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Abstract: We comment on the so-called negative result experiments (also known as null measure-

ments, interaction-free measurements, and so on) in quantum mechanics (QM), in the light of the

new general understanding of the quantum-measurement processes, proposed recently. All ex-

periments of this kind (null measurements) can be understood as improper measurements with

an intentionally biased detector set up, which introduces exclusion or selection of certain events.

The prediction on the state of a microscopic system under study based on a null measurement is

sometimes dramatically described as “wave-function collapse without any microsystem-detector

interactions”. Though certainly correct, such a prediction is just a consequence of the standard QM

laws, not different from the situation in the so-called state-preparation procedure. Another closely

related concept is the (first-class or) repeatable measurements. The verification of the prediction

made by a null measurement requires eventually a standard unbiased measurement involving the

microsystem-macroscopic detector interactions, which are nonadiabatic, irreversible processes of

signal amplification.

Keywords: particles; quantum measurement; null measurement; wave-function collapse

1. Introduction

A typical quantum-mechanical measurement process involves an interaction between
a microscopic quantum system with a macroscopic experimental device, which is capa-
ble of faithfully capturing the quantum state of the microscopic system—object of the
“measurement”—and of recording the result in the form of a classical state of matter. The
process typically involves a non-adiabatic, irreversible process of signal amplification (such
as a chain ionization and fixture of images on a photographic film). Critical discussions
on earlier attempts for constructing a theory of measurements can be found in [1]; many
original papers are collected in [2]. See also [3,4]. Quantum-measurement processes have
been analyzed recently, with a few new key observations [5,6].

Such a physical characterization of a quantum measurement was challenged by a
series of Gedanken (as well as real) experiments [7,8] of a particular kind, in which some
negative result (or null) measurement, hence without any microsystem-macroscopic-device
interactions typical of the standard quantum measurements, allows one to acquire nontriv-
ial information on the quantum state of the system under study. The predicted state, |ψ′⟩,
is necessarily a restriction—namely, a projection of the original vector in the Hilbert space
onto a vector in a space of a smaller dimension—of the original wave function |ψ⟩. This
fact was somewhat dramatically expressed as “an interaction-free measurement leading
to a wave-function collapse”. These negative result experiment arguments have been
presented, and believed by some, as counter-examples to the physical characterization of
the quantum-measurement processes, i.e., non-adiabatic, irreversible processes involving
micro system–macroscopic device interactions.

The aim of this short note is twofold. The first is to review the characteristics of
a typical quantum-measurement processes, based on a few novel observations made
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recently [5,6,9]. The second is to give a simple, more sober interpretation of these null
measurements: they all correspond to specific, biased detector set-ups which select or
exclude certain possible events. The prediction made on the quantum state after a null mea-
surement, certainly correct, is just a consequence of the standard quantum mechanical laws:
they do not in any way disprove the physical picture of a typical quantum-measurement
process. Indeed, verification of the predictions made by a null measurement on the system
being studied eventually requires a proper, unbiased quantum measurement, involving
microsystem-macroscopic device interactions.

Even though the main subject of this note [7,8] is a rather old one (see, however, [10,11]
for recent discussions), and has been discussed extensively (see [1] and the references cited
in [10,11]), it touched some of the most subtle aspects of the interpretations of the quantum
mechanical predictions. It is thus not entirely pointless today, perhaps, to revisit the essen-
tial aspects of these negative result experiments, correct any inappropriate interpretations,
and to ensure that our understanding of the QM laws is crystal clear.

2. Solution of the Quantum-Measurement Problem in a Nutshell

A measurement of a quantity F, conducted on a quantum state ψ

|ψ⟩ = ∑
n

cn|n⟩ , ∑
n

|cn|2 = 1 , (1)

where |n⟩ is the eigenstate of F with eigenvalue, fn, used to be schematized as

|ψ⟩ ⊗ |Φ0⟩ ⊗ |Env0⟩ =

(

∑
n

cn|n⟩
)

⊗ |Φ0⟩ ⊗ |Env0⟩ (2)

−→ ∑
n

cn|n⟩ ⊗ |Φn⟩ ⊗ |Env0⟩ (3)

−→ ∑
n

cn|n⟩ ⊗ |Φn⟩ ⊗ |Envn⟩ , (4)

where |Φn⟩ represents the detector state, with has recorded the result F = fn and |Env⟩
stands for everything else, the state of the experimentalist and the rest of the world. The
index 0 indicates a neutral state, whereas the index n stands for the measurement result,
F = fn. Such a formula is found in many textbooks of quantum mechanics (QM), and
(basically) in all past discussions [1,2].

Actually, the Formulae (2)–(4) are incorrect in several accounts [5,6].

(i) First, the factorized form for the wave function expressed by the symbol ⊗ in the
state after the measurement is not valid. As for the state before the measurement in the first
line, (2), factorization of |ψ⟩ is correct: it must be so in any ideal experiment. Factorized
form |Φ0⟩ ⊗ |Env0⟩ is instead incorrect; see below and [5]. In general, in the aftermath of
a measurement, the microscopic system becomes entangled with the device and with the
environment, typically in an uncontrolled manner. In an exceptional class of the so-called
repeatable (or the first-class) experiments, the microscopic system under study remains
factorized and intact. These processes are indeed closely related to the “negative-result
experiments” as well as with the state preparation procedure, as discussed below, Section 3,
even though the information about its original state is faithfully recorded by the detector.

(ii) Secondly, the experimental device, |Φ⟩, typically a macroscopic body at finite
temperatures, and entangled with the rest of the world (environment), is itself in a deco-
hered, mixed state [9,12–18]. This is so even before the measurement, let alone after the
measurement.

This means that the expression (3) should not be considered a pure state (a coherent
superposition); it is a mixture. This observation is sufficient to explain away a “puzzle”
recently discussed in [19].
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Taking these points into account, it was proposed [5] that the detector-environment
entangled state be denoted as |Φ; Env⟩. The typical measurement process thus looks
more like

|ψ⟩ ⊗ |Φ0; Env0⟩ =

(

∑
n

cn|n⟩
)

⊗ |Φ0; Env0⟩ , (before) (5)

−→ ∑
n

cn |Φ̃n; Env0⟩ , (after) (6)

−→ ∑
n

cn |Φ̃n; Envn⟩ , (later) , (7)

where |Φ̃n; Env0⟩ with the symbol Φ̃n stands for the microsystem detector-entangled state
(see [5] for more discussion) with a macroscopic marking of the recording, F = fn.

The second stage of the process, (7), in which the experimentalist sees the result of the
measurement on her computer screen, the others read about it in Physical Review, etc., is
totally irrelevant, in spite of many sophisticated and sometimes philosophical discussions
made in the past (see [2] for some). The essential features of the process, (5) → (6), are
the following:

(a) Each term in (6) containing |Φ̃n; Env0⟩ is a complicated mixed state (point (ii) above),
representing the microsystem-detector-environment entangled state (point (i) above),
with a well-defined macroscopic marker of the measurement result, F = fn. It is an
eigenstate of the operator F. Namely,

F |n⟩ = fn |n⟩ (8)

→ F |Φ̃n; Env0⟩ = fn|Φ̃n; Env0⟩ . (9)

The relation between (8) and (9) defines a good, faithful measurement.
(b) A key observation [5] is that, reflecting the pointlike nature of the fundamental entities

of our world, each measurement process is a spacetime pointlike event (or triggered
by one). This entails that the wave functions corresponding to the different terms in (6) have
no overlapping spacetime supports. Thus, not only the orthonormality

⟨Φ̃m; Env0|Φ̃n; Env0⟩ = δmn , (10)

holds, but also a dynamical diagonalization

⟨Φ̃m; Env0|G|Φ̃n; Env0⟩ = Gn δmn . (11)

occurs for any local operator G. Note that Gn in (11) is defined by (11) itself: it is
unrelated to the eigenvalues of the operator G in the isolated microscopic system
before the experiment.
The diagonalization (11) is of utmost importance.
Before the measurement, in the state (5), the expectation value of a generic quantity G is
given by

{⟨Φ0; Env0| ⊗ ⟨ψ|}G{|ψ⟩ ⊗ |Φ0; Env0⟩} = ⟨ψ|G|ψ⟩ = ∑
m,n

Gmnc∗mcn ≡ Tr ρ(0)G , (12)

(Gmn ≡ ⟨m|G|n⟩) meaning that the system is described by a density matrix

ρ
(0)
nm = cnc∗m , (13)

i.e., by the pure state, |ψ⟩ = ∑n cn|n⟩. For G = F, the variable whose eigenstates are
taken as the basis {|n⟩}, one finds of course the standard formula

⟨ψ|F|ψ⟩ = ∑
n

fn|cn|2 . (14)



Entropy 2024, 26, 958 4 of 14

After the measurement, according to (11), the expectation value of a generic variable G
taken in the “state” (6), is given (by using (11)) by

(

∑
n

c∗m ⟨Φ̃m; Env0|
)

G

(

∑
n

cn |Φ̃n; Env0⟩
)

= ∑
n

|cn|2Gn . (15)

That this holds for any operator G means that the density matrix of the system has
been effectively reduced to a diagonal form

ρ(0)
(measurement)

=⇒ ρ(1) =

















|c1|2
|c2|2

. . .

|cn|2
. . .

















. (16)

By paraphrasing the “environment-induced superselection rule” [1], we may call (16)
the measurement-induced superselection rule.

(c) The fact that the wave functions of the different terms in (6) have no overlapping
spacetime support means that the aftermath of each measurement event is a single
term in (6). A related fact is that the detector-environment “state” |Φ0; Env0⟩, even
if it might look identical macroscopically, it can never be the same quantum state at
two different measurement instants. The time evolution of the macroscopic number
of molecules and atoms in the detector and environment means that the “state” just
before each experiment |Φ0; Env0⟩ is a unique and distinct quantum state, actually
carrying a hidden index “(n)” of each measurement. That is, the time evolution in each
single measurement is,

(

∑
n

cn|n⟩
)

⊗ |Φ0; Env⟩ =⇒ |Φ̃m; Env⟩ : (17)

i.e., with a single term present the instant after the measurement (e.g., with F = fm).
This fact is often (improperly) described as a “wave-function collapse”. The words
evoke in our mind an image of some distribution suddenly contracting, which does not
correspond to any real physical process. The wave function is itself not an observable.

(d) A second crucial consequence of our description of the measurement process, (5), (6),
concerns the repeated measurements. For the measurement of the quantity F, it follows
from (9), (10), and (15) that the expectation value is given by

(

∑
n

c∗m ⟨Φ̃m; Env0|
)

F

(

∑
n

cn |Φ̃n; Env0⟩
)

= ∑
n

|cn|2 fn , (18)

where fn are the eigenvalues of F. This means that the relative frequency for finding
the result, F = fn, has been found to be given by

Pn = |cn|2 . (19)

The derivation of the “wave-function collapse” (17) and of the formula for the relative frequency (19),
amount to the solution of the quantum-measurement problem.

One might object that we have just reproduced the standard Born rule. This is not
quite so. Unlike the latter, our description explains why and how the “wave-function
collapse” occurs, and yields the rule (19) as the result of physical measurement processes
involving the microsystem-detector-environment interactions. Even though they look
similar, the difference in the meaning of (14) and (18) is crucial. Last, by eliminating the
fundamentally obscure concept of “probability” inherent to Born’s rule, and by replacing it
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by the (normalized) relative frequency for various outcomes in repeated experiments, it
leads to a more natural interpretation of the QM laws [5,6]. For instance, the concept of
the “wave function of the universe” makes perfect sense now, whereas in the traditional
interpretation of QM based on Born’s rule, one cannot avoid falling into a conundrum
of having nobody outside the universe, observing it and making repeated experiments
on it. Note that the cosmologists today are adopting this new interpretation of QM laws,
naturally, when they discuss the structure formation in the early universe, through the
density quantum fluctuations at a certain stage of the inflation.

2.1. A Secret Key

An alert reader must have noticed the following subtlety. We affirmed that each of
the microsystem-detector-environment entangled state |Φ̃n; Env0⟩ is a complicated mixed
state, involving the myriad of microscopic processes, such as the scattering of air molecules
against the ∼ O(1025) atoms and molecules composing the detector, the emission of the
infrared photons from the latter, and so on. Nevertheless, we used it as an ordinary wave
function (i.e., a pure state), to evaluate the expectation values, (15), (18). Is it consistent?

Actually, here lies a secret key in the whole discussion. What might not be widely
appreciated is the fact that there are no differences in principle between the concepts of
the pure and mixed states. Consider any (pure) quantum state Ψ({ri, si}, {r′k, s′k}) where
{ri, si} and {r′k, s′k} are the position and spin component of the particles composing the
whole system. We (the physicists) are assumed to have access only to the subsystem (A)
containing the degrees of freedom {ri, si}. The rest of the world (B) described by {r′k, s′k}
is off-limits. By introducing an orthonormal (ON) set of states describing the system A,
{|n⟩(A)}, and expanding the coefficient in ON states of B, {|N⟩(B)}, a generic state has
the form

|Ψ⟩ = ∑
n,N

cn,N |n⟩(A)|N⟩(B) . (20)

The expectation value of any variable G pertinent to A is then

⟨Ψ|G|Ψ⟩ = Tr Gρ , Gmn = ⟨m|G|n⟩ , ρnm = ∑
N

cn,Nc∗m,N (21)

where ρ is the density matrix. It is perfectly correct, however, to use the wave function (20),
or (6), e.g., in (15) or in (18), when the sum over the system B is indeed implied in the
calculation. A similar idea was used in [9] to explain why the Ehrenfest theorem can be
used to derive Newton’s equations for the center of mass of a macroscopic body at finite
body temperatures, which is in a decohered, mixed state.

To sum up, the concept of a mixed state (versus a pure state) is a relative one, depend-
ing on which part of the world (A) is accessible to us. The ignorance about the rest of the
universe (B) is parametrized by the density matrix. More interestingly, two (or more) groups
of physicists studying a common event such as a multiparticle decay, located in spacetime
regions which are spacelikely separated, might find apparently paradoxical outcomes
involving various quantum correlations. These phenomena of “quantum nonlocality”, as
fascinating and mysterious as they are and might continue to appeal to the human mind,
are today fully understood.The peculiar “subjectivity” of the quantum-mechanical laws
also hinges upon these circumstances.

2.2. A Remark

One of the characteristics (or requirements) of a proper quantum measurement, which
every experimentalists know well, is that the device must not have any bias, i.e., it should be
equally effective to register all possible outcomes, fn. For, if it were not so, the experimental
average for the frequency times various possible results would not match the theoretical
prediction, (19), even after many repeated measurements.
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An exception occurs when there are only two possible outcomes, either F = f1 or
F = f2. In this case, the device which is capable of measuring only one of the possible
results, e.g., f1 (the so-called yes–no experiment) is sufficient to give unbiased measurement
results. Event by event, the detection of f1 (yes) means the wave function collapse (17)
with F = f1; the non-detection of f1 (no) implies that the state is |ψ⟩ = |2⟩, even if the
measurement F = f2 has not yet been actually conducted. The negative result experiments
reviewed below rely on an analogous logic.

3. Negative Result Experiments

In this section, a few well-known examples of the negative result experiments are
reviewed and their essential features critically analyzed.

3.1. Renninger

A pair of collections of particle detectors, each covering one of the hemispheres,
surround a radioactive nucleus in the center, which emits an α particle, e.g., in the S-wave.
In the original article by Renninger [7], an excited atom is used and what is emitted is a
photon. Nothing essential changes by replacing the atom in an excited level by an unstable
nucleus, however. If one of the shells does not observe α, its wave function has been
“collapsed to the other hemisphere”, without any interactions between the α particle and
the experimental device!

To make the puzzle look sharper, the detectors in the second hemisphere (call Φ(lower))
may be set at a radius much larger than the first. If the half-life time of the nucleus is τ,
the nucleus has most likely decayed (α has been emitted) by the time t = 30τ. Only in an
exceptional one out of e30 repeated experiments, on average, the nucleus will be found still
undecayed, without α emission. If the second detector is set at the distance

R > 30cτ , (22)

then, by the time t = 30τ, if the first detector has not detected α, then most likely it is still
traveling towards the lower-hemisphere. So it might appear as if “the wave function had
collapsed”, without any particle-detector interactions having taken place. The “paradox”
is only apparent, and its origin can be traced to the misconception that the wave-function
collapse is a sort of real physical process in itself, as noted already.

The metastable nucleus which α-decays in an S state can be expressed by

|Ψ⟩ = |Ψ(0)(t)⟩+ |Ψ′(t)⟩|α⟩ , (23)

At the time t = 30τ the nucleus has most certainly decayed, so let us concentrate on the
second term of (23). The α particle is described by an S-wave function. This is really the
reduced one-body description of the α particle-nucleus,

|Ψ⟩ = ∑
i

ci|i⟩ , (24)

where i = 1, 2, . . . , N, N ≫ 1, represent the uniformly discretized cells of the 4π solid angle.
The S-wave nature of the wave function means that

∀i ci =
1√
N

. (25)

This is simply a discretized version of the S-wave wave function,

Ψ(r) = f (r) ∼ eikr

r
, (26)
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independent of the angular variables. The standard measurement of the angular distribu-
tion is conducted with

|ψ⟩ ⊗ |Φ0⟩ = ∑
i

ci|i⟩ ⊗ |Φ0⟩ . (27)

where the detector Φ0 is uniformly sensitive over the 4π solid angle. It should not have
any bias as to which angular direction the particle is eventually measured.

The experimental set-up by Renninger, instead, has a nonuniform Φ0. Namely,

|ψ⟩|Φ0⟩ =
N/2

∑
i=1

ci|i⟩ ⊗ |Φ(upper)
0 ⟩+

N

∑
i=N/2+1

ci|i⟩ ⊗ |Φ(lower)
0 ⟩ . (28)

where Φ
(upper)
0 and Φ

(lower)
0 are the first and second groups of detectors at the upper and

lower hemispheres, respectively. The detector Φ
(upper)
0 (Φ

(lower)
0 ) is insensitive to the α

particle flying towards the lower (upper) hemisphere, and thus the cross terms such as

∑
N/2
i=1 ci|i⟩ ⊗ |Φ(lower)

0 ⟩ are absent.

In case (22), the two detectors are such that up to t = 30τ, the lower detector is
insensitive to the α particle, i.e., is not able to detect it. Only the first is sensitive, and only
to the α particle traveling towards the upper hemisphere.

If the experiment is repeated, half of the times the detector Φ
(upper)
0 will record α at

time t ≤ 30τ, and the other half of the times it will not. This is what this particularly biased
detector will produce, in accordance with the QM prediction.

In a second type of event, where the first detector Φ
(upper)
0 does not detect the α particle

(“the negative-result measurement”), it is correct for us to infer that the wave function is
reduced to the second term of (28),

|ψ⟩|Φ0⟩ →
N

∑
i=N/2+1

ci|i⟩ ⊗ |Φ(lower)
0 ⟩ . (29)

In these events, the α particle will be detected by Φ
(lower)
0 at a later time,

t ∼ R

c
≫ 30τ , (30)

as will be eventually verified by the standard α-Φ
(lower)
0 detector interactions.

The negative result experiment such as this could look somewhat paradoxical. A
phrase such as “for us to infer that. . . ” might indeed appear to indicate that the “wave
function collapse”, |ψ⟩ → ∑

N
i=N/2+1 |i⟩ , has been caused by the human mind—the real-

ization of the non-detection fact. The wave-function collapse, so it might seem, does not
need any microsystem-macroscopic device interactions, as those assumed in [20,21]. These
questions were at the center of ardent debates, partially reignited by Renninger’s work (see,
for example, [22,23]).

What happens actually in the Renninger experiment is that, in each decay event, the α
particle is emitted either towards the upper hemisphere or towards the lower hemisphere,
with the same relative frequencies, if the experiment is repeated. That is all.

The aim of revisiting these old, and after all simple, issues nonetheless, was to illustrate
how the wrong wordings and the misconception about the “wave-function-collapse” have
led to nonexistent, and hence unsolvable, problems in the past discussions on QM.

3.1.1. State Preparation

The deduction (29) in the case of Renninger’s negative result experiment is not essen-
tially different from the preparation of a collimated atomic beam, by using two successive
slits, such that the particles which have passed both slits have a more or less well-defined



Entropy 2024, 26, 958 8 of 14

momentum direction, so that one can predict that the particle, left freely propagating, will
be detected in the direction of a straight line connecting the two successive slits, within
some error (taking into account the diffraction effects).

The analogy may be made even closer, by making the upper detector Φ(upper) of
Renninger cover 99% of the 4π solid angle, leaving a small hole in the south-pole direction.
Then, in the very rare event (one in 100) in which Φ(upper) has not recorded α, it can be
predicted that the α will be detected in the direction of the south-pole direction by Φ(lower),
later. Instead of the beam preparation by using two slits, here, one uses just one slit and the
selection of the (non-observation, null measurement) event.

3.1.2. α Particle Tracks in a Cloud Chamber

Renninger’s process brings us back to one of the oldest “puzzles” in QM: why does
an α particle emitted by a metastable nucleus, described by a spherically symmetric wave
function, (26), produce each an (almost) straight-line track, instead of a sequence of ion-
ization blots distributed all over 4π angular directions? The answer has been given by a
standard perturbation analysis made by Mott [24], and we are not here to discuss it anew.

The reason why we brought up this historical issue here, in spite of little direct
logical connection with the negative experiment problems, is this. The observation of an α
particle track in a Wilson chamber is a quantum measurement of the angular distribution
of its momentum. It is a measurement of intermediate type, between the general one ((6)
and (17)), and the repeatable experiments ((36) and (37) below). In the latter special type of
experiments, the state of the microsystem under study remains factorized and intact as a
pure state: the measurement process can be used as a state preparation.

In the former, more general type of measurements, the microscopic system becomes
entangled with the device and with the environment in the process, and the information
about its quantum state becomes lost completely, in general, after the measurement event
(see (17)).

An α particle track in a cloud chamber starts when α hits the first atom, ionizing it. The
α-electron scattering process is a spacetime pointlike event, triggering the measurement
event. The state of the α particle is only slightly affected by the α-electron scattering. The
large mass ratio, mα/me ∼ 8000, means that the momentum of the α particle is almost
unaffected by the α-electron scattering, as is obvious from kinematics and as explicitly
verified by concrete QM calculations [24], as it proceeds along an almost straight path,
hitting and ionizing a sequence of atoms on its way.

In conclusion, the explanation of the (apparent) wave function collapse, (17), i.e., that a
measurement process is effectively a spacetime local event, is valid also in the intermediate
type of measurements, such as the Mott process, momentum measurements by using the
magnetic fields, particle tracks in the vertex detectors, and so on.

3.2. Elitzur–Vaidman Bomb Tester

A more sophisticated, amusing set-up is the so-called Elitzur–Vaidman bomb tester
experiment [8]. A single photon is sent to Mach–Zehnder interferometry. See Figure 1.

A bomb which is either real or fake is introduced in the lower path. After the passage
through the first half mirror (the lower left corner in Figure 1) the original right moving
photon |1⟩ is converted to the superposition

|1⟩ → |γ⟩ = 1√
2
(|1⟩+ i|2⟩) , (31)

where |2⟩ is the wave packet of the photon (reflected and) moving upwards. We follow the
notation and convention of [8]. We recall that the photon, upon reflection, acquires a phase
shift of π

2 .
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D

D

D

1

2

b?
| 1 〉| 1 〉

-| 1 〉

 i | 2 〉  i | 2 〉

→ 

Figure 1. Elitzur–Vaidman bomb-tester experiment. The photon enters from the lower left corner to a

Mach–Zehnder interferometry. The detection of the photon at the detector D2 implies that the bomb

is real, but that the photon has not interacted with the bomb.

In the case that the bomb is a fake (it is assumed [8] that in that case the photon passes
the region unaffected), the photon (31) goes through the two fully-silvered mirrors (at the
upper-left and lower-right corners of Figure 1), and is in the linear superposition,

|γ′⟩ = 1√
2
(i|2⟩ − |1⟩) , (32)

before entering the second half-silvered beam splitter (in the upper right corner in Figure 1).
Going through it, the wave packet |1⟩ is transformed as in (31), whereas |2⟩ goes into
the state,

|2⟩ → |γ′′⟩ = 1√
2
(i|1⟩+ |2⟩) . (33)

Substituting (31) and (33) into (32), we see that the state of the photon after the final beam
splitter is

|γ′′′⟩ = −|1⟩ , (34)

which is purely right-moving. Due to the interference effects the |2⟩ component coming
from the two terms of the original split-photon state (31), has beeb canceled. This is
one of the beautiful features of the Elitzur–Vaidman experiment. The interference effect,
characteristic of the wave aspect of quantum particles, is here seen in a single photon event.
Typically, the interference effects in QM, instead, manifest after many identical experiments
are repeated, such as in [25]. Only the detector D1 is triggered (the photon detected) by
|γ′′′⟩, accordingly.

In the case it is a real one, the bomb is a detector inserted in the lower horizontal
section. It is a quantum-measurement device to measure the state of the photon in |γ⟩, (31).
It is, however, a biased detector, capable of registering only the photon traveling in the
lower path, |1⟩. It is thus completely analogous to the upper-half detectors in the Renninger
set-up, (28), in which the second, lower-hemisphere detectors are set at a large distance.
There are two possible outcomes for each incident photon: either detection (explosion), or
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non-detection (no explosion). In the first case, the photon simply gets lost, and neither the
detector D1 nor D2 will register the photon.

In the second case—a sort of null measurement—the wave function (31) is reduced as

|γ⟩ → |2⟩ , (35)

in each such event. The photon is then reflected by the mirror at the upper-left corner
(|2⟩ → i|1⟩), and arriving at the final beam splitter, is transformed again as in (31). It is
detected by detector D1 half of the times, and by D2 the other half of times, if the experiment
is repeated.

In conclusion, detection of the photon by detector D2 implies that the bomb is real. The
interesting point is that we know that this is so, but we know also that it has not exploded,
i.e., the photon has not interacted with the bomb.

Even though the phenomenon might look quite remarkable, and is certainly not
expected in classical physics, everything follows from the standard QM laws. If any,
as emphasized by Elitzur and Vaidman themselves [8], this process is interesting as a
particular, peculiar manifestation of quantum nonlocality. The situation here might look
rather different from the more familiar examples of quantum nonlocality associated with
entangled pairs of photons, electrons, etc. Actually, quantum nonlocality manifests itself
whenever a microscopic system is in a pure quantum state with wave function having
spatial support of a macroscopic extension ((31) here). As noted in [5], quantum nonlocality
is due to the absence in QM of any fundamental constant with the dimension of a length.

3.3. Modified Stern–Gerlach Set-Up

The process (35)—the negative result event—can also be regarded as a particular real-
ization of the so-called repeatable experiment. A repeatable measurement is an exceptional
class of experiments in which the microscopic system under study remains factorized (and
intact) after the measurement, i.e., as

(

∑
n

cn|n⟩
)

⊗ |Φ0⟩ −→ ∑
n

cn|n⟩ ⊗ |Φn⟩ , (36)

or focusing on a single experiment with the result, F = fm,

(

∑
n

cn|n⟩
)

→ |m⟩ . (37)

A simple example of the repeatable measurement is a variation in the Stern–Gerlach
(SG) experiment. In the standard SG set-up (Figure 2), an incoming beam of spin 1

2 atom
(e.g., Ag), traveling in the x̂ direction, is sent into a region of the inhomogeneous magnetic
field, with a gradient,

∂Bz(z)/dz ̸= 0 . (38)

The incident wave packet is divided into two,

|ψ⟩ = c1| ↑⟩+ c2| ↓⟩ , |c1|2 + |c2|2 = 1 , (39)

with the spin-up wave packet |↑⟩ deflected upwards and the spin down component |↓⟩
downwards, as the atom proceeds towards the x̂ direction. On the screen, they leave the
two groups of blots whose intensities (the numbers of atoms) are proportional to |c1|2 : |c2|2
after many atoms have been registered.

Though the Stern–Gerlach process is discussed in every textbook on quantum mechan-
ics, there is some subtlety which is sometimes overlooked due to the fact that the magnetic
field satisfies Maxwell’s equations ∇ · B = 0, ∇× B = 0. The (apparent) puzzle is why, in
spite of the fact that the condition ∇ · B = 0 implies that the inhomogeneity (38) means an
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inhomogeneity ∂By/∂y of the same magnitude (if Bx = 0), the net effect is the deflection of
the atom towards the ±ẑ direction only. The explanation (the rapid spin precession and the
cancellation of the forces in the x − y directions) with the discussion on the characteristics
of the appropriate magnetic fields, has been given in [26,27].

In a possible variation in the Stern–Gerlach set-up (Figure 3), a detector D is inserted
in the region where the lower wave packet passes [23]. The screen behind the region of the
inhomogeneous magnetic field is eliminated. D is analogous to the set of detectors in the
upper hemisphere in Renninger’s set-up: it is a biased detector, capable of capturing and
recording only the atoms in the spin-down state. For each single incident atom, D either
registers it (yes) or does not (no). In the first case, the spin has been measured to be in the
state sz = − 1

2 , but the atom itself is lost in the complicated atom-detector interactions.

In the negative answer case (null measurement), no atom-detector interactions have
taken place; nonetheless, its spin state is determined to be sz = + 1

2 . The atom is in the pure
|↑⟩ state, and it can be used as the initial condition for subsequent analyses, for instance,
with another SG set-up with the magnets oriented in another direction, etc.

The whole discussion can be readily generalized to the case of atoms with spin 1, 3
2 ,

etc. by appropriately enlarging the set of detectors, so as to extract and prepare the state of
any chosen spin state |sz = m⟩ through interaction-free, null measurements.

The modified SG set-up we considered in this section can thus be seen as a simple,
prototype version of Renninger’s negative result experiment [23], as an example of the
repeatable measurement, or as a typical “state preparation” process, illustrating well the
fact that these three concepts are closely related to each other. We have already seen a
similar connection also in Section 3.1.1.

B

Ag

+ 1/2
〉

-1/2
〉

Figure 2. The standard SG set-up.
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Figure 3. The modified SG set-up.

4. Reflections

It is essential, in all negative result experiments discussed in Section 3, that a very
weak flux of the incident particles is used, such that processes with a single incident α
particle, a photon, or an atom, are studied. Also, the experimental control must be good
enough so that the expected time of arrival of each particle at the (biased) detector is known
with reasonable precision. The reason is that, if it were not so, the non-observation of a
certain event would not lead to any useful conclusion, as, e.g., the particle may not yet
have arrived, or has already passed, or is unknown when it will arrive, and so on.

In other words, an ideal null measurement is a spacetime local event, albeit a virtual (i.e.,
missed) one. In the Renninger experiment, even though the spontaneous α emission is a spacetime
local event [5], the exact instant α is emitted cannot be predicted, being a manifestation of quantum
fluctuations. This is the reason why one must construct the argument by considering a lap of
time (e.g., t ≤ 30 τ), to make sure that the nucleus has decayed and the α emission has taken
place—with certainty, 1 − O(e−30). It represents the other side of the same medal of the
standard quantum-measurement processes, each of which is a local spacetime event at its
core [5]. This latter fact is the origin of the apparent “wave-function collapse”, as reviewed
in Section 2.

Another important reflection is that the discussions of Section 3 illustrate nicely the
well-known fact about QM, i.e., that the wave-like behavior (the superposition, quantum
nonlocality, and interference) is the property of each single particle (the α particle, the pho-
ton and the atom discussed here, or the electron in Tonomura’s double-slit experiment [25]),
and not due to a collective motion of, or correlation among, the particles in the beam.

The catchphrase “wave-particle duality” was used historically to describe the appar-
ently schizophrenic behavior of the electrons, photons, and atoms. In hindsight, though,
this familiar expression left space for ambiguity and misunderstanding. For instance, it is
an entirely different story that a large number of identical bosons form collective wavelike
motions, such as the classical electromagnetic waves (light), or Bose–Einstein-condensed
cold atoms, which are described in terms of a macroscopic wave function, as are all macro-
scopic quantum phenomena such as superconductivity and superfluidity, quantum Hall
effects, and so on.

The wave-particle duality, a core idea of QM, is the property of each single quantum
particle. Indeed, a less poetic but more precise expression would be “quantum fluctuations
of a particle described by the wave function.” The words “particle” and “wave” do not
have the symmetric logical roles.



Entropy 2024, 26, 958 13 of 14

A last consideration: In this work, we took it for granted that the α particle, the photon,
and the silver atom, are all quantum particles. But what if a large molecule such as C70

is used instead? Is it still a quantum particle? See [16,28] for some developments in our
understanding of these questions.

The quest to grasp the very essential factors which can tell quantum-mechanical
particles (the elementary particles, atomic nuclei, atoms, small molecules, etc.) from classical
ones (the center of mass of isolated macroscopic bodies at finite body temperatures) has led
us recently to the concept of the Quantum Ratio [9,29].
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