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Abstract

We present a semiclassical approach to the SU(N) Yang–Mills theory whose partition
function at nonzero temperatures is approximated by a saddle point – an ensemble of an
infinite number of interacting dyons of N kinds. Surprisingly, known criteria of confinement
are satisfied in this semiclassical approximation:
(i) the average Polyakov line is zero below some critical temperature, and nonzero above it,
(ii) a quark-antiquark pair has linear rising potential energy,
(iii) the average spatial Wilson loop falls off exponentially with the area,
(iv) N2 gluons are canceled out from the spectrum.
We find that the critical deconfinement temperature is in good agreement with lattice data.

1 How dyons explain confinement, qualitatively

We shall be considering the quantum SU(N) Yang–Mills theory (without dynamical quarks)
at nonzero temperatures T below and up to the critical deconfinement temperature Tc. It is in
this range of temperatures that the four remarkable phenomena specified in the Abstract and
called together “confinement” take place. We suggest an explanation of all four, based on a
simple semiclassical picture.

The main idea is that quantum zero-point oscillations of the Yang–Mills (YM) fields occur
not around zero but rather about certain classical configurations of the YM potentials that are
called dyons and which are saddle points of the YM partition function at nonzero T .

If a semiclassical approach to the YM theory makes any sense at all, it becomes clear after
some considerations that dyons suit perfectly the aim of explaining the four confinement criteria.
Dyons or Bogomolny–Prasad–Sommerfield (BPS) monopoles [1] are gluon field configurations
whose chromomagnetic and chromoelectric fields are Coulomb at large distances from the cores
(hence the name “dyon”). In addition, dyons are characterized by the value of the A4 component
of the YM potential reached far from the cores. A gauge invariant version of it is that dyons
are characterized by nontrivial eigenvalues of the Polyakov loop at spatial infinity, where the

Polyakov loop L = P exp

(

i

∫ 1

T

0
A4dx

4

)

eigenvalues−→ diag
(

e2πiµ1 , e2πiµ2 , . . . , e2πiµN

)

. (1)

The gauge invariant phases satisfy µ1+. . .+µN = 0, and we shall assume that they are ordered:
µ1 ≤ µ2 ≤ . . . ≤ µN ≤ µN+1 ≡ µ1+1. We shall call the set of N phases {µm} the “holonomy”
for short.

What holonomy or what set of µm’s is preferred by the quantum YM system is a dynamical
question but let us for the time being assume that µm’s are equidistant,

µconf
m = −1

2
− 1

2N
+
m

N
=⇒ TrL = 0. (2)
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For example, in SU(3) it is

µ1 = −1

3
, µ2 = 0, µ3 =

1

3
−→ L = diag

(

e−
2πi

3 , 1, e
2πi

3

)

, TrL = 0. (3)

Then one expects that in an ensemble of dyons one would have on the average < TrL >= 0
which is the 1st criterion of confinement mentioned in the Abstract. We shall see that the
“confining” holonomy (2) is indeed dynamically favoured by the ensemble of dyons, and for a
rather simple reason.

Next comes the second basic property of dyons, namely their Coulomb asymptotics both for
the electric and magnetic fields. An ensemble of such objects is expected to experience Debye
screening, meaning the appearance of a mass gap and an exponential decrease of correlation
functions both for the electric and magnetic sources. In particular, the correlation function of
two Polyakov lines (being the source of electric field) is expected to fall off exponentially with
the Debye length. At the same time this correlation function defines the static potential energy
of a probe quark and antiquark:

〈

TrL(z1) TrL†(z2)
〉

= const. exp

(

−V (z1 − z2)

T

)

∼ exp

(

−σ|z1 − z2|
T

)

. (4)

Such behaviour means linear confining potential, with a string tension σ proportional to the
Debye mass. This is the 2nd criterion of confinement.

Large spatial Wilson loops exhibit the area behaviour basically by the same mechanism
as discovered 30 years ago by A. Polyakov [2] in the 3d Georgi–Glashow model: It is due to
the magnetic monopoles and the Debye screening in the monopole plasma. Therefore, the 3d

criterion of confinement is satisfied by dyons, too. We stress that to obtain both the electric
string (created by two Polyakov lines going in the time direction) and the magnetic string
(created by a spatial Wilson loop) one needs a plasma of electric and magnetic charges, i.e.

dyons.
Confinement implies that below Tc there are no gluons in the spectrum but only glueballs.

Meanwhile, in perturbation theory one gets the Stefan–Boltzmann law for the gluons free energy

FSB = −π
2

45
T 4 V (N2 − 1). (5)

It is proportional to the number of gluons N2−1 and has the T 4 behaviour characteristic of
massless particles. In the confinement phase, if only glueballs are left in the spectrum the free
energy must be O(N0). Therefore, confinement implies a massive cancelation in the gluons free
energy. The “confining” holonomy (2) provides such a cancelation.

Indeed, one can compute the vacuum energy in a constant field A4 with the result [3, 4]

Fpert =
(2π)2 T 4 V

3

N
∑

m>n

(µm−µn)2[1−(µm−µn)]2

∣

∣

∣

∣

∣

mod 1

. (6)

It has N zero minima when all µm’s are equal modulo unity, see Fig. 1. The confining holonomy
(2) corresponds to the non-degenerate maximum of Eq. (6) equal to

Fpert, max =
π2

45
T 4 V

(

N2 − 1

N2

)

. (7)

We see that the leading O(N2) term in the Stefan–Boltzmann law is canceled by the vacuum
energy precisely at the confining holonomy point, such that N2 gluons do not appear in the
spectrum and the 4th criterion of confinement is fulfilled.
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Figure 1: The perturbative potential energy as function of the Polyakov line for the SU(2) (left)
and SU(3) (right) groups. It has minima where the Polyakov loop is one of the N elements of
the center ZN and is maximal at the “confining” holonomy.
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Figure 2: The dyon-induced nonperturbative potential energy as function of the Polyakov line
for the SU(2) (left) and SU(3) (right) groups. Contrary to the perturbative potential energy, it
has a single and non-degenerate minimum at the confining holonomy corresponding to TrL = 0.

The question is, why the YM systems prefers dynamically the confining holonomy (2). It
corresponds not to the minima but to the maximum of the perturbative free energy (6) and
hence confinement is counterintuitive from the perturbative point of view.

It is interesting that in the supersymmetric N =1 version of the YM theory (where in addi-
tion to gluons there are spin-1

2 gluinos in the adjoint representation) the perturbative potential
energy (6) is absent in all orders owing to fermion-boson cancelation, but the nonperturba-
tive potential energy is nonzero. Moreover, it is known exactly as function of µ’s [5]: it has
a single minimum at precisely the “confining” holonomy (2). The result can be traced to the
semiclassical contribution of dyons, which turns out to be exact owing to supersymmetry.

In the non-supersymmetric pure YM theory, the dyon-induced contribution cannot be com-
puted exactly but only in the semiclassical approximation (this is what the talk is about), and
the perturbative contribution (6) is present, too. We shall show below that a semiclassical
configuration – an ensemble of dyons with quantum fluctuations about it – generates a non-
perturbative free energy shown in Fig. 2. It has the opposite behaviour of the perturbative
one, having the minimum at the equidistant (confining) values of the µ’s. There is a fight
between the perturbative and nonperturbative contributions to the free energy [6]. Since the
perturbative contribution to the free energy is∼T 4 with respect to the nonperturbative one, it
certainly wins when temperatures are high enough, and the system is then forced into one of
the N vacua thus breaking spontaneously the ZN symmetry. At low temperatures the nonper-
turbative contribution prevails forcing the system into the confining vacuum. At a critical Tc
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there is a confinement-deconfinement phase transition. It turns out to be of the second order
for N=2 but first order for N=3 and higher, in agreement with lattice findings.

This talk is based on a paper with Victor Petrov [7].

2 Dyons and instantons with a nontrivial holonomy

Dyons or BPS monopoles [1] are (anti) self-dual solutions of the nonlinear Maxwell equations,
Dab

µ F
b
µν = 0. In SU(N) there are exactly N kinds of fundamental dyons characterized by

Coulomb asymptotics for both electric and magnetic fields:

±E = B
|x|→∞

=
1

2

x

|x|3 ×























diag(1,−1, 0, ..., 0, 0)
diag(0, 1,−1, ..., 0, 0)

. . .
diag(0, 0, 0, ..., 1,−1)
diag(−1, 0, 0, ..., 0, 1)

. (8)

Dyon of the mth kind (m = 1, . . . , N) is the one whose asymptotic field has “1” on the mth

place on the diagonal and “-1” on the (m+1)st place.
Dyon solutions are also labeled by the holonomy or the set of µs’s at spatial infinity:

A4(|x|→∞) → 2πTdiag(µ1, µ2, . . . , µN ). (9)

The explicit expressions for the solutions in various gauges can be found e.g. in the Appendix
of Ref. [8]. Inside the cores which are of the size ∼ 1/(Tνm), the fields are large, nonlinearity
is essential. The action density is time-independent everywhere and is proportional to the tem-
perature. Isolated dyons are thus 3d objects but with finite action independent of temperature:

Sdyon =
2π

αs
νm, νm ≡ µm+1 − µm,

∑

m

νm = 1, (10)

(here µN+1 ≡ µ1 + 1). The full action of all N kinds of well-separated dyons together is that of
one standard instanton: Sinst = 2π/αs.

In the semiclassical approach, one has first of all to find the statistical weight with which a
given classical configuration enters the partition function. It is given by exp(−Action), times
the determinant−1/2 from small quantum oscillations about the saddle point. For an isolated
dyon as a saddle-point configuration, this factor diverges linearly in the infrared region owing to
the slow Coulomb decrease of the dyon field (8). It means that isolated dyons are not acceptable
as saddle points: they have zero weight, despite finite classical action. However, one may look
for classical solutions that are superpositions of N fundamental dyons, with zero net magnetic
charge. The small-oscillation determinant must be infrared-finite for such classical solutions, if
they exist.

The needed classical solution has been found a decade ago by Kraan and van Baal [9] and
independently by Lee and Lu [10], see also [11]. We shall call them for short the “KvBLL
instantons”; an alternative name is “calorons with nontrivial holonomy”. The solution was
first found for the SU(2) group but soon generalized to an arbitrary SU(N) [12], see [13] for a
review.

The general solution AKvBLL
µ depends on Euclidean time t and space x and is parameterized

by 3N positions of N kinds of ‘constituent’ dyons in space x1, . . . ,xN and their U(1) phases
ψ1, . . . , ψN . All in all, there are 4N collective coordinates characterizing the solution (called
the moduli space), of which the action Sinst = 2π/αs is in fact independent, as it should be
for a general solution with a unity topological charge. The solution also depends explicitly on
temperature T and on the holonomy µ1, . . . , µN :

AKvBLL
µ = Āa

µ(t,x; x1, . . . ,xN , ψ1, . . . , ψN ; T, µ1, . . . , µN ). (11)
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Figure 3: Action density inside the SU(3) KvBLL instanton as function of time and one space
coordinate, for large (left), intermediate (middle) and small (right) separations between the
three constituent dyons.

The solution is a relatively simple expression given by elementary functions. If the holonomy is
trivial (all µ’s are equal modulo unity) the expression takes the form of the strictly periodic O(3)
symmetric caloron [14] reducing further to the standard O(4) symmetric BPST instanton [15]
in the T → 0 limit. At small temperatures but arbitrary holonomy, the KvBLL instanton also
has only a small O(T ) difference with the standard instanton.

One can plot the action density of the KvBLL instanton in various corners of the parameter
(moduli) space, see Fig. 3.

When all dyons are far apart one observes N static (i.e. time-independent) objects, the
isolated dyons. As they merge, the configuration is not static anymore, it becomes a process in
time. In the limiting case of a complete merger, the configuration becomes a 4d lump resembling
the standard instanton. The full (integrated) action is exactly the same Sinst = 2π/αs for any
choice of the dyon separations. It means that classically dyons do not interact. However, they
do experience a peculiar interaction at the quantum level to which we proceed.

3 Quantum weight of many dyons

Remarkably, the small-oscillation determinant about a single KvBLL SU(N) instanton made
of N different-kind dyons can be computed exactly [16, 17]. With this experience, the quantum
weight of an arbitrary number of dyons of N kinds has been suggested in Ref. [7]. In the
YM partition function, there are saddle points corresponding to any set of Km dyons. In the
thermodynamic limit V → ∞ one needs to take a saddle point with O(V ) dyons. Let Km be
the number of dyons of kind m (m = 1 . . . N) and let xmi be the coordinate of the ith dyon
of kind m (i = 1 . . . Km). In the semiclassical approximation the YM partition function is
approximated by the partition function of a grand canonical ensemble of K1 +K2 + . . . +KN

dyons,

Z =
∑

K1...KN

1

K1!...KN !

N
∏

m=1

Km
∏

i=1

∫

(dxmi f)
√

det g(xmi), (12)

where g(xmi) is a 4(K1 + . . . + KN ) × 4(K1 + . . . + KN ) metric tensor of the dyons’ moduli
space, composed by the overlaps of zero modes of individual dyons, and f is the fugacity,

f =
N2

16π3λ2

Λ4

T
= O(N2). (13)

The bare ’t Hooft coupling constant λ is renormalized and starts to “run” only at the 2-loop
level not considered here. Eventually, its argument will be the largest scale in the problem, be
it the temperature or the equilibrium density of dyons.
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It is not difficult to find the metric tensor g(xmi) for well-separated dyons. In this case

the four zero modes φ
(κ)
µ (κ = 1, 2, 3, 4) of individual dyons are given by the components of the

field strength: φ
(κ)
µ = Fµκ. The zero modes for the mth kind of dyon are normalized to its

action,
∫

Trφ
(κ)
µ φ

(λ)
µ ∼ δκλνm (see Eq. (10)) and hence depend on the holonomy. Since the field

strengths decay as 1/r2 (see Eq. (8)) the overlaps between zero modes are Coulomb-like, and
only those that are nearest neighbors in m do interact. In fact, the diagonal components of
the metric tensor also acquire Coulomb-like corrections since the action of individual dyons is
actually normalized to its asymptotic field A4 that gets Coulomb corrections from other dyons.

As a result, we obtain the 4(K1 + . . . + KN ) × 4(K1 + . . . + KN ) metric tensor g(xmi)
with Coulomb interactions as entries, and the νm’s on the diagonal. It turns out that its
determinant is a square of the determinant of a related matrix,

√
det g = detG where G is a

(K1 + . . . +KN ) × (K1 + . . . +KN ) matrix:

Gmi,nj = δmnδij

(

4πνm +
∑

k

1

T |xmi−xm−1,k|
+
∑

k

1

T |xmi−xm+1,k|
− 2

∑

k 6=i

1

T |xmi−xmk|





− δm,n−1

T |xmi−xm+1,j|
− δm,n+1

T |xmi−xm−1,j |
+ 2

δmn

T |xmi−xmj |

∣

∣

∣

∣

i6=j

, (14)

where xmi is the coordinate of the ith dyon of kind m. The matrix G has the following nice
properties:

• symmetry: Gmi,nj = Gnj,mi

• overall “neutrality”: the sum of Coulomb interactions in non-diagonal entries cancel those
on the diagonal:

∑

nj Gmi,nj = 4πνm

• identity loss: dyons of the same kind are indistinguishable, meaning mathematically that
detG is symmetric under permutation of any pair of dyons (i↔ j) of the same kind m.
Dyons do not ‘know’ to which instanton they belong to

• attraction/repulsion: if one decreases the separation between same-kind dyons or increases
the separation between different-kind dyons, the detG decreases. It means that same-
kind dyons repulse each other whereas different-kind dyons attract each other. The detG
measure favors formation of neutral clusters with N different kinds of dyons

• factorization: in the geometry when dyons fall into K well separated neutral clusters of
N dyons of different kinds, detG factorizes into a product of exact integration measures
for K KvBLL instantons [18, 19] valid for any separations between different-kind dyons,
including their strong overlap

• last but not least, the metric g corresponding to G is hyper-Kähler, as it should be for
the moduli space of a self-dual classical field [20]. In fact, it is a severe restriction on the
metric.

An overall constant factor depending on the holonomy and temperature, exp (−FpertV ), is
understood in Eq. (12), where Fpert is the perturbative gluon loop (6) in the background of a
constant field A4 (9). This factor arises from the non-zero modes in the fluctuation determinant
about dyons and is necessarily present as most of the 3d space outside the dyons’ core is just a
constant A4 background. Indeed the calculation [16, 17] exhibits this factor which is the only
one proportional to the 3-volume V .

The ensemble defined by a determinant of a matrix whose dimension is the number of
particles, is not a usual one. More customary, the interaction is given by the Boltzmann factor
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exp (−Uint(x1, . . .)). Of course, one can always present the determinant in that way using the
identity detG = exp(Tr logG) ≡ exp(−Uint) but the interactions will then include three-, four-,
five-... body forces. At the same time, it is precisely the determinant form of the interaction
that makes the statistical physics of dyons an exactly solvable problem.

4 Statistical physics of dyons as a Quantum Field Theory

It is possible to present the grand canonical ensemble of dyons, governed by the interaction (14)
as an equivalent 3d quantum field theory. This will enable us to compute various correlation
functions of interest.

To proceed to the quantum field theory description we use two mathematical tricks.

1. “Fermionization” (Berezin [21]). It is helpful to exponentiate the Coulomb interactions
rather than keeping them in detG. To that end one presents the determinant of a matrix as an
integral over a finite number of anticommuting Grassmann variables ({ψ†

A ψB} = δAB):

det(GAB) =

∫

∏

A

dψ†
A dψA exp

(

ψ†
AGAB ψB

)

.

Now we have the two-body Coulomb interactions in the exponent and it is possible to use
the second trick.

2. “Bosonization” (Polyakov [2]). One can present the Coulomb interactions in the exponent
with the help of a Gaussian integral over an auxiliary field φ:

exp

(

∑

m,n

QmQn

|xm − xn|

)

=

∫

Dφ exp

[

−
∫

dx

(

1

16π
∂iφ∂iφ+ ρφ

)]

= exp

(∫

ρ
4π

△ ρ

)

,

ρ =
∑

Qm δ(x − xm).

After applying the first trick the “charges” Qm become Grassmann variables but after
applying the second one, it becomes easy to integrate them out since the square of a Grassmann
variable is zero. In fact one needs 2N boson fields vm,wm to reproduce diagonal elements of G
and 2N anticommuting (“ghost”) fields χ†

m, χm to present the non-diagonal elements. The chain
of identities is accomplished in Ref. [7] and the result for the partition function for the dyon
ensemble (12) is, identically, a path integral defining a quantum field theory in 3 dimensions:

Z =

∫

Dχ†DχDvDw exp

∫

d3x

{

T

4π

(

∂iχ
†
m∂iχm + ∂ivm∂iwm)

+f

[

(−4πµm + vm)
∂F
∂wm

+ χ†
m

∂2F
∂wm∂wn

χn

]}

, F =
N
∑

m=1

ewm−wm+1 . (15)

The fields vm have the meaning of the asymptotic Abelian electric potentials of dyons,

(A4)mn = δmnAm 4, (16)

Am 4(x)/T = 2πµm − 1
2vm(x), Em = ∇Am 4,

while wm have the meaning of the dual (or magnetic) Abelian potentials. Note that the kinetic
energy for the vm,wm fields has only the mixing term ∂ivm∂iwm which is nothing but the
Abelian duality transformation E · B. The function F(w) in (15) where one assumes a cyclic
summation over m, is known as the periodic (or affine) Toda lattice.

Although the Lagrangian in Eq. (15) describes a highly nonlinear interacting quantum field
theory, it is in fact exactly solvable! To prove it, one observes that the fields vm enter the
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Lagrangian only linearly, therefore one can integrate them out. It leads to a functional δ-
function:

∫

Dvm −→ δ

(

− T

4π
∂2wm + f

∂F
∂wm

)

. (17)

This δ-function restricts possible fields wm over which one still has to integrate in eq. (15). Let
w̄m be a solution to the argument of the δ-function. Integrating over small fluctuations about
w̄ gives the Jacobian

Jac = det−1

(

− T

4π
∂2δmn + f

∂2F
∂wm∂wn

∣

∣

∣

∣

w=w̄

)

. (18)

Remarkably, exactly the same functional determinant but in the numerator arises from inte-
grating over the ghost fields, for any background w̄. Therefore, all quantum corrections cancel
exactly between the boson and ghost fields (a characteristic feature of supersymmetry), and the
ensemble of dyons is basically governed by a classical field theory.

To find the ground state we examine the fields’ potential energy being −4πfµm∂F/∂wm

which we prefer to write restoring νm = µm+1 − µm and F as

Fdyon = −4πfV
∑

m

νm ewm−wm+1 (19)

(the volume factor arises for constant fields wm). One has first to find the stationary point in
wm for a given set of νm’s. It leads to the equations

∂P
∂wm

= 0

whose solution is

ew1−w2 =
(ν1ν2ν3...νN )

1

N

ν1
, etc. (20)

Putting it back into eq. (19) we obtain

Fdyon = −4πfV N(ν1ν2...νN )
1

N , ν1 + ...+ νN = 1. (21)

The minimum equal Fdyon, min = −4πfV is achieved at ν1 = . . . = νN = 1
N , that is at equidis-

tant, confining value of the holonomy! Cf. Eq. (2). We have also proven that the result is exact,
as all potential quantum corrections cancel in the partition function (15).

Given this cancelation, the key finding – that the dyon-induced free energy has the minimum
at the confining value of holonomy – is trivial. If all Coulomb interactions cancel after integration
over dyons’ positions, the weight of a many-dyon configuration is the same as if they were
infinitely dilute (although they are not). Then the weight, what concerns the holonomy, is
proportional to the product of diagonal matrix elements of G in the dilute limit, that is to the
normalization integrals for dyon zero modes, that is to the product of the dyon actions ∼ νm

where νm = µm+1 −µm and νN = µ1 + 1−µN such that ν1 + ν2 + . . .+ νN = 1. The sum of all
N kinds of dyons’ actions is fixed and equal to the instanton action, however, it is the product

of actions that defines the weight. The product is maximal when all actions are equal, hence
the equidistant or confining µ’s are statistically preferred. Thus, the average Polyakov line is
zero, < TrL >= 0.

5 Heavy quark potential

The field-theoretic representation of the dyon ensemble enables one to compute various YM
correlation functions in the semiclassical approximation. The key observables relevant to con-
finement are the correlation function of two Polyakov lines (defining the heavy quark potential),
and the average of large Wilson loops. A detailed calculation of these quantities is performed
in Ref. [7]; here we only present the results and discuss the meaning.
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5.1 N-ality and k-strings

From the viewpoint of confinement, all irreducible representations of the SU(N) group fall into
N classes: those that appear in the direct product of any number of adjoint representations,
and those that appear in the direct product of any number of adjoint representations with the
irreducible representation being the rank-k antisymmetric tensor, k = 1, . . . , N−1. “N -ality”
is said to be zero in the first case and equal to k in the second. N -ality-zero representations
transform trivially under the center of the group ZN ; the rest acquire a phase 2πk/N .

One expects that there is no asymptotic linear potential between static color sources in
the adjoint representation as such sources are screened by gluons. If a representation is found
in a direct product of some number of adjoint representations and a rank-k antisymmetric
representation, the adjoint ones “cancel out” as they can be all screened by an appropriate
number of gluons. Therefore, from the confinement viewpoint allN -ality = k representations are
equivalent and there are only N −1 string tensions σk,N being the coefficients in the asymptotic

linear potential for sources in the antisymmetric rank-k representation. They are called “k-
strings”.

The value k=1 corresponds to the fundamental representation whereas k = N−1 corresponds
to the representation conjugate to the fundamental [quarks and anti-quarks]. In general, the
rank-(N − k) antisymmetric representation is conjugate to the rank-k one; it has the same
dimension and the same string tension, σk,N = σN−k,N .

The behaviour of σk,N as function of k and N is an important issue as it discriminates
between various confinement mechanisms. On general N -counting grounds one can only infer
that at large N and k ≪ N , σk,N/σ1,N = (k/N)(1 + O(1/N2)). Important, there should be
no O(N−1) correction [22]. A popular version called “Casimir scaling”, according to which the
string tension is proportional to the Casimir operator for a given representation (it stems from
an idea that confinement is somehow related to the modification of a one-gluon exchange at
large distances), does not satisfy this restriction.

5.2 Correlation function of Polyakov lines

To find the potential energy Vk,N of static “quark” and “antiquark” transforming according to
the antisymmetric rank-k representation, one has to consider the correlation of Polyakov lines
in the appropriate representation:

〈

TrLk,N(z1) TrL†
k,N(z2)

〉

=const. exp

(

−Vk,N(z1−z2)

T

)

. (22)

Far away from dyons’ cores the field is Abelian and in the field-theoretic language of Eq. (15)
is given by Eq. (16). Therefore, the Polyakov line in the fundamental representation is

TrL(z)=

N
∑

m=1

Zm, Zm = exp

(

2πiµm− i

2
vm(z)

)

. (23)

In the general antisymmetric rank-k representation

TrLk,N(z) =

N
∑

m1<m2<...<mk

Zm1
Zm2

...Zmk
(24)

where cyclic summation from 1 to N is assumed.
The average (22) can be computed from the quantum field theory (15). Inserting the two

Polyakov lines (24) into Eq. (15) we observe that the Abelian electric potential vm enters linearly
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in the exponent as before. Therefore, it can be integrated out, leading to a δ-function for the
dual field wm, which is now shifted by the source (cf. Eq. (17)):

∫

Dvm −→
∏

m

δ

(

− T

4π
∂2wm + f

∂F
∂wm

− i

2
δ(x−z1)(δmm1

+ . . .+ δmmk
) +

i

2
δ(x−z2)(δmn1

+ . . .+ δmnk
)

)

.

One has to find the dual field wm(x) nullifying the argument of this δ-function, plug it into the
action

exp

(∫

dx
4πf

N
F(w)

)

, (25)

and sum over all sets {m1<m2<...<mk}, {n1<n2<...<nk} with the weight exp (2πi (m1+. . .
+mk − n1−. . .−nk) /N). The Jacobian from resolving the δ-function again cancels exactly with
the determinant arising from ghosts. Therefore, the calculation of the correlator (22), sketched
above, is exact.

At large separations between the sources |z1−z2|, the fields wm resolving the δ-function are
small and one can expand the Toda chain:

F(w) =
∑

m

ewm−wm+1 ≈ N +
1

2
wm Mmn wn, (26)

where

M =













2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 −1 . . . 0
. . . . . . . . . . . . . . . . . .
−1 0 0 . . . −1 2













. (27)

As apparent from Eq. (26), the eigenvalues of M determine the spectrum of the dual fields wm.
There is one zero eigenvalue which decouples from everywhere, and N−1 nonzero eigenvalues

M(k) =

(

2 sin
πk

N

)2

, k = 1, ..., N − 1. (28)

Certain orthogonality relation imposes the selection rule: the asymptotics of the correlation
function of two Polyakov lines in the antisymmetric rank-k representation is determined by
precisely the kth eigenvalue. We obtain [7]

〈

TrLk,N (z1) TrL†
k,N (z2)

〉

z12→∞
= const. exp

(

−|z1 − z2|M
√

M(k)
)

(29)

where M is the ‘dual photon’ mass,

M =

√

4πf

T
=

NΛ2

2πλT
= O(N). (30)

Comparing it with the definition of the heavy quark potential (22) we find that there is an
asymptotically linear potential between static “quarks” in any N -ality nonzero representation,
with the k-string tension

σk,N = MT
√

M(k) = 2MT sin
πk

N
=

Λ2

λ

N

π
sin

πk

N
. (31)

This is the so-called ‘sine regime’: it has been found before in certain supersymmetric theo-
ries [23]. Lattice simulations [24] support this regime, whereas another lattice study [25] gives
somewhat smaller values but within two standard deviations from the values following from
eq. (31).

We see that at large N and k ≪ N , σk,N/σ1,N = (k/N)(1 + O(1/N2)), as it should be on
general grounds, and that all k-string tensions have a finite limit at zero temperature.
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6 Area law for large Wilson loops

The magnetic field of dyons beyond their cores is Abelian and is a superposition of the Abelian
fields of individual dyons. For large Wilson loops we are interested in, it is this superposition
field of a large number of dyons that contributes most as they have a slowly decreasing 1/|x−xi|
asymptotics, hence the use of the field outside the cores is justified. Owing to self-duality,

[Bi(x)]mn = [∂iA4(x)]mn = −T
2
δmn ∂ivm(x), (32)

cf. eq. (16). Since Ai is Abelian beyond the cores, one can use the Stokes theorem for the
spatial Wilson loop:

W ≡ TrP exp i

∮

Aidx
i = Tr exp i

∫

Bi d
2σi =

∑

m

exp

(

−iT
2

∫

d2σi ∂ivm

)

.

Eq. (??) may look contradictory as we first use Bi = curlAi and then Bi = ∂iA4. Actually
there is no contradiction as the last equation is true up to Dirac string singularities which carry
away the magnetic flux. If the Dirac string pierces the surface spanning the loop it gives a
quantized contribution exp(2πi·integer) = 1; one can also use the gauge freedom to direct Dirac
strings parallel to the loop surface in which case there is no contribution from the Dirac strings
at all.

Let us take a flat Wilson loop lying in the (xy) plane at z=0. Then eq. (??) is continued as

W =
∑

m

exp

(

−iT
2

∫

x,y∈Area
d3x ∂zvmδ(z)

)

=
∑

m

exp

(

i
T

2

∫

x,y∈Area
d3x vm ∂zδ(z)

)

.

It means that the average of the Wilson loop in the dyon ensemble is given by the partition
function (15) with the source

∑

m

exp

(

i
T

2

∫

d3x vm
dδ(z)

dz
θ(x, y ∈ Area)

)

where θ(x, y ∈ Area) is a step function equal to unity if x, y belong to the area inside the loop
and zero otherwise.

As in the case of the Polyakov lines the presence of the Wilson loop shifts the argument of the
δ-function arising from the integration over the vm variables, and the ghost determinant cancels
exactly the Jacobian from the fluctuations of wm’s, therefore the classical-field calculation is
exact.

One has to solve the non-linear Toda equations on wm’s with a source along the surface of
the loop,

−∂2wm +M2
(

ewm−wm+1 − ewm−1−wm

)

= −2πi δmm1

dδ(z)

dz
θ(x, y ∈ Area), (33)

for all m1, plug it into the action (4πf/N)F(w), and sum over m1. In order to evaluate the
average of the Wilson loop in a general antisymmetric rank-k representation, one has to take
the source in eq. (33) as −2πi δ′(z) (δmm1

+. . .+δmmk
) and sum over m1< . . . <mk from 1 to

N , see eq. (24).
Contrary to the case of the Polyakov lines, one cannot, generally speaking, linearize eq. (33)

in wm but has to solve the non-linear equations as they are. The Toda equations (33) with a δ′(z)
source in the r.h.s. define “pinned soliton” solutions wm(z) that are 1d functions in the direction
transverse to the surface spanning the Wilson loop but do not depend on the coordinates x, y
provided they are taken inside the loop. Beyond that surface wm = 0. Along the perimeter
of the loop, wm interpolate between the soliton and zero. For large areas, the action (25) is

11



therefore proportional to the area of the surface spanning the loop, which gives the famous area
law for the average Wilson loop. The coefficient in the area law, the ‘magnetic’ string tension,
is found from integrating the action density of the soliton wm(z) in the z direction.

The exact solutions of Eq. (33) for any N and any representation k have been found in
Ref. [7], and the resulting ‘magnetic’ string tension turns out to be

σk,N =
Λ2

λ

N

π
sin

πk

N
, (34)

which coincides with the ‘electric’ string tension (31) found from the correlators of the Polyakov
lines, for all k-strings!

Several comments are in order here.

• The ‘electric’ and ‘magnetic’ string tensions should coincide only in the limit T → 0 where
the Euclidean O(4) symmetry is restored. Both calculations have been in fact performed
in that limit as we have ignored the temperature-dependent perturbative potential (6). If
it is included, the ‘electric’ and ‘magnetic’ string tensions split.

• despite that the theory (15) is 3-dimensional, with the temperature entering just as a pa-
rameter in the Lagrangian, it “knows” about the restoration of Euclidean O(4) symmetry
at T → 0.

• the ‘electric’ and ‘magnetic’ string tensions are technically obtained in very different ways:
the first is related to the mass of the elementary excitation of the dual fields wm, whereas
the latter is related to the mass of the dual field soliton.

Dyons force the system to have the “most nontrivial” holonomy (2). For that holonomy,
the perturbative potential energy (6) is at its maximum equal to

Fpert, max

V
=
π2

45
T 4

(

N2 − 1

N2

)

. (35)

The full free energy is the sum of the three terms above.
We see that the leading O(N2) term in the Stefan–Boltzmann law is canceled by the potential

energy precisely at the confining holonomy point and nowhere else! In fact it seems to be the
only way how O(N2) massless gluons can be canceled out of the free energy, and the main
question shifts to why does the system prefer the “most nontrivial” holonomy. Dyons seem to
answer that question.

7 Deconfinement phase transition

The nonperturbative free energy corresponding to the minimum of the dyon-induced potential
energy as function of the holonomy (21) is

Fdyon

V
= −N2

2π2

Λ4

λ2
. (36)

We have doubled the minimum from eq. (21) keeping in mind that there are also anti-dyons
and assuming that their interactions with dyons is not as strong as the interactions between
dyons and anti-dyons separately, as induced by the determinant measure (14), therefore treating
dyons and anti-dyons as two independent “liquids”. (By the same logic, the string tension (31)
has to be multiplied by

√
2 as due to anti-dyons.)
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SU(3) SU(4) SU(6) SU(8)

Tc/
√
σ, theory 0.6430 0.6150 0.5967 0.5906

Tc/
√
σ, lattice 0.6462(30) 0.6344(81) 0.6101(51) 0.5928(107)

As the temperature rises, the perturbative free energy (35) grows as T 4 and eventually
it overcomes the negative nonperturbative free energy (36), see Figs. 1,2. At this point, the
trivial holonomy for which both the perturbative and nonperturbative free energy are zero,
becomes favourable. Therefore an estimate of the critical deconfinement temperature comes
from equating the sum of Eq. (36) and Eq. (35) to zero, which gives

T 4
c =

45

2π4

N4

N4 − 1

Λ4

λ2
. (37)

As expected, it is stable in N . A more robust quantity, both from the theoretical and lattice
viewpoints, is the ratio Tc/

√
σ where σ is the string tension in the fundamental representation,

since in this ratio the poorly known parameters Λ and λ cancel out:

Tc√
σ

=

(

45

4π4

π2N2

(N4 − 1) sin2 π
N

) 1

4

N→∞−→ 1

π

(

45

4

) 1

4

. (38)

In the Table, we compare the values from Eq. (38) to those measured in lattice simulations
of the pure SU(N) gauge theories [26]; there is a surprisingly good agreement. A detailed study
of the thermodynamics of the phase transition will be published elsewhere.

8 Summary

What happens in the semiclassical approximation based on dyons, can be summarized as follows:

• The ensemble of dyons favours dynamically the confining value of the holonomy. This is
almost clear, given that the weight is proportional to the product of individual actions
of fundamental dyons, and it is maximal when the actions are equal. Such holonomy
corresponds to the zero of the Polyakov line

• Dyons form a sort of Coulomb plasma (but an exactly solvable variant of it) with an
appearance of the Debye mass both for “electric” and “magnetic” (dual) photons. The
first gives rise to the exponential fall-off of the correlation of two Polyakov lines, i.e. to
the linear heavy-quark potential, the second yields the area law for spatial Wilson loops

• O(N2) massless gluons cancel out from the free energy, and only massive (string?) exci-
tations are left.

The reason why a semiclassical approximation works well for strong interactions (where
all dimensionless quantities are, generally speaking, of the order of unity) is not altogether
clear. The following considerations provide a possible explanation. After UV renormalization is
performed about the classical saddle points and the scale parameter Λ appears as the result of
the dimensional transmutation, further quantum corrections to the saddle point are a series in
the running ’t Hooft coupling λ whose argument is typically the largest scale in the theory, in
this case max(T, n1/4) where n is the 4d density of dyons. An estimate shows that the running λ
is between 1/4 at zero temperature and 1/7 or less at critical temperature. Therefore, although
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these numbers are “of the order of unity”, in practical terms they indicate that high order loop
corrections are not too large.

Unfortunately, approximations made in Ref. [7] and reproduced above are not limited to
neglecting higher loop corrections. We have (i) ignored dyon interactions induced by the small
oscillation determinant over nonzero modes (although we did take into account that it renormal-
izes the gauge coupling giving rise to the scale parameter Λ, and that it leads to the perturbative
potential energy as function of the holonomy), (ii) neglected the interactions of dyons of op-
posite duality, treating them as two noninteracting “liquids”, (iii) conjectured a simple form
of the dyon measure which may be incorrect when two same-kind dyons come close. Although
certain justification for these approximations can be put forward [7] it is desirable not to use
them at all, and that may be possible.
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