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INTRODUCTION: NUCLEAR FORCES

When it was established that a nucleus is made of protons 
and neutrons, people realized the necessity of describing 
a new force that binds protons and neutron inside the 
nucleus. Electromagnetic force produces no attraction 
among protons and neutrons, while attractions induced 
by gravitational forces are too weak at such a short dis-
tance. As is well known, Hideki Yukawa introduced a new 
particle, nowadays known as a pion, to explain this new 
force, the nuclear force. According to his idea, protons 
and neutrons interact with each other by exchanging 
pions, whose mass was estimated to be 100~200 MeV  
(1 MeV=106eV) from the typical size of a nucleus. Since 
the mass of a pion lies between those of an electron and 
a nucleon (a generic name for protons and neutrons), the 

pion was called a meson at that time, and we now use the 
word meson as a generic name for pions and their rela-
tives. The pion was indeed observed experimentally in 
1947, and Dr. Yukawa received the Nobel Prize in Physics 
1949. 

After Yukawa’s success, nuclear forces have been inves-
tigated both theoretically and experimentally in detail, 
and are summarized as nuclear potentials. Three ex-
amples of nuclear potentials are given in Fig. 1, where a 
horizontal axis is a distance between nucleons in unit of 
fm (1fm=10-15 m) and a vertical axis represents a nuclear 
potential for an S wave with a total spin 0 in unit of MeV. 
The three potentials in the figure share the following 
common features. At a long distance (longer than 2 fm), 
there appears an attraction, which can be explained by 
the one pion exchange according to Yukawa’s theory. At 
an intermediate distance (between 0.8 fm and 2 fm) the 
attraction becomes stronger, probably due to exchanges 
of multi pions and/or other heavier mesons. At a short 
distance (shorter than 0.8 fm), on the other hand, the at-
traction turns into a repulsion which gets larger and larg-
er as the distance decreases, forming a “repulsive core” 
(strong repulsion at the short distance). The repulsive 
core is essential for the stability of atomic nuclei against 
collapse. Moreover, the repulsive core is an important in-
gredient for determining the maximum mass of neutron 
stars and for igniting Type II supernova explosions. 

The complicated structure of nuclear potentials as a 
function of distance may suggest the existence of some 
internal structures in nucleons. Indeed, it is now estab-
lished that a nucleon is made of three more fundamental 
particles, named quarks, which interact with each other 
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Fig. 1: Three examples of the phenomenological nuclear potential for the S-wave with the 

total spin 0. Taken from Ref. [3]. 



7

OCTOBER   2013   VOL. 23   NO. 5 FEATURE ARTICLES

by exchanging particles, called gluons. There are two 
species of quarks, up and down quarks, inside nucleons. 
A theory which governs a dynamics of quarks and gluons 
is called QCD (quantum chromodynamics). Whether 
QCD can explain the complicated structures of the 
nuclear potential in Fig. 1 is the main topic of this article 
and our answer to this question will be given below. 

DIFFICULTIES

It is not so easy to deduce properties of nuclear poten-
tials from the dynamics of quarks and gluons, as stated 
by Yoichiro Nambu in his book entitled “Quark: Fron-
tiers in Elementary Particle Physics” (World Scientific, 
1985): “Even now, it is impossible to completely describe 
nuclear forces beginning with a fundamental equation. 
But since we know that nucleons themselves are not el-
ementary, this is like asking if one can exactly deduce the 
characteristics of a very complex molecule starting from 
Schroedinger equation, a practically impossible task.”
First of all, the potential in classical mechanics is given by 
an energy for particles at rest as a function of distances. 
In quantum mechanics, however, the potential energy 
cannot be measured in this way, since a particle cannot 
have definite position and momentum at the same time 
due to the uncertainty principle. Instead, the potential 
is taken from the corresponding classical theory. For ex-
ample, one usually uses the (classical) Coulomb potential 
to calculate a spectrum of a hydrogen atom. In the case 
of quantum field theories such as QCD, a notion of “po-
tentials” becomes further ambiguous, since a number of 
particles are not conserved due to their creations and an-
nihilations. 

Secondly, even if the potential is defined, it is not so easy 
to calculate it in QCD. A perturbative expansion around 
the free theory, which is very successful in many other ar-
eas in physics, fails to work, since the interaction in QCD 
is so strong that it forms bound states of quarks, called 
hadrons (a generic name of nucleons and mesons). This 
failure of the perturbation theory is closely related to 
“quark confinement” phenomena that quarks never ap-
pear as free particles and are always confined inside had-
rons. Therefore, a new method is required to perform 
non-perturbative calculations in QCD. 

To overcome this difficulty, Ken Wilson proposed lat-
tice QCD, which is a QCD defined on a 4-dimensional 
discrete lattice. Since lattice QCD in a finite volume is 
equivalent to quantum mechanics for a finite degree of 

freedoms, and thus can be defined non-perturbatively, 
analyses beyond the perturbation theory such as the 
strong coupling expansion and numerical simulations 
can be employed to investigate lattice QCD. In particu-
lar, thanks to continuous increases in the performance of 
super-computers and steady progress in simulation algo-
rithms, hadron masses are now evaluated very accurately 
in lattice QCD, using numerical simulations based on 
Monte-Carlo methods. After taking a limit that a lattice 
spacing goes to zero, hadron masses in lattice QCD agree 
very well with experimental values, showing not only the 
correctness of QCD as a theory of the strong interaction 
among quarks and gluons but also the usefulness of lat-
tice QCD combined with numerical simulations. See Ref. 
[1] for the latest results of hadron masses in lattice QCD. 

DEFINITION OF NUCLEAR POTENTIAL IN QCD

Now let us go back to the first problem, the definition of 
the potential in QCD. One may wonder how potentials 
in Fig. 1 can be obtained if the definition of the potential 
is problematic. Nuclear potentials in Fig. 1 are extracted 
from experimental data of nucleon-nucleon scattering 
phase shifts as follows. One first chooses some form of 
the potential with several parameters, so that scattering 
phase shifts can be calculated by solving the Schroed-
inger equation with this potential. One then minimizes 
a difference of scattering phase shifts between theory 
and experiment by varying parameters of the potential. 
One finally determines the potential with the best choice 
of parameters. For this method to work, the collision 
energy of the nucleon scattering experiment must be 
smaller than the particle production threshold in order 
to prohibit inelastic scatterings such that two nucleons 
go to two nucleons plus one pion. It is then reasonable 
to assume that the scattering at such low energy can be 
described by quantum mechanics with some potential. 
Of course, an initial choice for a form of potential affects 
the final result, as seen in Fig. 1, where three similar but 
different potentials are plotted. These three potentials, 
however, reproduce the same experimental scattering 
phase shifts by construction. 

As seen above, the potential is not unique. Therefore, as 
long as it reproduces the correct scattering phase shifts, 
we may adopt a convenient definition of the potential in 
QCD. Our proposal for the definition of the potential is 
similar but a little different from the one used to obtain 
potentials in Fig. 1. Let us explain our strategy to define 
and extract nuclear potentials in QCD. We first define a 
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wave function for two nucleons, more specifically a Nam-
bu-Bethe-Salpeter (NBS) wave function, which depends 
on a relative coordinate between two nucleons. This 
NBS wave function is shown to satisfy the Schroedinger 
equation for two free nucleons if a distance between two 
nucleons becomes sufficiently large. More importantly, 
the NBS wave function at such a large distance behaves 
as a free (partial) wave, sin(kr+d)/kr, where k, r are rela-
tive momentum and distance between two nucleons, 
while the phase shift d is exactly equal to the phase of 
the S-matrix for the nucleon-nucleon scattering in QCD. 
The NBS wave function therefore can be regarded as a 
scattering wave in quantum mechanics even though it 
is defined in QCD. If we multiply (Hfree-E) to the NBS 
wave function, where Hfree is a free Hamiltonian and E is 
a kinetic energy, the result becomes zero at a large sepa-
ration, while it remains non-zero at a short distance (a 
small separation). We define our potential from this non-
zero contribution as (Hfree-E) (NBS wave function)=V 
(NBS wave function), where V is our nuclear potential. (A 
more detailed explanation can be found in Ref. [2].) By 
construction, our potential reproduces correct scattering 
phases shifts of QCD, since a solution to the Schroed-
inger equation with this potential must be the original 
NBS wave function, which gives the phase shift “d” in its 
large “r” behavior. In other words, we define the poten-
tial from the wave function through the Schroedinger 
equation, in contrast to the standard quantum mechan-
ics, where the wave function is obtained after solving 
the Schroedinger equation with a given potential. Cause 
(potential) and effect (wave function) are reversed in our 
method to define potentials. 

RESULT

In Ref. [3], we have calculated the NBS wave function in 
lattice QCD with the quenched approximation, which 
neglects creations and annihilations of quark and anti-
quark pairs in the vacuum, at the lattice spacing a=0.137 
fm. Quarks in our calculation are much heavier than 
physical ones in nature, due to several technical difficul-
ties in numerical simulations. A size of quark mass is 
related to the pion mass: the pion mass in our simulation 
is 530 MeV while it should be 135 MeV in nature. 

According to our definition, we then have extracted 
nuclear potentials. Fig. 2 shows nuclear potentials ob-
tained in this calculation for the S-wave with the total 
spin 0 and 1, which well reproduces qualitative features 
of the phenomenological nuclear potential given in 
Fig. 1, namely the repulsive core at a short distance 
surrounded by the attractive well at medium and long 
distances. In the figure, 1S0 and 3S1 denote spin-singlet 
and spin-triplet S wave states, respectively, where 2S+1LJ 
represents a state with a total spin S, a orbital angular 
momentum L and a total angular momentum J. Al-
though this calculation is still preliminary due to the 
heavier quark mass, a use of the quenched approxima-
tion and a lack of the continuum (a->0) extrapolation, 
this result is a significant step toward an understanding 
of nuclear forces from the 1st principle of the strong 
interaction, QCD. Fortunately, our first paper was se-
lected as one of the 21 research highlights of 2007 in 
Nature (http://www.nature.com/nature/journal/v450/
n7173/full/4501130a.html), with the following commen-
tary: “This achievement is both a computational tour de 
force and a triumph for theory.”

OUTLOOK

As shown in this article, it now becomes possible to ex-
tract nuclear potentials from the fundamental theory, 
QCD, using lattice formulation and numerical simulation 
techniques. The method described here can be easily 
extended to other hadronic interactions such as baryon-
baryon, baryon-meson, and meson-meson interactions, 
where a baryon is a generalization of the nucleon, which 
contains not only up and down quarks but also a new 
species of quarks, called “strange”. Moreover, three-nu-
cleon forces, which appear only in systems with three or 
more nucleons can also be investigated by this method. 
See Ref. [4] for such calculations. Fig. 2: The first result of nuclear potentials for S0 and 3S1 in quenched lattice QCD.  

Taken from Ref. [3]. 
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In Fig. 3, we give a recent result of the nuclear potential 
for the spin singlet channel, obtained in QCD without 
quenched approximation (“full QCD”) at a=0.09 fm and 
700 MeV pion mass[5], together with a fit (solid line) 
of numerical data. Solving the Schroedinger equation 
with the fitted potential, we then calculate the nucleaon-
nucleaon scattering phase shift, which is shown in Fig. 4 
as a function of collision energy in the laboratory system, 
together with corresponding experimental values. As 
seen from the comparison, the lattice QCD result well 
reproduces qualitative features of the experimental scat-
tering phase shift. At the quantitative level, however, 
the strength of the increase near the origin is weaker for 
lattice data than the experimental one, probably due to 
the heavier pion (700 MeV) than the physical pion (135 
MeV). Therefore, in order to investigate whether poten-
tials obtained from QCD reproduce experimental scat-

tering phase shifts or not, lattice QCD calculations will be 
needed to be performed at the physical pion mass. Such 
challenging calculations are being planned using the 
“Kei” computer, a 10 peta-flops super computer, located 
at Riken Advanced Institute for Computational Science 
(AICS), Kobe, Japan (http://www.aics.riken.jp/en/). We ex-
pect that nuclear potentials at the physical pion mass will 
be obtained within one year or two. 
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Fig. 3: Recent results of a nuclear potential for the 1S0 channel obtained in full lattice QCD, 

together with the fit (solid line). Taken from Ref. [5]. 

Fig. 4: The scattering phase shift for the 1S0 channel in the laboratory system from the lattice 

nuclear potential in Fig. 3, together with experimental data. Taken from Ref. [5]. 
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