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ABSTRACT
Typical experimental implementations of single-qubit gates involve two or three fixed rotation axes and up to three rotation steps. In this
work, we prove that if the rotation axes can be tuned arbitrarily in a fixed plane, then two rotation steps are sufficient for implementing a
single-qubit gate, and one rotation step is sufficient for implementing a state transformation. As concrete examples, we demonstrate two-
step single-qubit gate implementations in two different physical qubit systems: (i) a transmon superconducting qubit coupled to an external
microwave drive, such as a transmission line; and (ii) a quantum-dot based exchange-only qubit encoded in a three-spin block. These results
provide a significant speedup for many common gate implementations, such as Rabi oscillations with phase control.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0267247

I. INTRODUCTION

In the quantum circuit model,1 a universal quantum computer
requires an entangling two-qubit gate, such as CNOT, and a set of
single-qubit gates.2 Although a finite set of quantum gates is suffi-
cient for universality, fault-tolerant circuits require a large number
of gates, even for very simple operations.3 It is therefore important to
be able to perform gate operations as efficiently as possible in order
to minimize the effects of decoherence or gating errors.

Single-qubit operations can be viewed as rotations of the state
vector of a qubit on a unit Bloch sphere.3 The most efficient method
for rotating a spin qubit would be to apply a magnetic field along
the desired axis of rotation; however, this is not practical for most
physical implementations. For example, to independently control
an array of electron spin qubits in quantum dots with uniform g
factors4 would require an array of tunable micromagnets, which is
experimentally challenging.

A more common approach is to provide two or three fixed,
orthogonal rotation axes. This enables arbitrary rotations in up to
three steps, e.g., by using an Euler-angle construction. Many qubit
implementations employ this strategy. For single-spin qubits, this

could involve a combination of Larmor rotations about the quanti-
zation (ẑ) axis and microwave-based Rabi oscillations around the x̂
axis. For encoded qubits composed of two or more physical spins, it
is possible for different physical coupling mechanisms to control dif-
ferent rotation axes on the Bloch sphere. For example, singlet–triplet
logical qubits formed in double quantum dots use local magnetic
field gradients to generate rotations about one axis and exchange
interactions to generate rotations about an orthogonal axis.5

In this paper, we consider a common but slightly more gen-
eral arrangement, where the rotation axes can point in any direction
as long as they lie in a single plane. The quintessential gates of this
type, which occur in many different qubit implementations, are Rabi
oscillations with phase control, which provide arbitrary rotation axes
in the x–y plane. As a concrete example of Rabi gates, we consider the
widely studied superconducting transmon qubit,6 for which single-
qubit gate operations can be realized by coupling to an external
microwave drive, such as a transmission line.7–9

As a second example, we consider exchange-only (EO) qubits
encoded in a triple quantum dot.10,11 Interesting features of these
qubits include the fact that they are formed in decoherence-free sub-
spaces and subsystems,12–14 and they can be operated using only
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fast exchange interactions.15–17 There has been much experimen-
tal progress in EO qubits,18–21 including improved experimental
setups for a variety of different qubit implementations,22–26 as well
as demonstrations of logical gate operations.27,28 Our derivations,
below, build upon the known result that internal couplings between
the physical spins in an EO qubit can be used to generate a con-
tinuous set of rotation axes in the x–z plane of the encoded qubit.10

(A similar, single-plane rotation scheme is also possible for chirality-
based logical qubits in a triple dot.29) We demonstrate that such
single-plane rotations reduce the total number of steps required for
single-qubit operations. For example, a state transformation, which
maps a specific initial state onto a specific final state, can be accom-
plished in one step, while an arbitrary single-qubit rotation can be
accomplished in two steps. We provide constructive proofs for both
of these situations.

II. SINGLE-STEP STATE TRANSFORMATION
We first prove that a given initial state ∣ΨA⟩ can be transformed

to a specified state ∣ΨB⟩, up to a physically insignificant global phase,
by a single rotation about an axis in the x–z plane. The Bloch sphere
geometry is shown in Fig. 1(a). Specifically, we want to determine
the rotation axis n̂ and the rotation angle ϕ that satisfy

R (n̂,ϕ)∣ΨA⟩ = eiη
∣ΨB⟩, (1)

where the rotation operator R (n̂,ϕ) = exp (−iσ ⋅ n̂ϕ/2) is defined
in terms of the Pauli spin matrix vector σ and eiη is a global phase
factor. The qubit state vectors n̂A and n̂B are also pictured on the
Bloch sphere of Fig. 1(a). If the rotation axis is allowed to point in
any direction (not just the x–z plane), then we could choose n̂∝ (n̂A
+ n̂B) with ϕ = π. We now show that the desired result can be
achieved even when n̂ is confined to the x–z plane.

To perform a state transformation in a single step, it is clear
that the rotation axis must be equidistant from both n̂A and n̂B. This
constraint defines a plane, given by n̂ ⋅ (n̂B − n̂A) = 0. On the other
hand, we require the rotation axis to lie in the x–z plane, which is
defined by n̂ ⋅ ŷ = 0. The intersection of the two planes is given by

n̂ =
ŷ × (n̂B − n̂A)

∣ŷ × (n̂B − n̂A)∣
. (2)

Figure 1(b) shows the projection of n̂A and n̂B in the plane perpen-
dicular to n̂. The inscribed angle is the angle of rotation, ϕ. Since the
length of all three sides of the triangle are known, as indicated in the
figure, we can obtain

cos ϕ = 1 − ∣n̂B − n̂A∣
2
/2L2, (3)

where L = ∣n̂A − (n̂ ⋅ n̂A)n̂∣ = ∣n̂B − (n̂ ⋅ n̂B)n̂∣. The sign of ϕ is given
by sgn [(n̂A × n̂B) ⋅ n̂]. When the two planes are equivalent, we can-
not use Eq. (2). However, in this special case, n̂A + n̂B lies in the x–z
plane, and we can simply choose n̂∝ (n̂A + n̂B) with ϕ = π.

Figure 1(a) shows an example of the state transformation pro-
cedure for the case n̂A = (0,

√

2
2 ,
√

2
2 ) and n̂B = (

√

2
2 ,
√

2
2 , 0). From

Eqs. (2) and (3), we obtain the rotation axis n̂ = (
√

2
2 , 0,

√

2
2 ) and the

rotation angle ϕ = −cos−1
(1/3) ≃ −70.53○.

FIG. 1. Single-plane rotation method: the shaded regions indicate the x–z plane
of the Bloch sphere, and dashed blue arrows indicate the rotation axes. (a) An
arbitrary transformation, from the state ∣ψA⟩ along n̂A to the state ∣ψB⟩ along n̂B,

via a single rotation about the axis n̂. In this example, n̂A = (0, 1, 1)/
√

2 and
n̂B = (1, 1, 0)/

√

2. (b) Projections of n̂A and n̂B in the plane perpendicular to
n̂. As described in the main text, we obtain the rotation axis n̂ = (1, 0, 1)/

√

2
and rotation angle ϕ = −cos−1

(1/3). (c) An arbitrary single-qubit rotation, per-
formed in two steps. In this example, R (ŷ, 3π/2) =R (n̂2,π)R (ẑ,π), with n̂2

= (−1, 0, 1)/
√

2.

III. TWO-STEP QUBIT ROTATIONS
We now provide a constructive proof that any single-qubit gate

(up to a global phase) can be generated in two rotation steps when
the rotation axes point in an arbitrary direction in a single plane.
Specifically, we want to solve for the rotation parameters defined by

R (n̂,ϕ) = eiη
R2(n̂2,ϕ2)R1(n̂1,ϕ1), (4)

where the rotation axis n̂ can point anywhere in the Bloch sphere,
but the individual rotation axes n̂1 and n̂2 lie in the x–z plane. eiη is
the global phase factor, which is physically insignificant but neces-
sary for the mathematical formulation. It is convenient to work with
angular coordinates defined by

n̂ = (sin θ cos ψ, sin θ sin ψ, cos θ), (5)

n̂1 = (sin θ1, 0, cos θ1), (6)

n̂2 = (sin θ2, 0, cos θ2), (7)

and illustrated in Fig. 2(a). Since an arbitrary rotation is charac-
terized by three parameters (θ,ψ,ϕ), while the right-hand-side of
Eq. (4) involves five parameters (η, θ1,ϕ1, θ2,ϕ2), the equation is
clearly under-constrained; many solutions exist, any of which suits
our needs.

We now demonstrate that at least one solution exists by provid-
ing an explicit, analytical construction. We first simplify the problem
by transforming to a new set of coordinate axes defined by the
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FIG. 2. Definition of the angular variables. (a) The logical rotation axis n̂, with the
polar angle θ and the azimuthal angle ψ. (b) The projection of n̂ onto the x–z
plane. We define a new coordinate system with axes x′ and z′ such that n′x = 0
by rotating the x–z plane around the y axis by angle β.

projection of the logical rotation axis n̂ onto the x–z plane. The nor-
malized projection becomes our new z axis unit vector ẑ ′, as shown
in Fig. 2(b). The rotation angle for the transformation, β, is given by

cos β =
nz

√
n2

x + n2
z

, sin β =
nx

√
n2

x + n2
z

, (8)

where nx and nz are the components of n̂ in the original coordi-
nate system. Using primed variables to indicate the new coordinate
system, we have

n̂ = sin θ′ŷ + cos θ′ẑ ′, (9)

where θ′ is given by

sin θ′ = sin θ sin ψ. (10)

Note that ŷ is the same in both coordinate systems.
We now solve Eq. (4) in the primed coordinate system. Without

loss of generality, we will restrict the two rotation axes to the range
θ′1, θ′2 ∈ [0,π) and the rotation angles to the range ϕ1,ϕ2 ∈ [0, 2π)
since a rotation with θ′i ≥ π by an angle ϕi is equivalent to the rota-
tion with θ′i − π by an angle 2π − ϕi. We can take advantage of
the under-constrained nature of the problem by making the con-
venient choice ϕ2 = π. See Appendix B for detailed derivation. We
then find

θ′2 = 0, (11)

k cos θ′ sin
ϕ
2
= cos

ϕ1

2
, (12)

k sin θ′ tan
ϕ
2
= − tan θ′1, (13)

where k = sgn[ny] = sgn[sinθ sinψ]. Here, θ′2, ϕ1, and θ′1 are deter-
mined from Eqs. (11)–(13), respectively. These quantities are related
to the original coordinate system through θ1 = θ′1 + β and θ2 = θ′2 + β.

As noted above, Eqs. (11)–(13) do not represent unique solu-
tions to Eq. (4). For example, we may obtain an alternative solution
with the choice ϕ1 = π. After a similar analysis, we then obtain

θ′1 = 0, (14)

− k cos θ′ sin
ϕ
2
= cos

ϕ2

2
, (15)

k sin θ′ tan
ϕ
2
= tan θ′2. (16)

To provide a practical comparison, we consider a conventional
(Euler) method vs the single-plane method for the specific case of
rotations around the y axis. For the Euler method, if we have two
fixed axes of rotation (x̂ and ẑ), the result corresponds to a three-
step procedure given by R (ŷ,ϕ) = R (ẑ,π/2)R (x̂,ϕ)R (ẑ,−π/2).
In contrast, the single-plane method is accomplished in just two
steps, with R (ŷ,ϕ) = R (n̂2,π)R (ẑ,π), where n̂2 = (sin ϕ

2 , 0, cos ϕ
2 ).

Figure 1(c) shows an explicit construction of a 3π/2 rotation about
the y axis, employing two rotations around axes in the x–z plane.

IV. ROTATIONS IN TRANSMON QUBITS
We now apply these results to a concrete physical example: the

superconducting transmon qubit,6 for which the single-qubit gate
operations are implemented via a capacitive coupling to an external
transmission line [see Fig. 3(a)]. In the frame that rotates at the qubit
frequency, the driving Hamiltonian is given by9

Ĥd = −
Ω
2

V0(t)
⎛

⎝

0 e−i(δωt−ϕ)

ei(δωt−ϕ) 0
⎞

⎠
, (17)

where Ω is a constant defined by the device parameters, V0(t)
is the envelope of the driving voltage V(t) = V0(t) sin(ωdt + ϕ),
δω = ωq − ωd is the detuning between the qubit frequency ωq and
the driving frequency ωd, and ϕ is the phase of the driving voltage.
If the drive is resonant with the qubit frequency (i.e., δω = 0), the
Hamiltonian becomes

Ĥd = −
Ω
2

V0(t)[(cos ϕ)σx − (sin ϕ)σy], (18)

corresponding to an arbitrary rotation axis in the x–y plane, defined
by angle −ϕ, measured from the positive x axis, and the qubit will
oscillate between the two qubit states with a Rabi frequency of ΩV0.

FIG. 3. Schematic descriptions of the two qubit implementations considered here.
(a) An xmon-type transmon qubit. Here, the × shaped blue structure forms a
superconducting capacitor connected on the bottom to a Josephson junction loop,
coupled to an external current loop, and connected on the top to a resonator, allow-
ing for single-qubit gate operations and readout. (b) An exchange-only qubit with
three spins (S1–S3) coupled by pairwise exchange interactions (J12, J23, and J31).
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Here, we want to solve for the rotation parameters defined by

R (n̂,ϕ) = eiη
R2(n̂2,ϕ2)R1(n̂1,ϕ1), (19)

where n̂ is the desired rotation axis, which can point anywhere in the
Bloch sphere, eiη is a global phase, and the physical rotation axes n̂1
and n̂2 lie in the x–y plane. The relevant axes are given by

n̂ = (sin θ cos ψ, sin θ sin ψ, cos θ), (20)

n̂1 = (cosψ1, sinψ1, 0), (21)

n̂2 = (cosψ2, sinψ2, 0). (22)

We now solve Eq. (19) for the five angular parameters
(η,ψ1,ϕ1,ψ2,ϕ2). We can obtain the situation described in
Sec. III by rotating the x–y plane around the z axis by an angle ψ to
obtain a new coordinate system, labeled x′ and y′. In this primed
coordinate system, we have ψ → ψ′ = 0 and ψi → ψ′i = ψi − ψ for
i = 1, 2. We then immediately obtain the desired results by setting
ϕ2 = 0, obtaining the equations

ψ′2 = 0, (23)

sin θ sin
ϕ
2
= k cos

ϕ1

2
, (24)

cos θ tan
ϕ
2
= − tan ψ′1, (25)

where k = eiη
= sgn[cos(ϕ1/2)]. Some specific examples of gates

obtained from this two-step implementation are the Hadamard
gate on the Bloch sphere, H ≡ 1/

√
2[(1, 1), (1,−1)], given by

H = iR (x̂,π)R (ŷ,π/2), and a ẑ-axis rotation, given by R (ẑ,ϕ)
= −R (n̂2,π)R (x̂,π), where n̂2 = (cos (ϕ/2), sin (ϕ/2), 0). In addi-
tion to the reduced number of rotational operations, the two-step
implementation can also reduce the gate operation time. Since the
direction of the rotation axis is purely determined by the phase of
the driving field while the amplitude of the driving field is the same
[see Eq. (18)], the gate operation time will be decided by the
total rotation angles of the gate implementation. For example,
the z-rotation above requires two π rotations (total rotation
angle of 2π) in the two-step implementation, while the standard
Euler angel composition would require three rotations, R (ẑ,ϕ)
= −R (ŷ, 3π/2)R (x̂,ϕ)R (ŷ,π/2), with a total rotation angle of
2π + ϕ.

V. ROTATIONS IN EXCHANGE-ONLY QUBITS
We also consider the example of an EO qubit encoded in a

three-spin block [see Fig. 3(b)], for which all qubit operations are
implemented using electrically tunable exchange couplings between
the constituent spins, without requiring a magnetic field.10

We first show that the system Hamiltonian provides a con-
tinuous set of rotation axes in the x–z plane, which allows us to
directly apply our main results. The effective Hamiltonian for the
spin system is given by

Ĥ = J12S1 ⋅ S2 + J23S2 ⋅ S3 + J31S3 ⋅ S1, (26)

where the exchange coupling parameters J12, J23, and J31 are typi-
cally non-negative. The total spin Stot and its z component Sz

tot are
good quantum numbers since they commute with the Hamiltonian;
we will use them to label the energy eigenstates. We are specifically
interested in the states with Stot = 1/2 and Sz

tot = ±1/2, which are two-
fold degenerate. We specify these states as {∣Stot, Sz

tot; l⟩}, adopting
the label l = 0,1 for the degenerate states. With these definitions, we
can encode the qubit in a decoherence-free subsystem as follows:11

∣0⟩L = a∣
1
2

,
1
2

; 0⟩ + b∣
1
2

,−
1
2

; 0⟩, (27)

∣1⟩L = a∣
1
2

,
1
2

; 1⟩ + b∣
1
2

,−
1
2

; 1⟩, (28)

where ∣ 12 , 1
2 ; 0⟩ = ∣S⟩12 ⊗ ∣↑⟩3, ∣ 12 , 1

2 ; 1⟩ = −
√

1/3∣T0⟩12

⊗ ∣↑⟩3+
√

2/3∣T+⟩12 ⊗ ∣↓⟩3, and ∣ 12 ,− 1
2 ; 0⟩ and ∣ 12 ,− 1

2 ; 1⟩ are defined
as the spin-flipped versions of ∣ 12 , 1

2 ; 0⟩ and ∣ 12 , 1
2 ; 1⟩, respectively.

In the encoded EO qubit space, the Hamiltonian becomes30

Ĥ = −
J12 + J23 + J31

4
11 +

√
3(J23 − J31)

4
σx

+
−2J12 + J23 + J31

4
σz. (29)

The unitary operator Û(t) = exp (−iĤt/h̵) rotates the EO qubit
around an axis n̂ in the x–z plane by an angle ϕ, given by

n̂ =
1
2J
(
√

3(J23 − J31), 0,−2J12 + J23 + J31), (30)

ϕ = Jt/h̵, (31)

where J =
√

J2
12 + J2

23 + J2
31 − J12J23 − J23J31 − J31J12. Note that the rota-

tion axis n̂ can be tuned in top-gated quantum dot devices by
electrically controlling the exchange coupling constants Jij; however,
it always lies in the x-z plane. The decoherence-free subspace con-
sidered in Ref. 10 corresponds to the special case of a = 1 and b = 0
in Eqs. (27) and (28).

Equation (26) suggests a ring-like coupling configuration for
the quantum dots [see Fig. 3(b)]. Such configurations have been
achieved in the laboratory31,32 with limited control of the couplings,
and recent work33 has demonstrated full control of the exchange
interactions in a triangular triple quantum dot system. In these
systems, we can directly apply the single-plane method described
above.

A more common experimental arrangement is the linear triple
quantum dot geometry, with one electron per dot. Recent work has
demonstrated full control of all the exchange interactions in a six-
dot device in a linear geometry.34 In this linear geometry, however,
since one of the exchange couplings in Eq. (26) is assumed to vanish,
it is not possible to implement arbitrary rotations in the x–z plane;
rather, only 2/3 of the plane is covered. For example, if J31 = 0 and
J12, J23 ≥ 0, Eq. (30) indicates that rotations are limited to the range
π/3 ≤ θ ≤ π and 0 ≤ θ ≤ 2π/3. Figure 4 shows the viable rotation axes
in the x–z plane when one of the exchange couplings is set to zero.
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FIG. 4. Regions of the x–z plane where viable rotation axes are obtained when
one of the three exchange couplings is set to zero: (a) J31 = 0, (b) J23 = 0, and (c)
J12 = 0. Solid blue regions represent the rotation axes n̂, consistent with Eq. (30),
assuming non-negative exchange couplings. Striped, red regions correspond to
rotations around the −n̂ axis by angle ϕ, which is equivalent to rotations around n̂
by angle 2π − ϕ.

Despite the fact that we cannot perform rotations around axes
over the entire x–z plane for the linear dot geometry, we note that
many gates of interest can still be implemented in two or fewer steps.
We demonstrate this by focusing on the configuration J13 = 0. In this
case, rotations about the x axis (J23 = 2J12) and the z axis (J23 = 0)
can be accomplished in a single step. Rotations around the y axis are
nontrivial, however. Using the method described above, a ŷ rotation
can be accomplished in two steps by using either one of the solutions,

R (ŷ,ϕ) = R (ẑ,π)R (n̂1,π) = −R (n̂2,π)R (ẑ,π), (32)

where n̂1 = (sin ϕ
2 , 0,− cos ϕ

2 ) and n̂2 = (sin ϕ
2 , 0, cos ϕ

2 ). Up to a
global phase, the phase gate S = [(1, 0), (0, i)] and the π/8 gate
T = {[(1, 0), (0, exp(iπ/4)]} can be implemented with single-step
rotations around the z axis.

The Hadamard gate H corresponds to a rotation around an axis
with θ = π/4 and ψ = 0, by an angle ϕ = π. For the configuration with
J12 = 0, this can be implemented in a single step. However, in the
J23 = 0 or J31 = 0 configurations, it cannot be implemented in fewer
than three steps. If many Hadamard gates are required for a given
quantum circuit, this could present a bottleneck. In this case, it might
be preferable to change the encoded EO qubit basis in Eqs. (27)
and (28) to one where qubits 2 and 3 are exchanged. In the latter
configuration, the Hadamard gate is accomplished in one step.

We can compare our single-plane rotation method with the
serial gating scheme for exchange-only qubits, which was described
in Ref. 10. There, it was shown that when only one exchange cou-
pling (J12, J23, or J31) is allowed at a time, then a general logical qubit
rotation requires three (four) steps for a ring (linear) geometry, as
illustrated in Figs. 5(a) and 5(b). The single-plane rotation method
described above can be viewed as a parallel gating scheme, where
multiple exchange couplings are implemented simultaneously, as
illustrated in Figs. 5(c) and 5(d). As we have shown, when two
(three) exchange couplings are allowed simultaneously, then a log-
ical qubit rotation requires three (two) steps. A comparison with
Figs. 5(a) and 5(b) shows that the single-plane method is always
more efficient than the serial gating scheme.

We can also compare the gate operation times of the parallel
and serial implementations. As a concrete example, we consider the
Hadamard gate for a ring geometry. In the parallel case [Fig. 5(c)],
this can be implemented in a single step H = iR (n̂,π) with

FIG. 5. Logical qubit rotation schemes for exchange-only logical qubits. The hor-
izontal lines depict the three physical spins comprising the logical qubit, while
the vertical arrows indicate exchange couplings between two spins. The gating
scheme of Ref. 10 considers serial exchange couplings in (a) a ring geometry or
(b) a linear geometry. The single-plane rotation scheme described here considers
simultaneous, parallel exchange couplings in (c) a ring geometry or (d) a linear
geometry. In the ring geometry, logical qubit gates require up to three steps in
serial mode [(a)] and up to two steps in parallel mode [(c)]. In the linear geometry,
logical qubit gates require up to four steps in the serial mode [(b)] and up to three
steps in the parallel mode [(d)].

n̂ = ( 1
√

2
, 0, 1
√

2
), which can be realized by taking J12 = 0 and J31

= (2 −
√

3)J23. The total gate time would then be tH

= (
√

2
3−
√

3
)( π

̵h
J0
) ≈ 1.12( π

̵h
J0
), where J0 represents any of the Jij

when they are turned on. In the serial implementation of Fig. 5(a),
it is not easy to obtain analytical solutions due to a large number of
trigonometric functions to deal with, and we instead obtain numeri-
cal solutions using global optimization algorithms, yielding the best
solution of tH ≈ 3.02( π

̵h
J0
) and an average result of tH ≈ 3.90( π

̵h
J0
).

Thus, we conclude that the single-plane two-step gates can also lead
to much faster gate operations.

VI. DISCUSSION
We have shown that the ability to tune qubit rotation axes in

a single, fixed plane enables efficient, two-step implementations of
single-qubit gates. This should be contrasted with fixed-axis meth-
ods (e.g., Euler-angles) that require up to three steps. Our results
can be applied directly to any qubit schemes with flexible effective
qubit rotation axis in a plane, such as transmon and EO qubits. Our
scheme can also be adapted to any qubit implementation with at
least partial control over the rotation axes. For example, the effec-
tive field corresponding to rotations of a singlet-triplet logical qubit5

consists of a fixed Bx component and a tunable, positive Bz com-
ponent. The resulting effective rotation axis covers about half of the
x–z plane,35,36 thus enabling efficient gating methods similar to those
described here.

We note that a previous, unpublished version of some of our
results was presented in Ref. 37. We further note that a recent
manuscript has been posted, demonstrating a numerical approach
that yields two-step single-qubit gate operations for EO qubits,
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which supports our current findings.38 That work also considers
two-qubit gates, going beyond the results described here.
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APPENDIX A: ROTATION OPERATORS

A rotation operator R (n̂,ϕ) is defined by its rotation axis n̂ and
rotation angle ϕ. The rotation axis is described by a polar angle θ in
the range [0,π] and an azimuthal angle ψ in the range [0, 2π], with

n̂ = (sin θ cos ψ, sin θ sin ψ, cos θ). (A1)

The rotation angle ϕ is also in the range [0, 2π]. In terms of Pauli
operators, the rotation operator can be written as

R (n̂,ϕ) = exp [−i
σ ⋅ n̂

2
ϕ] = 11 cos

ϕ
2
− iσ ⋅ n̂ sin

ϕ
2

. (A2)

Any rotation operator in a two-dimensional Hilbert space can be
represented as

R = a011 + i(a1σx + a2σy + a3σz), (A3)

where a0,1,2,3 are real constants. In matrix form,

R = (
a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3
). (A4)

The unimodular condition requires that a2
0 + a2

1 + a2
2 + a2

3 = 1.
The necessary and sufficient condition for two rotation

operators R1 = a011 + i(a1σx + a2σy + a3σz) and R2 = b011 + i(b1σx
+ b2σy + b3σz) to be identical is that ai = bi for i = 0, 1, 2, 3. This
is obvious by comparing the matrix elements of the two rotation
operators.

APPENDIX B: TWO-STEP IMPLEMENTATIONS
OF SINGLE-QUBIT GATES IN THE X –Z PLANE

We want to identify two sequential rotation steps around axes
in the x–z plane that produce an arbitrary single-qubit gate up to a
global phase,

R (n̂,ϕ) = eiη
R (n̂2,ϕ2)R (n̂1,ϕ1). (B1)

According to the constraints discussed in the main text, n̂ can point
any direction, while n̂1 and n̂2 must lie in the x–z plane,

n̂ = (sin θ cos ψ, sin θ sin ψ, cos θ), (B2)

n̂1 = (sin θ1, 0, cos θ1), (B3)

n̂2 = (sin θ2, 0, cos θ2). (B4)

We now transform the problem to a new set of (primed) coordinate
axes, for which n̂ lies in the new y′–z′ plane,

n̂ = sin θ′ŷ ′ + cos θ′ẑ ′. (B5)

This can be achieved by rotating the original coordinate axes around
the y axis (see Fig. 2 in the main text). Hence, the y axis is unaffected,
while the x̂ and ẑ become x̂ ′ and ẑ ′, respectively. The rotation angle
β for this transformation is given by

cos β =
nz

√
n2

x + n2
z

, sin β =
nx

√
n2

x + n2
z

. (B6)

In the primed coordinate system, we easily find that ψ′ = π/2 when
ny > 0 and ψ′ = 3π/2 when ny < 0. θ′ is obtained from

sin θ′ = sin θ sin ψ. (B7)

Expanding both sides of Eq. (B1) in terms of Pauli operators and
matching their coefficients, we obtain the following relations in the
primed coordinate system:
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cos
ϕ
2
= eiη
[cos

ϕ2

2
cos

ϕ1

2
− cos (θ′2 − θ

′

1) sin
ϕ2

2
sin

ϕ1

2
], (B8)

0 = eiη
[sin θ′1 cos

ϕ2

2
sin

ϕ1

2
+ sin θ′2 sin

ϕ2

2
cos

ϕ1

2
], (B9)

k sin θ′ sin
ϕ
2
= eiη
[− sin (θ′2 − θ

′

1) sin
ϕ2

2
sin

ϕ1

2
], (B10)

cos θ′ sin
ϕ
2
= eiη
[cos θ′1 cos

ϕ2

2
sin

ϕ1

2
+ cos θ′2 sin

ϕ2

2
cos

ϕ1

2
].

(B11)
Here, we define k = sgn[ny] = sgn[sinθ sinψ]. Numerical results
suggest that there will be a continuum of solutions for these equa-
tions. Here, we set ϕ2 = π to simplify the equations and to enable an
analytical solution. In this case, the equations reduce to

cos
ϕ
2
= −eiη cos (θ′2 − θ

′

1) sin
ϕ1

2
, (B12)

0 = eiη sin θ′2 cos
ϕ1

2
, (B13)

k sin θ′ sin
ϕ
2
= −eiη sin (θ′2 − θ

′

1) sin
ϕ1

2
, (B14)

cos θ′ sin
ϕ
2
= eiη cos θ′2 cos

ϕ1

2
. (B15)

From Eq. (B13), we see that either sin θ′2 = 0 or cos ϕ1
2 = 0. To satisfy

Eq. (B15), we must have sin θ′2 = 0. We, therefore, obtain θ′2 = 0.
The three remaining equations are

cos
ϕ
2
= −eiη cos θ′1 sin

ϕ1

2
, (B16)

k sin θ′ sin
ϕ
2
= eiη sin θ′1 sin

ϕ1

2
, (B17)

cos θ′ sin
ϕ
2
= eiη cos

ϕ1

2
. (B18)

From Eq. (B17), we see that eiη
= k since the sine functions are

all positive for the range of angles θ′, θ′1 ∈ [0,π] and ϕ,ϕ1 ∈ [0, 2π].
Hence,

k cos
ϕ
2
= − cos θ′1 sin

ϕ1

2
, (B19)

sin θ′ sin
ϕ
2
= sin θ′1 sin

ϕ1

2
, (B20)

k cos θ′ sin
ϕ
2
= cos

ϕ1

2
. (B21)

Here, we have two unknowns (θ′1 and ϕ1) and three equations. How-
ever, the three equations are not independent. By squaring both sides
of Eqs. (B19) and (B20) and adding them, we obtain

cos2 ϕ
2
+ sin2θ′ sin2 ϕ

2
= sin2 ϕ1

2
, (B22)

which leads to

cos2θ′ sin2 ϕ
2
= cos2 ϕ1

2
. (B23)

This is the same as the square of Eq. (B21). We can obtain another
equation by dividing Eq. (B20) by Eq. (B19),

k sin θ′ tan
ϕ
2
= − tan θ′1. (B24)

We now show that once θ′1 and ϕ1 are obtained, by solving Eqs. (B21)
and (B24), the results will also satisfy Eqs. (B19) and (B20). If we
represent the left-hand side (right-hand side) of Eq. (B19) as L1 (R1)

and similarly for L2 (R2) in Eq. (B20), then Eq. (B21) implies that
L2

1 + L2
2 = R2

1 + R2
2, and Eq. (B24) leads to L2/L1 = R2/R1 ≡ γ. Here,

we note that L2 and R2 are both positive, as was explained below
Eq. (B17). Plugging L1 = L2/γ and R1 = R2/γ into L2

1 + L2
2 = R2

1 + R2
2,

we obtain (1/γ2
+ 1)L2

2 = (1/γ2
+ 1)R2

2, and then, L2
2 = R2

2. Since L2
and R2 are positive, we obtain L2 = R2. Now, from L2/L1 = R2/R1, we
obtain L1 = R1. We can therefore determine ϕ1 from Eq. (B21) and θ′1
from Eq. (B24). Note that Eqs. (B21) and (B24) uniquely determine
ϕ1 in the range [0, 2π] and θ′1 in the range [0,π].

To summarize, we can always implement an arbitrary single-
qubit gate with two rotation steps around axes in the x–z plane,
given by ϕ2 = π and θ′2 = 0, with ϕ1 obtained from Eq. (B21) and θ′1
obtained from Eq. (B24). Of course, this is not the only solution. For
example, we can also find a solution by choosing ϕ1 = π. In that case,
θ′1 = 0, eiη

= −k, and after a similar procedure, we obtain

− k cos θ′ sin
ϕ
2
= cos

ϕ2

2
, (B25)

k sin θ′ tan
ϕ
2
= tan θ′2, (B26)

which determine θ′2 and ϕ2 uniquely. Once we determine θ′1 and
θ′2, we can transform back to the original coordinate system using
θ1 = θ′1 + β and θ2 = θ′2 + β.
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