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Number counts observations available with new surveys such as the Euclid mission will

be an important source of information about the metric of the Universe. We compute
the low red-shift expansion for the density contrast using an exact spherically symmetric
solution in presence of a cosmological constant. At low red-shift the expansion is more
precise than linear perturbation theory prediction. We then use the local expansion to
reconstruct the metric from the monopole of the density contrast. We test the inversion
method using numerical calculations and find a good agreement within the regime of
validity of the red-shift expansion. The method could be applied to observational data
to reconstruct the metric of the local Universe with a level of precision higher than the
one achievable using perturbation theory.
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1. Introduction

The standard cosmological model is based on the assumption that the Universe is

homogeneous and isotropic on sufficiently larges scales, and is confirmed by different

observations such as for example the cosmic microwave background (CMB) radia-

tion1 or of galaxy catalogues. However the presence of structure at smaller scales

can affect local observations as it was shown in Ref. 2, and it is therefore important

to understand its consequences. The effects of inhomogeneities on cosmological ob-

servables have been studied in different cases, such as dark energy, the luminosity

distance3–5 or the expansion scalar.6 These effects are due to the fact that spatial

inhomogeneities change the energy of photons, modifying the cosmological red-shift

due to the Universe expansion. As a consequence some errors are produced in the

estimation of parameters based on homogeneous cosmological models.

One important source of information about the Universe are galaxy catalogues

since they allow to map the local density field. Since we can only measure the red-

shift of astrophysical objects for which other distance measurement methods such

as stellar parallax cannot be applied, it is important to take into account the effects

of these inhomogeneities on the metric in order to compute self-consistently the

density in red-shift space. This is particularly important when trying to determine

the metric of the Universe.
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2. Modeling the local Universe

In order to model the monopole component of the local structure we use the LTB

solution7–11

ds2 = −dt2 +
R′(t, r)2

1 + 2E(r)
dr2 +R(t, r)2dΩ2 , (1)

where E(r) is an arbitrary function of r, and R′(t, r) = ∂rR(t, r). The analytical

solution of Einstein’s equations can be derived12,13 if we introduce a new function

k(r), and a new coordinate η = η(t, r) given by

∂η

∂t
|r =

r

R
=

1

a
, k(r) = −2E(r)

r2
. (2)

The Einstein equations imply

(
∂a

∂η

)2

= −k(r)a2 +
ρ0(r)

3
a+

Λ

3
a4 , (3)

where ρ0(r) is an arbitrary function of r, and we adopt a system of units in which

c = 8πG = 1. Without any loss of generality we adopt the coordinate system in

which ρ0(r) is a constant, which is known as the FLRW gauge. The solution to the

above equation can be written in the form14

a(η, r) =
ρ0

k(r) + 3℘(η2 ; g2(r), g3(r))
. (4)

where ℘(x; g2, g3) is the Weierstrass elliptic function and

g2(r) =
4

3
k(r)2 , g3(r) =

4

27

(
2k(r)3 − Λρ20

)
. (5)

The relation between t and η can be found by integrating Eq. (2) and is given by6

t(η, r) =
2ρ0

3℘′
(
℘−1

(
−k(r)3

))
⎡
⎣ln

⎛
⎝σ

(
η
2 − ℘−1

(
−k(r)3

))

σ
(
η
2 + ℘−1

(
−k(r)3

))
⎞
⎠+ ηζ

(
℘−1

(
−k(r)

3

))⎤⎦ .

The radial null geodesic equations take the form15

dη

dz
= −∂rt(η, r) +G(η, r)

(1 + z)∂ηG(η, r)
,

dr

dz
=

a(η, r)

(1 + z)∂ηG(η, r)
, (6)

where

G(η, r) ≡ R′(t(η, r), r)√
1− k(r)r2

.

The density profile is given by

ρ(η, r) = ρ(t(η, r), r) =
ρ0

a(η, r)2R′(t(η, r), r)
. (7)
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The background density of the universe is given by the sub-horizon volume average

of ρ on constant time slices

ρ(t) =

∫
V

ρ(t, r)dV∫
V

dV
=

∫ rHor(t)

0

ρ(t, r)
R(t, r)2R′(t, r)√

1− k(r)r2
dr

∫ rHor(t)

0

R(t, r)2R′(t, r)√
1− k(r)r2

dr

, (8)

where the upper limit of the integrals rHor(t) is the comoving horizon as a function

of time, and determines the region of space causally connected with the central

observer at time t. We can then evaluate ρ(t) at the time t(z) corresponding to a

given redshift z, i.e. the time along null radial geodesics, and define the background

value of ρ at redshift z as ρ(z) ≡ ρ(t(z)). We can then define the density contrast

δ(z) =
ρ(z)

ρ(z)
− 1 . (9)

If the size of the local inhomogeneity is sufficiently smaller than the volume over

which the integral in Eq. (8) is performed then ρ will get most of its contribution

from the asymptotically homogeneous region and the average density will be well

approximated by the asymptotic density

ρ(z) = 3(Hb
0)2ΩbM (1 + z)3 ; Hb

0 = H(0) , ΩbM =
ρ(0)

3(Hb
0)2

, (10)

where the upper-script b stands for background and H is the expansion scalar

H(t, r)6.

3. Reconstruction of the local metric

In order to reconstruct the metric of the local universe from the density contrast

we expand the curvature function k(r) as

k(r) = k0 + k1r + k2r
2 + · · · . (11)

We also expand the solution of the geodesic equations according to

r(z) = r1z + r2z
2 + r3z

3 + · · · , η(z) = η0 + η1z + η2z
2 + · · · . (12)

We expand t(η, r) as

t(η, r) = t0(r) + a(η0, r)(η − η0) +
1

2
∂ηa(η0, r)(η − η0)2 + · · · , (13)

where t0(r) ≡ t(η0, r). We now define the dimensionless parameters Kn ≡
kn(a0H0)−(n+2) and applying the chain rule to t′0(0) and t′′0(0) we find

t′0(0) =
∂t0(r)

∂k

∂k

∂r
|r=0 = a0αK1 , t′′0(0) = a0(a0H0)(βK2

1 + 2αK2) , (14)

where α and β are dimensionless parameters.
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We will consider the case in which k0 = 0, which is enough to understand

qualitatively the effects of the inhomogeneity, since this term corresponds to the

homogeneous component of the curvature function k(r). Expanding the density

contrast up to second order we find

δ(z) = δ0 + δ1z + δ2z
2 , (15)

δ0 =

(
H0

Hb
0

)2(
ΩM

ΩbM
− 1

)
, (16)

δ1 =

(
H0

Hb
0

)2
4K1 (3αΩM + 1)

3ΩbM
, (17)

δ2 = −
(
H0

Hb
0

)2
1

36ΩΛΩMΩbM

[
18K1ΩΛΩ2

M (3αΩM + 2)

+K2
1

{
ΩΛ

(
− 18

(
25α2 − 4α+ 5β

)
Ω2
M + 81α2Ω3

M − 300αΩM − 40
)

+ 20 (ΩM − ζ0)

}
− 60K2ΩΛΩM (3αΩM + 1)

]
. (18)

From these equations we can finally obtain

k(r) ≈ K1(a0H0)3r +K2(a0H0)4r2 , (19)

K1 =

(
Hb

0

H0

)2
3ΩbMδ1

4 (3αΩM + 1)
, (20)

K2 =

(
Hb

0

H0

)4
3ΩbM

320ΩΛΩM (3αΩM + 1) 3

[
8ΩΛΩM (3αΩM + 1)

{
9αδ1Ω2

M

+ 6 (4αδ2 + δ1) ΩM + 8δ2

}
+ δ21ΩbM

(
H0

Hb
0

)2{
ΩΛ

(
− 18

(
25α2 − 4α

+ 5β) Ω2
M + 81α2Ω3

M − 300αΩM − 40
)

+ 20 (ΩM − ζ0)

}]
. (21)

In the above equations we have introduced the parameters a0, H0, ΩM , ΩΛ, T0 and

ζ0 according to their corresponding definitions given in Refs. 14, 6.

4. Testing the accuracy of the method

In order to test the formulae we have derived we chose models defined by the spatial

curvature function k(r) according to

k(r) = ±(a0H0)2
a0H0r

5

[
1− tanh (2a0H0r)

]
. (22)

We also compare our formula for the density contrast with the linear perturba-

tion theory prediction that around a flat homogeneous background16

δ(z) ≈ −3δH(z)(ΩbM)−0.55 . (23)
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Fig. 1. The function k(r) is plotted in units of H2
0 as a function of the radial coordinate in units

of H−1
0 .

Fig. 2. The density contrast is plotted as a function of redshift. The left and right plots are for
the inhomogeneities corresponding to Fig. 1. The solid lines correspond to the numerical solution,
the dashed lines to the analytical formula we derived and the dot-dashed lines to the perturbation
theory result.

Fig. 3. The reconstructed metric function k(r) is plotted in units of H2
0 as a function of the radial

coordinate in units of H−1
0 for the inhomogeneities corresponding to Fig 1. The black solid line

corresponds to the original k(r) function and the black dotted line to the reconstructed one.

5. Conclusions

We have derived the low-redshift expansion for the monopole of the density contrast.

At low red-shift the formula is in good agreement with numerical solutions and
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is more accurate than the linear perturbation theory approximation. Using this

formula we have then developed a new analytical inversion method to reconstruct

the metric from the monopole of the density contrast. The inversion method could

be applied to low red-shift observational data to determine the metric with a level

of precision higher than the one achievable using perturbation theory.

For a full reconstruction of the metric beyond the monopole contribution other

solutions of the Einstein equations could be used for the analytical approach, in

order to accommodate more complex geometries. For a general numerical inversion

able to reconstruct any type of metric more sophisticated methods in numerical

relativity will be required.
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