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1 Introduction

A great deal of developments have taken place in the last decade in the study of flat space

scattering amplitudes of gauge theories. The modern amplitudes research program has led

to many unexpected relations such as on shell recursion relations [1, 2], the connection to

mathematical structures like Grassmanian geometry, and the discovery of the amplituhe-

dron [3–5]. For an introduction to these computational tools and an overview of these

developments, we refer the reader to [6–10].

Likewise, outstanding progress has been made in our understanding of quantum gravity

with the discovery of the holographic principle [11, 12]. The holographic principle implies

that degrees of freedom that are encoded in the boundary in d dimensions can describe

the d + 1 dimension interior of the spacetime. A concrete example of holography is the

gauge/gravity duality, i.e. the correspondence between Anti-de Sitter space (AdS) with

Conformal Field Theory (CFT) [13, 14]. By relating the boundary operators to the bulk

fields, the CFT correlation functions can be interpreted as AdS scattering amplitudes, and

vice versa [15, 16].

Despite the splendid advancements in these fields, the amplitude programs in flat

space and AdS have remained relatively isolated1 partly due to the difficulty of position

space calculations in AdS. Various complementary approaches, e.g. Mellin space, have been

investigated to address these notorious computations [15, 20–37]. We believe that the power

of the momentum space perturbation theory has not been fully realized. Hence, we propose

a new method to explicitly compute AdS4 momentum space amplitudes.2

1For some counter examples, see [17–19].
2By holography, our method can also be employed to compute dual CFT3 correlators. We refer the

reader to [38–42] for other momentum space approaches to conformal field theories.
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In this paper, we will outline a new diagrammatic method that will enable us to

systematically compute higher point amplitudes. Crucially, this method bypasses the cum-

bersome bulk integrals, therefore reducing the computations of the correlators to simple

algebraic relations. This framework can be utilized to calculate higher point tree level

AdS amplitudes, which can be used as data points to extract physical and mathemati-

cal insights. We liken this to the similar methodology employed in flat space scattering

amplitudes over the last decade, where explicit flat space amplitudes were used as data

points to generate surprising relations, such as the BCJ duality, CHY relations, and the

amplituhedron [4, 43–45].

Here is the brief outline of this paper. We begin, in section 2, with a review of the

formalism for momentum space gauge theory correlators. Then, we introduce bulk to bulk

and bulk to boundary propagators for gauge fields as solutions to their respective equations

of motion. In section 3, we present the combinatorial rule to compute part of the scattering

amplitudes for gauge fields in AdS. Subsequently in section 4, we discuss computation of

the remaining part, hence obtaining the full expression. Finally, we summarize and discuss

promising future directions in section 5. We provide an appendix to further illustrate the

main points of this paper with an additional example.

2 Gauge fields in AdS

We are interested in a non-Abelian gauge theory in AdS, described by an action

S ∼
∫
ddxz−d−1dzF aµνF

µν,a where z is the radial coordinate and xi approaches to the

boundary coordinate as z → 0 for the AdS metric ds2 = z−2(dz2 + ηijdx
idxj) in the

Poincaré patch. These coordinates make the Poincaré invariance manifest; thus, it is easy

to transform the position space coordinates xi to the momentum space variables ki. In this

paper, we will focus on d = 3, impose axial gauge, Aa0 = 0; and work with the coordinates

{z, ki}, following closely the treatment of [46].

One can go ahead and solve the equations of motion: the normalizability at the bound-

ary and the regularity in the bulk unambiguously determines the bulk to boundary prop-

agator, i.e. Aai (z,k) = εai
√
zE1/2(kz) [30]. Here ε is the transverse polarization vector; k

is the positive norm of the momentum k, i.e. k =
√
|k2|; and E is a Bessel kind function,

appropriate to the sign of k2.3

In this framework, the amplitude for the four point exchange diagram depicted in

figure 1 takes the form

Mijkl
4s =

4
√
k1k2k3k4

iπ2
V ijm(k1,k2,−k12)V kln(k3,k4,k12)

×
∫
ω dω dz dz′K1/2(k1z)K1/2(k2z)J1/2(ωz)K1/2(k3z

′)

×K1/2(k4z
′)J1/2(ωz′)

ηmnω
2 + (k12)m(k12)n
ω2(k2

12 + ω2)
,

3In this paper, we will work with transition amplitudes and use εai

√
2kz
π
K1/2(kz) as our effective bulk-

to-boundary propagator, same as [32, 47].
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k1 k4

k12

Figure 1. A four point Witten diagram.

which is obtained by gluing bulk to bulk and bulk to boundary propagators. In this

expression, and in the rest of the paper, we suppress the color dependence for notational

brevity.

In the above expression, we use

Vijk(ki) :=
ηij(k1 − k2)k + ηjk(k2 − k3)i + ηki(k3 − k1)j

−i
√

2

which is the three point vertex for color-ordered amplitudes [48]. For later convenience, we

also define the four point vertex factor

V ijkl
c := i ηikηjl − i

2

(
ηijηkl + ηilηjk

)
.

In order to make the notation concise, we use V12k ≡ εi1εj2Vijk and likewise for other tensors.

As we will not be working with individual components, such notation does not lead to any

ambiguity.

One can now calculate the full amplitude by directly carrying out the bulk integrals,

thus arriving at the four point expression:4

M4s = −iV
12m(k1,k2,−k12)V 34n(k3,k4,k12)

k1234k1212k3412
×
(
ηmn +

k123412 (k12)m (k12)n
k12k34k12

)
. (2.2)

Note that this is the amplitude associated with the s-channel diagram. Using the same

method we can compute the t-channel and contact diagrams.

The form of the expression above suggests that we can decompose any tree-level dia-

gram into two parts: the vertex factors carrying the dependence on the individual vectors

ki, and the rest of the amplitude that we will call the truncated diagram. For example,

in eq. (2.2), we see that k1 dependence enters into the truncated piece only through the

4In this paper, we use the notation of [32] to denote sums of momenta, i.e.

ki11i12...i1n1
i21i22...i2n2

...im1im2...imnm j1j2...jp :=

m∑
a=1

∣∣∣∣∣
na∑
b=1

kiab

∣∣∣∣∣+

p∑
c=1

|kjc | , (2.1a)

and

ki1i2...in := ki1 + ki2 + · · ·+ kin . (2.1b)

E.g., k12345 ≡ |k1 + k2|+ |k3|+ |k4 + k5| and k12 ≡ k1 + k2.
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terms k12 and k12. Note that apparently different pieces are combinations of such terms,

e.g. k123412 = k12 + k12 + k34.

We can further decompose the truncated diagram into two distinct scalar diagrams,

straight and crossed,

p1

m
p2

nk
= Π

(1)mn
k p1 p2

k
+ Π

(2)mn
k p1 p2

k
(2.3)

where we define the projectors

Π
(1)mn
k ≡ ηmnk

2 − kmkn
ik2

, Π
(2)mn
k ≡ kmkn

ik2
. (2.4)

To be specific,
p1 p2

m nk
denotes the bulk point integrated-propagator in the momen-

tum space, which coincides with the truncated four point amplitude. We will use this

graph as a basis element to construct higher point truncated diagrams: working with these

bulk-point integrated diagrams will allows us to efficiently extract several different Wit-

ten diagrams from their common truncated graph. For example, we can connect two of

these basis elements to construct the amputated graph necessary for the five point Witten

diagram, as can be seen in figure 2.

The advantage of the decomposition in eq. (2.3) is the simplicity of the scalar graphs:

they are fully agnostic to what is attached at the vertices as long as we know the sum of

norms of the momenta that flows into that vertex. This simply follows from the form of

our effective bulk to boundary propagators as their bulk-point dependencies at the vertices

are merely additive. For example, p1,2 in eq. (2.3) represents the sum of the norms of bulk

to boundary momenta, i.e. p1 = k1 + k2 + . . . .

This framework suggests that any tree-level Witten diagram can be decomposed into

sums and products of vertex factors, projectors, and several scalar graphs; thus, the cal-

culation of a Witten diagram reduces to a calculation of scalar graphs. E.g., for the five

point diagram given in figure 2, we can obtain the full expression once we compute the

corresponding scalar graphs.

The calculations of graphs with crossed lines and graphs without crossed lines are

different: we will deal with them separately. We will present the algorithm to compute

the graphs of the straight lines in the next section: this algorithm exists in the literature

albeit in a completely different context and theory [49–52]. After that, we will establish

the connection between the crossed and straight lines in section 4. Such a relation will

enable us to compute the complete amplitude.

3 An algorithm to compute scalar graphs

In eq. (2.3), we showed that the gauge propagator can be decomposed into two parts. In

this section, we will focus on the graphs of only straight lines. This is because such graphs

satisfy a nice algorithmic relation that we will discuss below. We can understand this if we
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k2 k4

k1 k5

k3

k12 k45

⇒

k12 k3 k45

k12 k45

k12 k3 k45

k12 k45

k12 k3 k45

k12 k45

k12 k3 k45

k12 k45

Figure 2. Decomposition of a five point Witten diagram into scalar graphs.

examine the explicit expression corresponding to the straight line:

p1 p2

k
=

∞∫
0

dz1dz2

(z1z2)4
Gs(k, z1, z2)B(z1, p1; z2, p2)

for

Gs(k, z1, z2) ≡
∞∫

0

ωdω
√
z1z2J1/2(ωz1)J1/2(ωz2)

k2 + ω2 − iε , (3.1)

where B(z1, p1; z2, p2) encodes the contribution of other graphs that connect to this propa-

gator at the bulk points z1 and z2. As we discussed above, these contributions are additive

and are represented by the letter p in the diagram.

The remarkable feature of Gs is that it is proportional to the cosmological propagator

derived for the conformally coupled scalar; specifically

Gs(k, z, z
′)→ i

2
Ge(Ee, ηνe , ην′e) (3.2)

where {z, k} → {−ηνe ,−iEe} in the notation of [51]. In that paper, the authors show that

one can compute similar graphs using algebraic means. The nice feature of our bulk-point

integrations is that they do not extirpate this formalism, hence we can also use graph-wise

calculations in our setting.5 Here, we summarize our prescription to calculate any tree-level

Witten diagram for AdS4 gauge bosons in momentum space in axial gauge:

1. Draw the relevant Witten diagram and truncate it

2. Decompose the truncated diagram in terms of straight and crossed lines

3. There is always a unique straight-only scalar graph which does not have any crossed

lines. Calculate that graph by mere algebraic means

4. Obtain the other scalar graphs by the procedure described in section 4

5. Combine all scalar graphs with the relevant projectors and the vertex factors to

obtain the full Witten diagram

5The proportionality factor of i/2 is necessary between the propagators to identify the graphs: the

η-integration range is effectively half of z-integration and i accounts for k → −iEe in the graphs.
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k12 k34

k12

⇓

k12 k34

k12
=

1

k12 + k34
=

1

k1234

⇓

k12 k34

k12
=

1

(k12 + k34)(k12 + k12)(k12 + k34)

=
1

k1234k1212k3412

Figure 3. Algorithm to compute the amplitudes of straight lines.

We have already explained the first two items, let us now move on to the third point.

For that, we need to review the algorithm of [51] which we will use to procure expressions

for straight-only scalar graphs.

One starts with the full diagram and considers the ways to decompose it into different

subdiagrams by cutting the lines. Then, one associates an expression to each decomposition

and sums these partial amplitudes.

The partial amplitude for a particular decomposition is simply the product of the

expressions associated with the subgraphs. For a particular subgraph, the associated ex-

pression is inverse of the sum of all vertex norms within that subgraph and line norms

going out of that subgraph. With this rule, we associate the corresponding expressions to

all subgraphs, starting from the full graph itself.

Let us clarify this rather formal explanation with an explicit example: a single straight

line, depicted in figure 3. As we see, there is only one possible decomposition because there

is only one line to cut! For this partial-amplitude, there are three subgraphs: the full graph

indicated by the blue rectangle and its subgraphs indicated by the green rectangles. Since

there is no line crossing the blue rectangle, its corresponding expression is inverse of the

sum of the vertex norms, i.e. (k12 + k34)−1 = k−1
1234. On the contrary, the green rectangles

get contributions from the line norm as well, hence they are k−1
1212 and k−1

3412. The full

partial amplitude is simply the product of these three terms: A(1) =
(
k1234k1212k3412

)−1
.

The expression of the blue rectangle satisfies the generic feature of our algorithm:

since there is always a graph than encapsulates the full diagram, all amplitudes will have

a factor in the denominator, which is the sum of all vertex norms, i.e. k1 + k2 + · · · + kn.

As this factor will always be multiplicative, our algorithm guarantees that the amplitudes

for straight-only scalar graphs will have a pole where k123...n → 0 for any tree-level n-point

Witten diagram.

The appearance of such poles can be understood in the context of flat-space limit due

to a nifty relation:

Mflat-space = Res
k123...n→0

M . (3.3)
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This simply follows from our choice of momenta variables and the momentum conservation

condition in flat space [31, 51, 53]; hence flat space limits of our expressions are immediately

manifest.

A more non-trivial example is the graph with two straight lines, which is relevant

for five point Witten diagrams. In this case we have two lines to cut, indicating two

distinct decompositions. We calculate the partial amplitude for each decomposition and

take their sum:

k12 k3 k45

k12 k45
=


k12 k3 k45

k12 k45
=

1

k12345k12345k4545k1212k12345


+


k12 k3 k45

k12 k45
=

1

k12345k1212k12345k12345k4545


(3.4)

which yields a surprisingly compact final amplitude

A(11) =
k1212334545

k12345k1212k34512k312 45k4545k12345
. (3.5)

This is the same expression computed by brute force calculation in [32].

4 From straight graph to crossed graph

We have presented an elegant formalism in the previous section, and showed how one can

easily extract the amplitude for a straight-only graph. An astute reader may object that

despite its efficiency this formalism only yields a small part of the full amplitude. For

instance, we need to calculate three more graphs if we want to obtain the amplitude for

a five point Witten diagram, as seen in figure 2. The situation appears to deteriorate at

higher point computations as there are exponentially more graphs to calculate.

Below, we will demonstrate the opposite: all graphs are actually tied to the straight-

only scalar graph hence one does not need to explicitly compute them once the straight-only

scalar graph is obtained. This follows from the form of the gauge propagator in our settings:

Gij(k; z, z′) =

(
ηij −

kikj
k2

)∫
ωdω

√
zz′J 1

2
(ωz)J 1

2
(ωz′)

i(k2 + ω2 − iε)

+
kikj
k2

∫
dω
k2 + ω2

ω

√
zz′J 1

2
(ωz)J 1

2
(ωz′)

i(k2 + ω2 − iε) . (4.1)

This split form of the propagator is exactly what motivated us to introduce the de-

composition in eq. (2.3) in the first place. Also, this reveals that the straight and crossed

lines are related in a beautiful way:

p1 p2

k
= lim

k→0 p1 p2

k
. (4.2)

– 7 –
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This simple relation of straight and crossed lines explains why the apparent problem of

exponential increase in the number of total graphs poses no issue in the actual calculations:

one can simply write the full expression as a simple operator acting on the straight-only

graph:

Mmn ≡
k12 k34

m nk12
=

(
Π

(1)mn
k12

+ Π
(2)mn
k12

lim
k12→0

)
k12 k34

k12
.

Alternatively, first we can find the amplitude for each graph and then combine them.

In case of figure 2, we write

A(12) ≡
k12 k3 k45

k12 k45
= lim
k45→0

A(11) (4.3a)

A(21) ≡
k12 k3 k45

k12 k45
= lim
k12→0

A(11) (4.3b)

A(22) ≡
k12 k3 k45

k12 k45
= lim
k12→0

k45→0

A(11) (4.3c)

for

A(11) ≡
k12 k3 k45

k12 k45
(4.4)

whose explicit expression is given in (3.5).

Incorporating all A(ij) with the projectors, we get the full two line truncated diagram:

Mmnpr ≡
k12 k3 k45

k12 k45m n p r

= Π
(1)mn
k12

Π
(1)pr
k45
A(11) + Π

(1)mn
k12

Π
(2)pr
k45
A(12)

+ Π
(2)mn
k12

Π
(1)pr
k45
A(21) + Π

(2)mn
k12

Π
(2)pr
k45
A(22) . (4.5)

One should keep in mind that Mmn and Mmnpr are actually not the full amplitudes;

these expressions sill need to be contracted with the appropriate vertex factors Vijk or

V ijkl
c . The different choices of these terms yield different Witten diagrams; for example,

M4s = V 12mV 34nMmn , M5a = V 12mV 3npV 45rMmnpr

M5b = V 12mV 345n
c Mmn , M6b = V 12mV 3npV 456r

c Mmnpr

which match the respective amplitudes calculated by brute force in [32].

5 Discussion and future directions

In this paper we discussed AdS amplitudes for gauge fields and developed a formalism that

considerably simplifies the calculation of any tree level Witten diagram. This formalism

– 8 –
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is based on two observations: first, the calculation of truncated amplitudes reduce to

computations of scalar graphs in a judiciously chosen basis, and second, the amplitudes for

the scalar graphs can be extracted by mere algebraic means. With these observations, we

can obtain any tree level amplitude for gauge fields in a systematic and elegant fashion.

The advantage of our procedure is twofold. Working in the appropriate basis, we

can relate several calculations to each other, drastically simplifying the overall complexity.

Indeed, in the conventional approach, the number of integrals required for calculation

increases exponentially.6 The other advantage of our technique is that it is purely algebraic,

which allows us to bypass the bulk integrations altogether. However, it is an open question

how to extend this formalism beyond the gauge boson and to other dimensions.7

We hope that our formalism can be utilized to generate more data points in the study

of amplitudes in Anti-de Sitter space. Knowledge of higher point amplitudes may result in

unraveling deeper physical and mathematical insights, similar to what the flat space pro-

gram has achieved over the last decade. In this sense, we see our work as a complementary

approach to those developments; for instance, it would be interesting to explore a possible

connection between AdS amplitudes and geometric structures like the amplituhedron.
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A A bestiary for star triangle topology

In this appendix, we will make a detailed analysis of figure 4. The truncated amplitude

can be written as

k12

k34

k56
k12 k56

k34

n

m1

m2

m3

=

2∑
i,j,k=1

Π
(i)m1n1

k12
Π

(j)m2n2

k34
Π

(k)m3n3

k56
A(ijk)

6 (A.1)

where we define straight-only graph A(111)
6 as

A(111)
6 :=

k56k12

k34

. (A.2)

6For example, one needs to calculate four different integrals for a five-point Witten diagram, see

eq. (3.23)–(3.24) in [32]. In our formalism, we only did one explicit calculation, eq. (3.5), and obtained the

rest trivially by eq. (4.3).
7The algorithm we used to compute scalar graphs is applicable only for AdS4. It is intriguing to know

whether analogous algorithms exist in other dimensions.
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The other pieces such as A(112) or A(121) are same as A(111) except the replacement of the

straight leg with the crossed one, e.g.

A(211)
6 :=

k56k12

k34

, A(222)
6 :=

k56k12

k34

. (A.3)

We can relate all A(ijk) to A(111) by taking appropriate limits:

A(211)
6 = lim

k12→0
A(111)

6 , A(221)
6 = lim

k12→0
k34→0

A(111)
6 , . . . (A.4)

This reduces the whole calculation to that of the straight-only graph. We will carry out

that computation using our algorithm as an explicit demonstration.

Our diagram satisfies a neat symmetry hence it is sufficient to calculate only one

subgraph. More explicitly, at the top layer, we have the decomposition

k56k12

k34

=
k56k12

k34

+
k34k56

k12

+
k12k34

k56

(A.5)

where each term is related to one another by permutation of k12, k34, and k56.

As we go further, subgraphs in deeper layers also satisfy similar symmetries. For

example, the decomposition of the second graph above can be written as

k12

k34k56

k12

k34k56

=

k12

k34k56

k12

k34k56

+

k12

k34k56

k12

k34k56

. (A.6)

Clearly, we can obtain the second diagram by the replacement {k34, k34} ↔ {k56, k56},
hence we get the full result for the scalar truncated amplitude as

A(111)
6 =

(
I + 34↔ 56

)
+

12→ 34

34→ 56

56→ 12

+

12→ 56

56→ 34

34→ 12

 (A.7)

where ab→ cd stands for {kab, kab} → {kcd, kcd}. Here, I denotes the first diagram in the

right hand side of eq. (A.6). We can immediately read off its value by our algorithm:

I =
1

k123456k1212k123456k3434k125634k5656k12 34 56
. (A.8)

When we insert this expression into eq. (A.7), we obtain

A(111)
6 =

1

k1212k3434k5656k123456k12 34 56

×
(

k12123434 56 56

k123456k123456k341256
+ permutations

)
. (A.9)
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k12

k34

k56

k1 k6

k2 k5

k3 k4

Figure 4. The six point diagram out of star-triangle topology.

We can now use eq. (A.4) to get all A(ijk)
6 and substitute them into eq. (A.1) to get the

full truncated amplitude.

One naively sees a divergence in the calculation of the piece A(222)
6 . This poses no

issue, as that term does not contribute to the result since it vanishes once it is contracted

with the vertex factor. This becomes transparent if we rewrite the three point vertex as a

sum of three projectors, i.e.

Vijk(k1,k2,k3) := i
√

2
(
kl1ηj[iηl]k + kl2ηk[jηl]i + kl3ηi[kηl]j

)
. (A.10)

As the crossed lines come with factors of ki1,k
j
2, and kk3 , the number of non-vanishing terms

in the vertex factor decreases per crossed line entering the vertex; e.g., there are only two

pieces for A(112), only one piece for A(122), and no piece for A(222).

With the truncated star triangle diagram at hand, we can calculate several different

Witten diagrams by attaching different vertex structures. The simplest such diagram is

the six-point amplitude shown in figure 4.
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