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1 Introduction

The experiments at LEP (CERN), SLC (SLAC) and PETRA (DESY) have collected a
wealth of data from electron-positron annihilation with hadronic final state over a wide
range of energies. Of particular interest are three-jet events, which can be used to extract
the value of the strong coupling. Three-jet events are well suited for this task because the
leading term in a perturbative calculation of three-jet observables is already proportional
to the strong coupling. In comparing experiments to theory it is important to restrict
oneself to infra-red safe observables. For three-jet events in electron-positron annihilation
there is a well established set of infra-red safe observables, which is widely used. These are
the event shape variables consisting of thrust, heavy jet mass, wide jet broadening, total
jet broadening and the C-parameter. In addition there are observables related to a specific
jet definition. First of all these are the jet rates associated to the different jet definitions.
In this paper the following jet algorithms are considered: Durham, Geneva, Jade-E0 and
Cambridge. As the Durham jet algorithm is the most popular one, for this jet algorithm
also the three-to-two jet transition variable is studied.

All these observables can be calculated in perturbation theory. In this article I present
the next-to-next-to-leading order (NNLO) results for these observables. For completeness
I also include the next-to-leading order (NLO) and leading order (LO) results.

Another group published results for these observables earlier on in [1-3], but omitted
certain subtraction terms related to soft gluons. The present calculation is based on the
numerical Monte Carlo program reported in [4, 5]. The additional soft gluon subtraction
terms modify the distributions in the peak region. Meanwhile the other group has added
the missing subtraction terms and the two programs are now for the main part of the
observables in good agreement. A few remaining differences are discussed in the numerical



section. A detailed account of the subtraction terms used in this calculation is given in a
companion paper [6].

For the thrust distribution there exists an independent calculation of the logarithmic
terms based on soft-collinear effective theory [7]. This calculation should agree with the
NNLO result for small values of (1 —T'). For large values of (1 —T') the logarithmic terms
alone are not sufficient to give an accurate result. On the other hand the perturbative
calculation of this paper gives the correct NNLO result for large and intermediate values of
(1 —T), but has its limitations due to the Monte Carlo integration method for very small
values of (1 —T'). This gives a region of overlap where the perturbative NNLO result and
the one obtained from SCET should agree, and indeed they do.

This article reports the pure perturbative results for the event shapes. Not included
are soft-gluon resummations [7-10] nor power corrections [11, 12].

It should be mentioned that the results of this paper rely heavily on research carried out
in the past years: Integration techniques for two-loop amplitudes [13-16], the calculation
of the relevant tree-, one- and two-loop-amplitudes [17-29], routines for the numerical
evaluation of polylogarithms [30-32], methods to handle infrared singularities [33-51] and
experience from the NNLO calculations of ete™ — 2 jets and other processes [40, 52-68].

This paper is organised as follows: section 2 gives the definition of the observables
related to three-jet events in electron-positron annihilation. Section 3 describes the per-
turbative calculation of these observables. Section 4 gives the numerical results. Finally,
section 5 contains a summary. In an appendix a useful algorithm for the determination of
the thrust axis is described.

2 Definition of the observables

The event shape variable thrust [69, 70] is defined by
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where p; denotes the three-momentum of particle j and the sum runs over all particles in
the final state. The thrust variable maximises the total longitudinal momentum along the
unit vector 7i. The value of 77, for which the maximum is attained is called the thrust axis
and denoted by fip. The value of thrust ranges between 1/2 and 1, where T' = 1 corresponds
to an ideal collinear two-jet event and T = 1/2 corresponds to a perfectly spherical event.
Usually one considers instead of thrust 7' the variable (1 —T), such that the two-jet region
corresponds to (1 —7T") — 0. For three-parton events we have (1 —7T) < 1/3.

The plane orthogonal to the thrust axis divides the space into two hemispheres H;
and Hy. These are used to define the following event shape variables: The hemisphere
masses [71] are defined by

M} = ( > pj>2, i=1,2, (2.2)
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where p; denotes the four-momentum of particle j. The heavy hemisphere mass My and
the light hemisphere mass M7, are then defined by

M} = max (M7, M3), M} = min (M7, M) . (2.3)

The light hemisphere mass is a four-jet observable and vanishes for three partons. For the
heavy jet mass it is convenient to introduce the dimensionless quantity
M
p=—, (2.4)
Q?
where @ is the centre-of-mass energy. For three-parton events we have p < 1/3. In leading
order the distribution of the heavy jet mass is identical to the distribution of (1 —T').
The hemisphere broadenings [72, 73] are defined by
2. Py x 7ir|
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where the sum over j runs over all particles in one of the hemispheres, whereas the sum
over k is over all particles in the final state. The wide jet broadening By, the narrow jet
broadening By and the total jet broadening Br are defined by

By = max (Bl,BQ), By = min (31732) , Br =B+ Bs. (26)

The narrow jet broadening is a four-jet observable and vanishes for three partons. For
three-parton events we have By, By < 1/(2V/3).
The C- and D-parameters [74, 75] are obtained from the linearised momentum tensor
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where the sum runs over all final state particles and p}; is the i-th component of the three-
momentum py, of particle k in the c.m. system. The tensor # is normalised to have unit
trace. In terms of the eigenvalues of the 6 tensor, A1, Ao, A3, with A\ + Ao + A3 = 1,
one defines

C =3 (MA2+ A3 + A3\1),
D = 2T\ Ao s (2.8)

The range of values is 0 < C, D < 1. The D-parameter is again a four-jet observable and
vanishes for three partons. For three-parton events we have C' < 3/4. The C-parameter
exhibits in perturbation theory a singularity at the three-parton boundary C' = 3/4 [76].

The production rate for three-jet events is defined by the ratio of the cross section for
three-jet events by the total hadronic cross section

03—jet

Rz = (2.9)

Otot
This depends on the definition of the jet algorithm, usually specified through a resolution
variable and a recombination prescription. The clustering procedure of a jet algorithm in
electron-positron annihilation is in most cases defined through the following steps:



1. Define a resolution parameter ¥yt

2. For every pair (pg,p;) of final-state particles compute the corresponding resolution
variable yy;.

3. If y;; is the smallest value of yi; computed above and y;; < ycus then combine (p;, pj)
into a single jet ("pseudo-particle’) with momentum p;; according to a recombination
prescription.

4. Repeat until all pairs of objects (particles and/or pseudo-particles) have yx; > yeut-

The various jet algorithms differ in the precise definition of the resolution variable and the
recombination prescription. The various recombination prescriptions are:

1. E-scheme:
Eij = E; + Ej, Dij = pi + Dj. (2.10)

The E-scheme conserves energy and momentum, but for massless particles 7 and j
the recombined four-momentum is not massless.

2. EO0-scheme:
Ei —+ Ej

Big = Bt By Ps = (505
i T Dj

(7i + 1) - (2.11)

The EO-scheme conserves energy, but not momentum. For massless particles ¢ and j

is the recombined four-momentum again massless.

3. P-scheme:

|7 + | L L
Eij:m(EiJrEj):’Pierj\, Dij = Pi + Pj- (2.12)
The P-scheme conserves momentum, but not energy. For massless particles ¢ and j
is the recombined four-momentum again massless, as in the F0-scheme.

For the Durham [77], Geneva [78] and Jade-EO0 [79] jet algorithms the resolution variables
and the recombination prescriptions are defined as follows:

2min(E7, E?) (1 — cos 0;)

Durham: y;; = o2 ,  E-scheme,
8 2F;E; (1 —cosb;;
Geneva: y;; = — - B ( cos Y ), E-scheme,
9 (Ei—l-Ej)
2F;E; (1 — cosb;;
Jade-B0: g,y — Ll cos 5)  BQ-scheme, (2.13)

Q?
where E; and E; are the energies of particles ¢ and j, and 6;; is the angle between pj

and pj. @ is the centre-of-mass energy. The jet transition variable ya3 is the value of the
jet resolution parameter .., for which the event changes from a three-jet to a two-jet



configuration. Similar, ys4 is defined as the value of the resolution parameter, where the
event changes from a four-jet to a three-jet configuration. The three-jet rate is related to

the jet transition variables yo3 and ys34:

1 1
do do
R3(Yeut) = / dyz?)@— / dy34@. (2.14)
Yeut Yecut

The Cambridge algorithm [80] distinguishes an ordering variable v;; and a resolution vari-
able y;;. The Cambridge algorithm is defined as follows:

1. Select a pair of objects (p;, p;) with the minimal value of the ordering variable v;;.

2. If yij < Yeur they are combined, one recomputes the relevant values of the ordering
variable and goes back to the first step.

3. If y;j > Yeur and E; < Ej then i is defined as a resolved jet and deleted from the table.

4. Repeat until only one object is left in the table. This object is also defined as a jet

and clustering is finished.
As ordering variable
v;; = 2 (1 — cosb;;) (2.15)
is used. The resolution variable is as in the Durham algorithm

2min(E?, EJQ) (1 —cosb;j)
Yij = 0?2

(2.16)

and the E-scheme is used as recombination prescription.

3 Perturbative expansion

The perturbative expansion of a differential distribution for any infrared-safe observable O
for the process eTe™ — 3 jets can be written up to NNLO as

0" _do(p) _ as(u) O"dAo(n) (as(u)>2 O"dBo() (as(ﬂ)>3 0"dCo(n)

. (3.0)

owot(p) dO 27 dO 21 dO 2m dO

Ap gives the LO result, Bo the NLO correction and Cp the NNLO correction. The variable
n denotes the moment of the distribution. Unless stated otherwise, the value n = 1 is used
as default. oot denotes the total hadronic cross section calculated up to the relevant order.
The arbitrary renormalisation scale is denoted by p. The n-th moment is given by

o = / O";l—((;do (3.2)

Otot
In practise the numerical program computes the distribution

O" do(p)  as(u) O"dAo(n) | (as(w)\? O"dBo(n) [ as(u))® O"dCo(p)
oo(p) dO T on d(;9 +< 27 ) d(;9 +< 27 > d(;9

; (3.3)



normalised to oo, which is the LO cross section for eTe™ — hadrons, instead of the nor-
malisation to o.. There is a simple relation between the two distributions: The functions
Ap, Bo and Cp are related to the functions Ap, Bp and Cp by

Ao = Ao,

Bo = Bo — AwtAo,

Co = Co — Aot Bo — (Bioy — Aly) Ao,

where
3(N2 —1)
Ay = ——+
tot 4Nc )
N2 _17[/243
By = —< 44 —11) Ny | .
fot SN, K 4 <3> AN, + (8¢ ) Ny ]

N, denotes the number of colours and Ny the number of light quark flavours. A and
Byt are obtained from the perturbative expansion of oo [81-83]:

Otot = 00 <1 + Atot + <28> Biot + O(@§)> . (3.4)

The perturbative calculation of the inclusive hadronic cross section (o)) is actually
known to O(a?) [84, 85], although we need here only the coefficients up to O(a?).

It is sufficient to calculate the functions Ap, Bp and Cp for a fixed renormalisation
scale p9, which can be taken conveniently to be equal to the centre-of-mass energy: po = Q.
The scale variation can be restored from the renormalisation group equation

d [« 1 ag\2 1 ag\3 1 a4
2 S _ = _S 1 _S 1 _S 5
" ( ) B 250<27r) 7 (271) 8ﬁ2(277> +0(a3), (3.5)
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The colour factors are defined as usual by
N? — 1

Tpr=—. 3.6
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The values of the functions Ap, Bo and Cp at a scale u are then obtained from the ones
at the scale pg by

Ao(p) = Ao(po),
Bo(u) = B(MH-%M< )A()

M
2
Cot = ot + (1) o+ 6 ()] () - s



Finally, an approximate solution of eq. (3.5) for ay is given by

s 2 In L 2o/ ? 5
T T

where L = In(u?/A?).

The function Cp can be decomposed into six colour pieces

(Nf—l) 211 1 AL 2 ~mfnf
Co = SN [Nc Cs5+Cx + FCQC(SQSC + NyN.CH + EC(%SC + N;Cp" ] . (3.9)
In addition, there are singlet contributions, which arise from interference terms of ampli-
tudes, where the electro-weak boson couples to two different fermion lines. These singlet
contributions are expected to be numerically small [28, 86, 87] and neglected in the present
calculation. We define

(N2-1 (N2-1 (NZ2-1) 1
Coly = gT)Nc201C7 Cols = gT)CSCa Colgse = SCT)W o
c c Cc c
(3.10)
NZ-1 NZ-1) N NZ-1
Colut = B N0, Coluge = LeTD Ny, G = e pacypr,
(& (& C C

e.g. the function Cpl|,, includes the colour factors.

The functions Ap, Bo and Cp are calculated for a fixed renormalisation scale equal
to the centre-of-mass energy: o = Q. They depend only on the value of the observable O.
Since only QCD corrections with non-singlet quark couplings are taken into account and
singlet contributions to Cp are neglected, the functions An, Bo and Cp do not depend on
electro-weak couplings.

4 Numerical results

In this section I present the numerical results for the event shape variables and jet rates
at next-to-next-to-leading order. All results have been obtained by numerical Monte Carlo
integration. The Monte Carlo integration introduces a statistical error, which will be
quoted with all results. For the infrared singularities a hybrid method between subtraction
and slicing has been used. Unless stated otherwise all results have been obtained with the
slicing parameter

n = 85—;1 =107 (4.1)
It should be noted that the slicing procedure introduces in addition a systematic error.
The size of this error can be estimated by varying the slicing parameter 7. However,
lowering the slicing parameter will increase the statistical error. A practical criteria is
to require that the variation due to the slicing parameter is smaller than the statistical
error, with the possible exception for the boundaries of the distributions. Imposing this
criteria 7 = 107> turns out to be a good compromise between accuracy and efficiency. The



boundaries of the distributions close to the two-jet region deserve special attention: There
the value of the observable is comparable to 17 and one expects sizable corrections. I will
discuss the dependence on the slicing parameter in the close-to-two-jet region in detail for
a few examples.

In a first series of plots I show the comparison of the NNLO results with the NLO and
LO results for the LEP I centre-of-mass energy \/@ = my with ag = 0.118. The results for
the event shape variables thrust, heavy jet mass, wide jet broadening, total jet broadening,
C parameter and three-to-two jet transition variable g3 are shown in figures 1 to 6. For
each of these observable the distribution weighted by the observable and normalised to the
total hadronic cross section is shown, e.g. for thrust the distribution

1-T do

o d1-T) (42)

is shown. The corresponding plots for the jet rates for the jet algorithms of Durham,
Geneva, Jade-EO and Cambridge are shown in figures 7 to 10. In all these plots is the
leading-order prediction shown in light blue, the next-to-leading-order prediction is shown
in pink and the next-to-next-to-leading order prediction is shown in dark blue. The bands
give the range for the theoretical prediction obtained from varying the renormalisation
scale from p = @Q/2 to p = 2Q). In addition the experimental data points [88] from the
Aleph experiment (where available) are also shown in these plot. Note that the theory
predictions in these plots are the pure perturbative predictions. Power corrections or soft
gluon resummation effects are not included in these results.

Numerical results for centre-of-mass energies different from \/@ = my are also easily
obtained. As an example I show in figure 11 the thrust distribution at centre-of-mass ener-
gies of \/Q? = 91.2GeV, 133GeV, 161GeV, 172GeV, 183GeV, 189GeV, 200GeV, 206GeV,
again with experimental data points from the Aleph experiment. As for the LEP II energies
the bin size of the experimental data is rather large, I show in figure 11 the distribution

1 do

Gd1=T) (43)

without an additional factor (1 — 7).

The most important results of this paper are the perturbative coefficients A», Bo and
Co. For the six event shape variables (thrust, heavy jet mass, wide jet broadening, total
jet broadening, C-parameter and the three-to-two jet transition variable) the numerical
values for the LO functions Ao, the NLO functions Bp and the NNLO functions Cp), all
weighted by O, are given in tables 1 to 7. The corresponding values for the jet rates defined
according to the Durham, Geneva, Jade-EO or Cambridge algorithms are given in tables 8
to 11. These values are obtained by Monte Carlo integration and the statistical Monte
Carlo integration error is indicated in these tables. The systematic error due to the slicing
parameter 7 is not included in these tables, but will be discussed below. The values for
the Durham jet rate have already been given in ref. [4]. Due to a typo in the numerical
program which was corrected after publication of [4] the corrected values are repeated here.

For the six event shape variables the LO functions Ap, the NLO functions By and the
NNLO functions Cp are also shown in in figures 12 to 17. The leading-order function Ap



and the next-to-leading order function By can be computed with high precision and the
graphs are shown simply with solid lines in figures 12, 17. For the next-to-next-to-leading
order function Cp the Monte Carlo integration errors are typically at the per cent level,
and this function is shown with errorbars corresponding to the Monte Carlo integration
errors in figures 12-17.

The NNLO function C» can be split up into the contributions from the individual
colour factors

Col., Col Col Col Col Col (4.4)

sc ssc ! nf nfsc ? nfnf

defined in eq. (3.10). For the event shape variables the contributions from the individual
colour factors to Cp are given in tables 12 to 18. For the jet rates the contributions from
the individual colour factors to Cp are given in tables 19 to 20. In addition the individual
colour contributions are plotted for the six event shape variables in figures 18-23.

In figure 24-26 the results for the thrust distribution are compared with the calcula-
tion of Becher and Schwartz based on soft-collinear effective theory [7]. The leading-order,
next-to-leading-order and next-to-next-to-leading order coefficients A;_7, B1_7 and Ci_7
are compared in figure 24. The individual colour factors of the coefficient C;_7 are com-
pared in figure 25. The effective theory gives a good description of the thrust distribution
for small values of (1 — 7). For values of (1 —T) close to 1 the effective theory is not
valid and deviations from the perturbative result can be seen. On the other hand the
perturbative result obtained from Monte Carlo integration has its limitation through the
slicing parameter introduced to handle the infrared singularities. The deviations of the
numerical Monte Carlo results for the C;_p coefficient from the SCET results for values
of (1 —T) < 0.003 are an artefact of the slicing parameter. In figures 24 and 25 the value
n = 10~ was used for the slicing parameter. To study the situation in more detail, I show
in figure 26 the variation of the numerical result for the leading colour factor of C;_p with
the slicing parameter 1. The numerical results for = 107°, n = 10~7 and n = 10~ are
plotted. For smaller values of n the SCET result is approached.

As a further example I also show the dependence on the slicing parameter 7 for the
colour factor N2 for the next-to-next-to-leading order coefficient Cy,, for the three-to-two
jet transition distribution in figure 27. In this plot the numerical results for n = 107°,
n =107 and n = 10~ are shown.

Figure 28 compares the results of this calculation to the updated ones from ref. [1]. For
the six event shape distributions one observes good agreement with the exception of the
three-to-two jet transition distribution at very small values of yo3. The discrepancy at small
values of 723 can be traced back to the colour factor N2 and could have an explanation in
terms of a systematic error due to the slicing parameter. The study of the n-dependence
in figure 27 gives hints in this direction, but does not give a conclusive answer. Although
in figure 27 the three results for n = 1075, n = 10~7 and n = 10~ are consistent with
each other, using = 10~ instead of 7 = 1075 for the comparison with ref. [1] would
reduce the discrepancy significantly (but also enlarge the errorbars). Given the complexity
of the calculation the agreement of the two numerical programs in all other distributions
is remarkable.



5 Conclusions

In this article I reported on the NNLO calculation of observables associated to three-jet
events in electron-positron annihilation. I provided NNLO results for the event shape
variables thrust, heavy jet mass, wide jet broadening, total jet broadening, C parameter
and the Durham three-to-two jet transition variable. In addition the NNLO results for the
jet rates defined in the schemes of Durham, Geneva, Jade-E0 and Cambridge were given.
The results of this paper will be useful for an extraction of a from three-jet quantities.
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A Calculation of the thrust for a single parton event

For the event shape variable thrust and the ones related to it, it is necessary to determine
the maximum

mgxz |7 - 7| (A1)
J

over all orientations of the unit vector #7. The sum runs over all final state particles j.
For the NNLO calculation we have either 3, 4 or 5 partons in the final state. Of course
there are numerical algorithms which can be used to find a local maximum. However the
computational cost for such a minimisation/maximisation is comparable to the cost for the
matrix elements and therefore not negligible. Furthermore it is non-trivial to ensure that
the found maximum is actually the global maximum.

There is a better way to calculate thrust and the thrust axis for a small number of
final state particles. This method finds the exact global maximum in 2V~ — 1 steps for N
final state particles. Let us define N signs s; € {—1,1} by

By = ;1 - . (A.2)

Of course the correct values for the signs s; are only known once the thrust axis 7 is known.
But we know in advance that the N-tuple (s1,s2,...,sy) will be one configuration out of
the 2%V possible ones. We can now step over all 2"V possibilities (s1, s2,...,sy). For a given
N-tuple (s1,s9,...,sy) we define

P = 5101 + sops + ... + SNDN- (A.3)
We then have

m@xZ!@-ﬁ]zm@stjﬁ}-ﬁ:mgx P-i (A.4)
n - n X n
j j

,10,



Thrust
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Figure 1. The thrust distribution at LO, NLO and NNLO at 1/Q2 = my with a,(mz) = 0.118.

The bands give the range for the theoretical prediction obtained from varying the renormalisation
scale from y = mz/2 to p = 2myz. In addition the experimental data points from the Aleph

experiment are shown.

This expression is maximised for 77 = P/|P|. Next, one checks if the N-tuple (s1, s2, . .., sn)
is actually allowed by verifying eq. (A.2) for all j = 1,..., N. The maximum is then given
by the maximum value obtained from all allowed N-tuples. It is actually sufficient to

restrict the search to 2V~! — 1 possibilities, since thrust is invariant under
n — —, (A.5)

and the two cases where all signs are equal can be excluded due to momentum conservation.
With this algorithm we have to check for five-parton final states 15 configurations to find the
global maximum, whereas for four-parton final states 7 configurations have to be checked.
For the case of three massless particles in the final state the algorithm does not need to be
used, since there is a general formula for the thrust axis: The thrust axis is given in this

case by the direction of the most energetic particle [89].
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Figure 2. The distribution of the heavy jet mass at LO, NLO and NNLO at \/Q? = mz with
as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying the
renormalisation scale from u = mz/2 to = 2myz. In addition the experimental data points from

the Aleph experiment are shown.

Wide jet broadening
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Figure 3. The wide jet broadening distribution at LO, NLO and NNLO at \/@ = my with
as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying the
renormalisation scale from p = myz/2 to u = 2my. In addition the experimental data points from
the Aleph experiment are shown.
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Total jet broadening
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Figure 4. The total jet broadening distribution at LO, NLO and NNLO at \/@ = my with
as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying the
renormalisation scale from u = mz/2 to p = 2myz. In addition the experimental data points from
the Aleph experiment are shown.
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Figure 5. The C-parameter distribution at LO, NLO and NNLO at 1/Q2 = my with a,(myz) =
0.118. The bands give the range for the theoretical prediction obtained from varying the renormal-
isation scale from p = myz/2 to p = 2myz. In addition the experimental data points from the Aleph
experiment are shown.
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Jet transition yo3
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Figure 6. The three-to-two jet transition distribution at LO, NLO and NNLO at 1/Q? = mz with
as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying the
renormalisation scale from u = mz/2 to = 2myz. In addition the experimental data points from

le-04 0.001

the Aleph experiment are shown.

Durham three-jet rate
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Figure 7. The three jet rate with the Durham jet algorithm at LO, NLO and NNLO at /Q? = myz

with as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying
the renormalisation scale from p = mz/2 to p = 2my. In addition the experimental data points
from the Aleph experiment are shown.
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Figure 8. The three jet rate with the Geneva jet algorithm at LO, NLO and NNLO at /Q? = myz

with as(myz) = 0.118. The bands give the range for the theoretical prediction obtained from varying
the renormalisation scale from p=myz/2 to u = 2my.
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Figure 9. The three jet rate with the Jade EO jet algorithm at LO, NLO and NNLO at \/Q? = mz

with as(mz) = 0.118. The bands give the range for the theoretical prediction obtained from varying
the renormalisation scale from p=myz/2 to p = 2my.
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Figure 10. The three jet rate with the Cambridge jet algorithm at LO, NLO and NNLO at
Q% = myz with as(mz) = 0.118. The bands give the range for the theoretical prediction obtained
from varying the renormalisation scale from p = myz/2 to p = 2my.
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Figure 12. Coefficients of the leading-order (A;_7), left), next-to-leading-order (B(;_ry, mid-
dle) and next-to-next-to-leading order (C;_r), right) contributions to the thrust distribution, all
weighted by (1 —T'). For the coefficient C;_7) the Monte Carlo integration errors are also shown.
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Figure 13. Coefficients of the leading-order (A,, left), next-to-leading-order (B,, middle) and
next-to-next-to-leading order (C,, right) contributions to the heavy jet mass distribution, all
weighted by p. For the coeflicient C, the Monte Carlo integration errors are also shown.
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Figure 14. Coefficients of the leading-order (Ap,, , left), next-to-leading-order (Bp,, , middle) and
next-to-next-to-leading order (Cp,,, right) contributions to the wide jet broadening distribution,
all weighted by By . For the coefficient C'p,, the Monte Carlo integration errors are also shown.
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Figure 15. Coefficients of the leading-order (Ap,., left), next-to-leading-order (Bp,, middle) and
next-to-next-to-leading order (Cp,., right) contributions to the total jet broadening distribution, all
weighted by Br. For the coefficient C'p, the Monte Carlo integration errors are also shown.
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Figure 16. Coefficients of the leading-order (Ac, left), next-to-leading-order (B¢, middle)
and next-to-next-to-leading order (C¢, right) contributions to the C-parameter distribution, all
weighted by C. For the coefficient Cc the Monte Carlo integration errors are also shown.
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Figure 17. Coefficients of the leading-order (A4,,,, left), next-to-leading-order (B,,,, middle) and
next-to-next-to-leading order (C,,,, right) contributions to the three-to-two jet transition distri-
bution, all weighted by ¥23. For the coefficient C,,, the Monte Carlo integration errors are also

shown.
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Figure 18. The NNLO coefficient C';_7y for the thrust distribution split up into individual colour

factors.

,19,



NNLO, colour factor N2 NNLO, colour factor N NNLO, colour factor N, 2

12000 8000 60
= 7000
10000 | <7,
. s 6000 - 20
: 3
8000 s 5000
° 20
K] - % 4000 _8
& - f T sl &
a i a a0 Geraeed]
4000 . 00l - ©orezrairaiaiatesessescs
: EozzE ?
2000 e 000 - ool R
0 e e 0 TP OPOOITRUTTRN
-1000 -40
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
P P p
NNLO, colour factor N¢Ne NNLO, colour factor N¢ /Ne NNLO, colour factor N,2
2000 5000
200
[0
...... 0 - T ia e aa e
-2000 Lot . 4000
-4000 Ko 200 :
= s L 4 -400 - 3000
g1 -8000 L glg © gk 20|
& -10000 o -800 .
o000f -1000 1000 Tl
14000 | | 1200 | © Tt
~16000 -1400 R
0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04 0 005 01 015 02 025 03 035 04
P P P

Figure 19. The NNLO coefficient C, for the heavy jet mass distribution split up into individual
colour factors.
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Figure 20. The NNLO coefficient Cp,, for the wide jet broadening distribution split up into
individual colour factors.
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Figure 21. The NNLO coefficient Cp, for the total jet broadening distribution split up into
individual colour factors.
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Figure 22. The NNLO coefficient C for the C-parameter distribution split up into individual
colour factors.
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Figure 24. Comparison of the results for the coefficients of the leading-order (A(;_7), left), next-
to-leading-order (B(;_r), middle) and next-to-next-to-leading order (C;_r), right) contributions
to the thrust distribution from perturbative QCD (red) and SCET (blue line). The upper row
shows the distribution with a linear scale for (1 — T'), the lower row shows the distribution with a

logarithmic scale for (1 — 7).
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Figure 25. Comparison of the individual colour factors of the next-to-next-to-leading order
coefficient C;_p) for the thrust distribution between perturbative QCD (red) and SCET (blue
line). The distributions are shown with a logarithmic scale for (1—T). The deviations of the Monte
Carlo results for small values of (1 — T') are due to the slicing procedure.
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Figure 26. Comparison of the next-to-next-to-leading order coefficient C; _7 for the colour factor
NZ for the thrust distribution between the numerical Monte Carlo program for various values of 7
and SCET (blue line).
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Figure 27. Dependence of the numerical Monte Carlo result for the next-to-next-to-leading order
coefficient Cy,, for the colour factor N2 for the three-to-two jet transition distribution on the slicing

parameter 7).
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Figure 28. Comparison of the next-to-next-to-leading order coefficient C for the six distributions
between ref. [1] and the present work.
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(1-1)

dA_T)

O-Taa—y

dB1i_1)
(1-T) d(1=T)

dCTa_T1)
(1-T) d(1-T)

0.005
0.015
0.025
0.035
0.045
0.055
0.065
0.075
0.085
0.095
0.105
0.115
0.125
0.135
0.145
0.155
0.165
0.175
0.185
0.195
0.205
0.215
0.225
0.235
0.245
0.255
0.265
0.275
0.285
0.295
0.305
0.315
0.325
0.335
0.345
0.355
0.365
0.375
0.385
0.395
0.405
0.415
0.425
0.435
0.445

2.5797(2) - 10!
1.8299(1) - 10*
1.5411(1) - 10t
1.35230(9) - 10!
1.21030(9) - 10"
1.09692(8) - 10*
1.00228(8) - 10!
9.2112(7) - 10°
8.5022(7) - 109
7.8724(7) - 10°
7.3045(6) - 10°
6.7891(6) - 100
6.3179(6) - 10°
5.8820(6) - 10°
5.4791(6) - 10°
5.1030(5) - 10°
4.7484(5) - 109
4.4141(5) - 10°
4.0962(5) - 109

)

)

)

)

)

)

)

)

)

)

)

==

3.7931(5) - 100
3.5028(4) - 10°
3.2220(4) - 10°
2.9494(4) - 10°
2.6826(4) - 10°
2.4223(4) - 10°
2.1634(3) - 10°
1.9062(3) - 10°
1.6470(3) - 10°
1.3841(3) - 10°
1.1169(2) - 10°
8.415(2) - 1071
5.567(2) - 10~1
2.593(1) - 10~1
1.706(3) - 102

=

O OO OO0 0o o oOo

—4.957(3) - 102
2.166(3) - 102
2.809(3) - 102
2.920(3) - 102
2.877(2) - 102
2.772(2) - 102
2.638(2) - 102
2.505(2) - 102
2.371(2) - 102
2.240(2) - 102
2.113(2) - 102
1.993(2) - 102

1.878(2) - 102

1.768(2) - 102

1.666(2) - 102

1.572(2) - 102

1.475(2) - 102

1.393(2) - 102

1.306(2) - 102

1.231(2) - 102

1.153(2) - 102

1.081(2) - 102

1.011(2) - 102
9.47(1) - 10"

1) - 10!

) - 101
)-10!
6.94(1) - 10!
) - 10!
)-10!

) - 10!

n 135(8) - 10t

3.353(5) - 10!
2.108(3) - 101

8.570(8) - 10°

4.474(5) - 10°
2.434(3) - 10°
1.301(2) - 10°

6.44(1) - 1071

2.818(8) - 107!

5.12(3) - 10~2
1.45987(8) - 10~°
4.66279(3) - 10~°

—_ =

o o

—9.0(1) - 102
—-3.3(1) - 103
1.6(1) - 103

(1)-10%
(1) 103
(1) 103
(1) 103
(1) - 103
(1) 103
(1) 103
5.1(1) - 103
(1) 103
(1) - 103
(1) 103
(1) 103
(1) 103
(1) 103
3.5(1) - 103

) - 103

) - 108

) - 103

) - 103

) - 103

) - 103

)-108

) - 103

) - 103

1.97(6) - 103

) - 103

) - 103

) - 103

) - 103

)-108

) - 103

) - 102

) - 102

5.3(1) - 10!

3.57(7) - 10!

1.09(2) - 10!

1.8(2) - 10~1
—1.0(1) - 1073
—1.950(2) - 101

—9(4) - 1073

—1(1)- 1073

0

Table 1. Coefficients of the leading-order (A(;_7)), next-to-leading-order (B(;_r)) and next-to-

next-to-leading order (C(;_r)) contributions to the thrust distribution.
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dA, dB, dC,
P P ap P ap P ap

0.005 | 2.5797(2) - 10* —6.243(3) - 102 9(1) - 10%
0.015 | 1.8299(1) - 10! 1.162(3) - 102 —-3.0(1) - 103
0.025 | 1.5411(1) - 10! 1.917(3) - 102 4(1) - 102
0.035 | 1.35230(9) - 10! 2.088(3) - 102 1.9(1) - 103
0.045 | 1.21030(9) - 10* 2.092(2) - 102 2.7(1) - 103
0.055 | 1.09692(8) - 10 2.020(2) - 102 2.7(1) - 10?
0.065 | 1.00228(8) - 10! 1.918(2) - 102 3.1(1) - 103
0.075 | 9.2112(7) - 10° 1.809(2) - 102 2.7(1) - 103
0.085 | 8.5022(7) - 10° 1.695(2) - 102 2.8(1) - 103
0.095 | 7.8724(7) - 10° 1.590(2) - 102 2.7(1) - 103
0.105 | 7.3045(6) - 10° 1.476(2) - 102 2.3(1) - 103
0.115 | 6.7891(6) - 10° 1.370(2) - 102 2.0(1) - 103
0.125 | 6.3179(6) - 10° 1.269(2) - 102 1.9(1) - 103
0.135 | 5.8820(6) - 10° 1.161(2) - 102 1.6(1) - 103
0.145 | 5.4791(6) - 10° 1.060(2) - 102 1.6(1) - 103
0.155 | 5.1030(5) - 10° 9.63(1) - 10" 1.2(1) - 103
0.165 | 4.7484(5) - 10° 8.67(1) - 10t 1.2(1) - 103
0.175 | 4.4141(5) - 10° 7.81(1) - 101 8(1) - 102
0.185 | 4.0962(5) - 10° 7.01(1) - 10t 4.0(9) - 10?
0.195 | 3.7931(5) - 10° 6.23(1) - 10t 4.6(9) - 10%
0.205 | 3.5028(4) - 10° 5.50(1) - 10t 2.7(9) - 102
0.215 | 3.2220(4) - 10° 4.79(1) - 10t 1.4(9) - 10%
0.225 | 2.9494(4) - 10° 4.17(1) - 10t —1.9(8) - 102
0.235 | 2.6826(4) - 10° 3.55(1) - 10t —1.8(8) - 102
0.245 | 2.4223(4) - 10° 2.96(1) - 10t —2.0(8) - 102
0.255 | 2.1634(3) - 10° 2.411(9) - 10! —3.7(7) - 102
0.265 | 1.9062(3) - 10° 1.871(9) - 101 —3.5(7) - 102
0.275 | 1.6470(3) - 10° 1.398(8) - 10! —4.1(6) - 102
0.285 | 1.3841(3) - 10° 9.63(8) - 10° —4.9(6) - 102
0.295 | 1.1169(2) - 10° 6.11(7) - 10° —3.5(5) - 102
0.305 | 8.415(2)-10~1 3.48(6) - 10° —4.0(4) - 102
0.315 | 5.567(2)-10~1! 2.43(5) - 109 —3.0(3) - 102
0.325 | 2.593(1) - 10! 4.67(3) - 10° —6(2) - 10t
0.335 | 1.706(3) - 102 8.08(2) - 10° 4.8(5) - 10t
0.345 0 3.189(5) - 10° 2.1(1) - 10!
0.355 0 1.498(3) - 10° 9.2(6) - 10°
0.365 0 7.22(2) - 1071 2.7(2) - 10°
0.375 0 3.24(1) - 1071 1.0(2) - 107!
0.385 0 1.154(5) - 101 —7.0(4) - 1072
0.395 0 1.71(1) - 1072 —2.7(2) - 1073
0.405 0 1.29995(4) - 1076 | —3.7(4) - 1073
0.415 0 1.647637(6) - 107° | —1.0(4) - 101
0.425 0 0 0

Table 2. Coefficients of the leading-order (A4,), next-to-leading-order (B,) and next-to-next-to-
leading order (C,) contributions to the heavy jet mass distribution.
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B | Bw g By G By G
0.005 | 5.146(1) - 10t —4.194(2) - 103 1.433(7) - 10°
0.015 | 3.6823(4) - 10! —6.385(7) - 102 —2.33(3) - 104
0.025 | 3.1132(3) - 10* —1.015(5) - 102 —1.34(2) - 10*
0.035 | 2.7389(2) - 10! 1.126(5) - 102 —6.3(2) - 103
0.045 | 2.4563(2) - 10! 2.136(4) - 102 -1.7(2) - 102
0.055 | 2.2291(2) - 10! 2.634(4) - 102 6(2) - 102
0.065 | 2.0389(2) - 10! 2.867(4) - 102 2.5(2) - 103
0.075 | 1.8734(1) - 10! 2.931(3) - 102 3.1(2) - 103
0.085 | 1.7273(1) - 10! 2.910(3) - 102 3.4(2) - 103
0.095 | 1.5966(1) - 10! 2.827(3) - 102 4.0(2) - 103
0.105 | 1.4778(1) - 10! 2.709(3) - 102 4.0(2) - 103
0.115 | 1.3686(1) - 10! 2.565(3) - 102 3.5(2) - 103
0.125 | 1.2685(1) - 10* 2.413(3) - 102 3.7(2) - 103
0.135 | 1.17528(9) - 101 2.246(2) - 102 3.3(2) - 103
0.145 | 1.08786(9) - 10* 2.083(2) - 102 2.7(1) - 103
0.155 | 1.00548(8) - 10* 1.911(2) - 102 2.8(1) - 103
0.165 | 9.2782(8) - 10° 1.744(2) - 102 2.4(1) - 103
0.175 | 8.5406(7) - 10° 1.567(2) - 102 1.7(1) - 103
0.185 | 7.8351(7) - 10° 1.379(2) - 102 1.2(1) - 103
0.195 | 7.1576(6) - 10° 1.191(2) - 102 9(1) - 102
0.205 | 6.4999(6) - 10° 1.009(2) - 102 6(1) - 102
0.215 | 5.8549(6) - 10° 8.29(2) - 10! —1(1) - 102
0.225 | 5.2173(5) - 10° 6.57(1) - 10t —4(1) - 10?
0.235 | 4.5744(5) - 10° 4.89(1) - 10t —6.6(9) - 102
0.245 | 3.9151(4) - 10° 3.19(1) - 10! —1.18(8) - 103
0.255 | 3.2206(4) - 10° 1.57(1) - 10t —1.08(7) - 103
0.265 | 2.4584(3) - 10° 4.8(9) - 1071 —1.22(6) - 103
0.275 | 1.5815(3) - 10° —1.062(7) - 10* | —1.10(4) - 103
0.285 | 4.942(2)-107! —4.38(4) - 10° —4.0(2) - 102
0.295 0 3.961(6) - 10° —2.1(1) - 10"
0.305 0 6.95(1) - 101 1.41(9) - 109
0.315 0 4.06(2) - 1072 —9(7) - 104
0.325 0 3.88459(5) - 1076 | —6(3) - 1072
0.335 0 0 0

Table 3. Coefficients of the leading-order (Ap,, ), next-to-leading-order (Bp,, ) and next-to-next-
to-leading order (Cp,, ) contributions to the wide jet broadening distribution.
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Br |  Brigt Br Gk Br Gt
0.005 | 5.146(1) - 10! —3.776(2) - 103 9.16(8) - 10*
0.015 | 3.6823(4) - 10* —2.65(2) - 102 —5.59(5) - 10*
0.025 | 3.1132(3) - 10! 2.40(2) - 102 —2.77(5) - 10*
0.035 | 2.7389(2) - 10! 4.24(2) - 102 —1.24(5) - 10%
0.045 | 2.4563(2) - 10* 5.11(1) - 102 —3.8(5) - 103
0.055 | 2.2291(2) - 10* 5.42(1) - 102 1.6(4) - 103
0.065 | 2.0389(2) - 10! 5.53(1) - 102 5.9(4) - 103
0.075 | 1.8734(1) - 10! 5.46(1) - 102 7.4(4) - 103
0.085 | 1.7273(1) - 10* 5.32(1) - 102 8.3(4) - 103
0.095 | 1.5966(1) - 10* 5.164(9) - 10% 1.00(4) - 10*
0.105 | 1.4778(1) - 10* 4.960(8) - 102 9.9(3) - 103
0.115 | 1.3686(1) - 10" 4.744(8) - 102 9.9(3) - 103
0.125 | 1.2685(1) - 10* 4.515(7) - 102 9.7(3) - 103
0.135 | 1.17528(9) - 10! 4.288(7) - 102 1.03(3) - 10*
0.145 | 1.08786(9) - 10t 4.056(6) - 102 9.1(3) - 103
0.155 | 1.00548(8) - 10* 3.850(6) - 102 9.1(3) - 103
0.165 | 9.2782(8) - 109 3.615(6) - 102 8.8(3) - 103
0.175 | 8.5406(7) - 10° 3.409(6) - 102 8.1(3) - 103
0.185 | 7.8351(7) - 10° 3.203(5) - 102 7.6(2) - 103
0.195 | 7.1576(6) - 10° 3.016(5) - 102 7.3(2) - 103
0.205 | 6.4999(6) - 10° 2.825(5) - 102 6.9(2) - 103
0.215 | 5.8549(6) - 109 2.654(5) - 102 6.7(2) - 103
0.225 | 5.2173(5) - 10° 2.496(4) - 102 6.2(2) - 103
0.235 | 4.5744(5) - 10° 2.353(4) - 102 5.7(2) - 103
0.245 | 3.9151(4) - 10° 2.228(4) - 10% 5.4(2) - 103
0.255 | 3.2206(4) - 10° 2.124(4) - 102 5.1(2) - 103
0.265 | 2.4584(3) - 10° 2.067(3) - 102 4.8(1) - 103
0.275 | 1.5815(3) - 10° 2.057(3) - 102 4.8(1) - 103
0.285 | 4.942(2)-10~! 2.158(2) - 102 4.48(8) - 103
0.295 0 1.5624(7) - 102 5.13(4) - 103
0.305 0 1.0481(4) - 102 3.95(3) - 103
0.315 0 7.527(3) - 10! 2.88(2) - 103
0.325 0 5.412(2) - 10! 2.04(2) - 103
0.335 0 3.710(2) - 10! 1.42(1) - 103
0.345 0 2.203(1) - 10" 8.57(9) - 102
0.355 0 1.1206(7) - 10* 4.15(6) - 102
0.365 0 5.581(4) - 109 1.81(3) - 102
0.375 0 2.611(3) - 109 7.0(1) - 10t
0.385 0 1.018(2) - 10° 4.0(2) - 10°
0.395 0 2.247(7) - 1071 9(1) - 1072
0.405 0 1.70679(8) - 1075 | —7.35(5) - 1072
0.415 0 0 0

Table 4. Coefficients of the leading-order (Ap, ), next-to-leading-order (Bp, ) and next-to-next-
to-leading order (Cp, ) contributions to the total jet broadening distribution.
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c cZic ciBc cc
0.005 | 3.5327(6) - 101 | —2.151(1)-10% | 3.06(4) - 10*
0.015 | 2.7963(3) - 101 | —4.75(1)-10% | —3.04(4) - 10*
0.025 | 2.5124(3)-10' | —1.45(1)-10% | —2.15(4) - 10%
0.035 | 2.3269(2) - 10! 1.3(1) - 101 —1.48(4) - 10*
0.045 | 2.1887(2) - 10! 1.09(1) - 102 —1.12(5) - 104
0.055 | 2.0774(2) - 10! 1.71(1) - 102 —7.6(5) - 103
0.065 | 1.9831(2) - 10* 2.15(1) - 102 —5.3(5) - 103
0.075 | 1.9042(2) - 10! 2.44(1) - 10? —2.7(5) - 103
0.085 | 1.8340(2) - 10! 2.67(1) - 102 —1.5(5) - 103
0.095 | 1.7710(2) - 10* 2.83(1) - 102 —7(5) - 102
0.105 | 1.7152(2) - 10t 2.95(1) - 102 1.6(5) - 103
0.115 | 1.6637(2) - 10t 3.06(1) - 102 1.4(5) - 103
0.125 | 1.6154(2) - 10" 3.10(1) - 102 1.7(5) - 103
0.135 | 1.5713(2) - 10! 3.18(1) - 10? 3.3(5) - 103
0.145 | 1.5312(2) - 10t 3.21(1) - 102 3.6(5) - 103
0.155 | 1.4933(2) - 10! 3.23(1) - 102 4.3(5) - 103
0.165 | 1.4572(2) - 10! 3.24(1) - 102 4.2(5) - 103
0.175 | 1.4228(2) - 10! 3.26(1) - 102 4.8(5) - 103
0.185 | 1.3915(2) - 10! | 3.241(9) - 102 5.4(5) - 102
0.195 | 1.3609(2) - 101 | 3.227(9) - 102 4.4(5) - 103
0.205 | 1.3321(2) - 10" | 3.242(9) - 102 5.5(5) - 103
0.215 | 1.3039(2) - 101 | 3.214(9) - 102 5.8(5) - 102
0.225 | 1.2779(2) - 101 | 3.208(9) - 102 5.9(5) - 103
0.235 | 1.2524(2) - 101 | 3.184(9) - 102 6.2(5) - 103
0.245 | 1.2281(2) - 101 | 3.179(9) - 102 6.7(5) - 103
0.255 | 1.2046(2) - 101 | 3.156(9) - 102 6.3(5) - 10°
0.265 | 1.1823(2)-10' | 3.113(9) - 102 6.2(5) - 103
0.275 | 1.1608(2) - 101 | 3.079(9) - 102 6.6(5) - 10%
0.285 | 1.1392(2) - 101 | 3.078(9) - 102 5.9(5) - 103
0.295 | 1.1197(2) - 101 | 3.029(8) - 102 6.8(5) - 103
0.305 | 1.1000(2) - 101 | 3.008(8) - 102 6.5(5) - 103
0.315 | 1.0812(2) - 10" | 2.980(8) - 102 6.8(5) - 103
0.325 | 1.0627(2) - 101 | 2.964(8) - 102 6.5(5) - 103
0.335 | 1.0451(1) - 101 | 2.908(8) - 102 6.3(5) - 10°
0.345 | 1.0273(1) - 10" | 2.897(8) - 102 6.1(5) - 103
0.355 | 1.0110(1) - 101 | 2.856(8) - 102 6.2(5) - 103
0.365 | 9.946(1) - 10° 2.843(8) - 102 6.4(5) - 10%
0.375 | 9.787(1) - 10° 2.804(8) - 102 7.0(5) - 102
0.385 | 9.628(1) - 109 2.752(8) - 102 6.5(5) - 103
0.395 | 9.484(1) - 109 2.732(8) - 102 6.1(5) - 103
0.405 | 9.332(1) - 109 2.711(8) - 102 6.2(5) - 103
0.415 | 9.190(1) - 10° 2.685(7) - 102 7.0(5) - 103
0.425 | 9.049(1) - 109 2.636(7) - 102 5.8(4) - 103
0.435 | 8.914(1) - 10° 2.616(7) - 102 6.1(4) - 103
0.445 | 8.779(1) - 109 2.580(7) - 102 6.2(4) - 103
0.455 | 8.645(1) - 109 2.555(7) - 102 6.0(4) - 103
0.465 | 8.518(1) - 10° 2.518(7) - 102 6.5(4) - 103
0.475 | 8.392(1) - 10° 2.491(7) - 10? 5.6(4) - 102
0.485 | 8.269(1) - 109 2.465(7) - 102 5.9(4) - 103
0.495 | 8.152(1) - 109 2.415(7) - 102 5.8(4) - 103

Table 5. Coefficients of the leading-order (A¢), next-to-leading-order (B¢) and next-to-next-to-
leading order (C¢) contributions to the C-parameter distribution.
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C cZic cZc cc
0.505 | 8.033(1) - 109 2.417(7) - 102 5.8(4) - 103
0.515 | 7.918(1) - 10° 2.376(7) - 102 5.5(4) - 103
0.525 | 7.804(1) - 109 2.326(7) - 102 6.1(4) - 103
0.535 | 7.691(1) -10° 2.312(7) - 102 5.0(4) - 103
0.545 | 7.589(1) - 10° 2.285(7) - 102 5.5(4) - 103
0.555 | 7.476(1) - 109 2.247(7) - 102 5.7(4) - 103
0.565 | 7.377(1) - 100 2.227(7) - 102 5.7(4) - 103
0.575 | 7.271(1) - 109 2.190(7) - 102 5.6(4) - 102
0.585 | 7.172(1) - 10° 2.180(7) - 102 5.4(4) - 103
0.595 | 7.073(1) - 10° 2.143(7) - 102 5.2(4) - 103
0.605 | 6.976(1) - 10° 2.105(7) - 102 4.9(4) - 103
0.615 | 6.880(1) - 109 2.084(7) - 102 5.2(4) - 103
0.625 | 6.788(1) - 109 2.046(7) - 102 4.6(4) - 103
0.635 | 6.692(1) - 109 2.025(7) - 102 5.1(4) - 102
0.645 | 6.600(1) - 109 2.009(7) - 102 5.1(4) - 103
0.655 | 6.515(1) - 10° 1.977(7) - 102 4.4(4) - 103
0.665 | 6.426(1) - 109 1.947(7) - 102 5.0(4) - 103
0.675 | 6.337(1) - 10° 1.924(7) - 102 4.7(4) - 103
0.685 | 6.253(1) - 109 1.892(7) - 102 5.1(4) - 102
0.695 | 6.171(1) - 109 1.877(7) - 102 4.5(4) - 103
0.705 | 6.0874(9) - 10° 1.840(7) - 102 4.3(3) - 103
0.715 | 6.0103(9) - 10° 1.826(7) - 102 3.9(3) - 103
0.725 | 5.9266(9) - 10° 1.800(7) - 102 4.4(3) - 103
0.735 | 5.8474(9) - 10° 1.775(7) - 102 4.3(3) - 103
0.745 | 5.7695(9) - 10° 1.745(8) - 102 3.2(3) - 103
0.755 0 6.011(5) - 102 1.27(2) - 104
0.765 0 2.771(2) - 102 1.38(1) - 10%
0.775 0 1.905(1) - 102 9.99(9) - 103
0.785 0 1.4246(7) - 102 7.66(7) - 103
0.795 0 1.1124(6) - 102 6.17(6) - 103
0.805 0 8.895(5) - 10! 4.65(5) - 103
0.815 0 7.228(4) - 10! 3.49(4) - 103
0.825 0 5.913(3) - 10! 3.02(4) - 103
0.835 0 4.876(3) - 10* 2.50(3) - 103
0.845 0 4.037(2) - 10t 1.93(3) - 103
0.855 0 3.336(2) - 10! 8.2(2) - 102
0.865 0 2.754(2) - 10! 1.26(2) - 103
0.875 0 2.270(2) - 10! 9.4(2) - 102
0.885 0 1.856(1) - 10! 6.8(1) - 102
0.895 0 1.506(1) - 101 5.9(1) - 102
0.905 0 1.212(1) - 10t 4.57(9) - 102
0.915 0 9.587(9) - 100 3.50(7) - 102
0.925 0 7.458(8) - 10° 2.19(5) - 102
0.935 0 5.645(7) - 10° 1.0(2) - 10"
0.945 0 4.125(6) - 10° 1.01(2) - 102
0.955 0 2.875(5) - 10° 2.59(8) - 10*
0.965 0 1.835(4) - 10° 2.26(5) - 101
0.975 0 1.008(3) - 10° 3.9(1) - 10°
0.985 0 3.99(1)-10-1 | —4.886(1) - 10!
0.995 0 1.8841(2) - 1072 | —1.443(2) - 10!

Table 6. Coefficients of the leading-order (A¢), next-to-leading-order (B¢) and next-to-next-to-
leading order (C¢) contributions to the C-parameter distribution.

,30,



Table 7. Coefficients of the leading-order (A

to-leading order (

C

Y23

Inya3 Y23 d(ily;g, Y23 dﬁlyﬁ' Y23 dg;ff
—9.875 | 2.222(1) - 10! —1.133(3) - 10% | —2(1) - 10°
—9.625 | 2.157(1) - 10! —1.004(3) - 103 | —6(1) - 103
—9.375 2.094(1) - 10* —8.81(3) - 102 | —6.6(9) - 103
—9.125 | 2.031(1) - 10* —7.63(2) - 102 | —8.6(8) - 103
—8.875 | 1.9650(8) - 10! —6.58(2) - 102 | —8.6(7) - 10
—8.625 | 1.8987(7) - 10! —5.63(2) - 102 | —9.4(7) - 103
—8.375 | 1.8361(6) - 10! —4.74(2) - 102 | —9.9(6) - 103
—8.125 | 1.7707(6) - 10! —3.90(1) - 102 | —8.5(5) - 103
—7.875 | 1.7061(5) - 10 —3.21(1) - 102 | —9.1(5) - 103
—7.625 | 1.6405(4) - 10" —2.54(1) - 102 | —8.0(4) - 103
—7.375 | 1.5758(4) - 10! —1.94(1) - 102 | —8.1(4) - 103
—7.125 | 1.5099(3) - 10" | —1.415(9) - 10% | —6.2(4) - 103
—6.875 | 1.4457(3) - 10! —9.45(8) - 101 | —5.9(3) - 103
—6.625 | 1.3806(2) - 10! —5.56(7) - 101 | —5.2(3) - 103
—6.375 | 1.3163(2) - 10! —2.00(6) - 101 | —4.1(3) - 103
—6.125 | 1.2520(2) - 10! 1.21(5) - 10! —3.4(2) - 102
—5.875 | 1.1876(2) - 10! 3.61(5) - 10! —2.4(2) - 10®
—5.625 | 1.1235(1) - 10" 5.67(4) - 10 —1.8(2) - 103
—5.375 | 1.0598(1) - 10! 7.36(4) - 101 —1.3(2) - 10®
—5.125 | 9.965(1) - 10° 8.47(3) - 10t —9(2) - 102
—4.875 | 9.3336(9) - 10° 9.48(3) - 10" —3(1) - 102
—4.625 | 8.7098(8) - 10° 1.005(2) - 102 0(1) - 10!
—4.375 | 8.0890(7) - 10° 1.027(2) - 102 4(1) - 102
—4.125 | 7.4721(6) - 10° 1.033(2) - 102 5(1) - 102
—3.875 | 6.8622(5) - 10° 1.009(2) - 102 9.1(9) - 102
—3.625 | 6.2583(5) - 10° 9.70(1) - 10* 7.0(8) - 102
—3.375 | 5.6606(4) - 100 9.10(1) - 10" 7.0(7) - 102
—3.125 | 5.0728(4) - 10° 8.39(1) - 10t 7.6(6) - 102
—2.875 | 4.4922(3) - 10° 7.551(8) - 101 5.7(5) - 102
—2.625 | 3.9202(3) - 10° 6.652(7) - 10! 5.2(4) - 102
—2.375 | 3.3538(2) - 10° 5.674(6) - 101 4.5(3) - 102
—2.125 | 2.7894(2) - 10° 4.676(4) - 10! 2.6(3) - 102
—1.875 | 2.2184(2) - 10° 3.635(3) - 10! 1.8(2) - 102
—1.625 | 1.6189(1) - 10° 2.590(2) - 10! 1.4(2) - 10?
—1.375 | 9.4172(8) - 10~! | 1.479(2) - 10! 3(1) - 10t
—1.125 | 1.6678(3) - 1071 | 1.704(6) - 100 | —4.0(4) - 10!
—0.875 0 0 0

Y23

), next-to-leading-order (B

Y23

) and next-to-next-

) contributions to the three-to-two jet transition distribution.
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Ycut AS—jet,Durham B3—jet,Durham CS—jet,Durham
0.3 | 2.2301(9) - 10=2 | 1.35(2)-107! —6(3) - 109
0.15 | 1.0028(3) - 10° 1.582(3) - 10! 5(1) - 10!
0.1 | 2.1150(6) - 10° 3.415(7) - 101 1.7(2) - 10?
0.06 | 4.046(1) - 10° 6.57(1) - 10" 4.1(3) - 102
0.03 | 7.627(2)-10° 1.141(2) - 102 5.0(6) - 102
0.015 | 1.2359(3) - 10! 1.495(3) - 102 —1.2(9) - 102
0.01 | 1.5671(4) - 10! 1.531(4) - 102 —1.3(1) - 103
0.006 | 2.0430(5) - 10! 1.238(5) - 102 —3.6(2) - 103
0.003 | 2.7947(7) - 10! —5.5(7) - 10° -9.0(3) - 103
0.0015 | 3.6694(8) - 10" —2.93(1) - 10? —1.63(5) - 10*
0.001 | 4.2386(9) - 10! —5.62(1) - 10? —2.16(6) - 10%
0.0006 5.016(1) - 10* —1.032(2) - 103 —2.84(8) - 10*
0.0003 | 6.181(1) - 10* —1.967(2) - 103 —3.1(1) - 10*
0.00015 | 7.471(2) - 10! —3.333(2) - 103 —1.8(3) - 104
0.0001 | 8.285(2) - 10! —4.368(3) - 103 6(4) - 103

Table 8. Coefficients of the leading-order (As_jct, Durham ), next-to-leading-order (Bs_jet, Durham)
and next-to-next-to-leading order (C3_jet, Durham) contributions to the Durham three-jet rate for
various values of ycut.

Yeut AS—jet,Geneva BS—jet,Geneva CS—jet,Geneva
0.3 | 1.7615(7) - 10! 2.10(1) - 109 —1.3(6) - 10"
0.15 | 4.7265(9) - 10° 5.45(1) - 101 —4.4(6) - 102
0.1 8.922(1) - 10° 7.51(2) - 10t —1.3(1) - 103
0.06 | 1.5520(3) - 10" 3.87(4) - 10" —5.0(2) - 103
0.03 | 2.6717(4) - 101 —2.403(7) - 102 | —1.35(4) - 10*
0.015 | 4.0440(5) - 10! —9.725(7) - 102 | —2.53(7) - 10%
0.01 | 4.9627(6) - 10* —1.709(2) - 103 | —2.86(8) - 10*
0.006 | 6.2446(7) - 10! —3.072(3) - 103 —2.5(1) - 10%
0.003 | 8.204(1) - 10* —5.937(5) - 103 1.4(2) - 104
0.0015 | 1.0418(1)-102 | —1.0300(6) - 10* 1.53(4) - 10°
0.001 | 1.1833(1)-10% | —1.3736(9) - 10* | 2.81(5) - 10°

Table 9. Coefficients of the leading-order (As—jet,Gencva ), Next-to-leading-order (Bs_jet,Geneva)
and next-to-next-to-leading order (Cs_jct,Geneva) contributions to the Durham three-jet rate for
various values of ycus.

Yeut AS—jet,Jade—E‘O BS—jet,Jade—EO CS—jet,Jade—EO
0.3 | 5.393(2)-10~2 1.119(5) - 10° 9(8) - 109
0.15 | 2.3086(5) - 10° 5.293(6) - 10! 5.3(4) - 102
0.1 | 4.9170(9) - 10° 1.118(1) - 102 9(1) - 102
0.06 | 9.527(2) - 10° 1.994(2) - 102 1.5(2) - 103
0.03 | 1.8137(3) - 10t 2.885(4) - 102 —8(3) - 10?
0.015 | 2.9425(4) - 10* 2.397(8) - 102 —9.1(6) - 103
0.01 | 3.7257(5) - 10! 9.1(1) - 10! —1.88(6) - 10%
0.006 | 4.8389(6) - 10! —2.92(2) - 102 —2.9(1) - 10*
0.003 | 6.5768(9) - 10! —1.300(3) - 103 —4.6(2) - 104

0.0015 8.572(1) - 10* —3.092(4) - 103 —4.6(2) - 10%
0.001 9.859(1) - 10* —4.603(5) - 103 —2.9(4) - 10%
0.0006 | 1.1607(1) - 102 —7.143(7) - 103 3.2(4) - 10*
0.0003 | 1.4199(2) - 102 —1.190(1) - 10% 2.30(8) - 10°
Table 10. Coefficients of the leading-order (As_jet,jade—E0), next-to-leading-order

Bs_iet Jade—Eo) and next-to-next-to-leading order (C3_;et. jade—Eo) contributions to the Durham
jet, g jet,
three-jet rate for various values of ycyt.
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Table

(B3—jet,Cambridge) and next-to-next-to-leading order (Cs_jet,cambridge) contributions to the

11.

Durham three-jet rate for various values of ycys.
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Yeut A3—jet,0amb7‘idge BS—jet,Cambm’dge CS—jet,Cambridge
0.3 | 2.2301(9) - 10—2 1.35(2) - 10~ 1 —7(3) - 109
0.15 1.0028(3) - 10° 1.525(3) - 10! 2(3) - 10!
0.1 2.1150(6) - 10° 3.156(6) - 101 9(6) - 10!
0.06 4.046(1) - 109 5.72(1) - 10" 4(9) - 10!
0.03 7.627(2) - 10° 9.33(2) - 10! —2(2) - 102
0.015 1.2359(3) - 101 1.127(3) - 102 —1.1(2) - 103
0.01 1.5671(4) - 10t 1.048(4) - 102 —2.3(3) - 103
0.006 2.0430(5) - 10t 5.96(6) - 101 —3.9(4) - 103
0.003 2.7947(7) - 10! —9.66(7) - 10* —9.6(6) - 103
0.0015 3.6694(8) - 10! —4.15(1) - 10? —1.41(8) - 10#
0.001 4.2386(9) - 10! —7.03(1) - 102 —1.7(1) - 104
0.0006 5.016(1) - 10! —1.201(2) - 103 —1.8(1) - 10%
0.0003 6.181(1) - 10* —2.177(2) - 103 —1.3(2) - 10*
0.00015 7.471(2) - 10* —3.584(3) - 103 9(2) - 103
0.0001 8.285(2) - 10" —4.656(4) - 103 3.3(3) - 10*
Coefficients of the leading-order (As_jer,cambridge)s

next-to-leading-order



(1-1) N2 NO NG 2 NyNe Ny/Ne N?2
0.005 | —1.67(1) - 10* | 8.14(2) - 10% | 5.73(2) - 102 | —3.85(4) - 103 | —5.412(5) - 103 | 8.3281(6) - 103
0.015| 8.5(1)-10% | 4.35(3)-10% | —9.0(3)-10' | —1.880(4) - 10 | —6.80(6) - 10% | 3.4298(3) - 103
0.025| 1.35(1)-10% | 2.30(3)-103 | —9.2(3) - 10" | —1.632(4) - 10* | —1.02(6) - 10® | 2.3354(3) - 103
0.035| 1.52(1)-10* | 1.24(3)-10% | —7.7(2) - 10 | —1.425(4) - 10*| 1.12(6) - 102 1.7636(3) - 103
0.045 | 1.52(1) - 10* 5.4(3) - 102 —6.3(2) - 101 | —1.243(4) - 10* | 2.12(6) - 102 1.4027(3) - 103
0.055 | 1.47(1)-10* | 2.0(2) 102 | —4.7(2)-10" | —1.101(4) - 10* | 2.65(6) - 102 | 1.1509(3) - 103
0.065 | 1.41(1) - 10* —3(2) - 10* —4.0(2) - 10* | —9.83(4) - 103 | 2.81(5) - 102 9.646(3) - 102
0.075| 1.33(1)-10* | —2.3(2)-10%2 | —3.2(2) - 10 | —8.76(4) - 10% | 2.92(5) - 10? 8.209(2) - 102
0.085| 1.27(1)-10* | —3.4(2)-10%2 | —2.7(2) - 10 | —7.84(4) - 10% | 2.89(5) - 102 7.070(2) - 102
0.095| 1.19(1) - 10* | —3.9(2)-10%2 | —1.9(2) - 10 | —7.18(3) - 10% | 2.81(5) - 10? 6.142(2) - 102
0.105 | 1.12(1)-10* | —4.4(2)-10% | —1.7(2) - 10" | —6.49(3) - 103 | 2.69(5) - 102 5.374(2) - 102
0.115| 1.05(1) - 10* | —4.9(2)-10%2 | —1.4(2)-10' | —5.91(3) - 10% | 2.59(5) - 102 4.733(2) - 102
0.125| 9.7(1)-10% | —5.0(2) -10% | —1.1(1) - 10" | —5.44(3) - 103 | 2.46(4) - 102 4.182(2) - 102
0.135| 9.1(1)-10% | —5.2(2) - 102 —8(1)- 10 | —4.88(3) - 10% | 2.44(4) - 10? 3.705(2) - 10?
0.145| 8.6(1)-10% | —5.3(2) - 102 —7(1) - 109 | —4.48(3) - 10% | 2.21(4) - 102 3.298(2) - 102
0.155| 8.0(1)-10% | —5.1(2) - 102 —6(1) - 109 | —4.15(3) - 10% | 2.11(4) - 10? 2.937(2) - 102
0.165| 7.64(9)-10% | —5.0(1)-10%2 | —3(1)-10° | —3.85(3)-10% | 2.03(4) - 10? 2.620(2) - 102
0.175| 7.01(9) - 103 | —4.7(1)-10%2 | —2(1)-10° | —3.46(3)-10% | 1.96(3) - 102 2.338(2) - 102
0.185| 6.59(9) -10% | —4.8(1)-10% | —1(1)-10° | —3.20(3)-10% | 1.77(3) - 102 2.079(2) - 102
0.195| 6.19(9) - 103 | —4.4(1)-10%2 | —9(9)- 101 | —2.91(3) - 10% | 1.75(3) - 102 1.848(2) - 102
0.205| 5.81(9)-10% | —4.5(1)-10%2 | 7(9)-10~1 | —2.70(3) -10% | 1.60(3) - 10? 1.639(2) - 102
0.215| 5.44(8) - 103 | —4.2(1) - 102 1.1(8) - 109 | —2.46(2) - 10% | 1.47(3) - 102 1.446(2) - 102
0.225 | 5.04(8)-10% | —4.0(1)-10% | —3(8) 107! | —2.28(2) - 10% | 1.40(2) - 102 1.266(2) - 102
0.235| 4.70(8) -10% | —3.7(1)-10% | 1.0(7)-10° | —2.06(2) -10% | 1.30(2) - 102 1.097(2) - 102
0.245 | 4.33(7) - 103 | —3.49(9) - 102 | 2.5(6)-10° | —1.87(2)-10% | 1.20(2) - 102 9.38(2) - 10!
0.255 | 4.20(7) - 103 | —3.32(9) - 102 | 1.4(6)-10° | —1.71(2) -10% | 1.09(2) - 10? 7.88(2) - 10t
0.265 | 3.84(7)-10% | —3.19(8) - 102 | 2.3(5)-10° | —1.53(2)-10% | 9.7(2) - 10" 6.41(2) - 10"
0.275| 3.51(6) - 103 | —2.92(7) - 102 | 2.2(5)-10° | —1.39(2)-10% | 9.2(1)-10! 4.94(2) - 10!
0.285| 3.29(6) - 103 | —2.71(6) - 102 | 1.7(4)-10° | —1.26(2) 103 | 8.4(4)-10° 3.53(2) - 10!
0.295| 3.03(5) - 103 | —2.38(6) - 102 | 1.7(3)-10° | —1.05(1)-10% | 6.5(1) - 10" 2.14(2) - 10!
0.305 | 2.74(4) - 103 | —2.17(5) - 10% | 2.1(3) - 10° —8.6(1) - 102 5.96(8) - 10t 7.3(2) - 10°
0.315| 2.38(3)-10% | —1.99(4) - 102 | 1.5(2)-10° | —6.61(9) -10% | 5.03(6) - 10! —6.6(1) - 10°
0.325| 2.03(2)-10% | —1.59(2) -10% | 1.1(1)-109 | —4.65(6) -10% | 2.87(3) - 10! —2.14(1) - 10t
0.335| 1.39(1)-10% | —1.21(1)-10% | 6(1)-1072 | —2.23(3)-10% | 1.88(2)-10' | —2.570(6) - 10!
0.345 | 4.59(5)-10% | —5.91(7) - 10! | 1.0(1)-10~! | —9.2(1)-10' | 8.9(6)-1072 | —1.165(3) - 10"
0.355| 2.20(3) - 102 | —1.92(3) - 10! | —1(1)-10=% | —3.99(4) - 10! | 1.0(1)-10=2 | —5.91(2)-10°
0.365| 7.4(1)-10% | —1.10(6) - 10° | —2(1)-10—* | —1.73(2)-10' | 9(9) 108 —2.85(1) - 10°
0.375| 4.50(7) - 10 | —2.0(9)-1072| —8.8(7)-1073 | —7.8(1)-10° 1(1) - 1071 | —1.452(7) - 10°
0.385| 1.17(2) - 10* | —1.2(3)-1072| —2.0(1) - 1073 | —8.0(3) - 10~1 | 3(3)- 10713 | —1.84(7)-10~2
0.395| 2.1(2) - 10~ | —=3(1)-1073 | —4(4)-107% | —3(1)-107° | 1.0(7)-10~13 | —1.83(6) - 1072
0.405| —1(1)-10=7 | 4(4)- 1078 -3(2)-1078% | =5(5)-10712 | 1.1(7)- 10711 | —1.0(1) 1073
0.415| 5(2)-107° | 1.1(4)-1077 | —1(1)-10~ | —1(1)-10710 4(4) 1078 | —1.951(2) - 10!
0.425| —2(4)-10723 | —7.1(2)- 1073 | 5(7)-107" 0 0 0
0.435 0 —1(1) - 1073 0 0 0 0
0.445 0 0 0 0 0 0

Table 12. Individual contributions from the different colour factors to (1— T)% for the thrust

distribution.
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o N2 NO N2 NyNe Ny /Ne N?
0.005 | —1.10(1) - 10* | 6.01(2) - 103 | 7.83(1)-10% | 2.82(4) 103 | —6.094(5) - 103 | 8.3694(7 )~103
0.015 | 5.3(1)-10% | 3.64(3)-103 3.2(1) - 101 | —1.435(4) - 10* | —1.137(4) - 103 | 3.4802(5) - 102
0.025 | 9.2(1) - 103 2.04(2) - 103 | —1.0(1) - 101 | —1.278(4) - 10* | —4.76(4) - 102 | 2.3914(4) - 103
0.035| 1.03(1)-10* | 1.18(2)-10% | —1.5(1)-10' | —=1.119(4) - 10* | —2.05(4) - 10% | 1.8219(4) - 103
0.045 | 1.04(1)-10* | 6.9(2)-10% | —1.6(1)-10' | —9.71(4) - 103 | —7.6(4) - 101 | 1.4625(3) - 103
0.055 | 9.7(1) - 103 3.6(2) - 102 | —1.5(1)-10' | —8.51(4) - 103 4(4) - 10° 1.2114(3) - 103
0.065 | 9.3(1) - 102 1.7(2) - 102 | —1.0(1) - 10 | —7.48(4)-10% | 5.3(4) - 10! 1.0256(3) - 103
0.075 | 8.4(1) - 102 4(2) - 10! —1.0(1) - 10* | —6.74(3) - 103 8.0(4) - 10! 8.812(3) - 102
0.085| 7.9(1)-103 —4(2) - 10" —9(1)-10° | —5.87(3)-10% | 9.1(4) - 10* 7.673(3) - 102
0.095 | 7.3(1)-10% —8(2) - 101 —3(1)-10° | —5.35(3)-10% | 1.03(4)-10% | 6.737(3) - 102
0.105| 6.5(1)-10% | —1.4(2)-10% | —8(1)-10° | —4.75(3)-10% | 1.00(4) - 10® | 5.964(3) - 102
0.115| 5.9(1)-10% | —1.4(2)-10% | —3(1)-10° | —4.32(3)-10% | 1.05(3)-10%2 | 5.317(3) - 102
0.125| 5.3(1)-10% | —1.6(2)-10% | —4(1)-10° | —3.86(3)-10% | 1.00(3)-10% | 4.764(2) - 102
0.135| 4.8(1)-10% | —2.2(2)-10% | —3.1(9)-10° | —3.50(3) - 102 | 9.7(3) - 10! 4.283(2) - 102
0.145 | 4.4(1)-10% | —1.6(1)-10%2 | —1.5(9) -10° | —3.09(3) - 103 | 8.8(3) - 10! 3.875(2) - 102
0.155 | 3.8(1)-10% | —1.3(1)-10% | —2.6(9)-10° | —2.82(3)-10% | 8.3(3) - 10! 3.517(2) - 102
0.165 | 3.45(9)-10% | —1.6(1)-10% | —1.1(8)-10° | —2.48(2) - 103 | 7.4(3)-10! 3.194(2) - 102
0.175 | 2.73(9) - 103 | —1.0(1) - 102 | —1.9(8)-10° | —2.24(2)-10% | 7.1(3)- 10! 2.911(2) - 102
0.185 | 2.22(9) - 103 | —1.0(1)-10% | —1.8(8)-10° | —2.04(2) - 10 6.0(2) - 101 2.649(2) - 102
0.195 | 2.09(9)-10% | —1.1(1)-10% | —2(7)-10~" | —1.81(2)-10% | 5.2(2)- 10! 2.410(2) - 102
0.205 | 1.64(9) - 103 —8(1) - 101 —1.4(7)-10° | —1.55(2) - 103 4.7(2) - 10! 2.198(2) - 102
0.215 | 1.33(8)-10% | —5(1)- 10" —7(7) - 1071 | —1.38(2) - 103 | 4.2(2) - 10" 1.997(2) - 102
0.225 | 8.7(8) - 102 —5(1) - 101 —2.2(6) - 10° | —1.22(2) - 102 3.7(2) - 10! 1.814(2) - 102
0.235| 7.2(8)-10%2 | —2.2(9)-10' | —5(6) 1071 | —1.06(2) - 103 2.3(1) - 10! 1.632(2) - 102
0.245 | 5.4(7) - 102 —8(9)-10° | —8(5)-10~1 | —9.0(2) - 102 2.0(1) - 10! 1.469(2) - 102
0.255 | 2.1(7) - 102 —9(8)-10° | —5(5)-107' | —7.1(2) - 102 1.6(1) - 101 1.309(2) - 102
0.265 | 1.3(7) - 102 9(8) - 10° —7(4) 1071 | —6.2(2) - 102 9(1) - 10° 1.153(2) - 102
0.275 | —5(6) - 10! 1.5(7) - 10" | —5(4)-1071 | —4.7(1) - 102 5.5(9) - 10° 9.91(2) - 10"
0.285 | —2.0(6) - 102 7(6) - 100 —8(3)-1071 | —3.7(1)-10%2 | —1(3) 1071 8.35(2) - 10!
0.295 | —2.0(5) - 102 | 2.8(5) - 10* —4(2) 1071 | —2.5(1)-10% | —7(6)-10"1 6.73(2) - 10t
0.305 | —2.9(4)-10% | 1.9(4) - 10? —2(2)-1071 | —1.71(9) - 10 | —1.4(5)-10° 4.94(1) - 10!
0.315 | —2.1(3)-10% | 1.2(3) - 10* —4(1) 1071 | —1.24(6) - 102 | —5(3)-10~1 2.99(1) - 10t
0.325| 5(2)- 10! 5(2)-10° | —2.5(6) - 1071 | —1.24(4) - 102 | 3.2(2) - 10° 7.12(8) - 100
0.335| 1.34(5)-102 | —7(7)-1071 | —1.1(6) - 1073 | —7.5(1)-10' | 5.1(2)-10~1 | —1.041(4) - 10t
0.345 | 4.4(1)-10% | —2.4(2)-10° | —4.5(2) - 1072 | —1.57(3) - 10! 4(3)-107° —4.52(1) - 100
0.355 | 1.86(6) - 10* | —3.1(6)- 107! | —1.2(7)-10—2 | —7.5(1) - 10° 3(3) .10~ | —1.639(5) - 10°
0.365 | 3.7(2) - 100 | —2.4(8)-1072 | —4.0(4) - 10=%| =7.5(3) - 1071 | 1(1)-107'2 |-1.62(1) 107!
0.375 | 1.4(2)-1071 | —=3(3)-1077 | —7(1)-107° | —5(5) 106 4(2) - 1071 | —4.38(5) - 1072
0.385| 2.1(4)-1072 | 1.8(7)-1076 | —3(3)-107° | —7(7) 1071 6(4)-107% | —9.09(2) - 10~ 2
0.395| 3(4)-10~° 3(2)-1072 | —2(2)- 1071 | —1(1)-10712 | 3(2)-1071 | —2.7(2)-1073
0.405 | —3(2)-10~7 | 9(7)-10710 | —3(1)-10~ | —6(4) 10712 9(8) -107° —3.7(4) - 1073
0.415| 2(2)-1078 1(1) - 1075 —4(4) 1072 | —6(6) - 1074 0 —1.0(4) - 1071
0.425 0 0 0 0 0 0
dlstrlbutlon.
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Bw N2 NO N2 N¢Ne Ny /Ne N?
0.005 | 3.30(6) - 10* | —8.6(1) - 103 | 4.845(5) - 103 | 1.192(2) - 10° | —2.799(2) - 10* | 2.2782(2) - 10*
0.015 | —3.05(2) - 10* | 1.169(6) - 10* | 7.19(4) - 10> | —8.55(9) - 103 | —6.85(1) - 103 | 1.0195(1) - 10*
0.025 | —7.5(2)-10% | 8.19(6) - 103 | 2.20(3)-10% | —1.788(8) - 10* | —3.356(9) - 103 | 6.8578(7) - 103
0.035| 3.8(2)-10% | 5.78(5) - 103 7.1(3) - 101 | —1.922(7) - 10* | —1.908(8) - 103 | 5.1322(6) - 103
0.045 | 9.9(2) - 10% | 3.95(4) - 103 1.1(2) - 101 | —1.853(6) - 10* | —1.145(7) - 103 | 4.0453(6) - 103
0.055 | 1.25(2) - 10* | 2.84(4) - 103 0(2)-10~1Y | —1.731(6) - 10* | —7.03(6) - 10 | 3.2925(5) - 103
0.065 | 1.40(2)-10* | 1.96(4) - 103 | —1.4(2)-10" | —1.571(6) - 10* | —4.33(6) - 102 | 2.7390(5) - 103
0.075| 1.40(2) - 10* | 1.41(3) - 103 | —1.4(2)-10' | —1.437(5)-10*| —2.44(6) - 10% | 2.3111(4) - 103
0.085| 1.37(2)-10* | 8.4(3) - 102 —1.3(2) - 101 | —1.292(5) - 10* | —1.07(5) - 102 | 1.9746(4) - 103
0.095 | 1.33(2)-10* | 6.5(3)-10%2 | —1.2(1)-10" |—1.156(5)-10*| —3.0(5)-10' | 1.7000(4) - 103
0.105| 1.26(2) -10* | 3.3(2) - 102 —1.4(1) - 101 | —1.047(4) - 10* | 2.2(5) - 10? 1.4749(4) - 103
0.115| 1.14(2) -10* | 1.8(2) - 102 —9(1) - 10° —9.47(4) - 103 | 5.6(5) - 10t 1.2858(3) - 103
0.125 | 1.08(2) - 10* 6(2) - 10! —7(1) - 10° —8.38(4) - 103 | 9.5(4)-10' | 1.1265(3) - 103
0.135| 9.8(1) - 103 —5(2) - 101 —6(1) - 10° —7.50(4) - 10% | 1.02(4) - 102 | 9.905(3) - 10%
0.145 | 8.6(1)-10% | —1.2(2)-10% | —5(1)-10° —6.70(4) - 103 | 1.03(4) - 102 | 8.725(3) - 102
0.155| 8.0(1)-10% | —1.7(2)-10% | —2.3(9)-10° | —5.95(4) - 103 | 1.24(4)-10% | 7.710(3) - 102
0.165| 7.0(1)-10% | —1.5(2)-10% | —3.8(8)-10° | —5.25(3)-10% | 1.13(3)-10% | 6.831(3) - 102
0.175| 5.8(1)-10% | —1.8(2)-10% | —2(8)-10~1 | —4.67(3)-10% | 1.06(3)-10% | 6.068(3) - 102
0.185| 4.8(1)-10% | —1.7(1)-10% | —4(7)-10~1 | —4.09(3)-10% | 9.8(3) - 10! 5.386(2) - 102
0.195| 3.9(1)-10% | —1.3(1)-10% | —1.5(7)-10° | —3.48(3)-10% | 8.3(3) - 10" 4.795(2) - 102
0.205 | 3.2(1)-10% | —1.2(1)-10% | —2.1(6)-10° | —3.00(3)-10% | 7.7(2) - 10! 4.269(2) - 102
0.215 | 2.0(1)-10% | —7(1)-10! —3(6) - 1071 | —2.46(3) - 10% | 5.6(2) - 10! 3.790(2) - 102
0.225 | 1.28(9)-10% | —2(1)-10! —1.5(5)-10° | —1.99(2) - 10% | 4.1(2) - 10! 3.348(2) - 102
0.235| 6.2(9) - 102 —2(1) - 101 —5(5)-1071 | —1.58(2)-10% | 2.3(2)-10! 2.937(2) - 102
0.245 | —3.1(8) - 102 | 3.8(9)-10' | —8(4)-10—! | —1.17(2)-10% | 1.3(1)-10! 2.529(2) - 102
0.255 | —6.2(7)-10% | 6.3(8)-10' | —9(3)-10~! | —7.3(2)-102 —6(1) - 10° 2.123(2) - 102
0.265 | —1.11(6) - 103 | 7.4(6) - 10! 4(3)-1071 —3.4(1) - 102 | —1.06(6) - 10 | 1.678(2) - 102
0.275 | —1.23(4) - 103 | 7.0(4) - 10! 8(2) - 1071 —3(1) - 10t —2.37(5) - 10* | 1.136(1) - 102
0.285| —4.1(2) - 102 | 1.2(2) - 10! 1.5(6) - 101 —2.7(5)- 10 | —6.7(2) - 10° | 2.952(8) - 10!
0.295 | 1.9(1)-10% | —2.0(2)-10° | —5.9(2) - 102 | —3.17(4) - 10! 3(2) - 107° —5.73(1) - 10°
0.305 | 1.53(9)-10° | —7(7)-107° | —1.31(8) - 1073 | —2(1) - 1073 5(3)-10712 | —1.13(1) - 10!
0.315| 1.9(6) - 103 | 4(3)-10=% | —5(3)-10710 | —9(9)-10~11 | 9(5)-10~12 | —2.8(2)-10~3
0.325| 1.5(8)-1072 | 3(3)-10~% —3(3)-107° —4(4) - 10~4 0 —7(3) - 1072
0.335 0 0 0 0 0 0
Table 14. Individual contributions from the different colour factors to By, dg%if/" for the wide jet

broadening distribution.

,36,




Br N2 NO N2 NyNe Ny /Ne N?
0.005 | —2.9(7) - 103 | —3.2(1)-103 | 4.480(8) - 10% | 9.64(2) - 10* | —2.592(2) - 10 | 2.2742(2) - 10*
0.015 | —5.33(5) - 10* | 1.97(1) - 10* | —1.1(1)-10% | —2.75(2) - 10* | —4.92(2) - 102 | 1.01489(9) - 10*
0.025 | —1.23(5) - 10* | 1.32(1) - 10* | —3.8(1)-10% | —3.34(2) - 10* | —1.69(2) - 103 | 6.8099(7) - 10%
0.035| 7.1(4)-103 9.3(1) - 103 | —3.83(9) - 102 | —3.31(2) - 10* | —4.4(2)-10% | 5.0819(6) - 103
0.045 | 1.70(4) - 10* 6.2(1) - 103 | —3.46(8) - 102 | —3.08(2) - 10* 1.6(2) - 102 | 3.9942(5) - 103
0.055 | 2.26(4) - 10* 4.1(1) - 10 | —=2.95(7) - 10% | —2.85(1) - 10* | 4.6(2)-10% | 3.2413(5) - 103
0.065 | 2.58(4)-10* | 2.92(9)-10% | —2.57(6)-10% | —2.59(1) - 10* 6.5(2) - 102 2.6872(5) - 103
0.075 | 2.65(4)-10* | 1.82(8)-10% | —2.20(6) - 102 | —2.37(1)-10* | 7.4(1)-10% | 2.2583(5) - 103
0.085 | 2.64(4)-10* | 8.8(7)-10%2 | —1.81(5)-10% | —2.16(1)-10* | 8.3(1)-10% | 1.9214(5) - 103
0.095 | 2.69(3) - 10* 4.9(7) - 102 | —1.60(5) - 102 | —1.96(1) - 10* | 8.3(1) - 102 1.6464(5) - 103
0.105 | 2.56(3) - 10% —0(6) - 10° | —1.41(4) - 10% | —1.78(1) - 10* | 8.3(1)-10% | 1.4206(5) - 103
0.115 | 2.49(3) -10* | —3.3(6) - 102 | —1.15(4) - 102 | —1.66(1) - 10* | 8.3(1) - 102 1.2309(5) - 103
0.125 | 2.37(3)-10* | —6.3(5)-10% | —9.9(4) - 10! | —1.52(1)-10* | 8.0(1) - 102 1.0699(5) - 103
0.135 | 2.28(3)-10* | —6.7(5)-10% | —7.9(3) - 10" | —1.352(9) - 10* | 7.8(1) - 102 9.316(5) - 102
0.145 | 2.09(3) -10* | —8.3(5)-10% | —7.3(3)-10' | —1.251(9)-10* | 7.2(1)- 102 8.118(5) - 102
0.155 | 2.03(3)-10* | —1.03(4) - 103 | —6.4(3) - 10 | —1.152(8) - 10* | 7.1(1)- 102 7.091(5) - 102
0.165 | 1.90(2) -10* | —1.03(4) - 10% | —5.6(3) - 101 | —1.045(8) - 10* | 6.63(9) - 10> | 6.171(6) - 102
0.175 | 1.78(2) - 10* | —1.01(4) - 103 | —4.0(2) - 10' | —9.77(7) - 10® | 6.30(8) - 102 5.373(6) - 102
0.185 | 1.64(2)-10* | —1.12(4) - 103 | —3.5(2) - 10 | —8.74(7) - 103 | 6.09(8) - 102 | 4.632(6) - 102
0.195| 1.53(2)-10* | —1.05(3) - 103 | —3.8(2) - 10" | —7.94(7) - 103 | 5.50(7) - 102 3.985(6) - 102
0.205 | 1.46(2)-10% | —1.09(3) - 103 | —2.6(2) - 101 | —7.42(7)-10% | 5.47(7)-10% | 3.382(7) - 102
0.215 | 1.36(2)-10* | —1.05(3) - 103 | —2.2(2) - 10 | —6.66(6) - 103 | 4.95(6) - 102 | 2.827(7) - 102
0.225 | 1.26(2)-10* | —9.4(3)-10% | —2.4(2)-10' | —6.12(6) - 10® | 4.71(6) - 102 2.304(7) - 102
0.235| 1.17(2)-10* | —9.4(2)-10% | —1.6(1) - 10" | —5.66(6) - 103 | 4.34(5)-102 | 1.774(7) - 102
0.245 | 1.09(2) -10* | —9.2(2)-10% | —1.4(1)-10' | —5.12(5)-103 | 4.11(5) - 102 1.263(7) - 102
0.255 | 1.02(1)-10* | —8.4(2)-10% | —1.3(1) 10! | —4.76(5)-10% | 3.80(4) - 102 7.01(7) - 10*
0.265| 9.7(1)-10% | —8.1(2)-10% | —1.12(9) - 10 | —4.47(4) - 103 | 3.58(3) - 102 7.7(6) - 10°
0.275| 9.4(1)-10% | —7.2(1)-10% | —1.09(7) - 10% | —4.24(3) - 10% | 3.46(3) - 10> | —6.79(6) - 10!
0.285| 9.11(7)-10% | —6.12(9) - 102 | —1.28(5) - 10' | —4.17(2) - 103 | 3.43(2)-10% | —1.722(4) - 102
0.295 | 8.52(4)-10% | —6.91(5) -10% | —8(3)-10~1 | —2.77(1)-10% | 2.35(1)-10% | —1.570(2) - 102
0.305 | 6.26(3)-10% | —5.47(3)-10%2 | 2.3(2)-10° | —1.741(9) - 103 | 8.57(6) - 10> | —1.046(1) - 102
0.315 | 4.55(2) -10% | —4.14(3) - 102 | 1.9(1)-10° | —1.215(7) - 10% | 3.32(3) - 10% | —7.413(9) - 10*
0.325 | 3.24(2) -10% | —3.03(2) - 102 | 1.5(1)-10° | —8.52(5)-102 | 3.42(8)-10° | —5.275(6) - 10*
0.335 | 2.24(1)-10% | —2.20(2) - 102 | 1.03(7)-10° | —5.65(3)-10% | 1.99(5) - 10° | —3.615(5) - 10*
0.345 | 1.337(9) - 103 | —1.36(1) - 102 | 4.5(4) - 107! | —3.23(2)-10% | 7.7(3)- 10~ | —2.237(3) - 10"
0.355 | 6.37(5)-10% | —6.24(6) - 101 | 8(4)-10~3 | —1.470(9) - 102 | 2.5(1)-10~! | —1.226(2) - 10?
0.365 | 2.81(3)-10% | —2.50(3) - 10' | —1.3(3) - 1072 | —6.80(4) - 101 | 1.2(2)-10"2 | —6.38(2) - 10°
0.375 | 1.01(1)-10® | —3.0(3)-107' | —1.6(1) - 1072 | —2.75(2) - 10" | 7(6)-10~'2 | —2.90(1) - 10°
0.385| 4.7(1)-10° |—3.8(2) 1071 | —2.2(4) - 107*| —2.0(1) - 10~ | 9(6)-10~1* | —1.80(2) 107!
0.395 | 1.0(1)-10"t 4(4)-10~8 —2(2)-107° | —2(1)-1077 | 1.4(8)-10~12 | —1.17(5) - 10~ 2
0.405 | —1.3(6) - 1075 | 9(6) - 10710 | —3(1)-10=*2 | —1(1) 10710 3(2)-107% | —7.38(4) - 1072
0.415 0 0 0 0 0 0

Table 15. Individual contributions from the different colour factors to Br

dlggTT for the total jet

broadening distribution.

,37,



c N2 NO NG ? NyNc Ny /Ne N?
0.005 | —2.82(3) - 10% | 4.28(9) - 103 | 2.583(6) - 103 | 5.10(1) - 10* | —1.578(1) - 10* | 1.6764(2) - 10*
0.015 | —3.60(3) - 10* | 1.22(1) - 10* | 4.7(1) - 10% | —1.04(2) - 10* | —5.45(2) - 103 | 8.808(1) - 103
0.025 | —1.76(4) - 10* | 9.8(1)-10% | 1.6(1)-10% | —1.73(2)-10% | —3.27(2) - 103 | 6.697(1) - 103
0.035 | —7.3(4)-10% | 8.6(1) - 103 2(1) - 101 | —1.94(2) - 10* | —2.23(2) - 103 | 5.522(1) - 103
0.045 | —1.0(4) -10% | 6.6(1)-10% | —6(1)-101 | —1.99(2) - 10* | —1.59(2) - 103 | 4.7388(9) - 103
0.055 | 4.2(4)-10% | 5.8(1)-10% | —6(1)-10' | —2.05(2) - 10* | —1.16(2) - 103 | 4.1679(9) - 103
0.065 | 6.8(4)-10% | 5.2(1)-10% | —9(1)-10' | —2.01(2)-10*| —8.3(2)-10% |3.7300(9) - 103
0.075 | 9.4(4)-10% | 4.3(1)-10% | —1.1(1) - 102 | —1.91(2) - 10* | —6.2(2) - 102 | 3.3755(9) - 103
0.085 | 1.12(5)-10* | 3.6(1)-10% | —9(1)-10' | —1.89(2) -10* | —4.3(2)-10% |3.0855(9) - 103
0.095 | 1.20(5)-10* | 3.3(1)-10% | —1.1(1) - 10% | —1.85(2) - 10* | —3.1(2) - 10% | 2.8420(8) - 103
0.105 | 1.44(5)-10* | 2.6(1)-10% | —1.1(1) - 10% | —1.78(2) - 10* | —1.7(2) - 102 |2.6327(8) - 103
0.115 | 1.42(5)-10* | 2.6(1)-10% | —9(1)-10' | —1.77(1)-10* | —7(2)-10' |2.4504(8) - 10°
0.125 | 1.45(5)-10% | 2.1(1)-10% | —1.1(1) - 10% | —1.70(1) - 10* | —3(2)-10' |2.2893(8) - 103
0.135| 1.59(5)-10* | 1.9(1)-10% | —1.1(1) - 10% | —1.66(1) - 10* 7(2) - 10! 2.1488(8) - 103
0.145 | 1.62(5)-10* | 1.7(1)-10% | —6(1)-10' | —1.63(1) - 10% 8(2) - 10t 2.0234(8) - 103
0.155 | 1.65(5)-10% | 1.4(1)-10% | —9(1)-10' | —1.56(1)-10*| 1.3(2)-10% |1.9086(8) - 103
0.165 | 1.65(5)-10% | 1.2(1)-10% | —9.2(9) - 10" | —1.54(1) - 10* | 1.8(2)-10% | 1.8064(8) - 103
0.175| 1.67(5)-10* | 1.0(1)-10% | —9.0(9) - 10! | —1.48(1) - 10* | 2.2(2)-10% |1.7110(8) - 103
0.185 | 1.70(5)-10* | 8(1)-102 | —6.0(9) - 10" | —1.42(1) - 10* | 2.8(2)-10% |1.6272(8) - 103
0.195| 1.63(5)-10* | 6(1)-10% | —5.6(9)-10' | —1.43(1) - 10* | 2.7(2)-10% | 1.5478(8) - 10°
0.205 | 1.67(5)-10* | 6(1)-102 | —6.4(9) - 10" | —1.36(1) - 10* | 3.2(2)-10% |1.4751(8)- 103
0.215 | 1.72(5)-10* | 4(1)-10% | —7.1(8) - 10" | —1.34(1) - 10* | 3.0(2) - 10% | 1.4074(8) - 103
0.225 | 1.68(5)-10* | 3(1)-10% | —5.1(8)-10' | —1.29(1) - 10* | 3.5(2) - 102 | 1.3450(8) - 10°
0.235 | 1.72(5) - 10* 1(1) - 102 | —4.1(8) - 10! | —1.26(1) - 10* | 3.4(2)-10% | 1.2865(8) - 103
0.245 | 1.71(5) - 104 2(1)- 102 | —7.2(8) - 10 | —1.21(1) - 10* | 3.2(2)-10% | 1.2336(8) - 103
0.255 | 1.70(5) - 10* | —6(9) - 10 | —4.3(7) - 10! | —1.22(1) - 10* | 3.9(2) -10% | 1.1829(8) - 103
0.265 | 1.65(5)-10* | —1(9)-10' | —5.1(8) - 10" | —1.17(1) - 10* | 3.7(2) -10% | 1.1354(8) - 103
0.275 | 1.67(5)-10* | —3(9)-10' | —4.3(7) - 10! | —1.15(1) - 10* | 3.7(2)-10% | 1.0907(8) - 103
0.285 | 1.59(5) - 10* | —2.8(9) - 102 | —4.3(7) - 10" | —1.11(1) - 10* | 3.6(2) - 10% | 1.0482(8) - 103
0.295 | 1.65(5) - 10% | —2.4(9) - 102 | —=3.1(7) - 10* | —1.08(1) - 10* | 3.8(2) - 102 | 1.0099(8) - 103
0.305 | 1.61(5) - 10* | —2.2(9) - 102 | —4.3(7) - 10' | —1.07(1) - 10* | 3.7(2) - 102 | 9.723(8) - 102
0.315| 1.63(5)-10* | —3.6(9) - 102 | —2.9(7) - 10! | —1.04(1) - 10* | 3.9(2) -10% | 9.347(8) - 102
0.325 | 1.55(5)-10* | —3.9(9) - 102 | —3.1(7) - 10 | —9.8(1) - 103 3.8(2) - 102 9.033(8) - 102
0.335| 1.53(5) - 10* | =3.1(8) - 102 | —1.7(7) - 10' | —9.9(1) - 10® | 3.9(2) - 102 | 8.704(8) - 102
0.345 | 1.51(5) - 10* | —4.2(8) -10% | —2.8(7) - 10! | —9.8(1) - 103 | 3.9(2)-10% | 8.412(8) - 102
0.355 | 1.48(5)-10* | —4.6(8)-10% | —2.7(6) - 10 | —9.3(1) - 103 3.8(2) - 102 8.126(8) - 102
0.365 | 1.50(4) - 10* | —5.7(8) - 102 | —2.7(6) - 10* | —9.2(1) - 103 | 3.9(2) - 102 7.836(8) - 102
0.375 | 1.54(4) -10* | —5.2(8) -10% | —1.8(6) - 10! | —9.0(1) - 103 | 4.0(2)-10% | 7.592(8) - 102
0.385 | 1.44(4) - 10* | —5.3(8) - 102 | —2.0(6) - 10* | —8.6(1) - 10® | 3.9(2) - 102 7.343(8) - 102
0.395 | 1.44(4) - 10* | —5.8(8) - 102 | —2.5(6) - 10* | —8.8(1)-10% | 3.9(2) - 102 7.092(8) - 102
0.405 | 1.40(4) -10* | —5.6(8) - 102 | —1.1(6) - 10 | —8.3(1) - 103 3.8(1) - 102 6.859(8) - 102
0.415| 1.48(4) - 10* | —6.8(7)-10% | —1.3(6) - 10! | —8.1(1) - 10% | 3.3(1)-10% | 6.657(8) - 102
0.425 | 1.34(4) -10* | —6.5(7) - 102 | —2.2(5) - 10! | —7.9(1) - 103 | 3.8(1)-10% | 6.445(8) - 102
0.435 | 1.35(4) - 10* | —6.6(7) - 102 | —1.4(5) - 101 | —7.8(1)-10% | 4.0(1)-10% | 6.234(8) - 102
0.445 | 1.35(4) - 10* | —6.5(7) - 10% | —2.6(5) - 10! | —7.6(1) - 103 | 3.5(1)-10% | 6.052(8) - 102
0.455 | 1.36(4) - 10* | —9.0(7) - 102 | —6(5)-10° | —7.6(1)-10% | 3.6(1) - 102 5.859(8) - 102
0.465 | 1.33(4) - 10* | —6.2(7) - 102 | —1.3(5) - 10* | —7.1(1)-10® | 3.9(1) - 102 5.683(8) - 102
0.475 | 1.27(4) - 10* | —6.7(7) - 102 | —1.1(5) - 10* | —7.3(1)-10% | 3.7(1) - 102 5.506(8) - 102
0.485 | 1.27(4) - 10* | —8.4(7)-10% | —1.2(5) - 10' | —6.8(1)-10® | 3.6(1) - 102 5.366(8) - 102
0.495 | 1.26(4) - 10* | —7.0(7) - 102 | —1.3(5) - 10! | —6.9(1) - 103 | 3.4(1)-10% | 5.190(8) - 102

Table 16. Individual contributions from the different colour factors to pdf—cc for the C parameter

distribution.

,38,



c N2 NO N2 NyNe Ny /Ne N?
0.505 | 1.24(4) - 10* | —8.6(7) - 102 —4(5) - 10° —6.6(1) -10% | 3.6(1) - 10? 5.051(8) - 102
0.515| 1.20(4) - 10* | —6.7(6) - 102 —9(4) - 109 —6.7(1)-10% | 3.8(1) - 102 4.909(8) - 102
0.525 | 1.24(4) - 10* | —7.0(6) - 102 —5(4) - 109 —6.4(1)-10% | 3.4(1) - 102 4.762(8) - 102
0.535| 1.13(4) - 10* | —8.5(6) - 102 | —1.5(4) - 10! —6.2(1) - 102 | 3.5(1) - 102 4.619(8) - 102
0.545 | 1.15(4) - 10* | —7.3(6) - 102 —6(4) - 109 —6.1(1) - 103 | 3.3(1) - 102 4.473(8) - 102
0.555 | 1.16(4) - 10* | —7.9(6) - 102 —4(4) - 10° —5.9(1) -10% | 3.2(1) - 102 4.370(8) - 102
0.565 | 1.16(4) - 10* | —7.6(6) - 102 —7(4) - 10° —5.9(1) - 102 | 3.5(1) - 102 4.225(8) - 102
0.575 | 1.14(4) - 10* | —8.3(6) - 102 —6(4) - 100 —5.7(1)-10% | 3.3(1)- 102 4.109(8) - 102
0.585 | 1.09(4) - 10* | —7.6(6) - 102 —4(4) - 10° —5.5(1) - 103 | 3.4(1) - 10? 3.997(8) - 102
0.595 | 1.07(4) - 10* | —8.1(6) - 102 1(3) - 10° —5.4(1)-10% | 3.2(1) - 102 3.885(8) - 102
0.605 | 1.04(4) - 10* | —7.4(6) - 102 —5(3) - 109 —5.4(1)-10% | 3.3(1) - 102 3.794(8) - 102
0.615| 1.08(4) - 10* | —7.7(5) - 102 2(3) - 109 —5.5(1) - 102 | 3.2(1) - 102 3.680(8) - 102
0.625| 9.8(4)-10% | —8.3(5) - 102 —2(3) - 109 —5.0(1)-10% | 3.0(1) - 102 3.573(9) - 102
0.635| 1.02(4) - 10* | —7.3(5) - 102 3(3) - 109 —5.0(1) - 103 | 3.1(1) - 10? 3.484(9) - 102
0.645 | 1.01(4) - 10* | —8.0(5) - 102 —2(3) - 10° —4.9(1)-10% | 3.1(1) - 10% 3.392(9) - 102
0.655| 9.4(4)-103 | —7.8(5) - 102 —5(3) - 109 —4.9(1) - 103 | 2.65(9) - 102 3.293(9) - 102
0.665 | 1.00(4) - 10* | —7.5(5) - 102 0(3)-10~1 —4.9(1) -10% | 2.91(9) - 102 3.182(9) - 102
0.675| 9.6(3)-10% | —8.4(5) - 102 —3(3) - 109 —4.7(1) - 103 | 3.18(9) - 102 3.132(9) - 102
0.685| 9.7(3)-10% | —7.3(5) - 102 1.0(3) - 10* —4.4(1) - 103 | 2.80(9) - 102 3.012(9) - 102
0.695| 9.2(3)-10% | —7.7(5) - 102 2(3) - 109 —4.5(1) -10% | 2.12(7) - 102 2.947(9) - 102
0.705 | 8.8(3)-10% | —7.4(5) - 102 —1(2) - 100 —4.4(1) - 10% | 2.75(9) - 102 2.852(9) - 102
0.715 | 8.3(3)-10% | —7.8(4) - 102 2(2) - 10° —4.2(1) - 10% | 2.86(8) - 102 2.78(1) - 102
0.725| 8.9(3)-10% | —7.7(4) - 102 6(2) - 109 —4.2(1) -10% | 2.71(8) - 102 2.70(1) - 102
0.735| 8.9(3)-10% | —7.9(4) - 102 3(2) - 109 —4.3(1) - 103 | 2.56(7) - 102 2.65(1) - 102
0.745| 7.8(3)-10% | —7.2(4) - 102 5(2) - 109 —4.4(1) -10% | 2.57(7) - 102 2.54(1) - 102
0.755 | 2.43(2) -10* | —6.2(3) - 102 | —5.2(1)-10' | —1.106(7) - 10* | 8.14(5) - 102 —6.780(8) - 102
0.765 | 1.97(1) - 10* | —1.58(1) - 103 | 1.06(7) - 10* | —4.36(3) - 102 | 3.55(2) - 102 —3.520(3) - 10?
0.775| 1.418(8) - 10* | —1.25(1) - 103 | 1.53(6) - 101 | —2.78(2) - 103 | 7.40(9) - 10? —2.490(2) - 102
0.785 | 1.072(7) - 10* | —9.93(9) - 102 | 1.01(4) - 101 | —2.00(2) - 103 | 1.17(1) - 102 —1.892(2) - 102
0.795 | 8.53(6) - 10% | —8.09(7) - 102 | 1.07(4) - 10" | —1.52(2) - 103 | 1.066(8) - 10? | —1.488(2) - 102
0.805 | 6.68(5) - 10% | —6.86(6) - 102 |  8.7(3) - 10° —1.22(1) - 103 | 3.4(4) - 1071 | —1.191(1) - 102
0.815| 5.09(4) - 103 | —5.56(5) - 102 | 6.7(3) - 10° —9.6(1) - 102 | 1.16(7) - 10° —9.65(1) - 101
0.825| 4.34(4) - 10% | —4.54(5) - 102 |  4.7(2) - 10° —7.91(8)-10% | 7(1)-1072 —7.87(1) - 101
0.835 | 3.52(3) - 10% | —3.59(4) - 10% | 2.4(1) - 109 —6.45(6) - 10% | 4.62(4) - 10! —6.448(9) - 10!
0.845 | 2.84(3) - 10% | —3.15(3) - 102 | 2.3(1) - 10° —5.48(5) - 102 | 6.3(1) - 10° —5.297(8) - 10!
0.855 | 1.56(2) - 103 | —2.58(3) - 102 | 1.22(9) - 10° | —4.50(4) - 102 | 1.32(2) - 10? —4.356(7) - 101
0.865 | 1.87(2)-10% | —2.09(3) - 102 | 3.7(5) - 10—t | —3.65(3) - 10% | 7.6(4) - 10~1 | —3.551(6) - 10*
0.875| 1.39(2) - 103 | —1.38(2) - 10% | 2.6(4) - 10~ | —2.88(3) - 102 | 3.63(7) - 10° —2.904(6) - 10t
0.885| 1.02(1) - 10% | —9.7(2) - 10! | 2.1(4)-1071 | —2.18(2)-10% | 2(1)-1073 —2.343(5) - 10!
0.895| 8.6(1)-10% | —7.7(1)-10' | 1.7(3)-10~t | —1.74(2)-10% | 2(3)-10~% —1.880(4) - 10!
0.905 | 6.78(9) - 102 | —6.1(1) - 10! 0(2)-1073 —1.45(1)-10% | 2(2)-107° —1.481(4) - 101
0.915 | 5.05(7) - 102 | —3.33(7) - 101 | —1(1)-1072 | —1.106(9) - 102 | 2(1)-10~* —1.149(3) - 10!
0.925 | 3.26(5) - 102 | —2.13(5) - 10* | —8(5)-10~* | —7.68(7)-10' | 1(1)-107° —8.68(3) - 10°
0.935| 7.3(2)-10' | —6.2(7)-1071 | —1.3(2) - 1072 | —5.62(5) - 10! | 2(1)-10~1! —6.18(2) - 10°
0.945 | 1.40(2) - 102 | —4.8(2)-10° | —1.1(1)-1072 | —2.99(3) - 10! | 2(1)-107° —4.22(2) - 10°
0.955 | 3.19(8) - 10 | —8.8(7) - 1071 | —3.7(5) - 1073 | —2.60(9) - 10° | 1.3(9) - 10~ | —2.51(1)-10°
0.965 | 2.28(5) - 10 | —1.6(6) - 10— —2(2)-107° —1(1)-107% |1.7(9) - 107 | —1.98(4) - 1071
0.975| 4.0(1) - 10° 1(1) - 10 —1.05(9) - 1073 | —6(2) -1 3(1)-10~13 —1.22(3) - 10~ 1
0.985| 1(1)-107% 1(1) - 1077 2(2) - 10710 —8(7) -1 1(1) - 10712 | —4.88684(2) - 10!
0.995| —2(1)-107° | 1(1)-10~ | —2(3)-10710 | —2(2)-10~2 | 6(4)-107? —1.443(2) - 1071

Table 17. Individual contributions from the different colour factors to pdCC for the C parameter

distribution.

,39,




Inya3 N2 NO N2 NfNe Ny /Ne N?
—9.875| —2.6(1) - 10* | 3.1(2)-103 | 1.426(9) - 103 | 1.89(3)-10* | —8.30(2) - 103 | 8.762(3) - 103
—9.625 | —2.63(9) - 10* | 3.7(2) - 103 | 1.208(8) - 103 | 1.49(3)-10* | —7.51(2)- 103 | 8.164(2) - 103
—9.375 | —2.44(8) - 10* | 3.9(1)-103 | 1.046(7) - 103 | 1.19(3)-10* | —6.74(2) - 103 | 7.594(2) - 103
—9.125 | —2.34(7) - 10* | 4.7(1) - 103 | 9.18(7) - 10? 8.2(2) - 103 | —6.04(1) - 103 | 7.048(2) - 103
—8.875 | —2.04(7) - 10* | 4.7(1) - 103 | 7.41(6) - 10% 5.2(2) - 103 —5.40(1) - 103 | 6.535(2) - 103
—8.625 | —1.94(6) - 10* | 4.9(1)-10% | 6.49(5) - 102 3.2(2) - 103 —4.79(1) - 10% | 6.040(2) - 103
—8.375 | —1.70(6) - 10* | 4.7(1) - 103 | 5.33(5) - 102 5(2) - 102 —4.25(1) - 103 | 5.578(1) - 103
—8.125 | —1.41(5) - 10* | 4.85(9) - 103 | 4.52(4) - 102 | —1.1(2)-10% | —3.73(1) - 103 | 5.137(1) - 103
—7.875 | —1.26(5) - 10* | 4.53(8) - 103 | 3.68(4) - 102 | —2.8(1)-10% | —3.268(9) - 103 | 4.719(1) - 103
—7.625 | —1.03(4) - 10* | 4.56(7) - 103 | 3.06(3) - 102 | —4.1(1)-10% | —2.829(8) - 103 | 4.329(1) - 103
—7.375| —8.9(4) - 103 | 4.09(7) - 10% | 2.33(3) -10%2 | —5.0(1)-10% | —2.434(8) - 103 | 3.9575(9) - 103
—7.125| —6.0(4) - 103 | 3.85(6) - 103 | 1.94(3) - 10> | —5.8(1)-10% | —2.096(7) - 10 | 3.6097(8) - 103
—6.875 | —4.5(3) - 103 | 3.50(5) - 103 | 1.51(2) - 102 | —6.56(9) - 103 | —1.783(6) - 10> | 3.2822(7) - 103
—6.625 | —3.1(3) - 103 | 3.19(5) - 103 | 1.15(2) - 102 | —6.88(8) - 103 | —1.501(5) - 103 | 2.9761(6) - 103
—6.375 | —1.4(3) - 103 | 2.89(4) - 103 | 8.4(2)-10' | —7.13(7)- 103 | —1.261(5) - 103 | 2.6907(6) - 103
—6.125 | —1(2)-10% | 2.47(4)-10% | 6.6(2) 10! | —7.28(7) 103 | —1.052(4) - 10 | 2.4229(5) - 103
—5.875 | 1.5(2)-10% |2.17(3)-10% | 4.7(1)-10% | —7.37(6) - 103 | —8.68(4) - 102 | 2.1753(5) - 103
—5.625| 2.2(2)-10% | 1.93(3)-10% | 3.3(1)-10' | —7.24(5)-10% | —6.94(4) - 102 | 1.9439(4) - 103
—5.375| 2.9(2)-10% | 1.65(2) -10% | 2.4(1)-10' | —7.03(5)- 103 | —5.50(3) - 10% | 1.7302(4) - 103
—5.125 | 3.4(2)-10% | 1.30(2) - 103 | 1.38(9)-10' | —6.73(4) - 103 | —4.38(3) - 102 | 1.5330(3) - 103
—4.875| 3.9(1)-10% | 1.14(2) - 103 | 8.3(8)-10° | —6.31(4) - 103 | —3.36(3) - 102 | 1.3512(3) - 103
—4.625| 4.1(1)-10% | 8.8(2)- 102 4.6(7)-10° | —5.94(3) - 103 | —2.50(2) - 102 | 1.1843(3) - 103
—4.375| 4.4(1)-10% | 7.1(1) - 102 1.7(6) - 109 | —5.56(3) - 103 | —1.80(2) - 102 | 1.0315(2) - 103
—4.125| 4.27(9) -10% | 5.3(1)-10% | —5(5) 10~ —5.03(2) - 103 | —1.23(2) - 102 | 8.926(2) - 102
—3.875 | 4.35(8)-10% | 4.0(1)-10% | —1.3(4)-10° | —4.53(2)-10% | —7.6(2)-10' | 7.661(2) - 102
—3.625| 3.87(7)-10% | 2.70(8) - 102 | —1.7(4)-10° | —4.05(2) - 103 | —4.2(1)-10' | 6.527(2) - 10%
—3.375| 3.52(6) - 103 | 1.82(7) - 102 | —2.0(3) - 10 | —3.53(2) - 103 | —1.6(1)- 10 | 5.501(1) - 102
—3.125| 3.29(5) - 10% | 1.09(6) - 102 | —2.1(3) - 10° | —3.09(1) - 103 3(1) - 10° 4.586(1) - 102
—2.875 | 2.75(5) - 10% | 4.5(5) - 101 | —1.4(2)-10° | —2.62(1)-10% | 1.72(9)-10% | 3.773(1) - 102
—2.625 | 2.36(4) - 103 7(4) - 10° —1.5(2) - 10° | —2.17(1) - 103 | 2.31(8) - 10 | 3.056(1) - 102
—2.375| 1.98(3)-10% | —2.1(3)-10' | —7(2)-10~% | —1.779(9) - 103 | 2.81(6) - 10 |2.4251(9) - 102
—2.125| 1.49(3) - 103 | =3.0(3) - 10! | —1.0(1) - 10° | —1.417(7) - 103 | 2.79(5) - 10 | 1.8729(7) - 102
—1.875 | 1.10(2) - 103 | —3.5(2) - 10" | —4(1)- 10~ | —1.043(6) - 103 | 2.44(4) - 10* | 1.3890(6) - 10?
—1.625| 7.9(2)-10%2 |-3.0(2)-10' | —3.2(8) - 107! | —7.33(4) - 10% | 1.86(3) - 10 | 9.514(5) - 10"
—1.375| 4.0(1)-10%2 | —2.0(1) 10" | —2.2(5) - 10~ ! | —4.12(3) - 102 | 1.07(2) - 10* | 5.267(4) - 10!
—1.125| 7(4) - 10° 6(4) 1071 | —0(1)-1073 | —5.80(9) - 10! | 7.7(5)-10~% | 1.028(2) - 10!
—0.875 0 0 0 0 0 0

Table 18. Individual contributions from the different colour factors to y23— 0”3 for the three-to-two
jet transition distribution.
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Yeut N2 N? N; 2 N¢Nc Ny /Ne N?
03] —2(3)-10° 4(2) -107¢ —7(4)-1073 | —5.9(7) - 10° 2(4) - 1072 1.48(3) - 10°
0.15| 4.4(1)-10% | —1.82(8)-10' | —2.7(3) - 10~1 | —4.47(4) - 10% | 1.13(2)-10' | 5.93(2) - 10*
0.1] 1.05(2)-10% | —3.1(1) - 10! | —4.9(3) - 10~! | —1.000(6) - 103 | 2.19(3) - 10' | 1.336(3) - 10%
0.06 | 2.16(3)-103 | —2.0(2) - 10* | —1.20(6) - 100 | —2.048(8) - 103 | 3.19(4) - 10 | 2.843(4) - 102
0.03 | 3.84(5)-10% | 1.23(3)-10% | —2.71(6) - 10° | —4.09(2) - 10® | 1.08(8) - 10 |6.238(9) - 102
0.015 | 4.83(8)-10% | 5.78(5)-10% | —3.1(2)-10° | —6.59(3) - 10% | —1.10(1) - 10% | 1.183(2) - 103
0.01| 4.4(1)-10% | 1.060(7)-10% | 2(2) 1071 | —8.12(3)-103 | —2.66(2) - 10% | 1.646(2) - 103
0.006 | 2.4(2)-10% | 1.96(1)-10% | 1.35(4)-10' | —9.68(5) - 103 | —6.22(3) - 102 |2.409(3) - 103
0.003 | —4.7(3)-10% | 3.76(2) - 10® | 6.54(4) - 101 | —1.050(9) - 10* | —1.499(5) - 10® | 3.862(5) - 103
0.0015 | —1.74(4) - 10* | 6.13(3) - 10 | 1.95(2)-10% | —8.1(1)-10% | —3.064(9) - 103 | 5.899(9) - 103
0.001 | —2.84(6) - 10* | 7.61(4)-10% | 3.38(1)-10%2 | —4.1(2)-10% | —4.43(1) 103 | 7.41(1) - 103
0.0006 | —4.60(8) - 10* | 9.38(6) - 103 | 6.17(3) - 102 4.7(2) - 103 —6.79(2) - 103 | 9.74(2) - 103
0.0003 | —7.1(1) - 10* | 1.070(9) - 10* | 1.273(3) - 10% | 2.58(3) - 10* | —1.142(3) - 10* | 1.380(3) - 10*
0.00015 | —9.2(3)-10* | 9.0(2) - 103 | 2.406(8) - 10® | 6.22(6) - 10* | —1.821(4) - 10* | 1.906(5) - 10*
0.0001 | —9.4(4) -10* | 5.4(2)-10% | 3.413(7)-103 | 9.13(7)-10* | —2.341(6) - 10* | 2.271(5) - 104

Table 19. Individual contributions from the different colour factors to the NNLO coefficient

C3_jet, Durham for the three-jet rate with the Durham jet algorithm for various values of ycyt.

Yout N? N? N2 N¢Ne Ny /Ne N?
0.3| 4.3(6)-10! —3(2)-10° | —6(4) - 1072 | —6.5(2) - 101 | 1.68(9)-10° | 1.091(1) - 10*
0.15| 1.17(5) - 103 6(1) - 10! —4(2) -1071 | —2.05(3) - 10% |  2(9) - 10~ | 3.835(2) - 102
0.1] 1.33(9)-10% | 3.5(2)-10? 2.0(4) - 100 | —3.74(4) - 10® | —9.8(2) - 10 | 8.788(4) - 102
0.06 | —2.0(2) - 103 | 1.16(3) - 10% | 1.82(8) - 10 | —5.66(8) - 103 | —4.95(5) - 102 | 1.9342(9) - 103
0.03 | —1.49(3) - 10* | 3.07(5) - 103 | 1.20(2) - 10? | —4.2(2) - 103 | —1.94(1) - 103 | 4.461(2) - 103
0.015 | —4.24(7) - 10* | 5.2(1) - 103 | 4.60(2) - 102 | 7.8(3)-10% | —5.17(3) - 103 | 8.808(3) - 103
0.01 | —6.44(7) - 10* | 6.1(1)-10% | 8.78(3) - 10% | 2.47(4) - 10* | —8.34(4) - 103 | 1.2472(5) - 10*
0.006 | —9.7(1) -10* | 4.3(2)-10% |1.783(5)-10% | 6.09(6) - 10* | —1.427(6) - 10* | 1.8585(8) - 10*
0.003 | —1.33(2) - 10° | —6.1(3) - 10% | 4.055(9) - 103 | 1.46(1) - 10°> | —2.68(1) - 10* | 3.015(1) - 10*
0.0015 | —1.19(3) - 10° | —3.48(5) - 10* | 8.18(2) - 103 | 2.98(1) - 10° | —4.63(2) - 10 | 4.655(2) - 104
0.001 | —8.7(5) - 10 | —6.47(6) - 10* | 1.169(2) - 10* | 4.24(2) - 10° | —6.16(3) - 10* | 5.875(3) - 10*
Table 20. Individual contributions from the different colour factors to the NNLO coefficient

C3_jet,Geneva for the three-jet rate with the the Geneva jet algorithm for various values of ycyt.

Yeut N? NO N2 NyNe Ny /Ne N2
0.3| 3.5(8)-10! —3(1)-109 | =5(3)-10~2 | —2.7(1) - 10! | 1.0(1)-10° | 2.770(5) - 10°
0.15| 1.85(3)-10% | —8.9(9) - 10! | —2.4(3) - 100 | —1.41(1) - 103 | 5.4(1) - 101 |1.3607(9) - 102
0.1| 3.86(9)-103 | —1.1(2) - 10 | —8.9(5) - 10° | —3.33(2) - 103 | 1.10(2) - 10 | 3.349(2) - 102
0.06 | 7.2(2)-10% | 1.4(3)-10% | —2.7(1)- 10 | —6.83(5) - 103 | 1.54(4) - 102 | 7.945(4) - 102
0.03| 9.2(3)-10% | 1.48(6)-10% | —5.8(2) - 10' | —1.33(1) - 10* | —3(1)- 101 | 1.9819(9) - 10°
0.015| 2.6(5)-10% | 4.7(2)-10% | —7.1(3) - 10! | —1.95(2) - 10* | —9.4(2) - 102 | 4.116(2) - 103
0.01| —8.9(5) - 10% | 7.7(1)-10% | —2.1(5) - 10% | —2.13(3) - 10% | —2.12(3) - 103 | 5.947(2) - 103
0.006 | —2.74(9) - 10* | 1.18(3) - 10* | 1.88(7) - 102 | —1.77(4) - 10* | —4.55(8) - 103 | 9.025(4) - 103
0.003 | —6.8(1) - 10 | 1.67(6) - 10* | 1.02(1) - 103 3(6) - 102 | —1.08(1) - 10* | 1.4875(6) - 10*
0.0015 | —1.16(2) - 105 | 1.81(6) - 10* | 2.99(2) - 10® | 4.6(1)-10* | —2.02(3) - 10* | 2.311(1) - 10*
0.001 | —1.38(4) - 10° | 1.41(7) - 10* | 4.84(2) - 103 | 9.1(1)-10* | —2.93(3) - 10* | 2.923(1) - 10*
0.0006 | —1.45(4) - 105 | 0(1) - 102 | 8.03(2) - 10% | 1.74(2) - 103 | —4.36(3) - 10* | 3.855(2) - 10*
0.0003 | —7.1(7) - 10* | —4.5(1) - 10* | 1.414(4) - 10* | 3.47(3) - 10> | —6.93(5) - 10* | 5.455(3) - 10*
Table 21. Individual contributions from the different colour factors to the NNLO coefficient

C3_jet,jade—Eo for the three-jet rate with the the Jade-EO jet algorithm for various values of ycys.

— 41 —



Yeut N2 N? N2 N¢Nc N¢/Ne N?
0.3 —2(3)-10° | 3(6) 1071 | —5(2)-1072 | —6.5(6) - 100 | —1.5(4) - 10~% | 1.475(3) - 109
0.15| 4.3(3)-10%2 | —2.5(4)-10' | 0(9)-1073 | —4.48(7)-10%2| 1.01(5)-10% | 5.986(4) - 10"
0.1] 9.3(6)-10% | —2.1(6) - 10* | —4(2) - 1071 | —9.7(1) - 102 | 1.67(7)-10' | 1.364(1) - 102
0.06 | 1.62(9) - 103 1(1) - 100 | —4(4) - 1071 | —=1.90(2) - 103 | 1.4(1) - 10? 2.915(2) - 102
0.03| 2.6(2)-10% | 2.2(2)-10% | 2(6)-10~1 | —=3.70(5) - 10% | —3.8(2)-10' | 6.431(4) - 102
0.015| 2.9(2)-10% | 5.9(3) - 102 6(1)-10° | —5.61(9) - 103 | —1.98(4) - 102 | 1.2207(6) - 103
0.01| 2.1(2)-10% | 1.12(3)-10% | 1.31(9) - 10* | —6.8(1) - 103 | —3.82(6) - 102 | 1.6975(9) - 103
0.006 |  2(4) - 102 1.91(6) - 103 | 3.6(1)-10' | —7.8(2)-10% | —7.93(8)-10% | 2.485(1) - 103
0.003 | —8.1(5) - 103 | 3.53(7) - 103 | 1.12(3) - 102 | —7.4(2) - 10® | —1.76(2) - 10® | 3.960(2) - 103
0.0015 | —1.89(7) - 10* | 5.5(2) - 103 | 2.78(4) - 102 | —3.5(3) - 103 | —3.42(2) - 103 | 6.034(3) - 103
0.001 | —2.79(9) - 10* | 6.6(1) - 103 | 4.47(3) - 102 | 1.3(3)-10% | —4.89(3)-10% | 7.590(3) - 103
0.0006 | —4.0(1) - 10* | 7.9(1) - 103 | 7.69(5) - 102 | 1.06(4) - 10* | —7.27(6) - 103 | 9.959(5) - 103
0.0003 | —5.9(1) - 10 | 7.8(3)-10% | 1.505(7) - 103 | 3.44(7) - 10* | —1.207(8) - 10* | 1.4070(6) - 10*
0.00015 | —7.3(2) - 10* | 4.6(4) - 103 | 2.76(1) - 10% | 7.46(8) -10* | —1.92(1)-10* |1.9362(9) - 10*

0.0001 | —7.5(2)-10% | —1(4)-102 | 3.81(1)-10% | 1.06(1)-10° | —2.45(1)-10* | 2.312(1) - 10*
Table 22. Individual contributions from the different colour factors to the NNLO coefficient
C3_jet,Cambridge for the three-jet rate with the the Cambridge jet algorithm for various values of
Yeut -
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