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1 Introduction

A great deal of developments have taken place in the last decade in the study of flat space
scattering amplitudes of gauge theories. The modern amplitudes research program has led
to many unexpected relations such as on shell recursion relations [1, 2], the connection to
mathematical structures like Grassmanian geometry, and the discovery of the amplituhe-
dron [3-5]. For an introduction to these computational tools and an overview of these
developments, we refer the reader to [6-10].

Likewise, outstanding progress has been made in our understanding of quantum gravity
with the discovery of the holographic principle [11, 12]. The holographic principle implies
that degrees of freedom that are encoded in the boundary in d dimensions can describe
the d 4+ 1 dimension interior of the spacetime. A concrete example of holography is the
gauge/gravity duality, i.e. the correspondence between Anti-de Sitter space (AdS) with
Conformal Field Theory (CFT) [13, 14]. By relating the boundary operators to the bulk
fields, the CFT correlation functions can be interpreted as AdS scattering amplitudes, and
vice versa [15, 16].

Despite the splendid advancements in these fields, the amplitude programs in flat
space and AdS have remained relatively isolated! partly due to the difficulty of position
space calculations in AdS. Various complementary approaches, e.g. Mellin space, have been
investigated to address these notorious computations [15, 20-37]. We believe that the power
of the momentum space perturbation theory has not been fully realized. Hence, we propose
a new method to explicitly compute AdS; momentum space amplitudes.?

'For some counter examples, see [17-19)].
2By holography, our method can also be employed to compute dual CFT3 correlators. We refer the
reader to [38—42] for other momentum space approaches to conformal field theories.



In this paper, we will outline a new diagrammatic method that will enable us to
systematically compute higher point amplitudes. Crucially, this method bypasses the cum-
bersome bulk integrals, therefore reducing the computations of the correlators to simple
algebraic relations. This framework can be utilized to calculate higher point tree level
AdS amplitudes, which can be used as data points to extract physical and mathemati-
cal insights. We liken this to the similar methodology employed in flat space scattering
amplitudes over the last decade, where explicit flat space amplitudes were used as data
points to generate surprising relations, such as the BCJ duality, CHY relations, and the
amplituhedron [4, 43-45].

Here is the brief outline of this paper. We begin, in section 2, with a review of the
formalism for momentum space gauge theory correlators. Then, we introduce bulk to bulk
and bulk to boundary propagators for gauge fields as solutions to their respective equations
of motion. In section 3, we present the combinatorial rule to compute part of the scattering
amplitudes for gauge fields in AdS. Subsequently in section 4, we discuss computation of
the remaining part, hence obtaining the full expression. Finally, we summarize and discuss
promising future directions in section 5. We provide an appendix to further illustrate the
main points of this paper with an additional example.

2 Gauge fields in AdS

We are interested in a non-Abelian gauge theory in AdS, described by an action
S~ [ dda;z*dflsz;}VF””’“ where z is the radial coordinate and z; approaches to the
boundary coordinate as z — 0 for the AdS metric ds* = 272(dz? + n;jdx'dz?) in the
Poincaré patch. These coordinates make the Poincaré invariance manifest; thus, it is easy
to transform the position space coordinates x; to the momentum space variables k;. In this
paper, we will focus on d = 3, impose axial gauge, Af = 0; and work with the coordinates
{z, ki}, following closely the treatment of [46].

One can go ahead and solve the equations of motion: the normalizability at the bound-
ary and the regularity in the bulk unambiguously determines the bulk to boundary prop-
agator, i.e. Af(z, k) = €}\/2E5(kz) [30]. Here € is the transverse polarization vector; k
is the positive norm of the momentum k, i.e. k = \/W ; and E is a Bessel kind function,
appropriate to the sign of k2.3

In this framework, the amplitude for the four point exchange diagram depicted in
figure 1 takes the form

ikl AV kikokgky

MG = e V™ (ky, kg, —k12) V" (s, by, 12)
X/wdUJdZdZ/K1/2(k12)K1/2(kQZ)Jl/Q((A)Z)Kl/Q(k,gZ/)

TImnW2 + (k12)m(k12)n
w?(kf + w?)

X K1/2(k4z’)J1/2(wzl)

)

3In this paper, we will work with transition amplitudes and use €¢ %Kl/z(ka) as our effective bulk-
to-boundary propagator, same as [32, 47].



Figure 1. A four point Witten diagram.

which is obtained by gluing bulk to bulk and bulk to boundary propagators. In this
expression, and in the rest of the paper, we suppress the color dependence for notational
brevity.

In the above expression, we use

_ nij (k1 — k2)i + njk(ka — k3)i + nei(ks — K1)
—i\/§

which is the three point vertex for color-ordered amplitudes [48]. For later convenience, we

Vijk (ki) :

also define the four point vertex factor

1

ViRl ikl _ ;

ij Kl il, ik
(n”n + 0 ) :
In order to make the notation concise, we use Vig, = eﬁ (—:%Vijk and likewise for other tensors.
As we will not be working with individual components, such notation does not lead to any
ambiguity.
One can now calculate the full amplitude by directly carrying out the bulk integrals,

thus arriving at the four point expression:*

V32 (k) ko, —kyo) V34 (ks ky, k k k k
My = —i (K1, k2, —k12) (k3, ka4, k12) " <?7mn+ 123412 (K12),, ( 12)n> @22
k12k3aki12

k1234k1212K3412

Note that this is the amplitude associated with the s-channel diagram. Using the same
method we can compute the ¢-channel and contact diagrams.

The form of the expression above suggests that we can decompose any tree-level dia-
gram into two parts: the vertex factors carrying the dependence on the individual vectors
k;, and the rest of the amplitude that we will call the truncated diagram. For example,
in eq. (2.2), we see that k; dependence enters into the truncated piece only through the

“In this paper, we use the notation of [32] to denote sums of momenta, i.e.

m Mg P
Kisyine..itn, i21622- iz imtimaimmmitiz—ip = P | > Kiay |+ D [Kse|, (2.1a)
a=1|b=1 c=1
and
Kijig..in, = ki, +kiy +---+ ki, . (2.1b)

E.g., kggg = |k1 + k2| + |k3‘ + |k4 + k5| and k12 = k1 + ko.



terms k12 and ki2. Note that apparently different pieces are combinations of such terms,
e.g. k12342 = k12 + kQ + k34.

We can further decompose the truncated diagram into two distinct scalar diagrams,
straight and crossed,

m k n :Hl(cl)mn k +H§€2)mn . k . (23)
b1 b2 yai P2 b1 b2

where we define the projectors

H(l)mn _ "’/mnk"2 —knk, H(Q)mn knkn
k = k2 ) k ik2

(2.4)

To be specific, W denotes the bulk point integrated-propagator in the momen-
1 2

tum space, which coincides with the truncated four point amplitude. We will use this
graph as a basis element to construct higher point truncated diagrams: working with these
bulk-point integrated diagrams will allows us to efficiently extract several different Wit-
ten diagrams from their common truncated graph. For example, we can connect two of
these basis elements to construct the amputated graph necessary for the five point Witten
diagram, as can be seen in figure 2.

The advantage of the decomposition in eq. (2.3) is the simplicity of the scalar graphs:
they are fully agnostic to what is attached at the vertices as long as we know the sum of
norms of the momenta that flows into that vertex. This simply follows from the form of
our effective bulk to boundary propagators as their bulk-point dependencies at the vertices
are merely additive. For example, p1 2 in eq. (2.3) represents the sum of the norms of bulk
to boundary momenta, i.e. p = k1 + ko +... .

This framework suggests that any tree-level Witten diagram can be decomposed into
sums and products of vertex factors, projectors, and several scalar graphs; thus, the cal-
culation of a Witten diagram reduces to a calculation of scalar graphs. E.g., for the five
point diagram given in figure 2, we can obtain the full expression once we compute the
corresponding scalar graphs.

The calculations of graphs with crossed lines and graphs without crossed lines are
different: we will deal with them separately. We will present the algorithm to compute
the graphs of the straight lines in the next section: this algorithm exists in the literature
albeit in a completely different context and theory [49-52]. After that, we will establish
the connection between the crossed and straight lines in section 4. Such a relation will
enable us to compute the complete amplitude.

3 An algorithm to compute scalar graphs

In eq. (2.3), we showed that the gauge propagator can be decomposed into two parts. In
this section, we will focus on the graphs of only straight lines. This is because such graphs
satisfy a nice algorithmic relation that we will discuss below. We can understand this if we
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Figure 2. Decomposition of a five point Witten diagram into scalar graphs.

examine the explicit expression corresponding to the straight line:

k T dz1dzy
*r—e = 7Gs k, 9 B 3 ’ s
P P2 /(z122)4 (k, 21, 22) B(21, p1; 22, p2)
for N
wdw,/z122.J1 ja(w21)J1 j2(w22)

o(hy 21, 22) = : , 1

Gs(k, 21, 22) / k2 + w2 — je (3.1)
0

where B(z1, p1; 22, p2) encodes the contribution of other graphs that connect to this propa-
gator at the bulk points z; and z9. As we discussed above, these contributions are additive
and are represented by the letter p in the diagram.

The remarkable feature of G is that it is proportional to the cosmological propagator
derived for the conformally coupled scalar; specifically

Galk,22') = 5GelBesmi, ) (3.2)

where {z,k} — {—n,., —iE.} in the notation of [51]. In that paper, the authors show that
one can compute similar graphs using algebraic means. The nice feature of our bulk-point
integrations is that they do not extirpate this formalism, hence we can also use graph-wise
calculations in our setting.” Here, we summarize our prescription to calculate any tree-level
Witten diagram for AdS4 gauge bosons in momentum space in axial gauge:

1. Draw the relevant Witten diagram and truncate it
2. Decompose the truncated diagram in terms of straight and crossed lines

3. There is always a unique straight-only scalar graph which does not have any crossed
lines. Calculate that graph by mere algebraic means

4. Obtain the other scalar graphs by the procedure described in section 4

5. Combine all scalar graphs with the relevant projectors and the vertex factors to
obtain the full Witten diagram

®The proportionality factor of i/2 is necessary between the propagators to identify the graphs: the
n-integration range is effectively half of z-integration and i accounts for kK — —iE. in the graphs.
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Figure 3. Algorithm to compute the amplitudes of straight lines.

We have already explained the first two items, let us now move on to the third point.
For that, we need to review the algorithm of [51] which we will use to procure expressions
for straight-only scalar graphs.

One starts with the full diagram and considers the ways to decompose it into different
subdiagrams by cutting the lines. Then, one associates an expression to each decomposition
and sums these partial amplitudes.

The partial amplitude for a particular decomposition is simply the product of the
expressions associated with the subgraphs. For a particular subgraph, the associated ex-
pression is inverse of the sum of all vertexr norms within that subgraph and line norms
going out of that subgraph. With this rule, we associate the corresponding expressions to
all subgraphs, starting from the full graph itself.

Let us clarify this rather formal explanation with an explicit example: a single straight
line, depicted in figure 3. As we see, there is only one possible decomposition because there
is only one line to cut! For this partial-amplitude, there are three subgraphs: the full graph
indicated by the blue rectangle and its subgraphs indicated by the green rectangles. Since
there is no line crossing the blue rectangle, its corresponding expression is inverse of the
sum of the vertex norms, i.e. (k12 + k34)_1 = k1_2134- On the contrary, the green rectangles
get contributions from the line norm as well, hence they are k1_2112 and k3_4112. The full

partial amplitude is simply the product of these three terms: A1) = (k1234k122k34g)_1.

The expression of the blue rectangle satisfies the generic feature of our algorithm:
since there is always a graph than encapsulates the full diagram, all amplitudes will have
a factor in the denominator, which is the sum of all vertex norms, i.e. k1 + ko + - - - + ky,.
As this factor will always be multiplicative, our algorithm guarantees that the amplitudes
for straight-only scalar graphs will have a pole where kj23._,, — 0 for any tree-level n-point
Witten diagram.

The appearance of such poles can be understood in the context of flat-space limit due
to a nifty relation:

Mﬂat_space - ReS M . (3'3)

k123..n—0



This simply follows from our choice of momenta variables and the momentum conservation
condition in flat space [31, 51, 53]; hence flat space limits of our expressions are immediately
manifest.

A more non-trivial example is the graph with two straight lines, which is relevant
for five point Witten diagrams. In this case we have two lines to cut, indicating two
distinct decompositions. We calculate the partial amplitude for each decomposition and
take their sum:

k‘g k‘@ B 12 k‘@ o 1
= ||loo>—c= =
k1 ks Foas ki1 ks kas|  F12345K123a5K45a5K 121212345

k‘g 45 . 1
+ )| =
k1o ks k| F123aski212K12345K 19345 Kasas
(3.4)
which yields a surprisingly compact final amplitude
k
AQD — 1212334545 (3.5)

k12345Kk1212k34512k312 45K 4545k12345

This is the same expression computed by brute force calculation in [32].

4 From straight graph to crossed graph

We have presented an elegant formalism in the previous section, and showed how one can
easily extract the amplitude for a straight-only graph. An astute reader may object that
despite its efficiency this formalism only yields a small part of the full amplitude. For
instance, we need to calculate three more graphs if we want to obtain the amplitude for
a five point Witten diagram, as seen in figure 2. The situation appears to deteriorate at
higher point computations as there are exponentially more graphs to calculate.

Below, we will demonstrate the opposite: all graphs are actually tied to the straight-
only scalar graph hence one does not need to explicitly compute them once the straight-only
scalar graph is obtained. This follows from the form of the gauge propagator in our settings:

) kik; V zz’J% (wz)J% (wz2')
Giglki 2 2) = \ s = =7~ ) [ wlo =0 s

N /
kikj/d k:2+w2 ZZJ%(WZ)J%(LUZ) (4'1)

k2 w i(k? 4+ w? — ie)
This split form of the propagator is exactly what motivated us to introduce the de-

composition in eq. (2.3) in the first place. Also, this reveals that the straight and crossed
lines are related in a beautiful way:

D1 D2 k—0 D1 D2



This simple relation of straight and crossed lines explains why the apparent problem of
exponential increase in the number of total graphs poses no issue in the actual calculations:
one can simply write the full expression as a simple operator acting on the straight-only
graph:

A= mMz (H(l)m”+n(2)m” lim> e
k1o ksa h12 M2 kp0) fyy ks34

Alternatively, first we can find the amplitude for each graph and then combine them.
In case of figure 2, we write

k12 kas

A12) = — — = lim AMY (4.3a)

k12 k3 kys ~ Fas—0
I 5 40D (4.3b)

k12 k3 ka5~ F12—0
A2 = Fa s = lim A®D (4.3¢)

k12 ks kys  F12=0

k’45—>0

for
A0 = Fia kas (4.4)
k12 ks ka5

whose explicit expression is given in (3.5).
Incorporating all AW with the projectors, we get the full two line truncated diagram:

MM = m kﬁ n P kﬁ r
k12 k3 ka5

. H(l)mnH(l)pTA(ll) + H}(glllmnniiprA(lz)

T kg kas

n H(Z)mnﬂl(cszA(Ql) 4 ng?lmnﬂlg?)PTA(??) ) (4.5)

k12 45

One should keep in mind that M™" and M"™P" are actually not the full amplitudes;
these expressions sill need to be contracted with the appropriate vertex factors Vj;, or
VM The different choices of these terms yield different Witten diagrams; for example,

M4s — V12mv34ann ’ M5a — V12mv3npv45ranpr
M5b — VlQm‘/*c345ann 7 Mﬁb _ Vl?mv3np‘/—c456ranpr

which match the respective amplitudes calculated by brute force in [32].

5 Discussion and future directions

In this paper we discussed AdS amplitudes for gauge fields and developed a formalism that
considerably simplifies the calculation of any tree level Witten diagram. This formalism



is based on two observations: first, the calculation of truncated amplitudes reduce to
computations of scalar graphs in a judiciously chosen basis, and second, the amplitudes for
the scalar graphs can be extracted by mere algebraic means. With these observations, we
can obtain any tree level amplitude for gauge fields in a systematic and elegant fashion.

The advantage of our procedure is twofold. Working in the appropriate basis, we
can relate several calculations to each other, drastically simplifying the overall complexity.
Indeed, in the conventional approach, the number of integrals required for calculation
increases exponentially.® The other advantage of our technique is that it is purely algebraic,
which allows us to bypass the bulk integrations altogether. However, it is an open question
how to extend this formalism beyond the gauge boson and to other dimensions.”

We hope that our formalism can be utilized to generate more data points in the study
of amplitudes in Anti-de Sitter space. Knowledge of higher point amplitudes may result in
unraveling deeper physical and mathematical insights, similar to what the flat space pro-
gram has achieved over the last decade. In this sense, we see our work as a complementary
approach to those developments; for instance, it would be interesting to explore a possible
connection between AdS amplitudes and geometric structures like the amplituhedron.
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A A bestiary for star triangle topology

In this appendix, we will make a detailed analysis of figure 4. The truncated amplitude
can be written as

z)m1n1 (j)mana(k)msns ,(ijk)
Z Hkm k34 Hk56 ‘A (A'l)
i,7,k=1

where we define straight-only graph Aéﬂl

kl k56

SFor example, one needs to calculate four different integrals for a five-point Witten diagram, see
eq. (3.23)—(3.24) in [32]. In our formalism, we only did one explicit calculation, eq. (3.5), and obtained the
rest trivially by eq. (4.3).

"The algorithm we used to compute scalar graphs is applicable only for AdS,. It is intriguing to know
whether analogous algorithms exist in other dimensions.



The other pieces such as A2 or 412D are same as AMY except the replacement of the
straight leg with the crossed one, e.g.

k‘34 k34
AR L AP Jf . (A.3)

k?12 k56 k12 k56

We can relate all A% to A1) by taking appropriate limits:

A(211) ~ im Aénl) ’ A(221) _ lim Aéﬂl) , (A.4)
k12—0 k12—0
k34 —0

This reduces the whole calculation to that of the straight-only graph. We will carry out
that computation using our algorithm as an explicit demonstration.

Our diagram satisfies a neat symmetry hence it is sufficient to calculate only one
subgraph. More explicitly, at the top layer, we have the decomposition

where each term is related to one another by permutation of k1o, k34, and ksg.

(A.5)

kg kse {kl kss}

As we go further, subgraphs in deeper layers also satisfy similar symmetries. For
example, the decomposition of the second graph above can be written as

Clearly, we can obtain the second diagram by the replacement {ks4, kza} <> {kse, kse},
hence we get the full result for the scalar truncated amplitude as

12 - 34 12 - 56
A = (T +344:56) + | 34— 56 | + | 56 — 34 (A7)
56 — 12 345 12

where ab — cd stands for {kap, kap} — {kcd, kea}. Here, Z denotes the first diagram in the
right hand side of eq. (A.6). We can immediately read off its value by our algorithm:

1
7= A8
k123456k1212k 123456 k3434 K 125634 k5656 k1234 56 (4.8)

When we insert this expression into eq. (A.7), we obtain

1
k1212k3434K5656 k123456 K12 34 56

A(111

y ( k1212343456 56

—|—permutations>. (A.9)
k123456K123456 k341256

~10 -



Figure 4. The six point diagram out of star-triangle topology.

We can now use eq. (A.4) to get all Agjk) and substitute them into eq. (A.1) to get the
full truncated amplitude.

One naively sees a divergence in the calculation of the piece Aé222). This poses no
issue, as that term does not contribute to the result since it vanishes once it is contracted
with the vertex factor. This becomes transparent if we rewrite the three point vertex as a
sum of three projectors, i.e.

Vijk(k1, k2, k3) = i\@(klmj[muk + ki + kém'[km]j) : (A.10)

As the crossed lines come with factors of ki, k%, and klg, the number of non-vanishing terms
in the vertex factor decreases per crossed line entering the vertex; e.g., there are only two

122) " and no piece for A(222).

pieces for .A(”Q), only one piece for Al
With the truncated star triangle diagram at hand, we can calculate several different
Witten diagrams by attaching different vertex structures. The simplest such diagram is

the six-point amplitude shown in figure 4.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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