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Number counts observations available with new surveys such as the Euclid mission will
be an important source of information about the metric of the Universe. We compute
the low red-shift expansion for the density contrast using an exact spherically symmetric
solution in presence of a cosmological constant. At low red-shift the expansion is more
precise than linear perturbation theory prediction. We then use the local expansion to
reconstruct the metric from the monopole of the density contrast. We test the inversion
method using numerical calculations and find a good agreement within the regime of
validity of the red-shift expansion. The method could be applied to observational data
to reconstruct the metric of the local Universe with a level of precision higher than the
one achievable using perturbation theory.
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1. Introduction

The standard cosmological model is based on the assumption that the Universe is
homogeneous and isotropic on sufficiently larges scales, and is confirmed by different
observations such as for example the cosmic microwave background (CMB) radia-
tion! or of galaxy catalogues. However the presence of structure at smaller scales
can affect local observations as it was shown in Ref. 2, and it is therefore important
to understand its consequences. The effects of inhomogeneities on cosmological ob-
servables have been studied in different cases, such as dark energy, the luminosity

35 or the expansion scalar.% These effects are due to the fact that spatial

distance
inhomogeneities change the energy of photons, modifying the cosmological red-shift
due to the Universe expansion. As a consequence some errors are produced in the
estimation of parameters based on homogeneous cosmological models.

One important source of information about the Universe are galaxy catalogues
since they allow to map the local density field. Since we can only measure the red-
shift of astrophysical objects for which other distance measurement methods such
as stellar parallax cannot be applied, it is important to take into account the effects
of these inhomogeneities on the metric in order to compute self-consistently the
density in red-shift space. This is particularly important when trying to determine
the metric of the Universe.
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2. Modeling the local Universe

In order to model the monopole component of the local structure we use the LTB

solution 1!

R'(t,r)?
ds?* = —dt* + ————dr? + R(t,r)*dQ? 1
where F(r) is an arbitrary function of r, and R/(t,r) = 0,R(t,r). The analytical

412,13

solution of Einstein’s equations can be derive if we introduce a new function

k(r), and a new coordinate n = n(t,r) given by

on ro 1 2E(r)
—l,====, k(r)=- . 2
8t| R a (r) r2 2)
The Einstein equations imply
da\* A
(5) =k 2 g, ®)

where po(r) is an arbitrary function of r, and we adopt a system of units in which
¢ = 8rG = 1. Without any loss of generality we adopt the coordinate system in
which po(r) is a constant, which is known as the FLRW gauge. The solution to the
above equation can be written in the form ™

B Po
a(n,r) = k(r) +3p(3; g2(7),93(r)) Y

where p(x; g2, g3) is the Weierstrass elliptic function and
4

920) = K7, galr) = o (2K(r)" — Af). o)

The relation between ¢ and 7 can be found by integrating Eq. (2) and is given by

n

t(n.7) = 200 In (2o (1)) +n<<@1 (k(r)»
(e () L\ (e (1)) ;

5

The radial null geodesic equations take the form®

dn _ Ort(n,r) +G(n,7) dr a(n, )

dz  (142)0,G(n,r) dz  (1+2)0,G(n,r)’ (6)

where
R/ (t(n,r),r) .
V1= Ek(r)r?

G(n,r) =

The density profile is given by

1) =t 1)o7 = s ™
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The background density of the universe is given by the sub-horizon volume average
of p on constant time slices

rHor(t) R(t,r)?R'(t,r)
tr) e dr
/Vp(t,r)dV - /0 p(t,r) T k()

B(t) = = : 8
O e T TR, ®
v 0 1—Kk(r)r?

where the upper limit of the integrals r g, (¢) is the comoving horizon as a function
of time, and determines the region of space causally connected with the central
observer at time t. We can then evaluate p(t) at the time ¢(z) corresponding to a
given redshift z, i.e. the time along null radial geodesics, and define the background
value of p at redshift z as p(z) = p(t(z)). We can then define the density contrast

p(z)
0(z) ==+~ —1. (9)

p(2)
If the size of the local inhomogeneity is sufficiently smaller than the volume over
which the integral in Eq. (8) is performed then p will get most of its contribution

from the asymptotically homogeneous region and the average density will be well
approximated by the asymptotic density

5(z) = B(HYPQh (1 + 2)%;  HE = T(0), %=% (10)

where the upper-script ® stands for background and H is the expansion scalar
Hi(t,r)S.

3. Reconstruction of the local metric

In order to reconstruct the metric of the local universe from the density contrast
we expand the curvature function k(r) as

k(r) = ko + kir + kar? + -+ (11)

We also expand the solution of the geodesic equations according to

r(z) =izt drs o n(e) =m0 +matmt o (12)
We expand t(n,r) as
1
tn,7) = to(r) + almo, ) (n = 10) + 5na(n0,7)(n = 10)” + -+, (13)
where to(r) = t(no,r). We now define the dimensionless parameters K, =
En(aoHy)~(™*2) and applying the chain rule to t,(0) and ¢{(0) we find
Oto(r) Ok
tE)(O) = (;]EIT) E r=0 = apaK7 , tg(O) = ao(aoHo)(ﬁKlz + 2CYK2) , (14)

where o and f are dimensionless parameters.
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We will consider the case in which ky = 0, which is enough to understand
qualitatively the effects of the inhomogeneity, since this term corresponds to the
homogeneous component of the curvature function k(r). Expanding the density
contrast up to second order we find

(S(Z) = 50+512+5222, (15)

(8 ()

Ho\? 4K, (308, + 1
0= () e )
HE 308,
Hy\ > 1
b= — [ 22) = 18K, Q.02 (308 + 2
2 <Hg> 369AQMQg4l 180y (3 +2)

+ Kf{QA< — 18 (250° — 4o + 53) Q3 + 81a”Q3, — 300082, — 40)

+ 20 (QM — Co)} — 60K QA0 (3aQM + 1) . (18)
From these equations we can finally obtain
k(?”) ~ Kl (CL()H())BT =+ KQ(CL()H())4T2 s (19)
HO\® 3086
K= (=) _>"m71 2
! <H0) 4(30éQM+1)’ ( O)
H\" 305, )
— (=0 1
Kz (HO) 32002 Q07 (3027 +1)3 828 (BaShar +1) 90012y
6 (4ady + 81) Qs + 835 p + 6204 H02Q 18 (2507 — 4
+ 6 (4ada + 61) M+2+1MF8 A(— (a—a
+58) Q%, + 81203, — 300082, — 40) +20(Qn — ¢o) }] . (21)

In the above equations we have introduced the parameters ag, Ho, Qar, Qa, Ty and
Co according to their corresponding definitions given in Refs. 14, 6.

4. Testing the accuracy of the method

In order to test the formulae we have derived we chose models defined by the spatial
curvature function k(r) according to

aoHoT‘

k(r) = +(apHo)? 1 — tanh (2aoHor) | . (22)

We also compare our formula for the density contrast with the linear perturba-
tion theory prediction that around a flat homogeneous background ¢

6(z) = —36H (2)(Q5,) %% (23)
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The function k(r) is plotted in units of H2
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The density contrast is plotted as a function of redshift. The left and right plots are for
the inhomogeneities corresponding to Fig. 1. The solid lines correspond to the numerical solution,
the dashed lines to the analytical formula we derived and the dot-dashed lines to the perturbation
theory result.
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Fig. 3. The reconstructed metric function k(r) is plotted in units of H2 as a function of the radial
coordinate in units of Hgl for the inhomogeneities corresponding to Fig 1. The black solid line
corresponds to the original k(r) function and the black dotted line to the reconstructed one.

5. Conclusions

We have derived the low-redshift expansion for the monopole of the density contrast.

At low red-shift the formula is in good agreement with numerical solutions and
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is more accurate than the linear perturbation theory approximation. Using this
formula we have then developed a new analytical inversion method to reconstruct
the metric from the monopole of the density contrast. The inversion method could
be applied to low red-shift observational data to determine the metric with a level
of precision higher than the one achievable using perturbation theory.

For a full reconstruction of the metric beyond the monopole contribution other
solutions of the Einstein equations could be used for the analytical approach, in
order to accommodate more complex geometries. For a general numerical inversion
able to reconstruct any type of metric more sophisticated methods in numerical
relativity will be required.
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