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Introduction 
Phase Function Method (PFM) is an 

efficient as well as a simplest method for dealing 

with quantum mechanical scattering problems 

involving both local and nonlocal interactions [1-

3]. Unlike the local potential, in case of nonlocal 

potential the accumulation of the phase depends 

on the wave function for all values of r. 

Therefore, it is of considerable interest to apply 

PFM for nonlocal interaction. The modifications 

in traditional PFM for treating Coulomb/Hulthén 

distorted separable nonlocal potential have been 

reported in ref. [1,2]. The electromagnetic effect 

is to be quite important in low energy scattering 

demanding rigorous inclusion of the effect in the 

model. Generally, screened/cut off Coulomb 

potential is preferably used to represent the 

electromagnetic part of the charged hadronic 

systems as the poor asymptotic behavior of pure 

Coulomb one can affect the calculations of the 

theoretical results. In this context, the Manning-

Rosen potential, satisfactorily serves as a model 

for the molecular as well as nuclear interaction 

[3,4]. Here we use Manning-Rosen potential as a 

short-range electromagnetic interaction adding to 

nonlocal separable potential in all partial waves 

for treating p-d elastic scattering thorough 

modified PFM. 

Phase equation formalism 
The radial Schrödinger equation satisfying 

the regular solution for Manning-Rosen plus 

Graz separable potential [1] is written as 
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For regular boundary condition, the solution 

( , )MG k r reads as 
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Multiplying Eq. (3) with 
rer −

on both sides 

and integrating from 0 to  one can find 
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where the Fredholm determinant associated with 

regular boundary condition  
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The regular Green’s function ( ) ( , )M RG r r [1,2] 

can be written in modified form as 
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Substituting Eqs. (4) and (6) in Eq. (3), one can 

get 
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with 
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where ( , )M k r , ( , )Mf k r and ( )Mf k are regular 

solution, irregular solution and Jost function for 

the pure Manning-Rosen potential in all partial 

waves, respectively [4]. In terms of phase and 

amplitude functions, ( , )MG k r from equation (7) 

can be expressed as  
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( , ) ( , ) ( , ) cos ( , )

  +sin ( , ) Re ( , ) ( )  .        (10)
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 Here ( , )MG k r and ( , )MG k r refers to the 

phase and amplitude function, respectively. 
Comparing Eq. (7) with (10) within the 

consideration of limiting condition r → , we 

have                                                            
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 Eq. (11) represents the desired phase 

equation involving the integrations 
1( , )I k  and 

2 ( , )I k which in turn can be solved by 

exploiting basic properties and formulae for both 

homogenous and non-homogenous Gaussian 

hypergeometric functions [5, 6].  

Results and discussion 
 The phase shifts for p-d scattering 

computed from our phase equation are compared 

with ref. [7]. Here 1/ 0.0463A b fm−= .  

Table 1: List of parameters for p-d system. 

State   1( )fm −  2 3( )fm − −
 b ( )fm  

2S1/2 0.008 5.49 -276.8 7.92 
2P1/2 0.099 1.38 -484.6 9.69 
2P3/2 0.099 2.19 -1335.5 18.99 

Table 2: Scattering phase shifts for p-d system. 
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Figure 1: Differential cross-sections in center of   

                 mass system. 

The phase parameters thus obtained in the 

energy range below the threshold for the 

deuteron break-up are, in turn, exploited to 

estimate the cross sections for the concerned 

system. Huttel et al [7] studied p-d elastic 

scattering phase shifts below the breakup 

threshold energies which are compared well with 

Faddeev calculations. In the present text we have 

used a model of five parameters central potential 

without including any spin-orbit and tensor 

interaction, that reproduces p-d data quite 

accurately. It is also worthwhile to mention that 

the overall quality of the consistency between 

our results and ref. [7] in the energy region under 

consideration, is notable. 
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