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Superconducting circuits have emerged as a promising platform to build quantum processors. The challenge of designing a circuit
is to compromise between realizing a set of performance metrics and reducing circuit complexity and noise sensitivity. At the same
time, one needs to explore a large design space, and computational approaches often yield long simulation times. Here, we
automate the circuit design task using SCILLA. The software SCILLA performs a parallelized, closed-loop optimization to design
superconducting circuit diagrams that match predefined properties, such as spectral features and noise sensitivities. We employ it
to design 4-local couplers for superconducting flux qubits and identify a circuit that outperforms an existing proposal with a similar
circuit structure in terms of coupling strength and noise resilience for experimentally accessible parameters. This work
demonstrates how automated design can facilitate the development of complex circuit architectures for quantum information

processing.
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INTRODUCTION

The promise of quantum computing to surpass the capabilities of
classical computers relies on a robust and scalable underlying
hardware architecture. In the context of quantum simulation and
annealing, strong coupling, high connectivity, and many-body
interactions between the qubits are necessary to accurately and
efficiently represent the problem Hamiltonian'™. Superconduct-
ing circuits have proven to be a particularly well-suited platform
due to their design versatility*. Their quantum behavior arises
from the interaction of modes that are set by effective
inductances, capacitances, and nonlinear Josephson junction
elements in the circuit®. In this way, it is possible to design a
wide variety of qubits and qubit-qubit coupling schemes at the
circuit diagram level and realize them in nanofabricated devices*®,

A largely unexplored approach to meet circuit design chal-
lenges is to use computational automated discovery. In other
fields of science and engineering, automated discovery and
inverse design have emerged as a solution to a variety of design
problems. All of these problems share the task to identify a set of
parameters for which a system of interest yields desired target
properties. In contrast to forward design methods, where system
properties are estimated from system parameters through direct
measurements or computation, inferring the system parameters
from target properties is a much more laborious process. Typical
automated discovery workflows consist of proposing a set of
system parameters and determining the resulting system proper-
ties. The similarity between the obtained system properties and
the targeted properties is then used as a quantitative measure to
refine the system parameters iteratively. Parameter refinements
are usually implemented via various optimization procedures or
reinforcement learning agents. In the physical sciences context,
automated discovery has been applied to nanophotonic on-chip

devices”®, complex quantum state generation in optical plat-
forms®'°, entanglement creation and removal in superconducting
circuits'!, and further problems in many-body physics'*'® and
chemistry'*'6,

In the field of superconducting circuits, a contemporary design
challenge is the implementation of many-body interactions. Such
interactions of more than two qubits commonly appear in
effective spin models of quantum chemistry, quantum error
mitigation schemes, and advanced driver Hamiltonians for
quantum annealing®'’"?'. They are therefore valuable building
blocks for future quantum simulators and quantum annealers.
Interactions involving n qubits are called n-local and comprise
Pauli operations in the system Hamiltonian that act on n qubits
simultaneously. The interaction Hamiltonian has the form

n
Hie = M] ] o, (M
i=1

where 2M is the coupling strength and a; € {x,y, z} denotes the
type of Pauli matrix acting on each qubit. Several implementations
for 3- and 4-local couplers in superconducting circuits have been
proposed. Hamiltonian gadgets use ancilla qubits to encode the
desired interaction in the effective low-energy spectrum of the
system??23, Alternatively, individual flux qubits can be coupled to
a common coupler circuit that mediates the interaction via a
tailored nonlinearity®*?%, The modularity of the tailored-
nonlinearity approach, in particular, is reminiscent of existing 2-
local couplers and holds promise for practical implementation®”-?%,
Further work is required, however, to find coupler circuits that
operate in experimentally accessible parameter regimes, reduce
flux noise sensitivity, and eliminate spurious couplings.

The automated design task is to find a superconducting circuit
diagram that fulfills a set of desired properties. To this end, we
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Fig. 1 Implementation of SCILLA, enabling automated circuit design. a Definition of the circuit design task, for which details about the
general circuit architecture, parameter bounds, and design targets are provided. b Based on the general architecture, the design module
evokes parameter generating algorithms to place components and choose component parameters in the circuit. ¢ Calculation of circuit
properties such as spectra or noise sensitivity. d Estimation of the agreement between computed properties and target properties. e Circuits
that are close to the design target are identified. A database system facilitates asynchronous execution and parallelization of the workflow as
well as refinement of design choices (closed-loop feedback) based on merit evaluations of previously proposed circuits.

introduce a method for superconducting circuit closed-loop
automated design (SCILLA) and implement it in software. As
shown in Fig. 1 and further detailed in “Methods”, it enables
parallelized, closed-loop workflows that have access to design
algorithms (generators) and can be connected to different circuit
evaluators. The method is applicable to a wide range of search
problems involving spectral properties and noise sensitivities of
galvanically connected superconducting circuits.

In the following, we present the results of two circuit search
instances. First, SCILLA is applied to the well-studied example of
capacitively shunted flux qubits®®, testing the key features of the
closed-loop implementation. Given our knowledge about the
optimal solution, we study the performance of the closed-loop
algorithm in reaching the target. We then highlight the
competitive advantage of our approach by executing a design
workflow that identifies noise-resilient 4-local couplers. The best
circuit identified by the software is analyzed to elucidate its
underlying operational mechanism, derive general design princi-
ples, and show its promise for experimental implementation.

RESULTS

Benchmarking SCILLA by flux qubit design

As a benchmark for the automated design software, we define the
target to be a capacitively shunted (C-shunt) flux qubit. This is a
design variant of the flux qubit that has been shown to yield
improved reproducibility and coherence for quantum information
processing applications®®=. It is particularly well-suited for strong
qubit-qubit coupling in the quantum simulation and annealing
context?®. The circuit is given by a loop of two identical, large
junctions and one smaller junction, with the small junction
shunted by a large capacitance. It can be represented by a two-
node circuit as shown in Fig. 2a, with the additional bottom node
declared ground. The following Josephson junction energies and
capacitances are typical for this type of qubit and are chosen as
the target parameters:

Ei,,=hx50 GHz Ej,, = E},, = hx 115 GHz
Ci, =45 fF Ci, =Ci, =0 fF

The intrinsic parallel capacitance of each junction is added to the
listed capacitances.

The simulated transition energies between the ground state
and the first and second excited states as a function of external
flux through the circuit loop are shown in Fig. 2b. This energy
spectrum is defined as the first target property for the circuit
search problem. There is, however, a continuous family of two-
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node circuits that fulfills this spectrum. The degeneracy is lifted by
adding the requirement that the circuit is symmetric, i.e. that the
component parameter values Ej;,Cq; are close to Ejp, Cya,
respectively. Rather than enforcing a constraint a priori, circuit
symmetry is added as a second target. In this way, the design task
tests a case of multi-objective search. In addition, symmetry in the
circuit diagram is a practically relevant property that can often be
translated to the chip design, limiting noise-inducing effects such
as currents in the ground plane. It can be advantageous to have
symmetry as a target property, rather than a constraint, such that
it is only enforced when the other properties can be fulfilled at the
same time. A single scalar loss function Lpench is constructed from
a combination of the spectrum sub-loss £, and the symmetry

. sym .
sub-loss L9 h:

E i E*| |22
£spec _ H 0 (VARYZ
bench = 2 2(h®g x 1 GHz)?

=12

)

‘CH - C22| ‘EJH - EJ22|
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L:bench = Iog 10([’S|:§)eencch + 100£Sl:¥::\ch) S

Here, Eo; and Ej; represent the candidate and target circuits’
transition energy from the ground to ith excited state as a
function of external flux. The RMS deviation ||-||2 between these
functions is evaluated over the period of one flux quantum ®, and
approximated numerically by computing the function values at
discrete flux points. The parameters (™ =100 fF and ET* =
hx 200 GHz are the upper bounds for the respective parameter
values as defined in “Methods”. The weighing of the sublosses is
chosen such that their values are in the same order for a typical
random circuit, and the logarithmic scaling was observed to
improve optimizer performance. Therefore, the loss function is
constructed by starting from a scalar form that allows for
individual sub-loss optimization and then empirically choosing
weighting and scaling parameters. We refer to the Methods for
more information on loss functions for automated superconduct-
ing circuit design.

The workflow specified in the circuit searcher starts with
random sampling from the parameter space, followed by
gradient-based optimization with the L-BFGS-B algorithm3%33,
Ten such search jobs are executed independently for greater
throughput, each with ten parallelized random samples and
subsequent gradient-based refinement. The parameter space for
the benchmark is six-dimensional and consists of the junction
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Fig. 2 Flux qubit benchmark. a Parametrized circuit layout to which the circuit designer is constrained. b Target spectrum generated from a
C-shunt flux qubit design, showing the transition energy from the ground state to the first (solid) and second (dashed) excited state. The final
spectra of a successful (orange) and a stuck (blue) refinement run are also shown. ¢ Convergence of 40 refinement runs starting at randomly
sampled initial circuit parameters. d Visualization of a slice of the loss surface corresponding to the benchmarking problem. The orthogonally
projected path of a successful refinement run towards the global minimum is shown.

energies and capacitances shown in Fig. 2a. No external flux needs
to be specified, because the sole flux degree of freedom is varied
to calculate the transition energy spectrum. Moreover, the
Hamiltonian of general two-node circuits without linear induc-
tances takes a simple form that does not require the general
Hamiltonian construction procedure included in SCILLA. An
optimized simulator for such two-node circuits is provided as a
separate module and used here. The simplified Hamiltonian is
provided in Supplementary Note 3 and the detailed implementa-
tion of the benchmark workflow is reported in Supplementary
Note 2.

The result of 40 parallel circuit optimizations is shown in Fig. 2c,
which represents a subset of four of the ten independent search
jobs. A fraction of 10% of the runs (4 of 40) reaches close to the
global minimum defined by the target circuit. High accuracy in
both the spectral and the symmetry sub-targets is achieved in the
yellow-shaded area in the plot, which is reached after 30-60
optimizer iterations for the successful runs. The final spectrum of
one successful run (circuit A) is shown in Fig. 2b, matching the
target spectrum accurately. Symmetry in circuit A is very high, the
deviation between the parameters Ej; (C;;) and Ej,, (Cy;) being
hx5x10"°GHz (2x 10 2 fF).

The remaining refinement runs terminate at a higher loss value.
Inspection of the final spectrum of one such run (circuit B) in Fig. 2b
reveals that the spectrum is not close to the target. We identify the
failure mechanism in that the loss function has local minima. In
the surface projection of the loss function shown in Fig. 2d, some
local minima are visible as bright, yellow clusters around the
global minimum. Since the gradient-based optimizer used for
refinement is local, it will naturally terminate after reaching one of
the local minima.

In summary, nearly all module types and functionalities of
SCILLA have been tested in the benchmark. In particular, it is
verified that circuit simulation and merit evaluations are executed
in parallel and asynchronously as intended. The average run time
per search job is 6 h 41 min and evaluates 1.1 x 10* circuits in total.
Therefore, when including the computational overhead of the
closed-loop software, the average simulation time of a circuit is
2.3 s/circuit. This compares well to 1.7 s/circuit in a typical single,
isolated evaluation of a circuit on the same hardware. As a more
general point about automated circuit design, we observe here
that the optimization is nonconvex even for a moderate search
problem. A purely gradient-based optimizer is of limited use in
this case, although the random starting point ensures that the
optimum can be found in some trials. The success rate for finding
good circuits is expected to decrease for larger circuits because of
the increased parameter space dimensionality. The hardness of
the search problem is also increased by more restrictive loss
functions with more sublosses. For the 4-local coupler search, the
gradient-based optimizer is therefore replaced with an evolu-
tionary strategy, which is able to avoid local minima. In addition,
the available computational resources and parallelization
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Fig. 3 Coupler spectral property enabling 4-local interaction. a
Four superconducting flux qubits are coupled mutually inductively
to a shared coupler circuit. The states |0), |1) of each qubit are
determined by the direction of the persistent circulating current in
the qubit loop. By mutual induction, the magnetic field generated
by the qubit’s persistent current adds a small flux offset + 6@ to the
coupler circuit. b The coupler has a ground-state energy £5 (Oyar)
that depends on an external flux ®,,. If this energy spectrum
follows a double-well shape with spacing 26® as indicated in the
figure, the 4-qubit states with even and odd excitation numbers
separate into two energy manifolds and the coupler mediates an
effective 4-local interaction term. The challenge is to find a robust
coupler circuit with such a double-well spectrum. The behavior of
the coupler energy over a small external flux range should not be
confused with the inductive double-well potential of the flux qubit.

capability of SCILLA are used to the maximum extent in order to
explore a large portion of the design space and refine as many
trial points as possible.

Noise-insensitive 4-local coupler design

We turn to the design challenge of coupler circuits for 4-local
interaction of flux qubits. First, we identify the key spectral
property of such a coupler that yields the desired interaction
when four flux qubits are coupled to its external flux degree of
freedom via mutual inductance (see Fig. 3): a double-well profile
of the coupler ground-state energy E; versus external flux**. Note
that this double-well flux spectrum of the coupler should not be
confused with the inductive double-well potential of the flux
qubit. The ground state |0) and excited state |1) of each flux qubit
are given by persistent left- and right-circulating currents in the
qubit loop, respectively. The circulating current change associated
with the excitation (relaxation) of any of the flux qubits will shift
the flux bias point ®,,, of the coupler by a small flux offset + 6O
(—60). It is assumed that all four flux qubits are identical, have no
pairwise coupling, and have the same interaction strength with
the coupler. If the double-well profile of the coupler spectrum has
flux spacings 260 between energy values differing by 2M as
indicated in Fig. 3b, then each qubit transition will raise or lower
the potential energy of the system by 2M. Applying external flux
such that O, is biased at the center peak, the system energy
separates into two energy manifolds associated with the parity of
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the qubit excitation number. This is equivalent to the coupler
providing a 4-local interaction term Hin =M 0%050305. The
challenge of engineering a 4-local coupler, therefore, becomes
that of finding a circuit with the described double-well spectrum
in a narrow flux range under realistic parameter constraints. In
order to preserve quantum coherence, it is important to limit
sensitivity to sources of noise, particularly flux noise if there are
additional flux degrees of freedom in the coupler circuit*>*. After a
circuit fulfilling these properties has been found, simulations of
the full system, including all four qubits and the coupler, need to
be performed in order to confirm the validity of the 4-local
coupling mechanism presented above.

In order to define the loss function, the maximum well-to-well
spacing of the coupler spectrum needs to be determined. The bias
points for the 4-qubit excitation manifolds, two of which are close
to the minima of the double-well profile, are shown as red dots in
Fig. 3a. The spacing 26® between the wells and the peak needs to
be small such that it can be bridged by the spin flip—and
corresponding circulating current change—of a mutually induc-
tively coupled flux qubit. Given the typical persistent currents and
mutual inductances in strongly coupled flux qubit systems, we
determine that the well-to-well spacing of the spectrum needs to
be below 40 m®,*. Here, we use that for a qubit-coupler mutual
inductance M and flux qubit persistent current /%, the equation
60 = MI‘:)b can be used to determine the flux oﬁ‘set induced by
the qubit in the coupler.

In addition to the spectral property, insensitivity to noise
sources in the system needs to be enforced. An often-observed
effect of a flux offset in an additional inductive loop of the coupler
circuit is shown as the gray trace in Fig. 4a: The double-well
spectrum tilts and becomes asymmetric, which would lead to
unwanted, non-four-body terms in the interaction Hamiltonian.
Therefore, the second objective is to mitigate such spectral shifts
due to slow flux noise. Additional sources of noise, such as fast flux
and charge noise, can also be quantified by calculating the
respective transition dipole moments. As experimental precedent
shows that slow flux noise in the circuit loops is of particular
importance for the use case of quantum simulation and quantum
annealing® and as state transitions are implicitly penalized by
rewarding large energy gaps, the inclusion of fast noise processes
is left for future work. It is also noted that the noise model is
intentionally designed to capture noise in the coupler alone. The
flux qubits, which are not included in the optimization, would also
be subject to noise but that contribution can be treated
independently. As the noise sensitivity of flux qubits is widely
studied and understood?, it is not part of the loss function.

In order to write these targets in a unified loss function, several
parameters of the double-well are determined. These parameters
are visualized in Fig. 4a (dark red). In the computational routine,
they are calculated in case a double-well feature is detected in a
40 m®, range around the bias point of the primary external flux of
the circuit: first, the energy difference hye,« between the wells and
the center peak determines the 4-local coupling strength and
needs to be maximized. Second, the minimal energy difference
hspiic between the ground and first excited state of the coupler is
to be maximized; if it is too close to the qubits’ transition energy,
the coupler can swap excitations with the qubits and break its
operating principle of remaining in the ground state at all times.
Third, asymmetry induced by flux offsets in the nonprimary loops
of the coupler is calculated as the energy difference hgens between
the minima of the left and right well. Flux noise is usually
dominated by local two-level systems on the metal surface of the
circuit, with a degree of flux noise correlation between loops that
depends on the length of wire shared by them®**3>. An upper
bound on the effect of flux noise is determined by applying flux
offsets individually to each nonprimary flux degree of freedom
and summing the resulting asymmetries hsns;. A scalar loss
function combines the above parameters. It is given by the p-
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Fig. 4 Automated design and verification of a 4-local coupler
circuit. a Desired double-well spectrum of the ground state versus
external flux, with the bias points for the 4-qubit excitation
manifolds, again shown as red dots. The typical well asymmetry
effect of flux offsets in the nonprimary external fluxes is shown in
gray. The loss function is constructed from the peak height hyear,
excited-state splitting hgpir, and noise sensitivity parameter hsens. b
Loss of the candidate circuits throughout the optimization, starting
with 150,000 randomly sampled circuits and followed by refinement
iterations using swarm optimization. Inset: circuit diagram of the
best circuit (circuit C) after refinement. ¢ Circuit schematic of the full
4-qubit system, including coupler circuit C. d First 16 energy
eigenstates of the full system versus the commonly swept external
flux in the qubit loops. Darker lines indicate a higher number of
degenerate states. The states separate by qubit excitation parity at
degeneracy, which corresponds to 4-local coupling between the
qubits.

norm of three terms that quantify the peak height, excited-state
splitting, and noise-insensitivity targets.

~ P ~ p ~ P
h hpii h
peak split hpeak

The hyperparameters h2h, hT specify the target values for
peak height and excited-state splitting. They serve as cutoff values
for the respective parameters of the detected double-well, as
shown below. The noise sensitivity is determined as the ratio
between the summed asymmetries and the peak height and can

assume a maximum value of 1.

Bpeak = min{hpeah hr;::k} (6)

opic = min{ hipie, W | %)

Bsens = min{ Z hsens.h Bpeak} (8)
loops

The hyperparameters of the loss function are chosen empirically
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by the trial of different hyperparameter sets. For the results
presented in this work, they assume the values p=4,
hleak = 1.5 GHz, and hTH =10 GHz. The loss function is
constructed such that joint optimization of two sublosses is
favored over individual optimization. The loss function assumes a
minimum value of —3¢ if all sublosses are minimized. A loss of zero
is assigned to the candidate circuit if no double-well is detected in
the 40 m®, flux range around the bias point, the peak height is
below 50 MHz, or the excited-state splitting is below 100 MHz. In
addition, a zero loss is assigned if the simulation fails, times out, or
has large Hilbert space truncation errors. Therefore, circuits with
little promise for successful optimization are effectively removed
from the optimization workflow.

The workflow implemented in the circuit searcher applies
insights from the flux qubit benchmark to the more complex task
of coupler design with flexible circuit diagrams. It starts with a
random sampling of 15,000 circuits, which is about the limit
beyond which database operations are observed to slow down.
The best two of the 15,000 circuits are kept after filtering and are
refined using the evolution-inspired swarm optimization module.
Ten such jobs are executed independently for better utilization of
the available computing resources. The random search space is
chosen to span three-node circuits with connections between the
nodes and to the ground on which capacitances, junctions, and
inductances can be placed. Under the constraints on the
placement of circuit components detailed in “Methods”, compo-
nents are randomly assigned among the available positions. After
sampling and filtering, the network configuration is fixed and only
the component parameter values are refined. The configuration of
the circuit network is therefore flexible, and the number of
inductive loops varies between sampled circuits. This constitutes a
consequential extension of the fixed-configuration, two-node
search space that has been used for the benchmark, allowing
for more degrees of freedom in reaching the 4-local coupler
target. To calculate the properties of such circuits, the simulation
module that implements the general-purpose circuit Hamiltonian
simulation is used. The workflow implementation is described in
more detail in Supplementary Note 2.

The results of the random search and subsequent swarm
optimization are shown in Fig. 4b. A double-well spectrum is
detected in 7 of all 150,000 sampled circuits (0.005 %). The swarm
optimization improves the merit of all filtered circuits to varying
degrees. The final best circuit, named circuit C hereafter, has the
following properties after (before) refinement:

Weac = 1.50 GHz (1.24 GHz)
it = 0.87 GHz (0.51 GHz)
h%ens = 0.20 GHz (0.20 GHz)

sens

The circuit diagram is shown in the inset of Fig. 4b. It is a two-loop
circuit with the following nonzero component parameter values
after refinement:

Ct, =857 fF Ely, = hx 1865 GHz L%; =289 pH
Cl, =446 fF El,, =hx196 GHz L%, =120 pH
C;; = 16.8 fF Ej,; — hx 185 GHz

C;; = 70.6 fF

The double-well spectrum of circuit C emerges from the strong
interaction of two rf SQUIDs at different flux bias points. The first
SQUID is formed by the loop surrounding the external flux ®,,,,
which is biased at 0 @, in the absence of qubits. The second rf
SQUID loop encompasses the fixed external flux gy = 0.5 ®,. For
details on the derivation of the circuit C Hamiltonian, see
Supplementary Note 5. We note that this computer-generated
circuit has strong similarities with the 4-local coupler design
proposed by Kerman®*. The key differences are that the
parameters are more easily accessible experimentally in our
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design and the two inductive loops are connected galvanically—
and thus more strongly—than for mutual inductive coupling,
allowing for a large double-well peak despite smaller loop
currents. Moreover, the asymmetry relative to peak height arising
from flux offsets is reduced by a factor of 3.3 in circuit C. While the
galvanic connection could in principle have been thought of by a
circuit design expert, it also requires other changes to the circuit
that we believe are unintuitive.

In total, three of the seven double-well circuits from the
automated search results have a similar layout as circuit C, with
two inductive loops coupled through an inductance or junction.
The remaining four circuits are three-loop circuits and therefore
have two nonprimary external flux degrees of freedom. In addition
to circuit C, two more exemplary circuit optimization trajectories
are highlighted in Fig. 4b: circuits D and E. Circuit D is a three-loop
circuit with 1.50 GHz double-well peak and 3.12 GHz excited-state
splitting. These desirable properties are, however, contrasted by
an increased flux noise sensitivity due to the additional external
flux in the third loop. Circuit E has two loops and a similar circuit
network as circuit C but features a much larger excited-state
splitting of 10.8 GHz and a much smaller double-well peak height
of 0.24 GHz. The properties of circuits C, D, and E are listed in detail
in Supplementary Note 4. These exemplary search results show
that the automated design workflow finds a variety of circuits that
fulfill the double-well sublosses to different degrees. It therefore
supplies design options with different trade-offs, which can inform
both theoretical understanding and practical implementation of
the relevant class of circuits.

It remains to be demonstrated that circuit C in fact behaves as a
4-local coupler mediating an interaction Hiy; = M 03050503, and
thus that our reduction of the design problem to a spectral
property is valid. For this reason, a full system simulation of four
qubits coupled mutually inductively to the coupler as shown in
Fig. 4c is performed (see Supplementary Note 6). The energies of
the four-qubit excitation manifolds versus the qubit flux around
degeneracy are shown in Fig. 4d, illustrating how the states of
different parities separate. A 4-local coupling strength of 2M =
573 GHz in the circulating current basis (o, basis) of the qubits is
extracted, which is lower than the double-well peak height used
as a proxy for the coupling. Part of the reduction in coupling is
caused by the flux points of the odd qubit excitation manifolds
not lining up exactly with the minima of the double-well
spectrum, as indicated conceptually by the red dots in Fig. 4a.
Further reduction mechanisms could include inductive loading of
the coupler by the mutual inductive coupling to the qubits and
interactions with the coupler’s excited state. Spurious terms of
different locality, which are manifest as a splitting of states at the
additional spectral crossing points in Fig. 4d, are in the MHz-
regime and thus negligible. In a physical implementation of the
system, additional spurious 2-local couplings would arise from the
closeness of the qubit circuits. These can be mitigated by physical
separation of the interaction points between each qubit and the
coupler and by routing the qubit wires such that mutual
inductances are canceled. We conclude that despite additional
effects reducing the coupling, SCILLA applied to the double-well
loss function was able to design a coupler with several hundred
MHz of 4-local coupling strength, even without performing costly
full system simulations.

As predicted from the benchmark analysis, our success in
finding a promising 4-coupler circuit rests on the careful definition
of the loss function, choice of the design workflow, and
exploitation of computational resources. Given the low success
rate of sampling a circuit with a double-well spectrum at all, a
critical step has been to explore a large portion of the design
space before attempting to refine promising circuits. Averaged
over the ten batches, sampling 15,000 circuits took 21.2+1h
(5.09 s/circuit). The subsequent swarm optimization with a total of
8000 circuit evaluations in 200 iteration steps took an average of
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51.2+£15.9 h (23.0 s/circuit). While the sampling time is relatively
uniform, the swarm optimization runtime varies significantly with
the circuit layout that is being optimized. In addition, it is observed
that the simulation time per circuit is much longer in the swarm
optimization, which is expected from the lower degree of
parallelization, additional circuit simulations required by the merit
evaluation, and a larger number of database operations in the
iterative optimization. On top of the runtimes of the sampling and
optimization steps, the closed-loop procedure requires an
additional 3.30 £ 0.37 h that is mainly spent filtering the sampled
circuits before swarm optimization. The filtering time is limited by
the input/output operation speed of the used hardware and can
be much lower on a different computing cluster.

Overall, SCILLA is able to accommodate the increased
computational effort from adding a third node to the circuit and
allowing for full flexibility for the circuit network. The added
complexity is rewarded by the successful fulfillment of the target
properties. This warrants further study of improving the efficien-
cies of circuit simulation and search algorithms.

DISCUSSION

We demonstrated a computer-driven and highly parallelized
approach to the design of superconducting circuits. We evaluated
the performance of the developed method SCILLA and discovered
circuits for design challenges with multiple objectives. Our results
demonstrate that SCILLA is successful in designing circuit
architectures with superior performance than an existing proposal,
namely a 4-local coupler with several hundred MHz of coupling
strength, small unwanted coupling terms, small flux noise
sensitivity, and experimentally accessible parameters. Given the
modularity of the software implementation, it is straightforward to
tackle new circuit design challenges that can be defined in terms
of spectral properties and eigenstate expectation values. One such
challenge is the design of qubit circuits with a specific sensitivity
to control pulses and noise, which can be calculated from
transition dipole moments. While the computation of static circuit
properties is included in our method, the addition of dynamical
time evolution simulations would present a promising future
opportunity to include control pulse shaping.

The exponential scaling of the Hilbert space with the number of
nodes makes naive scaling of the method by simply adding more
nodes to the circuit impractical. However, simulation of larger
systems is possible if they consist of small sub-circuits with an
intercircuit coupling that is weaker than the intracircuit coupling®®.
In that case, the sub-circuit Hamiltonians may be solved
individually with only the lowest eigenstates of the sub-circuits
then coupled together, enabling the inverse design of other
common architectures such as transmon-based multi-qubit
processors. Large circuits can also be made numerically tractable
by performing their simulation on a quantum computer®’. In
addition, inspired by Krenn et al.?, one can envision functionality
to store discovered circuits as building blocks for larger
architectures, thus enlarging the set of available circuit compo-
nents. Future work also entails the translation of the best
automatically designed circuit networks into chip designs in order
to validate the targeted properties experimentally. The process of
developing a chip geometry involves a multitude of layout choices
that mitigate undesired effects, such as crosstalk between circuit
elements and spurious coupling to the control circuitry. Different
layout variants, however, still correspond to the same circuit
network that was designed by SCILLA. While automation may also
assist in some aspects of chip layout development—and indeed is
already part of electronic design automation software for
integrated circuits—it is the circuit network that defines most of
the relevant circuit properties. We, therefore, believe that our work
advances human-computer co-design in the larger cycle of
quantum device engineering.

npj Quantum Information (2021) 49

METHODS

The automated design workflow requires a circuit parameter generator,
property evaluator, and merit estimator in order to fulfill a specified search
task. In the following, it is shown how circuit search can be formulated as
an optimization problem by taking the circuit parameters as an input list
and calculating the resulting closeness to the target properties. We then
describe the closed-loop implementation that handles parameter genera-
tion and optimization in a parallelized manner.

Throughout this work, the properties of superconducting quantum
circuits are calculated by constructing and diagonalizing the circuit
Hamiltonian. For the automated design problem and for spectral
engineering problems more generally, the eigenenergies need to be
calculated as a function of external degrees of freedom such as flux or
charge offsets. Circuit quantization has been discussed extensively in
previous work, treating the circuit as a network of lumped elements with
canonically conjugate flux and charge variables**33°. We automatically
determine the Hamiltonian of a broad class of circuits and solve it
efficiently by choosing a mixed representation in the charge and harmonic
oscillator bases>®.

Circuit design as an optimization problem

Automated design of circuits requires a quantitative metric to assess the
closeness of a candidate circuit to the target. While the target can take a
wide variety of forms, in this work we discuss and illustrate the practicality
of optimizing specifically toward spectral properties, symmetry in the
circuit network, and flux noise sensitivity. It is straightforward to include
more circuit properties as long as they can be obtained from Hamiltonian
simulations in reasonable simulation time. In addition, multiple target
properties can be combined in a unifying loss function for more balanced
design procedures. We define the loss function as £ : RY S R, taking the
circuit parameters as an input list x and returning a scalar value. It is
defined such that a smaller function value corresponds to a circuit that
better fulfills the target and therefore has higher merit. The specific
functional form of £ depends on the search task and needs to be carefully
engineered for the optimization procedure to balance improvement of the
sub-targets evenly. It is defined explicitly for each task in “Results”. Since
the target properties, in general, depend on the results of Hamiltonian
circuit simulations, it is assumed that £ has access to the simulation results
for the input circuit.

The input x contains an ordered list of the capacitance, inductance, and
junction energy for each circuit element between each pair of nodes. If
there is no circuit element between two nodes, the respective parameter
value is zero. Therefore, the ordered list of circuit element parameters fully
defines the circuit network and is used to construct the circuit Hamiltonian.
The input also contains a list of external flux values—one for each
inductive loop in the circuit. Each flux may only take the values 0.0 ®, or
0.5 @y, ensuring a symmetric spectrum as required for the applications
presented in “Results”. The circuit parameters are bounded, following
typical experimentally accessible values®?®: up to 100 fF for capacitances
and up to 300 pH for inductances. The lower bound for inductances is
chosen as 75pH in the 4-local coupler design. This ensures that each
inductor is large enough for qubits to couple mutually inductively to it. For
Josephson junction energies, we allow a range of h x 0-200 GHz for the
flux qubit benchmark and h x 99-1982 GHz for the 4-local coupler design.
The latter provides more design flexibility and corresponds to junctions
with 5uA/um? critical current density, 0.2pm junction width, and
0.15-4.00 um junction length. The intrinsic parallel capacitance of each
Josephson junction depends on its respective physical geometry and is
implicitly assumed. Throughout this work, we denote the Josephson
junction energy, capacitance, or inductance of a circuit element between
two nodes i and j by Ej;, Cj and Ly, respectively.

In addition to the constraints on parameter values, we identify rules for
the placement of components in the circuit network. Capacitative
elements may be placed in parallel to inductive elements, such as
junctions and inductors, i.e. between the same two nodes. However,
parallel placement of an inductance and a junction is not allowed to
prevent the increased circuit complexity resulting from additional
inductive loops formed in this way. The degree of connectivity, i.e. the
number of connections that each node has to other nodes, is set by the
nonzero parameters in the input x. A circuit with more nodes and higher
connectivity allows for more complex spectral engineering in reaching the
target. However, it is disadvantageous to increase the circuit size beyond
the requirement of the objective. Larger circuits may demand more
calibration and more control hardware in experiments. In addition, a larger
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number of external flux degrees of freedom usually leads to a greater flux
noise susceptibility. In the case of two- and three-node circuits—excluding
the ground node—as discussed in this work, the circuit network is planar
even for all-to-all connection between the nodes. When moving to larger
circuits, however, one needs to constrain certain circuit components to
zero in order to maintain network planarity and thus ensure realizability in
a planar on-chip architecture. In principle, circuit complexity and
experimental feasibility can also be added to the target with a suitable
loss function.

Realizing closed-loop circuit design

SCILLA is a closed-loop implementation for accelerated computational
circuit design available on GitHub (see “Code availability”). The procedure
autonomously searches the circuit space for circuit architectures satisfying
desired target properties. Similar approaches have already been success-
fully applied in the context of autonomous discovery and experimentation
in chemistry and materials science®®*’. SCILLA contains a general-purpose
method to compute properties of superconducting circuits (not provided
on GitHub). It is thus applicable to a wide range of circuit design
applications.

The typical workflow in the closed-loop implementation of SCILLA is
illustrated in Fig. 1. Each circuit search is started from a set of general
instructions, which inform SCILLA about the size of the circuit and the
number of components (see Fig. 1a). With these specifications, a design
algorithm chooses the kinds of components to be placed at particular
locations in the circuit graph, as well as component-specific parameters
(see Fig. 1b). Then, properties of interest are computed for each designed
circuit (see Fig. 1c). As the calculation of circuit properties is typically the
most time-consuming step of this workflow, SCILLA computes only the
properties which are requested in the general instructions. SCILLA supports
the computation of circuit spectra as well as estimations of the flux and
charge noise sensitivities. The computed circuit properties are then used to
evaluate the loss £, determining how well a given circuit matches the
desired target specifications (see Fig. 1d). Finally, the circuit composition
which best satisfies the desired targets is determined (see Fig. 1e). The
crucial element to “close the loop”—and thus enable autonomous circuit
design—is to report the loss of a proposed circuit architecture to the
design algorithm. Based on the feedback, the design algorithm can
propose refined circuit architectures with improved target properties.
Some design tasks require higher-level operations, such as computing a
gradient during circuit design or probing the flux sensitivity of a
considered circuit only if a predefined condition is met. Therefore, both
the circuit design algorithms, as well as the circuit merit evaluators, are
equipped with the capability to define new circuit evaluation tasks. Circuit
evaluations requested during circuit design are prioritized to assure that
individual circuit design tasks are completed quickly.

The workflow presented in Fig. 1 can be parallelized with little
computational overhead by separating each step of the workflow into
independent units (modules). Information about individual circuits, such as
component parameters or circuit properties, are dynamically stored in a
system of databases built on the SQLite database engine. The database
implementation is the key component that allows the software to
decouple each of the steps in the workflow and execute them individually.
Details on the implementation are provided in Supplementary Information
(see Supplementary Note 1). The implicit parallelization of individual
modules maximizes the number of circuits evaluated in parallel and thus
utilizes available computing resources to a higher capacity. Moreover,
circuit properties can be computed asynchronously, which is crucial as the
computational time required to evaluate a given circuit often depends on
its component configuration and parameter values. With the implemented
database system, all circuit parameters and properties which have been
proposed and evaluated during the closed-loop sampling procedure are
easily accessible. As data are stored in a standardized format, profound
post-process analysis of the circuits is possible and has the potential to
identify general principles for circuit design, which is demonstrated in
“Results”.

The design modules within SCILLA can efficiently search the space of
small circuits with relatively few components that can be evaluated
quickly, as well as larger circuits with more components for which property
calculations are more time-consuming. As the hardness of the optimization
depends on the search space size and loss function definition, a number of
different design strategies are implemented in the closed-loop, ranging
from random search strategies*>*® for coarse, massively parallelizable
sampling over gradient-based methods**>3 to evolutionary strategies**°.
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A more detailed description of the supported methods is provided in
Supplementary Note 1.

The closed-loop framework also enables the implementation of multi-
step workflows. The user declares a search procedure based on a chosen
design algorithm, can define analyses on the circuits sampled during this
first search, and then trigger another circuit design round, for instance, to
refine the previous search. Arbitrary combinations of different design and
analysis steps are possible and can be easily integrated into the desired
multistep workflow. Examples of such workflows are provided in the circuit
design applications presented in “Results”, as well as in Supplementary
Note 2.

DATA AVAILABILITY

The data that support the findings of this study are available upon reasonable
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