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Abstract

This contribution is based on talks given by Frank Meyer (Section 1) and Mar-
ija Dimitrijević (Section 2). In the first section we review the basic concepts of
deformed spaces and deformed symmetries. We discuss general features of dif-
ferential calculi, introduce the star-product and star-product representations of
differential operators. As examples we treat the canonically deformed space and
the κ-deformed space. In the second section we study gauge theories on deformed
spaces. Special attention is given to gauge theory the on κ-deformed space (which
was introduced as an example in the first part). Nevertheless, the analysis is done
in a rather general way such that it could also be applied to the other deformed
spaces.

1. Deformed Spaces and Symmetries

1.1. Deformed Spaces
In gauge theories one usually considers differential space-time manifolds and
fibers that admit a representation of a Lie-group. In the noncommutative
realm, the notion of a point is no longer well-defined and we have to give up
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the concept of differentiable manifolds. However, the space of functions on
a manifold is an algebra. A generalization of this algebra can be considered
in the noncommutative case. We take the algebra freely generated by the
noncommutative coordinates x̂μ, μ = 0 . . . n, which respect commutation
relations of the type

[x̂μ, x̂ν ] = Cμν(x̂) �= 0 . (1)

Mathematically this means that we take the space of formal power series in
the coordinates x̂μ and divide by the ideal generated by the above relations
[2]:

Âx̂ = C〈〈x̂0, . . . , x̂n〉〉/([x̂μ, x̂ν ] − Cμν(x̂)) .

This we call a deformed coordinate space.
The function Cμν(x̂) is unknown. It should be a function that vanishes at
large distances where we experience the commutative world and may be
determined by experiments. Nevertheless, one can consider a power-series
expansion

Cμν(x̂) = i θμν + iCμν
ρ x̂ρ + (qR̂μν

ρσ − δν
ρδ

μ
σ) x̂ρx̂σ + . . . ,

where θμν , Cμν
ρ and q R̂μν

ρσ are constants, and study cases where the com-
mutation relations are constant, linear or quadratic in the coordinates. At
very short distances those cases provide a reasonable approximation for
Cμν(x̂) and lead to the following three structures which are of particular
interest since they satisfy the so-called Poincare-Birkhoff-Witt property 1

1. Canonical structure:
[x̂μ, x̂ν ] = i θμν . (2)

2. Lie algebra structure:

[x̂μ, x̂ν ] = iCμν
ρ x̂ρ. (3)

3. Quantum Space structure:

x̂μx̂ν = q R̂μν
ρσ x̂

ρx̂σ. (4)

1.2. Symmetries on Deformed Spaces
In general the commutation relations (1) are not covariant with respect to
undeformed symmetries. For example the canonical commutation relations
(2) break Lorentz symmetry.
Then the question naturally arises whether we can deform the symmetry
in such a way that it is consistent with the deformed space and that it

1 The PBW-property states that the space of polynomials in noncommutative coor-
dinates of a given degree is isomorphic to the space of polynomials in the commutative
coordinates.
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reduces to the undeformed symmetry in the commutative limit. The answer
is yes: Lie groups can be deformed in the category of Hopf algebras 2. The
generated objects are called Quantum Groups. To make this more explicit
we give two examples.

1.2.1. The Canonically Deformed Space
For a long time it was common belief that there does not exist a deformed
symmetry for the canonically deformed space. However, recently a quan-
tum group-symmetry was discovered [3] 3. Let us state the result without
deriving it:

[∂̂μ, ∂̂ν ] = 0, [δ̂ω, ∂̂ρ] = ω μ
ρ ∂̂μ,

[δ̂ω, δ̂′ω] = δ̂ω×ω′ , (ω × ω)
′ ν
μ = −(ω σ

μ ω
′ ν
σ − ω

′ σ
μ ω ν

σ ),

Δ∂̂μ = ∂̂μ ⊗ 1 + 1 ⊗ ∂̂μ, (5)

Δδ̂ω = δ̂ω ⊗ 1 + 1 ⊗ δ̂ω +
i

2
(θμνω ρ

ν − θρνω μ
ν )∂̂ρ ⊗ ∂̂μ.

Here the deformed generators of Lorentz-transformations are denoted by δ̂ω
with constant transformation parameters ω. Note that the algebra relations
are undeformed and the deformation takes place exclusively in the co-sector
of the Hopf-algebra. The coproduct Δδ̂ω4 of δ̂ω contains θμν-corrections. It
is interesting that the coproduct of δ̂ω closes only in the Poincare-algebra
and not in the Lorentz-algebra. This may be the reason why this symmetry
remained undiscovered for such a long time. The consequences of this new
symmetry are part of future investigations by various groups.

1.2.2. κ-deformed Space-time
As an example for the Lie structure we introduce the κ-deformed space-
time 5:

[x̂μ, x̂ν ] = iCμν
ρ x̂ρ, (6)

where Cμν
λ = a (ημ

n ην
λ − ην

n η
μ
λ) and where we use the signature ημν =

diag(1,−1, . . . ,−1). In the following Latin indices always run from 0 to
n − 1 whereas Greek indices run from 0 to n. The commutation relations
(6) are covariant with respect to the κ-deformed Poincare algebra [6]. There
is a basis where the Lorentz-algebra remains again undeformed

[Mμν ,Mρσ] = ημσMνρ + ηνρMμσ − ημρMνσ − ηνσMμρ, (7)
2 To be more precise the algebra of functions on a Lie group can be deformed. Since

Lie groups themselves form a discrete set, a continuous deformation is not possible.
3 Actually, a deformed symmetry which is just the dual to the one given here was

already introduced some years ago in [4] but was basically unknown to the community
of physicists working in that field.

4 The coproduct is a structure map of a Hopf algebra. It tells us how to act on a
product of functions.

5 The κ-deformed space appears also naturally in the context of Doubly Special Rel-
ativity [5].
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but the commutators of derivatives with the generators Mμν

[M ij , ∂̂μ] = ηj
μ∂̂

i − ηi
μ∂̂

j ,

[M in, ∂̂n] = ∂̂i, (8)

[M in, ∂̂j ] = ηi
j

e2ia∂̂n − 1
2 i a

− i a

2
ηi

j ∂̂
l∂̂l + i a ∂̂i∂̂j ,

[∂̂μ, ∂̂ν ] = 0

and the co-algebra sector are deformed

ΔM ij = M ij ⊗ 1 + 1 ⊗M ij ,

ΔM in = M in ⊗ 1 + eia∂̂n ⊗M in + i a ∂̂k ⊗M ik,

Δ∂̂i = ∂̂i ⊗ 1 + ei a ∂̂n ⊗ ∂̂i, (9)

Δ∂̂n = ∂̂n ⊗ 1 + 1 ⊗ ∂̂n .

The generators Mμν and ∂̂μ act as follows on the coordinates:

[M ij , x̂μ] = ημj x̂i − ημix̂j ,

[M in, x̂μ] = ημnx̂i − ημix̂n + i aM iμ,

[∂̂i, x̂
μ] = ημ

i − i a ημn∂̂i, [∂̂n, x̂
μ] = ημ

n . (10)

Note that all the commutation relations reduce the classical relations in the
limit a→ 0.

1.3. Differential Calculus
Derivatives are maps on the deformed coordinate space [7]

∂̂ : Âx̂ → Âx̂ .

Such a map in particular has to map the ideal generated by the commu-
tation relations (1) into itself. If this is the case we say that the map ∂̂
respects the commutation relations (1) or is compatible with them.
To find a suitable map it is convenient to make a general ansatz for the
commutator of a derivative and a coordinate:

[∂̂μ, x̂
ν ] = δν

μ +
∑

j

A
νρ1...ρj
μ ∂̂ρ1 . . . ∂̂ρj . (11)

The coefficient functions Aνρ1...ρj
μ are of the order of the deformation pa-

rameter and vanish in the commutative limit. Requiring consistency of (11)
with the commutation relations of the deformed space leads to conditions
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on the coefficients Aνρ1...ρj
μ . In general a solution for those conditions is not

unique.
In the case of a canonically deformed space (1) one immediately verifies
that actually the undeformed differential calculus

[∂̂μ, x̂
ν ] := δν

μ (12)

is compatible with the commutation relations (1).
For the κ-deformed space-time there exist several sets of differential calculi
which are all equivalent. The derivatives obtained by requiring that the
righthand side of (11) is at most linear in the derivatives are the ones
introduced above in Section 1.2. as part of the generators of the κ-deformed
Poincare algebra. Of special interest is the following set of derivatives which
have a vector-like transformation property with respect to the κ-deformed
Poincare symmetry. They will be used later on to establish a gauge theory
on the κ-deformed space-time:

[Mμν , D̂μ] = ην
ρ D̂

μ − ημ
ρ D̂

ν , (13)

where

D̂n =
1
a

sin(a∂̂n) − i a

2
∂̂l∂̂l e

−ia∂̂n , D̂i = ∂̂ie
−ia∂̂n . (14)

1.4. Towards a Physical Theory

So far we described how a deformed symmetry acts on a deformed space Âx̂
and how we construct differential calculi. To get a physical theory which
makes predictions that can be checked by experiments we will express the
noncommutative theory in terms of the known commutative variables. This
means that the particle content does not change but the noncommutative
theory predicts new interactions [8]. This can be achieved by the following
two steps:

1. First we represent the abstract deformed space-time algebra Âx̂ on the
common algebra of commutative functions Ax by a new product called
star-product (�-product) which is a deformation of the commutative
product of functions.

2. Then we express all noncommutative fields in terms of their commu-
tative counterparts by the Seiberg-Witten map (see Section 2.2.).

Using the results from the second step one can express the action of the
noncommutative theory in terms of commutative fields and using the star-
product from the first step we can expand this action in terms of the de-
formation parameter. The zeroth order gives back the commutative theory
and one can study corrections of it in higher orders of the deformation
parameter. Those two steps will be explained in a bit more detail in the
following sections.
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1.5. Star Product Approach
1.5.1. The Star Product
If the noncommutative algebra Âx̂ satisfies the PBW property (see the be-
ginning of this section), the vector space of noncommutative functions is
isomorphic (as a vector space) to the vector space of commutative func-
tions 6. Let

ρ : R[[x0, . . . , xn]] → Âx̂

f(xμ) �→ f̂(x̂μ)

be such an isomorphism of vector spaces.7

To render the vector space of commutative functions isomorphic as algebra
to Âx̂ we just have to equip it with a new, noncommutative product. The
isomorphism ρ tells us how to define this new product which we call star-
product and which we denote with a � :

f(x) � g(x) := ρ−1(f̂(x̂) · ĝ(x̂)) . (15)

Again we want to give explicit examples. For the canonically deformed
space we have the well-known Moyal-Weyl product

f � g = μ ◦ eiθμν∂μ⊗∂ν (f ⊗ g)

= fg +
i

2
θμν(∂μf)(∂νg) + . . . , (16)

where μ(f ⊗ g) := fg is just the multiplication map. This star-product
corresponds to the symmetric ordering prescription.
For the κ-deformed space-time we get the following more complicated ex-
pression from the symmetric ordering prescription:

f � g(x) = lim
z→x
y→x

exp

(
xj∂zj

(
∂n

∂zn
e−ia∂yn 1 − e−ia∂zn

1 − e−ia∂n
− 1
)

+ xj∂yj

(
∂n

∂yn

1 − e−ia∂yn

1 − e−ia∂n
− 1
))

f(z)g(y)

= f(x) g(x) +
i

2
Cμν

λ xλ(∂μf)(∂νg) + . . . . (17)

Both star-products start in zeroth order with the usual, commutative prod-
uct and are deformations of it.

6 It is obvious that they are not isomorphic as algebras since one is a commutative
algebra and the other not.

7 This isomorphism is not unique and every isomorphism describes an ordering pre-
scription.
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1.5.2. The Star-Representation of Differential Operators

An operator Ô acting on Âx̂ can be represented by a differential operator
O∗ acting on commutative functions:

f̂(x̂) Ô−→ Ô(f̂(x̂))
ρ−1 ↓ ↓ ρ−1

f(x) O∗−→ O∗(f(x))

The star-representation of the derivatives ∂̂μ for the canonically deformed
space defined in (12) is quite easy: The differential calculus in this case is
undeformed and we get

∂∗μ = ∂μ. (18)

In the case of κ-deformed spaces things are more complicated. For instance,
the star-representation of the Dirac-derivatives introduced in (14) and their
Leibnitz-rules read:

D∗
nf(x) = (

1
a

sin(a∂n) − cos(a∂n) − 1
i a∂2

n

∂j∂
j) f(x) ,

D∗
i f(x) =

e−ia∂n − 1
−i a ∂n

∂if(x) , (19)

D∗
n(f(x) � g(x)) = (D∗

nf(x)) � (e−ia∂ng(x))

+ (eia∂nf(x)) � (D∗
ng(x)) (20)

− i a
(
D∗

j e
ia∂nf(x)

)
� (Dj∗g(x)) ,

D∗
i (f(x) � g(x)) = (D∗

i f(x)) � (e−ia∂ng(x))
+ f(x) � (D∗

i g(x)). (21)

We will see in the next section how the above star-representation of the
Dirac-derivatives will be used to establish a gauge theory on κ-deformed
space-time.

2. Gauge Theory on Deformed Spaces

Gauge theories are based on a gauge group. This is a compact Lie group
with generators T a

[T a, T b] = i fab
c T c. (22)

Infinitesimal transformation of the matter field ψ0 is given by

δαψ
0(x) = i α(x)ψ0(x), (23)

where α(x) = αa(x)T a is a Lie algebra-valued gauge parameter. Transfor-
mations (23) close in the algebra

δαδβ − δβδα = δ−i [α,β]. (24)
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In this section we will generalize this concept to deformed spaces as well. We
choose to work in the �-product representation and define noncommutative
gauge transformations as

δαψ = iΛα � ψ(x) , (25)

where Λα is the noncommutative gauge parameter and ψ is the noncom-
mutative matter field. Before proceeding to the standard construction of
a covariant derivative one should check if this transformations close in the
algebra (24). Explicit calculation gives

(δαδβ − δβδα)ψ(x) = (Λα � Λβ − Λβ � Λα) � ψ

=
1
2

(
[Λa

α
�, Λb

β]{T a, T b} + {Λa
α

�, Λb
β}[T a, T b]

)
� ψ . (26)

If we take Λα = Λa
α T

a, that is a Lie algebra-valued gauge parameter,
algebra (24) will not close because of the first term in the last line of
(26) (anticommutator of two generators is no longer in the Lie algebra
of generators). There are two ways of solving this problem. One is to
consider only U(N) gauge theories and that one we will not follow here. The
other one is to go to the enveloping algebra [9] approach and we continue
analysing this one.

2.1. Enveloping Algebra Approach
To start with, we define the basis in the enveloping algebra (we choose
symmetric ordering)

: T a : = T a ,

: T a T b : =
1
2
(T a T b + T b T a) ,

: T a1 . . . T al : =
1
l!

∑
σ∈Sl

(T σ(a1) . . . T σ(al)) .

Gauge parameter Λα is said to be enveloping algebra-valued

Λα(x) =
∞∑
l=1

∑
basis

αa1...al
l (x) : T a1 . . . T al

= αa(x) : T a : + αa1a2
2 (x) : T a1 T a2 : + . . . . (27)

In this case algebra (24) will close since we work in the enveloping algebra.
Now one can proceed and define a covariant derivative Dμψ(x) = ∂∗μψ(x)−
iVμ � ψ(x) by its transformation law

δα(Dμ ψ(x)) = iΛα �Dμψ(x) . (28)
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The choice of ∂∗μ will depend on the choice of a deformed space on which we
want to construct gauge theory. Since we are trying to keep the analysis as
general as possible we do not specify (yet) what is ∂∗μ. The noncommutative
gauge field Vμ has to be enveloping algebra-valued as well

Vμ =
∞∑
l=1

∑
basis

V l
μ a1...al

: T a1 . . . T al : .

From all this it looks like we have a theory with infinitely many degrees of
freedom. This is an unphysical situation and the solution of the problem
is given in terms of the Seiberg-Witten map [10].

2.2. Seiberg-Witten Map
The basic idea of this map is to suppose that the noncommutative gauge
parameter (field) can be expressed in terms of the commutative gauge pa-
rameter and field, for example Λα = Λα(x;α,A0

μ). Then one uses (24) to
calculate explicitly this dependance. Inserting Λα = Λα(x;α,A0

μ) in (24)
gives 8

(Λα � Λβ − Λβ � Λα) � ψ + i (δαΛβ − δβΛα) � ψ = δ−i [α,β] ψ . (29)

What has been said up to now applies for a general deformed space since
we have not yet specified the �-product or the derivatives ∂∗μ. But the
equation (29) has to be solved perturbatively, therefore one has to expand
the �-product. Since we are mainly interested in the gauge theories on the
κ-deformed space-time we use (17) and expand Λα as

Λα = α+ aΛ1
α + . . .+ akΛk

α + . . . .

Up to first order in the deformation parameter a the solution of (29) is

Λα = α− 1
4
xλCμν

λ {A0
μ, ∂να} . (30)

This solution is not unique, one can always add to it solutions of the ho-
mogeneous equation. Using (25) and solution for gauge parameter (30) one
finds solution for the noncommutative matter field as well

ψ = ψ0 − 1
2
xλCμν

λ A0
μ ∂νψ

0 +
i

8
xλCμν

λ [A0
μ, A

0
ν ]ψ

0, (31)

where ψ0 is the commutative matter field, δαψ0 = i αψ0.
If one compares �-products for the canonically deformed space (16) and
for the κ-deformed space-time (17) one sees that up to first order in the

8 One should notice that now δαΛβ �= 0 because Λβ depends on the commutative
gauge field A0

μ as well and δαA0
μ = ∂μα − i [A0

μ, α].
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deformation parameter they are of the same form (just replace θμν with
Cμν

λ xλ). Therefore it is not surprising that the solutions for Λα and ψ in the
canonically deformed space can be obtained from (30) and (31) by replacing
Cμν

λ xλ with θμν (and the other way around). However this analogy only
applies in first order, in second order new terms will appear in the κ-
deformed space-time compared to the canonically deformed space.
In order to solve the Seiberg-Witten map for the gauge field Vμ one first
has to choose ∂∗μ derivatives. In the canonically deformed space ∂∗μ = ∂μ

is the most natural choice. In the κ-deformed space-time there are more
possibilities (see Section 1.3.). We choose D∗

μ derivatives because of their
vector-like transformation law (13). From Dμψ = D∗

μψ − iVμ � ψ and

δα(Dμψ) = iΛα �Dμψ

we get

(δαVμ) � ψ = D∗
μ(Λα � ψ) − Λα � (D∗

μψ) + i [Λα
�, Vμ] � ψ

�= (D∗
μΛα) � ψ + i [Λα

�, Vμ] � ψ .

The last line follows from the nontrivial Leibnitz rules for D∗
μ derivatives

(20,21). In order to continue we split between n and j indices.
First we have a look at the j index.

(δαVj) � ψ = D∗
j (Λα � ψ) − Λα � (D∗

jψ) + i [Λα
�, Vj ] � ψ

= (D∗
j Λα) � e−ia∂nψ + i [Λα

�, Vμ] � ψ , (32)

where we have used (21). In order to solve this equation we have to allow
for Vj to be derivative-valued, that is we make the following ansatz

Vj � ψ = Aj � (e−ia∂nψ)

and insert it into (32). After using e−ia∂n(f � g) = (e−ia∂nf) � (e−ia∂ng)
and omitting e−ia∂nψ we have

δαAj = (D∗
j Λα) + iΛα � Aj − i Aj � (e−ia∂nΛα) . (33)

This equation can be solved order by order in the deformation parameter.
The solution up to first order in a is

Vj = A0
j − i aA0

j ∂n − i a

2
∂nA

0
j −

a

4
{A0

n, A
0
j}

+
1
4
xλCμν

λ

(
{F 0

μj , A
0
ν} − {A0

μ, ∂νA
0
j}
)
. (34)



Deformed Spaces, Symmetries and Gauge Theories 201

For Vn one follows the same steps, using the Leibnitz rule for the D∗
n deriva-

tive (20) this time. The solution up to first order in a is

Vn = A0
n − i aA0j∂j − i a

2
∂jA

0j − a

2
A0

j A
0j

+
1
4
xλCμν

λ

(
{F 0

μn, A
0
ν} − {A0

μ, ∂νA
0
n}
)
. (35)

From (34) and (35) we see that besides being enveloping algebra-valued
(consequence of noncommutativity, that is �-product) the gauge field is
also derivative-valued. This is the consequence of special properties of κ-
deformed space-time, more concretely of nontrivial Leibnitz rules for D∗

μ

derivatives.
For completeness we give here also the solution for Vμ in the canonically
deformed space

Vρ = A0
ρ +

1
4
θμν
(
{F 0

μρ, A
0
ν} − {A0

μ, ∂νA
0
ρ}
)
. (36)

This solution is not derivative valued since ∂μ derivatives have undeformed
Leibnitz rule.
Having solutions of the Seiberg-Witten map at hand, one calculates the
field-strength tensor defined as

Fμν = i [Dμ
�, Dν ] . (37)

Since the gauge field Vμ is derivative-valued 9 it is not surprising that
the field-strength tensor will also be derivative-valued. With a derivative-
valued field-strength tensor we do not know how to write down the action
for the gauge field. Therefore, we split the tensor Fμν into ”curvature-like”
and ”torsion-like” terms, like one usually does in gravity theories

Fμν = Fμν + T ρ
μνDρ + . . .+ T ρ1...ρl

μν : Dρ1 . . .Dρl
: + . . . (38)

For the action we will only use the ”curvature-like” term Fμν and ignore
all ”torsion-like” terms. With this we have all the ingredients to write
Lagrangian densites up to the first order in a, see [1].

2.3. Integral and the Action
To come from the Lagrangian densities to the action for noncommutative
gauge theory we need an integral. It should have the trace property∫

f � g =
∫
g � f . (39)

9 The following does not apply to the canonically deformed space since Vμ in not
derivative valued there.
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This is required by gauge invariance of the action for the gauge field and
can be used to formulate the variational principle. For the canonically
deformed space (39) is automatically fulfilled and the following analysis
is not needed there. Unfortunately, for κ-deformed space-time (39) is not
fulfilled. The way to repair this is to introduce so-called measure function
μ(x) such that∫

dn+1x μ(x) (f � g) =
∫

dn+1x μ(x) (g � f) . (40)

From this request one gets conditions on μ(x)

∂nμ(x) = 0, xj∂jμ(x) = −nμ(x) . (41)

This equation can be solved, however the solution is not unique. But this
is not the only problem. It turns out that the solution for μ(x) is a inde-
pendent so it does not vanish in the limit a → 0. This means that it will
spoil the classical limit of the theory (equations of motion for example).
Also, because of its explicit x-dependence 10 it will break the κ-Poincaré
invariance of the integral.
On the other hand, one can construct an integral which is κ-Poincaré in-
variant using quantum trace [11]. The problem with the integral obtained
that way is that it does not have the trace property, therefore it is not
convenient for analysing gauge theories.
So far there has not been a completely satisfactory answer to the question of
proper definition of the integral on κ-deformed space-time. It appears that
one has to choose between having a gauge invariant theory or κ-Poincaré
invariant theory. In the case of U(1) gauge theory we have been able to
write down the action using the first approach [12], but the analysis is still
far from being complete.
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