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Abstract

We study the supersymmetric Wilson loops in the four-dimensional N = 4 super
Yang-Mills theory in the context of the AdS/CFT correspondence. In the gauge
theory side, it is known that the expectation value of the Wilson loops of circular
shape with winding number k, Wy (C), is calculable by using a Gaussian matrix model.
In the gravity side, the expectation value of the loop is conjectured to be given by
the classical value of the action Sps for a probe D3-brane with k electric fluxes as
(Wi (C)) = e~ "P3 . However, according to the spirit of the AdS/CFT correspondence,
in principle we have to perform the path integral for the D3-brane action in the
AdS5x8S® under appropriate boundary conditions which should be given in terms
of data of the Wilson loop at the AdS boundary. We clarify what kind of boundary
conditions are imposed on the D3-brane from the Wilson loop. As an application, our
boundary conditions provide a natural interpretation of a position of an eigenvalue
in the Gaussian matrix model as an integrated flux on the D3-brane.

1 Introduction

Much progress in string theory for the last ten years suggests that quantum gravity will be formulated
as the large-NV limit of gauge theories or matrix models [2—4]. The key in this approach is that all the
information on gravity or geometry in the bulk is encoded into gauge theory degrees of freedom on the
boundary. This idea called holography is realized in the AdS/CFT correspondence. In particular, we
consider a circular Wilson loop in the gauge theory in the context of the AdS/CFT correspondence as a
nice and concrete realization of holography idea. In our analysis, we emphasize importance of boundary
conditions the gauge theory imposes on the geometry. We hope this kind of study has some implications
to the brane world scenario, cosmology, or other quantum gravity formulations.

2 Circular Wilson loop in N =4 U(N) SYM

In this section we review the circular Wilson loop in the four-dimensional N' = 4 U(N) supersymmetric
Yang-Mills (SYM) theory in the large-N limit. Bosonic fields in this theory are the U(N) gauge field A,
(1 = 0 ~ 3), the scalar fields ®; (i =4 ~ 9) in the adjoint representation of U(N). In terms of these
fields, the circular Wilson loop is defined as

Wi(C) = %trPexp (/C ds(iA,dh(s) + @zyz(s))> ) (1)

where C' is a circle parametrized by s, k is the winding number of the Wilson loop, and x#(s), y*(s)
represents the shape of the loop in the four-dimensional, and six-dimensional space, respectively. In
particular, when we are interested in the circular Wilson loop, z#(s) describes the circle C, e.g. z#(s) =
(cos s,sin s,0,0). In order to take advantage of the AdS/CFT correspondence, eventually we have to take
N — oo limit.

IBased on the work [1]
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In this setup, let us summarize the main result in the gauge theory side [5-7]. We are interested in
the vacuum expectation value of the circular Wilson loop in the large-N limit
1
(Wi(C)) = / D(all fields) Wy, (C)e~ Seause (2)
Zgauge

where Sgauge is the action of the gauge theory. The standard way to compute this is by the perturbation
theory in terms of the gauge theory coupling constant gyy. We choose two points on the Wilson loop s1,
52, and connect fields on these points by their propagators as (A, (x(s1)) A, (x(s2))), (Pi(x(s1))P;(x(s2)))-
However, since these fields also carry #* and ¢, the net contribution of the propagators becomes

— (Au(a(s1)) Ay ((52))) i (51)3" (52) + (Ps((51)) @5 (w(52))) §" (51)5 (52)- (3)

The crucial property of the circular Wilson loop is that this becomes constant, namely independent of
the space-time points z*(s1) and x#(s) provided that 2% — g2 = 0. More precisely, when this condition is
satisfied, the above quantity becomes g%,,/872. Thus the combined propagator loses space-time depen-
dence. Due to this property, the computation of (W (C)) is greatly simplified. Therefore, in the following
let us concentrate on the circular Wilson loop (1) with @2 — §? = 0 satisfied. In fact, this condition is
known as the one under which the Wilson loop preserves the half of supersymmetries. Furthermore, it is
known that diagrams with internal vertices vanish because of the supersymmetry. Thus the computation
is reduced to the sum over all planar diagrams with the constant propagator, which is just a combinatorics
problem. Actually, the calculation boils down to the one-matrix model
1

Lo km Lo kM -5
W = = M MM 4
(Wr(C)) <Ntre >MM Tnra d Ntre e ) (4)

2N
ShM = Tter, A= gy N, (5)

where M is an N x N Hermitian matrix. From the observations above, it is easy to see that this matrix
model reproduces the calculation of (W (C)) in the large-N limit, because it generates all planar diagrams
with the constant propagator proportional to A/N = ¢2,,. Note that the operator %tr €M is a remnant
of the Wilson loop Wy (C), where the winding number k appears in the exponent. We can calculate
(4) by the standard technique [3]: performing integration over angular variables, (4) can be written as
integration over N eigenvalues of M

(We(C)) = %/Hdmi exp(—NVeg),

2 k
Vig = Z Xm? - Zlog(mi —m;)? — N (6)
i .7

This implies that the system now becomes that of N particles in the Gaussian potential with strong
repulsive logarithmic force between them. Moreover, in the presence of the Wilson loop, the last eigenvalue
my feels extra linear potential proportional to k. In particular, when k is of order IV, it survives in the
large-N limit. This situation is quite interesting, so henceforth let us discuss the case where k is of order
N.

In the large-N limit, these eigenvalues are expected to form a continuous distribution, and the dis-
tribution function can be derived from the saddle point method in the large-N limit. The result is

(1]
2 1
plm) = —vA—=m2+ —d(m —m,), (7)
TA N
which is displayed in Figure 1. Here m, = 1/A(1 + #2) and & = kv/A/4N which is O(1) when k is O(N).
The isolated eigenvalue distribution at m, originates from the last eigenvalue my. Given (7), it is easy

to calculate (Wi (C)) as [1, 9]

(Wi(C)) = exp [N (2/-;\/ 1+ A2 + 2arcsinh n)] . 8)
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Figure 1: The eigenvalue distribution with k of O(N).

Conversely, detailed analysis [1] of the matrix model tells us that on general grounds, we can deduce from
(Wi(C)) the position of the isolated eigenvalue as (W (C)) = exp(—Ver(k)) — m. = —V/4(k). In the
gravity side, by a totally different method we can calculate (W (C)), from which we can read off a bulk
interpretation of m, by using this relation.

3 AdS/CFT for Wilson loop

In this section we review main results of the Wilson loop in the AdS/CFT correspondence. First we
consider the case of the Wilson loop with winding number k = 1, then we turn to &k of O(N) case.

3.1 k=1 case
The statement of AdS/CFT for the Wilson loop with & =1 is [10, 11]

Wi (€)= [ e, )

b.c.

where Sxg and S is the Nambu-Goto action and a possible boundary term, respectively. In the right
hand side the path integral should be over all fields on a string world sheet in AdS;xS® attached to the
loop C at the AdS boundary under appropriate boundary conditions. Here we stress importance of the
boundary conditions in the right hand side in (9). First of all, from the theoretical point of view, in
the spirit of the AdS/CFT correspondence a bulk or gravity quantity should be completely fixed by the
boundary or gauge theory data, which should enter in the right hand side through boundary conditions.
On the other hand, from the practical point of view, usually the relation (9) is applied in the case of
A > 1, where the path integral in the right hand side can be replaced by e~°< with S, the action
evaluated for the classical solution. However, in order to fix the classical solution, we have to specify
appropriate boundary conditions at, for example, the AdS boundary corresponding to the presence of
the Wilson loop. Thus an important issue in (9) is what kind of boundary conditions and/or boundary
terms the Wilson loop impose on the bulk or geometry.

A nice argument on boundary conditions based on the T-duality is given in [12]: let us start from
the 10-dimensional gauge theory, namely D9-brane world volume theory. If a string is attached to a
Wilson loop in this theory, string coordinates in all directions X* (u = 0 ~ 9) should have the Dirichlet
boundary condition because their boundary values are all fixed by the position of the Wilson loop. Then
applying the T-duality in ¢ = 4 ~ 9 directions, we find that X* (u = 0 ~ 3) still have the Dirichlet
boundary condition, while X* (i = 4 ~ 9) should have the Neumann boundary condition. Namely, the
string coordinates have the Dirichlet boundary condition for the D3-brane world volume directions, and
the Neumann boundary condition for the orthogonal directions.

The above T-duality argument implies that the right hand side in (9) will be a function of X*
(=0~ 3)and P; (i =4 ~ 9). This requires boundary terms for the Neumann directions i = 4 ~ 9.

In order to see this, let us parametrize a string world sheet attached to the Wilson loop by o', o2 as
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follows: the world sheet boundary exists at o2 = 0, while the boundary itself is parametrized by o?!.
Then variation of the classical world sheet action reads

)
2_ |92 o0
/d { 5X—|—58X68X}

where |¢ represents evaluation via a classical solution and P; = 6£/602X* is the boundary momentum.
This equation suggests that the classical action is a function of X*. The standard way to flip the boundary
condition, namely to change a function of X? to that of P; is the Legendre transformation. We add the
boundary term as

= —7{ dotP6 X", (10)
cl o2=0

S—s54 74 o' P,X 5| = 7( do' X5P,, (11)
o2=0 c 02=0

which shows that S| is a function of P; as expected. Thus we conclude that we have to add the boundary
cl

term Sy = § ,_, do' P, X" for the Neumann direction.
In order to give a concrete form of the above boundary conditions, let us choose the AdSsxS® metric

as
2 _ L? iz )2
ds* = 5 ((dX )2+ (dY*)?)
A dU')? ; L i g
_L2<< 12 ) (dX“)2+(U2)>’ U =U=g oy U =00 (12)

where L = \ivVa/ , 0 is a coordinate of the unit S°, and the gauge theory lives in the four-dimensional
space-time X* (u =0 ~ 3). Then the Wilson loop (1) provides following boundary conditions [12]:

e Dirichlet: X*(o!,0?% =0) = a#(c?),
e Neumann: Pj(o', 0% =0) = g;(a?),

where P; is the conjugate momentum of U?. The latter equation is nontrivial, but there are some
arguments supporting it based on symmetries and constraints [12]. In the next section we derive a
similar boundary condition in the case of k of O(NN). It is worth noticing that these boundary conditions
are along the spirit of AdS/CFT, namely the Wilson loop data provides the boundary conditions for the
fields in the bulk.

3.2 Lk of O(N) case

Now let us turn to the case where k is of O(N). A crucial observation is that in this case we have to
consider k world sheets, because the Wilson loop with winding number £ originates from k fundamental
open strings connecting N D3-branes and a probe D3-brane, which should correspond to k& world sheets
attached to the loop in the gravity side. However, since k is now of O(N), we are considering N ~ 1/g,
world sheets, which means that we can no longer neglect string interactions, namely we need nonpertur-
bative description. For this system, an interesting proposal was made in [13] that when k is of O(N),
the string world sheet attached to the loop should be replaced by a D3-brane world volume. Namely, the
basic relation for the Wilson loop in the AdS/CFT correspondence given in (9) now becomes

Wiley) = [ e, (13)

where Spj is the Dirac-Born-Infeld action for a D3-brane including the Wess-Zumino term. Their proposal
is based on the fact that a fundamental string can be regarded as a BPS configuration from the point of
view of the D3-brane world volume theory [14]. In fact, as we will see later, using the relation (13), we
can compute (W (C)) in the gravity side and it agrees exactly with the gauge theory result given in (8).

In this approach, there are apparently different points from the string world sheet (k = 1) case: first
of all, the world volume is now four-dimensional and hence attachment to the one-dimensional loop at the
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AdS boundary is somewhat nontrivial. In the following c® (a = 1 ~ 4) denote coordinates on the world
volume. Secondly, apart from the scalar fields X*(0%), U*(c®) (u =0 ~ 3, i = 4 ~ 9) which describe the
position of the D3-brane in AdS5xS® in terms of the coordinates given in (12), we have a U(1) gauge
field A, (). Thus we have to specify a boundary condition and a possible boundary term even for this
gauge field. A,(c®) on a D3-brane world volume should not be confused with the original U(N) gauge
field in the gauge theory side.

For the purpose of examining boundary conditions for a D3-brane, let us parametrize the D3-brane
world volume in such a way that the world volume boundary is again given by ¢2 = 0, and the one-
dimensional boundary itself is parametrized by o'. Other directions are parametrized by o3, o*. The
same argument as before yields apparent boundary conditions

1. X*: Dirichlet, X*(c!,0? = 0) = a#(cl),
(Here by using reparametrization invariance of the Wilson loop, we make an identification s = o1.)

2. U': Neumann,
3. I%=1(o!, 0% = 0) = —ik for each o!.

Several notices are in order. As for 2, it should be emphasized that we do not yet know explicitly how
to specify Pp: at the boundary. It is true that in the string case Py: = ¢;, but it is not guaranteed
that this is also the case with the D3-brane. The boundary condition 3 reflects that the fact that the
end point of a string attached to a D-brane can be regarded as an electric charge from the D3 world
volume viewpoint and therefore if it moves along the circle to form the Wilson loop, it induces flux of
U(1) gauge field in the o! direction. Recalling the discussion in (11), we have to add the boundary terms
for fields with the Neumann boundary conditions, namely the boundary term for the transverse scalar
fields § ,_, do'dodo® Py:U" and that for the gauge field § ,_, do'do®do*II' A;.

Now we make a short review of the explicit form of the D3-brane solution given in [13]. If we take
the AdSs metric as

210U\ ? du?
dsigs, = L (( T3 ) (dr} +r2dy? + drg + r3d¢?) + U2> , (14)

then the loop can be assumed to be located at r; = R, ro = 0, which corresponds to the world volume
parametrization o' = 1), 02 = ry and o3, o* parametrize S? which shrinks at the boundary 02 = ry = 0.
In this case, the half BPS nature is strong enough to fix the form of the classical solution uniquely once

we take account of only the gauge field boundary condition II1?=! = —ik. Essentially the solution takes
the same form as in [14] and near the boundary ro < 1, it looks like
A —1i A
U KV A~ —iRrVA (15)
277y 277y

where k is defined below (7). Plugging the solution into the action, we have

Spz + S, = —N (2/{\/ 1+ k2 + 2arcsinh n) . (16)

Then according to (13) we can calculate (W (C)) as

(Wi (C)) = \/ef(SD:s-brane‘FSb)
= exp (—(Spa-brane + Sb))|q

= exp [N (2/@\/ 1+ k2 + 2arcsinh H)} , (17)

where in the second equality we have used A > 1. This indeed agrees with the gauge theory result (8).
Since (W}, (C)) is quite a complicated function, this agreement strongly supports the claim (13), at least
in strong coupling regime A > 1.
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4 Boundary condition for D-brane from Wilson loop

The agreement (17) shown in [13] looks quite nice, but we emphasize here that the derivation in [13]
is not completely along the spirit of AdS/CFT. Namely, in the basic relation (13), the right hand side
will be a function of X#, II* and Py: and their boundary conditions should be provided in terms of the
Wilson loop. Then the path integral, or the evaluation of the classical action should be done under these
boundary conditions. In contrast to this, in [13] they do not take account of the boundary condition
for Py and rather they evaluate the action from the explicit form of the classical solution which can be
uniquely fixed due to many supersymmetries the configuration preserves. It should be noticed that in
the spirit of the AdS/CFT correspondence, the boundary term and the boundary condition should be
specified in (13) in terms of the Wilson loop without referring to the equation of motion. Moreover, a
prescription itself of giving boundary conditions from a Wilson loop would be generic and independent of
its shape. Thus our aim is to deduce D3-brane boundary conditions for generic shape of the Wilson loop
without using the equation of motion. Our problem is quite unique, because usually a D-brane specifies
boundary conditions for an open string attached to it, while in the present case we are considering
boundary conditions for a D-brane itself imposed by a Wilson loop.

4.1 Derivation of boundary conditions

For our purpose, let us take the (Wick rotated) AdSsxS® metric as

(du')®
Uz

T 2

ds® = (%z U) (2 + dp? + p2(d6? + sin® 0d¢?)) + L2 (18)
where the gauge theory lives in the four-dimensional space-time parametrized by ¢, p, 8 and ¢, and the
AdS boundary exists at U = oco. We choose t, p in such a way that a loop of generic shape is located
at p = 0, and that it is extended into the t-direction in the four-dimensional space-time. A D3-brane
is in the AdSs, and is attached to the loop p = 0 at the AdS boundary. We take 0% (a = 1 ~ 4) as
the D3-brane world volume coordinates, hence world volume fields are embedding coordinates t = t(c?),
p = p(c?), -+, U = U'(c?), and the U(1) gauge field A,(c?). As before, we take 0® in such a way
that the world volume boundary is at 02 = 0, and there the boundary itself is parametrized by o'. Thus
p — 0 as 2 — 0. Note that at the beginning the world volume boundary has nothing to do with the
AdS boundary U = oco. Rather, we impose a condition later that the world volume boundary is located
at the AdS boundary. As for other world volume coordinates, it is natural to set 02 = 6, 0* = ¢. Near
the world volume boundary o2 ~ 0, p ~ 0, then the S? parametrized by ¢ and ¢ shrinks, hence all
fields become independent of them. Namely, at least near the world volume boundary, t, p and U? are
fields only of 0!, 0%: t = t(0!,02), p = p(ot,02) U' = Ui(o!,0?) for 02 ~ 0. As for the gauge field, at
the world volume boundary it is along the o!-direction as we discussed above (14): Ag—1 = Ag—1(0?).

Using these coordinate choice, let us consider the D3-brane action. Near the world volume boundary,
S2-part can be integrated trivially and we obtain

SD3|02N0:/2 OdaldJ2LD3:/2 OdaldJQ\/Uq§(}2(gab+2wa' ub)- (19)

From the effective Lagrangian Lps we define conjugate momenta near the world volume boundary as

OLp3 O0Lp3 0Lp3 -1 0Lp3
P, = . P, = . Pyi= 203 - qpe=1_ _972D3 20
FT00st) TP 0(dap) YT (8,UY) 9(02A1) (20)
The diffeomorphism invariance of the action implies the Hamiltonian constraint among these conjugate
momenta

0= (Py:)® + (T2 ((01t)* + (91p)?) — mT”N(Ptalp — P,0it)p?

_ A HUN? A 1
- (647r2)\ INYUp)*t — 47r2(111)2> <11]2) + R(Pf + pg)m. (21)
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Let us examine what this equation means at the world volume boundary, i.e. p — 0 (62 — 0)3. Here we
make a crucial requirement that when o2 — 0, U — oco. Namely, the world volume boundary lies at the
AdS boundary. Then the constraint is greatly simplified to yield

P2+ (I1M)2(01t)* =0, at o* = 0. (22)

As discussed in subsection 3.2, a natural boundary condition for the gauge field is II'(o!, 0% = 0) = —ik
for each o!. Plugging this into the above, we get Py = —k|01t|6; with §; = U;/U being S° coordinate,
where we have used Py = (U?/U)Py and chosen the minus sign in order to make it consistent with the
equation of motion. This is only the point we refer to information of the equation of motion. However,
at 02 = 0, the loop is assumed to be extended along the t-direction and the D3-brane world volume
is attached to it. Thus we have |9;t| = |X*#(c')| at least in a local patch around a point on the loop.
By using the Dirichlet boundary condition for X*: X*(o',0? = 0) = z#(c!), we find that |01t| can be
identified with |2#| at least in a local patch. Thus we see that the Hamiltonian constraint (21) at the
world volume boundary o2 = 0 under the requirement U(c!, 02 = 0) = oo implies the following boundary
conditions:

XH(ot 0% =0) = zt(oh), (23)
II'(o!,0° =0) = —ik, Pyi(c',0° =0) = —k|i(c")|0;(c"), (24)

where we have again identified s with ¢! by using the reparametrization of the loop. By use of the
embedding coordinates X*, we can convert the world volume indices of I1* into the space-time ones like
I* = 9, X*I1*. Since II* has the only non-vanishing component for a = 1, II# satisfies the following
boundary condition

" = 9, X I = —ikat at o =0, (25)

where we have used (23). Using the second boundary condition in (24), this gives the following relation

(I1")* + (Pyi)* = 0. (26)
It is worth noting that the boundary condition (24) thus corresponds to the BPS condition in [14], i.e.,
force balance between the electric charge IT! and the deformation of the D3-brane which is characterized
by Py, in the case of the spike solution in the flat space. Since the spike solution presented in [14] is

the half BPS, it is natural that the equation (26) also implies a local BPS condition for the Wilson loop.
In fact, in the gauge theory side, the local BPS condition for the Wilson loop (1) is given by

2=y (27)

T
as commented in section 2. For the Wilson loop satisfying this condition, y; = |£|0;. Therefore, by using
this relation in (24), we deduce boundary conditions in a general case as

" (0!, 0% = 0) = —ikit (o), Pyi(ot,0? =0) = —ky (o). (28)

We find our boundary condition quite natural because once it is assumed, the local BPS conditions in
both sides become equivalent. From the point of view of our general boundary conditions (28), (24) are
those in a local patch along the loop where the loop can be regarded as the straight line with ©? = 2.
In summary, the Wilson loop with winding number k& of O(N) given in (1) provides following boundary
conditions on a D3-brane in the AdS/CFT correspondence:

Dirichlet for X* : XH(ot 0 = 0) = 2" (ch), (29)
1 2 o 1 oXH
Neumann for A, : ¥ (o",0° =0) = —ikit (o), I = ﬁﬂ (30)
o
Neumann for U : Pyi(ot,0? =0) = —kyi(o). (31)

3In k = 1 (string world sheet) case, relation between the Hamiltonian constraint and a boundary condition was discussed
in [12].
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Note that these are in accordance with the spirit of the AdS/CFT correspondence: the boundary condi-
tions are given in terms of the data of the Wilson loop z*(s), y*(s) and k, namely the shape of the loop
and the winding number.

There are several evidences supporting our boundary conditions. For example, they are consistent
with the boundary conditions for the string world sheet (k = 1) case. Moreover, we can explicitly check
that the D3-brane solution obtained in [13] which we briefly review in subsection 3.2 actually satisfies our
boundary conditions. Here we again emphasize that in our derivation we do not refer to the equation of
motion, hence this fact is an evidence for validity of our boundary conditions. Another interesting aspect
of our boundary condition is that under them the Gauss’ law constraint I1%=2 = 0 implies do?/dc! = 0,
namely orthogonality relation between the tangential and perpendicular directions of the world volume
boundary.

5 Bulk interpretation of the position of eigenvalue

In this section as an application of our boundary conditions (29)~(31), we examine what happens if they
are applied to the basic relation (13). As mentioned in (17), when A > 1, the path integral in the right
hand side in (13) can be replaced by e~553=55 where the action is evaluated by its classical value under
the boundary conditions (29)~(31). Therefore, for A > 1, we have

(Wi () = e Bt (32)

where |p .. denotes the evaluation under (29)~(31). Thus the exponent of (Wj(C)), Veg(k) defined below
(8) can be read from this equation as Veg(k) = (Sp; + S5') }b‘c'. Then by using the fact we mentioned at
the end of section 2, we can make a connection between the position of the isolated eigenvalue m, and
the bulk quantity as

0
m. = ~Viglh) = — 5 (58 + S|, . - (3)

In order to calculate this, it is instructive to notice that k is a part of the boundary conditions and
as such variation of k gives rise to that of the classical action. However, the variation of the classical
action only comes from the boundary action due to the equation of motion. More precisely, for the
Dirichlet direction the variation is given as (10), while that for the Neumann direction is as (11). From
the boundary conditions (29)~(31), the variation with respect to k does not affect the Dirichlet direction
X*#. Thus as in (11) the variation comes only from the boundary term

Sel = ?{ do'dodo* (1M Ay + Py:U"). (34)
02=0
Now from (30) and (31), we obtain
S, = _kf do' (1A' + U's) . (35)
o 02=0

Notice here that in (29)~(31), the integration over S2-part (namely o® and o?) is done as in (19) and
(20). Therefore we finally find that
cl
05 7{ do' (iAyi' +U'y) . (36)
ok 52—0
Thus we obtain a clear interpretation of the isolated eigenvalue as a bulk quantity, namely as flux of the
gauge field, more precisely, an integration over the U(1) gauge field plus the scalar field along the loop.
As for this result, several notes are in order: first of all, the above derivation is exactly in accordance
with the spirit of the AdS/CFT correspondence in contrast to the result in [13] where they use the explicit
form of the solution to the equation of motion as in (15) to get (16). On the other hand, in our derivation
we do not use the explicit form of the solution. Rather, plugging it into (36), we obtain

/ do' (iAri' + U'g) = VAL + K2), (37)
o2=0

my =
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which indeed reproduces the gauge theory result below (7). This is a nontrivial consistency check of
our boundary conditions. It is also important to recognize that the boundary condition for U? in (31)
plays an essential role in deriving (37), which is missed in [13]. Finally we note that we again have (the
exponent of) the U(1) Wilson loop. It would be quite an interesting aspect of our result, although the
U(1) gauge field on the D3-brane in the bulk of course should not be confused with the original U(N)
gauge field on the NV D3-brane in the gauge theory side.

6 Conclusions

We have analyzed the circular Wilson loop with winding number k of O(N) in the gauge theory by using a
D3-brane carrying k units of charge in the context of the AdS/CFT correspondence. It is known that the
calculation of the expectation value of this Wilson loop in the gauge theory side amounts to considering
a Gaussian matrix model with an exponential operator insertion due to its symmetry. In this calculation
an isolated eigenvalue plays an essential role. After emphasizing importance of boundary conditions the
Wilson loop imposes on the gravity side, we deduce them based on the Hamiltonian constraint. We
have checked that our boundary conditions pass several nontrivial tests. As an application, we have
taken account of them in the AdS/CFT correspondence for the Wilson loop and succeeded in giving an
interesting interpretation in terms of fields in the gravity side to the position of the eigenvalue in the
matrix model.
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