

Nonleptonic decay widths of B^0 mesons into $D^+\pi^-$

Arpit Parmar^{1,*}, Bhavin Patel^{2,†} and P C Vinodkumar^{1‡}

¹Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120. and

²Department of Physical Sciences, P. D. Patel Institute of Applied Science, CHARUSAT, Changa-388 421.

Introduction

In recent years, the non-leptonic decay of $B^0 \rightarrow D^+\pi^-$ has been obtained by BaBar [1]. The $B^0 \rightarrow D^+\pi^-$ processes provide very good opportunities to test the standard model of hadronic B-meson decays due to their clean and dominant hadronic decay channels.

Theory

The matrix element for $B^0 \rightarrow D^+\pi^-$ can be parametrized into model dependant form factors as [2],

$$\langle D(p') | V^\mu | \bar{B}(p) \rangle = f_+(q^2)(p + p')^\mu + f_-(q^2)(p - p')^\mu \quad (1)$$

The form factors $f_{\pm}(q^2)$ can be written in terms of universal Isgur-Wise function as

$$f_{\pm}(q^2) = \frac{M_D \pm M_B}{2\sqrt{M_B M_D}} \xi(\omega) \quad (2)$$

Here, $\omega = v \cdot v' = (M_B^2 + M_D^2 - q^2)/(2M_B M_D)$ with v and v' as the velocities of B and D mesons respectively. $\xi(\omega)$ is given by [3],

$$\xi(\omega) = \frac{2}{\omega + 1} \left\langle j_0 \left(2E_q \sqrt{\frac{\omega - 1}{\omega + 1}} r \right) \right\rangle \quad (3)$$

The decay width $\Gamma(B^0 \rightarrow D^+\pi^-)$ then becomes,

$$\Gamma(B^0 \rightarrow D^+\pi^-) = \frac{a_1^2 G_F^2 |V_{cb} V_{ud}^*|^2}{32\pi} M_B^3 f_\pi^2 \times \left(1 - \frac{M_D^2}{M_B^2} \right)^3 |f_+(0)|^2 \quad (4)$$

TABLE I: Form factors $f_+(0)$ and $Br(B^0 \rightarrow D^+\pi^-)$ (in $\times 10^{-3}$)

ν	$f_+(0)$	$Br(B^0 \rightarrow D^+\pi^-) \times 10^{-3}$
0.1	0.30	0.92
0.3	0.41	1.75
0.5	0.47	2.29
0.7	0.51	2.71
0.8	0.53	2.90
0.9	0.55	3.07
1.0	0.56	3.23
1.1	0.57	3.37
1.3	0.59	3.61
1.5	0.61	3.79
Expt [5]		2.69 ± 0.13
[8]	~ 0.60	$3.2_{-0.8}^{+0.4}$
[9]		2.5
[10]		$2.69_{-0.66}^{+0.75}$

Here, a_1 is the nonrelativistic factorization coefficient and for present study it is taken as $a_1 = 1.08$ [4]

Phenomenology

For the description of the mass spectra and nature of wave function of bound state of B and D mesons we employ coulomb plus power type of the potential of the form $V(r) = -\alpha_s/r + Ar^\nu$ with A and ν as potential strength and exponent respectively [6]. For the present study we vary potential exponent ν as $0.1 \leq \nu \leq 1.5$. Mass spectra and wave function for different choices of exponent ν are obtained by solving schrödinger equation using mathematica notebook [7]. The potential strength is fixed using known experimental values of spin average mass (M_{SA}) for B and D mesons. The masses of the $J = 0$, B and D mesons are then obtained by invoking the usual hyperfine interaction of the one gluon exchange potential [6]. The wave func-

*Electronic address: arpitpsu@yahoo.co.in

†Electronic address: azadpatel2003@yahoo.co.in

‡Electronic address: pothodivinod@yahoo.com

tion and the masses then employed to compute the form factors given by Eqn. 2.

Results and Discussion

Our result for the form factor at zero recoil ($f_+(0)$) and the branching ratio, $Br(B^0 \rightarrow D^+ \pi^-)$ against exponent ν are listed in Table I. Our results agree with the experiment for $\nu \sim 0.7$ as against the expected value for $\nu = 1.0$. It indicates the weakening of the confinement strength.

Acknowledgments

Part of this work is carried out under the UGC grant with ref no. **F.40-457/2011(SR)**.

References

- [1] B Aubert *et al.* (BABAR collaboration) Phys. Rev. D **79** 032002 (2009); Phys. Rev. D **75** 031101 (2007).
- [2] Quang Ho-Kim and Pham Xuan Yem, Elementary Particles and Their Interactions, Springer Pub.(1998).
- [3] M G Olsson and Simisa Veseli, Phys. Rev. D **51** 2224 (1995).
- [4] A J Buras, arXiv:hep-ph/9806471.
- [5] K Nakamura *et al.* (Particle Data Group), J Phys G **37** 075021 (2010).
- [6] Bhavin Patel and P C Vinodkumar, J. Phys. G **36** 035003 (2009).
- [7] W. Lucha, F. Shoberl, Int. J. Mod. Phys. C 10 (1999), arXiv:hep-ph/9811453.
- [8] FU Hui-Feng *et al.*, Chin. Phys. Lett. **12** 121301 (2011).
- [9] A Deandrea *et al.*, Phys. Lett. B **318** 549 (1993).
- [10] R H Li *et al.*, Phys. Rev. D **78** 014018 (2008).