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Abstract

This thesis explores gravity-matter systems within the context of cosmology and

black holes. Two different studies are presented.

First we study cosmological perturbation theory (CPT) with scalar field and pres-

sureless dust in the Hamiltonian formulation, with the dust field chosen as a clock.

The corresponding canonical action describes the dynamics of the scalar field and

metric degrees of freedom with a non-vanishing physical Hamiltonian and spatial

diffeomorphism constraint. We construct a momentum space Hamiltonian that de-

scribes linear perturbations, and show that the constraints to this order form a first

class system. We then write the Hamiltonian as a function of certain gauge invariant

canonical variables and show that it takes the form of an oscillator with time depen-

dent mass and frequency coupled to an ultralocal field. We compare our analysis

with other Hamiltonian approaches to CPT that do not use dust-time.

Next we construct and study spin models on Euclidean black hole backgrounds.

These resemble the Ising model, but are inhomogeneous with two parameters, the

black hole mass M and the cosmological constant Λ. We use Monte-Carlo methods

to study macroscopic properties of these systems for Schwarzschild and anti-deSitter

black holes in four and five dimensions for spin-1/2 and spin-1. We find in every case

that increasing M causes the spins to undergo a second order phase transition from

disorder to order and that the phase transition occurs at sub-Planckian M .
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Chapter 1

Introduction

General relativity (GR) classically describes how spacetime and matter interact [1,

2]. According to GR, gravity is the curvature of spacetime and - as best summarized

by John Wheeler - “spacetime tells matter how to move; matter tells spacetime how

to curve.” This tenet is captured in Einstein’s equations:

Gab ( gab ) + Λ gab = 8πGTab ( gab , Φ ) (1.1)

where gab is the spacetime metric, Gab is the Einstein tensor which represents the

curvature of spacetime, Φ is the matter field, Tab is the stress-energy tensor which

encodes the energy and momentum representing quantities of Φ, Λ is the cosmological

constant and G is Newton’s constant 1. Solutions to these equations give all matter

and spacetime geometry.

One can intuit two such solutions using (1.1). In vacuum, i.e the absence of Φ and

Λ, Gab = 0. In this case the simplest solution of Einstein’s equations is flat spacetime

1Hereafter natural units will be used, whereby Newton’s constant G, speed of light c and
Planck’s constant ℏ are set equal to one.
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aka the Minkowski metric:

ds2 = −dt2 + dr2 + r2dΩ2
2. (1.2)

Here t is time, r is the radial coordinate and dΩ2
2 is the metric on the unit two

sphere. The Minkowski metric is physically meaningful because it represents an

absence of curvature.

In the absence of matter but not Λ, Einstein’s equations yield a spacetime with

constant curvature. Two immediate cases are Λ > 0 and Λ < 0 respectively. The

solution of the former case is the de Sitter metric:

ds2 = −
(
1− r2

l2

)
dt2 +

(
1− r2

l2

)−1

dr2 + r2dΩ2
2, l =

√
3

Λ
(1.3)

where l is called the de Sitter scale. This metric is not discussed further in this

thesis. The solution for the Λ < 0 case is called the Anti-de Sitter (AdS) spacetime:

ds2 = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
2, L =

√
− 3

Λ
(1.4)

where L is called the AdS scale. The AdS spacetime has interesting applications

(which will be discussed later) even if it does not have observational support.

Other interesting solutions of GR are obtained by imposing a simplifying symme-

try on the spacetime and matter. This is advantageous for two reasons. Firstly,

these symmetries reduce the number of degrees of freedom required to describe the

theory and therefore lead to simpler calculations. This is why such models are called

symmetry reduced models. Secondly, these models are idealizations of some physical

systems found in nature. Two such systems are described next.

It has been assumed since the time of Copernicus that the large scale universe is

homogeneous (same at every point) and isotropic (same in every direction). The
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biggest indicator of the latter is the cosmic microwave background (CMB) – a bath

of radiation at a temperature T = 2.7K in all directions. The homogeneous and

isotropic universe is called the Friedman-Lemâıtre-Robertson-Walker (FLRW) uni-

verse; it is described by the metric

ds2 = −dt2 + a(t)2
(
dr2 + r2dΩ2

2
)

(1.5)

where the scale factor a(t) denotes the universe’s expansion 2. The matter distribu-

tion of the universe is also assumed to be homogeneous and isotropic. Studying the

FLRW spacetime and matter using GR explained Hubble’s observations regarding

the expansion of the universe.

Consider now a spherically symmetric, non-moving body of mass M (such as the

Earth, Sun, star, etc.) surrounded by vacuum. The exterior gravitational field of

this body is called the Schwarzschild spacetime [3]:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2. (1.6)

In the absence of the body (i.e forM = 0) the metric becomes flat (1.2) as expected.

The Scwarzschild metric is ill-defined at r = 2M and r = 0; such points are called

singularities. The first of these is due to the coordinate system being used and can

be removed under appropriate coordinate transformations (as will be shown later);

therefore r = 2M is called a coordinate singularity. The r = 0 singularity however

cannot be removed by coordinate transformations. Since some curvature scalars also

become infinite in the limit r → 0 (unlike the r = 2M case), this is called a curvature

singularity. If one wants to study the Earth, Sun or stars then one need not worry

about these points since the Schwarzschild solution is only valid for the vacuum

exterior, which for these bodies corresponds to r > 2M . However the same cannot

2Only the spatially flat case is considered in this thesis.
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be said for black holes: astrophysical bodies that have gravitationally collapsed to a

point whereby the Schwarzschild solution is valid for all r.

It is reasonable to expect that the gravitational field weakens as one goes far away

from a black hole. This expectation is satisfied by Schwarzschild spacetime as it

is asymptotically flat. This means that for distances far from the black hole, the

Schwarzschild metric resembles the Minkowski metric (1.2). Likewise a black hole

that is asymptotically AdS is described by the Scwarzchild AdS metric:

ds2 = −
(
1− 2M

r
+
r2

L2

)
dt2 +

(
1− 2M

r
+
r2

L2

)−1

dr2 + r2dΩ2
2. (1.7)

Investigating Schwarzschild spacetime accounted for the perihelion shift of Mer-

cury’s orbit and led to novel predictions such as the bending of light by a massive

object. This prediction was later verified experimentally. Another notable finding

by Bardeen, Carter and Hawking [4] was that the gravitational field of a black hole

with mass M and area A satisfies

dM =

(
1

8πM

) (
dA

4

)
. (1.8)

This resembles the first law of thermodynamics

dE = T dS (1.9)

where E, T and S are energy, temperature and entropy respectively. This resem-

blance indicated a correspondence between M and T and between A and S. It was

shown later using different methods that a black hole radiates as if it was a black-

body with temperature T = (8πM)−1 [5]. This indicated that the temperature-mass

relationship as obvious from (1.8) and (1.9) was more than just a correspondence.

This point will be revisited soon.
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All the aforementioned spacetimes - Minkowski, AdS, FLRW, Schwarzschild and

Schwarzschild AdS - represent ideal physical systems. It is reasonable to expect

that there exist perturbations on them. For example, it is known that there exist

temperature fluctuations δT in the CMB satisfying δT/T ∼ 10−4. The study of

perturbations on the solutions of GR is called perturbation theory and it consists of

the following steps:

1. Expressing the metric and matter fields in terms of backgrounds and pertur-

bations:

gab = ḡab + δgab, Φ = ϕ̄+ δϕ; (1.10)

here (gab,Φ) are the metric and matter fields, (ḡab, ϕ̄) are the background quan-

tities and (δgab, δϕ) are the perturbations,

2. Finding the equations of motion (EOM) for the background,

3. Finding the EOM for the perturbations on the background solutions.

Perturbation theory on a flat background, which involves perturbing the gravity

sector only, led to the discovery of gravitational waves. These were experimentally

observed nearly a century later. Cosmological perturbation theory (CPT) involves

perturbing both the gravity and matter sectors [6]. An important result of CPT is

the cosmological gravitional wave equation. Another prominent result was published

in [7]. To understand this result, recall that in GR there is a gauge-freedom. This

means that there is a freedom to perform gauge transformations, which in the context

of CPT are chosen to be infinitesimal coordinate transformations (since more general

coordinate transformations may yield a background metric that does not reflect the

symmetries of the spacetime). In general, the values of the degrees of freedom (DOF)

change due to these gauge transformations. However one can construct combinations

5



of the DOF such that the value of that combination is unchanged under the gauge

transformation. Such combinations of the DOF are called gauge-invariant variables.

In [7] the author constructed a gauge-invariant perturbation from the metric and

scalar field perturbations. This was called the Mukhanov-Sasaki (MS) variable and

its EOM resembled that of an oscillator.

Let’s now briefly discuss the canonical description of gravity which was introduced

by Arnowitt, Deser and Misner (ADM) in 1959 [8]. In this description it was found

that the Hamiltonian for gravity was a sum of the Hamiltonian constraint and the

diffeormorphism constraint 3. The former is due to the time reparametrization in-

variance of GR: that in GR coordinate time is irrelevant and has no physical signifi-

cance. Similarly the diffeomorphism constraint is due to the space reparametrization

invariance of GR. These phase space constraints are manifestations of the general

covariance of GR. Arriving at a physical Hamiltonian requires using functions of

the phase space as time and space references; this is called fixing a gauge and the

algebraic form of the physical Hamiltonian depends on what variables one chooses

to fix the gauge [10]. For now let’s consider fixing a time gauge only.

For a system of gravity and matter one may also use the matter DOF as the clock.

In addition to resulting in a physical Hamiltonian, this choice is also reasonable

from an observational standpoint: recall that one observes gravity-matter systems

from one’s trajectory on spacetime; hence one’s proper time is what one uses to

make observations; this is why using the proper time of a matter field as the time

in the theory is a reasonable choice. Examples of matter that has been used as a

clock include a scalar field [11], Brown Kuchař dust [12] and pressureless dust [13].

3A constraint is an independent relationship between the phase space variables [9]. Consider a
particle moving on a unit two-sphere whereby it satisfies the following constraint

x2 + y2 + z2 − 1 = 0 (1.11)

for its position. The Hamiltonian and diffeomorphism constraints are generalizations of this since
they are independent relationships of the phase space variables.
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Using the latter to fix the time gauge has the unique outcomes that the physical

Hamiltonian has the same algebraic form as the Hamiltonian constraint and the

diffeomorphism constraint is untouched.

The Hamiltonian theory of a system consisting of the metric and scalar field has

been used to study CPT. The first such analysis was done by Langlois [14] and others

that develop CPT in the canonical framework have appeared in the last two decades

[15, 16, 17, 18, 19, 20]. Some of the references mentioned use additional matter fields

as clocks; all of them use gauge-invariant perturbations. Brief descriptions of these

studies are provided later.

The preceding discussion is focused on the classical interactions of spacetime and

matter. A widely held belief since the early 20th century is that the quantum de-

scription is closer to nature and hence more fundamental.

Quantum field theory (QFT) describes the quantum behaviour of matter on clas-

sical, fixed Minkowski spacetime [21, 22]. Determining how field values at different

spacetime points are correlated is an important calculation in QFT. These correla-

tors - which are also known as Lorentzian Wightman functions - are used to explain

most interactions of elementary particles that are observed in particle accelerators.

A procedure used to make this calculation easier is Wick rotation: it is the replace-

ment of real time by imaginary - or Euclidean - time. This causes the action of

a field in 1 time and d space dimensions to resemble the Hamiltonian of a field in

d + 1 space dimensions and for the path integral to resemble a partition function

[23, 24]. As an additional step one may compactify Euclidean time by introducing

an upper limit on the Euclidean time coordinate and enforcing periodic boundary

conditions for the field in Euclidean time. The resultant theory is called Euclidean

QFT [25, 26, 27, 28] and it has a useful correspondence with statistical mechanics

whereby the compactification circumference β - the upper limit of the Euclidean time

coordinate - is inverse temperature. This is why Euclidean QFT is interpreted as

7



the study of a quantum field in contact with an external, fixed heat bath. It is also

worth noting that the Euclidean correlation functions can be used to define unique

Lorentzian Wightmann distributions [29].

However this correspondence does not extend to curved backgrounds and is appli-

cable only when the background spacetime is Minkowski. For curved backgrounds

Wick rotation can also become problematic, a possible issue being that the proce-

dure results in complex metric components whereby one obtains a theory of quantum

fields on classical, complex background. For example Wick rotating a cosmological

spacetime (1.5) yields a complex scale factor whereby the space-space components

of the metric become complex. Another example is the Kerr metric [30] that has

non-zero time-space components; upon Wick rotation these become complex also

[31, 32].

Euclidean QFT has two main branches: zero temperature Euclidean QFT in which

β → ∞, and thermal field theory (TFT) in which β is kept finite. TFT is used to

study interactions in which temperatures are large such as the heavy ion collisions

which lead to the production of the quark gluon plasma, the early universe and

neutron stars.

Generalizations of QFT include QFT on curved spacetime (QFTCS) which is the

study of quantum matter on classical, fixed, curved spacetime [33, 34]. Using QFTCS

it was shown that the expansion of the universe creates quantum particles and that

a black hole emits particles as if it is a thermal body with a temperature related to

the inverse of its mass [5]. This was the same relationship between the mass and

temperature of a black hole that was discovered via GR [4]. That this relationship

was obtained separately from GR and QFTCS motivated Gibbons and Hawking to

seek a statistical mechanics description for the thermodynamic properties of a black

hole. They succeeded by using Euclidean Schwarzschild geometry [35] and their

calculation involved Wick rotation and compactification of Euclidean time. The
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resultant Euclidean Schwarzschild geometry had a temperature T = (8πM)−1; this

will be covered in detail in a later section. It is worth noting that the Schwarzschild

metric does not become complex due to Wick rotation.

Later, Hawking and Page used this approach to study the gravitational field of a

black hole in AdS space (the Schwarzschild AdS metric also does not become complex

upon Wick rotation) [36]. They found that an asymptotically AdS black hole has a

characteristic temperature and entropy and that for a fixed value of the cosmological

constant, black holes less than a certain mass are unstable and decay into AdS space.

Hawking and Page’s work - which was originally in 4d - was generalized to study

asymptotically AdS black holes in 5d. This was later applied to the hypothesis that

the gravitational theory of a 5d AdS black hole is dual to a strongly coupled gauge

theory at finite temperature in 4d such as quantum chromodynamics (QCD). This

proposal is called the finite temperature AdS/CFT conjecture (where CFT stands

for conformal field theory) [37, 38]. It claims that a strongly coupled gauge theory

at finite temperature in 4d - which is not easy to analyze - can be understood via a

dual theory: the gravitational theory of a 5d AdS black hole.

This thesis probes gravity-matter systems within the context of cosmology and

black holes. Brief descriptions of each study are provided next.

Chapter 2 is related to the author’s MSc thesis [39] which was motivated the

question: how does CPT with a dust clock complement the known results and what

new information does it provide? In [39] a system of gravity and pressureless dust was

considered; this system had local gravitational and scalar dust DOF. The canonical

description was derived and the dust was fixed as a clock [13, 40]; a consequence of

this choice was that the gravity sector acquired an additional scalar DOF. One goal of

this work was to study the nature of the additional scalar DOF that corresponded to

pressureless dust within the context of CPT. The canonical action was used to derive

the equations of motion; the perturbed cosmological spatial metric and its conjugate
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momentum were substituted in the equations of motion, which were then expanded

to linear order in the perturbations; the perturbations were expressed in terms of

spatial Fourier modes and then classified based on their properties under rotations

in spatial Fourier space. The salient results were the cosmological graviton equation

and an additional ultralocal scalar DOF in the metric that represented presureless

dust. That a propagating scalar DOF was not discovered was due to the fact that

the dust (which was used to fix the time gauge) was pressureless. That a MS-like

equation was not found was unsurprising since the MS variable mixes perturbations

from the gravity and scalar field sectors; this was not possible here since the starting

system consisted of gravity and dust only.

Motivated by this, chapter 2 generalizes [39] by considering a system of gravity,

pressureless dust and scalar field. This is a valid generalization of [39] since the

universe consists of multiple matter fields. Now the starting system has local grav-

itational, scalar field and dust DOF. After fixing the dust-time gauge the metric

acquires an additional scalar DOF that corresponds to dust. The perturbed phase

space variables for the FLRW spacetime and scalar field are substituted in the canon-

ical action. The action is expanded to second order in the perturbations which are

then expressed in terms of spatial Fourier modes. These modes are next classified

based on their properties under rotations in spatial Fourier space. Finally the equa-

tions of motion for the perturbations are derived using the second order action: the

main results are the cosmological graviton equation, the MS equation with a source

term and another equation for an ultralocal DOF which represents dust. This work

is different from other CPTs, most importantly because it uses gravity, scalar field

and pressureless dust with the latter being used to fix a time gauge. This uniqueness

is manifested in the MS equation being generalized to include a source term and the

additional ultralocal DOF.

Chapter 3 is motivated by the question: since Euclidean Schwarzschild background
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has a temperature [2, 35] to what extent does it behave like a heat bath for a quan-

tum field that lives on it? To answer this a procedure is defined that allows one to

study the thermodynamic properties of the field for different M using Monte-Carlo

(MC) simulations. This is Euclidean QFT on black hole space which is different from

standard QFTCS in several ways. Firstly, the proposed method uses the Euclicdean

black hole background whereas QFTCS uses the Lorentzian background. Secondly,

in the proposed method the compactification of Euclidean time results in a cor-

respondence with statistical mechanics. There is no such correspondence between

QFTCS and statistical mechanics. This work is also different from TFT since it

uses Euclidean black hole backgrounds and TFT uses flat Euclidean space. The

remaining differences require technical background and therefore will be discussed

after Euclidean black holes are introduced.

To ensure a simple model and reasonable computation times the excitations of the

field are restricted. One restriction is that the field can take values ± 1 whereby

one has an Ising-like model [41] on black hole space. It is found that for small M

the spins are disordered, for large M the spins are ordered, the phase transition

is second order and it occurs at sub-Planckian M . Ising-like models on AdS black

holes in four and five dimensions are also studied. Then the allowed excitations of

the field are extended to 0 and ± 1; this is like the Blume Capel model [42, 43]

(which is a generalization of the Ising model) on the three backgrounds mentioned.

Second order phase transitions that occur at sub-Planckian M are discovered for all

spin models studied. This research will be sent for publication soon.

The fourth chapter summarizes the thesis and discusses future extensions and

applications of the works presented. The appendices contain supplementary cal-

culations, additional details and the reuse and permission license for the research

presented in Chapter 2.
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Chapter 2

Cosmological perturbation theory

with matter-time

2.1 Introduction

The diffeomorphism symmetry of general relativity (GR) is manifested in its

canonical formulation through the presence of phase space constraints that generate a

closed Poisson algebra. The Hamiltonian is a linear combination of these constraints,

and so vanishes on shell [44, 45]. The path to a physical non-vanishing Hamiltonian

requires selecting a function on the phase space as a choice of time; the negative

of the phase space variable conjugate to the time choice provides this Hamiltonian

[10]. It is clear that there are numerous choices for physical Hamiltonians, and the

classical dynamics generated using these, for given ansätze, lead ultimately to the

same solutions, but in different charts, and covering different regions of the spacetime

manifold.

In early work on general relativity, time choices were divided into “intrinsic,” where

time is a function of the spatial metric, and “extrinsic,” where time is a function of

the extrinsic curvature (or the momentum conjugate to the spatial metric). Two fre-
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quently studied examples of such choices are 3-volume, and the trace of the extrinsic

curvature (York time) [46].

For GR with matter fields, there is also the possibility of using matter phase

space functions as clocks. Examples of such clocks date back to early studies of

cosmological models, where a scalar field was used as a clock [47]. More generally

Brown and Kuchař [12] gave a prescription for using a 4-component fluid field coupled

to GR as a matter reference system for time and space. This idea, along with the

older one of scalar field time, has subsequently been used in many works with the

aim of building models for quantum gravity [13, 48, 49, 50].

There are two closely related approaches in which geometric or matter reference

systems may be used for classical and quantum models. One of these is to fix

the gauge and solve the corresponding constraint strongly and thereby obtain a

partially or fully gauge fixed (or “deparametrized”) system. The other is to use

“relational” observables [51] without deparametrizing, where the evolution of one

variable is observed relative to that of the chosen clock variable. This latter procedure

generates gauge invariant (Dirac) observables through eliminating the arbitrary time

parameter t by inverting the evolution of a clock phase space variable T : one inverts

T (t) → t(T ) in some domain, and then substitutes t(T ) into any other observables

O(t) of interest, O(t) → O(t(T )).

In this chapter we apply a specific matter-time gauge (dust-time) to cosmological

perturbation theory in the Hamiltonian formulation. The principal advantage of this

gauge is that the physical Hamiltonian takes a simple form: it is exactly the same

algebraic expression as the Hamiltonian constraint without the dust contribution.

At this first stage we do not fix the spatial diffeomorphism symmetry, which remains

as a decoupled gauge symmetry until we proceed to a second order expansion of

the canonical action. In the diffeomorphism constraint also the dust contribution

is now absent. We emphasize that the process we follow applies to GR coupled to

13



dust and any other matter fields, including additional scalars, fermions or gauge

fields; in the dust-time gauge the physical Hamiltonian is always the same algebraic

expression as the Hamiltonian constraint without the dust contribution, and the

spatial diffeomorphism decouples in the same way as for the case of a single scalar

field we develop here.

Our work is not the first to construct a Hamiltonian perturbation theory for cos-

mology. The first such analysis was given in [14]; others using the relational approach

have appeared recently [19, 20]. However our approach differs from both in several

respects, the primary one being that we use only a clock field, and fix a matter-time

gauge strongly at the outset before proceeding to cosmology [13]. This step simpli-

fies the analysis significantly by removing the Hamiltonian constraint at the outset.

Another important difference is that the theory we consider, GR, with dust and a

scalar field, has four local physical degrees of freedom, two gravitational, one scalar

and one dust. Therefore, after selecting the dust-time gauge, the metric acquires an

additional degree of freedom. In these aspects our work complements these earlier

works, with little overlap. The approach we follow was used by one of the authors

for studying perturbations on Minkowski space [40]; the work presented here may

be considered an extension of this to cosmological perturbation theory. It may be

generalized to include additional matter fields.

In the next section we review the use of the dust-time gauge in the ADM canon-

ical framework [12, 13]. In Sec. 2.3 we develop the linearized perturbation theory

by expanding the Hamiltonian and diffeormorphism constraints about an arbitrary

FLRW-scalar solution. We show from the canonical perspective that the graviton

equations turn out to be exactly those derived in the standard covariant perturbation

theory without dust (see e.g. [6]), and that the vector modes may be gauged away.

In Sec. 2.4 we introduce diffeormorphism invariant phase space variables to study

the scalar field and curvature degrees of freedom (which are independent degrees of
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freedom in the dust-time gauge). In Sec. 2.5 we give a detailed comparison with

standard perturbation theory. We conclude in Sec. 2.6 with a summary and possible

future directions. Several appendices provide details of our calculations: Appendix

A.1 gives details of the Hamiltonian perturbation expansion, Appendix A.2 gives

a derivation of the graviton equation, and Appendix A.3 provides a proof that the

linearized constraints are first class.

2.2 Hamiltonian gravity with dust

We consider GR coupled to dust and a scalar field. The action is

S = − 1

2π

∫
d4x

√
−gR +

1

4π

∫
d4x

√
−g m(gab∂aT∂bT + 1) +

∫
d4x L(Φ). (2.1)

The second term is the dust action, and the last term is the minimally coupled

scalar field with an arbitrary potential V (Φ). With ua = gab∂bT , the dust energy-

momentum tensor is

T abD = muaub +
m

2
gab
(
gcdu

cud + 1
)
. (2.2)

Thus on shell, m is interpreted as the dust energy density.

The ADM canonical theory obtained from this action is

S =

∫
dt d3x

(
πabq̇ab + pΦΦ̇ + pT Ṫ −NH−NaCa

)
, (2.3)

where the pairs (qab, π
ab), (Φ, pΦ) and (T, pT ) are respectively the phase space vari-

ables of gravity, scalar field and dust. The lapse and shift functions, N and Na are

the coefficients of the Hamiltonian and diffeomorphism constraints

H = HG +HD +HΦ, (2.4)
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Ca = CGa + CDa + CΦ
a

=− 2Dbπ
b
a + pT∂aT + pΦ∂aΦ,

(2.5)

where

HG =
1
√
q

(
πabπab −

1

2
π2

)
−√

qR(3) (2.6)

HD =
1

2

[
p2T
m
√
q
+m

√
q
(
qab∂aT∂bT + 1

)]
(2.7)

HΦ =
1

2

(
p2Φ√
q
+
√
qqab∂aΦ∂bΦ

)
, (2.8)

∂a, Da are the spatial partial and covariant derivatives, and R(3) is the spatial Ricci

scalar. The field m appears only in HD as an auxiliary field. We can therefore solve

its EOM for m and substitute the result back into HD:

m = ± pT√
q(qab∂aT∂bT + 1)

, (2.9)

HD = sgn(m) pT
√
qab∂aT∂bT + 1, (2.10)

where sgn(m) is the sign convention chosen in (2.9). With this expression for HD,

the final canonical action retains the form (2.3), but now with no dependence on m

except for its sign.

2.2.1 Dust-time gauge

We now introduce a partial gauge fixing by setting a time gauge to obtain a

physical Hamiltonian; this fixes the time-reparmetrization invariance, while the spa-

tial diffeomorphisms remain as a full gauge symmetry. We use the dust-time gauge

[13, 52] which equates the physical time with the dust field, i.e., the spatial hyper-

16



surfaces are level surfaces of the dust field,

λ ≡ T − ϵt ≈ 0, ϵ = ±1. (2.11)

This is a special case of the Brown-Kuchař matter reference frame system which is

designed to fix all four coordinate conditions. The condition (2.11) has a nonzero

Poisson bracket with the Hamiltonian constraint, so this pair of conditions constitute

a second class set. According to the Dirac criteria, a gauge condition is considered

suitable if the matrix of second class constraints is invertible at all points [45]. In

the present case this matrix is

C =

 0 {λ,H}

{H, λ} 0

 = sgn(m)

 0 1

−1 0

 . (2.12)

This matrix is invertible everywhere on the manifold (since sgn(m) is merely a sign

convention selected in (2.9)). Therefore the dust-time gauge does not breakdown

at any point and is therefore a robust choice. The second condition on a canonical

gauge is that it be preserved in time. This gives an equation for the lapse function:

ϵ = Ṫ =

{
T,

∫
d3x (NH +NaCa)

}∣∣∣∣
T=t

= sgn(m)N . (2.13)

Solving the Hamiltonian constraint for pT and substituting the gauge condition

back into (2.3) gives the gauge fixed action

SGF =

∫
dt d3x

[
πabq̇ab + pΦΦ̇− ϵ sgn(m)

(
HG +HΦ

)
−NaCa

]
, (2.14)

This identifies the physical Hamiltonian density

HP = ϵ sgn(m)
(
HG +HΦ

)
= sgn(N)

(
HG +HΦ

)
, (2.15)
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where the last equality follows from (2.13). Thus the physical Hamiltonian is deter-

mined up to an overall sign of the lapse function. Since we are free to choose the

lapse up to sign, we will work with N = 1. The corresponding spacetime metric is

ds2 = −dt2 + (dxa +Nadt)(dxb +N bdt)qab. (2.16)

In the following we apply the dust-time canonical action (2.14) to flat FLRW

cosmology and construct the linearized perturbation theory. At this stage we note the

central difference with standard perturbation theory: we have a physical Hamiltonian

not a Hamiltonian constraint, therefore the gauge invariant observables we work

with are those that are invariant under the spatial diffeomorphisms. Furthermore,

the physical Hamiltonian (2.15) is what would be the Hamiltonian constraint for

the gravity-scalar system. As a result, per point we have three physical degrees of

freedom in the metric, and one in the scalar field; the presence of the third degree of

freedom in the metric is due ultimately to the fact that our starting action had a dust

field. As we will show, these can be rearranged into two graviton modes, a curvature

perturbation, and the scalar field, with a relatively simple coupled dynamics.

2.3 Cosmological perturbation theory

Our starting point for developing a canonical perturbation theory for flat FLRW

models is the selection of a background solution starting with the action (2.14). This

starting point is distinct from all standard treatments of the subject, both canonical

and covariant, with the key difference being that the Hamiltonian constraint is no

longer a constraint, but is instead the physical Hamiltonian. This has several conse-

quences, the main one being that the additional local degree of freedom that came

from the dust emerges in the metric perturbation.

Let us take the following parametrization for the ADM variables for the background
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solution:

q
(0)
ab = ā2(t) eab, πab(0) =

(
p̄(t)

6ā(t)

)
eab, (2.17)

Φ(0) = ϕ̄(t), p
(0)
Φ = p̄ϕ(t), (2.18)

Na(0) = 0 (2.19)

where eab is the Euclidean metric, (ā(t), p̄(t)) and (ϕ̄(t), p̄ϕ(t)) are the scale factor

and scalar field and their conjugate momenta. Substituting these into the dust-time

gauge fixed canonical action (2.14) gives the reduced action for the background

S =

∫
dt
[
˙̄ap̄+ ˙̄ϕp̄ϕ − H̄

]
(2.20)

where

H̄ = − p̄2

24ā
+

p̄2ϕ
2ā3

+ ā3V (ϕ̄). (2.21)

The background spacetime metric with this parametrization, with N2 = 1 in the

dust-time gauge, is of the standard form

ds2 = −dt2 + ā2(t)eabdx
adxb. (2.22)

The background EOM are

˙̄a = − p̄

12ā
(2.23a)

˙̄p = − p̄2

24ā2
+

3p̄2ϕ
2ā4

− 3ā2V (ϕ̄) (2.23b)

˙̄ϕ =
p̄ϕ
ā3

(2.23c)

˙̄pϕ = −ā3V ′(ϕ̄), (2.23d)

where V ′(ϕ̄) = dV/dϕ|ϕ̄. The physical Hamiltonian is a constant of the motion in
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the dust-time gauge, since it is not explicitly time dependent; this is unlike other

time gauges, such as volume time a3 = t. The background solution is of the type

H̄ = µ, (2.24)

where µ is a constant, and therefore falls into one of the three classes: H̄ = 0, H̄ > 0,

and H̄ < 0. The first of these corresponds to the condition

p̄2

24ā
=

p̄2ϕ
2ā3

+ ā3V (ϕ̄), (2.25)

which by the equation of motion for ā (and restoring the 8πG factor) is the Friedmann

equation

H̄2 =
8πG

3

(
p̄2ϕ
2ā6

+ V (ϕ̄)

)
, (2.26)

where H̄ = ˙̄a/ā. For the cases H̄ = µ ̸= 0, the conservation of the physical Hamilto-

nian may be written

H̄2 =
8πG

3

(
p̄2ϕ
2ā6

+ V (ϕ̄)− µ

ā3

)
, (2.27)

which shows that µ gives the dust energy density contribution to the Friedmann

equation up to a minus sign. This completes our summary of the background solu-

tions in the dust-time gauge.
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2.3.1 Linearized theory

We define the following expansion of phase space variables and the shift vector:

qab(t, x⃗) = ā(t)2eab + hab(t, x⃗) (2.28a)

πab(t, x⃗) =
p̄(t)

6ā(t)
eab + pab(t, x⃗) (2.28b)

Na(t, x⃗) = 0 + ξa(t, x⃗) (2.28c)

Φ(t, x⃗) = ϕ̄(t) + ϕ(t, x⃗) (2.28d)

pΦ(t, x⃗) = p̄ϕ(t) + pϕ(t, x⃗). (2.28e)

Here the fields hab, p
ab, ϕ, pϕ are respectively the perturbations of the gravitational

and scalar field phase space variables, and ξa is the perturbation of the shift vector.

These are substituted into the physical Hamiltonian and spatial diffeomorphism

constraint, which are then expanded to second order in the perturbations. This leads

to the second order action for the perturbations

S(2) =

∫
dtd3x

[
ḣabp

ab + ϕ̇pϕ −H(2) − ξaC(1)
a

]
, (2.29)

where H(2) is the second order perturbation of the Hamiltonian, and C
(1)
a is first

order perturbation of the spatial diffeomorphism constraint. The latter is all that is

required since the shift is first order. We note also that terms linear in the pertur-

bations vanish when the background solution is imposed; the first order symplectic

term in the action combines with the first order term H(1)|S̄ to give zero, and the

first order diffeomorphism term
(
Na(0)C

(1)
a + ξaC

(0)
a

)
|S̄ = 0. (S̄ denotes evaluation

on the background solution.) The expressions for

H(2) = HG(2) +HΦ(2) (2.30)

C(1)
a = CG(1)

a + CΦ(1)
a (2.31)
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are the following:

HG(2) = ā

(
pabpab −

1

2
p2
)
+

1

ā

( p̄
6ā

)(
pabhab −

1

2
hp

)
+

1

8ā3

( p̄
6ā

)2(
5habh

ab − 3

2
h2
)
− h

2ā3

(
∂a∂bh

ab − 1

2
∂2h

)
+
hab

2ā3

(
∂b∂

chca −
1

2
∂2hab

)
(2.32)

Hϕ(2) =
p2ϕ
2ā3

+
ā

2
eab∂aϕ∂bϕ+

ā3

2
V ′′(ϕ̄) ϕ2

+ā

(
− p̄ϕ
2ā6

pϕ +
1

2
V ′(ϕ̄) ϕ

)
h+

p̄2ϕ
8ā7

(
habh

ab +
1

2
h2
)

− 1

4ā
V (ϕ̄)

(
habh

ab − 1

2
h2
)

(2.33)

C(1)
a = −2ā2∂bpab −

p̄

3ā

(
∂chac −

1

2
∂ah

)
+ p̄ϕ∂aϕ. (2.34)

All indices in these equations are raised and lowered by the Euclidean metric eab;

∂2 = eab∂a∂b, h = habe
ab, and p = pabeab. The derivation of these expressions appears

in Appendix A.1.

2.3.2 Linearized theory in momentum space

We next write the action for the perturbations and the shift in spatial Fourier

modes, as this significantly simplifies the remaining analysis. We set

hab(t, x⃗) =

∫
d3k

[
eik⃗.x⃗M I

abhI(t, k⃗)
]
, (2.35)

pab(t, x⃗) =

∫
d3k

[
eik⃗.x⃗Mab

I p
I(t, k⃗)

]
, (2.36)

ϕ(t, x⃗) =

∫
d3k

[
eik⃗.x⃗ϕ̃(t, k⃗)

]
, (2.37)

pϕ(t, x⃗) =

∫
d3k

[
eik⃗.x⃗p̃ϕ(t, k⃗)

]
, (2.38)

ξa(t, x⃗) =

∫
d3k

[
eik⃗.x⃗ξ̃a(t, k⃗)

]
. (2.39)
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Here the matrices M I
ab, I = 1 · · · 6 (to be defined below) form a time independent

basis for 3 × 3 symmetric matrices that give a decomposition of the gravitational

phase space variables into the canonical set (hI , pI), and the lowercase indices are

lowered and raised using the flat Euclidean spatial metric and its inverse respectively.

The matrices M I must satisfy the orthogonality condition

Tr(M IMJ) =M I
abM

Jab = δIJ , (2.40)

to ensure that the symplectic structure is preserved when the canonical action for

perturbations (2.29) is written in k−space, i.e.

∫
d3xdt pabḣab −→

∫
d3kdt pI ḣ

I . (2.41)

A suitable matrix basis that fulfills this requirement may be constructed using the

unit mode vector and two unit orthogonal vectors in the plane transverse to ka

ϵa3 ≡ ka/|k|, ϵa1, ϵa2. (2.42)

Since we would like to characterize the matrices M as having defined helicity with

respect to rotations about the ka axis, we replace ϵa1, ϵ
a
2 with the eigenvectors of the

rotation matrix Jθ about the ka axis. These are ϵa± = (ϵa1 ± iϵa2)/
√
2, and satisfy

Jθϵ± = e±iθϵ± , Jθϵ3 = ϵ3, and eabϵ
a
−ϵ

b
+ = 1 and eabϵ

a
±ϵ

b
± = 0. Using the set (ϵ3, ϵ±),

the Euclidean metric may be written as eab = 2ϵ
(a
+ ϵ

b)
− + ϵa3ϵ

b
3.

The six matrices M I are constructed from the elements

ϵa3ϵ
b
3, ϵ

(a
− ϵ

b)
+, ϵa±ϵ

b
±, ϵ

(a
3 ϵ

b)
±. (2.43)

Under Jθ, the first two transform as scalars, the second two as tensors, and the last

two as vectors. However as they stand, these do not satisfy the desired orthogonality
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conditions (2.40). This is achieved by the following linear combinations:

Mab
1 =

1√
3
eab, (2.44)

Mab
2 =

√
3

2

(
ϵa3ϵ

b
3 −

1

3
eab
)
, (2.45)

Mab
3 =

i√
2

(
ϵa−ϵ

b
− − ϵa+ϵ

b
+

)
, (2.46)

Mab
4 =

1√
2

(
ϵa−ϵ

b
− + ϵa+ϵ

b
+

)
, (2.47)

Mab
5 = i

(
ϵ
(a
− ϵ

b)
3 − ϵ

(a
+ ϵ

b)
3

)
, (2.48)

Mab
6 = ϵ

(a
− ϵ

b)
3 + ϵ

(a
+ ϵ

b)
3 , (2.49)

where again the first pair transform as scalars, the next pair as tensors, and the last

pair as vectors. Let us also note a few other properties of these matrices:

eabM I
ab = 0, I = 2 · · · 6;

kaM I
ab = 0, I = 3, 4;

kakbM I
ab = 0, I = 5, 6. (2.50)

Thus in the decomposition of the Fourier transform of the metric perturbation

h̃ab(k, t) ≡M I
abhI(k, t), h1, h2 are the scalar modes, h3, h4 are the transverse traceless

tensor modes, and h5, h6 are the transverse vector modes. The same properties hold

for the momenta pI conjugate to h
I . The shift perturbation may also be decomposed

into longitudinal and transverse components:

ξ̃a(t, k⃗) = ξ1(t, k⃗)ϵ
a
1 + ξ2(t, k⃗)ϵ

a
2 + ξ||(t, k⃗)ϵ

a
3. (2.51)

In summary, so far we have decomposed the perturbations hab(x, t), p
ab(x, t) into

longitudinal and transverse Fourier modes hI(k, t), pI(k, t), I = 1 · · · 6, with well

defined physical properties, and a related expansion for ξa. (The scalar field pertur-
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bation of course does not require any decomposition.) We now write the canonical

action in k−space using this decomposition.

2.3.3 Canonical action in momentum space

As is standard in field theory, writing an action in momentum space using (2.35) re-

quires field redefinitions after implementing the reality conditions such as h̃∗ab(t, k) =

h̃ab(t,−k). One way to do this is to write h̃ab(k, t) = h̃Rab(k, t) + ih̃Iab(k, t), impose

the reality condition, restrict the action to be over independent modes, and then

redefine modes to give an action with integration over all k. Following these steps,

and using the decompositions

h̃ab(k, t) =MabIh
I(k, t), p̃ab(k, t) =MabIpI(k, t), I = 1 · · · 6, (2.52)

gives the k−space action

S(2) =

∫
dtd3k

[
ḣIpI +

˙̃ϕp̃ϕ − H̃(2) − iξ̃aC̃(1)
a

]
, (2.53)

where H̃(2) = H̃G(2) + H̃ϕ(2), and

H̃G(2) = ā

(
pIpI −

3

2
p21

)
+

1

ā

( p̄
6ā

)(
pIhI −

3

2
h1p1

)
+

1

8ā3

( p̄
6ā

)2(
5hIh

I − 9

2
h21

)
− k2

6ā3

[(
h1 −

h2√
2

)2

− 3

2

(
h23 + h24

)]
, (2.54a)

H̃ϕ(2) =
p̃2ϕ
2ā3

+
ā

2
k2ϕ̃2 +

ā3

2
V ′′(ϕ̄)ϕ̃2

+
√
3ā

(
− p̄ϕ
2ā6

p̃ϕ +
1

2
V ′(ϕ̄)ϕ̃

)
h1

+
p̄2ϕ
8ā7

(
hIh

I +
3

2
h21

)
− V (ϕ̄)

4ā

(
hIh

I − 3

2
h21

)
. (2.54b)
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The linearized diffeomorphism constraint in momentum space C̃
(1)
a = 0 is

C̃(1)
a = C̃G

a + C̃ϕ
a

= −2ā2kbM I
abpI −

p̄

3ā

(
kcM I

achI −
√
3ka
2

h1

)
+ p̄ϕkaϕ̃. (2.55)

A further expansion of C̃
(1)
a using the properties of the M I basis reveals its longitu-

dinal and transverse components:

C̃(1)
a = k

[
−2ā2√

3
(p1 +

√
2p2) +

p̄

6
√
3ā

(h1 − 2
√
2h2) + p̄ϕϕ̃

]
ϵ3a

−
√
2k
[
ā2p6 +

( p̄
6ā

)
h6

]
ϵ1a −

√
2k
[
ā2p5 +

( p̄
6ā

)
h5

]
ϵ2a. (2.56a)

Similarly, the gravitational Hamiltonian may be written as a sum of scalar (h1, h2),

tensor (h3, h4), and vector (h5, h6) components, and their canonical momenta:

H̃G(2) = HS +HV +HT , (2.57)

HS = ā

(
p22 −

1

2
p21

)
+

1

ā

( p̄
6ā

)(
h2p2 −

1

2
h1p1

)
+

1

8ā3

( p̄
6ā

)2(1

2
h21 + 5h22

)
− 1

6ā

(
k

ā

)2(
h1 −

1√
2
h2

)2

, (2.58a)

HV = ā
(
p25 + p26

)
+

1

ā

( p̄
6ā

)
(p5h5 + p6h6) +

5

8ā3

( p̄
6ā

)2 (
h25 + h26

)
, (2.58b)

HT = ā
(
p23 + p24

)
+

1

ā

( p̄
6ā

)
(p3h3 + p4h4)

+
1

4ā

[
5

2ā2

( p̄
6ā

)2
+

(
k

ā

)2
] (
h23 + h24

)
. (2.58c)

This shows that only the scalar canonical pairs (h1, p1) and (h2, p2) interact with each

other, while all the other pairs are mutually decoupled. Denoting the longitudinal

and transverse components of the diffeomorphism constraint by C∥ and C⊥, we note
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also that

{HS, C⊥} = 0, {HV , C∥} = 0, {HT , Ca} = 0. (2.59)

Thus the graviton modes are diffeomorphism invariant (to this order in perturbation

theory). All propagating modes appear with a factor k2 so the vector modes are

non-propagating; the last term in HS is the curvature perturbation up to an overall

factor.

2.3.4 Partial gauge fixing: removal of vector modes

At this stage it is useful to perform a gauge fixing to remove the vector modes. This

involves imposing canonical gauge conditions on these modes and solving strongly

the corresponding diffeomorphism constraint components. The above decomposition

reveals the convenient choice

h5 = h6 = 0. (2.60)

These are second class with the components C⊥,

{h5, C⊥} = {h6, C⊥} =
√
2kā2, (2.61)

unless ā = 0 or k = 0. Since we are interested in propagating modes (where the

diffeomorphism constraint is not identically zero), and in regions far from a potential

singularity, these gauge choices are sufficient. C⊥ = 0 is then solved by setting

p5 = p6 = 0.

This result is different from the one obtained in the standard, covariant cosmo-

logical perturbation theory where the vector modes decay in an expanding universe

due to which they are typically set to zero [6, 39]. In our framework one can use a
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different gauge from (2.60) to arrive at decaying vector modes. However the current

result is more useful since it shows that vector modes are gauge DOF.

The resulting H̃G(2) is now

H̃G(2) = HS +HT , (2.62)

and the second order scalar field Hamiltonian becomes

H̃ϕ(2) =
p̃2ϕ
2ā3

+
ā

2
k2ϕ̃2 +

ā3

2
V ′′(ϕ̄)ϕ̃2

+
√
3ā

[
−
( p̄ϕ
2ā6

)
p̃ϕ +

1

2
V ′(ϕ̄)ϕ̃

]
h1

+
p̄2ϕ
8ā7

(
hIh

I +
3

2
h21

)
− V (ϕ̄)

4ā

(
hIh

I − 3

2
h21

)
, (2.63)

where the sums hIh
I in the last line now exclude the vectors modes h5, h6. The first

line is the standard Hamiltonian of the scalar field perturbation (ϕ̃, p̃ϕ) on the (ā, ϕ̄)

homogeneous background; the second line contains the coupling of the scalar field

perturbation to the metric scalar mode h1; the last line is a potential for the graviton

and metric-scalar modes.

The diffeomorphism constraint is reduced to only its longitudinal component

C̃∥ ≡ −2ā2(p1 +
√
2p2) +

( p̄
6ā

)
(h1 − 2

√
2h2) +

√
3p̄ϕϕ̃ = 0. (2.64)

In summary, the gauge fixing (2.60) leaves a simpler system for the the remaining

degrees of freedom: the metric scalar modes (h1, h2), graviton modes (h3, h4), and

the scalar field mode ϕ̃.
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2.3.5 Graviton equation

The graviton part of the second order canonical action is

Sg ≡
∫
dtd3k

[
pI ḣI −Hg

]
, I = 3, 4, (2.65)

where Hg is the sum of HT in (2.58c) and the graviton parts of Hϕ(2) in (2.54b).

For comparison with covariant perturbation theory, where the expansion qab =

ā2(t) (eab + hab) is used, let us make the transformation

hI −→ ā2hI , pI −→ ā−2pI . (2.66)

With this, the symplectic term transforms to

ḣIp
I −→ ḣIp

I + 2

(
˙̄a

ā

)
hIp

I = ḣIp
I − p̄

6ā2
hIpI , (2.67)

where the last step uses the EOM of the background. Therefore Hg transforms to

Hg =
1

ā3
(
p23 + p24

)
+
( p̄

3ā2

)
(p3h3 + p4h4)

+
ā3

4

[
p̄2ϕ
2ā6

− V (ϕ̄) +
5

2

( p̄

6ā2

)2
+

(
k

ā

)2
] (
h23 + h24

)
. (2.68)

Although this expression forHg looks involved, it is readily verified that the canonical

EOM

ḣI = {hI , Hg}, ṗI = {pI , Hg}, (2.69)

together with the equations (2.23) of the background (ā, p̄), leads to the standard
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wave equation

ḧI + 3

(
˙̄a

ā

)
ḣI +

k2

a2
hI = 0, I = 3, 4. (2.70)

Thus the graviton mode equation is unchanged in the canonical dust-time gauge.

The calculation leading to this has some non-trivial steps (see Appendix A.2).

2.4 Scalar modes

We have so far seen that the dust-time physical Hamiltonian in momentum space,

in the time independent matrix basis M , provides a relatively simple way to analyze

cosmological perturbations. Specifically we showed from a canonical perspective how

the vector perturbations are removed, and the graviton equation remains unchanged.

We now turn to the remaining degrees of freedom (h1, h2, ϕ̃), with dynamics de-

scribed by HS (2.58a) and H̃ϕ(2) (2.63),

HSϕ ≡ ā

(
p22 −

1

2
p21

)
+

1

ā

( p̄
6ā

)(
h2p2 −

1

2
h1p1

)
+

1

8ā3

( p̄
6ā

)2(1

2
h21 + 5h22

)
− 1

6ā

(
k

ā

)2(
h1 −

1√
2
h2

)2

+
p̄2ϕ
8ā7

(
5

2
h21 + h22

)
+
V (ϕ̄)

4ā

(
1

2
h21 − h22

)
+
p̃2ϕ
2ā3

+
ā

2
k2ϕ̃2 +

ā3

2
V ′′(ϕ̄)ϕ̃2 +

√
3ā

[
−
( p̄ϕ
2ā6

)
p̃ϕ +

1

2
V ′(ϕ̄)ϕ̃

]
h1, (2.71)

subject to the remaining diffeomorphism constraint C∥ (2.64).

The Hamiltonian HSϕ is of the form of hS(hi, pi) + hϕ(ϕ̃, p̃ϕ) + hInt(ϕ̃, p̃ϕ, h1). It

is notable that the scalar field perturbation ϕ̃ interacts with only the metric-scalar

mode h1 in the last term. The constraint C∥ depends on the remaining phase space

variables, and is also explicitly time dependent through the background solution
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(ā, p̄, p̄ϕ); it is therefore useful to check that it is remains first class, i.e.

˙̃C∥ =

{
C̃∥,

∫
d3k HSϕ

}
+
∂C̃∥

∂t
= 0. (2.72)

This is indeed the case (see Appendix A.3).

At this stage we have one first class constraint C∥ and three configuration vari-

ables h1, h2, ϕ. Therefore there are two physical configuration degrees of freedom

in the metric perturbation (in addition to the two graviton modes we have already

discussed). We recall that this is unlike the standard cosmological perturbation the-

ory where the starting point has only the metric and scalar field perturbations; in

the model we are studying, there is also the dust field, which was fixed as the time

coordinate, thereby leaving an additional physical configuration variable in the met-

ric perturbation. We now turn to identifying two physical diffeomorphism invariant

variables and their conjugate momenta. These satisfy

{O, C̃∥} = 0. (2.73)

2.4.1 Diffeomorphism invariant observables

For linear perturbation we are interested in observables O defined by (2.73) that

are linear in the phase space variables (h1, h2, p1, p2, ϕ̃, p̃ϕ). There are many choices.

We are interested in diffeomorphism invariant canonical pairs and an expression for

the physical Hamiltonian (2.71) in terms of such pairs. Let us note that ϕ̃ is already
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invariant since p̃ϕ does not appear in C̃∥. A few other elementary ones are

H ≡ h1 −
h2√
2
, P ≡ p1 +

p2

2
√
2
, (2.74)

A1 ≡ h1 −
(
12ā3

p̄

)
p1, A2 ≡ h2 +

(
6ā3

p̄

)
p2, (2.75)

B1 = h1 −
(

2ā2√
3p̄ϕ

)
p̃ϕ, B2 = h2 −

(
2
√
2ā2

3p̄ϕ

)
p̃ϕ. (2.76)

These may be used to construct invariant canonical pairs by taking linear combina-

tions with coefficients that are functions of the background solution.

The first of these observables H is proportional to the Ricci curvature R(3) of the

spatial slice. To see this we note that to linear order

R(3) =
1

ā4
(
∂a∂bh

ab − ∂2h
)
. (2.77)

In the M basis in momentum space, this becomes

R̃(3) = 4

(
k

ā

)2 [
1

2
√
3ā2

(
h1 −

h2√
2

)]
≡ −4

(
k

ā

)2

ψ; (2.78)

the ψ in the last term defines the curvature perturbation used in the covariant theory.

It is readily verified that a momentum conjugate to ψ is

Pψ ≡ −8ā2√
3

(
p1 +

p2

2
√
2

)
. (2.79)

This satisfies

{Pψ, C̃∥} = 0, {ψ, Pψ} = 1. (2.80)

A second canonical pair is found by noting that the scalar field perturbation ϕ is
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diffeomorphism invariant,

{ϕ, C̃∥} = 0. (2.81)

For notational convenience we define γ ≡ ϕ̃. A diffeomorphism invariant variable

canonically conjugate to γ is

Pγ = p̃ϕ + 2
√
3
āp̄ϕ
p̄

(
p1 +

√
2p2

)
, (2.82)

and this satisfies

{Pγ, C̃∥} = {Pγ, ψ} = {Pγ, Pψ} = 0, {γ, Pγ} = 1. (2.83)

(We note that p̃ϕ is canonically conjugate to ϕ̃, but it is not gauge invariant, hence

the need to define an alternative conjugate momentum that is gauge invariant.)

Although the Hamiltonian (2.71) may be written down in terms of these variables, it

is more convenient to use a different set that is useful to make a comparison with the

conventional perturbation theory without the dust field. For this reason we select

the following diffeomorphism invariant canonical pairs. The first pair is

R = ψ −
(

āp̄

12p̄ϕ

)
ϕ̃ (2.84)

PR =

(
48k2ā3

p̄

)
ψ +

√
2

3

( p̄
ā

)
A2, (2.85)
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and the second pair is

χ =

(
ā3

p̄ϕ

)
ϕ̃, (2.86)

Pχ = 4āk2ψ +

(√
3p̄

18ā

)(
˙̄pϕ
p̄ϕ

− 3H̄

)
A1 −

√
2

3

(
p̄ ˙̄pϕ
3āp̄ϕ

)
A2

−

(√
3p̄2ϕ
2ā5

)
B1. (2.87)

These satisfy

{R, PR} = {χ, Pχ} = 1, {PR, Pχ} = {PR, χ} = {Pχ,R} = {R, χ} = 0. (2.88)

We can now write the Hamiltonian (2.71) in terms of these canonical variables.

Before doing this it is convenient to fix a gauge and solve the diffeomorphism con-

straint C∥ = 0; since the variables are diffeomorphism invariant, their values would

of course be unaffected. We choose the gauge

h1 = 0. (2.89)

This choice removes the interaction of h1 and ϕ in the Hamiltonian (2.71), thereby

simplifying it considerably. It is second class with C∥:

{h1, C∥} = −2ā2, (2.90)

unless ā = 0. Setting h1 = 0 and solving the diffeomorphism constraint for p1,

p1 = −
√
2
(
p2 +

p̄

6ā3
h2

)
+

√
3pϕ̄
2ā2

ϕ̃, (2.91)

gives the fully reduced theory for the gauge invariant pairs (R, PR) and (χ, Pχ). The
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final action is

S
(2)
GF ≡

∫
dtd3k

[
ṘPR + χ̇Pχ −H(2)

]
, (2.92)

where the k−space Hamiltonian density takes the remarkably simple form

H(2) =
1

2ā

[
1

z2
P 2
R + k2 (zR)2

]
+

(
ā3

2p̄2ϕ

)
P 2
χ −

(
āp̄

12p̄2ϕ

)
PRPχ, (2.93)

with

z = −12p̄ϕ
p̄

. (2.94)

The EOM following from this Hamiltonian are

Ṙ =

(
1

āz2

)
PR +

(
ā

zp̄ϕ

)
Pχ, (2.95)

ṖR = −
(
k2z2

ā

)
R, (2.96)

χ̇ =

(
ā3

p̄2ϕ

)
Pχ +

(
ā

zp̄ϕ

)
PR =

(
1

H̄

)
Ṙ (2.97)

Ṗχ = 0 =⇒ Pχ = C. (2.98)

These lead to the second order equations

R̈+

(
ζ̇

ζ

)
Ṙ+

(
k2

ā2

)
R = Cf̄(t), (2.99)

χ̈+

(
α̇

α

)
χ̇ =

1

H̄

(
Cf̄ − k2

ā2
R
)
, (2.100)

where ζ = āz2, α = H̄ζ and f̄(t) is the following function of background solution

f̄ =

(
ā

zp̄ϕ

)·

+

(
ζ̇

ζ

)(
ā

zp̄ϕ

)
=

˙̄H

ā3 ˙̄ϕ
. (2.101)

Thus the equation for R resembles that obtained in the usual cosmological pertur-
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bation theory, but now has a forcing term that is a function f̄ of the background

fields and Pχ = C; for the choice C = 0 this equation is the same as that in usual

cosmology. The equation for χ on the other hand is ultra-local because there is no

term in it of the form k2χ, which would indicate the presence of spatial derivatives

of χ; k dependence of χ therefore arises solely from the source term of (2.100). This

is not surprising since we would not expect a second propagating degree of freedom

starting with a theory containing pressureless dust. Indeed this is also what is ob-

tained for perturbation theory on flat spacetime [40]. As a final comment in these

equations we note that (2.100) may be rewritten using the variable

χ̃ ≡ χ− R
H̄
, (2.102)

leading to

¨̃χ+

(
α̇

α

)
˙̃χ =

1

α

d

dt

[(
ζ
˙̄H

H̄

)
R

]
, (2.103)

which removes the k2 term on the r.h.s. of (2.100). This shows the ultralocality

of χ̃ due to the absence of the spatial derivative propagation term k2χ̃ – the same

reasoning as for χ.

Let us summarize the results so far. We started with the theory of GR coupled

to dust and a scalar field. This theory has four physical field degrees of freedom,

of which 2 are gravitational. The Hamiltonian perturbation analysis we presented

therefore must also have the same number. By fixing the dust-time gauge, one of the

these four degrees of freedom manifests itself in the metric. Thus, after identifying

the two graviton modes, we are left with an additional scalar mode, which as we

have seen turns out to be ultralocal.

The general framework for the dust-time perturbation theory we develop has direct

application to inflaton + matter cosmology. In particular, one of the perturbation
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equations we derive is exactly the Mukhanov-Sasaki equation, with the difference

that the time parameter in our framework refers to dust-time. This provides a

direct connection with one of the standard results of covariant perturbation theory.

Furthermore, the formalism we develop extends readily to matter fields in addition

to dust and scalar field; the dust-time physical Hamiltonian and diffeomorphism

constraints can be expanded to second order for any additional fields, and their

corresponding perturbation equations derived in a manner similar to that which we

display for the inflaton.

This work may also be viewed in a wider context of GR coupled to special types

of matter. These include the Einstein-Aether models [53], where a dynamical vector

field of timelike norm is added to the GR action. A linearized analysis of these

models has been performed, with the result that the graviton modes decouple from

the aether modes [54]. The other model is the so-called mimetic gravity [55, 56],

where the conformal mode of the spacetime metric is encoded as a scalar field with

an arbitrary potential. This extra mode in the gravitational field represents self-

interacting matter with arbitrary potential [57, 58], and has been used to model

inflationary and bouncing cosmologies [59]. Given these analogies, it is potentially

useful to consider this work in the larger context of Einstein-Aether [60] and mimetic

gravity theories. Indeed, the dust-time gauge we employ here may be considered a

natural choice for all scalar-tensor theories of gravity, among which Einstein-Aether

and mimetic gravity are but two examples.

2.5 Comparison with perturbation theory with-

out dust

It is useful to compare the dust-time perturbation theory we have developed above

with a similar Hamiltonian treatment of standard perturbation theory. Previously
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this has been done and the salient results are the Mukhanov-Sasaki equation, the

gravitational wave equation and the identification of vector modes as gauge DOF

[14]. We will show that not only does our treatment reproduce these results, but it

is also an improvement on [14].

Our treatment begins with the ADM Hamiltonian action of GR coupled to only

a scalar field. This is eqn. (2.3) with T = PT = 0. Expansion of this action about

a homogeneous and isotropic background solution is of the form (2.28), with the

additional expansion of the lapse function

N(x, t) = N̄(t) + δN(x, t), (2.104)

where we have taken N̄(t) as the lapse function of the background. The second order

action changes from (2.29) to

S(2) ≡
∫
d3xdt

[
ḣabp

ab + ϕ̇pϕ − δNH(1) − N̄(t)H(2) − ξaC(1)
a

]
, (2.105)

where H(2) and C
(1)
a are exactly as given in (2.30), and

H(1) = −1

ā

{( p̄
6ā

)[1
4

( p̄
6ā

)
h+ ā2p

]
+ ∂a∂bh

ab − ∂2h

}

+
p̄ϕ
ā3

[
pϕ −

p̄ϕ
4ā2

h
]
+ ā

[
ā2V ′(ϕ̄)ϕ+

V (ϕ̄)

2
h

]
.

(2.106)

We recall that h = habe
ab and p = pabeab. In the following we will take the back-

ground lapse N̄(t) = 1. We see that this second order action has two constraints

obtained by varying w.r.t. the lapse and shift perturbation δN(x, t) and ξa(x, t). It

is worth noting that in [14] the lapse and the shift are not perturbed, and qualitative

arguments are offered to explain the presence and justify the use of the first order

Hamiltonian and diffeomorphism constraints. Our approach shows that these con-

straints appear in the second order action if the lapse and shift are perturbed. This
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is an important way in which our treatment is an improvement on [14].

The second order action also displays a non-vanishing Hamiltonian N̄(t)H(2), where

N̄(t) is a fixed background function that cannot be varied in the second order action;

it is of course varied in the zeroth order action to give the background Hamiltonian

constraint H̄ = 0. Thus, in comparison to the dust-time gauge theory, we have the

additional constraint H(1) = 0. In momentum space, in the basis (hI , p
I) (2.41), this

is expanded as

H̃(1) = −1

ā

{( p̄
6ā

)[1
4

( p̄
6ā

)
h̃+ ā2p̃

]
− kakbh̃

ab + k2h̃

}

+
p̄ϕ
ā3

[
p̃ϕ −

p̄ϕ
4ā2

h̃
]
+ ā

[
ā2V ′(ϕ̄)ϕ̃+

V (ϕ̄)

2
h̃

] (2.107a)

= −
√
3

ā

{( p̄
6ā

)[1
4

( p̄
6ā

)
h1 + ā2p1

]
+

√
2k2

3

[√
2h1 − h2

]}

+
p̄ϕ
ā3

[
p̃ϕ −

√
3p̄ϕ
4ā2

h1

]
+ ā

[
ā2V ′(ϕ̄)ϕ̃+

√
3V (ϕ̄)

2
h1

]
.

(2.107b)

It is important to note that H̃(1) is a function of only the scalar metric modes h1 and

h2 and their conjugate momenta p1 and p2, in addition to scalar field perturbations

(ϕ̃, p̃ϕ) – the graviton modes appear only in H̃(2). We will additionally point out that

[14] uses a scale factor dependent basis to decompose the matrix perturbations and

this results in a symplectic term that includes time derivatives of the basis elements.

Thus, our choice to use a time-independent basis that leads to a preservation of the

symplectic structure (2.41), is an improvement on [14].

After solving the transverse parts of the diffeomorphism constraints and removing

the vector modes as before, only the parallel component of the constraint C∥ = 0

(2.64) remains. The momentum space action for the scalar perturbations (h1, h2, ϕ)

becomes

SSϕ ≡
∫
dtd3k

[
p1ḣ1 + p2ḣ2 + p̃ϕ

˙̃ϕ−HSϕ − δÑH̃(1) − ξ̃∥C̃
(1)
∥

]
(2.108)
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where HSϕ is given in (2.71), and δÑ(k, t) is the lapse perturbation in momentum

space. We now note that the constraints obtained by varying this action w.r.t. ξ̃∥

and δÑ(k, t) are first class. We have already verified that C∥ is first class (Appendix

A.3). We also find that

d

dt
H̃(1) = {H̃(1), HSϕ}+ ∂

∂t
H̃(1) = C̃∥ = 0, (2.109)

and

{H̃(1), C̃∥} = −H̄ = 0, (2.110)

where the last equality follows from the background Hamiltonian constraint H̄ = 0;

recall that this is the theory without dust. This is a satisfying structure demonstrat-

ing explicitly that the second order perturbed system is first class. It also shows

that, of the three scalar perturbation modes (h1, h2, ϕ̃), only one is a physical degree

of freedom (due to the two constraints H̃(1) = 0 and C̃∥ = 0). We can now proceed

to obtain gauge invariant observables, i.e. those that Poisson commute with C̃∥ and

H̃(1). Unlike the case with dust, only one canonical pair of gauge invariant variables

is required (due to the presence of two constraints instead of one). We note that our

method of deriving gauge invariant variables is different from the one used in [14];

there the author uses Hamilton-Jacobi like equations to arrive at the gauge invariant

variables.

2.5.1 Gauge invariant variables

Gauge invariant variables O must now satisfy

{O, H̃(1)} = {O, C̃∥} = 0. (2.111)
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We have already noted that the curvature perturbation

ψ = − 1

2
√
3ā2

(
h1 −

h2√
2

)
(2.112)

defined in (2.78) satisfies
{
ψ,C∥

}
= 0. However

{
ψ, H̃(1)

}
=

p̄

12ā2
̸= 0, (2.113)

therefore ψ is not invariant under the second constraint, and therefore not fully gauge

invariant. By noting that

{
ϕ̃, H̃(1)

}
=
p̄ϕ
ā3
, (2.114)

we observe that the linear combination

R ≡ ψ −
(

āp̄

12p̄ϕ

)
ϕ̃, (2.115)

satisfies

{
R, H̃(1)

}
= 0,

{
R, C̃∥

}
= 0. (2.116)

This R is exactly the same variable we used for the dust case. We have now learned

that it is also invariant under the transformation generated by H(1). Similarly we

note that its conjugate momentum defined in (2.85) satisfies

{R, PR} = 1,
{
PR, H̃(1)

}
= 0,

{
PR, C̃∥

}
= 0. (2.117)

Thus the canonically conjugate pair (R, PR) are fully gauge invariant to this order.

We note also that any scaled variables of the type (gR, PR/g), where g = g(ā, p̄, ϕ̄, p̄ϕ)
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is an arbitrary function of the background variables, are also gauge invariant (since

the fixed background does not participate in the Poisson bracket for the perturba-

tions). The choice

g = −12p̄ϕ
p̄

≡ z (2.118)

gives the Mukhanov-Sasaki (MS) variable

ν ≡ −
(
12p̄ϕ
p̄

)
R =

(
ā ˙̄ϕ

H̄

)
R = ā

(
ϕ̃+

˙̄ϕ

H̄
ψ

)
, (2.119)

where the second equality follows from the background equations (2.23).

2.5.2 Gauge fixed action

As the last step, we fix two gauges corresponding to the two first class constraints

H̃(1) = 0 and C̃∥ = 0, and solve these constraints strongly to obtain the final canonical

action from (2.108) for the remaining unconstrained gauge invariant physical degrees

of freedom. The final action will be a functional of the canonical pair R, PR. This

may then be recast in terms of the MS variable ν and its conjugate momentum Pν .

We set the gauge conditions

ϕ̃ = 0, h1 = 0. (2.120)

These satisfy

{ϕ̃, H̃(1)} =
p̄ϕ
ā3

; {h1, C̃∥} = −2ā2, (2.121)

therefore the constraints and gauge conditions form second class pairs. Solving the
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constraints for p1 and p̃ϕ gives

p1 = −
√
2

ā2

[( p̄
6ā

)
h2 + ā2p2

]
(2.122)

p̃ϕ = − 1√
6p̄ϕ

(
p̄2

6
h2 + 2ā2k2h2 + ā3p̄p2

)
. (2.123)

In this gauge, the invariant variables R and PR become

R =
1

2
√
6ā2

h2, PR =

√
2

3

(
p̄

ā
+

12ā

p̄
k2
)
h2 + 2

√
6ā2 p2. (2.124)

Substituting the gauge conditions and solutions of the constraints into the action

(2.108), and expressing variables in terms of R and PR, gives

SSGF ≡
∫
dtd3k

[
ṘPR −HS

GF

]
, (2.125)

where

HS
GF =

1

2ā

[
1

z2
P 2
R + k2 (zR)2

]
. (2.126)

This is the same as the action for the dust-time case (2.93), but with χ = Pχ = 0.

As the last step in comparison with standard perturbation theory, we derive from

this action the MS equation. We noted the definition of the MS variable ν in (2.119).

The conjugate momentum is Pν = PR/z. The action (2.125) transforms to

SSGF =

∫
dtd3k [Pν ν̇ −Hν ] , (2.127)

with

Hν =
1

2ā

(
P 2
ν + k2ν2

)
+
ż

z
νPν . (2.128)
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This gives the equation of motion

ν̈ + H̄ν̇ +

(
k2

ā2
− z̈

z
− H̄

ż

z

)
ν = 0. (2.129)

In conformal time dt = ādτ this becomes the familiar MS equation

ν ′′ +

(
k2 − z′′

z

)
ν = 0. (2.130)

Here a prime indicates a derivative with respect to conformal time.

To summarize this section, we have seen that the gauge invariant canonical vari-

ables (R, PR) that we used in the dust-time setting are also invariant under the

local time transformation generated by the additional constraint H̃(1). This is in

fact why we used these for the dust-time case, rather than variables that are only

invariant under the diffeomorphism constraint C̃∥. There are many other possibilities

for canonical pairs invariant under only the latter, but these do not provide a direct

connection with the standard perturbation theory.

2.6 Summary and discussion

We presented the Hamiltonian theory of cosmological perturbations for GR cou-

pled to dust and a scalar field, in the dust-time gauge. The analysis demonstrates

the following features: (i) the graviton modes decouple from other degrees of freedom

and their EOM are unchanged, (ii) the vector modes are removed by gauge fixing

in the same way as for flat space perturbation theory [40], (iii) there remain two

coupled scalar modes, one of which (R) satisfies a wave equation with a source, and

the other (χ) satisfies an ultra-local equation with a source dependent on k; these

two equations generalize the usual perturbation equations.

We also applied the same Hamiltonian decomposition, using the canonical vari-
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ables (hI , p
I) to the standard cosmological perturbation theory. This differs from the

Hamiltonian formalism presented in [14] in several respects. These include our inclu-

sion of the lapse and shift perturbations, use of a scale-factor-independent basis for

decomposing metric perturbations, a demonstration that the perturbed constraints

are first class, a calculation of the constraint algebra, and finally a step-by-step ap-

plication of the reduction to physical degrees of freedom using the Dirac procedure.

Thus our work provides a more detailed view of Hamiltonian perturbation theory

for cosmology, in addition to its extension to the dust-time gauge.

Our final equations in the dust-time gauge (2.99) and (2.100) lead ultimately to the

MS equation with an external forcing term dependent on the background solution,

and an additional ultra-local equation for the field χ. These may have observational

consequences which we intend to explore in future work. The special solution Pχ = 0

removes the source term, and so leads to exactly the MS equations plus the equation

for χ. However this case contributes no additional energy density since the terms

proportional to Pχ in the Hamiltonian density (2.93) vanish for this case. Therefore

the general case Pχ ̸= 0 is more interesting for exploring cosmological consequences.

Finally recall that in the dust-time gauge the metric acquires an additional DOF

χ that represents dust. Therefore it may be possible to express χ as an entropy per-

turbation, which measures how misaligned the perturbations in the energy densities

of the different fields are.
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Chapter 3

Ising-like models on Euclidean

black holes

3.1 Introduction

Spin models are useful tools in studying interacting degrees of freedom in thermal

equilibrium. This is primarily due to two reasons. Firstly due to their simplicity

spin models can be solved either exactly or approximately by analytical or numerical

techniques. Secondly if the simple spin model shares some global features (such as

symmetries of the Hamiltonian and the number of spatial dimensions) with a real

system (such as a lattice of interacting atoms) then some results of the spin model

match the behaviour of the real system [61]. Two well-studied spin systems are the

Ising and Blume-Capel models [62, 63].

The Blume-Capel model is a spin-1 generalization of the Ising model with an

additional self-interaction (or “mass” term) with Hamiltonian H = −J
∑

i,j;nn sisj+

K
∑

i s
2
i where nn denotes that the sum is over nearest neighbors. It has richer

physics than the Ising model; in two dimensions, if K > 2J there is no phase
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transition; if K ≤ 2J then the ratio K
2J

not only determines whether the phase

transition is continuous (second order) or discontinuous (first order) but also fixes

the critical temperature. The Blume-Capel model has been rigorously investigated

using not only analytical techniques - such as the renormalization group (RG) [64] -

but by numerical Monte-Carlo (MC) simulations also [65].

MC studies of the Ising and Blume-Capel models typically use periodic boundary

conditions. Due to this choice the lattice has the topology of a 2 torus. There has

been a growing interest in investigating the effects of using different topologies such

as the 2 sphere [66] and a random topology [67]. This interest arises from multiple

areas, including discrete models of quantum gravity, condensed matter physics and

the statistical mechanics of complex networks such as the internet [68]. There is also

a rich literature on investigating the effects of geometric curvature on the thermo-

dynamic properties of spins. For example it is known that the Ising model on a 2d

hyperbolic plane with free boundary conditions exhibits multiple phase transitions

[69]. This model is expected to have applications to quantum information [70].

Our goal is to generalize the Ising and Blume-Capel models to Schwarzschild and

AdS black hole backgrounds and study their physical content. This is of interest

for several reasons: black hole backgrounds are inhomogeneous (i.e. have explicit

dependence on radial location) and thus provide an interesting platform to gener-

alize spin-models; Euclidean versions of black hole metrics are used in attempts to

understand black hole thermodynamics [4, 35]; black holes metrics are considered as

thermal backgrounds for quantum field theory where the radius of Wick-rotated time

is proportional to black hole mass; the case with a cosmological constant provides a

generalization of spin models where the connection between metric parameters and

temperature is more involved [36]. We review these features before constructing the

models.

Our approach is to start with a scalar field action on a general form of a Euclidean
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black hole background, discretize the action on a suitably defined lattice, and then

restrict the scalar field to take on spin values. This process naturally introduces a

point interaction from the scalar field mass term, and nearest neighbour interactions

from a finite difference of the kinetic term.

In Section 3.2 we review the MC scheme [71] and the correspondence between

Euclidean time periodicity and inverse temperature [23, 24]; in Section 3.3 we review

the construction of the Euclidean black holes [2, 35, 36]; in Section 3.4 we define

the spin-models; in Section 3.5 we describe and present the MC calculations for

the spin-1/2 and spin-1 models, followed by a summary of the work and possible

extensions.

3.2 Background

3.2.1 Monte-Carlo scheme

In this section we briefly describe the Monte-Carlo scheme [71]; the reader can

consult references [72, 73] for further details.

Consider the multidimensional integral

S =

∫
V
dx1...dxdf(x1, ...xd), (3.1)

where V is the region of the integration, the volume of which will be set to 1 for

simplicity. Hereafter we will use x to denote a point in the integration region instead

of (x1, ...xd). The MC scheme

1. Randomly selects a point in V ,

2. Evaluates the function’s value at that point,
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3. Repeats the first two steps M times to estimate S as

S ∼ 1

M

M∑
i=1

fi (3.2)

=< f > . (3.3)

The efficiency of this scheme is

△S ∼ 1

M
1
2

. (3.4)

Given large M the estimated value of S converges to the actual value. This is called

convergence. Also note that the efficiency is independent of dimension. This is unlike

other integration schemes: for example the trapezoidal scheme has an efficiency

△S ∼ 1

M
2
d

. (3.5)

In selecting points in V at which the function is evaluated one can choose a uniform

or a non-uniform distribution. A way to do the latter was proposed by Metropolis

and collaborators [74] and their method may be viewed as a Markov process. The

Metropolis algorithm requires detailed balance, the basic idea of which is that in

equilibrium the value of the non-uniform distribution function p(x) at different points

in V is related by

T (x → x′)p(x) = T (x′ → x)p(x′) (3.6)

where x is the old point, x′ is the new point, and T is the transition rate between

the two. The transition T (x → x′) is accepted if

T (x → x′)

T (x′ → x)
=
p(x′)

p(x)
≥ rand[0, 1]. (3.7)
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Therefore the new points in V are not selected randomly; rather they are selected

following a Markov chain, a process that maximizes p(x).

This discussion can be applied to multidimensional sums also, which (as will be

shown later) are what we compute.

3.2.2 Euclidean time periodicity and temperature

In this section we investigate the relationship between Euclidean time periodicity

and inverse temperature [23, 24]. Consider a particle that evolves from position q at

time t = 0 to position q′ at time t = T . The quantum transition amplitude is

F (q′, T ; q, 0) = ⟨q′, T |q, 0⟩

= ⟨q′| e−iT Ĥ |q⟩ .
(3.8)

Let’s now impose Euclidean time compactification i.e the condition for the particle

to return to its original position in Euclidean time β; hence β is Euclidean time

periodicity. The resultant Euclidean transition amplitude is

F (q,−iβ; q, 0) = ⟨q| e−βĤ |q⟩ . (3.9)

We will use this result shortly.

Consider now the quantum partition function of a system at temperature β−1

Z(β) = Tr
(
e−βĤ

)
. (3.10)

One may evaluate the trace using the position basis

Z(β) =
∑
q

⟨q| e−βĤ |q⟩ . (3.11)

Note that the summand in the right hand side of the equation above is the transition
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amplitude of a particle to return to its original position in Euclidean time β (3.9).

Therefore (3.11) may be rewritten in the form

Z(β) =
∑
q

F (q,−iβ; q, 0) (3.12)

which indicates a correspondence between Euclidean time periodicity and inverse

temperature.

Let’s express the right hand side of (3.12) as a path integral. We begin with the

transition amplitude (3.8) expressed as a path integral:

F (q′, T ; q, 0) =

∫
Dq̄ exp (iI), I =

∫ T

0

dtL

(
q̄,
dq̄

dt

)
. (3.13)

Here
∫
Dq̄ integrates over all paths the particle can take between the starting and

finishing configurations, I is the Lorentzian action and L is the Lagrangian. Conse-

quently the path integral of a particle to return to its original position in imaginary

time β is

F (q,−iβ; q, 0) =
∫
Dq̄ exp

[
i

∫ −iβ

0

dt L

(
q̄,
dq̄

dt

)]
, (3.14)

where
∫
Dq̄ is now over all paths that are periodic in imaginary time β. After a

Wick rotation

t = −iτ (3.15)

the path integral is

F (q,−iβ; q, 0) =
∫
Dq̄ exp

[∫ β

0

dτL

(
q̄,
dq̄

dτ

)]
(3.16)

≡
∫
Dq̄ exp

[
−
∫ β

0

dτ LE

(
q̄,
dq̄

dτ

)]
, (3.17)

51



where LE is the Euclidean Lagrangian. The equation above may be rewritten in

terms of the Euclidean action IE

F (q,−iβ; q, 0) =
∫
Dq̄ exp (−IE) , IE =

∫ β

0

dτ LE

(
q̄,
dq̄

dτ

)
. (3.18)

Now we will demonstrate the relationship between L and LE through an example:

we will consider a particle in an arbitrary potential, the Lagrangian for which is:

L =

(
dx

dt

)2

− V (x). (3.19)

Wick rotation yields the Euclidean Lagrangian:

L = −
(
dx

dτ

)2

− V (x)

= −

[(
dx

dτ

)2

+ V (x)

]

= − LE.

(3.20)

Since τ is like a space dimension, the Euclidean Lagrangian is like the Hamiltonian

density of a field in one space dimension and the Euclidean action (3.18) is like a

Hamiltonian. Therefore upon Wick rotation the action resembles a Hamiltonian for

a system in one extra space dimension.

3.3 Euclidean black holes

As a prelude to defining spins models on Euclidean black hole backgrounds, in this

section we summarize the main aspects of the metrics we will be using.
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The Schwarzschild black hole metric in its original form is

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (3.21)

in the coordinates (t, r, θ, ϕ); it has a coordinate singularity at the horizon r = 2M

and a curvature singularity at r = 0. In the Kruskal-Szekeres (KS) coordinates

(T,X, θ, ϕ) defined as

−T 2 +X2 =
( r

2M
− 1
)
exp

(
− r

2M

)
(3.22)

T +X

T −X
= exp

(
t

2M

)
(3.23)

the geometry is

ds2 =
32M3

r
exp

(
− r

2M

) (
−dT 2 + dX2

)
+ r2dΩ2. (3.24)

In these coordinates the event horizon r = 2M is given by T = ±X, and the

singularity at r = 0 is T 2−X2 = 1. The KS coordinates provide a global extension of

the original Schwarzschild metric, and are best suited to understanding its Euclidean

version.

The Euclidean KS metric is defined by the Wick rotation Y = iT

ds2 =
32M3

r
exp

(
− r

2M

) (
dY 2 + dX2

)
+ r2dΩ2, (3.25)

where now

Y 2 +X2 =
( r

2M
− 1
)
exp

(
− r

2M

)
(3.26)

−iY +X

−iY −X
=exp

(
t

2M

)
. (3.27)
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This rotated metric is singularity free since r = 0 now corresponds to Y 2+X2 = −1

which has no solution; the horizon r = 2M corresponds to Y 2+X2 = 0, which is the

origin of (Y,X) plane. Thus, the Euclidean Schwarzschild geometry is singularity

free and the interior of the Lorentzian Schwarzschild metric (r < 2M) is absent. The

coordinates (Y,X) cover the entire manifold of a Euclidean Schwarzschild geometry.

Finally to derive the temperature of Euclidean Schwarzschild we Wick-rotate the

original time coordinate τ = it under which (3.27) becomes

exp

(
−iτ
2M

)
=

−iY +X

−iY −X
, Use z = X + iY,

=
z

−z∗
, Substitute z = reiθ where θ = [0, 2π),

= exp (−2iθ) =⇒ τ = 4Mθ.

(3.28)

Therefore Euclidean time τ has periodicity 8πM and Euclidean Schwarzschild has a

global temperature (8πM)−1.

Before proceeding we will note that for Euclidean backgrounds, such as Euclidean

Schwarzschild, there is an additional notion of local temperature. For this discussion

consider a Euclidean background defined by the metric

ds2 = u(r)2dτ 2 + v(r)2dr2 + w(r)2dΩ2 (3.29)

and for this space to have a global temperature T . Local temperature is defined as

Tr =

√
1

g00
T

=

(
1

u

)
T.

(3.30)

We do not consider local temperature in our work. This is because the standard

Ising and Blume-Capel models are defined in terms of global temperatures and our

goal is to generalize these models to Schwarzschild and AdS black hole backgrounds.
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Hence using global temperature is a natural choice.

Having obtained the Euclidean Schwarzschild geometry in the KS coordinates,

we now see that the same result is obtained in the original coordinates by simply

restricting the radial coordinate to r ∈ [2M,∞), with τ = it.

The near-horizon metric is obtained by setting r = 2M + ν; then for ν ≪ 1 the

τ − ν part of the metric is

ds2 =
2M

ν
dν2 +

ν

2M
dτ 2; (3.31)

defining dρ2 = (2M/ν)dν2 gives

ds2 = dρ2 +
( ρ

4M

)2
dτ 2. (3.32)

The final observation is that absence of a conical singularity at ρ = 0 requires

τ/4M ∈ [0, 2π).

This procedure is readily generalized [2] for obtaining a regular Euclidean black

hole geometry starting from the d−dimensional metric

ds2 = −F (r)dt2 + F (r) −1dr2 + r2dΩd−2
2, (3.33)

where F (r) is a one to one function such that there is an r0 ∈ [0,∞) such that F (r0) =

0 (the horizon), F ′(r0) > 0 and limr→0 F (r) = ∞ (the singularity). Then, the Wick

rotation τ = it, the restriction r ∈ [r0,∞) and the coordinate transformation

ρ(r) = β0
√
F (r), β0 =

2

F ′(r0)
(3.34)

gives the metric

ds2 =

(
ρ

β0

)2

dτ 2 +

(
2

β0F ′(r)

)2

dρ2 + r2(ρ) dΩd−2
2, (3.35)
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where τ ∈ (−∞,∞) and ρ ∈ [0, limr→∞ ρ(r)]. The near-horizon r ≈ r0 metric is

ds2 = dρ2 +

(
ρ

β0

)2

dτ 2 + r2(ρ)dΩd−2
2. (3.36)

Thus the τ − ρ part of the metric is flat space with no conical singularity provided

τβ0
−1 is an angular coordinate with period 2π; this corresponds to τ having period-

icity β

τ ∈ [0, β), β = 2πβ0. (3.37)

The inverse of the Euclidean time periodicity is the natural temperature of the

spacetime

T = (2πβ0)
−1 . (3.38)

In summary, we will use the metric (3.35) with the periodically identified τ as the

background for defining spin models, with the function

F (r) = 1− 2M

rd−3
+
( r
L

)2
; (3.39)

this is the AdS black hole in d spacetime dimensions where the scale L is related to d

and the cosmological constant by Λ = −(d− 1)(d− 2)/(2L2). The cases we consider

are 4d Schwarzschild (L→ ∞) and Schwarzschild AdS in 4d and 5d.

The temperature-mass relation for the 4d Schwarzschild case is T = (4πr0)
−1 =

(8πM)−1. However for the 4d AdS case it is

T =
3r0

2 + L2

4πr0L2
; M =

r0
2

[
1 +

(r0
L

)2]
. (3.40)

T (M) has a minimum at Tmin =
√
3/(2πL) at mass M∗ = 2L/(3

√
3) (Figure 3.1)
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and horizon radius r0∗ = L/
√
3; T > Tmin corresponds to either a small or a large

mass black hole. A similar treatment applies to 5d Schwarzschild AdS also: here

T =
2r0

2 + L2

2πr0L2
; M =

r0
2

2

[
1 +

(r0
L

)2]
, (3.41)

T (M) has a minimum at Tmin =
√
2/ (πL) at mass M∗ = 3L2/8. This discussion

will be relevant below where we discuss phase transitions in spin models as functions

of T and M .

3.4 Spin models on black holes

Spin models on Euclidean black hole backgrounds may be defined by starting with

the Euclidean action of a scalar field on the metrics reviewed in the last section,

discretizing the action, and then restricting the scalar field variable to take discrete

values, ±1 for Ising, and 0,±1 for Blume-Capel models. The d-dimensional Euclidean

action for a massive scalar field on a background metric gab is

IE [Φ] =
1

2

∫
ddx

√
g
(
gab∂aΦ∂bΦ + µ2Φ2

)
. (3.42)

Figure 3.1: Temperature-Mass relation for 4d Euclidean AdS-Schwarzschild for
L = 0.3, 0.4, 0.5, 0.6 (top to bottom).
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The Euclidean black hole metrics (3.35) have the form

ds2 = u(ρ)dτ 2 + v(ρ)dρ2 + w(ρ)dΩd−2
2. (3.43)

We consider only the τ − ρ plane since the sphere is not relevant for the black hole

properties of interest. Therefore the scalar field we consider is Φ ≡ Φ(τ, ρ) with the

Euclidean time periodicity Φ(0, ρ) = Φ(β, ρ). With these assumptions the Euclidean

action reduces to

IE [Φ] =
Ad−2

2

∫ β

0

∫ ρ0

0

dτdρ
√
wd−2

·
(√

v

u
Φ̇2 +

√
u

v
Φ′2 + µ2

√
uvΦ2

)
(3.44)

where Ad−2 is the area of Sd−2 and dots and primes denote partial derivatives with

respect to τ and ρ; the ρ integration is restricted to a finite value ρ0 to define a

discrete model on a finite lattice. The object of interest is the partition function

Z =

∫
DΦexp (−IE [Φ]) (3.45)

where DΦ integrates over all possible field configurations that have periodicity β in

imaginary time.

3.4.1 Discretization

Consider the τ − ρ plane as an Nβ ×Nρ lattice with spacing

ϵ =
β

Nβ

=
ρ0
Nρ

. (3.46)

Through β the lattice spacing depends on the metric parameters M and Λ, and a
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simple discretization is given by

τ → τm = mϵ, ρ→ ρn = nϵ;

f(τ, ρ) → fm,n,

ḟ → fm+1,n − fm,n
ϵ

,

f ′ → fm,n+1 − fm,n
ϵ

. (3.47)

Lastly, the scalar field values are restricted to the set

Φ = {−s, −s+ 1, ... s− 1, s} × s−1, (3.48)

where s is a half integer, so that the values of Φ are rational numbers in the interval

[−1, 1]. With this discretization the Euclidean action becomes the sum

IE [Φ] =Ad−2

Nβ ,Nρ∑
m,n=1

− Φm,n

√vnwn d−2

un
Φm+1,n +

√
unwn d−2

vn
Φm,n+1


+ Φm,n

2

[√
vnwn d−2

un
+

1

2

√unwn d−2

vn
+

√
un−1wn−1

d−2

vn−1


+
µ2ϵ2

2

√
unvnwn d−2

].
(3.49)

This is the desired “spin” model. It is apparent that the coupling “constants” vary

across the lattice and depend on the metric functions from point to point; the first

line contains metric function-weighted nearest neighbour interactions in the τ and

ρ directions, the second line represents spin self-interactions which are weighted by

the metric functions, and the third line contains self-interactions that are weighted

by the determinant of the metric, scalar field mass and ϵ2 (this factor cancels out for

the remaining terms); the choice s = 1/2 or s = 1 gives an Ising or Blume Capel like
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model on a Euclidean black hole background respectively; the self interaction terms

only affect statistical averages in the latter case.

For the 4d Euclidean AdS-Schwarzschild geometry the metric functions are

u(ρ) =

[(
3r0

2 + L2

2r0L2

)
ρ

]2
(3.50)

v(ρ) =

[(
3r0

2 + L2

2r0L2

)(
L2 r2(ρ)

r3(ρ) +ML2

)]2
(3.51)

w(ρ) = r2(ρ), (3.52)

where r(ρ) is given by (3.34) with F (r) = (1− 2M/r + r2/L2). It is readily verified

that for this F there is a single real root for r(ρ), a fact that leads to unambiguous

values of w(ρ). The details of this verification are presented in Appendix B.1. On

the lattice these functions are discretized with the replacements ρ → ρn = nϵ and

rn(ρn). This results in the specific spin model

IE [Φ] = 4π

Nβ ,Nρ∑
m,n=1

{
− Φm,n

[(
rn

4

ρn

)(
L2

ML2 + rn3

)
Φm+1,n

+ (ρn)

(
ML2 + rn

3

L2

)
Φm,n+1

]

+

[(
rn

4

ρn

)(
L2

ML2 + rn3

)
+

(
ML2 + rn

3

2L2

)
(ρn + ρn−1)

]
Φm,n

2

+

(
ρnrn

4L2

ML2 + rn3

)(
3r0

2 + L2

2r0L2

)2

ϵ2
(
µ2

2

)
Φm,n

2

}
.

(3.53)
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The limit L→ ∞ gives the model on 4d Euclidean Schwarzschild background:

IE [Φ] =4π

Nβ ,Nρ∑
m,n=1

− Φm,n

 16M3

ρn

(
1−

(
ρn
4M

)2)4 Φm+1,n + (ρnM) Φm,n+1


+

 16M3

ρn

(
1−

(
ρn
4M

)2)4 +
M

2
(ρn + ρn−1)

Φm,n
2

+

 Mρn(
1−

(
ρn
4M

)2)4
 ϵ2

(
µ2

2

)
Φm,n

2

.
(3.54)

A similar procedure gives the model on the 5d AdS-Schwarzschild metric, and indeed

any metric of the form (3.43).

This completes the prescription for defining spin models on Euclidean black holes.

The process we have followed is similar to discretizing any continuum theory on a

lattice where certain discretization choices are made; in our case this is the represen-

tation for time and space derivatives. The procedure we have followed is analagous

to discretized thermal quantum field theory (TQFT) on Euclideanized Minkowski

spacetime with periodic identification of Wick rotated time. But there are important

differences: in the black hole case the metric comes with the mass and cosmological

constant parameters, and the periodicity of Euclidean time (which is guided by the

requirement to remove the conical singularity) depends on these parameters.

3.5 Simulation details and results

As we have noted, in accordance with the relation (3.37) between the τ dimension

size and black hole mass, the lattice size in the τ direction varies with M . Thus the

thermodynamics properties of spins are best studied as a function of M with fixed

lattice spacing ϵ but varying τ -dimension lattice size. We perform MC simulations
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with ϵ = 0.01, take

Nβ =

⌊
β

ϵ

⌋
, Nρ =

⌊ρ0
ϵ

⌋
(3.55)

where β is given by (3.37) and we choose ρ0 = ρ(5r0) as the radial extent of the

lattice. For convenience we use periodic boundary conditions in the ρ direction.

This choice does identify radial infinity with the horizon. However the effect of this

on the global thermodynamic properties of interest is negligible if the lattices are

large, which is what we ensure. Additionally we consider µ = 0 for all simulations

and choose Λ = −4 for the AdS simulations. Note that this choice corresponds to

an AdS scale of

L ≈ 0.9 (3.56)

in 4d and

L ≈ 1.2 (3.57)

in 5d. Since this work uses natural units, the AdS scales are close to the Planck

length. It is also worth noting that the amplitude for Λ we choose is much larger

than that of the observed cosmological constant ∼ 10−120.

After choosing a Euclidean black hole metric (Schwarzschild, 4d Schwarzschild-

AdS or 5d Schwarzschild-AdS), we select a set of M values; each value of M fixes

the lattice size. We use an aligned lattice (a cold start) once an M value is selected.

Subsequent configurations are generated according to the probability distribution

P (x) = exp[−IE(x)] using a MC Markov Chain. We use the standard procedure

where a single MC step entails flipping a randomly selected spin, computing the

resulting change in the action ∆IE, and keeping the new configuration provided
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exp (−∆IE) ≥ rand[0, 1]; a sweep is defined as Nβ ×Nρ MC steps.

Thermalization requires a number of sweeps from the starting cold configurations.

This is determined by computing IE as a function of the number of sweeps until

a steady state is reached. Figure 3.2 shows that the required number of sweeps to

thermalization is about 50 for the Euclidean Schwarzschild case with M = 0.025 .

Figure 3.2: Spins on Euclidean Schwarzschild background with M = 0.025 are ther-
malized at around the 50th MC sweep.

After thermalization we compute the average values of several thermodynamic

quantities O with an additional NM = 2000 sweeps for each value of mass M on its

corresponding lattice using the formula

⟨O⟩ = 1

NM

NM∑
k=1

Oi. (3.58)

Here i is the number of the sweep and Oi is the corresponding measurement of

the thermodynamic quantity. The specific quantities O we calculate include the
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alignment A, energy E, susceptibility χ and specific heat C:

A =

(
1

NβNρ

) ∣∣∣∣∣
Nβ ,Nρ∑
m,n=1

Φm,n

∣∣∣∣∣, (3.59)

E =

(
1

NβNρ

)
IE, (3.60)

χ =
1

T

(
⟨A2⟩ − ⟨A⟩2

)
, (3.61)

C =
1

T 2

(
⟨E2⟩ − ⟨E⟩2

)
. (3.62)

Another observable we calculate is entropy S(T ). A computation of S(T ) without

using the partition function Z (which is not available) is to utilize a discrete version

of the formula

S(T ) =

∫ T

0

C(T ′)

T ′ dT ′. (3.63)

A discrete estimate is

S(T ) ≈
NT∑
i=1

[
C(Ti)

Ti

]
(Ti − Ti−1) , (3.64)

where NT is the total number of temperatures simulated till T in MC runs, Ti repre-

sents the ith temperature in that list (where T0 is the minimum temperature possible

due to computational or theoretical constraints) and C(Ti) is the heat capacity nu-

merically evaluated at Ti.

We will now illustrate how this formula is used. Consider a spin model on a

Euclidean Schwarzschild background where T0 is the minimum temperature used

due to computational constraints. To calculate S(T1) where T1 is the next largest

temperature to T0 the formula (3.63) is used; in this case there is only one relevant

term:
[
C(T1)
T1

]
(T1 − T0). The entropy at all other temperatures is calculated similarly.

For the AdS black hole background T0 is the minimum temperature theoretically
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possible and a T > T0 corresponds to a small and a large black hole. In this case S(T1)

for a spin model on a small/large AdS black hole background is
[
CS/L(T1)

T1

]
(T1 − T0)

where CS/L(T1) is the heat capacity for the spin model on the small/large AdS black

hole background.

Since for the AdS cases a value of M uniquely determines T , but not vice versa

(Figure 3.1), the thermodynamic observables are best visualized as functions of M .

However it is also useful to see these quantities as functions of T ; for a given T

there are two values of M , the small and large black holes; these correspond to two

different lattices, one for each mass. Therefore we expect two sets of results for each

thermodynamic observable as functions of T , one for the small black hole and the

other for the large black hole.

3.5.1 Numerical results

We computed the alignment, susceptibility, specific heat, and entropy for spin-1/2

and spin-1 models for Schwarzschild, and 4d and 5d Schwarzschild AdS. In each case

we find evidence of a phase transition at a critical value of mass Mc; in each case it

turns out that Mc is sub-Planckian with value indicated in the figures. We first plot

these quantities as functions of M/Mc, and again as functions of T/Tc, where Tc for

the AdS cases is uniquely determined (as for Λ = 0) by Mc.

Figures 3.3 and 3.4 exhibit thermodynamic quantities for the spin-1/2 case for the

three Euclidean black hole backgrounds, as functions ofM/Mc and T/Tc respectively;

Figures 3.5 and 3.6 show the same for spin-1.

Evidence of a second order phase transition is apparent in the figures; specifically

the specific heat and susceptibility exhibit an approximate divergence at the respec-

tive critical values of the masses, whereas the alignment indicates a transition from

disorder to order as the mass increases. A curious feature is that the value of the

critical masses is sub-Planckian (in the geometrized units ℏ = c = G = 1).
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Figure 3.3: Plots of thermodynamic quantities for spin 1/2 models on Euclidean
black holes with respect to M

Mc
. The critical masses for Schwarzschild, and 4d and

5d Schwarzschild AdS (Λ = −4) are 0.070, 0.072 and 0.023 respectively in Planck
units.
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Figure 3.4: Plots of thermodynamic quantities for spin 1/2 models on Euclidean
black holes with respect to T

Tc
. The critical temperatures for Schwarzschild, 4d

Schwarzschild AdS and 5d Schwarzschild AdS are 0.57, 0.61 and 0.80 respectively.
For the AdS cases the point circled blue represents the black hole that corresponds
to Tmin, the black diamonds correspond to the large black holes, and the red dots
correspond to the small black holes.

67



Figure 3.5: Plots of thermodynamic quantities for spin 1 models on Euclidean black
holes with respect to M

Mc
. The critical masses for Schwarzschild, 4d Schwarzschild

AdS and 5d Schwarzschild AdS are 0.14, 0.17 and 0.065 respectively.
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Figure 3.6: Plots of thermodynamic quantities for spin 1 models on Euclidean
black holes with respect to T

Tc
. The critical temperatures for Schwarzschild, 4d

Schwarzschild AdS and 5d Schwarzschild AdS are 0.28, 0.36 and 0.53 respectively.
For the AdS cases the point circled blue represents the black hole that corresponds
to Tmin, the black diamonds correspond to the large black holes, and the red dots
correspond to the small black holes.
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Euclidean background Spin 1/2 Spin 1
Mc Tc Mc Tc

4d Schwarzschild 0.070 0.57 0.14 0.28
4d Schwarzschild AdS 0.072 0.61 0.17 0.36
5d Schwarzschild AdS 0.023 0.80 0.065 0.53

Table 3.1: Table of critical masses and critical temperatures for spin 1/2 and spin 1
models on the Euclidean black hole backgrounds considered.

The graphs of the thermodynamic variables as a function of T/Tc contain two

curves for the AdS cases; these are constructed by identifying the two possible black

hole masses corresponding to a fixed T value as in Figure 3.1. To illustrate the

procedure, consider for example the alignment graph as a function of T/Tc for 4d

Schwarzschild-AdS: a fixed T identifies a large and a small black hole mass above the

minimum value Tmin; we take the two alignment values for these two masses from

the alignment vs. mass graph and plot these values at the fixed T ; this process is

repeated for all data. The critical temperature is obtained uniquely from the critical

mass value. Thus for example, in the alignment vs. T/Tc graphs in Figure 3.4, the

circled point corresponds to the minimum (Tmin) of the T vs. M curve in Figure 3.1;

the black diamonds correspond to the large black holes, and the red dots correspond

to the small black holes; in the range of T shown, the spins are ordered (as functions

of T ) for the large black hole, but exhibit a transition to disorder for the small black

hole. Similar results hold for all the other thermodynamic quantities: spins on the

background of the small black hole exhibit a phase transition as functions of T , but

spins on the background of the large black hole do not, at least for the range of T

values we were able to efficiently compute. Table 3.1 lists the critical masses and

corresponding temperatures for all the cases studied.

Lastly Figures 3.7 and 3.8 are log-log graphs of the thermodynamics quantities for

the spin-half and spin-one models as functions of the reduced temperature t, where

t = 1 − T
Tc
; these figures exhibit linear behaviour and therefore power laws of the
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form

A ≈ tb,

χ ≈ t−g,

C ≈ t−a, (3.65)

together with least square fit estimates for the critical exponents b, g and a. It is

worth mentioning that for the Ising or Blume-Capel models, χ and C from equation

(3.65) depend on |t| and conventionally the critical exponents are calculated sepa-

rately for t > 0 and t < 0 following which they are averaged; we use t > 0 only since

it corresponds to larger lattices and therefore more accurate results.
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Figure 3.7: Estimating critical exponents of thermodynamic quantities for spin 1/2
models on Euclidean black holes. The horizontal axis is ln(t) and the vertical axis is
the ln of the thermodynamic variable in the corresponding row.
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Figure 3.8: Estimating critical exponents of thermodynamic quantities for spin 1
models on Euclidean black holes. The horizontal axis is ln(t) and the vertical axis is
the ln of the thermodynamic variable in the corresponding row.

This completes the description of the results: our main observation is that spins

on Euclidean black hole geometries in four and five dimensions undergo phase tran-

sitions as a function of the mass parameter associated to the geometries. Perhaps

surprisingly, the phase transitions to order occur at approximately a tenth of Planck

mass in 4d (Table 3.1), whereas an intuitive expectation might be a few Planck

masses. Nevertheless a transition in this range is not surprising considering the
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Planck mass is the only natural scale in the spin model.

3.5.2 Correlation lengths at criticality

For the Ising model the interaction strength is homogeneous; there is a second

order phase transition at the critical temperature Tc and the phase transition is

indicative of diverging correlation length if the lattice is infinite (for a finite NxN

lattice at Tc the correlation length equals N). Let’s ascertain if this relationship holds

when the spin model is inhomogeneous as is the case with the Ising-like models on

Euclidean black holes.

Figure 3.9 presents thermalized Ising-like models on Euclidean Schwarzschild back-

ground for black hole masses at and close to the critical mass Mc = 0.07.

Figure 3.9: Thermalized Ising-like models on Euclidean Schwarzschild background
at and close to criticality.

Note that the lattice corresponding to Mc is disordered on its left side and or-

dered on the right side. This is indicative of small correlation length. Therefore for

the inhomogeneous Ising-like model on Euclidean Schwarzschild background a phase

transition does not correspond to maximal correlations.
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This indicates that the relationship between second order phase transition and

maximal correlations holds if the couplings are homogeneous.

3.6 Discussion

The model and results we have described may be viewed as falling in the broad

area of quantum fields on curved spacetime [33, 34]. Most work in this area is

concerned mainly with quantum fields on Lorentzian rather than Euclidean curved

geometries; the exception is thermal QFT which is quantum fields on Wick rotated

Minkowski space [25, 26, 27, 28]. The model and the calculations we have performed

are new in that (to our knowledge) there are no prior studies of inhomogeneous spin

models on Euclidean black holes. Our work may be viewed as exploring the extent

to which a Euclidean black hole is equivalent to a thermal heat bath for matter

degrees of freedom propagating on such a geometry; our work does not concern or

provide comment on the use of such solutions as contributions to the path integral of

Euclidean quantum gravity without matter, which is the arena for the Hawking-Page

transition [36].

The inhomogeneity of the spin models comes from the radial dependence of the

coupling strength evident in the actions (3.53) and (3.54). This variation of coupling

strength across the lattice means that the probability of a spin flip is dependent on

radial position in the lattice; e.g. for Euclidean Schwarzschild the nearest-neighbour

coupling in the τ -direction varies as M3/[ρn(1− (ρn/4M)2)]4, whereas the coupling

in the ρ-direction varies as ρnM . This not only makes apparent the inhomogeneous

nature of the model but it also confirms that for small/large M the couplings are

weak/strong which accounts for the observed disorder/order. The radial dependence

of couplings also means that the transition point from order to disorder does not

correspond to diverging correlations as is the case for homogeneous models. This in
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turn indicates that the assignment of the term “second-order transition” comes with

qualifications despite the linearity observed in the log-log graphs in Figures 3.7 and

3.8.

Due to the inhomogeneity it is also appropriate to study the spin behaviour as a

function of column number n. Consider Figure 3.9; here for a fixed M it is possi-

ble to plot average alignment of each column vs. the column number. Physically

this would amount to exploring the average spin behaviour for all allowed values of

Euclidean time as a function of distance from the horizon. The horizontal axis of

the resultant graph can be recast in terms of local temperature (3.30). Consider

Euclidean Schwarzschild in τ − ρ coordinates (3.32); the local temperature for the

discretized background is

Tn =
1

2πρn
, ρn = nϵ. (3.66)

We can use Figure 3.9 to speculate that for some fixed masses (such as M = 0.06)

we can expect a phase transition from order to disorder as the local temperature is

increased.

The numerical accuracy of our results can be improved. This may be accomplished

by an MC algorithm that is more efficient than the single spin flip one used in

this work. However it is worth noting that most MC algorithms - such as Wolff’s

algorithm [75, 76] and that proposed in [77] - are designed to study spins on a

flat Euclidean background for which temperature is an external parameter and is

not related to lattice size. Therefore the MC algorithm being used must first be

redesigned to apply to the type of inhomogeneous models that arise on black hole

backgrounds. Another way to improve accuracy is via the finite size scaling technique

[75, 78, 72], where successively finer lattices are used to approach the continuum limit.

Beyond improving MC methods, there are several directions for extending this

work on spin models on Euclidean black hole backgrounds: exploring thermodynamic
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properties while varying both mass and cosmological constant; Reissner-Nördstrom

black holes and other black holes, including extremal cases; higher spin; a continuum

of scalar field values within a given range rather than discrete values; and adding

mass and other self-interaction terms.
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Chapter 4

Reflections

This thesis investigated gravity-matter systems within the context of cosmology

and black holes. In this chapter the important results are summarized and possible

extensions are discussed.

Chapter 2 is a study of perturbations in cosmology with a dust clock [79]. The

physical system used includes gravity, a scalar field and pressureless dust [13]. After

expressing the system in the canonical framework, the Dirac procedure [9] is used to

fix the dust-time gauge [13]. This yields a physical Hamiltonian and leaves untouched

the diffeomorphism constraint. The perturbed phase space variables for cosmology

are substituted in the canonical action, following which it is expanded to second

order in the perturbations. Next the perturbations are expressed in terms of spatial

Fourier modes and decomposed in scalar, vector and tensor modes. The tensor modes

lead to the graviton equation, the vector modes are gauge-fixed away and the scalar

modes lead to the equation of motion for an ultralocal degree of freedom and the

Mukhanov-Sasaki equation with a source term. Following this a system of gravity

and scalar field is considered and the same steps are used to derive the standard

results for this model in a detailed and transparent fashion.
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Since the method presented here is different in several respects to other methods,

let’s reflect on the differences.

Firstly the physical system used in this work involves gravity and two matter

fields. In general CPT can contain any number of matter fields [80, 81, 82, 83].

Secondly the dust is fixed as a clock at the outset by fixing a gauge and solving

the Hamiltonian constraint strongly. This is unlike the relational approach to CPT

where the evolution of one variable is analyzed relative to the chosen clock variable

[20, 84]. Thirdly the algebraic form of the physical Hamiltonian in the dust-time

gauge is identical to that of the Hamiltonian constraint. It is worth reiterating that

this desirable feature is unique to the model considered and is absent from other

models that use geometric variables (such as volume or extrinsic curvature) [46] or

other matter fields (such as a scalar field and Brown-Kuchař dust) [12, 47, 20] as

clocks. Fourthly the spatial Fourier transforms of the perturbations are decomposed

into scalar, vector and tensor modes using a time-independent basis unlike [14] which

uses a time-dependent basis. Lastly gauge invariant scalar modes are constructed and

the physical phase space is arrived at using a transparent and detailed application

of the Dirac procedure. This is different from [14] which uses Hamilton-Jacobi like

equations instead.

There are several applications and extensions of this work. Recall that in the

dust-time gauge the physical background Hamiltonian is a constant of motion due

to which its solutions are of the type H̄ = µ where µ is a constant (refer to (2.24) for

details). While this work considers µ = 0, whereby one has the standard Friedmann

equation (2.26), one can choose µ ̸= 0 and work with (2.27) instead. This will

generalize the equations of motion of the background and the linear perturbations to

include the background energy density µ and it will be enlightening to check how this

changes the current results. One can also generalize the current work by considering

a system of gravity, dust and two matter fields, fixing the dust-time gauge and using
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the partially gauge-fixed system to study CPT. Here one can compare the results

with CPT which uses and perturbs two matter fields and check how the standard

result regarding entropy perturbation is modified [81, 82, 83]. It is unreasonable

to expect no modification since the dust field is time and will contribute an energy

density. Of particular interest to the author is the quantization of the system arrived

at in this research and the calculation of the power spectra for the gauge invariant

degrees of freedom. It will be interesting to explore how the contributions due to

dust relate to the observed CMB data. Lastly the method presented here and in the

earlier paper [40] can be used to study perturbation theory on different solutions of

Einstein’s equations such as AdS spacetime.

In chapter 3 spin models are constructed on Euclidean black holes after which the

thermodynamic properties of the spins are studied as a function of black hole mass

M using Monte-Carlo simulations. The starting point is the Euclidean action of a

scalar field on a black hole space; Euclidean Schwarzschild in four dimensions and

Euclidean Schwarzschild AdS in four and five dimensions are the backgrounds used

1. The selected background is discretized and the scalar field values are restricted

to ±1 or to 0 and ±1 to yield an Ising-like or Blume-Capel-like model respectively

on the chosen Euclidean black hole background. Thermodynamic properties of spins

(namely alignment, alignment susceptibility, heat capacity and entropy) are numer-

ically investigated for different M using Monte-Carlo simulations and the resultant

plots indicate a second order phase transition at sub-Planckian M . This result en-

riches the pre-existing knowledge regarding the thermal properties of black holes

(that black holes have characteristic temperatures, entropies, etc. [4] and these have

a statistical mechanics explanation [35]).

One may also view temperature T as the fundamental parameter that needs to

be varied as opposed to M . The author believes that this view has two drawbacks.

1Where applicable the cosmological constant Λ is held fixed.
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Firstly, while T is indeed an attractive choice for a Euclidean Schwarzschild back-

ground where the relationship between T and M is one to one, this is not the case

for backgrounds that are asymptotically AdS where a T > Tmin corresponds to two

data points. Due to this one has to revert back to M which is a metric parameter.

Secondly, recall that the T associated with a Euclidean background is the result of

three steps: Euclideanization of time; compactification; ensuring that the compact-

ification circumference removes the conical singularity. The third step depends on

M and therefore M is more fundamental.

Despite being a study of spins on Euclidean black holes, this work offers a com-

prehensive proof of concept for studying more general matter on these Euclidean

geometries using Monte-Carlo simulations. Therefore the framework developed here

can be extended to study not only higher spin models (3/2, 2, 5/2, etc.) but also a

scalar field that can take any value in a specified interval. The latter - which is an

example of lattice field theory - describes the behaviour of matter on a background

of interest. The existence of phase transitions for the spin 1/2 and the more general

spin 1 model can be used to infer the existence of phase transitions for not only a

higher spin model but also a scalar field on Euclidean black hole geometry.

The aforementioned study - and even the spirit of the current one - is different from

thermal field theory (TFT) in three ways. Firstly, in TFT the background chosen

is flat Euclidean space which has no metric parameters. Here one has Euclidean

black hole backgrounds, the metrics for which have M 2. Secondly, in TFT the com-

pactification of Euclidean time stems from a choice to establish a correspondence

with statistical mechanics. In this work the compactification of Euclidean time is

additionally guided by the requirement to remove the conical singularity. Thirdly,

here the compactification circumference depends on M . Hence the parameter in the

metric is related to the compactification circumference and therefore to the tem-

2Since Λ is held fixed one need only consider M for this discussion.
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perature of the background. This is not the case in TFT since the metric has no

parameters and there exists no conical singularity, due to which one can choose the

compactification circumference arbitrarily.

Lastly, one may view this work as a generalization of spin models on Euclidean

background. This is because here the coupling between spins is position dependent

and the black hole massM affects vertical interactions differently from the horizontal

ones. Already the results of this work provide commentary on the known relationship

between second order phase transitions and diverging correlation lengths. Consider

the homogeneous Ising model for which it is known that these occur at the critical

temperature. This work demonstrates that criticality does not coincide with diverg-

ing correlations for the Ising-like model on a Euclidean Schwarzschild background.
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Appendix A

Cosmological perturbation theory

with matter-time

A.1 Derivation of second order Hamiltonian

Recall that the physical Hamiltonian density for general relativity consists of a

curvature and kinetic part:

HGR = −√
qR(3) +

πabπ
ab

√
q

− π2

2
√
q
. (A.1)

We list the expansions of the different pieces. The metric and its inverse are:

qab = ā2eab + ϵhab (A.2a)

qab =
eab

ā2
− ϵ

hab

ā4
(A.2b)

where ϵ tracks the order in perturbation. We will first compute the determinant

using the usual definition:

q =
εabcεdef

3!
qadqbeqcf (A.3)
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where εabc is the Levi-Civita symbol. We expand the metric as defined in equation

(A.2a) and follow the steps detailed below to obtain the metric determinant.

q =
εabcεdef

3!

(
ā2ead + ϵhad

) (
ā2ebe + ϵhbe

) (
ā2ecf + ϵhcf

)
=
ā6

3!
εabcεdefeadebeecf +

ϵā4

2
εabcεdefeadebehcf +

ϵ2ā2

2
εabcεdefeadhbehcf

=
ā6

3!
εdefε

def +
ϵā4

2
ε c
de ε

defhcf +
ϵā2

2
ε bc
d εdefhbehcf

= ā6 + ϵā4ecfhcf +
ϵ2ā2

2

(
ebeecf − ebceef

)
hbehcf

= ā6 + ϵā4h+
ϵ2ā2

2

(
h2 − habhab

)
.

(A.4)

We can calculate q±
1
2 using a Taylor expansion to second order in perturbations. We

list the results below:

√
q = ā3 +

ϵāh

2
+
ϵ2

8ā

(
h2 − 2habhab

)
(A.5a)

1
√
q
=

1

ā3
− ϵh

2ā5
+

ϵ2

8ā7
(
h2 + 2habhab

)
. (A.5b)

We will now calculate the curvature terms. It is natural to start with the Christoffel

symbols

Γabc = ϵ
qad

2
(hbd,c + hcd,b − hbc,d)

= ϵ

[
ead

2ā2
(hbd,c + hcd,b − hbc,d)

]
− ϵ2

[
had

2ā4
(hbd,c + hcd,b − hbc,d)

] (A.6)

where every partial derivative is spatial. The three Ricci scalar is:

R(3) =
ϵ

ā4
(
∂a∂bh

ab − ∂2h
)
+
ϵ2

ā6
[
hab∂a∂bh+ hab∂2hab − 2hai∂b∂iha

b −
(
∂ah

ab
)
(∂chb

c)
]

+
ϵ2

ā6

[(
∂ah

ab
)
(∂bh)−

1

4
(∂ah) (∂

ah) +
3

4

(
∂ch

ab
)
(∂chab)−

1

2

(
∂ch

ab∂ahb
c
)]
.

(A.7)
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Now we will calculate the momentum terms. We start with the specification for

πab:

πab =
p̄

6ā
eab + ϵpab. (A.8)

We will calculate π in detail; we start with the definition:

π = qabπ
ab

=
(
ā2eab + ϵhab

) ( p̄
6ā
eab + ϵpab

)
= 3ā2

( p̄
6ā

)
+ ϵ
[
ā2p+

( p̄
6ā

)
h
]
+ ϵ2habp

ab.

(A.9)

A similar calculation for πab reveals:

πab =
(
ā2
)2 ( p̄

6ā

)
eab + ϵ

[
2ā2
( p̄
6ā

)
hab +

(
ā2
)2
pab

]
+ ϵ2

[
2ā2pd(ahb)d +

( p̄
6ā

)
ha

dhbd

]
.

(A.10)

We substitute these results in the expression for the Hamiltonian density, expand

to second order in perturbations and simplify where possible using integration by

parts. The curvature and kinetic terms from (A.1) are respectively:

−√
qR(3) =

hab

2ā3

(
∂b∂

chac −
∂2hab
2

)
− h

2ā3

(
∂a∂bh

ab − ∂2h

2

)
(A.11a)

πabπ
ab

√
q

− π2

2
√
q
=
1

ā

( p̄
6ā

)(
pabhab −

hp

2

)
+ ā

(
pabpab −

p2

2

)
+

1

8ā3

( p̄
6ā

)2(
5habh

ab − 3h2

2

)
.

(A.11b)

A.2 Derivation of graviton equation

The graviton equations are those for the phase space variables hI(k, t) and pI(k, t)
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for I = 3, 4 derived from the Hamiltonian (2.68):

ḣI =
2

ā

[( p̄
6ā

)
hI +

pI
ā2

]
, (A.12a)

ṗI =
ā3

2

[
−k

2

ā2
− 5

2ā2

( p̄
6ā

)2
+ V (ϕ̄)−

p̄2ϕ
2ā6

]
hI −

2

ā

( p̄
6ā

)
pI . (A.12b)

The first of these gives

pI = ā2
[ ā
2
ḣI −

( p̄
6ā

)
hI

]
, (A.13)

and

ḧI =
1

3ā2
(
˙̄p− 2p̄H̄

)
hI +

( p̄

3ā2

)
ḣI −

6H̄

ā3
pI +

2

ā3
ṗI , (A.14)

where H̄ ≡ ˙̄a/ā = −p̄/12ā2 from the equations for the background. Substituting for

pI and ṗI into the last equation gives

ḧI =

[
1

3ā2
(
˙̄p+ p̄H̄

)
− k2

ā2
+

3

2ā2

( p̄
6ā

)2
+ V (ϕ̄)−

p̄2ϕ
2ā6

]
hI − 3H̄ḣI . (A.15)

Finally using the background equation (2.23) for ˙̄p gives

ḧI + 3H̄ḣI +

(
k

ā

)2

hI = 0. (A.16)

A.3 Diffeomorphism constraint is first class

To show that the diffeomorphism constraint C̃∥ (2.64) is first class we must show

that

dC̃∥

dt
= {C̃∥, H

Sϕ}+
∂C̃∥

∂t
= 0. (A.17)
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The first term is

{C̃∥, H
Sϕ} = −2ā2

(
ṗ1 +

√
2ṗ2

)
+
( p̄
6ā

)(
ḣ1 − 2

√
2ḣ2

)
+
√
3p̄ϕ

˙̃ϕ

= − p̄
3

(
p1 +

√
2p2

)
−
[
1

4a

( p̄
6ā

)2
+

1

ā

( p̄ϕ
2ā

)2
− āV (ϕ̄)

2

](
h1 − 2

√
2h2

)
+
√
3ā3V ′(ϕ̄)ϕ̃, (A.18)

and the second term is

∂C̃∥

∂t
= −4ā ˙̄a

(
p1 +

√
2p2

)
+

(
˙̄p

6ā
−

˙̄ap̄

6ā2

)(
h1 − 2

√
2h2

)
+
√
3 ˙̄pϕϕ̃. (A.19)

Substituting into this the equations for the background (2.23) and collecting terms

gives

dC̃∥

dt
= 0. (A.20)

Similar steps show that the same results holds for the transverse components of the

linearized diffeomorphism constraint.

96



Appendix B

Ising-like models on Euclidean

black holes

B.1 Unique, positive solution for r(ρ) for the AdS

black holes

Calculating r(ρ) requires inverting

ρ(r) = β0
√
F (r) (B.1)

which after discretization is equivalent to

nϵ = β0
√
F (rn). (B.2)

Hereafter use r instead of rn for neatness. For 4d Euclidean Schwarzschild AdS

rearranging the equation above gives

a r3 + b r + c = 0, (B.3)
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where

a =
1

L2
, b = 1−

(
nϵ

β0

)2

and c = −2M. (B.4)

Hereafter use f(r) = a r3 + b r + c for simplicity whereby equation (B.3) becomes

f(r) = 0. To ensure that for a given n there is an single, positive value for r it must

be checked if f(r) has a unique, positive root. This is indeed the case as it will be

now be demonstrated.

It can be readily verified that f(0) < 0 and

df

dr
= 3ar2 + b. (B.5)

Note that for b > 0, df
dr
|r≥0 > 0 which indicates that the function increases for

positive values of r and becomes zero for one such value; therefore a single, positive

root is guaranteed. Conversely for b < 0:

df

dr

∣∣∣
r<r̄

< 0,
df

dr

∣∣∣
r=r̄

= 0,
df

dr

∣∣∣
r>r̄

> 0, r̄ =

√
− b

3a
. (B.6)

Therefore the function decreases till r = r̄ after which it always increases. This also

ensures a single, positive root.

This analysis applied to 5d Euclidean Schwarzschild AdS leads to a similar con-

clusion.

B.2 Spins on Euclidean Rindler background

Given that spins on a Euclidean black hole background undergo a second order

phase transition as the metric parameter M is varied, it is natural to ask if this

result is unique to Euclidean black hole backgrounds or if spins on any Euclidean

background undergo a phase transition. For example if we use Minkowski spacetime,
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derive its Euclidean version, consider a scalar field on this background and follow

the steps presented in Section 3.4.1 to arrive at a spin model on this background,

are we going to get a phase transition? The following heuristic argument supports

an answer in the negative: consider the flat Euclidean background in d dimensions:

ds2 = dτ 2 + dx21 + dx22 + ... + dx2d−1; (B.7)

this metric is homogeneous and parameter and singularity-free; due to the latter

feature time compactification may be chosen arbitrarily; consequently varying the

temperature will only change the upper limit of the Euclidean time coordinate. Con-

sider now the action of a scalar field Φ(τ, x1) on this background and follow the steps

from Section 3.4.1 to arrive at a 2d spin model on this background. Clearly changing

the temperature only changes the number of rows in the model; since varying the

temperature does not affect the couplings, a spin model on flat Euclidean background

does not undergo a phase transition. This indicates that the existence of a phase

transition depends on the type of background used.

Rindler spacetime describes how an observer with uniform acceleration a perceives

Minkowski spacetime. For generality we will consider d spacetime dimensions and for

simplicity we will assume that the observer is accelerating along one space direction

which we will call x; the remaining d−2 space coordinates are named y1, y2, ... yd−2.

The Rindler metric we consider is

ds2 = − (ax)2 dt2 + dx2 + dy21 + ... + dy2d−2, (B.8)

where a is a constant, t, y1, ... , yd−2 ∈ R and x ∈ R+. Rindler spacetime is flat and

inhomogeneous; it also has a coordinate singularity at x = 0. Therefore there are

some similarities between Rindler and Schwarzschild spacetimes; indeed under the
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coordinate transformation R = a x2/2 the t−R part of Rindler spacetime is:

ds2 = −Fdt2 + F−1dR2, F = 2aR. (B.9)

In imaginary time τ = it the τ − x part of the metric (B.8)

ds2 = (ax)2 dτ 2 + dx2 (B.10)

represents flat space in polar coordinates where aτ is the angular coordinate. Pe-

riodically identifying aτ - whereby Euclidean time has periodicity 2πa−1 - removes

the conical singularity at x = 0. Consequently the singularity-free Euclidean Rindler

background is described by the metric (B.10) with coordinate ranges τ = [0, 2πa−1]

and x ∈ R+ and it has a natural temperature T = a
2π
. Note that the natural temper-

ature of this space is proportional to the metric parameter, unlike that of Euclidean

Schwarzschild background which is inversely proportional to the black hole mass.

In this section spin models are constructed on a Euclidean Rindler background. It

will be checked using Monte-Carlo simulations if spins on this background undergo

a phase transition as the metric parameter is varied. The result, in addition to

the findings for spin models on Euclidean black holes, may provide insight into the

inquiry: what feature of the spin model makes a phase transition likely? For what

follows, we choose x ∈ [0, X] and y1, ... , yd−2 ∈ [0, Y ] to ensure that the lattice and

action are finite, as will be demonstrated shortly.

Consider a scalar field Φ ≡ Φ(τ, x); we choose this specification since the y coordi-

nates do not contain background properties of interest. The Euclidean action of the
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scalar field on Rindler background is

I(d) =Y d−2

{
1

2

∫ ∫
dτdx

[
(ax)−1 Φ̇2 + (ax) Φ′2 + (ax)µ2Φ2

]}
(B.11)

=Y d−2 I(2). (B.12)

In the equations above I(d) is the action in d space dimensions, Y is the upper limit of

the y1, y2 ... yd−2 integrals, and overdots and primes indicate partial derivatives with

respect to τ and x respectively. In the case that the upper limit of the y integrals

is set to 1, the d dimensional action is identical to the 2 dimensional action. Since

physical properties of interest are in the τ − x plane we will set Y = 1.

The steps from section 3.4.1 are followed to arrive at the Euclidean action of spins

on Rindler space:

IE =

Nβ ,NX∑
m,n=1

{
− Φm,n

[(
1

axn

)
Φm+1,n + (axn) Φm,n+1

]

+ Φm,n
2

[
1

axn
+
a

2
(xn + xn−1) +

µ2ϵ2

2
(axn)

]} (B.13)

where

Nβ =
2π

aϵ
, NX =

X

ϵ
and xn = nϵ. (B.14)

Notice that a appears differently in the Euclidean action from how the black hole

mass appears in - for instance - the spin models on Euclidean Schwarzschild back-

ground (3.54).

For the simulations X = 1, ϵ = 10−2, µ = 0 and periodic boundary conditions

were used. Graphs of alignment vs. a are presented in Figure B.1 for the spin 1/2

and spin 1 models Euclidean Rindler backgrounds. These results are valid for d ≥ 2

dimensions.
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Figure B.1: Alignment as a function of metric parameter a for spin 1/2 and spin 1
models on a Euclidean Rindler background.

Two trends are obvious from Figure B.1. Firstly, changing the allowed excitations

of the spins markedly influences their alignment as a is varied. The second trend is

the transition from order to disorder to partial order as a is increased in the spin 1

model.

Both trends can be understood via a heuristic argument. To ensure applicability

of this argument to both cases under consideration the allowed spin excitations (spin

1/2 or spin 1) will be not be committed to initially. Consider a starting lattice of

aligned spins from which the group depicted in figure B.2 is selected.

102



Figure B.2: A group of aligned spins.

It is reasonable to use the probability of changing the value of the central spin as

a qualitative indicator of where one can expect order/disorder in the lattice. This

probability requires the change in Euclidean action upon changing the value of the

central spin; one can verify that

∆I1→−1 =4

[
1

axn
+
a

2
(xn + xn−1)

]
(B.15)

∆I1→ 0 =

(
1

4

)
∆I1→−1 (B.16)

=⇒ p1→0 >p1→−1. (B.17)

Here the notation b→ c indicates changing the value of the central spin from b to c.

It is important to note that the self interactions cancel out in ∆I1→−1 only.

In spin 1/2 models the central spin can only change value to -1 while in spin 1

models the central spin can also change its value to 0. This explains the the first

feature. The second trend is due to how the metric parameter appears in (B.13):

note that the vertical interactions are mediated by 1/a, the horizontal ones by a

and the point ones by a combination of a and 1/a. This results in equally strong

interactions in the extreme cases a → 0 and a → ∞ and weaker interactions in an

intermediate region. Presented in figure B.3 is a graph of p1→0 for the spin 1 model
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for different a values.

Figure B.3: For a spin 1 model on a Euclidean background, this graph shows p1→0

as a function of column number n for different a values.

For a = 1/10, p1→0 ≈ 0 which corresponds to order; at a = 3, p1→0 ≈ 0.1 for a

majority of the lattice which indicates disorder; for a = 10, p1→0 ≈ 0.1 for a smaller

portion of the lattice which results in lesser disorder than the a = 3 case. This

confirms the observed trend in the alignment graph for the spin 1 model in figure

B.1.

Studying spins on Euclidean Rindler backgrounds shows that phase transitions

depend on the allowed excitations of spins and the background (specifically how the

metric parameter appears in the Euclidean action of spins).

104



Appendix C

Publication rights

105



Page 1 of 2

American Physical Society
Reuse and Permissions License

04-Jun-2023

This license agreement between the American Physical Society ("APS") and Mustafa Saeed ("You") consists of your license details
and the terms and conditions provided by the American Physical Society and SciPris.

Licensed Content Information

License  Number:  RNP/23/JUN/067060

License  date:  04-Jun-2023

DO I:  10.1103/PhysRevD.102.124062

Title:  Cosmological perturbation theory with matter t ime

Author:  Viqar Husain and Mustafa Saeed

Publication:  Physical Review D

Publisher:  American Physical Society

Cost:  USD $ 0.00

Request Details

Does your reuse  require  significant modifications: No

Specify intended distribution
locations:

 Canada

Reuse Category:  Reuse in a thesis/dissertation

Requestor Type:  Author of requested content

Items for Reuse:  Whole Article

Format for Reuse:  Electronic

Information about New Publication:

University/Publisher:  University of New Brunswick

Title  of dissertation/thesis:  Probing gravity-matter systems

Author(s):  Mustafa Saeed

Expected completion date:  Aug. 2023

License Requestor Information

Name:  Mustafa Saeed

Affiliation:  Individual

Email Id:  msaeed@unb.ca

Country:  Canada

106



Page 2 of 2

American Physical Society
Reuse and Permissions License

TERMS AND CONDITIONS

The American Physical Society (APS) is pleased to grant the Requestor of this license a non-exclusive, non-transferable permission,
limited to Electronic format, provided all criteria outlined below are followed.

1. You must also obtain permission from at least  one of the lead authors for each separate work, if you haven’t done so
already. The author's name and affiliation can be found on the first  page of the published Article.

2. For electronic format permissions, Requestor agrees to provide a hyperlink from the reprinted APS material using the
source material’s DOI on the web page where the work appears. The hyperlink should use the standard DOI resolution URL,
http://dx.doi.org/{DOI}. The hyperlink may be embedded in the copyright credit  line.

3. For print format permissions, Requestor agrees to print the required copyright credit  line on the first  page where the
material appears: "Reprinted (abstract/excerpt/figure) with permission from [(FULL REFERENCE CITATION) as follows:
Author's Names, APS Journal T itle, Volume Number, Page Number and Year of Publication.] Copyright (YEAR) by the
American Physical Society."

4. Permission granted in this license is for a one-time use and does not include permission for any future editions, updates,
databases, formats or other matters. Permission must be sought for any additional use.

5. Use of the material does not and must not imply any endorsement by APS.

6. APS does not imply, purport or intend to grant permission to reuse materials to which it  does not hold copyright. It  is the
requestor ’s sole responsibility to ensure the licensed material is original to APS and does not contain the copyright of
another entity, and that the copyright notice of the figure, photograph, cover or table does not indicate it  was reprinted by
APS with permission from another source.

7. The permission granted herein is personal to the Requestor for the use specified and is not transferable or assignable without
express written permission of APS. This license may not be amended except in writing by APS.

8. You may not alter, edit  or modify the material in any manner.

9. You may translate the materials only when translation rights have been granted.

10. APS is not responsible for any errors or omissions due to translation.

11. You may not use the material for promotional, sales, advertising or marketing purposes.

12. The foregoing license shall not take effect unless and until APS or its agent, Aptara, receives payment in full in accordance
with Aptara Billing and Payment Terms and Conditions, which are incorporated herein by reference.

13. Should the terms of this license be violated at  any time, APS or Aptara may revoke the license with no refund to you and
seek relief to the fullest  extent of the laws of the USA. Official written notice will be made using the contact information
provided with the permission request. Failure to receive such notice will not nullify revocation of the permission.

14. APS reserves all rights not specifically granted herein.

15. This document, including the Aptara Billing and Payment Terms and Conditions, shall be the entire agreement between the
parties relating to the subject matter hereof.

107



Vita

Candidate’s full name: Mustafa Saeed

Universities attended:

• 2019-present, PhD. Physics, University of New Brunswick, Fredericton, NB,
Canada

• 2016-2019, MSc. Physics, University of New Brunswick, Fredericton, NB,
Canada

• 2011-2015, BSc. Physics, Lahore University of Management Sciences, Lahore,
Pakistan

Publications:
Viqar Husain and Mustafa Saeed. Cosmological perturbation theory with matter
time. Phys. Rev. D, 102:124062, Dec 2020

Conference Presentations:

• Ising-like models on Euclidean black holes. Poster presentation at 2023 CAP
Congress.

• Spin model on black hole space. Oral presentation at 2022 Canadian-Cuban-
American-Mexican Graduate Student Physics Conference

• Cosmological perturbations with a matter clock. Oral presentation at 2021
CAP Congress

• Cosmological perturbation theory with matter time. Oral presentation at 2021
Canadian Student and Postdoc Conference on Gravity

• Cosmological perturbation theory in a new framework. Oral presentation at
Atlantic General Relativity 2019


