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Abstract: This paper presents a method for parameterizing new Lorentz spacetime coordinates

based on coupled parameters. The role of symmetry in rapidity in special relativity is explored,

and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation.

Using the Euler–Hamilton equations, an additional angular rapidity and perpendicular rapidity are

obtained, and the Hamiltonian and Lagrangian of a relativistic particle are expanded into rapidity

spectra. A so-called passage to the limit is introduced that makes it possible to decompose physical

quantities into spectra in terms of elementary functions when explicit decomposition is difficult. New

rapidity-dependent Lorentz spacetime coordinates are obtained. The descriptions of particle motion

using the old and new Lorentz spacetime coordinates as applied to plane laser pulses are compared

in terms of the particle kinetic energy. Based on a classical model of particle motion in the field of

a plane monochromatic electromagnetic wave and that of a plane laser pulse, rapidity-dependent

spectral decompositions into elementary functions are presented, and the Euler–Hamilton equations

are derived as rapidity functions in 3+1 dimensions. The new and old Lorentz spacetime coordinates

are compared with the Fermi spacetime coordinates. The proper Lorentz groups SO(1,3) with coupled

parameters using the old and new Lorentz spacetime coordinates are also compared. As a special

case, the application of Lorentz spacetime coordinates to a relativistic hydrodynamic system with

coupled parameters in 1+1 dimensions is demonstrated.

Keywords: new Lorentz spacetime coordinates; angular and perpendicular rapidities; Gudermannian

function; passage to the limit; Euler–Hamilton equation; Euler–Lagrange equations

1. Introduction

Special relativity is a cornerstone of modern physics because one of its modifications,
doubly special relativity [1–3], could potentially lead to the construction of a quantum
theory of gravity. The main feature of the doubly special theory of relativity is that it could
make it possible to describe the dynamics of physical processes on scales corresponding
to the Planck time, on which, in addition to the speed of light, a certain energy scale (at
the level of the Planck energy) is assumed constant for all observers. Amelino-Camelia
suggested in References [1,2] that the dimensionless energy-momentum conservation law
in doubly special relativity has the following representation:

E2 − P2 = F
(
E, P; Lp

)
, (1)
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where E is the particle energy, P is the particle momentum, and F = F(E, P; Lp) is a constant
function that is the same for all observers and dependent on the Planck length scale Lp.

The constant function F = F(E, P; Lp) can be written in terms of the rapidity θh̄ in
doubly special relativity, which has the following form:

F(E, P; Ldsr) = exp(−θℏ) exp(θℏ) =
m2c2

ℏ2
L2

p, (2)

where m is the mass of the particle, c is the speed of light, and ℏ is the Planck constant.
When a constant function tends to unity F(E, P; Ldsr) → 1 , the classical energy-momentum
conservation law is obtained.

The connection between the classical rapidity θ and speed in doubly special relativity
θℏ can be expressed through the following translations from the integrals of motion of a
relativistic particle [4]:

γ+
ℏ
= exp(−θℏ) → exp(−θ)

mc

ℏ
Lp , γ−

ℏ
= exp(θℏ) → exp(θ)

mc

ℏ
Lp . (3)

The inclusion of the rapidity in the conservation law, Equation (1), allows for a conver-
sion from the classical rapidity θ to the rapidity in doubly special relativity θℏ.

Next, based on the rapidity θ, a classical analysis of the motion of a relativistic particle
in 3+1 dimensions can be conducted based on coupled parameters. However, because
of the dimensionless equations, the Planck time scale per unit length must be taken into
account when plotting graphs.

Since the preliminary work by Lorentz, Poincaré, and Einstein on the special theory
of relativity (hereinafter referred to as special relativity), it has been further enhanced by
various researchers. Most have developed the theory by shunning hyperbolic functions
and instead adopting the orthogonal form of spacetime relations based on local coordinates
and local time [5–9]. However, unlike in hyperbolic form, the final formulae in orthogonal
form are cumbersome and difficult to interpret and hamper the derivation of new results.

The first representations of hyperbolic functions in special relativity were provided by
Minkowski [10] and Poincaré [11], who expressed the longitudinal velocity of a particle in
terms of its rapidity θ, i.e.,

nβ =
nV

c
= tanhθ. (4)

where V is the speed of the particle, c is the speed of light, and n is the gyrovector in Lobachevsky
space, characterizing the direction of motion of the particle. The concept of a gyrovector is
understood as a hyperbolic vector in Lobachevsky geometry, which accounts for the nega-
tive curvature and radius of curvature of space. In References [10,11], the transition from
Lobachevsky geometry to Euclidean geometry was introduced via the transformation

θ → iθ′, (5)

where θ′ is the rapidity in Euclidean geometry.
There are two ways to describe the dynamics of a relativistic particle in terms of the

rapidity θ. The first is to use Minkowski space [10,11]. However, in Minkowski’s theory,
rapidity is an imaginary quantity iθ′ and has a quasi-Euclidean dependence, which does
not allow for an analysis of the dynamics of a relativistic particle using the real part of the
particle velocity. The second method [12–16] uses Lobachevsky space, where the rapidity θ
is a real and positive quantity. The second method will be applied in this article, since in
Lobachevsky space, the negative curvature and radius of curvature of space are equal to
the speed of light.

Robb and Borel [12,13] also understood the fundamental connection between the
longitudinal velocity of a particle and the rapidity in Equation (4). Varicak [14] continued to
develop the application of hyperbolic functions in special relativity. Karapetoff also made a
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significant contribution to special relativity with hyperbolic functions, demonstrating their
advantages for describing various physical processes [15,16].

The main novelty of References [15,16] was that the connection between proper space-
time coordinates in different inertial systems was presented in terms of the Lorentz boost
with argument θ. However, the proper coordinates and proper time in the inertial sys-
tem K were considered to be dynamic quantities independent of θ, and the connection
q/t = tanhθ was only introduced for a special case.

An attempt to introduce proper time via hyperbolic functions was made in Refer-
ence [17], with the author assuming that the proper time and rapidity are approximately
equal, but an invariant form was not introduced to describe the dynamics of a particle.
Rapidity itself is not invariant, and its value depends on the position of the coordinate
axes. Furthermore, it is an additive quantity, and the sum (or difference) of two rapidities
is also not invariant. The convenience of the hyperbolic representation of special relativity
is that the sums (or differences) of particle velocities, momenta, and energies can be repre-
sented as those of arguments from the rapidities of hyperbolic functions. Therefore, some
physical experiments and phenomena can be interpreted quite simply using hyperbolic
functions [18,19]. As an example, because of the compactness of the notation, the hyperbolic
approach is used in relativistic hydrodynamics in the Landau [20], Khalatnikov [21], and
Bjorken [22] models and in the Milekhin model [23], a relativistic hydrodynamic model
with coupled parameters. In the Milekhin model, all physical quantities depend on one
physical parameter—the temperature.

In Reference [24], special relativity in 2+1 dimensions was discussed with many
specifics of its reconciliation. However, the literature to date appears to lack any work
in which (i) proper coordinates are introduced for local coordinates with respect to the
Lorentz transformation and (ii) an invariant form is established when differentiating with
respect to θ.

Herein, the method of coupled parameters is applied directly to special relativity, and
all physical quantities are considered to depend on θ in different inertial reference frames.
The main goal is to introduce a new method for parameterizing the Lorentz group based on
coupled parameters in 1+1 and 3+1 dimensions and to demonstrate the advantage of using
hyperbolic functions for coupled parameters expressed in terms of θ in special relativity.

2. Generalization of Existing Results and Problem Statements

In References [4,25], the trajectory of a relativistic particle in 1+1 dimensions was
obtained in Lobachevsky geometry along the normal gyrovector n, where, for the Lorentz
spacetime coordinate ξ and rapidity θ, the following proper coordinates pertain:

ξ = t − f q, t = 1 − cothθ, q =
nr

c
=

1

2
ln
(

tanh2θ
)

, (6)

where f = ±1. Whether f = 1 or f = −1 depends on the principle of relativity for
an inertial system K, and f characterizes the direction of motion relative to the initial
position (q0, t0). Furthermore, ξ+ = t − q represents movement to the right, and ξ− = t + q
represents movement to the left relative to the initial position.

The longitudinal momentum, energy, and longitudinal velocity of a particle in dimen-
sionless form in 1+1 dimensions are determined by the following expressions:

nP =
np

mc
=

nβ√
1 − β2

= sinhθ, H ≡ E =
1√

1 − β2
=

ε

mc2
= cosh θ, (7)

where np and nP are the longitudinal dimensional and dimensionless momentum of the
particle, respectively, H is the Hamiltonian of a free relativistic particle, and ε and E are the
dimensional and dimensionless energy of the particle, respectively.

In 3+1 dimensions [26], curvilinear basis gyrovectors have been introduced into the
Lobachevsky spaces n, s, and k, where the connection between the gyrovectors is deter-
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mined from geometric relations via θ, i.e., n = s cosh θ, k = ssinhθ, and k = ntanhθ. Based
on the calculus of variations method, the correct coordinates along the basis gyrovectors s

and k can be obtained, in addition to the coordinates from Equation (6), i.e.,

ξθ = t − f qθ , ξ⊥ = t − f q⊥, qθ =
sr

c
=

1

2
ln
(
−sinh2θ

)
, q⊥ =

kr

c
= θ. (8)

In Reference [26], the components of the (phase and perpendicular) momentum and
particle velocity were also obtained in addition to Equations (6) and (8), where for real and
positive particle momentum, the following relations hold:

kβk = tanh2θ, kP = sinhθtanhθ, sβ = sechθtanhθ, sP = tanhθ. (9)

In References [4,25,26], Lorentz spacetime coordinates with coupled parameters were
obtained. The main aim of the present work is to obtain new Lorentz spacetime coordinates
for which invariance under Lorentz transformations is preserved in the same way as for
ξ+ξ− = inv. To derive a more general approach to describing the dynamics of a particle
in terms of hyperbolic functions with coupled parameters, it is necessary to solve the
following four problems:

Problem 1. In 1+1 dimensions for the local coordinates t′ and q′ in an inertial system K′, the
Lorentz group must be parameterized according to θ using the proper coordinates t and q from
Equation (6). The main goal here is to generalize the available results from special relativity for
coupled parameters found in the inertial frame using θ.

Problem 2. Taking the derivatives of the Hamiltonian of a free relativistic particle (Equation (7))
with respect to the angular rapidity θs and the perpendicular rapidity θ⊥, the components of
the particle’s momentum are determined (Equation (9)). When the Hamiltonian of a free par-
ticle (Equation (7)) and the angular and perpendicular projections of the particle’s momentum
(Equation (9)) are known, this problem involves determining θ⊥ and θs depending on θ and then
establishing a dynamic relationship between them. From the projections of particle momenta, as in
Equations (7) and (9), the Euler–Hamilton equations must be composed on the spacetime interval,
and the proper coordinates of a free relativistic particle in 3+1 dimensions must be determined by
describing its dynamics on the spacetime interval.

Problem 3. Because the physical quantities under consideration are all related to θ, it should be
possible to decompose them into rapidity spectra in terms of elementary functions.

Problem 4. In the inertial frame K in 3+1 dimensions, the dynamics of a particle are determined
from Equations (6)–(9) via θ. Because of the first postulate of special relativity (i.e., Einstein’s
postulate, which states that the form of the dependence of physical laws on spacetime coordinates
should be the same in all inertial reporting systems and that physical laws are invariant with respect
to transitions between inertial reporting systems), in the inertial system K′, it is also possible
to describe the dynamics of a particle from Equations (6)–(9) using only θ′. Problem 4 involves
searching for a dynamic relationship for θ′ = θ′(θ) in different inertial systems.

3. Derivative of Spacetime Interval s, Local Coordinates t’, q’, and Lorentz Spacetime

Coordinates ξ+’ and ξ−
’

from the Rapidity θ in 1+1 Dimensions

For the proper coordinates and in 1+1 dimensions, the Lorentz transformation is
applied with respect to θ in Reference [18], yielding the following representation in the
inertial system K′ for local coordinates q′ and t′:

t′ = t cosh θ − qsinhθ, q′ = q cosh θ − tsinhθ. (10)
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For the Lorentz spacetime coordinate ξ ′ in the inertial frame K′, the representation

ξ+
′
= t′ − q′ = (t − q)γ+, ξ−′

= t′ + q′ = (t + q)γ− (11)

holds, whereupon the spacetime interval s has the classical invariant form of

s2 = ξ ′+ξ ′− = ξ+ξ− = t2 − q2 = inv. (12)

Differentiating Equation (12) with respect to θ gives

s
ds

dθ
= t

dt

dθ
− q

dq

dθ
, (13)

and differentiating the local coordinates t′ and q′ from Equation (10) with respect to θ gives

dt′

dθ
= −q′ +

ds

dθ
,

dq′

dθ
= −t′. (14)

As can be seen from Equation (14), taking the derivative of the local time coordinate t′

with respect to the rapidity θ gives a negative value of the local space coordinate q′ plus the
derivative of the spacetime interval s with respect to the rapidity θ. From Equation (14), it
is clear that the spacetime interval is taken along the local coordinate t′, the connection of
which to the rapidity θ is expressed by the following relations:

ds

dθ
=

1

cosh θsinh2θ
, s =

3

2
− gd(θ)− 1

sinhθ
, (15)

where gd(θ) is the Gudermannian function [27]. As the spacetime interval s is invariant,
the derivative ds/dθ is also invariant.

The differential spacetime interval ds for related parameters is expressed in a similar
way to that in Reference [28], i.e., dt′ = ds = dt

√
1 − β2. Substituting the derivative of

the spacetime interval s from Equation (15) into Equation (13) shows that in this case, the
spacetime interval s is chosen along the direction of local time, i.e., s ≡ t′. Figure 1 shows
that for real and positive rapidity θ, the graphs of the dependence of the spacetime interval
and the local time coordinate t′ coincide in the direction.

θ

θ   
  

  

θ

ξ θξ ξ θξ

ξ ξ

ξ γ θ ξ γ θ

γ γ
θ

θ

ξ θ ξ γ ξ

ξ θ ξ γ ξ

ξ

–10

–7.5

–5

–2.5

0

2.5

5

7.5

10

–2 –1 0 1 2

t'
, s

θ

Figure 1. The dependence of the local time coordinate t′ from Equation (10) (blue color) and the

spacetime interval s from Equation (15) (red color) on the rapidity θ.

Equation (15) for s in the direction of the local time t′ is also easy to obtain from the
geometric relations for θ in the inertial frame K and for θ′ in the inertial frame K′ (e.g., see
Reference [11]), i.e.,

dt

cosh θ
=

dt′

cosh θ′
, (16)
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taking the proper coordinate t from Equation (6) and assuming that the observer in inertial
frame K′ chose θ′ to be equal to zero.

Just as for the relation for s in terms of the local time t′, it is possible to introduce a
perpendicular spacetime interval s⊥ in terms of the coordinate q′. In Reference [15], the fol-
lowing formula was obtained for the connection of the coordinates q and q′ from geometric
considerations, where substituting in the proper coordinate q from Equation (6) gives

dq = dq′/ cosh θ, s⊥ ≡ q′ = ln

(
tanh

(
θ

2

))
. (17)

The derivatives of the Lorentz spacetime coordinates from Equation (11) with respect
to s are given by

dξ ′+

ds
= 1 + ξ ′+

dθ

ds
,

dξ ′−

ds
= 1 − ξ ′−

dθ

ds
, (18)

and for ξ+ and ξ− along the spacetime interval s, the following relations hold:

dξ+

ds
= γ+ = exp(−θ),

dξ−

ds
= γ− = exp(θ), (19)

where γ+ and γ− are the integrals of motion of a relativistic particle.
For θ ≥ 0, taking the double derivative with respect to s from Equation (10) and

assuming that the action is s ≡ t′ give

g = q′
dθ

ds
= 0. (20)

From Equations (18)–(20), it is possible to represent the following local coordinates
in forms:

t′ = ξ+ exp(θ) = ξ+γ− = ξ ′+, (21)

t′ = ξ− exp(−θ) = ξ−γ+ = ξ ′−, (22)

i.e., the rotation operation is carried out, and the Lorentz spacetime coordinate ξ ′ becomes
purely a coordinate of the local time t′ for an observer in the inertial frame K′, while t′ still
contains components of space q and time t for an observer in the inertial frame K.

Adding Equations (21) and (22) gives the local time coordinate t′ from Equation (10),
and subtracting Equation (21) from Equation (22) gives

q

t
= tanhθ. (23)

A similar case can be imagined when the observer in the inertial system K′ has one
spatial coordinate q′, while the observer in the inertial system K has coordinates t and q, i.e.,

q′ = ξ− exp(−θ) = ξ−γ+, (24)

−q′ = ξ+ exp(θ) = ξ+γ−, (25)

where adding Equations (24) and (25) gives the relation for the particle velocity from
Equation (23). Subtracting Equation (24) from Equation (25) gives the coordinate q′ via
Equation (10).

Differentiating Equations (21) and (22) with respect to θ gives

dt′

dθ
=

ds

dθ
+ ξ ′+,

dt′

dθ
=

ds

dθ
− ξ ′−, (26)
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where on the spacetime interval s for θ ≥ 0, the following hold:

h = t′
dθ

ds
= 0, (27)

dt′

ds
= 1 + ξ ′+

dθ

ds
= 1 − ξ ′−

dθ

ds
= 1. (28)

Figure 2 shows a graph of Equations (20) and (27) as a function of the rapidity θ.

θ

ξ θ ξ γ

ξ θ ξ γ

θ

ξ
θ θ

ξ
θ θ

θ
θ

θ θξ ξ

θ

 

θ θ
θ

θ

θ

–1.5 –1 –0.5 0 0.5 1 1.5

–5

0

5

10

15

20

25

30

35

h
, g

θ

Figure 2. Graphs of the dependence of h = t′dθ/ds (Equation (27)) (blue color) and g = q′dθ/ds

(Equation (20)) (red color) on the rapidity θ.

As can be seen from Figure 2, Equations (20) and (27) are satisfied only for real and
positive θ. In the present case, the inertial frame K′ is chosen relative to the position of the

particle in such a way that
dq′
ds ≡ dq′

dt′ = 0 for θ ≥ 0.

4. The Relationship between the Perpendicular Rapidity and the Angular Rapidity of a
Free Relativistic Particle

Having projected the motion of a relativistic particle along the direction of one of the
gyrovectors s or k, for the Hamiltonian H, the following equations of motion hold and
describe the components of the particle momentum from Equation (9):

∂H

∂θs
= sP = tanhθ,

∂H

∂θ⊥
= kP = sinhθtanhθ, (29)

where the angular rapidity θs and the perpendicular rapidity θ⊥ have the forms

θs = gd(θ), θ⊥ = ln(sinhθ). (30)

The relationship between θs and θ⊥ is defined as

dθs =
1

2

dθ⊥
cosh θ⊥

, tan(θs) = tanh

(
θ⊥
2

)
. (31)

5. Expansion into Rapidity Spectra for the Lagrangian, Hamiltonian, and Momentum of
a Free Relativistic Particle

The spectral–angular characteristics of a relativistic particle allow for the interpretation
of the indefinite integrals of an arbitrary function g = g(θ) with respect to θ, θs, and θ⊥, i.e.,

G =
∫

g(θ)dθ, Gs =
∫

g(θ)dθs, G⊥ =
∫

g(θ)dθ⊥, (32)
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where the integrations allow g = g(θ) to be decomposed into spectra in terms of elementary
functions. The integration constant is usually determined from the Cauchy problem.

For the Hamiltonian of a free relativistic particle, the expansions into rapidity spectra
in terms of elementary functions have the following forms:

∫
Hdθ = nP,

∫
Hdθs = θ,

∫
Hdθ⊥ = E + s⊥. (33)

For the Lagrangian L = L′
mc = −sechθ of a free relativistic particle, expanding into

rapidity spectra gives

∫
Ldθ = −θs,

∫
Ldθs = −nβ,

∫
Ldθ⊥ = −s⊥. (34)

Decomposing the longitudinal impulse from Equation (7) into spectral components θs

and θ⊥ gives ∫
nPdθs = ln(cosh θ) = qE,

∫
nPdθ⊥ = θ. (35)

Decomposing the transverse momentum kP of the particle from Equation (9) into
spectral components gives

∫
kPdθ = nP − 2arctan

(
tanh

(
θ

2

))
,
∫

kPdθs = θ − tanhθ,
∫

kPdθ⊥ = qE. (36)

Similarly, for the particle momentum sP from Equation (9), the following hold:

∫
sPdθ = qE,

∫
sPdθ⊥ = θs,

∫
sPdθs = 1 − sech(θ). (37)

6. Euler–Hamilton Equations in 3+1 Dimensions

For θ, θs, and θ⊥ with respect to the invariant of the spacetime interval ds from
Equation (15), it is possible to introduce the following Euler–Hamilton equations describing
the motion of a relativistic particle along the gyrovectors n, s, and k:

d

ds

(
∂H

∂θ

)
− ∂H

∂q′
= 0,

d

ds

(
∂H

∂θs

)
− ∂H

∂θ⊥
= 0,

d

ds

(
∂H

∂θ⊥

)
− ∂H

∂q̂
= 0. (38)

where q′, θ⊥, and q̂ are the coordinates describing the movement of the particle in the
direction of the spacetime interval s:

q′ = sechθ + ln

(
tanh

(
θ

2

))
, q̂ = −cschθ

2
−

arctan
(

sinhθ√
2

)

2
√

2
. (39)

Regarding the “perpendicular” spacetime interval s⊥ from Equation (17), the Euler–
Hamilton equations for θ, θs, and θ⊥ have the forms

d

ds⊥

(
∂H

∂θ

)
− ∂H

∂θs
= 0,

d

ds⊥

(
∂H

∂θs

)
− ∂H

∂θ′s
= 0,

d

ds⊥

(
∂H

∂θ⊥

)
− ∂H

∂θ′⊥
= 0, (40)

where

θ′s =
1

2
(θ + sinhθ cosh θ), θ′⊥ =

1

2
(arctan(cosh θ) + s⊥). (41)

7. Decomposition of Local Coordinates into Rapidity Spectra

Some spectral decompositions have complex forms, such as

∫
qdθ =

1

2

∫
ln
(

tanh2θ
)

dθ, (42)
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so it is convenient to introduce a so-called passage to the limit by analogy with relativistic
hydrodynamics with coupled parameters [23].

The simplest way to expand a coordinate q into a spectrum in terms of θ without using
the explicit integral form of Equation (39) is to multiply and divide by t in the integrand
and then adopt the following transition:

q

t
→ nβ = tanhθ. (43)

The passage to the limit is introduced by the arrow and is introduced because the
relation for the coordinates q/t from Equation (6) goes into Equation (23) only for parti-
cle oscillations in a high-intensity field with Iλ2 ≥ 2 · 1019 W·µkm·cm−2 (see Figure 3).
Adopting the passage to the limit for the local coordinates from Equation (10) gives

t′ =
t

cosh θ
, q′ = 0. (44)

ω
π

ω
λ

π
λ μ

β

λ

φ ωξ ωξ
ω ω

 
    

 

ω

θ

θ φβ

θ θ

1

2

0

0.2
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1
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lo
n
g
it
u
d
in
al
p
ar
ti
cl
e
v
el
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it
y

Iλ2/1018 W·μm·cm–2

Figure 3. The velocities q/t (labeled 1) and nβ (labeled 2) depend on the dimensionless field

amplitude a ∼ Iλ2.

Expanding the local coordinate t′ into rapidity spectra gives

∫
t′dθ = θs − s⊥,

∫
t′dθs = nβ− θ⊥ + qE,

∫
t′dθ⊥ = cschθ + s⊥, (45)

where the integration constant is taken to be zero. Next, the obtained elementary func-
tions θ, θs, θ⊥, and s⊥ form the basis for composing the Euler–Lagrange equations in 3+1
dimensions.

A scenario is now considered in which electrons are accelerated by the transverse
electromagnetic field of incident pulsed laser radiation. The temperature of the fast electrons
can be estimated as outlined in Reference [29]. The amplitude of an oscillating electron
should increase in the field of a linearly polarized electromagnetic plane wave. The
expressions for the amplitude of the oscillating electron are substituted in

P2 = sinh2θ =
e2(kE0)

2

m2
e c2ω2

=
I

Irel
= a, (46)

where a is the dimensionless amplitude, e is the electron charge, me is the electron mass,
c is the speed of light, E0 is the amplitude vector for the electric field of the incident
electromagnetic wave, k is the polarization gyrovector, ω is the oscillation frequency,
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I = cE2
0/(8π) is the intensity of the incident linearly polarized electromagnetic wave (in

W/cm2), and Irel is the relativistic intensity:

Irel =
m2

e c3ω2

8πe2
= 1.37 × 1018λ−2, (47)

where λ is the wavelength (in µm). The relation between the dimensionless momentum
and the dimensionless field amplitude in Equation (46) is a function of the dimensionless
intensity I/Irel . There are several possible equations for Irel that differ only by a constant. As
in Reference [30], the best criterion for such a determination can be identified by comparing
the maximum total energy of an electron oscillating in the field of a laser pulse and its rest
energy mec

2.

8. Spectral Characteristics of a Relativistic Particle in Field of a Circularly Polarized
Electromagnetic Wave in 3+1 Dimensions

The movement of a relativistic charge in the field of a circularly polarized monochro-
matic electromagnetic wave is now considered. It is assumed that the plane wave and the
relativistic particle are collinear to the direction of propagation of the normal gyrovector n.
The four-vector potential of the wave then has the form in Reference [28]:

[ϕ, A] =

[
0,

cE

ω
cos(ωξ)ex,

cE

ω
sin(ωξ)ey

]
, (48)

where E (a constant) is the wave amplitude, ω (also a constant) is the oscillation frequency,
and ex and ey are the orthogonal basis vectors relative to the normal gyrovector n.

The dimensionless Lagrangian of a relativistic particle in an external electromagnetic
field, which depends on the rapidity θ, has the following form [28]:

L =
L′

mc2
= −sechθ +

e

mc2
Aβ− e

mc2
ϕ. (49)

Substituting (46) and (48) into (49) gives the Lagrangian describing the dynamics of a
relativistic particle in the field of a plane monochromatic wave as a function of the rapidity:

Lcir = −sechθ +
√

atanh2(θ). (50)

Here, the dimensionless field amplitude for a plane wave is a constant (a = const).
The rapidity of a particle in an electromagnetic field θEM includes the rapidity of

a free relativistic particle θ, i.e., θ ∈ θEM. The electromagnetic rapidity can be written
as θEM = θ + ∆θ, where ∆θ is a small increment of the rapidity of the electromagnetic
field. Due to the fact that conditions are imposed on θ and θEM (the rapidities must be
real, positive, and continuous), the speed of movement of a particle in an electromag-
netic field nβEM = tanhθEM → 1 and the speed of movement of a free relativistic particle
nβ = tanhθ → 1 are limited in the interval [0; 1] along the ordinate axis. Due to the
small increment ∆θ, it can be further assumed that the rapidities are approximately equal,
θEM ≈ θ.

The connection between the Lagrangian and the Hamiltonian can be determined from
the relationship between the integrals of motion of a relativistic particle that determine the
longitudinal momentum of the particle. The relationship is valid for both a free relativistic
particle and a relativistic particle in an external electromagnetic field:

∂H

∂θ
=

∂L

∂Q−
t

= nP, (51)

where Q−
t = 1 + nβ is the integral of motion of a relativistic particle.
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Substituting the Lagrangian from Equation (50) into Equation (51) gives the Hamil-
tonian of a particle in the external field of a plane monochromatic circularly polarized
electromagnetic wave, i.e.,

Hcir = cosh θ + 2
√

aqE, (52)

where, if the particle has no velocity at the initial moment in time (i.e., θ = 0), the Hamilto-
nian of Equation (52) has the form Hcir(0) = 1.

Expanding the Lagrangian of Equation (50) into spectra in terms of θ, θ⊥, and θs gives

∫
Lcirdθ = −gd(θ) +

√
a(θ − tanhθ),

∫
Lcirdθ⊥ = −s⊥ +

√
aqE, (53)

∫
Lcirdθs = −nβ+

√
a

2
(θs − tanhθsechθ), (54)

where the components of oscillation of a particle in a plane wave, which contain the
dimensionless field amplitude a, are added to the existing spectral components from
Equation (34).

Adopting the passage to the limit qE/θ → tanhθ for the Hamiltonian of Equation (52)
and expanding into spectra in terms of θ, θ⊥, and θs gives

∫
Hcirdθ = nP +

√
a(θ(θ + 2 ln(exp(−2θ)))− Li2(− exp(2θ))), (55)

∫
Hcirdθs = θ + 2

√
a(gd(θ)− θsechθ), (56)

∫
Hcirdθ⊥ = cosh θ + s⊥ +

√
aθ2, (57)

where Li2 is a polylogarithmic function [31].
From the solutions of Equations (53)–(57), the expansions of the Hamiltonian and

Lagrangian of a particle in the field of a plane wave are non-trivial solutions for the related
parameters, which allow estimation of the rapidity-dependent spectral components of the
motion of a relativistic particle for a constant field amplitude a. Next, it is shown that
spectral decomposition of the motion of a relativistic particle in the field of a plane wave
with a constant field amplitude is more complex than that in the case of a plane laser pulse
with a rapidity-dependent dynamically varying amplitude.

9. Spectral Characteristics of Relativistic Charge in the Field of a Plane Laser Pulse in
3+1 Dimensions

To describe the dynamics of a relativistic particle in the field of a plane laser pulse, it is
assumed that the dimensionless field amplitude in the Lagrangian from Equation (50) is
not constant, and the value of the field amplitude changes in accordance with Equation (44).
Then, the Lagrangian describing the dynamics of a charged particle in the field of a plane
laser pulse with right-handed circular polarization, which depends on θ, has the form

L+
SM = cosh θ − 2sechθ. (58)

Substituting the Lagrangian from Equation (58) into Equation (51) gives the Hamiltonian
of a particle in the field of a right-handed circularly polarized electromagnetic wave, i.e.,

H+
SM =

1

3
cosh θ

(
cosh2 θ + 6

)
− 4

3
. (59)

Expanding the Lagrangian of a particle with right-handed circular polarization from
Equation (58) into spectra in terms of θ, θ⊥, and θs gives the following spectral representations:

∫
L+

SMdθ = sinhθ − 2θs,
∫

L+
SMdθs = θ − tanhθ,

∫
L+

SMdθ⊥ = cosh θ − s⊥. (60)



Symmetry 2024, 16, 357 12 of 25

Similarly, for the Hamiltonian of Equation (59), expanding into rapidity spectra gives

∫
H+

SMdθ =
1

36
(−48θ + 81sinhθ + sinh(3θ)), (61)

∫
H+

SMdθs =
1

6
(−8θs + 13θ + sinhθ cosh θ), (62)

∫
H+

SMdθ⊥ =
1

36
(87 cosh θ + cosh(3θ)− 48θ⊥ + 84s⊥). (63)

For a particle in the field of a plane laser pulse with left-handed circular polarization,
the Lagrangian representation is

L−
SM = − cosh θ, (64)

and from Equations (64) and (51), the Hamiltonian of the system in the field of a plane
circularly polarized laser pulse is

H−
SM =

4

3
− 1

3
cosh3 θ. (65)

Expanding Equations (64) and (65) into rapidity spectra gives

∫
L−

SMdθ = −sinhθ,
∫

L−
SMdθs = −θ,

∫
L−

SMdθs = − cosh θ − s⊥, (66)

∫
H−

SMdθ =
1

36
(48θ − 9sinhθ − sinh(3θ)), (67)

∫
H−

SMdθs =
1

6
(8θs − θ − sinhθ cosh θ), (68)

∫
H−

SMdθ⊥ =
1

36
(−15 cosh θ − cosh(3θ) + 48θ⊥ − 12s⊥). (69)

Adding the spectral characteristics of the radiation of a relativistic charge in the
field of a plane laser pulse with right and left circular polarizations and considering the
normalization factor gives the spectral characteristics of the radiation for a free relativistic
particle, as in Equations (33) and (34). As can be seen from the presented solutions, the
spectral components of a relativistic particle in the field of a plane wave and a laser pulse
using transformation from Equation (5) in the Euclidean phase plane are described well by
the expansion in rapidity θ⊥ in the direction of the polarization gyrovector k, because in all
cases it has a real oscillatory part.

10. Dynamics of a Relativistic Particle in the Field of a Plane Laser Pulse with
Left-Handed Circular Polarization in 3+1 Dimensions

To describe the dynamics of a relativistic particle in the field of a plane circularly
polarized laser pulse along the spacetime interval s, it is convenient to use

d

ds

(
∂L−

SM

∂θ

)
− ∂L−

SM

∂s
= 0, (70)

and replacing the Lagrangian of a particle in the field of a left-handed circularly polarized
laser pulse with that of a right-handed one gives the following oscillating parameter:

d

ds

(
∂L+

SM

∂θ

)
− ∂L+

SM

∂s
= 4tanh2θ. (71)

Because the spacetime interval s from Equation (15) contains the Gudermannian
function θs and the derivative of the perpendicular spacetime interval s⊥ with respect to θ,
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it is of further interest to introduce the Euler–Lagrange equation, which depends only on
the Gudermann function θs or the perpendicular spacetime interval s⊥.

Regarding the angular rapidity θs, it is also convenient to introduce the following
Euler–Lagrange equation for a left-handed circularly polarized wave:

d

dθs

(
∂L−

SM

∂θ

)
− ∂L−

SM

∂L
= 0, (72)

where L is the Lagrangian of a free relativistic particle. Similarly, substituting L−
SM → L+

SM
into Equation (72) gives the following oscillatory parameter:

d

dθs

(
∂L+

SM

∂θ

)
− ∂L+

SM

∂L
= 4sech2(θ). (73)

Regarding the perpendicular rapidity θ⊥, for a particle in the field of a plane left-
handed circularly polarized laser pulse, the following equation holds:

d

dθ⊥

(
∂L−

SM

∂θ

)
− ∂L−

SM

∂θ
= 0, (74)

where substituting in L−
SM → L+

SM gives the following oscillatory parameter:

d

dθ⊥

(
∂L+

SM

∂θ

)
− ∂L+

SM

∂θ
= −4sechθtanh3θ. (75)

Regarding the perpendicular spacetime interval s⊥ and the rapidities θ, θ⊥, and θs, the
following Euler–Lagrange equations of motion hold in the field of a plane laser pulse with
left-handed circular polarization:

d

ds⊥

(
∂L−

SM

∂θ

)
− ∂L−

SM

∂θs
= 0,

d

ds⊥

(
∂L−

SM

∂θs

)
− ∂L−

SM

∂θ̃s

= 0,
d

ds⊥

(
∂L−

SM

∂θ⊥

)
− ∂L−

SM

∂θ̂⊥
= 0, (76)

where θ̃s = arctan(tanhθ) and θ̂⊥ = (s⊥ + arctan(cosh θ))/2.
Thus, in 3+1 dimensions, the dynamics of a relativistic particle are described well by

the Euler–Lagrange equations using θ, θ⊥, and θs, both in the direction of motion θs and
s⊥ in the field of a circularly polarized laser pulse. As can be seen, from the rapidities
θ⊥, θs, and s⊥ given here instead of the spacetime interval s, the resulting solutions are
compact, and for a particle in the field of a left-handed circularly polarized wave, they allow
coordinates to be obtained that describe the dynamics of the particle in 3+1 dimensions.
The introduced coordinates relative to the dynamics of a particle in the field of a left-handed
circularly polarized laser pulse are also valid for a right-handed circularly polarized pulse,
but the equations have a dissipative oscillation parameter depending on the selected
rapidities and spacetime intervals.

11. New Lorentz-Invariant Transformations in 1+1 and 3+1 Dimensions

The sum of the coordinates q, qθ , and q⊥ from Equations (6) and (8) in 3+1 dimensions
relative to the derivative with respect to the rapidity θ has the following form:

Q+
t =

dq⊥
dθ

−
(

dqθ

dθ
− dq

dθ

)
= 1 − tanhθ, Q−

t =
dq⊥
dθ

+
dqθ

dθ
− dq

dθ
= 1 + tanhθ. (77)

The spectral decomposition of the longitudinal component of the particle’s momentum
nP in terms of θs and θ⊥ gives the coordinate qE and the rapidity θ (see Equation (35)) along
the normal gyrovector n.
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Equations (35) and (77) lead easily to a new representation of the Lorentz spacetime
coordinate ξE as

ξE = θ − f qE = θ − f ln(cosh θ), (78)

where f = ±1. Differentiating Equation (78) with respect to θ gives a connection between
the Lorentz spacetime coordinates ξE, ξ and the integral of motion of a relativistic particle
Qt = 1 − f nβ as follows:

dξE

dθ
= Qt =

dξ

dt
. (79)

As can be seen from Equation (79), when describing the dynamics of a particle using
the new Lorentz spacetime coordinate ξE, when passing from ξ to ξE, it is necessary to
make the following replacement of coordinates and operators:

t → θ , q → qE ,
d

dt
→ d

dθ
,

d

dq
→ d

dqE
. (80)

For example, from Equation (80), the classical equation of particle motion in an
electromagnetic field can be represented in the form

dPEM

dθ
=

e

mc
(E + [β, H]), (81)

where PEM is the momentum of the particle in the electromagnetic field, β is the speed
of movement of the particle in the electromagnetic field, and E = E(ξE) and H = H(ξE)
are the intensities of the electric and magnetic fields, respectively, depending on the new
Lorentz spacetime coordinate.

The advantage of using the new Lorentz spacetime coordinate with coupled parame-
ters ξE for plane electromagnetic waves with constant field amplitude as in Equation (48) is
that the representation ξ−E = θ + qE describes the periodic motion of a charge in the field
of a plane monochromatic electromagnetic wave for real and positive θ (see Figure 4a).
It is also advantageous to use the new Lorentz spacetime coordinate ξE to describe the
dynamics of a particle in a constant uniform field when the oscillation frequency of the
particle does not change and T = 2π/ω = const. If the oscillation frequency of a particle
changes according to a harmonic law ω = ω(ξE) (see Reference [32]), then with an increase
in θ, frequency modulation is observed in the field of a plane wave (see Figure 4b). Thus, the
Lorentz spacetime coordinate ξE is the simplest representation for describing the dynamics
of a relativistic particle with coupled parameters.

Using the Lorentz spacetime coordinate ξ = t − f q to describe the dynamics of
a particle in the field of a plane laser pulse, Figure 4(c-1,c-2) shows that ξ describes a
modulated pulse over the interval θ ∈ [−π/10; π/10], where the oscillation frequency is
considered constant (ω = const).

If it is also imagined that the oscillation frequency of a particle changes according
to a harmonic law ω = ω(ξ) (see Reference [32]), then in this case, the wave oscillation
profile does not change and has the same values as for a constant frequency (see Figure 4(c-
1,c-2)). Here, it can be seen that ξ describes the dynamics of a particle in a wave with
spatial modulation.

Applying the Lorentz transformations for ξE from Equation (78) gives the coordinates

θ′ = θ cosh θ − qEsinhθ, q′E = qE cosh θ − θsinhθ, (82)

and differentiating Equation (82) with respect to θ gives

dθ′

dθ
= −q′E +

dθs

dθ
,

dq′E
dθ

= −θ′. (83)
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Equations (6), (8), (10) and (82) give a connection between the coordinates in the
inertial systems K and K′ in 3+1 dimensions via θ, i.e., the general system of equations can
be written in the following form:

t′ = t cosh θ − qsinhθ,q′ = q cosh θ − tsinhθ,q′⊥ ≡ θ′ = θ cosh θ − qEsinhθ,q′θ ∼ qθ , (84)

where the connection between the angular coordinates qθ and q′θ in the inertial systems K
and K′ is also determined via the rapidity θ from Equation (82), i.e.,

q′θ =
1

2
ln
(
−sinh2θ′

)
, qθ =

1

2
ln
(
−sinh2θ

)
. (85)
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Figure 4. The dependence of particle oscillations in the field of a plane wave for Lorentz spacetime

coordinates, provided that the amplitude of the wave field is normalized to unity: (a) particle dynamics

using ξ−E for a plane monochromatic wave with ω = const; (b) particle dynamics in a frequency-modulated

wave for the oscillation phase ω
(
ξ−E
)
ξ−E ; (c-1,c-2) particle dynamics using ξ for a wave with both constant

frequency (ω = const) and spatial modulation for the oscillation phase ω(ξ)ξ.

As well as the existing Lorentz spacetime coordinate ξE from Equation (78), it is
possible to introduce an additional coordinate of the form

ξE⊥ = θ⊥ − f θ, (86)

and applying the Lorentz transformations for ξE⊥ from Equation (86) gives

θ′⊥ = θ⊥ cosh θ − θsinhθ, q′⊥ ≡ θ′ = θ cosh θ − θ⊥sinhθ. (87)
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Differentiating Equation (87) with respect to θ gives

dθ′⊥
dθ

=
ds⊥
dθ

− θ′,
dθ′

dθ
= −θ′⊥, (88)

and it can be seen that the projection of the motion of a relativistic particle is relative to θ′⊥
and θ′ chosen along the perpendicular spacetime interval s⊥.

The obtained correct coordinates θs and s⊥ also give another angular Lorentz spacetime
coordinate,

ξEθ = θs − f s⊥, (89)

where the application of the Lorentz transformation to the coordinate Equation (85) yields
the following local coordinates in the inertial system K′:

θ′s = θs cosh(θ)− s⊥sinh(θ), s′⊥ = s⊥ cosh θ − θssinhθ. (90)

Differentiating Equation (90) with respect to θ gives

dθ′s
dθ

= −s′⊥,
ds′⊥
dθ

= −θ′s +
dq

dθ
. (91)

The local rapidities θ′, θ′s, θ′⊥, and s′⊥ form Lorentz spacetime coordinates in 3+1
dimensions, where the generalized system of equations for θ has the form

θ′ = θ cosh θ − qEsinhθ,θ′s = θs cosh θ − s⊥sinhθ,θ′⊥ = θ⊥ cosh θ − θsinhθ,s′⊥ = s⊥ cosh θ − θssinhθ. (92)

Here, the Lorentz spacetime coordinates ξE, ξEθ , and ξE⊥ are obtained with respect
to the Lorentz transformation, and differentiating them gives the derivatives of spacetime
intervals ξ+E ξ−E = inv, ξ+Eθξ−Eθ = inv, and ξ+E⊥ξ−E⊥ = inv from Equations (83), (88) and
(91). This result can also be obtained by the method of calculus of variations, similar to
Reference [26], only that here it is necessary to apply the replacements given in Equation
(80), where the following correspondences hold:

ξ → ξE, ξθ → ξEθ , ξ⊥ → ξE⊥. (93)

From Equations (83), (88) and (91), it is clear that the actions are described by the
functions θs, s⊥, and q, which are hyperbolic functions that depend on only θ.

12. Descriptions of the Kinetic Energy of a Relativistic Particle in 3+1 Dimensions in the
Field of a Flat Circularly Polarized Laser Pulse Using the “New” and “Old” Lorentz
Spacetime Coordinates

The advantage of the method of coupled parameters in 3+1 dimensions is that there
is no need for the analysis to introduce initial conditions describing the motion of a rela-
tivistic particle, since all parameters depend on one parameter, for example, the rapidity θ.
Therefore, physical processes can be considered in the dynamics without considering the
initial conditions.

As is well known, the components of the transverse momentum of a particle in the
field of a plane circularly polarized laser pulse as in Equation (48) in 3+1 dimensions have
the form

Px =
qE0√
2mcω

sin(ωξ), Py =
qE0√
2mcω

(1 + cos(ωξ)), (94)

P⊥ =
√

P2
x + P2

y =
√

a
√

1 + cos(ωξ), (95)

where the energy and longitudinal component of the momentum of the particle are deter-
mined through the integral of motion of the relativistic particle γ+ = exp(−θ),



Symmetry 2024, 16, 357 17 of 25

εkin = mc2

((
exp(−θ) + exp(θ)

(
1 + P2

⊥
))

2
− 1

)
, p∥ = mc

(
exp(θ)

(
1 + P2

⊥
)
− exp(−θ)

)

2
. (96)

As can be seen from Equation (96), in the absence of transverse momentum of the
particle P⊥ = 0, the formulas transform to describe the dynamics of a free relativistic
particle in 1+1 dimensions.

For example, if the Cauchy problem is adopted to analyze the energy of a particle
from Equation (96), similarly to in works [33–35], it is assumed that at the initial moment of
time t = 0, the particle has a zero coordinate z = 0, and the speed of the particle is equal to
zero V(0) = 0.

Since the particle speed has a connection with the integrals of motion in Equation
(19), at the initial time, the rapidity is θ = 0. Then, the kinetic energy of the particle
from Equation (96), similarly to in Reference [36], has the following connection with the
longitudinal and transverse components of the particle momentum in the field of a plane
circularly polarized laser pulse (or in the field of a plane wave), where relativistic corrections
are not taken into account, and the formula takes the form of classical kinetic energy in the
non-relativistic case:

εkin(0) = ε(0) − mc2 = mc2P∥ = mc2 P2
⊥
2

= mc2a. (97)

Figure 5 shows graphs of the dependence of the kinetic energies of the particle in
Equations (96) and (97) on the dimensionless field amplitude a. In Equation (96), the
coupled parameters described by Equation (46) are expressed in terms of the dimensionless
field amplitude a.
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Figure 5. The kinetic energy of a relativistic particle (96) depending on the intensity of a plane laser

pulse: (a,c) for “old” Lorentz spacetime coordinates 1—ξ, 2—ξθ , 3—ξ⊥, and 4—Equation (97); (b,d)

for “new” Lorentz spacetime coordinates: 1—ξE, 2—ξEθ , 3—ξE⊥, and 4—Equation (97).
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For an oscillating particle, representations of the “old” and “new” Lorentz spacetime
coordinates in the field of a plane laser pulse are presented. That is, it is assumed that the
particles oscillate in the field of a laser pulse, in which the coordinates for the “old” ξ, ξθ ,
ξ⊥ and “new” ξE, ξEθ , ξE⊥ Lorentz spacetime forms are initially specified.

As can be seen from Figure 5, the Lorentz spacetime coordinates ξE and ξ represent a
fairly close oscillation energy of the particle. For a laser field intensity I = 1020 W·cm−2,
the kinetic energy of the electron is on the order of 0.9–1 GeV. From Figure 5b, it is clear
that for a laser field intensity I ≤ 1019 W·cm−2, the “new” Lorentz spacetime coordinates
ξE and ξEθ are equal, and for a laser field intensity I = 1019 W·cm−2, they are 30 MeV.

It can also be seen from Figure 5 that Equation (97) automatically describes the kinetic
energy of a particle in the field of a laser pulse in the non-relativistic case. In an intense laser
field I = 1020 W·cm−2, the Lorentz spacetime coordinates ξθ and ξ⊥ describe the value of
the kinetic energy of a particle close to the non-relativistic case, where the kinetic energy
is approximately ξθ → 0.2 GeV and ξ⊥ → 9.5 MeV. For the “new” Lorentz-invariant
coordinate ξE⊥, the particle energy value also corresponding to the relativistic oscillation
limit for the laser field intensity I = 1020 W·cm−2 is ξE⊥ → 0.5 GeV.

From the “old” ξ and “new” Lorentz spacetime coordinates ξE and ξEθ , it is clear that
in the intensity range I = 1019 ÷ 1020 W·cm−2, there is a transition of particle oscillations
from the MeV range to the GeV range of particle energy.

13. Comparison of the “New” and “Old” Lorentz-Invariant Coordinates with
Fermi Coordinates

The Fermi eigen coordinates have the following form [37]:

x0(t, s) =
(1 + aaccs)

aacc
sinh(aacct), x1(t, s) =

(1 + aaccs)

aacc
cosh(aacct). (98)

where aacc is the particle’s proper acceleration, t is the proper time, and s is a spacetime
interval. In the Fermi representation, a spacetime interval s is selected according to the
direction of the coordinate q, that is, in Equation (98), s ⇒ q .

To compare the obtained “new” and “old” Lorentz spacetime coordinates with the
Fermi coordinates under the acceleration of a relativistic particle, the proper acceleration
can be written as

aacc =
d(nβ)

dt
= tanh2θ. (99)

Similarly, for the Fermi coordinates (98), it is possible to introduce the following
representation:

ξFR = x0(t, q)− f x1(t, s) = − f
(1 + aaccq)

aacc
exp(− f θ), (100)

where f = ±1.
Since the Fermi coordinates are metric representations from the general theory of

relativity and are generalized to the case of pseudo-Riemannian spaces [37], and the
resulting “new” and “old” Lorentz spacetime coordinates are representations from the
special theory of relativity in the representation of Lobachevsky geometry, to compare them,
it is necessary to introduce a common parameter that would be the same in both cases.
Here, it is proposed that the optimal parameter for comparing the available coordinates
is the rapidity θ, since the rapidity is a monotonically increasing function that tends to
infinity when the particle speed approaches the speed of light. Figure 1 shows a graph
of the dependence of the “old” (Equations (6) and (8)) and “new” (Equations (78), (86)
and (89)) Lorentz spacetime coordinates and the Fermi spacetime coordinate (100) on the
rapidity θ.

The next step is to analyze the Lorentz spacetime coordinates and Fermi coordinates
depending on the real and positive rapidity θ. As can be seen from Figure 6, for the coordi-
nates ξ+, ξ−, ξ+E , ξ−Eθ , ξ+E⊥, and ξ+FR, the relativistic motion of the particle for θ > 2 is defined
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by functions bounded from above: ξ+ → 0 , ξ− → 0 , ξ+E → 0.6931 , ξ+E⊥ → −0.6931 , and
ξ+FR → 0 .
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Figure 6. A graph of the dependence of the “new” ((b)—ξE, (d)—ξEθ , (f)—ξE⊥) and “old” ((a)—ξ,

(c)—ξθ , (e)—ξ⊥) Lorentz spacetime coordinates and Fermi coordinates ((g)—ξFR) on the rapidity θ,

where the blue color indicates the plus sign “+”, for example, ξ+, and the red color indicates the

minus sign “–”, for example,ξ−.
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For coordinates ξ−θ , ξ−⊥, the functional dependence on the rapidity θ for θ > 0 is
increasing. For coordinates ξ+θ , ξ+⊥, on the contrary, the functional dependence on the
rapidity θ for θ > 0 is decreasing, as seen in Figure 6c,e.

From Figure 6b,f, it can be seen that for θ > 2, the coordinates ξ+E and ξ+⊥E are bounded
from above by ξ+E → 0.6931 and ξ+⊥E → −0.6931 . For θ > 0, the functional dependences
ξ−E = ξ−E (θ) and ξ−⊥E = ξ−⊥E(θ) are increasing.

Figure 6d shows that the advantage of the coordinates ξ+θE and ξ−θE is that in the
interval θ ∈ (4; ∞), the coordinates have a limitation for the value along the ordinate
axis, the coordinate ξ−θE → π/4 is bounded from above, and the coordinate ξ+θE → π/4 is
bounded from below.

As can be seen, the coordinate ξ− and the Fermi coordinate ξ+FR in the fourth coordinate
quaternary for θ ≥ 0.5 have the same physical values, where the particle velocity changes
in the next interval 0.46 ≤ nβ ≤ 1.

The coordinate ξ+ and the Fermi coordinate ξ+FR, also in the fourth coordinate quarter
for θ ≥ 1.4, have the same physical values, where the particle velocity changes in the next
interval 0.9 ≤ nβ ≤ 1.

Thus, clearly, the coordinate ξ− and the Fermi coordinate ξ+FR have the same physical
values in the sub-relativistic, relativistic, and ultra-relativistic regions for a field intensity
I ≥ 3.72 · 1017 W·cm−2. The coordinates ξ+ and ξ+FR have the same physical values in the
relativistic and ultra-relativistic regions for the field intensity I ≥ 5 · 1018 W·cm−2.

14. Comparisons of the Proper Lorentz Groups SO(1,3) with Coupled Parameters

This section presents representations of the proper Lorentz groups SO(1,3) for coupled
parameters depending on the rapidity θ for “old” and “new” Lorentz coordinates. By
definition, the proper Lorentz group retains a quadratic form:

Q(x) = x2
0 − x2

1 − x2
2 − x2

3, (101)

where x0, x1, x2, x3 are proper metric coordinates.
Associating the metric coordinates x0 → t , x1 → qθ , x2 → q⊥ , x3 → q results in the

following representations of the proper Lorentz group QL depending on the rapidity θ
expressed in terms of the “old” Lorentz coordinates:

QL(θ) = t2 − q2
θ − q2

⊥ − q2. (102)

Similarly, introducing a change for the new Lorentz coordinates x0 → θ , x1 → θs ,
x2 → θ⊥ , x3 → s⊥ gives the proper Lorentz group QE:

QE(θ) = θ2 − θ2
s − θ2

⊥ − s2
⊥. (103)

As can be seen from Equation (102) and Figure 7a for the proper Lorentz group SO(1,3)
for QL at θ → 0 , the eigenvalues of the coordinates have the form t → ∞ , qθ → −∞ ,

q⊥ → 0 , and q → −∞ . As θ → 1 , the particle speed tends to
→
n
→
β = tanh(1) → 0.75 of

the speed of light, and the real parts of the proper coordinates in Equation (102) tend
to t → −0.31, qθ → 0.16 , q⊥ → 1 , and q → −0.27 . As θ → ∞ , the speed of the particle

tends to the speed of light
→
n
→
β = tanh(∞) → 1 , and the real parts of the coordinates in

Equation (102) tend to t → 0 , qθ → ∞ , q⊥ → ∞ , and q → 0 .
For the proper Lorentz group SO(1,3) for QE as θ → 0 , the eigenvalues of the coordi-

nates tend to θs → 0 , θ⊥ → −∞ , and s⊥ → −∞ . When θ tends to θ → 1 , the eigenvalues
of the coordinates tend to θs → 0.87 , θ⊥ → 0.16 , and s⊥ → −0.77 . As θ tends to θ → ∞ ,
the eigen coordinates take the form θs → π/2, θ⊥ → ∞ , and s⊥ → 0 .

Figure 7 shows that for real and positive θ, for the proper Lorentz group SO(1,3) for
QL in the interval θ ∈ [2; ∞), the functional dependence QL = QL(θ) is decreasing. For QE

in the interval θ ∈ [2; ∞), the functional dependence QE = QE(θ) is increasing.



Symmetry 2024, 16, 357 21 of 25

θ θ
θ

θ θ θ θ

θ

θ θ
β

θ θ
β

θ

θ

θ θ θ θ

θ θ θ

θ θ π θ
θ

θ θ

θ θ

ξ ξ
θ θ

 

θ ξ ξ

θ

θ

θ θ

θ θ

ξ ξ

–40

–20

0

20

40

–4 –2 0 2 4

Q

θ
(a)

–40

–20

0

20

40

–4 –2 0 2 4

Q

θ
(b)

Figure 7. Dependency graphs: (a) QL from Equation (102) (blue color) and QE from Equation (103)

(red color) depending on the rapidity θ; (b) s2 = ξ+ξ− in 1+1 dimensions (12) (blue color) and QE

(red color) depending on the rapidity θ.

As seen from Figure 7b, in 1+1 dimensions, the functional s2 = ξ+ξ− dependence on
θ in the interval θ ∈ [2; ∞) is bounded from below and tends to s2 → 0 .

Thus, if it is necessary to describe the motion of a relativistic particle for an increasing
or decreasing function in an interval θ ∈ [2; ∞), it is convenient to apply the proper Lorentz
group SO(1,3) for QE = QE(θ) or QL = QL(θ). To describe the motion of a relativistic
particle in the interval θ ∈ [2; ∞) along zero with respect to the rapidity θ, it is convenient
to adopt the spacetime interval s2 = ξ+ξ− in 1+1 dimensions when s2 → 0 .

15. Relationship between the Pressure and Energy Density in Relativistic
Hydrodynamics with Coupled Parameters in 1+1 Dimensions

In this section, isotherms of the pressure and energy density of a relativistic particle
are obtained as a function of the rapidity θ. The development of a relativistic approach
to hydrodynamics is of great interest because there is no need to work with the micro-
scopic properties of individual nucleons or ions, but it is necessary to work with certain
macroscopic parameters of the system such as the pressure and energy density.

The stress–energy tensor of relativistic hydrodynamics has the following form in four
dimensions following Reference [38]:

Tik = ωuiuk − pgik, (104)

where ω = p + σ is the thermal function of a unit volume, p is the pressure, σ is the
energy per unit volume, ui is the four-dimensional speed, and gik is a metric tensor with
components of the form −g00 = g11 = g22 = g33 = 1, gik = 0 for i ̸= k. Furthermore, the
thermodynamic quantities p and σ are understood as taking their eigenvalues per unit
volume in the local field system.

In Equation (104), the following notation is also used in 1+1 dimensions:

dxk

ds
=

dξ

ds
= γ = uk = u0 − f u1,

dξ+

ds

dξ−

ds
= u+

k u−
k = 1, (105)

where xk ≡ ξ = t − f q is the Lorentz spacetime coordinate and x+k ≡ ξ+ = t − q, x−k ≡
ξ− = t + q, x+k x−k ≡ ξ+ξ− ≡ t2 − q2 ≡ s2 = inv.

The components of the stress–energy tensor from (104) in 1+1 dimensions, depending
on the rapidity θ, have the dependence

T00 = ω cosh2 θ − p, T01 =
ωsinh(2θ)

2
, T11 = ωsinh2θ + p. (106)
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The relativistic hydrodynamic equation of motion in four dimensions has the following form:

∂Tik

∂xk
= 0, (107)

and in 1+1 dimensions:

∂T00

∂t
− ∂T01

∂q
= 0,

∂T01

∂t
− ∂T11

∂q
= 0. (108)

As is well known, when considering hydrodynamics, it is necessary to have an equa-
tion of state for the matter of the system. As an equation of state for the ideal matter of
the system for energy E ≫ 1, as a rule, the following functional relationship between the
pressure p and energy density σ is used [38]:

p ≈ σ

3
. (109)

As stated in Reference [39], there is at present no rigorous evidence for the relationship
between the density of matter σ and pressure p in the ultrarelativistic case (Equation (109)),
but according to Landau, the assumption above is highly plausible.

In this section, for the equation of motion of an ultrarelativistic fluid (Equation (108)),
the problem will be solved in 1+1 dimensions with coupled parameters p ≡ p(q) ≡ p(t)
and σ ≡ σ(q) ≡ σ(t). A more rigorous definition of p and σ through the rapidity θ is
now introduced, and it is shown that for the equation of state of an ideal substance, the
connection in Equation (109) is universal and plausible for related parameters.

Substituting Equation (106) in Equation (108) gives the following differential equations:

∂σ

∂θ
sinh(2θ) + σ(2 cosh(2θ)− 1) = 0, (110)

∂p

∂θ
(sinh(2θ)− tanh(θ)) + p(2 cosh(2θ)− 1) = 0, (111)

the solution of which is

σ = C1

√
tanh(θ)csch(2θ), p = C2

csch(θ)√
cosh(2θ)

, (112)

where C1 and C2 are constants.
The constants C1 = 1 and C2 = 1/3 are selected in such a way that the terms of thermal

radiation have the closest value in relation to each other, with the functional dependence in
Equation (109) for θ > 0 satisfied (Figure 8).

Finding an exact analytical solution for the various thermodynamic characteristics of
radiation is a rather difficult task. Therefore, for p and σ, the first approximation in the
expansion of the Taylor series in the vicinity of θ = 0 is adopted here, giving

σ =
√

tanh(θ)csch(2θ) ≈ 1

2
√

θ
, (113)

p =
1

3

csch(θ)√
cosh(2θ)

≈ 1

3θ
, (114)

that is, the more general relationship between the pressure and energy density is

σ ≈
√

3

2
p

1
2 . (115)



Symmetry 2024, 16, 357 23 of 25

σ θ σ θ
θ

θ θ θ
θ

σ θ θ
θ

θ

θ

θ σ σ θ

θ

σ
θ

σ θ θ
θ

θ
θθ

σ

0

1

2

3

4

5

0 0.5 1 1.5

p
, 
σ

θ

Figure 8. Graphs of the thermal radiation terms depending on the rapidity θ: σ = σ(θ) (blue color)

and p = p(θ) (red color).

16. Conclusions

In this work, the form of the local coordinates and local rapidities in 3+1 dimensions
was obtained via parametrization with coupled parameters. New Lorentz spacetime coor-
dinates were presented (Equations (78), (86) and (89)) that make it possible to describe the
dynamics of a particle in 3+1 dimensions with coupled parameters in terms of hyperbolic
functions depending on the rapidity θ. The resulting “new” Lorentz spacetime coordi-
nates are an addition to the “old” Lorentz spacetime coordinates (Equations (6) and (8)),
which together describe the dynamics of a particle in 3+1 dimensions. As shown in this
article, the solutions are valid only for real and positive rapidities θ (Figures 1 and 2,
Equations (10), (15), (20) and (27)).

For the dimensionless amplitude of a field Iλ2 ≥ 2 · 1019 W·µm·cm−2, the velocities
of particle motion q/t and nβ become equal (Figure 3), and as a result, it is possible to
introduce a passage to the limit (Equation (43)).

A perpendicular rapidity and an angular rapidity (Equation (30)) were derived from
Hamilton’s formalism; these are not invariant, but in combination with other rapidities,
they form new Lorentz spacetime coordinates (Equations (86) and (89)) with respect to
Lorentz transformations relative to the intervals ξ+Eθξ−Eθ = inv and ξ+E⊥ξ−E⊥ = inv.

Because all the parameters are coupled, it was shown that an arbitrary function can be
decomposed via the rapidity into elementary functions. For those cases in which it is not
possible to decompose an arbitrary function into elementary ones, a so-called passage to the
limit was introduced (Equation (43)), which allows a complex function to be decomposed
into elementary functions using the rapidities θ, θs, and θ⊥.

The spectral expansions into elementary functions resulted in the coordinates ξE, ξEθ ,
and ξE⊥ (Equations (78), (86) and (89)), and a comparison between the Lorentz spacetime
coordinates ξ and ξE was carried out through the integral of motion of a relativistic particle
(Equation (79)).

It was shown that for plane waves oscillating according to a harmonic law, the
Lorentz spacetime coordinate ξ describes the oscillation of a particle over an interval
θ ∈ [−π/10; π/10], similar to the oscillation of a particle in the field of a short laser pulse.
Applying the new Lorentz spacetime coordinate ξE to plane waves oscillating according
to the harmonic law, it is clear that the oscillation of a particle in a wave is described by
periodic motion in the interval θ ∈ [0;+∞) (Figure 4).

Assuming that the plane waves have frequency modulation, with the frequency
varying according to the harmonic law ω = ω(ξ) and ω = ω(ξE), for a plane wave
described by the Lorentz spacetime coordinate ξ, the presence of frequency modulation
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does not affect the oscillation frequency of the particle because ξ describes the dynamics of
the particle with spatial modulation. When applying the frequency modulation ω = ω(ξE)
to the new Lorentz spacetime coordinate ξE, the wave form clearly has a classical frequency-
modulated profile. From the Lorentz spacetime coordinates ξ and ξE in relation to plane
waves, the main conclusion that can be drawn is that (i) the use of ξ describes the dynamics
of a particle in short pulses well, and (ii) the use of the new Lorentz spacetime coordinate
ξE describes classical harmonic processes (Figure 4).

In general, it was shown that the Euler–Hamilton equations (Equations (38) and (40))
describe the dynamics of a relativistic particle well in the field of a plane wave and in
the field of a plane laser pulse in 3+1 dimensions. It was also shown that to describe the
motion of a particle in the field of a circularly polarized pulse with left-hand polarization,
it is advantageous to use the Euler–Lagrange equations (Equations (70)–(76)) because the
resulting equations are compact.

When comparing the descriptions of oscillations of the kinetic energy of a particle in
the field of a plane laser pulse using the “old” and “new” Lorentz spacetime coordinates, it
was shown that the particle has maximum kinetic energy when using coordinates ξ and ξE,
the values of which are approximately equal throughout the spectral range (Figure 5).

Furthermore, when comparing the “new” and “old” Lorentz spacetime coordinates
with the Fermi coordinates, it was shown that the spacetime coordinates ξ− and ξ−FR have a
general solution for the rapidity θ > 0.5 (Figure 6a,g).

For the proper Lorentz group SO(1,3) with coupled parameters, it was shown that to
describe the motion of a relativistic particle for an increasing or decreasing function in an
interval θ ∈ [2; ∞), the proper Lorentz groups QE = QE(θ) or QL = QL(θ) are convenient
(Figure 7).

As an example of the applicability of coupled parameters, a more general relation-
ship was also demonstrated between the pressure and energy density expressed through
isotherms as a function of the rapidity θ in relativistic hydrodynamics with coupled param-
eters in 1+1 dimensions (Figure 8). The results of this work will be used in the future to
construct a relativistic hydrodynamic model with coupled parameters in 3+1 dimensions.
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