼ M , logarithms of µ/M which are resummed in the expression log αs(µ)
αs(M) in

log VJ in [182] do not require resummation here.

While Eq. (4.39) is equivalent to the factorization formula in Eq. (4.6), it arises differently in this

form of the EFT. In Eq. (4.6), the Ji are matrix elements of collinear fields; here VJ corresponds to

the rapidity evolution factor of O2(x, ν). The assignment of factors of LM and constants to OJ and

OS also differs from that of Eq. (4.7), and more closely resembles the refactorized form of [85, 185], but

the particular arrangement of these terms is irrelevant for summing logarithms since αs is evaluated at

the same scale in both the soft and jet functions in SCETII processes. We could also choose to define

separate rapidity scales for each sector, νn ≡ p+
1 δo/δn and νn̄ ≡ p−2 δo/δn̄, which would then allow us

to write VJ as the product of two separate factors, in direct analogy with the two jet functions of Eq.

(4.7); however, this is not necessary for the present case, where the rapidity scales always appear as the

product νnνn̄ = ν2.

There are also some important differences between the rapidity running of O2(x, ν) and the rapidity

renormalization group of [80]. In [80], separate soft and collinear contributions to O2 are defined and

separately run in rapidity space; the regularization scheme is defined so that the product of soft and

collinear factors is regulator-independent. In our case, matrix elements of operators in the EFT have

explicit dependence on the rapidity regulator, which is canceled by the regulator dependence of the

corresponding Wilson coefficient C2VJ in the EFT. In addition, since the rapidity regulator introduces

sensitivity to the matching scale µS � Q into the Wilson coefficient of O2, the variation of ν is per-

formed at the matching scale µS , not at a higher scale. There is a physical reason for this: unlike the

renormalization group running of O2 in µ, rapidity running is not universal in SCET, but depends on the

particular process of interest. In Drell-Yan at low q2
T , for example, and as discussed in the next section,

the rapidity logarithms arise in the matching conditions of products of O2 onto products of parton dis-

tribution functions, and are distinct from the rapidity logarithms in Eq. (4.32). Thus, in this formalism,

in which the same SCET Lagrangian may be used to calculate a variety of observables with different

rapidity logarithms (or none at all), rapidity logarithms arise in low-energy matching coefficients and

are resummed at the appropriate matching scale.

This is also apparent from Eq. (4.36): the resummed rapidity logarithms are all multiplied by factors

of αs(µS), so rapidity evolution naturally occurs at the low matching scale. This is also the case using

the usual SCET RRG formalism: although in [80] it was shown that one can evolve along any path

in the (µ, ν) plane to obtain the resummed factorization formula, performing rapidity running away

from µ = µS requires an additional resummation of the large logarithms LM in the rapidity anomalous

dimensions of the jet and soft functions in order to achieve an equivalent result.
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Just as in the usual RRG formalism, consistency of the factorization (4.39) places constraints on the

rapidity anomalous dimension γJν . In [80] these constraints were derived using independence of path in

the (µ, ν) plane; we obtain analogous results by requiring consistency between evolving to two different

soft scales µS which differ by order 1. The difference in VJ evaluated at two different soft scales µS and

µ′S is of order logQ2/M2, and so contains a large logarithm of Q. Since the overall variation of the form

factor with respect to µS must vanish, and since matrix elements of O2 are independent of Q, this large

variation of VJ must be compensated for in the running of C2(µ). This means that the change in C2V

resulting from varying µS by an amount of order 1 is Q independent, which implies

d

d logQ

d

d logµ
(logU2 + log VJ) = 0. (4.42)

Since d logU2

d log µ = γLL2 and d log VJ
d logQ = −d log VJ

d log ν = −γJν , this immediately gives the relation

dγLL2

d logQ
=

dγJν
d logµ

= 2Γcusp. (4.43)

4.3 Drell-Yan at Small qT

A somewhat more involved process with rapidity logarithms is Drell-Yan (DY) scattering, N1(p)N2(p̄)→
γ∗ + X → (`¯̀) + X, with q2

T � q2, where qµ and qµT are the total and transverse momenta of the final

state leptons, respectively. In standard SCET, this is a SCETII process in which the product of two

hard external currents may be written in terms of a convolution of transverse-momentum dependent

parton distribution functions (TMDPDFs) or beam functions [64, 66, 80, 192–194] with n-collinear, n̄-

collinear and soft modes, which individually exhibit rapidity divergences. By running the TMDPDFs

using both the usual µ-renormalization group and its counterpart in rapidity space, logarithms associated

with ultraviolet divergences and rapidity divergences may both be summed. If qT ≡
√

q 2
T � ΛQCD, an

additional expansion may then be performed in powers of ΛQCD/qT , allowing the product of TMDPDFs.

to be matched onto the usual parton distribution functions (PDFs).

Proceeding in an analogous fashion to the previous section, in our formalism the QCD current is

first matched at the hard matching scale onto the corresponding SCET current in a theory with n and

n̄ sectors with the appropriate overlap subtractions. Again, there is no distinction between SCETI and

SCETII at the hard matching scale, since amplitudes are expanded in powers of p+, p̄−, p⊥ and p̄⊥,

with no hierarchy assumed between these scales. The EFT is then evolved via the RGE until a scale

µ = µS ∼ qT , at which point the product of currents is matched onto a convolution of PDFs in the soft

theory below µ = µS . However, the rate given by this product of currents has an integration ambiguity

similar to that discussed in the previous section, and so rapidity logarithms arise when evaluating the

matching conditions onto the soft theory. These may be summed by first matching the product of the

currents at µ = µS onto a nonlocal operator equivalent to a convolution of TMDPDFs, which is then

run in rapidity space before matching onto PDFs.
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4.3.1 Factorization by Successive Matching

The DY process is mediated in SCET by the dijet current, defined by the matching relation

jµ(x) = C2(µ)Oµ2 (x) + . . .

= C2(µ)
[
ψ̄n̄(xn̄)W n̄(xn̄)

]
Pnγ

µPn

[
W
†
n(xn)ψn(xn)

]
+ . . .

(4.44)

where the ellipses denote power corrections, and

W
†
n(x) = P exp

[
−ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)es0

+

]
. (4.45)

We have denoted the dijet operator as O2 as in the previous section, but in this case both the quark

and antiquark are incoming, so the two Wilson lines are also incoming. As in the previous section, the

coordinates xn and xn̄ give the expanded energy-momentum conserving delta functions in Eq. (4.12),

which gives the correct power counting for q2
T � q2. The differential cross section for DY is then

proportional to the sum over states

∑

X

〈N1(p)N2(p̄)|Oµ†2 |X〉 〈X|O2µ |N1(p)N2(p̄)〉 . (4.46)

Following the standard derivation, we perform the sum over states in Eq. (4.46), then fcolor- and spinor-

Fierz the product of currents into the form [49, 64, 195, 196]

Oµ†2 (x)O2µ(0) = − 1

Nc

[
χ̄n(xn)

/̄n

2
χn(0)

] [
χ̄n̄(0)

/n

2
χn̄(xn̄)

]
(4.47)

where χn ≡W
†
nψn, χ̄n = ψ̄nWn, and similar for χn̄. We have neglected terms which vanish when taking

color- and spin-averaged matrix elements. The differential rate may then be written

dσ =
4πα2

3q2s

d4q

(2π)4
(−gµν)|C2(µ)|2

∫
d4x e−iq·x〈N1(p)N2(p̄)|Oµ†2 (x)Oν2 (0)|N1(p)N2(p̄)〉

=
4πα2

3Ncq2s
dq+dq−d2qT |C2(µ)|2〈N1(p)N2(p̄)|T(0,0)(q

−, q+,qT )|N1(p)N2(p̄)〉
(4.48)

where s = (p+ p̄)2, and the non-local operator

T(0,0)(q
+, q−,qT )=

∫
dξ1dξ2
(2π)d

dd−2xT e
−iξ1q−e−iξ2q

+

eiqT ·xT

×
[
χ̄n(n̄ξ1 + xT )

/̄n

2
χn(0)

] [
χ̄n̄(0)

/n

2
χn̄(nξ2 + xT )

] (4.49)

is the Fourier transform of the product of position-space TMDPDFs (defined here in d dimensions).

This has the same form as Equation (9) of [64], although in our case the theory in which T(0,0) is defined

does not have separate collinear and soft modes. Note that at this stage the introduction of T(0,0) is

no more than notation, since it is equivalent to the product of currents in Eq. (4.47); it will be useful

when summing rapidity logarithms. Typically in SCET one then factorizes T(0,0) into the product of

two TMDPDFs, each of which is then individually renormalized (and individually ill-defined without
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the introduction of a rapidity regulator). Here we do not further factorize T(0,0), but instead treat it as

a single object which has the convolution included as part of its definition.

If qT ∼ ΛQCD, the differential rate is given by the nonperturbative matrix element of T(0,0) in Eq.

(4.48). Here we will focus on the hierarchy qT � ΛQCD, which allows us to perform an additional

matching at the scale µ = qT of T(0,0) onto a product of two parton distribution functions,

T(0,0)(q
−, q+,qT )→

∫
dz1

z1

dz2

z2
C(0,0) (z1, z2,qT , µ)Oq

(
q−

z1

)
Oq̄

(
q+

z2

)
+O

(
1

q2
T

)
(4.50)

where

Oq(`
−) =

1

2π

∫
dξ e−iξ`

−
ψ̄n(n̄ξ)

/̄n

2
W (n̄ξ, 0)ψn(0)

Oq̄(`
+) =

1

2π

∫
dξ e−iξ`

+

ψ̄n̄(0)
/n

2
W (0, nξ)ψn̄(nξ)

(4.51)

are the usual unpolarized lightcone distribution operators as used in Deep Inelastic Scattering [78], whose

hadronic matrix elements are the parton distribution functions

〈N(P )|Oq(`−)|N(P )〉 = fq/N

(
`−

P−

)

〈N(P )|Oq̄(`+)|N(P )〉 = fq̄/N

(
`+

P+

)
.

(4.52)

The matching coefficient C(0,0) (ω1, ω2,qT , µ) may be calculated by evaluating matrix elements of both

sides of Eq. (4.50) between perturbative quark and gluon states.

Figure 4.3: One-gluon Feynman rule (n-sector) for the left T(0,0)(q
−, q+,qT ) vertex.

4.3.2 Matrix Elements of T(0,0)

At tree level, T(0,0) has the spin-averaged parton-level matrix element

M0 ≡
1

4

∑

spins

〈p1p2|T(0,0)(q
−, q+,qT ) |p1p2〉

= δ(z1)δ(z2)δ(qT − p1T − p2T ) +O(αs)

(4.53)

where p1 is the momentum of the incoming quark in the n-sector, p2 the momentum of the antiquark in

the n̄-sector, and z̄1 ≡ 1− z1 ≡ 1− q−/p−1 , z̄2 ≡ 1− z2 ≡ 1− q+/p+
2 . The parton-level matrix elements
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of Oq and Oq̄ manifestly factorize, since the n and n̄ sectors are decoupled:

〈p1, p2|Oq(k−)Oq̄(k
+)|p1, p2〉 =〈p1|Oq(k−)|p1〉〈p2|Oq̄(k+)|p2〉 (4.54)

and, to one loop, we have the familiar spin-averaged matrix element

1

2

∑

spins

〈p1|Oq(zp−1 )|p1〉 = δ (1− z)− ᾱ

ε

[
1 + z2

1− z

]

+
(4.55)

where the infrared divergent term is the usual one-loop Altarelli-Parisi splitting kernel.

Expanding Eq. (4.53) in powers of piT /qT and comparing with Eq. (4.55) gives the tree-level matching

condition

C
(0)
(0,0)(z1, z2,qT , µ) = δ(1− z1)δ(1− z2)δ(qT ) (4.56)

where

C(0,0)(z1, z2,qT , µ) ≡C(0)
(0,0)(z1, z2,qT , µ) + ᾱC

(1)
(0,0)(z1, z2,qT , µ) +O(α2

s). (4.57)

To calculate the matching at one loop, we need the matrix element of T(0,0) between quark states given by

the diagrams in Fig. 4.4, along with the analogous graphs with n̄-sector gluons coupling to the antiquark

lines. The overlap graphs are obtained from the n- (or equivalently n̄) sector graphs by replacing the

quark propagators with the corresponding lightlike Wilson lines. Since we are working at leading order

in 1/q we may set the external transverse momenta p1T and p2T to zero.

Figure 4.4: One-loop graphs contributing to 〈p1p2|T(0,0)|p1p2〉.

Away from z̄1 = z̄2 = 0, only graphs (a-c) and the corresponding n̄-sector graphs contribute, and

the individual graphs are well-defined. The only component of the gluon loop momentum kµ not fixed

by energy-momentum conservation is k−, so the loop integral is easily done using contour integration4.

We use the distributional relation in d dimensions,

1

q 2
T

= −S2−2ε

2ε
µ−2εδ(qT ) +

[
1

q 2
T

]µ

+

(4.58)

4Note that these are not cut graphs, but the poles from the light quark propagators are on the opposite side of the real
axis from the pole from the gluon propagator, so the k− integral picks out only the pole at k2 = 0.
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where Sd = 2πd/2/Γ(d/2), and
[

1
q 2
T

]µ
+

denotes a (d− 2)-dimensional plus distribution, defined as

[g(pT )]
µ
+ = g(pT ), |pT | > 0, and

∫

|pT |≤µ
dd−2pT [g(pT )]

µ
+ = 0.

(4.59)

(Note that Eq. (4.58) is independent of µ.) After renormalization we take the limit d − 2 → 2, which

recovers the 2-dimensional plus distribution definition of [67]. This gives for the spin-averaged n-sector

graphs

M1n(z̄1 6= 0) =
α

π
fε

(
−S2−2ε

2ε
µ−2εδ(qT ) +

[
1

q 2
T

]µ

+

)
δ(z2)

2− 2z1 + z2
1(1− ε)

z1
, (4.60)

where fε = πεµ2εeεγE , while the n̄ graphs yields the same under the switch z2 ↔ z1. We can therefore

write the spin-averaged one-loop matrix element of T(0,0) as the sum of contributions away from z1 =

z2 = 0 and some unknown contribution at this point,

M1 =
α

π
fε

(
−S2−2ε

2ε
µ−2εδ(qT ) +

[
1

q 2
T

]µ

+

)

×
(
Aδ(z1)δ(z2) + δ(z2)

[
2− 2z1 + z2

1(1− ε)
z1

]

+

+ δ(z1)

[
2− 2z2 + z2

2(1− ε)
z2

]

+

) (4.61)

then calculate the contributions to the constant A from graphs (a-c) by integrating the individual graphs

with respect to z1 and z2 before doing the loop integrals. The gluon momentum k− is then no longer

fixed by the delta functions, and just as in the previous section, the integrals defining A in Eq. (4.61)

contain rapidity divergences and are not individually well-defined.

As in the case of the massive Sudakov form factor, it is instructive to follow the näıve scheme of

performing the integrals for all graphs except for the k− integral. In this case, the contributions to A

from graphs (a-c) and their counterparts in the n̄ and overlap sectors are

An =

∫ p−1

0

dk−

k−

[
2− 2

k−

p−1
+

(
k−

p−1

)2

(1− ε)

]

An̄ =

∫ ∞
q2
T

p
+
2

dk−

k−

[
2− 2

(
q2
T

k−p+
2

)
+ (1− ε)

(
q2
T

k−p+
2

)2
]

Ao = 2

∫ ∞

0

dk−

k−

(4.62)

where ŝ ≡ p−1 p
+
2 = q2/(z1z2). Proceeding as in the previous section, we can rescale the integration

variable k− → ζ2k−/ŝ in the An̄ integral in Eq. (4.62) to obtain the scheme-dependent sum

A(ζ) ≡ An +An̄ −Ao = 2 log
ζ2

q2
T

− 3− ε. (4.63)

Again, we see that the SCET calculation has no dynamical dependence on the hard scale ŝ; rather, it

arises as one possible choice of scheme needed to evaluate the sum of divergent integrals.
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As in the previous section, we can make the individual graphs well-defined with an appropriate

regulator. Modifying the position-space Wilson lines to include the δ-regulator, the n-sector contributes

Mδ

1n =
α

π
fε

(
−S2−2ε

2ε
µ−2εδ(qT ) +

[
1

q 2
T

]µ

+

)
δ(z2)


2(1− z1)

z1 + δn
p−1

+ z1(1− ε)


 . (4.64)

Converting to distribution form using

1

z̄ + δ
=− δ (z̄) log δ +

[
1

z̄

]

+

+O(δ) (4.65)

gives

Mδ

1n = αδ(z2)

{(
δ(qT )

ε
− 1

π

[
1

q 2
T

]µ

+

)(
δ(z1)

[
3

2
− 2 log

p−1
δn

]
−
[

1 + z2
1

z1

]

+

)
+ z1δ(qT )

}
(4.66)

The n̄-sector graphs are the same as above but with p−1 → p+
2 and z1 ↔ z2, and the calculation of

the overlap graphs gives

Mδ

1o = 2
α

π
fεδ(z1)δ(z2)

1

q2
T

log
q2
T

δ2
o

. (4.67)

In d dimensions,

log
q2
T

µ2

q2
T

= −S2−2ε

2ε2
µ−2εδ(qT ) +


 log

q 2
T

µ2

q 2
T



µ

+

(4.68)

and so

Mδ

1o = αδ(z1)δ(z2)

[
δ(qT )

(
− 2

ε2
+

2 log
δ2
o

µ2

ε
+
π2

6

)

− 2

π
log

δ2
o

µ2

[
1

q 2
T

]µ

+

+
2

π

[
log

q 2
T

µ2

q 2
T

]µ2

+

] (4.69)

Combining all the above yields the net contribution to matrix elements of T(0,0) from single-gluon

emissions into the final state

Mδ

1g =α


δ(z1)δ(z2)δ(qT )

(
2

ε2
+

3− 2 log ν2

µ2

ε
− π2

6

)

− δ(qT )

ε

(
δ(z1)

[
1 + z2

2

z2

]

+

+ δ(z2)

[
1 + z2

1

z1

]

+

)

+

(
(1 + z2

2)δ(z1)

[
1

z2

]

+

+ (1 + z2
1)δ(z2)

[
1

z1

]

+

)
1

π

[
1

q 2
T

]µ

+

+ δ(qT ) (z2δ(z1) + z1δ(z2)) −2δ(z1)δ(z2)
1

π

[
log

q 2
T

ν2

q 2
T

]µ

+




(4.70)

where, as with the form factor calculation, we have taken the limit δn,n̄,o → 0, again holding the ratio

δnδn̄/δ
2
o ≡ q2/ν2 fixed, which defines the scheme for regulating the rapidity divergences. The virtual

graphs are scaleless, so do not contribute in this scheme.
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The divergences in the first line in Eq. (4.70) are canceled by the counterterm for O2 if ν2 = q2,

which imposes the scheme ν = q when matching from QCD onto SCET. The divergence in the second

line is equal to the infrared divergence in the matrix elements of Oq and Oq̄ in Eq. (4.55) and cancels in

the matching conditions at µ = qT , leaving the one-loop result

C
(1)
(0,0)(z1, z2,qT , µ) =

(
(
1 + z2

2

)
δ(z1)

[
1

z2

]

+

+
(
1 + z2

1

)
δ(z2)

[
1

z1

]

+

)
1

π

[
1

q 2
T

]µ

+

+ 2δ(z1)δ(z2) log
q2

µ2

1

π

[
1

q 2
T

]µ

+

− 2δ(z1)δ(z2)
1

π


 log

q 2
T

µ2

q 2
T



µ

+

+ δ(qT )

(
z2δ(z1) + z1δ(z2)− π2

6
δ(z1)δ(z2)

)

(4.71)

where ω̄1,2 ≡ 1 − ω1,2. The rapidity logarithm depends on the ultraviolet scale q2 only because of

the choice of scheme parameter ν2 = q2. As in the previous section, we may resum the leading order

rapidity logarithms by running the scheme parameter ν from ν2
H = q2 to ν2

S = q2
T , as will be discussed

in the next section.

4.3.3 Resummation

The rapidity renormalization group equations for T(0,0), which resum the large logarithms of q2/q2
T in

C(0,0), arise from the independence of C(0,0) on the scheme parameter ν. Since matrix elements of T(0,0)

have no dynamical dependence on q2, we can write, proceeding analogously to Eq. (4.32),

T(0,0)(q
+, q−,qT , ν

2 = q2)|µ=qT =

∫
dω1

ω1

dω2

ω2
d2pT V(0,0)

(
ω1, ω2,pT ,

q2

ν2

)

× T(0,0)

(
q+

ω1
,
q−

ω2
,qT − pT , ν

2

) (4.72)

and, from Eq. (4.70), at one loop

V(0,0)(ω1, ω2,pT , ν) =δ(ω1)δ(ω2)

(
δ(pT ) + 2α log

q2

ν2

1

π

[
1

p 2
T

]µ

+

)
+ . . . . (4.73)

Eq. (4.72) plays the role of a SCET factorization theorem in this analysis, although here it just

reflects the fact that T(0,0) is the only operator at leading order contributing to the cross section, so the

cross section must be expressible as a linear combination of T(0,0)’s (with different arguments). Since

Eq. (4.72) is independent of ν, we perform the standard manipulations and find

d

d log ν
V(0,0)(pT , ν) =

∫
d2kT

(
−4α

1

π

[
1

(pT − kT )2

]µ

+

)
V(0,0)(kT , ν)

≡ γ(0,0)
ν (pT )⊗ V(0,0)(pT , ν)

(4.74)

where the two dimensional convolution is defined as

f(pT )⊗ g(pT , ..) ≡
∫
d2kT f(pT − kT , ...)g(kT , ...). (4.75)
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We have made use of the fact that at one loop the anomalous dimension is diagonal in each of the

ωi, and defined V(0,0)(ω1, ω2,pT , ν) ≡ δ(ω1)δ(ω2)V(0,0)(pT , ν). V(0,0) therefore obeys the same form of

rapidity renormalization group equation as a beam function in the usual SCET formalism. The all-

orders solution for V and the complications associated with evaluating distributions at canonical scales

has been discussed in detail in [67].

This gives the resummed formula for the low-scale matching condition

C(0,0)(z1, z2,qT , µS) = V (qT , µS , νS)⊗ C(0,0)(z1, z2,qT , µS , νS) (4.76)

and the final factorized and resummed expression for the DY cross section reads

d4σ

dq+dq−d2qT
=

4πα2

3Ncq2s
|U2(µS , µH)C2(µH)|2

×
∫
dz1

z1

dz2

z2
V (qT , µS , νS)⊗ C(0,0)(z1, z2,qT , µS , νS)fq

(
ξ1
z1

)
fq̄

(
ξ2
z2

) (4.77)

where ξ1 = q−/P−1 , ξ2 = q+/P+
2 , µH = νH = q, µS = νS = qT , and U2 is defined in Eq. (4.40).

4.4 Conclusions

In this chapter we have demonstrated how to apply SCET to processes involving rapidity divergences

without explicitly separating the low energy degrees of freedom into separate modes. We have shown

that the anomalous appearance of the hard scale Q in the effective theory below Q in SCETII-type

problems arises from a scheme dependence in the effective theory. This scheme dependence is common

for both SCETI and SCETII processes, with the only distinction between these types of processes being

whether the matching coefficient onto the soft theory exhibits a large logarithmic enhancement (SCETII)

or not (SCETI); the intermediate effective theory is the same until we reach the matching scale at which

the process dependence arises. The free scheme parameter can be exploited to derive evolution equations

for matching coefficients, yielding a method for the summation of the large rapidity logarithms which

appear in the soft matching coefficients of SCETII processes.

The factorizations and resummations presented in this chapter are well known in the standard SCET

formalism, and we reproduce the results here. However, reducing the number of distinct fields in the the-

ory simplifies the structure of the theory and significantly reduces the number of Feynman diagrams and

operators required for a given calculation. In particular, we expect the calculation of power corrections

in SCET, which have been recently of much interest [76, 119, 120, 123], to be significantly simplified.

The matching and anomalous dimensions of power-suppressed contributions to the dijet current were

calculated in this formalism in [179]; Fierz-rearranged products T(i,j) of these subleading operators, anal-

ogous to T(0,0), may be constructed and their rapidity logarithms resummed by exploiting the scheme

dependence of the rapidity regulator. However, as pointed out in [76], at subleading orders in 1/Q the

δ-regulator is not sufficient to regulate all the rapidity divergences and another regulator, such as the

pure rapidity regulator presented in that reference, is required. Work on this subject is in progress.



Chapter 5

Factorization of Power Corrections

in the Drell-Yan Process

In this chapter, we examine the Drell-Yan process at next-to-leading power (NLP) in Soft-Collinear

Effective Theory. Using an approach with no explicit soft or collinear modes, we discuss the factorization

of the differential cross section in the small-qT hierarchy with q2 � q2
T � Λ2

QCD. We show that the

cross section may be written in terms of matrix elements of power-suppressed operators T(i,j), which

contribute to O(q2
T /q

2) coefficients of the usual PDFs. We derive a factorization for this observable at

NLP which allows the large logarithms in each of the relevant factors to be resummed. We discuss the

cancellation of rapidity divergences and the overlap subtractions required to eliminate double counting

at next-to-leading power. The contents of this chapter appear in [197].

5.1 Introduction

The Drell-Yan (DY) process N1(P1)N2(P2) → γ∗(q) + X → (`¯̀) + X has been extensively studied in

perturbative QCD [51, 198, 199]. In the limiting case that the transverse momentum qT of the lepton

pair is parametrically larger than ΛQCD and smaller than its invariant mass
√
q2, the cross section may

be written as [49]

1

σ0

dσ

dq2dydq2
T

=
∑

a,b

∫
dz1

z1

dz2

z2
Cabff̄ (z1, z2, q

2, q2
T )fa/N1

(
ξ1
z1

)
fb/N2

(
ξ2
z2

)
+O

(
Λ2

QCD

q2
T

)
, (5.1)

where qµ is the four-momentum of the lepton pair, ξ1 ≡ q−/P−1 , ξ2 ≡ q+/P+
2 , y = log(q−/q+)/2, and

P−1 and P+
2 are the large light-cone components of the incoming hadron momenta. The sum is over

parton types a, b, and the fi are the usual parton distribution functions (PDFs). In this chapter we only

study the quark-induced process for a single flavour of quark, so we define Cff̄ ≡ C
qq̄

ff̄
.

The coefficient function Cff̄ may be expanded in powers of q2
T /q

2,

Cff̄ (z1, z2, q
2, q2

T ) =C
(0)

ff̄
(z1, z2, q

2, q2
T ) +

1

q2
C

(2)

ff̄
(z1, z2, q

2, q2
T ) + . . . . (5.2)

where each subsequent term is suppressed by increasing powers of q2
T /q

2.
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Since they depend on two parametrically different scales q2 and q2
T , the fixed-order perturbative

expansions for each C
(n)

ff̄
contain large logarithms of q2

T /q
2 which can spoil the behavior of perturbation

theory and need to be resummed. The resummation of the leading power (LP) term C
(0)

ff̄
has been

extensively studied in the literature, using both perturbative QCD techniques [49, 200–210] and effective

field theory methods [64, 65, 67, 148]. Factorization theorems allow C
(0)

ff̄
to be written as a product of

separate terms depending on distinct scales, each of which may be resummed to arbitrary order using

a variety of renormalization group (RG) or related techniques. The most recent analyses achieve a

resummation up to N3LL+NNLO order [52–58]. However, much less is known about the factorization

and resummation properties of the first power correction C
(2)

ff̄
. Cff̄ has been computed in QCD at fixed-

order in perturbation theory up to N2LO [211, 212], but an all-orders RG resummation at next-to-leading

power (NLP) has not been performed.

Soft-Collinear Effective Theory (SCET) [68–74] is an effective field theory (EFT) which provides

a systematic framework in which to study power corrections in hard QCD processes. There has been

much recent work studying power corrections to various processes, with applications including beam

thrust [119], Drell-Yan production near threshold [120], threshold Higgs production from gluon fusion

[121], Higgs production and decay [122], the energy-energy correlator in N = 4 SYM [123] and Higgs

to diphoton decays [87–89]. Power corrections have also been studied using non-EFT QCD techniques

[75, 124–129].

The DY process at small q2
T is typically referred to as a SCETII process, characterized by collinear

and soft modes in the EFT, and exhibiting rapidity logarithms in matrix elements. Rapidity logarithms

are large logarithms in matrix elements which arise in SCET due to divergences in individual diagrams at

large values of the rapidity of one of the particles. These divergences cancel between graphs with different

modes, but the final result contains large finite logarithms of the hard scale of the scattering which

cannot be resummed using usual RG techniques. Rapidity divergences require an additional regulator

beyond dimensional regularization, and various techniques have been successfully employed to handle

the rapidity resummation, including off-the-light-cone techniques [49], the rapidity renormalization group

[80], the collinear anomaly framework [64], the exponential regulator [191] and the recently proposed pure

rapidity regulator [76, 123]. The latter regulator has been recently used [76] to calculate the small-qT

DY cross section by expanding the QCD graphs in the soft and collinear limits, where it correctly treats

the power-law rapidity divergences arising at NLP. The connection between rapidity renormalization in

SCETII and the usual renormalization group equation (RGE) in SCETI was discussed in [213].

In this chapter we study power corrections to DY production using the version of SCET developed in

[77, 175, 179]. In this approach the degrees of freedom in the EFT are not analyzed using the method of

regions [82] in which they are explicitly separated into soft, collinear, ultrasoft, and possibly additional

modes. Instead, states are separated into distinct sectors, where the relative invariant mass of particles

within each sector is less than the renormalization scale µ of the EFT, but the relative invariant mass of

different sectors is larger than the renormalization scale. As with the mode expansion, particles of the

same type but in different sectors are described by different fields; however, interactions within a sector

are described by QCD, while interactions between sectors are mediated via the external current, which is

expanded in inverse powers of the hard matching scale. Factorization of different modes (soft-collinear,

ultrasoft-collinear, and others) does not occur explicitly in the Lagrangian since different modes in a

given sector are described by the same fields, but instead arises through the usual EFT process of

integrating out degrees of freedom and matching onto a new EFT at appropriate threshold scales.



Chapter 5. Factorization of Power Corrections in the Drell-Yan Process 61

This reduces the number of separate fields in the Lagrangian and therefore simplifies the formalism,

both conceptually and practically. One immediate feature is that subleading terms in the effective

Lagrangian coupling different modes and violating manifest factorization are not present in this approach.

In addition, rather than deriving a factorization theorem in terms of jet and soft functions which are

individually well-defined and renormalized at the appropriate scale, the rate is simply expressed in terms

of bilocal products of operators in the EFT which may be run both in the renormalization scale µ as well

as the rapidity scale ν. Similar to the situation at LP discussed in [175], we show here that the DY cross

section naturally factorizes into hard matching coefficients, rapidity evolution factors, soft matching

coefficients and parton distribution functions, and give expressions for the first three quantities up to

NLP at one loop. The complete resummation of rapidity logarithms is left for a future work.

Consistency of this theory requires that double counting of degrees of freedom between the two sec-

tors is consistently subtracted, similar to the usual zero-bin subtraction [172] in SCET. This procedure of

overlap subtraction is necessary for the theory to be well-defined, and is implicit in all matrix elements.

Furthermore, as discussed in detail in [175], the scheme-dependence of this subtraction allows rapidity

logarithms to be summed using techniques similar to [76, 80] without having manifest factorization of

soft and collinear modes in the effective Lagrangian. At subleading powers this subtraction is nontrivial,

requiring contributions from multiple operators as well as subleading corrections to the leading power

subtraction. While these subtractions vanish using an appropriately chosen regulator, the interplay of

these subtraction terms explains patterns of rapidity divergence cancellation between different opera-

tors, similar to the nontrivial cancellations of rapidity and endpoint divergences at NLP seen in other

approaches [87–89].

QCD proofs of factorization in hard scattering processes require that the effects of the exchange

of soft gluons in the Glauber regime relevant to small angle parton scattering cancel in the relevant

observable [51, 198, 199, 214, 215]. Glauber modes have been the subject of much recent interest in

SCET [177], and a consistent treatment of gluons in the Glauber regime has been shown to be necessary

to ensure that operator statements in SCET are independent of the external states [178]. Investigation

of these effects in the formalism presented here are beyond the scope of this thesis, but we will assume

that gluons in the Glauber regime do not introduce factorization-violating effects in the context of this

calculation.

In Section 5.1.1 we sketch the ingredients of the calculation and the approach to factorization in

this formalism. We present the one-loop calculations of the various pieces in Section 5.2, and compare

our fixed-order results with the unsummed QCD result. In Section 5.3 we consider the cross section

with no rapidity regulator to demonstrate the cancellation of rapidity divergences between different

operators and their respective overlap subtractions across different regions of phase space. We present

our conclusions in Section 5.4. A few details of plus distributions used here are given in the appendices,

as well as a comparison to a recent one-loop analysis [76] of power corrections to the DY process.

5.1.1 Factorization

In the SCET formalism introduced in [77, 175, 179] there are no explicit soft, collinear or ultrasoft modes,

so factorization does not arise explicitly from a Lagrangian mode expansion, but instead by integrating

out ultraviolet degrees of freedom at the relevant matching scales. In this section we briefly review the

approach of [175] to DY scattering and introduce its extension to subleading power. Precise definitions

of quantities appearing in this section will be given in Section 5.2.
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The cross section for the electromagnetic Drell-Yan production process, N1N2 → γ∗+X → (`¯̀) +X

is given in QCD by

dσ =
4πα2

3q2s

d4q

(2π)4

∫
ddx e−iq·x (−gµν) 〈N12| Jµ†QCD(x)JνQCD(0) |N12〉 , (5.3)

where q2 = (p`+p¯̀)2 is the invariant mass of the lepton pair, s = (P1 +P2)2 is the invariant mass of the

incoming hadrons, the initial hadronic state is |N12〉 = |N1(P1)N2(P2)〉, and the vector QCD current

JµQCD is

JµQCD(x) = ψ̄(x)γµψ(x) (5.4)

for a single flavor of light quark. The extension to electroweak currents is straightforward [49, 64].

For q2
T � q2, perturbative corrections to the cross section in Eq. (5.3) contain powers of logarithms

of q2
T /q

2, which can spoil the apparent convergence of perturbation theory. SCET provides a systematic

approach to resumming these terms. At the renormalization scale µ = µH ∼
√
q2 � qT , hard inter-

actions are integrated out of the theory and QCD is matched onto SCET. In the formalism used here,

SCET consists of two decoupled QCD sectors, denoted by the lightlike vectors nµ and n̄µ, with total

momenta pµn and pµn̄; the sectors are distinguished by the power counting

p2
n, p

2
n̄ � q2, pn · pn̄ ∼ q2 . (5.5)

Interactions between the sectors are mediated by the external current JµSCET, which is written as a sum

of operators of increasing dimension1

JµSCET(x) =
∑

i

1

q
[i]
L

C
(i)
2 (µ)O

(i)µ
2 (x, µ) , (5.6)

where an operator O
(i)
2 has mass dimension [i] in excess of the leading-power operator O

(0)
2 . We have

defined q2
L ≡ q+q−, and for brevity we will not explicitly include the µ dependence of operators in

subsequent equations unless required for clarity. It is convenient to expand in inverse powers of q2
L

rather than q2 = q2
L − q2

T so that the hard scale of the EFT is independent of the infrared (IR) scale

q2
T . This expansion has been performed up to O(1/q2

L) [77, 78, 83, 118, 216], the details of which are

summarized in Section 5.2.1. The SCET expansion for the differential cross section is then given in

SCET by

dσ

dq2dydq2
T

=
4πα2

3q2s
(−gµν)

∫
dΩT

2

∫
ddx

2(2π)d

∑

ij

H(i,j)(µ)

q
[i]+[j]
L

e−iq·x 〈N12|O(i)µ†
2 (x)O

(j)ν
2 (0) |N12〉 , (5.7)

where H(i,j)(µ) ≡ C(i)†
2 (µ)C

(j)
2 (µ) and the final angular integral dΩT corresponds to the angular integral

in the transverse momentum qT . Since we have not subdivided the degrees of freedom of SCET into

separate soft and collinear modes, there is no expansion of the SCET Lagrangian beyond that in Eq. (5.6);

in particular, there are no power corrections arising from soft-collinear mixing terms in the Lagrangian

[73, 74, 117, 150, 217, 218]. This simplifies the analysis of power corrections considerably.

While matrix elements of the operator products in Eq. (5.7) may be directly evaluated between

1Subleading operators are also labeled by continuous indices, so the discrete sums over operators also include integrals,
which we neglect for simplicity in this section.
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partons in perturbation theory, it is convenient to perform a Fierz rearrangement to write the operator

product as a convolution of transverse momentum dependent distribution operators (whose hadronic

matrix elements are generally referred to as TMDPDFs), one in the n-sector and one in the n̄-sector.

This is a standard procedure at leading power [64, 199]; at subleading powers a similar procedure may be

used to express the basis of operator products as convolutions of power-suppressed distribution operators,

∫
ddx

2(2π)d
(−gµν)e−iq·xO

(i)µ†
2 (x)O

(j)ν
2 (0) =

∑

k,`

1

Nc
K

(i,j)
(k,`)T(k,`)(q

−, q+,qT ) + spin-dependent , (5.8)

where each T(i,j) relevant to this calculation will be defined explicitly in Section 5.2. Rewriting the

operator products in terms of the operators T(i,j) is simply a change of operator basis, and not a

matching condition or expansion in SCET, and so introduces no new perturbative corrections. Typically

in SCET this Fierz rearrangement is performed to write the operator product in a form which manifestly

factorizes into jet and soft functions; since this factorization is not needed here this change of basis is

not strictly necessary, but it is included here for easier comparison with other approaches.

At O(αs) matrix elements of the T(i,j)’s at small qT are insensitive to the cutoff scale qL and so

running the scattering operators O2,(i) from µH ∼ qL to µS ∼ qT sums the usual renormalization

group logarithms of q2
L/q

2
T in the rate. If qT ∼ ΛQCD, matrix elements of each T(i,j) are nonperturbative

quantities which would have to be either modeled or extracted from experiment. In the scaling of interest

here, qT � ΛQCD, each T(i,j) may be further expanded in powers Λ2
QCD/q

2
T , allowing the operator

product in Eq. (5.7) to be matched onto the usual light-cone distribution operators whose hadronic

matrix elements are the parton distribution functions. This expansion corresponds to matching SCET

onto a soft theory of completely decoupled sectors of QCD at the scale µS ∼ qT , and at leading twist

takes the form

T(k,`)

(
q−, q+,qT , µS

)
→
∫
dz1

z1

dz2

z2
CS,(k,`) (z1, z2,qT , µS)Oq

(
q−

z1
, µS

)
Oq̄

(
q+

z2
, µS

)
, (5.9)

where the various CS,(k,`) are matching coefficients and the hadronic matrix elements of the light-cone

quark and antiquark distribution operators Oq,q̄ are the usual spin-averaged parton distribution functions

fq/N1
(ζ1) = 〈N1(P1)|Oq(ζ1P−1 ) |N1(P1)〉

fq̄/N2
(ζ2) = 〈N2(P2)|Oq̄(ζ2P+

2 ) |N2(P2)〉 ,
(5.10)

with P−i ≡ Pi · n̄ and P+
i ≡ Pi ·n. Combining these matching steps gives an expression for the DY cross

section for a single quark flavor of the form

dσ

dq2dydq2
T

=σ0

∫
dz1

z1

dz2

z2
Cff̄ (z1, z2, q

2
L, q

2
T )fq/N1

(
ξ1
z1

)
fq̄/N2

(
ξ2
z2

)
+ . . . (5.11)

where σ0 = 4πα2/(3Nc q
2s), ξ1 = q−/P−1 , ξ2 = q+/P+

2 , and Cff̄ has the partially factorized form

Cff̄ (z1, z2, q
2
L, q

2
T ) =

∫
dΩT

2

∑

ijk`

K
(i,j)
(k,`)

(
1

qL

)[i]+[j]

H(i,j) (µS)CS,(k,`) (z1, z2,qT , µS) . (5.12)

However, in this form the matching coefficients CS still contain large logarithms of q2
T /q

2
L which are not
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resummed by the usual renormalization group evolution. These rapidity logarithms arise because the

graphs renormalizing matrix elements of T(i,j) in SCET are separately divergent in each sector, even in d

dimensions, and the divergences only cancel in the sum. These graphs therefore require the introduction

of an additional regulator beyond dimensional regularization, and the rapidity divergences are reflected

in logarithms of the (scheme-dependent) rapidity scale. While a number of regulators have been used at

leading power [76, 80, 173, 180, 191], the “pure rapidity regulator” introduced in [76, 86] is particularly

convenient for studying power corrections, as it properly regulates the power divergences in phase space

integrals arising at NLP.

In this chapter we use a version of the pure rapidity regulator appropriate for our formalism which

introduces separate scheme-dependence for the n- and n̄-sectors, denoted by the parameters νn and νn̄.

Rapidity logarithms are summed by running the operators T(i,j) from νHn,n̄ = qL to νSn,n̄ = µ ∼ qT . Under

rapidity renormalization the operators T(i,j) can mix, leading generically to rapidity renormalization

group running of the form

T(i,j)

(
q−, q+,qT , µS , ν

H
n,n̄

)
=
∑

k,`

∫
dω1

ω1

dω2

ω2
d2pTV(i,j),(k,`)

(
ω1, ω2,pT , µS , ν

H
n,n̄, ν

S
n,n̄

)

× T(k,`)

(
q−

ω1
,
q+

ω2
,qT − pT , µS , ν

S
n,n̄

)
,

(5.13)

where by νn,n̄ we denote depends on both νn and νn̄ separately, and the large logarithms of νHn,n̄/ν
S
n,n̄

have been resummed in the rapidity evolution factors V(i,j),(k,`). Combining all these steps gives the DY

cross section in Eq. (5.11), where Cff̄ now has the fully factorized form

Cff̄ (z1, z2, q
2
L, q

2
T ) =

∫
dΩT

2

∫
dω1

ω1

dω2

ω2

∑

ijkk′``′

H(i,j) (µS)K
(i,j)
(k,`)

q
[i]+[j]
L

×
∫
d2pT V(k,`),(k′,`′)

(
ω1, ω2,pT , µS , ν

H
n,n̄, ν

S
n,n̄

)

× CS,(k′,`′)
(
z1

ω1
,
z2

ω2
,qT − pT , µS , ν

S
n,n̄

)
.

(5.14)

In this chapter the fixed-order O(αs) contributions to each of the factors in Eq. (5.14) which are

required to determine the fixed-order cross section at NLP are calculated. The O(αs) anomalous di-

mensions of the relevant hard matching coefficients may be found in the literature [83, 179], and here

we also calculate the O(αs) off-diagonal entries for the rapidity evolution kernels γ(k,`),(0,0) which mix

the various subleading operators T(k,`) into the leading operator T(0,0) with an NLP coefficient. The

calculation of the one-loop entries which mix the subleading operators amongst themselves is left for

future work. Additionally, in most phenomenological applications, qT resummation is performed for the

Fourier conjugate of qT (b-space); here we will work in qT space, where the SCET operators we are using

are defined. Fourier transforming our results to b-space may be useful for future applications.

5.2 NLP Operator Products in SCET

In this section the O(αs) ingredients that contribute to Cff̄ at next to leading power in SCET are

calculated. We begin by summarizing the hard-scale matching of the QCD current onto SCET scat-
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tering operators, and then proceed by Fierz-rearranging products of these scattering operators into a

smaller basis of operators. The matrix elements of these operators are calculated using the pure rapidity

regulator, and the final result is compared to the corresponding fixed order result from QCD.

5.2.1 Hard-Scale Matching

The invariant mass of the lepton pair is q2 = q+q− − q2
T ≡ q2

L − q2
T , where q2

L � q2
T � Λ2

QCD and

q+ ≡ q · n and q− = q · n̄ are the large light-cone components of the external current defined in terms

of the lightlike vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). This defines the relevant scales for this

process. The incoming state consists of two hadrons; the invariant mass of partons in the same hadron

is of order ΛQCD, while the invariant mass of partons in different hadrons is of order qL. Therefore, at

a hard scale µH ∼ qL partons in different hadrons are above one another’s cutoff, and QCD is matched

onto an EFT in which direct interactions between the sectors have been integrated out. In the SCET

formalism used in this thesis, SCET consists of decoupled copies of QCD for each sector which only

mutually interact via the external electromagnetic current Eq. (5.6). Only quark and antiquark PDFs

are considered in this thesis. Gluon PDFs may be included in the same formalism, and the relevant

hard-scattering operators are listed in Appendix 5.A, but the calculation for incoming gluons is beyond

the scope of this work. We work in a reference frame where the incoming hard quark is in the n-sector

and the antiquark is in the n̄-sector.

The matching of the external vector current from QCD to SCET at subleading power has been

considered in a number of papers [77, 91, 120, 121, 123, 179], and is obtained by expanding QCD

amplitudes in powers of pi · n/q · n for particles in the n-sector, and pi · n̄/q · n̄ for particles in the

n̄-sector. In addition to the analogues of operators considered in [179] for two incoming partons, there

are also operators suppressed by single powers of the net transverse momentum pni,T in either sector

(which were eliminated by a choice of reference frame in [179]) as well as corrections to the multipole

expansion of the energy-momentum conserving delta functions.

The SCET current has the expansion Eq. (5.6). The corresponding scattering operators are con-

structed from the field building blocks [168, 179]

χ̄n̄(x) = ψ̄n̄(x)W n̄(x)Pn

χn(x) = W
†
n(x)Pnψn(x)

Bµ1...µN
n̄ (x) = W

†
n̄(x)iDµ1

n̄ (x) . . . iDµN
n̄ (x)W n̄(x)

B†µ1...µN
n (x) = (−1)N W

†
n(x)i

←−
Dµ1
n (x) . . . i

←−
DµN
n (x)Wn(x)

(5.15)

where we note that (Bµ1...µN )† = B†µN ...µ1 . The incoming Wilson lines W are defined as

W
†
n(x) = P exp

(
−ig

∫ 0

−∞
ds n̄ ·An(x+ n̄s)es0

+

)

W n̄(x) = P exp

(
ig

∫ 0

−∞
ds n ·An̄(x+ ns)es0

+

)
.

(5.16)

We use the conventions

iDµ
n̄(x) = i∂µ + gAµn̄(x) , i

←−
Dµ
n(x) = i

←−
∂ µ − gAµn(x) (5.17)
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and it is convenient to define the four-vectors introduced in [77]

ηµ =

√
n̄ · q
n · q

nµ, η̄µ =

√
n · q
n̄ · q

n̄µ (5.18)

which are invariant under the boost reparameterization nµ → eynµ, n̄µ → e−yn̄µ.

At leading power there is a single scattering operator,

O
(0)µ
2 (x) = [χ̄n̄(xn̄)]γµ[χn(xn)] , (5.19)

where

xµn ≡ x+ n̄
µ

2
+ xµ⊥, and

xµn̄ ≡ x−
nµ

2
+ xµ⊥.

(5.20)

Note that the fields in the operator are multipole expanded; this is necessary for the energy-momentum

conserving delta functions to preserve the correct power counting. For example, if pµn and pµn̄ are momenta

in the n- and n̄-sectors respectively, we have the expansion

δ(p−n + p−n̄ − q−) = δ
(
p−n − q−

)
+ p−n̄ δ

′ (p−n − q−
)
+ . . . (5.21)

and similarly for the n components. Performing this expansion up to O(1/q2
L) gives

[χ̄n̄(x)]γµ[χn(x)] =O
(0)µ
2 (x) +

1

q2
L

(
O

(2δ+)µ
2 (x) +O

(2δ−)µ
2 (x)

)
, (5.22)

where

O
(2δ+)µ
2 (x) =

1

2
q−q+x−[χ̄n̄(xn̄)]γµ[n · ∂χn(xn)]

O
(2δ−)µ
2 (x) =

1

2
q−q+x+[n̄ · ∂χ̄n̄(xn̄)]γµ[χn(xn)] .

(5.23)

Power counting the multipole-expanded operators is not immediately obvious. In O
(2δ+)
2 for example,

q+x− is of order 1 since x− ∼ ∂/∂q+, whereas q−p+
n ∼ O(p−n p

+
n ) ∼ O(p2

n⊥); thus, matrix elements of

the operators in Eq. (5.23) are O(1/q2
L) relative to leading power. Since we are working up to 1/q2

L

suppression, the contributions from higher multipole expansions in the fields are only included for the

leading power operator O
(0)
2 .

At O(1/qL), there are two operators suppressed by a single perpendicular derivative,

O
(1⊥n)µ
2 (x) = [χ̄n̄(xn̄)]γµ

/̄η

2
γ⊥α [−i∂αχn(xn)]

O
(1⊥n̄)µ
2 (x) = [−i∂αχ̄n̄(xn̄)]γ⊥α

/η

2
γµ[χn(xn)].

(5.24)

These were not required in [77, 179] since they could be removed by a suitable choice of reference frame,

while here the presence of initial-state radiation prevents such a choice.

Finally, there are several operators containing factors of Bn,n̄ whose matrix elements begin at O(gs).

These operators are labeled by a continuous parameter t which parameterizes the separation of fields

along the light-cone [118]. We define the dimensionless parameter t̂ ≡ q−t if the shift occurs in the

n-sector, and by t̂ ≡ q+t if the shift occurs in the n̄-sector. We define the A-type operators in which a
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gluon is emitted at leading order in the n-sector,

O
(1A1)µ
2 (x, t̂ ) = [χ̄n̄(xn̄)]γ⊥α

/η

2
γµ[B†αn (xn − n̄t)χn(xn)]

O
(1A2)µ
2 (x, t̂ ) =− [χ̄n̄(xn̄)]γµ

/̄η

2
γ⊥α [B†αn (xn − n̄t)χn(xn)]

O
(2A1)µ
2 (x, t̂ ) =− 2πi θ(t̂)⊗ [χ̄n̄(xn̄)]γ⊥α γ

⊥
β γ

µ[B†αβn (xn − n̄t)χn(xn)] ,

(5.25)

and the corresponding B-type operators where the gluon is emitted in the n̄-sector,

O
(1B1)µ
2 (x, t̂ ) =− [χ̄n̄(xn̄)Bαn̄(xn̄ − nt)]γµ

/̄η

2
γ⊥α [χn(xn)]

O
(1B2)µ
2 (x, t̂ ) = [χ̄n̄(xn̄)Bαn̄(xn̄ − nt)]γ⊥α

/η

2
γµ[χn(xn)]

O
(2B1)µ
2 (x, t̂ ) =− 2πi θ(t̂)⊗ [χ̄n̄(xn̄)Bαβn̄ (xn̄ − nt)]γµγ⊥α γ⊥β [χn(xn)] .

(5.26)

Following [118], it is convenient to work with the Fourier-transformed operators

O
(i)
2 (x, u) =

∫
dt̂

2π
e−iut̂O

(i)
2 (x, t̂ )

C
(i)
2 (x, u) =

∫
dt̂ eiut̂ C

(i)
2 (x, t̂ ).

(5.27)

We have also defined the convolutions in t̂-space in these definitions as

f(t̂)⊗ g(t̂) =

∫
dx dy

2π
f(x)g(y) δ(t̂− x− y) . (5.28)

Note that the one-gluon matrix element of O
(2A1)
2 (x, u) is proportional to δ(u+ k−)/u, where kµ is the

gluon momentum. If the convolution with θ(t̂) had not been included in its definition (as was the case in

[179]), the matrix element of the operator would instead be proportional to δ(u+ k−), and the operator

would have a factor of 1/u in its Wilson coefficient. This is inconvenient because in the DY process

studied here, this factor of 1/u ∼ 1/k− corresponds to a rapidity divergence, and rapidity renormalizing

operator products such as O
(2A1)†
2 O

(0)
2 without the factor of 1/u in its matrix element would then give

rise to an unregulated rapidity divergence in the final integral over u.2 These are similar to the endpoint

divergences which have been previously noted at NLP in SCET, in particular in b-mediated h → γγ

decay [87–89]. With the definition given here – which is similar to the modification of SCET operators

proposed in [221] – the u integral does not introduce any additional singularities and thus all rapidity

divergences are correctly regulated by the pure rapidity regulator. We illustrate this with an example

in Section 5.2.4.

Since SCET currents and their products contain operators with zero, one, or two factors of u at this

order, we use the notation {u} to denote the dependence of a quantity on any number of u’s, as well

as
∫
d{u} to indicate integration over any number of u’s (including zero). The expansion of the SCET

2The importance of having a finite integral over convolution variables was stressed in [91, 219, 220].
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current may therefore be written

JµSCET(x) =
∑

i

∫
d{u} 1

q
[i]
L

C
(i)
2 ({u})O(i)µ

2 (x, {u})

= C
(0)
2

[
O

(0)µ
2 (x) +

1

qL

(
O

(1⊥n)µ
2 (x) +O

(1⊥n̄)µ
2 (x)

)
+

1

q2
L

(
O

(2δ+)µ
2 (x) +O

(2δ−)µ
2 (x)

)]

+
1

qL

∑

i

∫
duC

(1i)
2 (u)O

(1i)µ
2 (x, u) +

1

q2
L

∑

i

∫
duC

(2i)
2 (u)O

(2i)µ
2 (x, u) +O

(
1

q3
L

)
(5.29)

where on the first line the sum is over all operators i = 0, 1⊥n, ..., 2B1, while in the last line the sums are

over the operators of the appropriate dimension whose coefficients are not fixed by reparameterization or

translation invariance. The operators O
(1⊥n,n̄)
2 are related to O

(0)
2 through reparameterization invariance

(RPI) [83, 218], and so to all orders in αs we have the equalities C
(0)
2 = C

(1⊥n)
2 = C

(1⊥n̄)
2 , while

translation invariance of QCD ensures that C
(0)
2 = C

(2δ+)
2 = C

(2δ−)
2 . The normalizations of all operators

have been chosen so that their tree-level matching coefficient is unity in u-space,

C
(i)
2 (µ, {u}) = 1 +O(αs) . (5.30)

The one-gluon matrix elements of the operators O
(i)
2 (µ, {u}) are given in Appendix 5.A.

There are additional operators not included in Eq. (5.25) and Eq. (5.26) which are part of the general

SCET current expansion [179], but which do not contribute to Cff̄ at the order (in αs, qT /Q, or ΛQCD/Q)

to which we are working, or which contribute only to the gluon-initiated Drell-Yan sub-process. These

operators do not mix under renormalization at one loop with the operators considered here, and so are

not included in this analysis, though we list them in Appendix 5.A for completeness.

5.2.2 Renormalization Group Running

The anomalous dimensions of all the required matching coefficients C
(i)
2 ({u}) have been calculated

previously in [78, 83, 179]. They obey the integro-differential equation

d

d logµ
C

(i)
2 (µ, {u}) =

∫
d{v}γ(i)

2 ({u}, {v})C(i)
2 (µ, {v}) , (5.31)

where the kernels γ
(i)
2 have the form

γ
(i)
2 ({u}, {v}) =Γ(i)

cusp[αs] log
−q2

L − i0+

µ2
δ({u} − {v}) + γ

(i)
non−cusp({u}, {v}) . (5.32)

Working in the leading-log (LL) approximation only the cusp anomalous dimension is required. The

one-loop cusp anomalous dimension is universal,

Γ(0)
cusp = Γ(1Ai)

cusp = Γ(2Ai)
cusp = Γ(1Bi)

cusp = Γ(2Bi)
cusp =

αsCF
π

. (5.33)
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With the definition H(i,j)({u}) = C
(i)†
2 ({u})C(j)

2 ({u}), the leading-log running of the hard functions is

determined by the RGE

d

d logµ
H(i,j)(µ, {u}) =

(
2Γcusp log

q2
L

µ2

)
H(i,j)(µ, {u}) . (5.34)

This gives the LL unitary evolution for all H(i,j)

H(i,j)(µ, {u}) = ULL
H (µ, µH)H(i,j)(µH , {u}) , (5.35)

where, with β[αs] ≡ dαs/d logµ = −β0α
2
s/2π + . . . ,

logULL
H (µ, µH) = −4

∫ αs(µ)

αs(µH)

dα

β[α]
Γcusp[α]

∫ α

α(qL)

dα′

β[α′]

=
16πCF
β2

0

(
1

αs(µH)
− 1

α(µ)
− 1

α(qL)
log

α(µ)

α(µH)

)
.

(5.36)

Beyond LL there will be operator mixing, and the solution to the RGE will be more involved. This sums

the RGE logarithms of µH/µ in the hard functions.

5.2.3 T(i,j) Definitions

The differential cross section for DY production is given in terms of hadronic matrix elements of products

of operators O
(i)†
2 (x)O

(j)
2 (0) in Eq. (5.7). Matrix elements of these operator products may be evaluated

between partons in perturbation theory to calculate the matching conditions onto light-cone distribution

operators (whose matrix elements are the usual PDFs); however, it is convenient to perform a Fierz

rearrangement for each operator product to write it as the product of factors in the n- and n̄-sectors,

corresponding to the convolution of generalized transverse momentum dependent distribution operators.

At leading power, this gives

∫
ddx

2(2π)d
(−gµν)e−iq·xO

(0)µ†
2 (x)O

(0)ν
2 (0) =

1

Nc

∫
ddx

2(2π)d
e−iq·xΦ(0)

n (xn)Φ
(0)
n̄ (xn̄)

≡ 1

Nc
T(0,0)(q

−, q+,qT ) .

(5.37)

The leading power position space distribution operators are defined as

Φn(xn) ≡ χ̄n(xn)
/̄n

2
χn(0), Φn̄(xn̄) ≡ χ̄n̄(0)

/n

2
χn̄(xn̄) , (5.38)

where xn and xn̄ are defined in (5.20), and thus consist of quark fields separated in the transverse

direction by xµ⊥ as well as along the light-cone.

Products of power-suppressed operators may similarly be written as convolutions of higher dimension

operators,

T(i,j)(q, {u}) =

∫
ddx

2(2π)d
e−iq·x Φ(i)

n (xn, {u})Φ(j)
n̄ (xn̄, {u}), (5.39)

where we define the relevant subleading transverse momentum dependent light-cone distribution opera-
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tors Φ
(i)
n (x, {t}) as

Φ(21)
n (xn, t̂) ≡ (i∂µχ̄n(xn))

/̄n

2
γ⊥µ γ

⊥
ν B†νn (−n̄t)χn(0)

Φ(22)
n (xn, t̂1, t̂2) ≡− χ̄n(xn)Bµn(xn − n̄t1)

/̄n

2
γ⊥µ γ

⊥
ν B†νn (−n̄t2)χn(0)

Φ(23)
n (xn, t̂) ≡ 2πiθ(t̂)⊗ χ̄n(xn)Bµνn (xn − n̄t)

/̄n

2
γ⊥ν γ

⊥
µ χn(0)

Φ(24)
n (xn) ≡ q+q−

x−

2
(n · ∂ χ̄n(xn))

/̄n

2
χn(0) .

(5.40)

The corresponding n̄-sector operators Φ
(i)
n̄ are found by taking the Hermitian conjugate and changing

n↔ n̄. The u-space Fourier conjugates of these building blocks are defined by the transformation in Eq.

(5.27) for shifts relative to the origin (since these shifts come from an operator), and by the conjugate

transformation for shifts relative to xn (since these shifts come from the conjugated operator).

Thus, for example,

T(0,21)(q, u) =

∫
ddx

2(2π)d
e−iq·x Φ(0)

n (xn)Φ
(21)
n̄ (xn̄, u)

=

∫
ddx

2(2π)d
dt̂

2π
e−iut̂ e−iq·x

[
χ̄n(xn)

/̄n

2
χn(0)

] [
χ̄n̄(0)Bνn̄(−nt)γ⊥ν γ⊥µ

/n

2
(−i∂µχn̄(xn̄))

]
.

(5.41)

In general, we can write

∫
ddx

2(2π)d
(−gµν)e−iq·xO

(i)µ†
2 (x)O

(j)ν
2 (0) =

∑

k,`

1

Nc
K

(i,j)
(k,`)T(k,`) + spin-dependent , (5.42)

where the only non-zero elements of K which are relevant at this order are

K
(1⊥n,1A1)
(21,0) = K

(1A1,1⊥n)
(21,0) = K

(1A2,1A1)
(22,0) = K

(1A1,1A2)
(22,0)

= K
(1⊥n̄,1B1)
(0,21) = K

(1B1,1⊥n̄)
(0,21) = K

(1B2,1B1)
(0,22)

= K
(1B1,1B2)
(0,22) = K

(2A1,0)
(23,0) = K

(0,2A1)
(23,0)

= K
(2δ+,0)
(24,0) = K

(0,2B1)
(0,23) = K

(2B1,0)
(0,23) = K

(2δ−,0)
(0,24) = 1.

(5.43)

5.2.4 Matrix Elements of Operator Products

Individual n- and n̄-sector graphs contributing to the matrix elements of each T(i,j) are rapidity divergent,

and require a regulator to give finite results. We use a version of the pure rapidity regulator introduced

in [76]. As discussed in that reference, other commonly-used rapidity regulators such as the δ-regulator

[173] or the η-regulator [182] are not suitable for handling the power-law rapidity divergences that arise

at NLP. An explicit example of the δ-regulator failing to regulate rapidity divergences at NLP is given

in Section 5.2.4.

In what follows we define the pure rapidity regulator by modifying the integration measure of n-sector
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and n̄-sector particles as

ddkn → w2
n

(
q2
L

ν2
n

)ηn/2(q−
q+

k+
n

k−n

)ηn/2
ddkn

ddkn̄ → w2
n̄

(
q2
L

ν2
n̄

)ηn̄/2(q+

q−
k−n̄
k+
n̄

)ηn̄/2
ddkn̄ .

(5.44)

This regulator has the distinct advantage that – as in dimensional regularization – scaleless integrals

vanish, and as a result all overlap integrals evaluate to zero. This greatly simplifies the calculation since,

as is discussed in detail in Section 5.3, in a scheme where overlap integrals do not vanish, the overlap

subtraction procedure must be carried out to subleading powers.

The regulator in Eq. (5.44) is slightly modified from the form presented in [76]: the factors of q±

ensure boost invariance, as in [123], the dimensionless parameter υ has been replaced by the equivalent

dimensionful parameters νi, and distinct parameters ηi, νi, and wi have been introduced for each sector,

since the fields in the n- and n̄-sectors are independent. As discussed in [175], rapidity logarithms in

SCET correspond to a scheme dependence in defining the sum of individually rapidity divergent graphs

in the n- and n̄-sectors. Regulating both sectors (and their corresponding overlap graphs) in the same

way and then removing the regulator is equivalent to näıvely adding the individual graphs together

before performing the loop integrals, and reproduces the rapidity logarithms of QCD. Since QCD has

no rapidity divergences, rapidity divergences cancel for this choice, which corresponds to choosing the

parameters ηn = −ηn̄, νnνn̄ = q2
L and wn = wn̄. This was explicitly demonstrated up to NLP in [76]:

these authors showed that if QCD diagrams are first rapidity regulated and then expanded in the n-

collinear, n̄-collinear, and soft limits, the leading and subleading power matrix elements reproduce the

rapidity-finite QCD results expanded to the same order. A similar cancellation of rapidity divergences

will be shown here.

Using different rapidity regulator parameters in the two sectors moves the rapidity logarithm of q2
L

into the Wilson coefficients of the EFT and allows the scheme dependence of the resulting graphs to be

exploited to sum the corresponding rapidity logs. The corresponding rapidity divergences correspond

to 1/ηi singularities which are canceled by introducing the appropriate counterterms into the EFT, and

rapidity logarithms are then summed using rapidity renormalization group (RRG) techniques similar to

[182]. The bookkeeping constants wi are taken to formally obey the RRG equation

dwi
d log νi

=
ηi
2
wi , (5.45)

which cancels the scheme dependence in the measure, keeping the bare theory νi independent and al-

lowing techniques analogous to those in dimensional regularization to be used to extract the rapidity

anomalous dimensions. As in [76, 182], these bookkeeping constants are set to unity at the end of cal-

culation. Rapidity logarithms are minimized by the appropriate choice of the dimensionless parameters

νn,n̄.

As noted in [175], choosing νnνn̄ 6= q2
L requires rapidity counterterms for each T(i,j) which are sensitive

to the scale qT . Scale-sensitivities in the counterterm generate the same scale-dependence in the Wilson

coefficient through the RGE, and since Wilson coefficients in an EFT must be independent of infrared

physics, this adds the constraint that the theory must first be evolved to µ ∼ qT before running in

rapidity. This will be discussed in more detail in Section 5.2.6.

At LP the only operator is T(0,0), so its divergences are absorbed by the renormalization constant
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Z(0,0),(0,0),

TB(0,0)(q
−, q+,qT ) =

∫
dω1

ω1

dω2

ω2
dd−2pTZ(0,0),(0,0)(ω1, ω2,pT )T(0,0)

(
q−

ω1
,
q+

ω2
,qT − pT

)
, (5.46)

where TB(i,j) and T(i,j) denote the bare and renormalized operators, respectively, and the integral corre-

sponds to summing over the infinite set of operators T(0,0)(k
−, k+,kT). At subleading powers the various

operators may mix with one another, so we have the general relation

TB(i,j)(q
−, q+,qT , {u}) =

∑

(k,l)

∫
dω1

ω1

dω2

ω2
dd−2pT d{v}Z(i,j),(k,l)(ω1, ω2,pT , {v})

× T(k,l)

(
q+

ω2
,
q−

ω1
,qT − pT , {u− v}

)
,

(5.47)

where the sum over operators includes each subleading T(i,j) as well as the leading operator T(0,0) with

a power-suppressed coefficient, as will be discussed in the following sections.

Leading Power Example

The leading power calculation of DY production in this formalism was presented in [175] using the δ-

regulator; we repeat the calculation here with the pure rapidity regulator. At leading power, there is a

single bilocal operator contributing to the rate,

T (0,0)(q
−, q+,qT ) =

∫
ddx

2(2π)d
e−iq·x

[
χ̄n(xn)

/̄n

2
χn(0)

] [
χ̄n̄(0)

/n

2
χn̄(xn̄)

]
. (5.48)

With incoming quark and antiquark states q(p1) and q̄(p2) the tree-level matrix element of this operator

is
1

4

∑

spins

〈
pn1p

n̄
2

∣∣T(0,0)

∣∣pn1pn̄2
〉

=
1

4

∑

spins

∫
ddx

2(2π)d
e−iq·x 〈pn1 |

[
χ̄n(xn) |0〉

/̄n

2
〈0|χn(0)

]
|pn1 〉

×
〈
pn̄2
∣∣
[
χ̄n̄(0) |0〉 /n

2
〈0|χn̄(xn̄)

] ∣∣pn̄2
〉

= δ(z1)δ(z2)δd−2(qT ) ≡ δ1δ2δT ,

(5.49)

where the superscripts n- and n̄ in Eq. (5.49) denote the sector of the corresponding parton. We also

use the notation

z1 ≡
q−

p−1
, z2 ≡

q+

p+
2

, z̄i ≡ 1− zi (5.50)

and

δi ≡ δ(z̄i), δ′i ≡ δ′(z̄i), δT ≡ δd−2(qT ) . (5.51)

At O(αs), the matrix element corresponding to the emission of a real n-sector gluon is given by the

three n-sector graphs shown of Figure 5.1. Denoting the spin-averaged one-loop matrix element of T(0,0)

by M(0,0), we write

M(0,0) =Mn
(0,0) +Mn̄

(0,0) −M
O
(0,0) , (5.52)

where the superscripts n and n̄ denote the O(αs) contribution from a gluon in the corresponding sector,

and the O superscript denotes the overlap subtraction. Since these matrix elements correspond to a
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Figure 5.1: Non-vanishing graphs in the n-sector contributing to the matrix element 〈pn1pn̄2 |T(0,0) |pn1pn̄2 〉
at O(αs).

matching calculation at the scale µS ∼ qT � ΛQCD we use the initial-state kinematics p+
1 = p1⊥ = 0 =

p2⊥ = p−2 , and we obtain

Mn
(0,0) = −2πg2CF

∫
ddk

(2π)d
w2
n

(
q2
L

ν2
n

q−

q+

k+

k−

)ηn/2
δ(k2)δ(p−1 − q−− k−)δ(p+

2 − q+)δd−2(qT + kT )

× Tr

[
/p2

2

(
2pα1 − γα/k
−2p1 · k

+
n̄α

k−

)
/̄n

2
×
(

2p1α − /kγα
−2p1 · k

− n̄α
−k−

)]
Tr

[
/p2

2

/n

2

]
,

(5.53)

which evaluates to

Mn
(0,0) =

α

π
fεw

2
nδ2

(µ2)−ηn/2

(q2
T )1−ηn/2

(
z1µ

νn

)ηn (2− 2z1 + (1− ε)z2
1)

z1+ηn
1

, (5.54)

where

α ≡ αsCF
2π

, fε ≡ (πµ2eγ)ε (5.55)

and we work in d = 4− 2ε dimensions.

To extract the singularity structure of this matrix element at z̄1 = 0 we use the distributional identity

θ(z1)

z1+η
1

= −δ(z1)

η
+

[
θ(z1)

z1

]

+

+ . . . (5.56)

for scalars (see Appendix 5.B for definitions) as well as the identity [67]

(µ2)−η/2

(q2
T )1−η/2 = µ−2εSd−2

2

(
δT
η
2 − ε

+ L0T +
η

2
L1T + . . .

)
(5.57)

for vectors in (d−2) dimensions, where the LnT are vector plus distributions [67, 80] defined in Appendix

5.B.2,

LnT ≡ Ln(qT , µ) =
2µ2ε

Sd−2


 logn

q2
T

µ2 θ(q
2
T )

q2
T



µ2

+

, (5.58)

and Sd−2 = 2π
d−2

2 /Γ
(
d−2

2

)
. Upon expanding first in ηn then in ε, the n-sector contribution to the
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matrix element from a single real emission is

Mn
(0,0) =

α

2
w2
nδ2

[
4

ηn
δ1

(
δT
ε
− L0T

)
+ δ1δT


 2

ε2
+

3− 2 log
ν2
n

µ2

ε




+ 2

(
L0T −

δT
ε

)[
1 + z2

1

z1

]

+

δT

+ 2z1δT − ζ2δ1δT − 2δ1L1T − δ1L0T

(
3− 2 log

ν2
n

µ2

)]
.

(5.59)

The n̄-sector contribution is obtained under the replacements z1 → z2, wn → wn̄, νn → νn̄ and ηn → ηn̄.

As in [77], the overlap between the two sectors is obtained by taking the opposite-sector gluon limit

of the n- and n̄-sector graphs. As detailed in Section 5.3, the subtraction prescription corresponds to

subtracting half the wrong sector limit for the gluon of each sector3, which we denote

MO
(0,0) =

1

2

(
Mn→n̄

(0,0) +Mn̄→n
(0,0)

)
. (5.60)

For example, the wrong sector limit of Eq. (5.53) is

Mn→n̄
(0,0) = −2πg2CF

∫
ddk

(2π)d
w2
n

(
q2
L

ν2
n

q−

q+

k+

k−

)ηn/2
δ(k2)δ(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )

× Tr

[
/p1

2

(
nα

−k+
+
n̄α

k−

)
/̄n

2

(
nα
−k+

− n̄α
−k−

)]
Tr

[
/p2

2

/n

2

]
+ . . .

(5.61)

where the dots indicate terms suppressed by powers of 1/qL relative to leading power. Integrating with

respect to kT then k+, we find the n̄ limit of the n-sector graphs is

Mn→n̄
(0,0) =

2α

π
fεw

2
nδ1δ2

(
q2
L

ν2
n

q−

q+

)ηn/2 1

(q2
T )1−ηn/2

∫ ∞

0

dk−

(k−)1+ηn
, (5.62)

which is a scaleless divergence and vanishes in this regularization scheme. The overlap subtraction

between the two sectors is therefore zero when using the pure rapidity regulator at O(αs), and this

remains true beyond leading power.

Summing the contributions from each sector and subtracting off the (vanishing) overlap, we find the

O(αs) contribution to the matrix element of T(0,0)

M(0,0) =α

[
2

(
w2
n

ηn
+
w2
n̄

ηn̄

)
δ1δ2

(
δT
ε
− L0T

)
+ δ1δ2δT

(
2

ε2
+

3− 2 log νnνn̄
µ2

ε

)

+

(
L0T −

δT
ε

)(
δ2

[
1 + z2

1

z1

]

+

+ δ1

[
1 + z2

2

z2

]

+

)

− δ1δ2
[
2L1T + L0T

(
3− 2 log

νnνn̄
µ2

)]
+ (z1δ2 + z2δ1 − δ1δ2ζ2)δT

]
,

(5.63)

where we have set wn,n̄ = 1 for all ηi-independent terms. As discussed earlier, the rapidity divergences

appear as the η-divergent terms in the first line. The rapidity-finiteness of the full theory is reflected

3In [77], the limits from either sector were equal.
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in the fact that setting wn = wn̄ and ηn = −ηn̄ gives a total rate which is free from η-poles, which

is to be expected since this scheme corresponds to regulating the n and n̄ sectors identically; using

different schemes for the two sectors spoils the cancellation of rapidity divergences between the sectors.

However, resumming the rapidity logarithms requires keeping the wn,n̄ and ηn,n̄ scheme dependence. This

introduces explicit rapidity divergences in the matrix elements which require rapidity counterterms, from

which the RRG may be derived.

In the scheme where νnνn̄ = q2
L, the purely ε-divergent terms (ultraviolet divergences) in the first

line of Eq. (5.63) are canceled by the renormalization constant Z2,(0) for O
(0)
2

Z2,(0) = 1 +
α

2


 2

ε2
+

3− 2 log
q2
L

µ2

ε


 , (5.64)

which follows the product of renormalized operators O†µ2,(0)O
†ν
2,(0) through the Fierz rearrangement. Since

Z2,(0) depends only on log(q2
L/µ

2), the scheme νnνn̄ = q2
L is enforced at µ ∼ qL and throughout the

µ-running when µ > qT . As we later discuss in Section 5.2.6, when µ ∼ qT then qT is no longer an

infrared scale, and then νn,n̄ can be evolved with the RRG, allowing for the resummation of rapidity

logarithms.

The IR divergent terms in the second line of Eq. (5.63) are the Altarelli-Parisi splitting functions,

and are reproduced by the infrared divergences in the light-cone distribution operators in the low-energy

theory. The remaining divergences are rapidity divergences, and are absorbed by the counterterm in Eq.

(5.46), where

Z(0,0),(0,0)(ω1, ω2,qT ) = δ1δ2

(
δT + 2α

(
w2
n

ηn
+
w2
n̄

ηn̄

) (
δT
ε
− L0T

)
+ 2α

δT
ε

log
q2
L

νnνn̄

)
. (5.65)

Using the running of the fictional coupling wn,n̄ in Eq. (5.45), we can obtain the rapidity anomalous

dimension and rapidity evolution equation for T(0,0), which we further discuss in Section 5.2.6.

Note that for ηn = −ηn̄ and νn,n̄ = q2
L there are no additional ultraviolet (UV) divergences in the

matrix element of T(0,0) beyond the renormalization of O
(0)
2 (µ), indicating that the phase space integral

in SCET is UV finite at O(αs). Similarly, one-loop matrix elements at NLP will also be found to be UV

finite. Additional UV divergences in matrix elements of the T(i,j)’s would indicate phase space integrals

which were sensitive to the UV scale qL, in which case the RG running of the corresponding T(i,j)

would not simply be given by the running of its constituent SCET operators, but would have additional

contributions. It is possible that this could complicate the RG running of the H(i,j)’s at higher orders

in αs, where the final state phase space can include multiple gluons with individually large kT which

largely cancel to contribute at small qT , but this would not affect the one-loop running or the form of

the factorization Eq. (5.14).
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Subtracting the counterterms yields the renormalized matrix element

〈
pn1p

n̄
2

∣∣T(0,0)

(
q−, q+,qT ,

µ

qT
,
νn,n̄
µ

) ∣∣pn1pn̄2
〉

1−gluon
= α

[(
L0T −

δT
ε

)(
δ2

[
1 + z2

1

z1

]

+

+ δ1

[
1 + z2

2

z2

]

+

)

− δ1δ2
[
2L1T + L0T

(
3− 2 log

νnνn̄
µ2

)]

+ (z1δ2 + z2δ1 − δ1δ2ζ2)δT

]
,

(5.66)

which, with the replacement νnνn̄ = ν2, also reproduces the result in [175].

Next-to-Leading Power Example: T(24,0)

Since O(ΛQCD) contributions are not considered, there is no 0-gluon contribution to the matrix element

of T(24,0), and there is also no n̄-sector contribution at O(αs). Thus at first non-trivial order the graphs

T(24,0) are those shown in Fig. 5.1, yielding

Mn
(24,0) = 2πg2CF q

+q−
∫

ddk

(2π)d
w2
n

(
q2
L

ν2
n

q−k+

q+k−

)ηn/2
k+δ(k2)δ(p−1 − q− − k−)δ′(p+

2 − q+)δd−2(qT + kT )

× Tr

[
/p2

2

(
2pα1 − γα/k
−2p1 · k

+
n̄α

k−

)
/̄n

2

(
2p1α − /kγα
−2p1 · k

− n̄α
−k−

)]
Tr

[
/p2

2

/n

2

]

= −α
π
fεz1z2w

2
nδ
′
2

(
z1qT
νn

)ηn (2− 2z1 + (1− ε)z2
1)

z2+ηn
1

.

(5.67)

Here, we use the scalar distributional identity

θ(z1)

z2+η
1

=
δ′(z1)

η
− δ(z1) +

[
θ(z1)

z1

]

++

+ . . . (5.68)

where the double-plus distribution [76] is defined in Appendix 5.B. We also use the usual expansion

(µ2)−η/2

(q2
T )−η/2

= 1− η

2
log

µ2

q2
T

+ . . . . (5.69)

Eq. (5.67) is finite as ε→ 0. Expanding in ηn, we find the bare matrix element of T(24,0)

Mn
(24,0) =

α

π
z1z2δ

′
2

(
(δ1 + δ′1)

(
−2w2

n

ηn
+ log

ν2
n

q2
T

)
− 2

[
θ(z1)

z1

]

++

+ 2

[
1

z1

]

+

− 1

)
. (5.70)

The 1/ηn rapidity divergence in (5.70) is similar in form to that found in the study of NLP jet and

soft functions in [91, 119, 123, 222]. The divergence is independent of qT and may be absorbed through

mixing of T(24,0) with the leading-power operator T(0,0), as in Eq. (5.47), with

Z(24,0),(0,0)(ω1, ω2,qT ) = −2
α

π

w2
n

ηn
ω1ω2 (δ(ω1) + δ′(ω1)) δ′(ω2) . (5.71)

This rapidity renormalization factor is suppressed by one power of q2
T relative to the leading term

Z(0,0),(0,0) in (5.65) since it does not contain a factor of δ(q2
T ), and so the mixing is consistent with power
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counting. Equivalently, the divergence may be absorbed by O(1) mixing with the NLP operator

∫
dd−2pTT(0,0)(q

−, q+,pT ) . (5.72)

This is similar to the cumulant operators introduced in [91, 119, 123, 222] except that Eq. (5.72) has no

upper cutoff |pT | < Λ on the integral.

Next-to-Leading Power Example: T(0,23)

T(0,23) provides an example of a matrix element with nontrivial u dependence. Calculating its spin-

averaged matrix element, the only contribution comes from an n̄-sector gluon and we find

Mn̄
(0,23) =− 2πg2CF

∫
ddk

(2π)d
w2
n̄

(
q2
L

ν2
n̄

q+k−

q−k+

)ηn̄/2
δ(k2)δ(p−1 − q− − k−)δ(p+

2 − q+)δd−2(qT + kT )

× Tr

[
/p2

2

/n

2

]
Tr

[
1

u
v̄(p2)

(
2p2α − γα/k
−2p2 · k

− n̄α
−k−

)
/n

2
γ⊥ν γ

⊥
µ ∆αµ(k)kνv(p2)δ

(
u+

k+

q+

)]
.

(5.73)

After using δ(u + k+/q+)/u = −q+δ(u + k+/q+)/k+ and integrating over the gluon’s phase space, the

bare matrix element is

Mn̄
(0,23) =−α

π
fεw

2
n̄z1z2

(
z2qT
νn̄

)ηn̄ 1

z2−ηn̄
2

δ1δ

(
u+

z2

z2

)
. (5.74)

Using distributional identities to extract the pole structure of Eq. (5.74), we expand to find

Mn̄
(0,23) =− α

π
z1z2 δ1

(
δ′2

(
w2
n̄

ηn̄
− 1

2
log

ν2
n̄

q2
T

)
+

[
θ(z2)

z2
2

]

++

)
δ

(
u+

z2

z2

)
. (5.75)

where the rapidity divergence is absorbed by Eq. (5.47) with the renormalization constant

Z(0,23),(0,0)(ω1, ω2,qT , u) = −α θ̃(q2
T )
w2
n̄

ηn̄
ω1ω2 δ(ω1)δ′(ω2)δ

(
u+

ω2

ω2

)
. (5.76)

Note that if the operator definition of O
(2B1)
2 (x, t̂) had not included the θ(t̂) convolution discussed in

Section 5.2.1, then its u-space matching coefficient would instead be C
(2B1)
2 = 1/u, and the corresponding

expression in (5.74) would contain only delta functions and single plus distributions in z2,

M∼ 1

z̄1−ηn̄
2

δ

(
u+

z̄2

z2

)
=

(
δ(z̄2)

ηn̄
+

[
θ(z̄2)

z̄2

]

+

+O(ηn̄)

)
δ

(
u+

z̄2

z2

)
. (5.77)

Multiplying this by the Wilson coefficient ∼ 1/u and integrating over u would then give an unregulated

divergence at z2 = 0. Instead, keeping the singular 1/u dependence in the matrix element of the

operator gives the properly regulated result in Eq. (5.75) and Eq. (5.76) in terms of δ′ and double-plus

distributions.

Finally, we can also demonstrate here that the δ-regulator does not regulate all rapidity divergences

at NLP. Replacing the previous pure rapidity regulator in Eqs. (5.73) and (5.74) with the δ-regulator,
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the same expressions read

Mn̄δ
(0,23) = −2πg2CF

∫
ddk

(2π)d
Tr

[
/p2

2

/n

2

]
δ

(
u+

k+

q+

)
δ(k2)δ(p−1 − q− − k−)δ(p+

2 − q+)δd−2(qT + kT )

×Tr

[
1

u
v̄(p2)

(
2p2α − γα/k
−2p2 · k

− n̄α
−k− − δn̄

)
/n

2
γ⊥ν γ

⊥
µ

(
gαµ − nαkµ

k+ + δn̄

)
kνv(p2)

]

=−α
π
fεw

2
n̄z1z2

1

z2(z2 + δn̄/p
+
2 )
δ1δ

(
u+

z2

z2

)

(5.78)

which contains an uncontrolled rapidity divergence when integrated over z2. Since the unregulated

divergence does not originate from a Wilson line propagator, any regulator which only modifies the

definition of a Wilson line, such as the η-regulator of [80], will suffer from similar problems.

One Loop Results

As shown in previous examples, matrix elements of the T(i,j)’s are rapidity divergent and require subtrac-

tions via rapidity counterterms proportional to the leading order operator T(0,0). The renormalization

constants for the rest of the subleading T(i,j)’s are found to be

Z(21,0),(0,0)(ω1, ω2,qT , u) =
α

π

w2
n

ηn
δ(ω1)δ(ω2)δ(u) ,

Z(0,21),(0,0)(ω1, ω2,qT , u) =
α

π

w2
n̄

ηn̄
δ(ω1)δ(ω2)δ(u) ,

(5.79)

and

Z(22,0),(0,0)(ω1, ω2,qT , u1, u2) = −α
π

w2
n

ηn
δ(ω1)δ(ω2)δ(u1)δ(u2) ,

Z(0,22),(0,0)(ω1, ω2,qT , u1, u2) = −α
π

w2
n̄

ηn̄
δ(ω1)δ(ω2)δ(u1)δ(u2) ,

(5.80)

for the operators T(21,0) through T(0,22), and

Z(23,0),(0,0)(ω1, ω2,qT , u) = −α
π

w2
n

ηn
ω1ω2 δ

′(ω1)δ(ω2)δ

(
u+

ω1

ω1

)
,

Z(0,23),(0,0)(ω1, ω2,qT , u) = −α
π

w2
n̄

ηn̄
ω1ω2 δ(ω1)δ′(ω2)δ

(
u+

ω2

ω2

)
,

Z(24,0),(0,0)(ω1, ω2,qT ) = −2
α

π

w2
n

ηn
ω1ω2 (δ(ω1) + δ′(ω1))δ′(ω2) ,

Z(0,24),(0,0)(ω1, ω2,qT , u) = −2
α

π

w2
n̄

ηn̄
ω1ω2 (δ(ω2) + δ′(ω2)) δ′(ω1) ,

(5.81)

for the remaining operators T(23,0) through T(0,24).

In contrast to the leading power operator, the matrix elements of the power suppressed operators

T(i,j) are individually rapidity divergent even when setting wn = wn̄ = 1 and ηn = −ηn̄. Nevertheless,

these divergences cancel pairwise between T(21,0) and T(0,21), and T(22,0) and T(0,22). The divergences

also cancel in the sum over the four operators in Eq. (5.81) when weighted and integrated against their

appropriate prefactor H(i,j)({u})K
(i,j)
(k,`). The cancellation of rapidity divergences in the total rate reflects

the rapidity-finiteness of the total NLP cross section in SCET and is a non-trivial check on the validity

of the EFT expansion. In Section 5.3.2 we will show that this cancellation can be understood without
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an explicit regulator, in which case the correct treatment of overlap subtraction graphs, which vanished

here when using the pure rapidity regulator, is critical.

The hard-scale matching coefficients of all the subleading operators T(i,j) have the same LL anoma-

lous dimensions [179], so these cancellations are manifestly maintained to all orders in the leading-log

approximation. Since the rate must also be finite beyond leading logarithm, finiteness of the theory will

place constraints on rapidity divergences, but these constraints are beyond the scope of this thesis.

As in Eq. (5.9), the T(i,j) operators are matched onto a theory solely consisting of light-cone distri-

bution operators, defined as

Oq(`
−) =

1

2π

∫
dξ e−iξ`

−
ψ̄n(n̄ξ)

/̄n

2
W (n̄ξ, 0)ψn(0) ,

Oq̄(`
+) =

1

2π

∫
dξ e−iξ`

+

ψ̄n̄(0)
/n

2
W (0, nξ)ψn̄(nξ) .

(5.82)

Since the renormalized partonic matrix element of the product of these soft theory operators is [78, 223]

〈
pn1p

n̄
2

∣∣Oq(q−)Oq̄(q
+)
∣∣pn1pn̄2

〉
=

(
δ1 −

α

ε

[
1 + z2

1

z1

]

+

)(
δ2 −

α

ε

[
1 + z2

2

z2

]

+

)
+ . . . (5.83)

and since these IR divergences are precisely reproduced in the renormalized matrix element of T(0,0) (see

Eq. (5.63)), the leading-power soft matching coefficient is then

CS,(0,0)

(
z1, z2,qT ,

µ

qT
,
νn,n̄
µ

)
= δ1δ2δT + α

{
− δ1δ2

[
2L1T + L0T

(
3− 2 log

νnνn̄
µ2

)]

+

(
δ2

[
1 + z2

1

z1

]

+

+ δ1

[
1 + z2

2

z2

]

+

)
L0T + (z1δ2 + z2δ1 − δ1δ2ζ2)δT

}
.

(5.84)

This also provides the fixed order expansion of V(0,0),(0,0),

V(0,0),(0,0)

(
z1, z2,qT ,

µ

qT
,
qL
νn,n̄

)
= δ1δ2δT + 2αL0T log

q2
L

νnνn̄
+ . . . , (5.85)

where higher order terms can be generated using the running in Section 5.2.6.

At subleading power the renormalized matrix elements of T(i,j) begin at O(αs) and thus match onto

the tree level term δ(z1)δ(z2) of Eq. (5.83). The renormalized matrix elements of T(i,j) are thus equal

to the soft matching coefficients CS,(i,j). Suppressing their scale dependence, the first four NLP soft
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matching coefficients are

CS,(21,0)(z1, z2,qT ) =− α

π
δ2

([
θ(z1)

z1

]

+

+
1

2
δ1 log

ν2
n

q2
T

)
δ

(
u+

z1

z1

)
,

CS,(0,21)(z1, z2,qT ) =− α

π
δ1

([
θ(z2)

z2

]

+

+
1

2
δ2 log

ν2
n̄

q2
T

)
δ

(
u+

z2

z2

)
,

CS,(22,0)(z1, z2,qT ) =
α

π
δ2

([
θ(z1)

z1

]

+

+
1

2
δ1 log

ν2
n

q2
T

)
δ

(
u1 +

z1

z1

)
δ(u1 − u2) ,

CS,(0,22)(z1, z2,qT ) =
α

π
δ1

([
θ(z2)

z2

]

+

+
1

2
δ2 log

ν2
n̄

q2
T

)
δ

(
u2 +

z2

z2

)
δ(u1 − u2) ,

(5.86)

and the remaining four matching coefficients are

CS,(23,0)(z1, z2,qT ) =
α

π
z1z2 δ2δ

(
u+

z1

z1

)(
1

2
δ′1 log

ν2
n

q2
T

−
[
θ(z1)

z2
1

]

++

)
,

CS,(0,23)(z1, z2,qT ) =
α

π
z1z2 δ1δ

(
u+

z2

z2

)(
1

2
δ′2 log

ν2
n̄

q2
T

−
[
θ(z2)

z2
2

]

++

)
,

CS,(24,0)(z1, z2,qT ) =
α

π
z1z2 δ

′
2

(
(δ(z1) + δ′(z1)) log

ν2
n

q2
T

− 2

[
θ(z1)

z2
1

]

++

+ 2

[
θ(z1)

z1

]

+

− 1

)
,

CS,(0,24)(z1, z2,qT ) =
α

π
z1z2 δ

′
1

(
(δ(z2) + δ′(z2)) log

ν2
n̄

q2
T

− 2

[
θ(z2)

z2
2

]

++

+ 2

[
θ(z2)

z1

]

+

− 1

)
.

(5.87)

Matching QCD onto SCET at µ = qL and νn,n̄ = qL, these matrix elements have large logarithms of

q2
L/q

2
T . We will discuss the resummation of these logarithms using the rapidity renormalization group

in Section 5.2.6.

5.2.5 Cff̄ at Fixed Order

It is useful at this stage to check the fixed order results for Cff̄ by comparing with the corresponding

QCD calculation. At leading power, the O(αs) expression for C
(0)

ff̄
in SCET is given by CS(0,0) in Eq.

(5.84) with νn,n̄ = qL and multiplied by the hard function H(0,0) = C
(0)†
2 C

(0)
2 . After integrating dΩT ,

this gives the one-loop expression

C
(0)

ff̄
(z1, z2, q

2
L, q

2
T ) = α

{
δ1δ2δ(q

2
T )

(
− log2 q

2
L

µ2
+ 3 log

q2
L

µ2
− 8 + 7ζ2

)

+

[
1

q2
T

]µ2

+

(
δ1

[
1 + z2

2

z2

]

+

+ δ2

[
1 + z2

1

z1

]

+

)

− δ1δ2


2


 log

q2
T

µ2

q2
T



µ2

+

+

[
1

q2
T

]µ2

+

(
3− 2 log

q2
L

µ2

)



+ δ(q2
T ) (z1δ2 + z2δ1 − ζ2δ1δ2)

}
.

(5.88)
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At NLP, adding up the contributions from the unsummed matching coefficients in Eq. (5.86) and Eq.

(5.87) with νn,n̄ = qL weighted by the corresponding coefficients H(i,j)K
(i,j)
(k,`), gives the O(αs) coefficient

function

C
(2)

ff̄
(z1, z2,qT ) = α z1z2

[(
2 log

ŝ

q2
T

− 3

)
δ′1δ
′
2 +

(
2 log

ŝ

q2
T

+ 1

)
(δ′1δ2 + δ1δ

′
2) + 4δ1δ2

− δ′1
[

2− 2z2 + z2
2

z2
2

]

++

− δ′2
[

2− 2z1 + z2
1

z2
1

]

++

− 2

(
δ1

[
1

z2
2

]

++

+ δ2

[
1

z2
1

]

++

)]
,

(5.89)

where, along with q2
L = z1z2ŝ, we have used the identities

[
θ(z)

z

]

++

=

[
θ(z)

z

]

+

+ δ′(z),

[θ(z)]++ = 1 +
1

2
δ′(z)− δ(z).

(5.90)

These results may be compared with the direct QCD calculation. Cff̄ is determined in QCD by the

partonic rate

RQCD =−
∫

ddx

(2π)d
〈p1p2| ψ̄(x)γµψ(x)ψ̄(0)γµψ(0) |p1p2〉

=
1

2

∫
ddx

(2π)d
〈p1p2| ψ̄(x)γµψ(0)ψ̄(0)γµψ(x) |p1p2〉 .

(5.91)

The single gluon real emission contribution evaluates to

R1g
QCD =

α

π
fε
δ(z1z2ŝ− q2

T )

z1z2
[2− 2(z1 + z2) +(z2

1 + z2
2)− ε(z1 + z2)2

]
. (5.92)

Expanding (5.92) in powers of q2
T /q

2
L,

R1g
QCD = R(0)1g

QCD +R(2)1g
QCD + . . . , (5.93)

is straightforward away from z1 = z2 = 0

R1g
QCD

∣∣∣
z̄1 6=0

=
α

π

fε
q2
T

[
δ(z2)

(
2− 2z1 + z2

1

z1

)
− 2

q2
T

ŝ
δ2

(
1

z2
1

)
− q2

T

ŝ
δ′2

(
2− 2z1 + z2

1

z2
1

)
+O

(
q4
T

ŝ2

)]

(5.94)

(with a similar result for z2 6= 0), but care is required at the singular points. At leading power, R may

be written

R(0)1g
QCD =

α

π

fε
q2
T

(
A(0)δ1δ2 + δ2 [fn(z1)]+ + δ1 [fn̄(z2)]+

)
. (5.95)

where, from (5.94),

fn,n̄(z̄) =

(
2− 2z̄ + z̄2

z̄

)
(5.96)
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and A(0) is determined from the integrated rate

A =
q2
T

α
π fε

∫ 1

0

dz1dz2 R1g
QCD = A(0) +

q2
T

ŝ
A(2) + . . . . (5.97)

Similarly at NLP the rate has the general form

R(2)1g
QCD =

α

π

fε
ŝ

(
A(2)δ1δ2 +B(2)δ′1δ

′
2 + C(2)(δ′1δ2 + δ1δ

′
2)

+ δ′2 [gn(z1)]++ + δ2 [hn(z1)]++ + δ′1 [gn̄(z2)]++ + δ1 [hn̄(z2)]++

)
,

(5.98)

where

gn,n̄(z̄) = −
(

2− 2z̄ + z̄2

z̄2

)

hn,n̄(z̄) = −2

(
1

z̄2

) (5.99)

and the constants B and C are given by the appropriate moments of the rate,

B =
q2
T

α
π fε

∫ 1

0

dz1dz2z1z2R1g
QCD = B(0) +

q2
T

ŝ
B(2) + . . .

C = − q2
T

α
π fε

∫ 1

0

dz1dz2z1R1g
QCD

= − q2
T

α
π fε

∫ 1

0

dz1dz2 z2R1g
QCD = C(0) +

q2
T

ŝ
C(2) + . . . .

(5.100)

The integrals in Eqs. (5.97) and (5.100) give the endpoint constants

A(0) = 2 log
ŝ

q2
T

− 3− ε ,

A(2) = 4 ,

B(2) = 2 log
ŝ

q2
T

− 3 ,

C(2) = 2 log
ŝ

q2
T

+ 1 ,

(5.101)

where we drop the ε-dependence in the NLP terms since, unlike the LP rate, the NLP rate contains no

infrared divergences stemming from a 1/q2
T prefactor.

At leading power, applying (5.185) and (5.186) gives

R(0)1g
QCD =

α

π

fε
q2
T

{(
2 log

ŝ

q2
T

− 3− ε
)
δ1δ2 + δ2

[
2− 2z1 + z2

1

z1

]

+

+ δ1

[
2− 2z2 + z2

2

z1

]

+

}

= α

[
δ1δ2δT

(
2

ε2
+

3− 2 log ŝ
µ2

ε

)
+

(
L0T −

δT
ε

)(
δ2

[
1 + z2

1

z1

]

+

+ δ1

[
1 + z2

2

z2

]

+

)

− δ1δ2
[
2L1T + L0T

(
3− 2 log

ŝ

µ2

)]
+ (z1δ2 + z2δ1 − δ1δ2ζ2)δT

]
.

(5.102)
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The LP vertex correction gives an additional contribution

R(0)virt
QCD =αδ1δ2δT

[
−

(
2

ε2
+

3− 2 log ŝ
µ2

ε

)
− log2 q

2
L

µ2
+ 3 log

q2
L

µ2
− 8 + 7ζ2

]
. (5.103)

Combining the finite pieces of Eq. (5.103) and Eq. (5.102) then integrating dΩT reproduces the SCET

result for C
(0)

ff̄
in (5.88). The remaining divergent terms are equal to the infrared divergences of the

light-cone distribution operator matrix elements and thus cancel in the matching onto the soft theory.

QCD virtual corrections do not contribute to the NLP coefficient function at O(αs), and so C
(2)

ff̄
is

determined from Eqs. (5.98)–(5.101). After integrating dΩT , this gives

C
(2)

ff̄
(z1, z2, q

2
L, q

2
T ) = αz1z2

[
4δ1δ2 +

(
2 log

ŝ

q2
T

− 3

)
δ′1δ
′
2 +

(
2 log

ŝ

q2
T

+ 1

)
(δ′1δ2 + δ1δ

′
2)

−

(
δ′1

[
2− 2z2 + z2

2

z2
2

]

++

+ δ′2

[
2− 2z1 + z2

1

z2
1

]

++

)

− 2

(
δ1

[
1

z2
2

]

++

+ δ2

[
1

z2
1

]

++

)]
,

(5.104)

in agreement with the SCET result in Eq. (5.89). Thus, the SCET result and the expanded QCD result

agree to NLP, as required.

Our fixed order results may also be compared with those obtained in [76].4 In that reference, the DY

rate was determined up to NLP by expanding the QCD matrix element in the n-collinear, n̄-collinear

and soft limits, regulating the ensuing rapidity divergences, and combining the results. The results in

that reference are also in agreement with the expanded QCD results in this section, but are presented

in different variables which makes the comparison more involved. We have checked that our results are

in agreement with theirs; details of this comparison are given in Appendix 5.C.

5.2.6 Rapidity Running

Rapidity logarithms arise in this formalism as a scheme dependence in summing together the individually

divergent contributions from the n- and n̄-sectors to a given matrix element. It was argued in [175] that

in this formalism rapidity renormalization should be performed at the matching scale onto the light-cone

distribution operators in order to ensure that Wilson coefficients in SCET are independent of infrared

physics.

As discussed in [175], the rapidity regulators in the two sectors are fixed by matching at the hard

scale from QCD onto SCET by the requirement that when µ � µS the Wilson coefficients of SCET

are independent of infrared energy scales of order µS . In the rapidity regularization scheme used here,

this corresponds to choosing νnνn̄ = q2
L, which, as discussed in Section 5.2.4, corresponds to using the

same rapidity regulator in the n- and n̄-sectors, and is required for the rapidity divergences to cancel in

the EFT. The necessity of this choice can be seen from the qT -dependence of the leading-power matrix

element of Eq. (5.66), which contains the term

〈
pn1p

n̄
2

∣∣T(0,0)

(
q−, q+,qT , νn,n̄

) ∣∣pn1pn̄2
〉

1−gluon
= 2αδ1δ2L0T log

νnνn̄
µ2

+ . . . . (5.105)

4Similar results, integrated over rapidity, were presented in [75].
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Since physical quantities are independent of the rapidity regulator, any variation in νnνn̄ in the matrix

element of T(0,0) must be compensated by a Wilson coefficient proportional to L0T in the EFT. This

variation would then introduce non-analytic dependence on the IR scale qT into the effective Lagrangian

through the Wilson coefficient, which is inconsistent with factorization of hard and soft scales.

However, at the soft scale µ ∼ qT where SCET operators are matched onto light-cone distribution

operators, the scale qT is no longer an infrared scale in the EFT, and the Wilson coefficients are free

to have nonanalytic dependence on qT . The operators T(i,j) may therefore be run in νn,n̄ to minimize

rapidity logarithms in the matching coefficients CS in Eqs. (5.84), (5.86), and (5.87). These operators

obey the RRG equation

d

d log νn,n̄
T(i,j)

(
q−, q+,qT , νn,n̄

)
=
∑

k,`

(
γn,n̄(i,j),(k,`) ∗ T(k,`)

) (
q−, q+,qT , νn,n̄

)
, (5.106)

where γn,n̄ is the rapidity anomalous dimension for each sector, and we define the convolution ∗ by

(f ∗ g)(λ1, λ2,kT ) ≡
∫
dω1

ω1

dω2

ω2
dd−2pT f(ω1, ω2,pT )g

(
λ1

ω1
,
λ2

ω2
,kT − pT

)
. (5.107)

The solution to Eq. (5.106) can be written in the form of Eq. (5.13),

T(i,j)(q
−, q+,qT , νn,n̄ = qL) =

∑

k,`

(
V(i,j)(k,`)(qL, νn,n̄) ∗ T(k,`)(νn,n̄)

)
(q−, q+,qT ) . (5.108)

The explicit form of this solution to the RRG in momentum space can be found using the techniques in

[67].

From the counterterm definitions in Eq. (5.46) and Eq. (5.47) relating the bare and renormalized

operators, and using the fact that the bare operators are independent of the parameters νn,n̄ (as guar-

anteed by the fictional coupling wn,n̄), the rapidity anomalous dimensions for the operators T(i,j) may

be calculated in terms of the renormalization constants as

γn,n̄(i,j),(k,`) =−
∑

κ,λ

Z−1
(i,j),(κ,λ)) ∗

d

d log νn,n̄
Z(κ,λ),(k,`) . (5.109)

Here, the inverse counterterm satisfies the relation

∑

κ,λ

(
Z−1

(i,j)(κ,λ) ∗ Z(κ,λ)(k,`)

)
(ω1, ω2,qT ) = δ(ω1)δ(ω2)δ(qT )δikδj` . (5.110)

At leading power the rapidity anomalous dimension of T(0,0) is calculated from the renormalization

constant in Eq. (5.65), which gives

γn(0,0),(0,0) = γn̄(0,0),(0,0) = 2αδ(ω1)δ(ω2)L0T . (5.111)

The leading-power operator T(0,0) thus obeys the RRG equation

d

d log νn,n̄
T(0,0) (ω1, ω2,qT , νn,n̄) = 2α

∫
d2pTL0T (qT − pT , µ)T(0,0) (ω1, ω2,pT , νn,n̄) , (5.112)

similar to the results in [175], and with all the complications of running and scale-setting of vector
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distributions described in [67]. Symmetrically, this RRG equation begins in the scheme νn,n̄ = qT where

the logarithms of T(0,0) are minimized, and runs up to the scheme νn,n̄ = qL which, as we have argued,

reproduces the QCD result.

At subleading power, the rapidity mixing of each T(i,j) with the leading order T(0,0) may easily be

read off from Eqs. (5.79)–(5.81):

γn(21,0),(0,0) = γn̄(0,21),(0,0) = −α
π
δ(ω1)δ(ω2) δ(u)

γn(22,0),(0,0) = γn̄(0,22),(0,0) =
α

π
δ(ω1)δ(ω2) δ(u1)δ(u2) ,

γn(23,0),(0,0) =
α

π
ω1ω2 δ

′(ω1)δ(ω2) δ

(
u+

ω1

ω1

)
,

γn̄(0,23),(0,0) =
α

π
ω1ω2 δ(ω1)δ′(ω2) δ

(
u+

ω2

ω2

)
,

γn(24,0),(0,0) = 2
α

π
ω1ω2 δ

′(ω1) (δ(ω2) + δ′(ω2)) ,

γn̄(0,24),(0,0) = 2
α

π
ω1ω2 (δ(ω1) + δ′(ω1)) δ′(ω2) .

(5.113)

As noted in [121], since each subleading T(i,j) only has a non-vanishing matrix element beginning

at O(αs), calculating the complete rapidity renormalization for each T(i,j) requires calculating matrix

elements at O
(
α2
s

)
. There will be some constraints on these rapidity anomalous dimensions because of

µ-independence of the final result [80], as discussed in this formalism in [175], but the full calculation is

beyond the scope of this thesis and will be the subject of future work.

5.3 Overlap Subtractions at NLP

As discussed in [77, 175], in this formulation of SCET it is necessary to subtract the double-counting of

low-energy degrees of freedom which are simultaneously below the cutoff of both the n- and n̄-sectors,

analogous to zero-bin subtraction in SCET [172]. Rapidity logarithms in this formulation of SCET arise

from the scheme dependence in summing the individually rapidity divergent diagrams in each sector and

subtracting the corresponding overlap.

In the previous sections we have used a rapidity renormalization scheme in which overlap subtraction

graphs vanish; while this is convenient for calculations, it obscures the cancellations which occur between

different operators in different regions of phase space which are required to obtain a rapidity-finite result.

In this section we generalize the overlap subtraction prescription to NLP and repeat the calculations

without a rapidity regulator in order to explicitly show the cancellation of rapidity divergences due to

the overlap subtraction, similar to what was done at LP in [175].

At LP, the zero-bin prescription of [172] has been shown to be equivalent to the nonperturbative

subtraction definition of dividing the näıve matrix element by a vacuum expectation value of Wilson

lines [188–190]. This equivalence also holds for the overlap prescription of [77, 179]. At subleading

power, however, this simple prescription does not hold: matrix elements of the NLP operators T(i,j)

begin at O(αs), and thus dividing by a vacuum expectation value of the form (1 + O(αs)) does not

provide the necessary O(αs) subtraction to regulate their matrix elements. Calculations of probabilities

in the effective theory therefore require a systematic way to implement the necessary overlap subtraction.

In this section we describe a simple diagram-based prescription to perform the overlap subtraction at
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subleading powers, and illustrate in the case of DY at NLP that it is required to obtain the correct,

finite, result. This allows us to extend the LP discussion of [175] on the relationship between scheme

dependence and rapidity logarithms up to NLP. We show that the previous observation in Section 5.2.4

– that at NLP rapidity divergences do not cancel for matrix elements of individual operators, but instead

cancel between distinct operators – occurs because different linear combinations of operators are required

to reproduce the correct rate in different regions of phase space.

Consider, for example, the process in Fig. 5.1 in which a gluon is produced in DY annihilation in

addition to the lepton pair. In SCET this corresponds to two distinct processes in which the gluon

is emitted in the n-sector or the n̄-sector. At NLP, the first receives contributions from the T(2i,0)

operators while the second receives contributions from the corresponding T(0,2i) operators. Since in loop

graphs all momenta are integrated over, the first class of operators will give non-vanishing spurious

contributions in the momentum region described by the second, and vice versa. Thus, the overlap

subtraction procedure at NLP necessarily involves cancellations between different operators, and the

subtraction required in order to avoid overcounting in each is found by taking the wrong limit of matrix

elements in the other sector. In the symmetric process that we are examining in this chapter, this may

be achieved by subtracting one half of each of the wrong limits from each sector. Schematically, we have

the prescription

PSCET = Pn + Pn̄ −
1

2
(Pn→n̄ + Pn̄→n) , (5.114)

where Pi is the probability to produce a gluon in the i-sector and the subscripts i→ j denote the wrong

sector limits.

The power counting of these subtractions follows the power counting of the limit in which the gluon

is taken. An n-sector gluon has the scaling k−n /q
− ∼ O(1), k+

n /q
+ ∼ O(q2

T /q
2
L), while its wrong-sector

limit has the scaling k−n→n̄/q
− ∼ O(q2

T /q
2
L) and k+

n→n̄/q
+ ∼ O(1). This definition of overlap subtraction

ensures that probabilities in QCD are properly reproduced to the appropriate order by SCET in all

regions of phase space. This prescription is inherently perturbative, and further work is required to

determine an operator definition of overlap subtraction which correctly reproduces QCD probabilities

both at leading and next-to-leading power.

In the next subsection we review the discussion of overlap subtraction at LP presented in [175] using

the prescription (5.114). We then demonstrate that the same prescription may be used to calculate the

NLP coefficient function C
(2)

ff̄
, and discuss the nature of the overlap subtraction in various regions of

phase space.

5.3.1 Overlap Subtraction and Scheme Dependence at LP

The DY cross section at LP is determined by the spin-averaged matrix element of T(0,0), which takes

the general form

M(0,0) =
α

π

fε
q2
T

(
A(0,0)δ1δ2 + δ2 [fn(z1)]+ + δ1 [fn̄(z2)]+

)
(5.115)

where as before we define δ1 ≡ δ(z1), δ2 ≡ δ(z2). Away from the singular point z1 = z2 = 0 the

unregulated n- and n̄-sector contributions to the matrix element of T(0,0) are determined by the graphs

in Fig. 5.1 and their n̄-sector equivalents, and are given by Eq. (5.54) (and the corresponding expression

in the n̄-sector) with ωn = 1 and ηn = 0. This immediately gives the functions fn(z1) and fn̄(z2) in

(5.96) which describe the spectrum away from the endpoint. Since each fn,n̄ only receives contributions
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from a single sector, there is no overcounting, and these expressions are finite and well-defined without

a rapidity regulator.

The constant A(0,0) may be most simply obtained by integrating the rate over z1 and z2, which

receives contributions from both sectors. Adding these contributions overcounts the probability of pro-

ducing a gluon which lies below the cutoff of both sectors and so must be subtracted using the overlap

prescription (5.114), given by taking the wrong limit of the matrix elements in each sector. These are

given by Eq. (5.61) with the rapidity regulator set to unity,

Mn→n̄
(0,0) = −2πg2CF

∫
ddk

(2π)d
δ(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )δ(k2)

× Tr

[
/p1

2

(
nα

−k+
+
n̄α

k−

)
/̄n

2

(
nα
−k+

− n̄α
−k−

)]
Tr

[
/p2

2

/n

2

]
+ . . .

(5.116)

and the corresponding (and identical) wrong limit Mn̄→n
(0,0) of the n̄ matrix element. The dots indicate

terms suppressed by powers of 1/qL relative to leading power, which do not contribute at LP but which

will be important at NLP. By integrating these graphs with respect to z1 and z2 before integrating

over the gluon momentum the contributions to the endpoint constant A(0,0) from each sector and their

wrong limit subtractions can be obtained. As discussed in [175], because the individual graphs each have

rapidity divergences, the ordering of integration is important; the sum is defined here by performing the

z1, z2, kT and k+ integrals, leaving only a single rapidity-divergent k− integral5

A(0,0) =

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)An(0,0)(k

−) + θ

(
k− − q2

T

p+
2

)
An̄(0,0)(k

−)− 1

2

(
An→n̄(0,0) (k−) +An̄→n(0,0) (k−)

)]
,

(5.117)

where

An(0,0)(k
−) = 2− 2

(
k−

p−1

)
+ (1− ε)

(
k−

p−1

)2

,

An̄(0,0)(k
−) = 2− 2

(
q2
T

k−p+
2

)
+ (1− ε)

(
q2
T

k−p+
2

)2

,

An→n̄(0,0) (k−) = An̄→n(0,0) (k−) = 2 .

(5.118)

Physically, regions of phase space where k− ∼ O(q−) are properly described in the EFT by n-sector

gluons. Regions where k+ = k2
T /k

− ∼ O(q+) give spurious contributions in the n-sector, producing the

unphysical divergence in An(0,0)(k
−) as k− → 0. Similarly, the divergence in the n̄-sector as k− → ∞

corresponds to the large k− region which is not properly described by the n̄-sector. Both of these spurious

divergent contributions are canceled by the overlap terms, leaving the finite result

A(0,0) = 2 log
ŝ

q2
T

− 3− ε . (5.119)

This is the same endpoint constant we determined from QCD in (5.101), and so we find the same LP

coefficient function C
(0)

ff̄
. Equivalently, in Eq. (5.118), the constant terms in A

(0,0)
n and A

(0,0)
n̄ are common

to both sectors, and so the double-counting is removed by subtracting the overlap on the third line.

As discussed in [175], however, the ŝ dependence in A(0,0) is actually a scheme-dependence in the

EFT, which allows rapidity divergences to be resummed in SCET. Since each integral represents the

momentum of a distinct particle in each sector, the momentum in each integral can be independently

5This is equivalent to the prescription in [173] of adding the integrands together before performing any loop integrals.
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rescaled, which changes the term in the rapidity logarithm. For example, rescaling k− → k−ζ2/ŝ in the

An̄ integral of Eq. (5.118) gives the manifestly scheme-dependent result

A(0,0)(ζ) = 2 log
ζ2

q2
T

− 3− ε . (5.120)

In the remainder of this section we will demonstrate a similar origin of rapidity logarithms at NLP.

5.3.2 Overlap Subtraction and Scheme Dependence at NLP

At NLP the overlap subtraction follows the same procedure as at LP, but here more terms are kept

in the wrong limit expansion of each operator’s matrix elements. The NLP cancellation of divergences

is also slightly more involved, since rapidity divergences cancel between different operators, as may

be seen in Eqs. (5.79)–(5.81). Similar cancellations between different operators in SCET were also

discussed in detail in [89]. There, the endpoint divergences are regulated by explicit hard cutoffs, and

expressed in a refactorized form that makes obvious the cancellation between different NLP operators

contributing to the observable. Overcounting of hard regions arises from the convolutional structure of

the operators with a hard cutoff and thus an “infinity-bin” prescription, distinct from the usual zero-bin

prescription, is introduced to correct for this double counting. In this section we will show that the

same overlap subtraction required to correct for overcounting in the soft region also properly regulates

endpoint divergences. This uniform treatment of divergences is possible because all spurious terms have

a common origin, arising from an overcounting of probabilities induced by wrong limit contributions in

each individual sector.

The operator products T(21,0) through T(0,22) come from products of scattering operatorsO†µ2,(1i)O
ν
2,(1j)

whose definitions pick out the longitudinal Lorentz structure n̄µnν or n̄νnµ, while the remaining operators

T(23,0) through T(0,24), along with the leading order T(0,0), come from products of operators that are

proportional to gµν⊥ . It is therefore convenient to classify each T(i,j) according to its Lorentz structure,

either as transverse or longitudinal. We consider these two classes of operators in turn.

Longitudinal Class

From Eqs. (5.79) and (5.80), matrix elements of T(21,0) and T(0,21) are individually rapidity divergent,

but the divergences cancel in the sum (and hence in the cross section, since their Wilson coefficients are

equal). The same is true for T(22,0) and T(0,22), and in both cases the cancellation may be understood

by examining the unregulated diagrams and corresponding overlaps, as in the previous section.

Taking T(21,0) as an example, its unregulated spin-averaged matrix element is

Mn
(21,0) = −2πg2CF

∫
ddk

(2π)d
δ(p−1 − q−− k−)δ(p+

2 − q+)δd−2(qT + kT )δ(k2)δ

(
u+

k−

q−

)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

(
2pα1 − γα/k
−2p1 · k

+
n̄α

k−

)
/̄n

2
/k⊥γ

⊥
µ ∆αµ(k)

]

= −α
π
δ2

∫ ∞

0

dk−

k−
p−1 δ(p

−
1 − q−− k−)δ

(
u+

k−

q−

)

= −α
π

δ2
z1
δ

(
u+

z1

z1

)
,

(5.121)
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where ∆ is defined in Appendix 5.A and its wrong-sector limit is

Mn→n̄
(21,0) =− 2πg2CF

∫
ddk

(2π)d
δ(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )δ(k2)δ

(
u+

k−

q−

)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

(
nα

−k+
+
n̄α

k−

)
/̄n

2
/k⊥γ

⊥
µ ∆αµ(k)

]

=− α

π
δ(z1)δ(z2)

∫ ∞

0

dk−

k−
δ

(
u+

k−

q−

)
.

(5.122)

Away from z1 = z2 = 0 the overlap does not contribute and (5.121) gives a well-defined result; however,

it is rapidity divergent at z1 = 0. Following the LP approach, the matrix element may be written in the

general form

M(21,0) =
α

π
δ2

(
A(21,0)δ1δ(u)−

[
1

z1

]

+

δ

(
u+

z1

z1

))
, (5.123)

in accordance with Eq. (5.86). The constant A(21,0) is determined by integrating with respect to u, z1,

and z2, which gives

A(21,0) =

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)An(21,0)(k

−) − 1

2
An→n̄(21,0)(k

−)

]
, (5.124)

where

An(21,0)(k
−) = An→n̄(21,0)(k

−) = −1. (5.125)

The integral in Eq. (5.124) is divergent: matrix elements of T(21,0) alone are not rapidity-finite, in

agreement with the result (5.79) using the pure rapidity regular. This is to be expected, since gluons in

both the n- and n̄-sectors are required to reproduce the QCD rate, and the corresponding n̄-sector gluon

is emitted from the operator T(0,21). Including this operator and its corresponding subtraction gives

M(21,0) +M(0,21) =
α

π

{
A21δ1δ2δ(u) −δ2

[
1

z1

]

+

δ

(
u+

z1

z1

)
− δ1

[
1

z2

]

+

δ

(
u+

z2

z2

)}
(5.126)

where

A21
=

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)An(21,0)(k

−) +θ

(
k− − q2

T

p+
2

)
An̄(0,21)(k

−) − 1

2

(
An→n̄(21,0)(k

−) +An̄→n(0,21)(k
−)
)]

(5.127)

and

An̄(0,21)(k
−) = An̄→n(0,21)(k

−) = −1 . (5.128)

The integral in Eq. (5.127) is finite; as at LP, the spurious divergences from the n-sector as k− → 0 and

the n̄-sector as k− →∞ have been canceled by the overlap subtraction to give the finite result

A21
= − log

ŝ

q2
T

, (5.129)

which, by a similar rescaling argument as at leading power, gives a scheme-dependent rapidity logarithm

reproducing that in Eq. (5.86).
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A similar argument holds for T(22,0) and T(0,22). Explicitly, we find

M(22,0) +M(0,22) =
α

π

{
A22

δ1δ2δ(u1) + δ2

[
1

z1

]

+

δ

(
u1 +

z1

z1

)
+ δ1

[
1

z2

]

+

δ

(
u1 +

z2

z2

)}
δ(u1 − u2) ,

(5.130)

where

An(22,0)(k
−) = An→n̄(22,0)(k

−) = An̄(0,22)(k
−) = An̄→n(0,22)(k

−) = 1 , (5.131)

and so

A22 = log
ŝ

q2
T

, (5.132)

again in agreement with Eq. (5.86). The total fixed-order contribution to the cross section therefore

cancels between the four longitudinal operators.

Transverse Class

Matrix elements of the transverse class of operators T(23,0) through T(0,24) are more complicated because

they originate from operator products having the same Lorentz structure as those which produce the

leading-power operator T(0,0), and power corrections to the overlap subtraction of T(0,0) must also be in-

cluded to achieve a rapidity-finite combination. Thus, while in the longitudinal case rapidity divergences

canceled between the corresponding n- and n̄-sector operators, here they only cancel in the particular

linear combination of transverse operators which contribute to the DY cross section.

The contribution of the transverse operators to the coefficient function C
(2)

ff̄
is calculated from Eq.

(5.12) and has the general form

C
(2)T

ff̄
= αz1z2

(
A

(2)
T δ1δ2 +B

(2)
T δ′1δ

′
2 + C

(2)
T (δ′1δ2 + δ1δ

′
2)

+ δ′2
[
gTn (z1)

]
++

+ δ2
[
hTn (z1)

]
++

+δ′1
[
gTn̄ (z2)

]
++

+ δ1
[
hTn̄ (z2)

]
++

)
.

(5.133)

Away from the endpoint z1 = z2 = 0 there are no rapidity divergences, so the contribution from each

operator to gTn,n̄ and hTn,n̄ are the same as in Eqs. (5.86) and (5.87). After summing and integrating

over u’s, these combine to give the functions gTn,n̄, hTn,n̄:

gTn,n̄(z) = −
(

2− 2z + z2

z2

)
,

hTn,n̄(z) = − 2

z2
.

(5.134)

The endpoint region is overcounted in the sum of the two sectors, and must be compensated by

subtracting away half the wrong limit of each sector. In contrast with the previous cases, the power

counting of the required overlap subtractions is more subtle because the overlap graphs must subtract

not only logarithmic, but also linear rapidity divergences.

Consider first the various contributions to A
(2)
T , which are found by integrating unweighted matrix

elements over {u}, z1, and z2. The näıve contributions from T(23,0) and T(0,23) are calculated to be

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)An(23,0)(k

−) +θ

(
k− − q2

T

p+
2

)
An̄(0,23)(k

−)

]
, (5.135)
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where

An(23,0)(k
−) = −2

(
p−1
k−

)
,

An̄(0,23)(k
−) = −2

(
k−p+

2

q2
T

)
.

(5.136)

The integral in (5.135) is rapidity divergent. Both terms in Eq. (5.136) are O(1) in their respective

correct regions, k− ∼ O(q−) in the n-sector and k+ = q2
T /k

− ∼ O(q+) in the n̄-sector, but are enhanced

and give rise to linear rapidity divergences in the regions where this correct momentum scaling is no

longer valid. The contributions to Cff̄ from these spurious regions are subtracted away by the overlap.

There are two sources of overlap subtraction for A
(2)
T : the wrong limits An→n̄(23,0) and An̄→n(0,23), and also the

subleading wrong limits from the leading power operator T(0,0).

Expanding the Feynman diagrams of T(23,0) and T(0,23) in their wrong limits gives the same functions

as in Eq. (5.136) but are integrated over the region 0 < k− <∞. Explicitly, there are two non-vanishing

terms from the wrong limit of the T(23,0) matrix element,

Mn→n̄,I
(23,0) = g2CF

∫
ddk

(2π)d
δ(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )2πδ(k2)δ

(
u+

k−

q−

)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

1

u
kµ∆(k)αν

/̄n

2
γ⊥ν γ

⊥
µ

(
nα
−k+

− n̄α
−k−

)]

=
α

π
δ1δ2

∫ ∞

0

dk−

k−
1

u
δ

(
u+

k−

q−

)
,

(5.137)

and

Mn→n̄,II
(23,0) = g2CF

∫
ddk

(2π)d
(−k−)δ′(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )2πδ(k2)δ

(
u+

k−

q−

)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

1

u
kµ∆(k)αν

/̄n

2
γ⊥ν γ

⊥
µ

(
nα
−k+

− n̄α
−k−

)]

= −α
π
δ′(z1)δ(z2)

∫ ∞

0

dk−

p−1

1

u
δ

(
u+

k−

q−

)
.

(5.138)

The wrong-limit expansion is truncated after the terms reach an O(q2
T /q

2
L) suppression relative to the

leading-power operator in the wrong-limit momentum scaling p−1 ∼ O(q−) and k+, p+
2 ∼ O(q+). The

subtraction term in Eq. (5.137) contributes to A
(2)
T while the term in Eq. (5.138) contributes to C

(2)
T .

Similarly, expanding the n̄- and n-sector graphs of T(0,0) up to NLP gives the O(1/k−) term in An(23,0)

and the O(k−) term in An̄(0,23) in Eq. (5.136), respectively, which are again integrated over all values of

k−. Explicitly, expanding Mn
(0,0) gives two contributions to the subleading overlap,

Mn→n̄,NLP1

(0,0) = −2πg2CF

∫
ddk

(2π)d
(−k−)δ′(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )δ(k2)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

(
nα

−k+
+
n̄α

k−

)
/̄n

2

(
nα
−k+

− n̄α
−k−

)]

= −2δ′(z1)δ(z2)
α

π

∫ ∞

0

dk−

k−
k−p+

2

q2
T

,

(5.139)
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and

Mn→n̄,NLP2

(0,0) = −2πg2CF

∫
ddk

(2π)d
δ(p−1 − q−)δ(p+

2 − q+)δd−2(qT + kT )2πδ(k2)

× Tr

[
/p2

2

/n

2

]
Tr

[
/p1

2

(
nα

−k+
+
n̄α

k−

)
/̄n

2

(
/k⊥γ

µ
⊥

p−1 k
+

∆αµ(k)

)

+
/p1

2

(
∆αµ(k)

γ⊥µ /k⊥

p−1 k
+

)
/̄n

2

(
nα
−k+

− n̄α
−k−

)]

= −2
α

π
δ(z1)δ(z2)

∫ ∞

0

dk−

k−
k−p+

2

q2
T

,

(5.140)

the first of which comes from higher corrections to the momentum-conserving delta function, while

the second comes from higher corrections to the quark propagator expansions. Only the second term

contributes here; the first contributes to C
(2)
T .

Putting these together, we obtain the expression for A
(2)
T ,

A
(2)
T =

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)An(23,0)(k

−) +θ

(
k− − q2

T

p+
2

)
An̄(0,23)(k

−)

− 1

2

(
An→n̄,NLP

(0,0) (k−) +An̄→n,NLP
(0,0) (k−)

)
−1

2

(
An→n̄(23,0)(k

−) +An̄→n(0,23)(k
−)
)]

,

(5.141)

where the contributions from T(24,0) and T(0,24) all vanish, and explicitly

An→n̄(23,0)(k
−) =An̄→n,NLP

(0,0) (k−) = −2

(
p−1
k−

)
,

An̄→n(0,23)(k
−) =An→n̄,NLP

(0,0) (k−) = −2

(
k−p+

2

q2
T

)
.

(5.142)

This gives the finite result

A
(2)
T = 4 . (5.143)

Next consider the contributions to the endpoint constant C
(2)
T , which are obtained by integrating

the various matrix elements weighted with z1 (or equivalently z2). The näıve contributions to the z1

moment give ∫ ∞

0

dk−

k−

[
θ(p−1 − k−)Cn(23,0)(k

−) +θ

(
k− − q2

T

p+
2

)
Cn̄(0,24)(k

−)

]
, (5.144)

where
Cn(23,0)(k

−) = 2 ,

Cn̄(0,24)(k
−) = −2

(
k−p+

2

q2
T

)
+ 2−

(
q2
T

k−p+
2

)
.

(5.145)

This is again is rapidity divergent: Cn(23,0)(k
−) gives a logarithmically divergent contribution as k− → 0,

while Cn̄(0,24)(k
−) gives contributions which are both logarithmically and linearly divergent as k− →∞.

As with A
(2)
T , taking the wrong limit of the Feynman diagrams contributing to Eq. (5.145) gives the

k− → 0 and k− → ∞ expansions of these terms. For example, the wrong-limit expansion of Mn̄
(0,24)

gives three terms which correspond almost exactly to the overlaps of T(0,0) in Eqs. (5.116), (5.139), and

(5.140), except they have a different momentum-conserving delta function structure. These give the
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contributions

Cn̄→n(0,24)(k
−) =− 2

(
k−p+

2

q2
T

)
+ 2 , (5.146)

while from the T(23,0) overlap given in Eq. (5.138) is the contribution

Cn→n̄(23,0)(k
−) = 2 . (5.147)

The overlap term from T(0,24) contains two terms: the leading term is proportional to k− and cancels a

linear rapidity divergence, while the O(1) term contributes to the cancellation of a logarithmic divergence.

We also have the contribution from the NLP overlap of T(0,0) in Eq. (5.139),

Cn→n̄,NLP
(0,0) (k−) = −2

(
k−p+

2

q2
T

)
, (5.148)

with the sum of all contributions giving the result

C
(2)
T =

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)Cn(23,0)(k

−) +θ

(
k− − q2

T

p+
2

)
Cn̄(0,24)(k

−)

− 1

2

(
C
n→n̄,NLP)
(0,0) (k−)

)
−1

2

(
Cn→n̄(23,0)(k

−) + Cn̄→n(0,24)(k
−)
)]

= 2 log
ŝ

q2
T

+ 1 .

(5.149)

Once again there is a precise interplay between näıve matrix elements and overlap subtractions required to

obtain the same finite result as using the pure rapidity regulator. Rescaling the integrals for Cn̄(0,24)(k
−),

Cn̄→n(0,24)(k
−), and Cn→n̄,NLP

(0,0) (k−) as k− → k−ζ2/ŝ replaces the ŝ-dependence in the result of Eq. (5.149)

with ζ2 scheme dependence. This correlation between the rescaling of individual integrals is necessary

to maintain a finite result, and is a general feature of power-law divergences.

Finally, the endpoint constant BT is found by weighting the integrals by z1z2, giving

B
(2)
T =

∫ ∞

0

dk−

k−

[
θ(p−1 − k−)Bn(24,0)(k

−) +θ

(
k− − q2

T

p+
2

)
Bn̄(0,24)(k

−)

−1

2

(
Bn→n̄(24,0)(k

−) +Bn̄→n(0,24)(k
−)
)] (5.150)

where explicitly

Bn(24,0)(k
−) =2− 2

(
k−

p−1

)
+

(
k−

p−1

)2

,

Bn̄(0,24)(k
−) =2− 2

(
q2
T

k−p+
2

)
+

(
q2
T

k−p+
2

)2

,

(5.151)

and the overlap terms cancel just the logarithmic divergences,

Bn→n̄(24,0)(k
−) = Bn̄→n(0,24)(k

−) = 2 . (5.152)

This gives

B
(2)
T = 2 log

ŝ

q2
T

− 3 , (5.153)



Chapter 5. Factorization of Power Corrections in the Drell-Yan Process 94

where rescaling the second line of Eq. (5.151) as k− → k−ζ2/ŝ replaces the ŝ-dependence in Eq. (5.153)

with ζ2 scheme dependence.

This concludes the calculation of all the endpoint constants AL,T , BL,T , and CL,T . In each case,

these constants agree with those of QCD as calculated in Section 5.2.5. We have thus demonstrated

an overlap subtraction prescription that allows us to properly calculate probabilities at NLP without

an explicit rapidity regulator, providing a non-trivial crosscheck of our results using different rapidity

regularization schemes.

5.4 Conclusion

In this chapter we have shown that factorization of the Drell-Yan production cross section into hard

matching coefficients, rapidity evolution factors, soft matching coefficients and PDFs occurs naturally

in a formulation of SCET in which the low energy degrees of freedom are not separated into distinct

fields for each mode relevant to the process. The DY rate is given by the matrix element of the nonlocal

product of two external currents in SCET. Usually in SCET observables are factorized into jet and soft

factors which are separately renormalized and run to the appropriate scales; here, the EFT is first run

in µ down to the soft matching scale µ ∼ qT , at which point the product of currents is renormalized

in rapidity space. After resumming the rapidity logs at the soft matching scale, the operator products

are then matched onto a product of light-cone distribution operators, whose hadronic matrix elements

are the usual PDFs. At O(αs), our EFT cross section reproduces the fixed-order QCD cross section at

NLP, as well as the equivalent fixed-order cross section calculated using the pure rapidity regulator in

[76]. Off-diagonal rapidity anomalous dimensions were calculated and rapidity divergences were shown

to cancel in the cross section. The resummation of rapidity logarithms at NLP requires the complete

rapidity anomalous dimension matrix for the subleading operators T(i,j), which is beyond the scope of

this thesis, and will be the subject of future work.

The factorization and resummation of the DY process is particularly simple in this approach: it

does not depend on proving factorization at a given order in the SCET expansion or in the leading-log

approximation, but instead is a straightforward consequence of the usual EFT approach of matching and

running. By not explicitly factorizing modes in the Lagrangian, the complication of power corrections

coupling different modes in the Lagrangian is avoided, as is the necessity to re-factorize the result to

make individual jet and soft functions well-defined. Divergences analogous to the endpoint divergences

arising at NLP in other approaches arise, but are regulated by the rapidity regulator and systematically

canceled by the same overlap subtraction procedure required to avoid double counting at leading power.

Rapidity divergences were considered in detail, and the cancellation of rapidity divergences in the

rate was shown in two ways. Using the pure rapidity regulator, it was shown that all rapidity poles

canceled between the different linear combinations of subleading operators arising in the expression for

the differential rate, as was found in previous analyses [87–89, 123]. In Section 5.3 it was shown that

even without an explicit rapidity regulator, rapidity divergences in the DY cross section cancel between

particular linear combinations of operators, and that these linear combinations could be understood

by requiring that SCET reproduce the correct differential rate in different regions of phase space. A

consistent treatment of subleading overlap subtractions from the leading order operator was shown to

be necessary for this cancellation.
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5.A Summary of Matrix Elements of Hard Scattering Opera-

tors

In the following equations we list all relevant u-space matrix elements of scattering operators which

contribute to the quark-induced DY process through the emission of an n-sector gluon. We use the

soft-scale matching kinematics p+
1 = p1⊥ = 0 = p−2 = p2⊥, and define the non-common factor A(i)

n,n̄ of

these matrix elements through the relation

∫
ddx

2(2π)d
e−iq·x

〈
kn,n̄

∣∣O(i)µ
2 (x, {u})

∣∣pn1pn̄2
〉
≡ gT acc′ v̄c(pn̄2 )A(i)

n,n̄u
c′(pn1 )ε∗ν , (5.154)

where A is tensor-valued with implied Lorentz indices µ and ν. We find for the n-gluon emissions

A(0)
n = −PnγµPn

(
2pν1 − /kγν

−2p1 · k
− n̄ν

−k−

)
δ−n δ

+
n δ⊥

A(1⊥n)
n = −Pnγµ

/̄η

2
/k⊥

(
2pν1 − /kγν

−2p1 · k
− n̄ν

−k−

)
δ−n δ

+
n δ⊥ ,

A(1A1)
n = γ⊥α

/η

2
γµPn∆να(k)δ−n δ

+
n δ⊥δ(u+ k̂−) ,

A(1A2)
n = −Pnγµ

/̄η

2
γ⊥α ∆να(k)δ−n δ

+
n δ⊥δ(u+ k̂−) ,

A(2δ+)
n = q+q−Pnγ

µPn

(
2pν1 − /kγν

−2p1 · k
− n̄ν

−k−

)
k+δ−n δ

+′
n δ⊥,

A(2A1)
n = − 1

u
γ⊥α γ

⊥
β Pnγ

µPn∆να(k)kβδ−n δ
+
n δ⊥δ(u+ k̂−) ,

(5.155)

while for the n̄-gluon emissions we find

A(0)
n̄ =

(
2pν2 − γν/k
−2p2 · k

− nν

−k+

)
Pnγ

µPnδ
−
n̄ δ

+
n̄ δ⊥ ,

A(1⊥n̄)
n̄ =

(
2pν2 − γν/k
−2p2 · k

− nν

−k+

)
/k⊥

/η

2
γµPnδ

−
n̄ δ

+
n̄ δ⊥ ,

A(1B1)
n̄ = −Pnγµ

/̄η

2
γ⊥α ∆να(k)δ−n̄ δ

+
n̄ δ⊥δ(u+ k̂+) ,

A(1B2)
n̄ = γ⊥α

/η

2
γµPn∆να(k)δ−n̄ δ

+
n̄ δ⊥δ(u+ k̂+) ,

A(2δ−)
n̄ =q+q−

(
nν

−k+
− 2pν2 − γν/k
−2p2 · k

)
Pnγ

µPn k
−δ−′n̄ δ

+
n̄ δ⊥,

A(2B1)
n̄ =

1

u
Pnγ

µPnγ
⊥
α γ
⊥
β k

α∆νβ(k)δ−n̄ δ
+
n̄ δ⊥δ(u+ k̂+) .

(5.156)

The 1-gluon matrix elements of the scattering operators defined in Eqs. (5.155) and (5.156) use the
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following definitions

∆αµ(k) = gαµ − n̄αkµ

n̄ · k
, ∆αµ(k) = gαµ − nαkµ

n · k
. (5.157)

These are common structures associated with the covariant derivative. We also define the dimensionless

quantities

ˆ̀− =
`−

q−
, ˆ̀+ =

`+

q+
(5.158)

and we have we used the shorthand notation δ−n = δ(p−1 − k−− q−), δ+
n = δ(p+

2 − q+), δ−n̄ = δ(p−1 − q−),

δ+
n̄ = δ(p+

2 − k+ − q+), and δ⊥ = δ(d−2)(k⊥ + q⊥).

There are additional operators which are present from the hard-scale matching [83, 162, 163, 169, 179],

but which do not contribute to the quark-initiated DY process to the order at which we are working.

Up to a 1/q2
L suppression, these include an operator with two perpendicular derivatives

O
(2⊥⊥)µ
2 (x) = [i∂αχ̄n̄(xn̄)]γ⊥α

/η

2
γµ
/̄η

2
γ⊥β [i∂βχn(xn)] , (5.159)

the A-type operators

O
(2A2)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [χ̄n̄(x)]γ⊥α

/η

2
γµ
/̄η

2
γ⊥β [B†αβn (x)χn(x− n̄t)]

O
(2A3)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [χ̄n̄(x)]γ⊥β

/η

2
γµ
/̄η

2
γ⊥α [i∂αB†βn (x)χn(x− n̄t)]

O
(2A4)µ
2 (x, t̂ ) = −2πi θ(t̂)⊗ [i∂βχ̄n̄(x− nt)]γ⊥β

/η

2
γµ
/̄η

2
γ⊥α [B†αn (x)χn(x)]

O
(2A5)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [i∂αχ̄n̄(x)]γµ{γ⊥α , γ⊥β }[B†βn (x− n̄t)χn(x)] ,

(5.160)

and the corresponding B-type operators

O
(2B2)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [χ̄n̄(x− nt)Bαβn̄ (x)]γ⊥α

/η

2
γµ
/̄η

2
γ⊥β [χn(x)]

O
(2B3)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [i∂αχ̄n̄(x− nt)Bβn̄(x)]γ⊥α

/η

2
γµ
/̄η

2
γ⊥β [χn(x)]

O
(2B4)µ
2 (x, t̂ ) = −2πiθ(t̂)⊗ [χ̄n̄(x)Bαn̄(x− n̄t)]γ⊥α

/η

2
γµ
/̄η

2
γ⊥β [i∂βχn(x)]

O
(2B5)µ
2 (x, t̂ ) = 2πi θ(t̂)⊗ [χ̄n̄(x)Bαn̄(x− n̄t)]γµ{γ⊥α , γ⊥β }[i∂βχn(x)] .

(5.161)

There are also the C-type operators, which are only relevant for gluon-induced Drell-Yan

O
(1C1)µ
2 (x, t̂ ) = −2πiθ(t̂)⊗ [Bαcc

′

n (x)][χ̄cn̄(x)γµ
/η

2
γ⊥α χ

c′

n̄ (x− nt)]

O
(1C2)µ
2 (x, t̂ ) = 2πiθ(t̂)⊗ [Bαcc

′

n (x)][χ̄cn̄(x− nt)γ⊥α
/η

2
γµχc

′

n̄ (x)] .

(5.162)

5.B Plus Distribution Identities

5.B.1 Single Variable Plus Distributions

The familiar plus distribution may be written as

[θ(x)f(x)]+ = lim
β→0

[F (β)− F (1)] δ(x− β) + θ(x− β)f(x) , (5.163)
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where f(x) = dF (x)/dx, and has the properties

∫ 1

0

dx [θ(x)f(x)]+ = 0

[θ(x)f(x)]+ = f(x) , x > 0 .

(5.164)

Rearranging these equations gives the differential relation

d

dx
[θ(x)F (x)] =

[
θ(x)

dF (x)

dx

]

+

+ δ(x)F (1) (5.165)

which is useful for expanding rapidity divergent integrals in terms of plus functions. For example, taking

f(x) = x−1−η gives F (x) = −x−η/η, and so

d

dx

[
−θ(x)

ηxη

]
=
θ(x)

x1+η
− δ(x)

ηxη
=

[
θ(x)

x1+η

]

+

− δ(x)

η
. (5.166)

The factor of δ(x)x−η vanishes by analytic continuation, so expanding about η = 0 gives

θ(x)

x1+η
= −δ(x)

η
+

[
θ(x)

x
− η log(x)θ(x)

x
+ . . .

]

+

= −δ(x)

η
+

[
θ(x)

x

]

+

− η
[

log(x)θ(x)

x

]

+

+ . . . .

(5.167)

Matrix elements at next-to-leading power involve higher-order poles that are more singular than the

usual plus distributions. As in [76], we define double-plus distributions which satisfy

∫ 1

0

dx [θ(x)f(x)]++ = 0 ,

∫ 1

0

dxx[θ(x)f(x)]++ = 0 ,

[θ(x)f(x)]++ = f(x) , x > 0.

(5.168)

They are related to the single-plus distributions by

[θ(x)f(x)]++ − [θ(x)f(x)]+ = lim
β→0

δ′(x− β)

∫ 1

β

dy (y − β)f(y) . (5.169)

For example, taking f(x) = x−2−η, then F (x) = −x−1−η/(1 + η), and we obtain

θ(x)

x2+η
=

[
θ(x)

x2+η

]

+

− δ(x)

1 + η
. (5.170)

Since
[
θ(x)
x2

]
+

is not well-defined, we convert to a double-plus distribution before expanding in η,

[
θ(x)

x2+η

]

+

=

[
θ(x)

x2+η

]

++

− δ′(x)

∫ 1

0

dx
1

x1+η

=

[
θ(x)

x2+η

]

++

+
δ′(x)

η

(5.171)
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to obtain the expansion

1

x2+η
=
δ′(x)

η
− δ(x)

1 + η
+

[
θ(x)

x2

]

++

− η

[
log(x)θ(x)

x2

]

++

(5.172)

as in Eq. (2.40) of [76].

5.B.2 Vector Plus Distributions

The same techniques may be applied to divergent vector-valued functions. Since our operators T(i,j)

live in d 6= 4 spacetime dimensions, we define the vector plus distribution (which we also call the

ξ2-distribution) by the relations

∫

q2
T<ξ

2

dd−2qT [θ(q2
T )(f(qT )]ξ

2

+ = 0 ,

[θ(q2
T )f(qT )]ξ

2

+ = f(qT ) , q2
T > 0 .

(5.173)

When f(qT ) = f(q2
T ) is a rotationally symmetric function, we have

∫
dd−2qT f(q2

T ) =

∫
JεqT f(q2

T ) dq2
T . (5.174)

where

JεqT ≡
S2−2ε

2
q−2ε
T (5.175)

and Sd−2 = 2π
d−2

2 /Γ
(
d−2

2

)
, e.g. S2 = 2π. We also note that a (d− 2)-dimensional delta function at the

origin may be written as

δ(qT ) =
δ(q2

T )

JεqT
. (5.176)

Therefore if

g(q2
T ) =

∫

p2
T<q

2
T

dd−2pT f(pT ) (5.177)

for some rotationally invariant function f(pT ), then

f(q2
T ) =

1

JεqT

d

dq2
T

g(q2
T ) . (5.178)

which is useful for converting between distributions and their cumulants.

The vector plus distribution may be written as the limit

[f(qT )]ξ
2

+ = lim
β→0

A(β, ε, ξ)δ(qT ) + θ(q2
T − β2)f(qT ) , (5.179)

where, from (5.173),

A(β, ε, ξ) = −
∫

β2<q2
T<ξ

2

dd−2qT f(qT ) . (5.180)
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For example, we have the explicit form of the ξ2-distribution

[
1

q2
T

]ξ2

+

=ξ−2ε

(
1−

(
β2

ξ2

)−ε)
Sd−2

2ε
δ(qT ) +

θ(q2
T − β2)

q2
T

, (5.181)

(where the limit β → 0 is implicit). We can also derive the analogue of (5.165) [67],

1

JεqT

d

dq2
T

θ(q2
T )F (q2

T ) =

[
θ(q2

T )
1

JεqT

dF (q2
T )

dq2
T

]ξ2

+

+ δ(qT )F (ξ2) . (5.182)

As in Appendix 5.B.1, we may then derive the expansion

(ν2)−η/2

(q2
T )1−η/2 =Jεξ

(
ν2

ξ2

)−η/2
δ(qT )
η
2 − ε

+

[
θ(q2

T )

q2
T

]ξ2

+

+
η

2

[
log

q2
T

ν2 θ(q
2
T )

q2
T

]ξ2

+

+ . . . . (5.183)

The choice of ξ in these identities is entirely arbitrary. However, since each diagram comes with an overall

µ2ε, and since these identities put all the ε-dependence into the delta-function prefactor Jεξ ∝ ξ−2ε, the

canonical choice that avoids spurious logarithms is ξ = µ.

It is convenient to rescale the vector plus distributions to have the same scaling dimensions and

π-counting as δ(qT ). Borrowing from the generalized-log notation of [67], we define

Ln(qT , µ) =
1

Jεµ


 logn

q2
T

µ2 θ(q
2
T )

q2
T



µ2

+

. (5.184)

With these definitions, and taking ν = µ = ξ, we have

(µ2)−η/2

(q2
T )1−η/2 =Jεµ

(
δ(qT )
η
2 − ε

+ L(0)
0 (qT , µ) +

η

2
L(0)

1 (qT , µ) + . . .
)
. (5.185)

Finally, we also need the identity

log
q2
T

µ2

q2
T

= Jεµ

(
−δ(qT )

ε2
+ L(0)

1 (qT , µ)

)
(5.186)

which appears in the context of calculations without a regulator.

5.C Fixed-Order Comparison

In this section we compare our results to that of [76]. In that reference, the QCD cross section for the

process N1N2 → V + X up to NLP is decomposed into a sum of convolutions of coefficient functions



Chapter 5. Factorization of Power Corrections in the Drell-Yan Process 100

multiplied by PDFs and their first derivatives, so that

1

σ0

dσ

dq2dy d2qT
=

∫
dza
za

dzb
zb

[
C

(0)
fqfq̄

(za, zb, q
2, q2

T )f

(
xa
za

)
f

(
xb
zb

)

+
1

q2
C

(2)
fqfq̄

(za, zb, q
2, q2

T )f

(
xa
za

)
f

(
xb
zb

)

+
1

q2
C

(2)
f ′qfq̄

(za, zb, q
2, q2

T )
xa
za
f ′
(
xa
za

)
f

(
xb
zb

)

+
1

q2
C

(2)
fqf ′q̄

(za, zb, q
2, q2

T )f

(
xa
za

)
xb
zb
f ′
(
xb
zb

)

+
1

q2
C

(2)
f ′qf
′
q̄
(za, zb, q

2, q2
T )
xa
za
f ′
(
xa
za

)
xb
zb
f ′
(
xb
zb

)]
,

(5.187)

where at one loop

C
(0)
fqfq̄

=α

{
δ(za)δ(zb)δ(q

2
T )

(
− log2 q

2

µ2
+ 3 log

q2

µ2
− 8 + 7ζ2

)

+

[
1

q2
T

]µ2

+

(
δ(za)

[
1 + z2

b

zb

]

+

+ δ(zb)

[
1 + z2

a

za

]

+

)

− δ(za)δ(zb)

(
2

[
log q2

T /q
2

q2
T

]µ2

+

+ 3

[
1

q2
T

]µ2

+

)

+δ(q2
T ) (zaδ(zb) + zbδ(za)− ζ2δ(za)δ(zb))

}
,

(5.188)

at LP, and

C
(2)
fqfq̄

= α

[
−4δ(za)δ(zb)− δ(za)

1 + z2
b − 4z3

b

zb
−1 + z2

a − 4z3
a

za
δ(zb)

]

C
(2)
f ′qfq̄

= α

[(
− log

q2

q2
T

− 1

)
δ(za)δ(zb)

+ δ(za)

(
1 + 3zb + 2z2

b

2zb
−
[

1

zb

]

+

)
−

(
1 + za + 2z3

a

2za
+

[
1

za

]

+

)
δ(zb)

]

C
(2)
fqf ′q̄

= α

[(
− log

q2

q2
T

− 1

)
δ(za)δ(zb)

− δ(za)

(
1 + zb + 2z3

b

2zb
+

[
1

zb

]

+

)
+

(
1 + 3za + 2z2

a

2za
−
[

1

za

]

+

)
δ(zb)

]

C
(2)
f ′qf
′
q̄

= α

[(
2 log

q2

q2
T

+ 4

)
δ(za)δ(zb)

− δ(za)

(
1− 2zb − z2

b

2zb
+ 2

[
1

zb

]

+

)
+

(
1− 2za − z2

a

2za
+ 2

[
1

za

]

+

)
δ(zb)

]

(5.189)

at NLP.

Since the xa,b in Eq. (5.187) differ from the ξ1,2 used in Eq. (5.11) at O(q2
T /q

2
L), and since our results

are expressed entirely in terms of PDFs instead of PDFs and their first derivatives, the results in Eq.

(5.188) and Eq. (5.189) are related to Eq. (5.88) and Eq. (5.89) by a change of variables, integration by

parts and a few distributional identities. Working in the hadronic center-of-mass frame for simplicity,
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where P−1 =
√
s = P+

2 , the variables xa,b may be written in terms of ξ1,2 as

xa = ξ1

(
1− 1

2

q2
T

q2
L

+ . . .

)
,

xb = ξ2

(
1− 1

2

q2
T

q2
L

+ . . .

)
.

(5.190)

Expanding (5.187)–(5.189) up to O(q2
T /q

2
L) gives

1

σ0

dσ

dq2dy d2qT
= σ0

∫
dz1

z1

dz2

z2

[
C

(0)
fqfq̄

(z1, z2, q
2
L, q

2
T )f

(
ξ1
z1

)
f

(
ξ2
z2

)

+
1

q2
L

(
C

(2)
fqfq̄

(z1, z2, q
2
L, q

2
T ) +δC

(0)
fqfq̄

(z1, z2, q
2
L, q

2
T )
)
f

(
ξ1
z1

)
f

(
ξ2
z2

)

+
1

q2
L

(
C

(2)
f ′qfq̄

(z1, z2, q
2
L, q

2
T )− 1

2

q2
T

q2
L

C
(0)
ff (z1, z2)

)
ξ1
z1
f ′
(
ξ1
z1

)
f

(
ξ2
z2

)

+
1

q2
L

(
C

(2)
fqf ′q̄

(z1, z2, q
2
L, q

2
T )− 1

2

q2
T

q2
L

C
(0)
ff (z1, z2)

)
f

(
ξ1
z1

)
ξ2
z2
f ′
(
ξ2
z2

)

+
1

q2
L

C
(2)
f ′qf
′
q̄
(z1, z2, q

2
L, q

2
T )
ξ1
z1
f ′
(
ξ1
z1

)
ξ2
z2
f ′
(
ξ2
z2

)]
,

(5.191)

where C
(0)
fqfq̄

(z1, z2, q
2
L, q

2
T ) = C

(0)

ff̄
(z1, z2, q

2
L; q2

T ) in Eq. (5.88), and

C
(2)
fqfq̄

+ δC
(0)
fqfq̄

= α

[
−6δ1δ2 − δ1

1 + z2
2 − 4z3

2

z2
−1 + z2

1 − 4z3
1

z1
δ2

]

C
(2)
f ′qfq̄
− 1

2

q2
T

q2
L

C
(0)
fqfq̄

= α

[(
−2 log

q2
L

q2
T

− 1

)
δ1δ2

+ δ1

(
1 + 4z2 + 3z2

2

2z2
− 2

[
1

z2

]

+

)
−

(
1− z2

1 + 2z3
1

2z1
+ 2

[
1

z1

]

+

)
δ2

]

C
(2)
fqf ′q̄
− 1

2

q2
T

q2
L

C
(0)
fqfq̄

= α

[(
−2 log

q2
L

q2
T

− 1

)
δ1δ2

− δ1

(
1− z2

2 + 2z3
2

2z2
+ 2

[
1

z2

]

+

)
+

(
1 + 4z1 + 3z2

1

2z1
− 2

[
1

z1

]

+

)
δ2

]

C
(2)
f ′qf
′
q̄

= α

[(
2 log

q2
L

q2
T

+ 4

)
δ1δ2

− δ1

(
1− 2z2 − z2

2

2z2
+ 2

[
1

z2

]

+

)
+

(
1− 2z1 − z2

1

2z1
+ 2

[
1

z1

]

+

)
δ2

]
.

(5.192)

Finally, the comparison is completed by applying the following integration by parts identities, valid when
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f(x/z) = 0 for x ≥ z, ∫
dz

z
δ(z̄)

x

z
f ′
(
ξ

z

)
=

∫
dz

z
[−zδ′(z̄)] f

(
ξ

z

)

∫
dz

z
zn
x

z
f ′
(
ξ

z

)
=

∫
dz

z
[nzn − zδ(z̄)] f

(
ξ

z

)

∫
dz

z

[
1

z̄

]

+

x

z
f ′
(
ξ

z

)
=

∫
dz

z

(
z

[
1

z̄2

]

++

+ zδ′(z̄)

−zδ(z̄)
)
f

(
ξ

z

)
.

(5.193)

These identities transform the coefficient functions in Eq. (5.192) from acting on derivatives of PDFs to

the equivalent form of coefficient functions acting only on PDFs, and in doing so reproduces the NLP

coefficient function in Eq. (5.89).



Chapter 6

Conclusions

In this thesis we have continued to develop a recent formulation of Soft-Collinear Effective Theory

without modes, and have used this formalism to study power corrections to the Drell-Yan process when

q2
T � q2. The work presented here will provide a better understanding of power corrections in collider

processes, which will provide increasingly narrow uncertainties when predicting observables measured at

the LHC, and will help in the pursuit of new physics and in the measurement of the properties of the

recently discovered Higgs boson.

In Chapter 2 we explained how EFTs are structured, how their factorization structure allows for the

disentanglement of relevant energy scales, and how their RGE properties allow the logarithms of widely

separated energy scales to be summed and brought under theoretical control. We demonstrated this at

one-loop in the 4-Fermi Effective Theory, which we then used as an analogy to motivate the ideas behind

our construction Soft-Collinear Effective Theory.

In Chapter 3 we derived an operator basis that is sufficient for describing QCD amplitudes up to

O(gs) in the strong coupling and up to O
(
1/Q2

)
in the power counting. We used the spinor helicity

formalism to expand QCD amplitudes, and matched these QCD amplitudes onto the operator basis at

tree level. The O
(
1/Q2

)
operators we found were then renormalized, providing a renormalizaton group

equation that, in the future, can be solved to find an all-orders form of the operator linking the hard

scale Q and any arbitrary scale µ. In the derivation of the operator basis we assumed that the total

transverse momentum pT of each sector vanished, eliminating the need for some operators which depend

on this total pT . Since these total-pT operators are related through RPI to operators which are less

suppressed by 1/Q, the anomalous dimensions of these total-pT operators are also known. Thus, even

for processes for which the total-pT of each sector can not be set to zero, the one-loop renormalization

of the hard-scattering operator basis at O
(
gs, 1/Q

2
)

is now complete.

In Chapter 4, we analyzed two SCETII observables in our formulation of SCET without modes.

Starting with the massive Sudakov form factor, we found that the appearance of Q2 in the effective

theory is actually a hidden scheme dependence ν2 brought about by the existence of rapidity divergences.

Without an explicit regulator there are unregulated rapidity divergences in each sector and the overlap,

which when summed together amount to a difference of infinities; interpreting this difference of infinities

as a finite number is inherently a scheme-dependent process. Similarly with the δ-regulator, a separate

δ for each sector and the overlap produces logarithms of the scheme-dependent ratio δnδn̄/δ
2
o . The

existence of this scheme dependence was also shown to exist for the Drell-Yan process. We inferred
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from these calculations that without reference to QCD, the effective theory does not involve dynamical

dependence on the scale Q2, and that it is only when matching onto QCD at the hard scale that the hard

scale can enter into the effective theory. In these calculations we also showed that our formulation of

SCET reproduces the same leading-power resummation formulae found in the literature. The key point

is that the scheme dependence, while fixed by matching at scales µ � qT , becomes free when µ ∼ qT ,

allowing for a rapidity renormalization group to be used at the soft matching scale.

In Chapter 5, we demonstrated how our formalism can calculate and factorize the NLP cross section

of the quark-induced Drell-Yan process when Λ2
QCD � q2

T � q2, which had previously not been factorized

at NLP in the perturbative ratio q2
T /q

2. We showed that, just as at LP, the NLP factorization naturally

arises from a sequence of successive matching stages: we match QCD amplitudes onto SCET operators,

we run these operators from q2 down to q2
T , and finally we evolve the product of operators in rapidity

space before matching onto PDFs. We have thus shown that the simplicity and straightforwardness of

our formalism is useful for achieving factorization, and in the future, resummation, of observables at

NLP.

From this point, there are many research directions to be explored in the future. While we have

achieved a factorization for the NLP Drell-Yan process, we have still not attained an all-orders resum-

mation for this observable. The operator products defined for the factorization have only been partially

renormalized, and determining the full rapidity anomalous dimension matrix is necessary for correctly

resumming the rapidity logarithms1.

There are also many observables which remain to be studied in this formalism at next-to-leading

power. With varying degrees of interest and urgency, one such list might include thrust (for measuring

αs), or deep-inelastic scattering (for measuring PDFs), or N-jettiness (for N-jettiness IR-divergence

subtractions in numerical fixed-order cross section calculations), or Higgs decays through QCD diagrams

(for measuring its properties more precisely).

Developing the factorization and resummation structure of thrust at NLP was the original aim of

this thesis, but various complications pushed this goal to the side in favor of further developing the for-

malism. After completing the three works contained in this thesis, it seems likely that the complications

are understood, and that the factorization can continue unhindered. The overlap subtraction of real

emissions is now understood at NLP, so it should be possible to integrate over all of phase space for

the emissions from each operator, where previously a hard boundary had to be placed to constrain an

operator to only its own region of validity. Divergences which previously arose from integrating over

matching coefficients C2,i(u) ∼ 1/u are now accounted for by placing the 1/u into the operator, which

allows the divergence to be controlled in dimensional regularization. The LL summation of thrust has

already been demonstrated by the authors of [119], but we believe that if the full u-space RGE for the

dijet operators can be solved, even numerically, then a NLL summation of thrust at NLP is possible.

Regarding the last item in the list of possible observables to study at NLP, studying bottom-mediated

h→ γγ decay has already been initiated in SCET using the method-of-regions approach [87–90]. There,

the use of non-standard subtraction notation, infinity-bins, and the lack of a renormalized factorization

formula leads us to believe that our formalism might provide further clarity to the factorization structure

of this NLP observable.

1Some authors [67] count the vector plus-distributions L0T ∼ log q2
T /µ

2 as large logarithms and thus in their log-
counting they can partition their anomalous dimensions into LL and NLL pieces. These LL pieces are related to the
cusp anomalous dimension via consistency relations, and are thus known (even in our formalism) for every NLP operator
product. However in our formalism the rapidity running is performed at µ ∼ qT , so we do not consider L0T ∼ log q2

T /µ
2

to be large, and thus we find no benefit to using these consistency relations.
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Finally, there are still some leading-power theoretical foundations which are well understood in

SCET’s usual formulation which have not been studied in our formalism. Namely, the existence and/or

necessity for Glauber modes [177, 178] in our formulation of SCET has not been established, and if

they are required it has not been shown how they should be treated in our formalism. Referring to the

mode picture in SCET, since pn ∼ Q(λ2, 1, λ) and pGlauber ∼ Q(λ2, λ2, λ), then the invariant mass of a

collinear-Glauber interaction is (pn + pGlauber)
2 ∼ λ2Q2 � Q2. The collinear-Glauber interactions are

thus below the cutoff Q2 of the EFT, and therefore Glauber modes should not be treated as a separate

degree of freedom until a lower energy scale is reached. It will be left for future work, however, to decide

how Glauber modes are to be handled.

6.1 Epilogue

Graduate school is a long exploration into the unknown, requiring years of deep thought, spurts of

frenetic work, and many inevitable failures. This cyclic process needs a vast well of motivation to draw

upon, so I think it appropriate for me to bookend this journey with a verse that has often provided a

place of still quietude through which my mind may wander.

Overhead the albatross hangs motionless upon the air

And deep beneath the rolling waves in labyrinths of coral caves

The echo of a distant time comes willowing across the sand

And everything is green and submarine

And no one showed us to the land

And no one knows the where’s or why’s

But something stirs and something tries

And starts to climb toward the light

– Pink Floyd, Echoes



Appendix A

QCD Expansion up to O(1/Q2)

In this Appendix we complete the Section 2.3.1 expansion of QCD 1-gluon amplitudes up to O
(
1/Q2

)
, which is

necessary for the tree-level matching of QCD onto SCET operators which are relevant for dijet production (and

DY and DIS) up to O(gs). This was also done in the spinor-helicity formalism in Chapter 3, but it should also be

helpful to collect the various formulae in the much more prevalent Dirac notation. From Eqs. (2.24) and (2.25),

the amplitude to be expanded is

iMa+b = igT acc′ ū
c(p1)

(
Pn̄ −

/p1⊥

p−1

/̄n

2

)(
−2pα1 + γα/k

2p1 · k
γµ + γµ

2pα2 + /kγα

2p2 · k

)(
Pn̄ −

/n

2

/p2⊥

p+
2

)
vc
′
(p2)ε∗α . (A.1)

Following the same methods of [163], there are six distinct topologies of these three final state particle into

collimated jets. A quark and a gluon forming jet 1 (jet 2) is called A-type (Ā-type), a quark by itself forming jet

1 (jet 2) is called B-type (B̄-type), while a quark and an antiquark forming jet 1 (jet 2) is called C-type (C̄-type).

The barred groupings are related to the unbarred grouping by interchanging n ↔ n̄, while the A- and B-type

grouping are related by CP (Hermitian conjugation + n ↔ n̄). Thus the full operator basis up to O(gs) may

be entirely determined by considering only the A-type and the C-type expansions, which we do in the following

subsections.

Before expanding momentum components, it is useful to apply a topology non-specific manipulation of the

above matrix element which places the projection operators adjacent to the central gamma matrix γµ. It can be

shown with much effort that the spinor expansions obey the commutation relations

ε∗αū(p)

[
Pn̄ −

/p⊥
p−

/̄n

2
, 2pα + γα/k

]
= ε∗αū(p)

(
2p · k
p−+ k−

∆ασ(p)− 2pα + γα/k

p− + k−
∆ρσ(p)kρ

)
γ⊥σ

/̄n

2
, (A.2)

and [
2pα + /kγα , Pn̄ −

/n

2

/p⊥
p+

]
vn̄(p)ε∗α =

/n

2
γ⊥σ

(
2p · k
p++ k+

∆ασ(p)− 2pα + /kγα

p+ + k+
∆ρσ(p)kρ

)
vn̄(p)ε∗α, (A.3)

so that after applying these relations the amplitude reads

iMa+b = igT acc′u
c(p1)

{
−

[
2pα1 + γα/q

2p1 · k

(
Pn̄ −

/p1⊥+ /k⊥

p−1 + k−
/̄n

2

)
+

∆ασ(p1)

p−1 + k−
γ⊥σ

/̄n

2

]
γµ
(
Pn̄ −

/n

2

/p2⊥

p+
2

)

+

(
Pn̄ −

/p1⊥

p−1

/n

2

)
γµ
(
Pn̄ −

/n

2

/p2⊥+ /k⊥

p+
2 + k+

)
2pα2 + /kγα

2p2 · k
+
/n

2
γ⊥σ

∆ασ(p2)

p+
2 + k+

]}
vc
′
(p2)ε∗α(q),

(A.4)

From this point, we expand with topology-specific momentum scalings.
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A-Type Expansion

In the case that both the gluon and quark are n-collinear and recoil against an n̄-collinear antiquark, the

amplitudes in eq. (A.1) can be expanded in inverse powers of the hard scale qL. If SCET is a valid effective field

theory, i.e. p2
n, p

2
n̄, p

2
1T , p

2
2T , k

2
T � q2

L, then in this topology we can derive that

η̄ · pn = η̄ · (q − pn̄) =
√
q+q−

(
1− p2

n̄ + p2
n̄T

η · pn̄ η̄ · q

)
∼ qL + . . . , and

η · pn̄ = η̄ · (q − pn) =
√
q+q−

(
1− p2

n + p2
nT

η̄ · pn η · q

)
∼ qL + . . . .

(A.5)

The expanded amplitude to produce the A-type final state is then

iMType A
a+b = igT acc′ ū

c(p1)

(
A(0) +

1

qL
A(1) +

1

q2
L

A(2) + . . .

)
vc
′
(p2)ε∗α , (A.6)

where the order-by-order amplitudes (with implied Lorentz indices µ and α) are1

A(0) = −
(

2pα1 + γα/k

2p1 · k
− n̄α

k−

)
Pn̄γ

µPn̄

A(1) =

(
2pα1 + γα/k

2p1 · k
− n̄α

k−

)(
/pn⊥

/̄η

2
γµPn̄ + Pn̄γ

µ /η

2
/pn̄⊥

)
+ ∆αρ(k)

(
Pn̄γ

µ /η

2
γ⊥ρ − γ⊥ρ

/̄η

2
γµPn̄

)
A(2) = −

(
2pα1 + γα/k

2p1 · k
− n̄α

k−

)
/p
⊥
1⊥
/̄η

2
Pn̄γ

µ /η

2
/pn̄⊥

+
p−n
k−

Pn̄γ
µPn̄γ

⊥
ρ γ
⊥
σ k

ρ∆ασ(k) +
p−n
p−1

γ⊥ρ
/̄n

2
γµ
/n

2
γ⊥σ k

ρ∆ασ(k)

−∆αρ(k)

(
p−n
p−1

/pn⊥
/̄n

2
γµ
/n

2
γ⊥ρ − γ⊥ρ

/̄n

2
γµ
/n

2
/pn̄⊥

)
+ 2g⊥ρσ

p−n
k−

∆αρ(k)Pn̄γ
µPn̄p

σ
n̄ ,

(A.7)

and we have defined the net momenta contributing to the n- and n̄-jets as pn = p1 + k and pn̄ = p2.

The leading-power amplitude A(0) is reproduced by the operator O2(0)

Oµ2(0)(x) = [χ̄n(x)]γµ[χn̄(x)] (A.8)

along with an insertion of the QCD Lagrangian in the n-sector, where we have defined χη̄ = ψ̄nWnPn̄, χn =

Pn̄W
†
n̄ψn̄. The first lines of A(1) and A(2) are similarly reproduced by the operators

Oµ2(1⊥1)(x) = [i∂ρχ̄n(x)]γ⊥ρ
/̄η

2
γµ[χn̄(x)]

Oµ2(1⊥2)(x) = [χ̄n(x)]γµ
/η

2
γ⊥ρ [i∂ρχn̄(x)]

Oµ2(2⊥1⊥2)(x) = [i∂ρχ̄n(x)]γ⊥ρ
/̄η

2
γµ
/η

2
γ⊥σ [i∂σχn̄(x)] ,

(A.9)

again with an insertion of the QCD Lagrangian in the n-sector.

1Technical detail: Power counting lightcone components of polarization vectors is a difficult topic. Perhaps the most

formal method is to write the polarization of a gluon with momentum k as εµL,R(k, r) = ∓ ūL,R(r)γµuL,R(k)√
2ūR,L(r)uL,R(k)

, where r is

an arbitrary lightlike 4-vector with r · k 6= 0 which acts as a gauge parameter that must drop out of the equation for
any observable [169]. Through the application of the spinor expansion in Eq. (2.25), the power counting of the lightcone
components of εµ then follow the same power counting as kµ.
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The second line of A(1) is reproduced by the operators

Oµ2(1A1)(x, t̂ ) = [χ̄n(x)Bρn(x+ n̄t)]γµ
/η

2
γ⊥ρ [χn̄(x)]

Oµ2(1A2)(x, t̂ ) = −[χ̄n(x)Bρn(x+ n̄t)]γ⊥ρ
/̄η

2
γµ[χn̄(x)] ,

(A.10)

while the second line of A(2) is reproduced by the operators

Oµ2(2A1)(x, t̂ ) = −2πiθ(t̂)⊗ [χ̄n(x)Bρσn (x+ n̄t)]γµγ⊥ρ γ
⊥
σ [χn̄(x)]

Oµ2(2A2)(x, t̂ ) = −2πiθ(t̂)⊗ [χ̄n(x+ n̄t)Bρσn (x)]γ⊥ρ
/̄η

2
γµ
/η

2
γ⊥σ [χn̄(x)]

(A.11)

and the third and fourth lines of A(2) are reproduced by the operators

Oµ2(2A3)(x, t̂ ) = 2πiθ(t̂)⊗ [i∂ρχ̄n(x+ n̄t)Bσn(x)]γ⊥ρ
/̄η

2
γµ
/η

2
γ⊥σ [χn̄(x)]

Oµ2(2A4)(x, t̂ ) = −[χ̄n(x)Bρn(x+ n̄t)]γ⊥ρ
/̄η

2
γµ
/η

2
γ⊥σ [i∂σχn̄(x)]

Oµ2(2A5)(x, t̂ ) = −2πiθ(t̂)⊗ [χ̄n(x)Bρn(x+ n̄t)]γµ{γ⊥ρ , γ⊥σ }[i∂σχn̄(x)] .

(A.12)

Shifts and convolutions are defined in Chapter 5. In that chapter the quarks are incoming rather than outgoing

so while the overall structure of these operators are largely the same the definitions here are slightly different.

The operators we renormalized in Chapter 3 do not contain the t̂ convolutional structure appearing in these

definitions (the importance of which is discussed in Chapter 5), meaning that the matching coefficients in Chapter

3 have a θ(t̂)→ 1/u functional dependence rather than a δ(t̂)→ 1 functional dependence. While this difference

in definitions will change the anomalous dimensions derived in Chapter 3, since the operator definitions differ

by a simple scaling O2(u) → O2(u)/u, the change in the anomalous dimension is directly calculable without

performing the calculation anew. Depending on conventions, this should be as simple as γ(u, v)→ (v/u)γ(u, v).

C-Type Expansion

In the case that only the gluon is n-collinear, recoiling against an n̄-collinear quark and antiquark, the amplitude

in Eq. (A.4) is

iMType C
a+b = igT acc′ ū

c(p1)

(
1

qL
C(1) + . . .

)
vc
′
(p2)ε∗α , (A.13)

We can stop the expansion at O(1/qL) – since observables involve squared amplitudes, and since there are no

leading-power terms in this expansion, no higher-order terms are required for the observable to achieve O
(
1/q2

L

)
accuracy.

The O(1/qL) amplitude is found to be

C(1) = ∆αρ(k)

(
p+
n̄

p+
2

Pnγ
µ /η

2
γ⊥ρ −

p+
n̄

p+
1

γ⊥ρ
/η

2
γµPn

)
, (A.14)

where we have defined the net momenta pn = k and pn̄ = p1 + p2.

These terms are reproduced by the operators

Oµ2(1C1)(x, t̂ ) = 2πiθ(t̂)⊗ [Bρn(x)]cc
′
[χ̄cn̄(x)γµ

/η

2
γ⊥ρ χ

c′
n̄ (x+ nt)]

Oµ2(1C2)(x, t̂ ) = −2πiθ(t̂)⊗ [Bρn(x)]cc
′
[χ̄cn̄(x+ nt)γ⊥ρ

/η

2
γµχc

′
n̄ (x)] .

(A.15)
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