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Abstract. We study the thermodynamic properties of a neutral vector boson gas in presence
of a constant magnetic field, by means of a semi-classical approach that allows to introduce the
spin in the non-relativistic spectrum of the bosons. Bose-Einstein condensation is obtained and
it turns out to depend on all the parameters involved in the problem: temperature, particle
density and magnetic field. A spontaneous magnetization appears at low temperature as a
consequence of the condensed state. The axial symmetry imposed in the system by the magnetic
field presence, splits the pressure in two components, one along and another perpendicular to the
magnetic axis. Under certain conditions, the perpendicular pressure becomes negative signaling
that the system undergoes a transversal magnetic collapse. The spontaneous magnetization
might be useful to model magnetic field production inside compact stars, while the negative
pressures imposes certain limits to the temperatures and densities needed inside these objects
to support a given magnetic field.

1. Introduction

Neutron stars (NS) are the smaller and denser objects known in our Universe so far [1]. Although
they have been widely studied, there are no consensus about their internal composition, mainly
because matter at such extreme conditions cannot been obtained yet at lab. Nevertheless, a lot
of exotic particles and phases have been conjecture to exist in NS interiors [2]. In particular, it
has been proposed that, at some stage of the NS evolution, it might contain certain amount of
bosons formed up by the pairing of neutrons and protons in the crust and core, and electron and
positrons in the magnetosphere [2, 3, 4]. Given the high magnetic fields present in most NS, the
magnetic properties of these particles are expected to be relevant for the structure, composition
and other physical phenomena related to these compact objects.

Our main purpose is to study the thermodynamic properties of a magnetized gas of neutral
spin-1 particles (neutron-neutron or electron-positron spin parallel paired), with the aim of
providing equations of state that allows more accurate descriptions of magnetic neutron stars.
However, note that the occurrence of Bose-Einstein condensation, one of the most outstanding
properties of bosonic systems, in presence of magnetic fields is of interest in others areas, such
as condensed matter and particle physics [5, 6], in which this work might be also applied.

The thermodynamics of relativistic magnetized boson gases has been tackled in [7, 8, 9, 10, 11]
for the low temperature regime (T << m). In this sense, our work can be seen as an



IARD 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012004

IOP Publishing

doi:10.1088/1742-6596/1239/1/012004

2

extension of the former papers, because Bose-Einstein condensation (BEC), magnetization and
the anisotropic equations of state (EoS) are obtained at any temperature, although so far we
are taken the bosons as non relativistic. The extension of the study at any temperature is
convenient mainly for two reasons. First, it provides an easy way to check the computations
consistency since in the high temperature region the well known classical behaviour has to be
recovered. And second, this extension eliminates the restriction that T has to be much less
than the particle mass, that depending on the kind of bosons might be in contradiction with the
temperatures expected inside the NS.

On the other hand, a non-relativistic magnetized spin-1 boson gas has been investigated in
[12]. In what concerns BEC and magnetic properties, our results are in general agreement with
those shown in the above mentioned paper. However, in [12] the breaking of the SO3 rotational
symmetry produced by the magnetic field is never taken into account, in spite of this is a very
relevant feature that splits the pressure in two components, perpendicular and parallel to the
magnetic field direction, and may cause instabilities in the system [13]. In order to provide a
complete description of the non-relativistic magnetized spin-1 gas, we devote a section to the
analysis of the stability and the anisotropic pressures.

The paper is organized as follows. In Section 2, the thermodynamical potential of the non-
relativistic spin-1 gas under the action of an external magnetic field is computed. Section 3 is
devoted to Bose-Einstein condensation and magnetic properties. Anisotropic EoS and magnetic
instabilities are discussed in Section 4. Finally, in Section 5 concluding remarks are given.

2. Thermodynamical potential of a non-relativistic vector boson gas interacting

with a magnetic field

In this section we compute the thermodynamical potential of an ideal non-relativistic neutral

vector boson gas interacting with a constant and uniform magnetic field
−→
B = (0, 0, B). The

spectrum of the bosons is ε(p, Sz) = �p 2/2m − SzκB, being m the mass of the particles, κ their
magnetic moment, �p the momentum and Sz = −1, 0,+1 the projection of the spin in the z
direction. For such a gas, the density of states g(ε) reads

g(ε) =
4πV

(2π�)3

∑
Sz=−1,0,1

∫ ∞

0
dp p2δ (ε− ε(p, Sz))

=
4πV

(2π�)3

∑
Sz=−1,0,1

∫ ∞

0
dp p2δ

(
ε− �p 2

2m
+ SzκB

)

=
4πV

(2π�)3

[ ∫ ∞

0
dp p2δ

(
ε− �p 2

2m
− κB

)
+

∫ ∞

0
dp p2δ

(
ε− �p 2

2m

)
(1)

+

∫ ∞

0
dp p2δ

(
ε− �p2

2m
+ κB

)]
.

where ε is the energy. Note that Eq. (1) can be separated in three terms, each one corresponding
to a specific spin state. After doing the integration g(ε) becomes

g(ε) =
4πmV

(2π�)3

[√
2m(ε− κB) +

√
2mε+

√
2m(ε+ κB)

]
. (2)

Using Eq. (2) the thermodynamical potential Ω(μ, T,B) might be written as

Ω(μ, T,B) =
T

V

∫ ∞

0
dεg(ε) ln(fBE(ε, μ)), ∀ μ < ε, (3)
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with fBE(ε, μ) =
[
1− eβ(μ−ε)

]−1
being the Bose-Einstein distribution function, μ the chemical

potential, T the absolute temperature and β = 1/T . As the density of states, Ω(μ, T,B) can be
divided in three terms Ω(μ, T,B) = Ω−(μ, T,B)+Ω0(μ, T,B)+Ω+(μ, T,B), where Ω−(μ, T,B),
Ω0(μ, T,B) and Ω+(μ, T,B) corresponds to the states with Sz = −1, Sz = 0 and Sz = 1
respectively. Integrating over the energy in Eq. (3) one gets

Ω−(μ, T,B) = − T

λ3
g5/2(z−), (4)

Ω0(μ, T,B) = − T

λ3
g5/2(z), (5)

Ω+(μ, T,B) = − T

λ3
g5/2(z+), (6)

where g5/2(x) =
∑∞

l=1 x
l/l5/2 is the polylogarithmic function of order 5/2, λ =

√
2π/mT is the

thermal wavelength, z = eμ/T is the fugacity and zσ = zeσ
κB

T where σ = −,+. With the use
of Eqs. (4)-(6), all the thermodynamic magnitudes -particle density, magnetization, pressures,
etc.-, and the contributions to them of each spin state, can be determined.

3. Bose-Einstein condensation and magnetic properties

We start the study of Bose-Einstein condensation (BEC) by calculating the particle number
density ρ

ρ = ρgs(T,B)− ∂Ω(μ, T,B)

∂μ
, (7)

where ρgs stands for the particles in the condensate, i.e. in the ground state, and is such that
ρgs(T,B) = 0 if T ≥ Tc and ρgs(T,B) > 0 if T < Tc, being Tc the BEC critical temperature.
After doing the derivative in Eq. (7), the particle density takes the form

ρ = ρgs(T,B) + ρ−(μ, T,B) + ρ0(μ, T,B) + ρ+(μ, T,B), (8)

ρ = ρgs(T,B) +
g3/2(z−)

λ3
+

g3/2(z)

λ3
+

g3/2(z+)

λ3
. (9)

Using Eq. (9) we compute Tc numerically as a function of ρ and B. To do so, it is enough to
recall that when the transition to the BEC begins, ρgs = 0 and the chemical potential μ equals
the particle’s rest energy εmin = −κB. The result is depicted in left panel of Fig.1, where Tc is
plotted as a function of the magnetic field for several fixed values of the particle density. The
results are given for bosons of mass m = 2me and κ = 2μB , where me is the electron mass and
μB the Bohr magneton. Bc = m/2κ is the magnetic field value at which the magnetic energy
becomes comparable to the mass of the particles.

The left panel of Fig.1 shows how the BEC critical temperature grows starting from its B = 0
value

Tc(0) =
2π

m

(
ρ

3g3/2(1)

)2/3

, (10)

until saturation when B →∞ for wich

Tc(∞) =
2π

m

(
ρ

g3/2(1)

)2/3

. (11)
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Figure 1. Left panel, BEC critical temperature as a function of the magnetic field for several
values of the particle density. Right panel, particle density per spin state as a function of
temperature for ρ = 1031cm−3 and B = 0.5Bc.

These extreme values of the BEC critical temperature are in agreement with the ones obtained
in [12]. On the other hand, the asymptotic behavior of Tc with growing B constitutes a major
difference between this case and the relativistic one, in which the BEC critical temperature
always increases with B and diverges when B → Bc [11].

The saturation of Tc in the strong magnetic field region give us valuable information about
the influence of B on the BEC of non-relativistic particles. For magnetic field values before
saturation, increasing B increases Tc in a noticeable way, driving the system to condensation.
But when the magnetic field reaches the saturated region, further changes barely affects Tc, in
spite of what we should not forget that Tc(∞) is bigger than Tc(0). Therefore, one can conclude
that in general, for a fixed particle density, the magnetic field effect on the BEC is to increase
the critical temperature, and the weaker the field, the more sensitive is the system to change
on its values. Note also that, although the BEC critical temperature increases with the particle
density, the ratio between the two extreme values Tc(∞)/Tc(0) =

3
√
9 is constant.

Furthermore, it is of interest to look at the behavior of the particle fraction in the BEC ρgs/ρ
and per spin state ρσ/ρ, σ = −, 0,+ as a function of temperature. This is shown in right panel
of Fig. 1. In the high temperature region, T � m, ρgs = 0 and ρσ/ρ → 1/3 for all σ, because
this is a temperature dominating region in which thermal disorder rules. When T decreases,
the magnetic field ordering effect begins to be noticed and the fraction of particles with spin
aligned to the field ρ+/ρ becomes the higher one. This behavior continues through the low
temperature region T � m being the next appreciable change when T = Tc. At this point the
fraction of particles in the BEC becomes non zero and increases with decreasing temperature
until it equals 1 at T = 0, where ρσ/ρ = 0 for all σ. Nevertheless, since the condensate in the
ground state is determined by Sz = 1, it is expected that, for a magnetic boson gas, a non zero
magnetization exists even in the absence of magnetic field. To check on this, we computed the
gas magnetization

M = κρgs −
(
∂Ω

∂B

)
= κ(ρgs + ρ+)− κρ−, (12)

and plotted it in Fig. 2 for ρ = 1031cm−3 and several values of B, including B = 0. The curves
on this graph are in accordance with the ones in Fig. 1 (right panel): M → 0 for high T , while
M → κρ when T → 0. The outstanding feature of Fig. 2 is that this happens also for B = 0, i.e.
the gas shows a spontaneous magnetization that in this case is not due to an interaction between
the spin of the particles but to the BEC. Note that, for B = 0, M 	= 0 only when T < Tc. This
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Figure 2. Magnetization as a function of temperature for ρ = 1031cm−3 and several values of
the magnetic field.

can be also obtained by direct substitution of B = 0 in Eq. (12), which gives M(B = 0) = κρgs.
This result acquires astrophysical relevance since the spontaneous magnetization might provide
a magnetic field source for the interior of compact objects.

4. Equations of state

To compute the EoS, the breaking of the SO3 rotational symmetry produced by the magnetic
field in the system has to be taken into account [13]. As a consequence of that, the energy-
momentum tensor of the particles becomes anisotropic and the pressure splits in two components,
one parallel, P‖, and the other perpendicular, P⊥, to the magnetic axis. Therefore, for a
magnetized quantum gas of either neutral or charged, bosonic or fermionic, particles the EoS
read

E = Ω+ μρ− TS, (13)

P‖ = −Ω, (14)

P⊥ = −Ω−MB, (15)

where S = − (∂ΩB/∂T )T,V is the entropy of the system, that in the present case is

S = −5

2

Ω

T
− μ

ρ− ρgs
T

− κB
ρ+ − ρ−

T
. (16)

Combining Eq. (16) with Eqs. (13) and (4), we get for the energy density

E =
3

2
P‖ − κB(ρgs + ρ+ − ρ−). (17)

While from Eqs. (14) and (15) one can see that the pressures are expressed in terms of quantities
Ω and M computed above. The EoS, Eqs. (14), (15) and (17), can be used to model magnetized
compact objects composed partially of entirely of magnetized bosons. However, care must be
taken, since, as shows Fig. 3, in dependence of the temperature, the magnetic field and the
particle density, the perpendicular pressure might be negative.

Left panel of Fig. 3 shows the pressures as a function of the magnetic field for ρ = 1031cm−3

and several values of the temperature. At zero magnetic field, P‖ = P⊥ and the system
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is isotropic. If B 	= 0 the difference between the pressures increases when decreasing the
temperature or augmenting the magnetic field. In fact, it is evident from the plot that the
magnetic field barely affects the parallel pressure, while its contribution is very important to
the perpendicular one. From a microscopic point of view, this is because the magnetic field
diminishes the perpendicular momentum of the particles, but does not affect the parallel one.
Macroscopically, this effect is expressed in the subtractive term −MB (note that M > 0) that
appears in the perpendicular pressure. That is why P⊥ is always less than P‖ and decreases
until becoming zero or even negative with the increase of the magnetic field. Since the effect of
a negative perpendicular pressure is to push the particles inwards to the magnetic axis, this can
be interpreted as the system becoming unstable. This kind of instability has been previously
observed in other magnetized quantum gases and it is known as transverse magnetic collapse
[13, 14, 15, 16, 17].
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Figure 3. Left plot, the pressures as a function of the magnetic field for several values of the
temperature and ρ = 1031cm−3. Right plot, phase diagram for the transverse magnetic collapse
in the particle density-magnetic field plane for several values of the temperature; the dashed
lines stands for the solution of P⊥(T,B, ρ) = 0 at a fixed temperature; for each temperature,
the instability region has been shadowed.

In right panel of Fig. 3 a phase diagram for the collapsed/non collapsed gas is drawn in the
particle density-magnetic field plane, for several values of the temperature. The dashed lines
stand for the solution of P⊥(T,B, ρ) = 0 at a fixed temperature. The gas is stable in the region
under the lines and unstable over them. At T 	= 0 and B = 0, an infinite number of particles
is needed for the system to become unstable, an expected result since the magnetic field is the
cause of the instability. When T = 0 and B 	= 0, P‖ = 0 and P⊥ = −MB is always negative,
i.e. the pure condensed state is unstable for any non-zero magnetic field value. In the case that
both the temperature and the magnetic field are different from zero decreasing the temperature
favors the collapse, as well as increasing the magnetic field. In addition, Fig. 3 also shows that
the collapse is favored by particle density augmentation, because the denser the gas, the higher
are M and Tc. In consequence, for a fixed temperature and magnetic field increasing ρ decreases
the thermal pressure (−Ω(μ, T,B)) and increases the magnetic pressure (−MB) driving P⊥
to negative values. In this sense, the collapse imposes an upper limit to the particle densities
that can exist inside compact stars with a given magnetic field. Nevertheless, we would like to
remark that since a compact star has an heterogeneous composition, the occurrence or not of
the collapse will depend on the pressures, and therefore, on the magnetic response, of all the
present species.
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5. Conclusions

We have studied the properties of the BEC, magnetization and EoS of a magnetized vector boson
gas at any temperature. The bosons are considered non-relativistic and the spin is included under
a semi-classical approach.

The phase transition to the BEC depends on the temperature, the particle density and the
magnetic field, in a way that increasing the particle density or the magnetic field, as well as
decreasing the temperature, drives the system to the condensed state. For a fixed particle
density, the critical temperature grows with the magnetic field from its value at B = 0, Tc(0) to
the limiting value Tc(∞), being the ratio between this extreme values independent of density.

Below the BEC critical temperature, the gas shows a spontaneous magnetization. This
magnetization is not due to a spin coupling between the particles, but to the fact that bosons
in the condensed phase are in the state of lowest energy. For a system of magnetic bosons this
state is such as all the particles have the same spin projection. The ability of this system to
be spontaneously magnetized might be connected to magnetic field production in astrophysical
objects.

As happens for other magnetized quantum gases, the magnetic field presence imposes its
axial symmetry to the system and separates the pressures in two components, one along and the
other perpendicular to the magnetic axis. Under certain conditions, the perpendicular pressure
might vanish or be negative and the system becomes unstable. As was shown, this instability
is caused by the magnetic field, while the temperature opposes it. In consequence, the cooler
the matter, the more susceptible it is to undergo a transverse magnetic collapse. On the other
hand, increasing the particle density also destabilizes the gas. This imposes an upper limit to
the boson densities allowed in astronomical objects for a given temperature and magnetic field.
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