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Abstract

This thesis explores gravity-matter systems within the context of cosmology and
black holes. Two different studies are presented.

First we study cosmological perturbation theory (CPT) with scalar field and pres-
sureless dust in the Hamiltonian formulation, with the dust field chosen as a clock.
The corresponding canonical action describes the dynamics of the scalar field and
metric degrees of freedom with a non-vanishing physical Hamiltonian and spatial
diffeomorphism constraint. We construct a momentum space Hamiltonian that de-
scribes linear perturbations, and show that the constraints to this order form a first
class system. We then write the Hamiltonian as a function of certain gauge invariant
canonical variables and show that it takes the form of an oscillator with time depen-
dent mass and frequency coupled to an ultralocal field. We compare our analysis
with other Hamiltonian approaches to CPT that do not use dust-time.

Next we construct and study spin models on Euclidean black hole backgrounds.
These resemble the Ising model, but are inhomogeneous with two parameters, the
black hole mass M and the cosmological constant A. We use Monte-Carlo methods
to study macroscopic properties of these systems for Schwarzschild and anti-deSitter
black holes in four and five dimensions for spin-1/2 and spin-1. We find in every case
that increasing M causes the spins to undergo a second order phase transition from

disorder to order and that the phase transition occurs at sub-Planckian M.
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Chapter 1

Introduction

General relativity (GR) classically describes how spacetime and matter interact [1,
2]. According to GR, gravity is the curvature of spacetime and - as best summarized
by John Wheeler - “spacetime tells matter how to move; matter tells spacetime how

to curve.” This tenet is captured in Einstein’s equations:

Gab(gab) + Agab = 87rGTab(gaba (D) (11)

where g4, is the spacetime metric, G4, is the Einstein tensor which represents the
curvature of spacetime, ® is the matter field, T}, is the stress-energy tensor which
encodes the energy and momentum representing quantities of ®, A is the cosmological
constant and G is Newton’s constant 1. Solutions to these equations give all matter
and spacetime geometry.

One can intuit two such solutions using (1.1). In vacuum, i.e the absence of ® and

A, G4 = 0. In this case the simplest solution of Einstein’s equations is flat spacetime

'Hereafter natural units will be used, whereby Newton’s constant G, speed of light ¢ and
Planck’s constant i are set equal to one.



aka the Minkowski metric:
ds® = —dt* + dr* + r*dQ,>. (1.2)

Here t is time, r is the radial coordinate and df2,? is the metric on the unit two
sphere. The Minkowski metric is physically meaningful because it represents an
absence of curvature.

In the absence of matter but not A, Einstein’s equations yield a spacetime with
constant curvature. Two immediate cases are A > 0 and A < 0 respectively. The

solution of the former case is the de Sitter metric:

-1
ds2——<1—r—2)dt2+(1—ﬁ) dr? + r2dQy* l—\/E (1.3)
= l2 l2 2 - A :

where [ is called the de Sitter scale. This metric is not discussed further in this

thesis. The solution for the A < 0 case is called the Anti-de Sitter (AdS) spacetime:

-1
dsQ——(1+£)dt2+(1+ﬁ> dr? 41202 L= y)—5 (1.4)
- L2 L2 S Y '

where L is called the AdS scale. The AdS spacetime has interesting applications
(which will be discussed later) even if it does not have observational support.

Other interesting solutions of GR are obtained by imposing a simplifying symme-
try on the spacetime and matter. This is advantageous for two reasons. Firstly,
these symmetries reduce the number of degrees of freedom required to describe the
theory and therefore lead to simpler calculations. This is why such models are called
symmetry reduced models. Secondly, these models are idealizations of some physical
systems found in nature. Two such systems are described next.

It has been assumed since the time of Copernicus that the large scale universe is

homogeneous (same at every point) and isotropic (same in every direction). The



biggest indicator of the latter is the cosmic microwave background (CMB) — a bath
of radiation at a temperature 7' = 2.7 K in all directions. The homogeneous and
isotropic universe is called the Friedman-Lemaitre-Robertson-Walker (FLRW) uni-

verse; it is described by the metric
ds® = —dt* + a(t)? (dr® + r*dQy?) (1.5)

where the scale factor a(t) denotes the universe’s expansion 2. The matter distribu-
tion of the universe is also assumed to be homogeneous and isotropic. Studying the
FLRW spacetime and matter using GR explained Hubble’s observations regarding
the expansion of the universe.

Consider now a spherically symmetric, non-moving body of mass M (such as the
Earth, Sun, star, etc.) surrounded by vacuum. The exterior gravitational field of
this body is called the Schwarzschild spacetime [3]:

oM oM\ !
ds? = — (1 - —) dt® + (1 - —) dr? + r2dO,2. (1.6)

r T

In the absence of the body (i.e for M = 0) the metric becomes flat (1.2) as expected.
The Scwarzschild metric is ill-defined at r = 2M and r = 0; such points are called
singularities. The first of these is due to the coordinate system being used and can
be removed under appropriate coordinate transformations (as will be shown later);
therefore r = 2M is called a coordinate singularity. The r = 0 singularity however
cannot be removed by coordinate transformations. Since some curvature scalars also
become infinite in the limit 7 — 0 (unlike the = 2M case), this is called a curvature
singularity. If one wants to study the Earth, Sun or stars then one need not worry
about these points since the Schwarzschild solution is only valid for the vacuum

exterior, which for these bodies corresponds to r > 2M. However the same cannot

20nly the spatially flat case is considered in this thesis.



be said for black holes: astrophysical bodies that have gravitationally collapsed to a
point whereby the Schwarzschild solution is valid for all r.

It is reasonable to expect that the gravitational field weakens as one goes far away
from a black hole. This expectation is satisfied by Schwarzschild spacetime as it
is asymptotically flat. This means that for distances far from the black hole, the
Schwarzschild metric resembles the Minkowski metric (1.2). Likewise a black hole
that is asymptotically AdS is described by the Scwarzchild AdS metric:

ds* = — <1— ¥+£—Z) dt* + (1—¥+£—2>1 dr? + r?dQy°. (1.7)

Investigating Schwarzschild spacetime accounted for the perihelion shift of Mer-
cury’s orbit and led to novel predictions such as the bending of light by a massive
object. This prediction was later verified experimentally. Another notable finding

by Bardeen, Carter and Hawking [4] was that the gravitational field of a black hole

with mass M and area A satisfies

M — (87%\4) <%> | (1.8)

This resembles the first law of thermodynamics
dE =TdS (1.9)

where F, T and S are energy, temperature and entropy respectively. This resem-
blance indicated a correspondence between M and T and between A and S. It was
shown later using different methods that a black hole radiates as if it was a black-
body with temperature 7" = (87 M )_1 [5]. This indicated that the temperature-mass
relationship as obvious from (1.8) and (1.9) was more than just a correspondence.

This point will be revisited soon.



All the aforementioned spacetimes - Minkowski, AdS, FLRW, Schwarzschild and
Schwarzschild AdS - represent ideal physical systems. It is reasonable to expect
that there exist perturbations on them. For example, it is known that there exist
temperature fluctuations 67 in the CMB satisfying 6T/T ~ 10=%. The study of
perturbations on the solutions of GR is called perturbation theory and it consists of

the following steps:

1. Expressing the metric and matter fields in terms of backgrounds and pertur-

bations:

9ab = Gab + 5gab7 ¢ = Qg + 5¢7 (11())

here (gq, ®) are the metric and matter fields, (ga, ¢) are the background quan-

tities and (0gqp, d¢) are the perturbations,
2. Finding the equations of motion (EOM) for the background,
3. Finding the EOM for the perturbations on the background solutions.

Perturbation theory on a flat background, which involves perturbing the gravity
sector only, led to the discovery of gravitational waves. These were experimentally
observed nearly a century later. Cosmological perturbation theory (CPT) involves
perturbing both the gravity and matter sectors [6]. An important result of CPT is
the cosmological gravitional wave equation. Another prominent result was published
in [7]. To understand this result, recall that in GR there is a gauge-freedom. This
means that there is a freedom to perform gauge transformations, which in the context
of CPT are chosen to be infinitesimal coordinate transformations (since more general
coordinate transformations may yield a background metric that does not reflect the
symmetries of the spacetime). In general, the values of the degrees of freedom (DOF)

change due to these gauge transformations. However one can construct combinations



of the DOF such that the value of that combination is unchanged under the gauge
transformation. Such combinations of the DOF are called gauge-invariant variables.
In [7] the author constructed a gauge-invariant perturbation from the metric and
scalar field perturbations. This was called the Mukhanov-Sasaki (MS) variable and
its EOM resembled that of an oscillator.

Let’s now briefly discuss the canonical description of gravity which was introduced
by Arnowitt, Deser and Misner (ADM) in 1959 [8]. In this description it was found
that the Hamiltonian for gravity was a sum of the Hamiltonian constraint and the
diffeormorphism constraint 3. The former is due to the time reparametrization in-
variance of GR: that in GR coordinate time is irrelevant and has no physical signifi-
cance. Similarly the diffeomorphism constraint is due to the space reparametrization
invariance of GR. These phase space constraints are manifestations of the general
covariance of GR. Arriving at a physical Hamiltonian requires using functions of
the phase space as time and space references; this is called fixing a gauge and the
algebraic form of the physical Hamiltonian depends on what variables one chooses
to fix the gauge [10]. For now let’s consider fixing a time gauge only.

For a system of gravity and matter one may also use the matter DOF as the clock.
In addition to resulting in a physical Hamiltonian, this choice is also reasonable
from an observational standpoint: recall that one observes gravity-matter systems
from one’s trajectory on spacetime; hence one’s proper time is what one uses to
make observations; this is why using the proper time of a matter field as the time
in the theory is a reasonable choice. Examples of matter that has been used as a

clock include a scalar field [11], Brown Kuchaf dust [12] and pressureless dust [13].

3A constraint is an independent relationship between the phase space variables [9]. Consider a
particle moving on a unit two-sphere whereby it satisfies the following constraint

4y 4+ 22 -1=0 (1.11)

for its position. The Hamiltonian and diffeomorphism constraints are generalizations of this since
they are independent relationships of the phase space variables.



Using the latter to fix the time gauge has the unique outcomes that the physical
Hamiltonian has the same algebraic form as the Hamiltonian constraint and the
diffeomorphism constraint is untouched.

The Hamiltonian theory of a system consisting of the metric and scalar field has
been used to study CPT. The first such analysis was done by Langlois [14] and others
that develop CPT in the canonical framework have appeared in the last two decades
[15, 16, 17, 18, 19, 20]. Some of the references mentioned use additional matter fields
as clocks; all of them use gauge-invariant perturbations. Brief descriptions of these
studies are provided later.

The preceding discussion is focused on the classical interactions of spacetime and
matter. A widely held belief since the early 20" century is that the quantum de-
scription is closer to nature and hence more fundamental.

Quantum field theory (QFT) describes the quantum behaviour of matter on clas-
sical, fixed Minkowski spacetime [21, 22]. Determining how field values at different
spacetime points are correlated is an important calculation in QFT. These correla-
tors - which are also known as Lorentzian Wightman functions - are used to explain
most interactions of elementary particles that are observed in particle accelerators.
A procedure used to make this calculation easier is Wick rotation: it is the replace-
ment of real time by imaginary - or Fuclidean - time. This causes the action of
a field in 1 time and d space dimensions to resemble the Hamiltonian of a field in
d + 1 space dimensions and for the path integral to resemble a partition function
[23, 24]. As an additional step one may compactify Euclidean time by introducing
an upper limit on the Euclidean time coordinate and enforcing periodic boundary
conditions for the field in Euclidean time. The resultant theory is called Euclidean
QFT [25, 26, 27, 28] and it has a useful correspondence with statistical mechanics
whereby the compactification circumference S - the upper limit of the Euclidean time

coordinate - is inverse temperature. This is why Euclidean QFT is interpreted as



the study of a quantum field in contact with an external, fixed heat bath. It is also
worth noting that the Euclidean correlation functions can be used to define unique
Lorentzian Wightmann distributions [29].

However this correspondence does not extend to curved backgrounds and is appli-
cable only when the background spacetime is Minkowski. For curved backgrounds
Wick rotation can also become problematic, a possible issue being that the proce-
dure results in complex metric components whereby one obtains a theory of quantum
fields on classical, complex background. For example Wick rotating a cosmological
spacetime (1.5) yields a complex scale factor whereby the space-space components
of the metric become complex. Another example is the Kerr metric [30] that has
non-zero time-space components; upon Wick rotation these become complex also
(31, 32].

Euclidean QFT has two main branches: zero temperature Euclidean QFT in which
B — oo, and thermal field theory (TFT) in which f is kept finite. TFT is used to
study interactions in which temperatures are large such as the heavy ion collisions
which lead to the production of the quark gluon plasma, the early universe and
neutron stars.

Generalizations of QFT include QFT on curved spacetime (QFTCS) which is the
study of quantum matter on classical, fixed, curved spacetime [33, 34]. Using QFTCS
it was shown that the expansion of the universe creates quantum particles and that
a black hole emits particles as if it is a thermal body with a temperature related to
the inverse of its mass [5]. This was the same relationship between the mass and
temperature of a black hole that was discovered via GR [4]. That this relationship
was obtained separately from GR and QFTCS motivated Gibbons and Hawking to
seek a statistical mechanics description for the thermodynamic properties of a black
hole. They succeeded by using Euclidean Schwarzschild geometry [35] and their

calculation involved Wick rotation and compactification of Euclidean time. The



resultant Euclidean Schwarzschild geometry had a temperature T = (87 M )71; this
will be covered in detail in a later section. It is worth noting that the Schwarzschild
metric does not become complex due to Wick rotation.

Later, Hawking and Page used this approach to study the gravitational field of a
black hole in AdS space (the Schwarzschild AdS metric also does not become complex
upon Wick rotation) [36]. They found that an asymptotically AdS black hole has a
characteristic temperature and entropy and that for a fixed value of the cosmological
constant, black holes less than a certain mass are unstable and decay into AdS space.
Hawking and Page’s work - which was originally in 4d - was generalized to study
asymptotically AdS black holes in 5d. This was later applied to the hypothesis that
the gravitational theory of a 5d AdS black hole is dual to a strongly coupled gauge
theory at finite temperature in 4d such as quantum chromodynamics (QCD). This
proposal is called the finite temperature AdS/CFT conjecture (where CFT stands
for conformal field theory) [37, 38]. It claims that a strongly coupled gauge theory
at finite temperature in 4d - which is not easy to analyze - can be understood via a
dual theory: the gravitational theory of a 5d AdS black hole.

This thesis probes gravity-matter systems within the context of cosmology and
black holes. Brief descriptions of each study are provided next.

Chapter 2 is related to the author’s MSc thesis [39] which was motivated the
question: how does CPT with a dust clock complement the known results and what
new information does it provide? In [39] a system of gravity and pressureless dust was
considered; this system had local gravitational and scalar dust DOF. The canonical
description was derived and the dust was fixed as a clock [13, 40]; a consequence of
this choice was that the gravity sector acquired an additional scalar DOF. One goal of
this work was to study the nature of the additional scalar DOF that corresponded to
pressureless dust within the context of CPT. The canonical action was used to derive

the equations of motion; the perturbed cosmological spatial metric and its conjugate



momentum were substituted in the equations of motion, which were then expanded
to linear order in the perturbations; the perturbations were expressed in terms of
spatial Fourier modes and then classified based on their properties under rotations
in spatial Fourier space. The salient results were the cosmological graviton equation
and an additional ultralocal scalar DOF in the metric that represented presureless
dust. That a propagating scalar DOF was not discovered was due to the fact that
the dust (which was used to fix the time gauge) was pressureless. That a MS-like
equation was not found was unsurprising since the MS variable mixes perturbations
from the gravity and scalar field sectors; this was not possible here since the starting
system consisted of gravity and dust only.

Motivated by this, chapter 2 generalizes [39] by considering a system of gravity,
pressureless dust and scalar field. This is a valid generalization of [39] since the
universe consists of multiple matter fields. Now the starting system has local grav-
itational, scalar field and dust DOF. After fixing the dust-time gauge the metric
acquires an additional scalar DOF that corresponds to dust. The perturbed phase
space variables for the FLRW spacetime and scalar field are substituted in the canon-
ical action. The action is expanded to second order in the perturbations which are
then expressed in terms of spatial Fourier modes. These modes are next classified
based on their properties under rotations in spatial Fourier space. Finally the equa-
tions of motion for the perturbations are derived using the second order action: the
main results are the cosmological graviton equation, the MS equation with a source
term and another equation for an ultralocal DOF which represents dust. This work
is different from other CPTs, most importantly because it uses gravity, scalar field
and pressureless dust with the latter being used to fix a time gauge. This uniqueness
is manifested in the MS equation being generalized to include a source term and the
additional ultralocal DOF.

Chapter 3 is motivated by the question: since Euclidean Schwarzschild background

10



has a temperature [2, 35] to what extent does it behave like a heat bath for a quan-
tum field that lives on it? To answer this a procedure is defined that allows one to
study the thermodynamic properties of the field for different M using Monte-Carlo
(MC) simulations. This is Euclidean QFT on black hole space which is different from
standard QFTCS in several ways. Firstly, the proposed method uses the Euclicdean
black hole background whereas QFTCS uses the Lorentzian background. Secondly,
in the proposed method the compactification of Euclidean time results in a cor-
respondence with statistical mechanics. There is no such correspondence between
QFTCS and statistical mechanics. This work is also different from TFT since it
uses Euclidean black hole backgrounds and TFT uses flat Euclidean space. The
remaining differences require technical background and therefore will be discussed
after Fuclidean black holes are introduced.

To ensure a simple model and reasonable computation times the excitations of the
field are restricted. One restriction is that the field can take values + 1 whereby
one has an Ising-like model [41] on black hole space. It is found that for small M
the spins are disordered, for large M the spins are ordered, the phase transition
is second order and it occurs at sub-Planckian M. Ising-like models on AdS black
holes in four and five dimensions are also studied. Then the allowed excitations of
the field are extended to 0 and =+ 1; this is like the Blume Capel model [42, 43]
(which is a generalization of the Ising model) on the three backgrounds mentioned.
Second order phase transitions that occur at sub-Planckian M are discovered for all
spin models studied. This research will be sent for publication soon.

The fourth chapter summarizes the thesis and discusses future extensions and
applications of the works presented. The appendices contain supplementary cal-
culations, additional details and the reuse and permission license for the research

presented in Chapter 2.

11



Chapter 2

Cosmological perturbation theory

with matter-time

2.1 Introduction

The diffeomorphism symmetry of general relativity (GR) is manifested in its
canonical formulation through the presence of phase space constraints that generate a
closed Poisson algebra. The Hamiltonian is a linear combination of these constraints,
and so vanishes on shell [44, 45]. The path to a physical non-vanishing Hamiltonian
requires selecting a function on the phase space as a choice of time; the negative
of the phase space variable conjugate to the time choice provides this Hamiltonian
[10]. It is clear that there are numerous choices for physical Hamiltonians, and the
classical dynamics generated using these, for given ansatze, lead ultimately to the
same solutions, but in different charts, and covering different regions of the spacetime
manifold.

In early work on general relativity, time choices were divided into “intrinsic,” where

Y

time is a function of the spatial metric, and “extrinsic,” where time is a function of

the extrinsic curvature (or the momentum conjugate to the spatial metric). Two fre-

12



quently studied examples of such choices are 3-volume, and the trace of the extrinsic
curvature (York time) [46].

For GR with matter fields, there is also the possibility of using matter phase
space functions as clocks. Examples of such clocks date back to early studies of
cosmological models, where a scalar field was used as a clock [47]. More generally
Brown and Kuchar [12] gave a prescription for using a 4-component fluid field coupled
to GR as a matter reference system for time and space. This idea, along with the
older one of scalar field time, has subsequently been used in many works with the
aim of building models for quantum gravity [13, 48, 49, 50].

There are two closely related approaches in which geometric or matter reference
systems may be used for classical and quantum models. One of these is to fix
the gauge and solve the corresponding constraint strongly and thereby obtain a
partially or fully gauge fixed (or “deparametrized”) system. The other is to use
“relational” observables [51] without deparametrizing, where the evolution of one
variable is observed relative to that of the chosen clock variable. This latter procedure
generates gauge invariant (Dirac) observables through eliminating the arbitrary time
parameter t by inverting the evolution of a clock phase space variable T one inverts
T(t) — ¢(T) in some domain, and then substitutes ¢(T") into any other observables
O(t) of interest, O(t) — O(t(T)).

In this chapter we apply a specific matter-time gauge (dust-time) to cosmological
perturbation theory in the Hamiltonian formulation. The principal advantage of this
gauge is that the physical Hamiltonian takes a simple form: it is exactly the same
algebraic expression as the Hamiltonian constraint without the dust contribution.
At this first stage we do not fix the spatial diffeomorphism symmetry, which remains
as a decoupled gauge symmetry until we proceed to a second order expansion of
the canonical action. In the diffeomorphism constraint also the dust contribution

is now absent. We emphasize that the process we follow applies to GR coupled to
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dust and any other matter fields, including additional scalars, fermions or gauge
fields; in the dust-time gauge the physical Hamiltonian is always the same algebraic
expression as the Hamiltonian constraint without the dust contribution, and the
spatial diffeomorphism decouples in the same way as for the case of a single scalar
field we develop here.

Our work is not the first to construct a Hamiltonian perturbation theory for cos-
mology. The first such analysis was given in [14]; others using the relational approach
have appeared recently [19, 20]. However our approach differs from both in several
respects, the primary one being that we use only a clock field, and fix a matter-time
gauge strongly at the outset before proceeding to cosmology [13]. This step simpli-
fies the analysis significantly by removing the Hamiltonian constraint at the outset.
Another important difference is that the theory we consider, GR, with dust and a
scalar field, has four local physical degrees of freedom, two gravitational, one scalar
and one dust. Therefore, after selecting the dust-time gauge, the metric acquires an
additional degree of freedom. In these aspects our work complements these earlier
works, with little overlap. The approach we follow was used by one of the authors
for studying perturbations on Minkowski space [40]; the work presented here may
be considered an extension of this to cosmological perturbation theory. It may be
generalized to include additional matter fields.

In the next section we review the use of the dust-time gauge in the ADM canon-
ical framework [12, 13]. In Sec. 2.3 we develop the linearized perturbation theory
by expanding the Hamiltonian and diffeormorphism constraints about an arbitrary
FLRW-scalar solution. We show from the canonical perspective that the graviton
equations turn out to be exactly those derived in the standard covariant perturbation
theory without dust (see e.g. [6]), and that the vector modes may be gauged away.
In Sec. 2.4 we introduce diffeormorphism invariant phase space variables to study

the scalar field and curvature degrees of freedom (which are independent degrees of
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freedom in the dust-time gauge). In Sec. 2.5 we give a detailed comparison with
standard perturbation theory. We conclude in Sec. 2.6 with a summary and possible
future directions. Several appendices provide details of our calculations: Appendix
A.1 gives details of the Hamiltonian perturbation expansion, Appendix A.2 gives
a derivation of the graviton equation, and Appendix A.3 provides a proof that the

linearized constraints are first class.

2.2 Hamiltonian gravity with dust

We consider GR coupled to dust and a scalar field. The action is

1 1
™

4r

/d4:z: —g m(g*™0,To,T + 1)+/d4x L(P). (2.1)

The second term is the dust action, and the last term is the minimally coupled
scalar field with an arbitrary potential V(®). With u® = ¢*9,T, the dust energy-

momentum tensor is

T4 = muu® + %gab (geauu® +1). (2.2)

Thus on shell, m is interpreted as the dust energy density.

The ADM canonical theory obtained from this action is
S = /dt dBLC (W“bq'ab -+ pqﬁ) + pTT — NH — N“Ca>, (23)

where the pairs (qu, ), (9, ps) and (T, pr) are respectively the phase space vari-
ables of gravity, scalar field and dust. The lapse and shift functions, N and N® are

the coefficients of the Hamiltonian and diffeomorphism constraints

H=H+H"+H (2.4)
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C,=Cl+cCl+c?
= —2Dy7° 4+ prO,T + pe0,®,

where

1 1
HE = 7 (wabnab - 5#) — VqR® (2.6)

D _ 1 Pr ab
HY = 5 {m\@%—m\/&(q 9. T, T +1) (2.7)
W= (P eg.e0,0 (2.8)
2 \/G aq a b ) .

04, D, are the spatial partial and covariant derivatives, and R®) is the spatial Ricci
scalar. The field m appears only in H” as an auxiliary field. We can therefore solve

its EOM for m and substitute the result back into HP:

m ==+ b (2.9)

\/q(qabﬁaTabT +1) ’

HP = sgn(m) pr \/q“baaTﬁbT +1, (2.10)

where sgn(m) is the sign convention chosen in (2.9). With this expression for H?,
the final canonical action retains the form (2.3), but now with no dependence on m

except for its sign.

2.2.1 Dust-time gauge

We now introduce a partial gauge fixing by setting a time gauge to obtain a
physical Hamiltonian; this fixes the time-reparmetrization invariance, while the spa-
tial diffeomorphisms remain as a full gauge symmetry. We use the dust-time gauge

[13, 52] which equates the physical time with the dust field, i.e., the spatial hyper-
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surfaces are level surfaces of the dust field,
A=T—-et~0, e==l (2.11)

This is a special case of the Brown-Kuchai matter reference frame system which is
designed to fix all four coordinate conditions. The condition (2.11) has a nonzero
Poisson bracket with the Hamiltonian constraint, so this pair of conditions constitute
a second class set. According to the Dirac criteria, a gauge condition is considered
suitable if the matrix of second class constraints is invertible at all points [45]. In
the present case this matrix is

C = O = sgn(m) o : (2.12)

{(H, A} 0 ~1 0

This matrix is invertible everywhere on the manifold (since sgn(m) is merely a sign
convention selected in (2.9)). Therefore the dust-time gauge does not breakdown
at any point and is therefore a robust choice. The second condition on a canonical

gauge is that it be preserved in time. This gives an equation for the lapse function:

= sgn(m)N . (2.13)

T=t

GZT:{ﬂ/fﬂNH+Nuﬁ

Solving the Hamiltonian constraint for pr and substituting the gauge condition

back into (2.3) gives the gauge fixed action
Sar = /dt Az [ﬂ“bq'ab + po® — € sgn(m) (’HG + ”Hq’) — N“Ca], (2.14)
This identifies the physical Hamiltonian density
Hp = € sgn(m) (HG + H?®) = sgn(N) (HG +H?), (2.15)
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where the last equality follows from (2.13). Thus the physical Hamiltonian is deter-
mined up to an overall sign of the lapse function. Since we are free to choose the

lapse up to sign, we will work with NV = 1. The corresponding spacetime metric is
ds? = —dt* + (dz® + Ndt)(dz® + N°dt)qap. (2.16)

In the following we apply the dust-time canonical action (2.14) to flat FLRW
cosmology and construct the linearized perturbation theory. At this stage we note the
central difference with standard perturbation theory: we have a physical Hamiltonian
not a Hamiltonian constraint, therefore the gauge invariant observables we work
with are those that are invariant under the spatial diffeomorphisms. Furthermore,
the physical Hamiltonian (2.15) is what would be the Hamiltonian constraint for
the gravity-scalar system. As a result, per point we have three physical degrees of
freedom in the metric, and one in the scalar field; the presence of the third degree of
freedom in the metric is due ultimately to the fact that our starting action had a dust
field. As we will show, these can be rearranged into two graviton modes, a curvature

perturbation, and the scalar field, with a relatively simple coupled dynamics.

2.3 Cosmological perturbation theory

Our starting point for developing a canonical perturbation theory for lat FLRW
models is the selection of a background solution starting with the action (2.14). This
starting point is distinct from all standard treatments of the subject, both canonical
and covariant, with the key difference being that the Hamiltonian constraint is no
longer a constraint, but is instead the physical Hamiltonian. This has several conse-
quences, the main one being that the additional local degree of freedom that came
from the dust emerges in the metric perturbation.

Let us take the following parametrization for the ADM variables for the background
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solution:

0 _ a p@) a

& = @) ea Wb«»:(%(t))eb, (2.17)
O = g(t), Py = po(t), (2.18)
N© = 0 (2.19)

where ey, is the Euclidean metric, (a(t),p(t)) and (¢(t), pe(t)) are the scale factor
and scalar field and their conjugate momenta. Substituting these into the dust-time

gauge fixed canonical action (2.14) gives the reduced action for the background

S = /dt [ap + 6Py — ’H] (2.20)
where
_ (7 A
H = —%—l—%%—a V(o). (2.21)

The background spacetime metric with this parametrization, with N? = 1 in the

dust-time gauge, is of the standard form

ds* = —dt* + a@*(t)eqda"da’. (2.22)

The background EOM are

a = 2.2
“T 1 (2.23)
2 3 ]

=_ P Py o2

P=—5=2 "5 3a°V () (2.23b)

= Py

¢ = - (2.23¢)
Py =—a’V'(¢), (2.23d)

where V'(¢) = dV/d¢|;. The physical Hamiltonian is a constant of the motion in
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the dust-time gauge, since it is not explicitly time dependent; this is unlike other

time gauges, such as volume time a® = t. The background solution is of the type

H=p, (2.24)

where j is a constant, and therefore falls into one of the three classes: H = 0, H > 0,

and H < 0. The first of these corresponds to the condition
PP "
= 2 L @V(P), (2.25)

which by the equation of motion for a (and restoring the 87G factor) is the Friedmann

equation

ﬁ2_8ﬂG<]535
-3

—= 4 V(¢)) , (2.26)

2ab

where H = a/a. For the cases H = p # 0, the conservation of the physical Hamilto-

nian may be written

2oL y(g) — %) 7 (2.27)

which shows that p gives the dust energy density contribution to the Friedmann
equation up to a minus sign. This completes our summary of the background solu-

tions in the dust-time gauge.
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2.3.1 Linearized theory

We define the following expansion of phase space variables and the shift vector:

Gan(t, T) = a(t)*eap + hap(t, T) (2.284)
ab =\ ﬁ(t) ab ab =

T(t, T) = 6@—(75)6 + p®(t, 7) (2.28b)

N°(t, &) = 0 + £9(t, T) (2.28¢)
(t, %) = o(t) + ¢(t, T) (2.28d)

pa(t, T) = ps(l) + py(t, T). (2.28¢)

Here the fields hg, p™, ¢, pg are respectively the perturbations of the gravitational
and scalar field phase space variables, and £* is the perturbation of the shift vector.

These are substituted into the physical Hamiltonian and spatial diffeomorphism
constraint, which are then expanded to second order in the perturbations. This leads

to the second order action for the perturbations
5@ — / dtdx [habpab +dps — H® — 5@0,5”] , (2.29)

where H® is the second order perturbation of the Hamiltonian, and Cél) is first
order perturbation of the spatial diffeomorphism constraint. The latter is all that is
required since the shift is first order. We note also that terms linear in the pertur-
bations vanish when the background solution is imposed; the first order symplectic
term in the action combines with the first order term HY|s to give zero, and the
first order diffeomorphism term (N «OcM 4+ f“CC(LO)> | = 0. (S denotes evaluation

on the background solution.) The expressions for

HP = OO L *@ (2.30)

cH = oW 4 o2 (2.31)
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are the following:

1 1/p 1
G2) _ = ab o2 - ab =
H a (p Pab = 5P ) += (Ga) (p hay th>
1 ]5 2 ab 3 2 h ab 1 2
v (ga) (o = 502) = 5 (00— S0

ab
h (aba%m — %a%ab> (2.32)

+2d3
HOR) = ﬁ+§aba¢a¢+_
T 9g3 | 2f G0

_ )
_( Dy 1o+ Py ab Lo
—l—a( S ps+ V(@) <;5> h+ o (habh +5h >

a

3
" 2
5 V'(0)

1 w1,
~=V(9) (habh " 5h > (2.33)

a

D 1
W = —2a%0"py, — ?% <a%ac - Qaah) + Pp0a - (2.34)

All indices in these equations are raised and lowered by the Euclidean metric eq;
0% = e%9,0y, h = hgpe®, and p = p™e,;,. The derivation of these expressions appears

in Appendix A.1.

2.3.2 Linearized theory in momentum space

We next write the action for the perturbations and the shift in spatial Fourier

modes, as this significantly simplifies the remaining analysis. We set

hao(t,T) = / &k :ei"f'-fM({th@,z%’)}, (2.35)
Pt 7)) = / &k :eiE’fM}‘pr(t,E)], (2.36)
o(t,T) = / Pk e“f%(t,é)], (2.37)
po(t, @) = /d3k ezﬁ“ﬁd,(t,i?)}, (2.38)
€t 7) = / &Pk e’E‘ff‘l(t,E)] (2.39)
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Here the matrices M/, I = 1---6 (to be defined below) form a time independent
basis for 3 x 3 symmetric matrices that give a decomposition of the gravitational
phase space variables into the canonical set (h!,pr), and the lowercase indices are
lowered and raised using the flat Euclidean spatial metric and its inverse respectively.

The matrices M must satisfy the orthogonality condition
Tr(M! M) = ML M7 = 61 (2.40)

to ensure that the symplectic structure is preserved when the canonical action for

perturbations (2.29) is written in k—space, i.e.
/ Badt pPha, — / d*kdt prh!. (2.41)

A suitable matrix basis that fulfills this requirement may be constructed using the

unit mode vector and two unit orthogonal vectors in the plane transverse to k¢
€5 = k/|k|, €}, €. (2.42)

Since we would like to characterize the matrices M as having defined helicity with
respect to rotations about the £ axis, we replace €, €5 with the eigenvectors of the
rotation matrix Jy about the k% axis. These are ¢ = (€% & i€§)/+/2, and satisfy
+i6

Joex = e*ey , Jpes = €3, and eabe‘ie’jr =1 and egedel, = 0. Using the set (e3,€),

the Euclidean metric may be written as e® = 2€Sf€b) + €3¢S

The six matrices M are constructed from the elements

€vel, e(ae?, €tel,, eé“ef@. (2.43)

Under Jy, the first two transform as scalars, the second two as tensors, and the last

two as vectors. However as they stand, these do not satisfy the desired orthogonality
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conditions (2.40). This is achieved by the following linear combinations:

M = % e, (2.44)
My = ; (egeg — %e“b) : (2.45)
Mg = % (e’ —eteh), (2.46)
M{® = % (&6’1 + eiei) : (2.47)
Mg = (e(_aeg) — efe?) : (2.48)
Mg = 6(_0“6? + egfeg), (2.49)

where again the first pair transform as scalars, the next pair as tensors, and the last

pair as vectors. Let us also note a few other properties of these matrices:

e ML = 0, I=2---6
kML = 0, I=34

k“kPML = 0, I=5,6. (2.50)

Thus in the decomposition of the Fourier transform of the metric perturbation
;Lab(k, t) = MLhi(k,t), hy, hy are the scalar modes, hs, hy are the transverse traceless
tensor modes, and hs, hg are the transverse vector modes. The same properties hold

for the momenta p; conjugate to h!. The shift perturbation may also be decomposed

into longitudinal and transverse components:

~ -

EU(t k) = &u(t,k)ed + Ealt, k)es + & (1, k)es. (2.51)

In summary, so far we have decomposed the perturbations hy(x,t), p®(z,t) into
longitudinal and transverse Fourier modes h!(k,t),p;(k,t), I = 1---6, with well

defined physical properties, and a related expansion for £%. (The scalar field pertur-
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bation of course does not require any decomposition.) We now write the canonical

action in k—space using this decomposition.

2.3.3 Canonical action in momentum space

As is standard in field theory, writing an action in momentum space using (2.35) re-
quires field redefinitions after implementing the reality conditions such as ﬁ;b(t, k) =
hay(t, —k). One way to do this is to write hgy(k,t) = A2 (k,t) + ih%, (k,t), impose
the reality condition, restrict the action to be over independent modes, and then
redefine modes to give an action with integration over all k. Following these steps,

and using the decompositions
hap(k,t) = Myyrh! (K1), p2(k,t) = M p(k,t), I=1---6, (2.52)
gives the k—space action
5@ — / dtdk [hfpf v opy — HO — zéaég“], (2.53)

where H® = HCE@ 4 144 and

INTA% 19,
+50 () (W — ol

k2 ha \° 3
s [@-73) S22, 2542
02) _ ﬁ+§k2&2+a_3vu(@éz
263 ' 2 2
T
+V3a <—%p¢ + §V'(¢)¢) hi
72 —
3 1% 3
+ % (hfhf + 5h%) - 4(25) (h]hf - 5hf) : (2.54b)
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The linearized diffeomorphism constraint in momentum space C’(Sl) =0is

OO = €O+
V3k,

= —2a*k"M!p; — ;é (kCM;ChI - h1> + Pokad. (2.55)
a
A further expansion of % using the properties of the M basis reveals its longitu-

dinal and transverse components:

=2

co g {—%@1 +V3) e (242 +ﬁ¢<5} o

— 2k [anG + (é’%) hﬁ} €ra — V2K [a2p5 n (6%) h5} €20 (2.56a)

Similarly, the gravitational Hamiltonian may be written as a sum of scalar (hq, hy),

tensor (hs, hy), and vector (hs, hg) components, and their canonical momenta:

H® = gS+ HV + HT, (2.57)
- 1 1/p 1 1 /7pN\2/1
H®=a <p§ - —p%) + 5 (6_&) (thz - §h1p1) + @ (6_6) (5’1% + 5h§>

2
)2 (m _ %hz)z, (2.58a)
N

1/p 5 /72
HY = a(pd+3) + = (&) (pshs+poho) + o5 () (3+03).  (258D)
06
H" =a(p;+pj]) + p (é%) (pshs + paha)
1[5 /N2 (KN .0 .o
= |52 () +(a) (5 + i) (2.58¢)

This shows that only the scalar canonical pairs (hy, p1) and (hg, p2) interact with each
other, while all the other pairs are mutually decoupled. Denoting the longitudinal

and transverse components of the diffeomorphism constraint by C} and C', we note
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also that

{(#®,Cc.}=0, {HV,C)} =0, {H".C,}=0. (2.59)

Thus the graviton modes are diffeomorphism invariant (to this order in perturbation
theory). All propagating modes appear with a factor k? so the vector modes are
non-propagating; the last term in H® is the curvature perturbation up to an overall

factor.

2.3.4 Partial gauge fixing: removal of vector modes

At this stage it is useful to perform a gauge fixing to remove the vector modes. This
involves imposing canonical gauge conditions on these modes and solving strongly
the corresponding diffeomorphism constraint components. The above decomposition

reveals the convenient choice

hs = hg = 0. (2.60)

These are second class with the components C' ,

{hs,C.} = {hg,CL} = V2ka?, (2.61)

unless @ = 0 or k = 0. Since we are interested in propagating modes (where the
diffeomorphism constraint is not identically zero), and in regions far from a potential
singularity, these gauge choices are sufficient. €| = 0 is then solved by setting
ps =pe = 0.

This result is different from the one obtained in the standard, covariant cosmo-
logical perturbation theory where the vector modes decay in an expanding universe

due to which they are typically set to zero [6, 39]. In our framework one can use a
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different gauge from (2.60) to arrive at decaying vector modes. However the current
result is more useful since it shows that vector modes are gauge DOF'.

The resulting H%® is now

H¢® = g5 + HT, (2.62)

and the second order scalar field Hamiltonian becomes

~9 _ -3
~ P a ~ a "N
HD = 5t oK+ SV (0)6
— | ]3¢ ~ 1 7wt
+V3a [ <—2(_16>p¢ +5V (¢)¢] Iy
72 -
p 3 1% 3
+8—§; (hlhf + §h§> — % <h1hf — 5}#{) : (2.63)

where the sums h;h! in the last line now exclude the vectors modes hs, hg. The first
line is the standard Hamiltonian of the scalar field perturbation (95, Ps) on the (a, ¢)
homogeneous background; the second line contains the coupling of the scalar field
perturbation to the metric scalar mode hy; the last line is a potential for the graviton
and metric-scalar modes.

The diffeomorphism constraint is reduced to only its longitudinal component
O = —2a2(py + V2ps) + (6%) (1 — 2v/2hs) + V3P4 = 0. (2.64)

In summary, the gauge fixing (2.60) leaves a simpler system for the the remaining
degrees of freedom: the metric scalar modes (hy, hy), graviton modes (hs, hy), and

the scalar field mode ¢.
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2.3.5 Graviton equation

The graviton part of the second order canonical action is
59 = /dtd3k: [pfh, - Hg] L I=3.4, (2.65)

where HY is the sum of H” in (2.58c) and the graviton parts of H®®? in (2.54b).
For comparison with covariant perturbation theory, where the expansion ¢, =

a%(t) (eqp + hap) is used, let us make the transformation
h; — a*h;, p;r — a py. (2.66)
With this, the symplectic term transforms to
hip" — hyp' +2 (g) hip" = hip' — 6%2}1[]01, (2.67)

where the last step uses the EOM of the background. Therefore HY transforms to

1 P
HY = = (05 +p3) + (@) (p3hs + pahy)
a | 0} 579N\ (K’
T [2— V@) + 5 (g) + (‘)

Although this expression for HY looks involved, it is readily verified that the canonical

(k3 + h3). (2.68)

EOM

hf = {h], Hg}a pl = {pb Hg}7 (269>

together with the equations (2.23) of the background (a,p), leads to the standard
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wave equation
. a\ - k2
h[+3 - h]+—2h] :0, [:3,4 (270)
a a

Thus the graviton mode equation is unchanged in the canonical dust-time gauge.

The calculation leading to this has some non-trivial steps (see Appendix A.2).

2.4 Scalar modes

We have so far seen that the dust-time physical Hamiltonian in momentum space,
in the time independent matrix basis M, provides a relatively simple way to analyze
cosmological perturbations. Specifically we showed from a canonical perspective how
the vector perturbations are removed, and the graviton equation remains unchanged.

We now turn to the remaining degrees of freedom (hq, hs, @), with dynamics de-

scribed by HS (2.58a) and H?®? (2.63),

B 1 1/p 1 1 /pN\2/1
S¢ 2 2 2 2
e = (= got) 4 () (= gomn )+ () (37 +514)

1 k ’ 1 ’ ﬁi 5 2 2 V((Zﬁ) 1 2 2
—@ (a) (hl - E}w) + ﬁ (§h1 + hg) + 4@ (§h1 - hQ)

P2 a 1

-3 —
+o2 4 g2y %1/”(<5)g52 +V/3a {— (%) Do + —V'(é)cﬂ hi, (2.71)

2a3 2 2

subject to the remaining diffeomorphism constraint Cj (2.64).

The Hamiltonian H*? is of the form of hg(h;, p;) + h¢((/z~5,p5¢) + hlm(q?,m, hi). It
is notable that the scalar field perturbation gg interacts with only the metric-scalar
mode h; in the last term. The constraint C} depends on the remaining phase space

variables, and is also explicitly time dependent through the background solution
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(@, D, Py); it is therefore useful to check that it is remains first class, i.e.
: . oC
CH = {C”,/dgk HS¢} + 8_15” = 0. (2.72)

This is indeed the case (see Appendix A.3).

At this stage we have one first class constraint €} and three configuration vari-
ables hq, ho, . Therefore there are two physical configuration degrees of freedom
in the metric perturbation (in addition to the two graviton modes we have already
discussed). We recall that this is unlike the standard cosmological perturbation the-
ory where the starting point has only the metric and scalar field perturbations; in
the model we are studying, there is also the dust field, which was fixed as the time
coordinate, thereby leaving an additional physical configuration variable in the met-
ric perturbation. We now turn to identifying two physical diffeomorphism invariant

variables and their conjugate momenta. These satisfy

{0.¢)} =0 (2.73)

2.4.1 Diffeomorphism invariant observables

For linear perturbation we are interested in observables O defined by (2.73) that
are linear in the phase space variables (hy, ha, p1, po, gg, Dg). There are many choices.
We are interested in diffeomorphism invariant canonical pairs and an expression for

the physical Hamiltonian (2.71) in terms of such pairs. Let us note that ¢ is already
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invariant since pg does not appear in éH- A few other elementary ones are

h
HEhl——2 PEp1+2p—\;§7

\/57
1243 6a’
Al =hy — ( 5 )ph Ay = hy + <?> D2, (2.75)

2a% '\ . 2v2a*\ _
Bl = hl - <\/§p¢) Do, BQ = hg - ( ) Do- (276)

(2.74)

These may be used to construct invariant canonical pairs by taking linear combina-
tions with coefficients that are functions of the background solution.
The first of these observables H is proportional to the Ricci curvature R®) of the

spatial slice. To see this we note that to linear order
1
3) ab 2
R = —5 (00" — 1) . (2.77)
In the M basis in momentum space, this becomes

RO e O BTG PR

the v in the last term defines the curvature perturbation used in the covariant theory.

It is readily verified that a momentum conjugate to v is

8—2

This satisfies

{P,,C)} =0, {¢,P} =1 (2.80)

A second canonical pair is found by noting that the scalar field perturbation ¢ is
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diffeomorphism invariant,
{6,C)} =0. (2.81)

For notational convenience we define v = ¢. A diffeomorphism invariant variable

canonically conjugate to v is
. ape
Py =ps + 2v/3 ? <p1 + \/§p2> ) (2.82)
and this satisfies

{P,,C\} ={P,, v} ={P,,P,} =0, {7,P}=1 (2.83)

(We note that p, is canonically conjugate to ®, but it is not gauge invariant, hence
the need to define an alternative conjugate momentum that is gauge invariant.)
Although the Hamiltonian (2.71) may be written down in terms of these variables, it
is more convenient to use a different set that is useful to make a comparison with the
conventional perturbation theory without the dust field. For this reason we select

the following diffeomorphism invariant canonical pairs. The first pair is

_ o[
R =79 (12ﬁ¢)¢ (2.84)
48k2a? 2 /P
Pr = ( 5 )w+ §<5)A2, (2.85)
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and the second pair is

X = (?—3) 9, (2.86)

Dy

(é;ff’) B.. (2.87)

These satisfy

{(R,Pr}y={x.P,} =1, {Pr,P}={Pr,x}={P.,R}={R,x}=0. (2.88)

We can now write the Hamiltonian (2.71) in terms of these canonical variables.
Before doing this it is convenient to fix a gauge and solve the diffeomorphism con-
straint C)) = 0; since the variables are diffeomorphism invariant, their values would

of course be unaffected. We choose the gauge

This choice removes the interaction of h; and ¢ in the Hamiltonian (2.71), thereby

simplifying it considerably. It is second class with Cj:
{h,C} = —2a*, (2.90)
unless a = 0. Setting h; = 0 and solving the diffeomorphism constraint for py,

\/—p¢¢’

pr=—V2 (p2 + %hz) (2.91)

gives the fully reduced theory for the gauge invariant pairs (R, Pr) and (x, Py). The
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final action is

S2) = / dtdk [RPR +XP, — H<2>] : (2.92)

where the k—space Hamiltonian density takes the remarkably simple form

H® = i_ {%sz + k? (zR)z} - (i;) P’ — < @’Z) PRrPy, (2.93)
2a |z 2p;, 12py
with
12p,
— P (2.94)
p

The EOM following from this Hamiltonian are

- (B 200
C_LS a 1 .

LS CR O

P, = 0= P, =C. (2.98)

These lead to the second order equations

R+ (%) R+ (S—z) R =Cf(1), (2.99)
¥+ (g) X = % (Cf— i—zn) , (2.100)

where ( = az?, a = H( and f(t) is the following function of background solution

. (%)Jr(%) (%) :(_% (2.101)

Thus the equation for R resembles that obtained in the usual cosmological pertur-
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bation theory, but now has a forcing term that is a function f of the background
fields and P, = C’; for the choice C' = 0 this equation is the same as that in usual
cosmology. The equation for y on the other hand is ultra-local because there is no
term in it of the form A2y, which would indicate the presence of spatial derivatives
of x; k dependence of y therefore arises solely from the source term of (2.100). This
is not surprising since we would not expect a second propagating degree of freedom
starting with a theory containing pressureless dust. Indeed this is also what is ob-
tained for perturbation theory on flat spacetime [40]. As a final comment in these

equations we note that (2.100) may be rewritten using the variable
R
i - =, 2102
X=X—F (2.102)

leading to

X+ (g) X = é% [(C%) R] : (2.103)

which removes the k? term on the r.h.s. of (2.100). This shows the ultralocality
of ¥ due to the absence of the spatial derivative propagation term k%Y — the same
reasoning as for y.

Let us summarize the results so far. We started with the theory of GR coupled
to dust and a scalar field. This theory has four physical field degrees of freedom,
of which 2 are gravitational. The Hamiltonian perturbation analysis we presented
therefore must also have the same number. By fixing the dust-time gauge, one of the
these four degrees of freedom manifests itself in the metric. Thus, after identifying
the two graviton modes, we are left with an additional scalar mode, which as we
have seen turns out to be ultralocal.

The general framework for the dust-time perturbation theory we develop has direct

application to inflaton + matter cosmology. In particular, one of the perturbation
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equations we derive is exactly the Mukhanov-Sasaki equation, with the difference
that the time parameter in our framework refers to dust-time. This provides a
direct connection with one of the standard results of covariant perturbation theory.
Furthermore, the formalism we develop extends readily to matter fields in addition
to dust and scalar field; the dust-time physical Hamiltonian and diffeomorphism
constraints can be expanded to second order for any additional fields, and their
corresponding perturbation equations derived in a manner similar to that which we
display for the inflaton.

This work may also be viewed in a wider context of GR coupled to special types
of matter. These include the Einstein-Aether models [53], where a dynamical vector
field of timelike norm is added to the GR action. A linearized analysis of these
models has been performed, with the result that the graviton modes decouple from
the aether modes [54]. The other model is the so-called mimetic gravity [55, 56],
where the conformal mode of the spacetime metric is encoded as a scalar field with
an arbitrary potential. This extra mode in the gravitational field represents self-
interacting matter with arbitrary potential [57, 58], and has been used to model
inflationary and bouncing cosmologies [59]. Given these analogies, it is potentially
useful to consider this work in the larger context of Einstein-Aether [60] and mimetic
gravity theories. Indeed, the dust-time gauge we employ here may be considered a
natural choice for all scalar-tensor theories of gravity, among which Einstein-Aether

and mimetic gravity are but two examples.

2.5 Comparison with perturbation theory with-
out dust

It is useful to compare the dust-time perturbation theory we have developed above

with a similar Hamiltonian treatment of standard perturbation theory. Previously
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this has been done and the salient results are the Mukhanov-Sasaki equation, the
gravitational wave equation and the identification of vector modes as gauge DOF
[14]. We will show that not only does our treatment reproduce these results, but it
is also an improvement on [14].

Our treatment begins with the ADM Hamiltonian action of GR coupled to only
a scalar field. This is eqn. (2.3) with 7' = Pr = 0. Expansion of this action about
a homogeneous and isotropic background solution is of the form (2.28), with the

additional expansion of the lapse function
N(z,t) = N(t) + ON(z,1), (2.104)

where we have taken N (t) as the lapse function of the background. The second order

action changes from (2.29) to
SO = / drdt [habpab +dps — ONH®D — N(OYH® — 5&05“] . (2.105)

where H® and Cél) are exactly as given in (2.30), and

it () [ ()] s s - o)

V(%)

i ] (2.106)
+ % [pqﬁ p—d’h} +a {dQV’(@é + —h} :

T 4a2 2

We recall that h = hge® and p = p®eq. In the following we will take the back-
ground lapse N(t) = 1. We see that this second order action has two constraints
obtained by varying w.r.t. the lapse and shift perturbation 0N (x,t) and £%(x,t). It
is worth noting that in [14] the lapse and the shift are not perturbed, and qualitative
arguments are offered to explain the presence and justify the use of the first order
Hamiltonian and diffeomorphism constraints. Our approach shows that these con-

straints appear in the second order action if the lapse and shift are perturbed. This
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is an important way in which our treatment is an improvement on [14].

The second order action also displays a non-vanishing Hamiltonian N (¢)H?), where
N(t) is a fixed background function that cannot be varied in the second order action;
it is of course varied in the zeroth order action to give the background Hamiltonian
constraint H = 0. Thus, in comparison to the dust-time gauge theory, we have the
additional constraint ™) = 0. In momentum space, in the basis (h;, p!) (2.41), this

is expanded as

A = _3{ () [2 (L) hvaa] ki + kzzL} .
+ 2 [y — 2] wa [ s+ L]
@R @)
+ % D — \Z_Eg(z’hl +a|a’V'(9)o + @hll :

It is important to note that ™ is a function of only the scalar metric modes hy and
hy and their conjugate momenta p; and po, in addition to scalar field perturbations
(gz~5, Py) — the graviton modes appear only in H®. We will additionally point out that
[14] uses a scale factor dependent basis to decompose the matrix perturbations and
this results in a symplectic term that includes time derivatives of the basis elements.
Thus, our choice to use a time-independent basis that leads to a preservation of the
symplectic structure (2.41), is an improvement on [14].

After solving the transverse parts of the diffeomorphism constraints and removing
the vector modes as before, only the parallel component of the constraint Cj = 0
(2.64) remains. The momentum space action for the scalar perturbations (hy, ha, @)

becomes

55 = / dtd3k [p1h1 + pohy + Pap — H® — SNHD — EHC*'('”] (2.108)
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where H? is given in (2.71), and 0N (k,t) is the lapse perturbation in momentum
space. We now note that the constraints obtained by varying this action w.r.t. §~H
and 6N (k,t) are first class. We have already verified that C is first class (Appendix
A.3). We also find that

d - - d - .
5 HY = (HV, 75} + &H(l) =C) =0, (2.109)
and
(HW, Gy} = -H =0, (2.110)

where the last equality follows from the background Hamiltonian constraint H# = 0;
recall that this is the theory without dust. This is a satisfying structure demonstrat-
ing explicitly that the second order perturbed system is first class. It also shows
that, of the three scalar perturbation modes (hq, hs, ¢~5), only one is a physical degree
of freedom (due to the two constraints HY) = 0 and Cjj = 0). We can now proceed
to obtain gauge invariant observables, i.e. those that Poisson commute with C’” and
H® . Unlike the case with dust, only one canonical pair of gauge invariant variables
is required (due to the presence of two constraints instead of one). We note that our
method of deriving gauge invariant variables is different from the one used in [14];

there the author uses Hamilton-Jacobi like equations to arrive at the gauge invariant

variables.

2.5.1 Gauge invariant variables

Gauge invariant variables O must now satisfy

{0, HD} = {0,C)} = 0. (2.111)
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We have already noted that the curvature perturbation

= _ﬁ (hl _ %) (2.112)

defined in (2.78) satisfies {w, CH} = 0. However

{v,HD} = 12]5(_12 40, (2.113)

therefore v is not invariant under the second constraint, and therefore not fully gauge

invariant. By noting that
(. HD} =22 (2.114)

we observe that the linear combination

ap ~
Y — (12%) ?, (2.115)

R

satisfies
{R,’H(”} —0, {R, C*H} —0. (2.116)

This R is exactly the same variable we used for the dust case. We have now learned
that it is also invariant under the transformation generated by (Y. Similarly we

note that its conjugate momentum defined in (2.85) satisfies
(R, Pr} =1, {PR,#U} —0, {PR,GH} —0. (2.117)

Thus the canonically conjugate pair (R, Pr) are fully gauge invariant to this order.

We note also that any scaled variables of the type (R, Pr/g), where g = g(a, p, &, py)
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is an arbitrary function of the background variables, are also gauge invariant (since
the fixed background does not participate in the Poisson bracket for the perturba-
tions). The choice

12p,
P

g= =z (2.118)

gives the Mukhanov-Sasaki (MS) variable

__(12Ps)\ 5 _ aj —alo é
v = (p)n <H>’R (¢+H¢>, (2.119)

where the second equality follows from the background equations (2.23).

2.5.2 Gauge fixed action

As the last step, we fix two gauges corresponding to the two first class constraints
HD =0 and éll = (), and solve these constraints strongly to obtain the final canonical
action from (2.108) for the remaining unconstrained gauge invariant physical degrees
of freedom. The final action will be a functional of the canonical pair R, Pr. This
may then be recast in terms of the MS variable v and its conjugate momentum P,.

We set the gauge conditions
¢=0, hy=0. (2.120)

These satisfy

{6, HM} = ?' {h,C)} = —2a?, (2.121)

3 Y

therefore the constraints and gauge conditions form second class pairs. Solving the
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constraints for p; and p, gives

V2

D _
no= - [(@) hy + a2p2] (2.122)
Py = —% (p—th + 2a*k?hy + a3pp2) : (2.123)
V6p, \ 6

In this gauge, the invariant variables R and Pr become

1 2 (p 12a
R = hy, Pr=1/= —+—k2) hy + 2v/6a% ps. 2.124
2\/6a2 2 R 3 (a B 2 b2 ( )

Substituting the gauge conditions and solutions of the constraints into the action

(2.108), and expressing variables in terms of R and Pg, gives

S5, = / dtd®k [RPR - HgF] , (2.125)
where
11
s 2 2 2

This is the same as the action for the dust-time case (2.93), but with y = P, = 0.
As the last step in comparison with standard perturbation theory, we derive from
this action the MS equation. We noted the definition of the MS variable v in (2.119).

The conjugate momentum is P, = Pr/z. The action (2.125) transforms to
Sip = / dtd’k [P,y — H,], (2.127)
with
1

H,=— (P*+ k%2 éPV. 2.128
26(”+ y)+21/ ( )
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This gives the equation of motion

B k2 . _ .
I?+HD+(_—2—E—HE)I/ZO. (2.129)
a z z

In conformal time dt = adr this becomes the familiar MS equation

"
V't (k2 - Z—) v =0. (2.130)
z

Here a prime indicates a derivative with respect to conformal time.

To summarize this section, we have seen that the gauge invariant canonical vari-
ables (R, Pr) that we used in the dust-time setting are also invariant under the
local time transformation generated by the additional constraint H®. This is in
fact why we used these for the dust-time case, rather than variables that are only
invariant under the diffeomorphism constraint C’||. There are many other possibilities
for canonical pairs invariant under only the latter, but these do not provide a direct

connection with the standard perturbation theory.

2.6 Summary and discussion

We presented the Hamiltonian theory of cosmological perturbations for GR cou-
pled to dust and a scalar field, in the dust-time gauge. The analysis demonstrates
the following features: (i) the graviton modes decouple from other degrees of freedom
and their EOM are unchanged, (ii) the vector modes are removed by gauge fixing
in the same way as for flat space perturbation theory [40], (iii) there remain two
coupled scalar modes, one of which (R) satisfies a wave equation with a source, and
the other () satisfies an ultra-local equation with a source dependent on k; these
two equations generalize the usual perturbation equations.

We also applied the same Hamiltonian decomposition, using the canonical vari-
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ables (hy,p!) to the standard cosmological perturbation theory. This differs from the
Hamiltonian formalism presented in [14] in several respects. These include our inclu-
sion of the lapse and shift perturbations, use of a scale-factor-independent basis for
decomposing metric perturbations, a demonstration that the perturbed constraints
are first class, a calculation of the constraint algebra, and finally a step-by-step ap-
plication of the reduction to physical degrees of freedom using the Dirac procedure.
Thus our work provides a more detailed view of Hamiltonian perturbation theory
for cosmology, in addition to its extension to the dust-time gauge.

Our final equations in the dust-time gauge (2.99) and (2.100) lead ultimately to the
MS equation with an external forcing term dependent on the background solution,
and an additional ultra-local equation for the field y. These may have observational
consequences which we intend to explore in future work. The special solution P, = 0
removes the source term, and so leads to exactly the MS equations plus the equation
for x. However this case contributes no additional energy density since the terms
proportional to P, in the Hamiltonian density (2.93) vanish for this case. Therefore
the general case P, # 0 is more interesting for exploring cosmological consequences.

Finally recall that in the dust-time gauge the metric acquires an additional DOF
x that represents dust. Therefore it may be possible to express y as an entropy per-
turbation, which measures how misaligned the perturbations in the energy densities

of the different fields are.
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Chapter 3

Ising-like models on Euclidean

black holes

3.1 Introduction

Spin models are useful tools in studying interacting degrees of freedom in thermal
equilibrium. This is primarily due to two reasons. Firstly due to their simplicity
spin models can be solved either exactly or approximately by analytical or numerical
techniques. Secondly if the simple spin model shares some global features (such as
symmetries of the Hamiltonian and the number of spatial dimensions) with a real
system (such as a lattice of interacting atoms) then some results of the spin model
match the behaviour of the real system [61]. Two well-studied spin systems are the
Ising and Blume-Capel models [62, 63].

The Blume-Capel model is a spin-1 generalization of the Ising model with an
additional self-interaction (or “mass” term) with Hamiltonian H = —J %, jonn SiSj T
K", s? where nn denotes that the sum is over nearest neighbors. It has richer

physics than the Ising model; in two dimensions, if K > 2J there is no phase
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transition; if K < 2J then the ratio % not only determines whether the phase
transition is continuous (second order) or discontinuous (first order) but also fixes
the critical temperature. The Blume-Capel model has been rigorously investigated
using not only analytical techniques - such as the renormalization group (RG) [64] -
but by numerical Monte-Carlo (MC) simulations also [65].

MC studies of the Ising and Blume-Capel models typically use periodic boundary
conditions. Due to this choice the lattice has the topology of a 2 torus. There has
been a growing interest in investigating the effects of using different topologies such
as the 2 sphere [66] and a random topology [67]. This interest arises from multiple
areas, including discrete models of quantum gravity, condensed matter physics and
the statistical mechanics of complex networks such as the internet [68]. There is also
a rich literature on investigating the effects of geometric curvature on the thermo-
dynamic properties of spins. For example it is known that the Ising model on a 2d
hyperbolic plane with free boundary conditions exhibits multiple phase transitions
[69]. This model is expected to have applications to quantum information [70].

Our goal is to generalize the Ising and Blume-Capel models to Schwarzschild and
AdS black hole backgrounds and study their physical content. This is of interest
for several reasons: black hole backgrounds are inhomogeneous (i.e. have explicit
dependence on radial location) and thus provide an interesting platform to gener-
alize spin-models; Euclidean versions of black hole metrics are used in attempts to
understand black hole thermodynamics [4, 35]; black holes metrics are considered as
thermal backgrounds for quantum field theory where the radius of Wick-rotated time
is proportional to black hole mass; the case with a cosmological constant provides a
generalization of spin models where the connection between metric parameters and
temperature is more involved [36]. We review these features before constructing the

models.

Our approach is to start with a scalar field action on a general form of a Euclidean
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black hole background, discretize the action on a suitably defined lattice, and then
restrict the scalar field to take on spin values. This process naturally introduces a
point interaction from the scalar field mass term, and nearest neighbour interactions
from a finite difference of the kinetic term.

In Section 3.2 we review the MC scheme [71] and the correspondence between
Euclidean time periodicity and inverse temperature [23, 24]; in Section 3.3 we review
the construction of the Euclidean black holes [2, 35, 36]; in Section 3.4 we define
the spin-models; in Section 3.5 we describe and present the MC calculations for
the spin-1/2 and spin-1 models, followed by a summary of the work and possible

extensions.

3.2 Background

3.2.1 Monte-Carlo scheme

In this section we briefly describe the Monte-Carlo scheme [71]; the reader can
consult references [72, 73| for further details.

Consider the multidimensional integral

S:/del...da:df(xl,...xd), (3.1)

where V is the region of the integration, the volume of which will be set to 1 for
simplicity. Hereafter we will use x to denote a point in the integration region instead

of (z1,...x4). The MC scheme
1. Randomly selects a point in V),

2. Evaluates the function’s value at that point,
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3. Repeats the first two steps M times to estimate S as

M
i ; f (3.2)
=< f>. (3.3)
The efficiency of this scheme is
1
AS ~ (3.4)

1
2

Given large M the estimated value of S converges to the actual value. This is called
convergence. Also note that the efficiency is independent of dimension. This is unlike

other integration schemes: for example the trapezoidal scheme has an efficiency

1
M

AS ~ (3.5)

o

In selecting points in V at which the function is evaluated one can choose a uniform
or a non-uniform distribution. A way to do the latter was proposed by Metropolis
and collaborators [74] and their method may be viewed as a Markov process. The
Metropolis algorithm requires detailed balance, the basic idea of which is that in
equilibrium the value of the non-uniform distribution function p(x) at different points

in V is related by

T(x — x)px) =T — x)px) (3.6)
where x is the old point, X’ is the new point, and 7" is the transition rate between
the two. The transition T'(x — x’) is accepted if

T'x—x) px) ran
T =% px) > rand[0, 1]. (3.7)
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Therefore the new points in V are not selected randomly; rather they are selected
following a Markov chain, a process that maximizes p(x).
This discussion can be applied to multidimensional sums also, which (as will be

shown later) are what we compute.

3.2.2 Euclidean time periodicity and temperature

In this section we investigate the relationship between Euclidean time periodicity
and inverse temperature [23, 24]. Consider a particle that evolves from position ¢ at

time ¢ = 0 to position ¢’ at time t = T". The quantum transition amplitude is

F(¢',T;q,0)=(¢,T|q,0)
) (3.8)
— <q/| e*lTH |q> ]

Let’s now impose Euclidean time compactification i.e the condition for the particle
to return to its original position in Euclidean time [; hence S is Euclidean time

periodicity. The resultant Euclidean transition amplitude is
F(q,—if;4,0) = (gl e ™™ ]q) . (3.9)

We will use this result shortly.

Consider now the quantum partition function of a system at temperature 5!
Z(8) = Tr (5” ) (3.10)

One may evaluate the trace using the position basis

Z(B) = lale ™ |q). (3.11)

Note that the summand in the right hand side of the equation above is the transition

50



amplitude of a particle to return to its original position in Euclidean time g (3.9).

Therefore (3.11) may be rewritten in the form

Z Fl(q,—if;q,0 (3.12)

which indicates a correspondence between Euclidean time periodicity and inverse
temperature.
Let’s express the right hand side of (3.12) as a path integral. We begin with the

transition amplitude (3.8) expressed as a path integral:

T - dq
F(q,T;q,0 Dq exp (i), I = dtL 0o ) (3.13)
0

Here f Dq integrates over all paths the particle can take between the starting and
finishing configurations, I is the Lorentzian action and L is the Lagrangian. Conse-
quently the path integral of a particle to return to its original position in imaginary

time [ is

F(q, —if;q,0) = /Dq exp {Z/OB dtL( ‘CZ])} (3.14)

where [ Dgq is now over all paths that are periodic in imaginary time (. After a

Wick rotation
t = —iT (3.15)

the path integral is

Flg,—iB: ¢,0) /Dq exp [/ drl (q, %)} (3.16)
- /Dq exp [— /06 dr Ly (q, 3‘7)} , (3.17)
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where Lg is the Euclidean Lagrangian. The equation above may be rewritten in

terms of the Euclidean action I

B da
F(q,—i0;q,0) = /Dq exp (—Ig), Ir :/ dr Lg (q, d_;]') . (3.18)
0

Now we will demonstrate the relationship between L and Lg through an example:

we will consider a particle in an arbitrary potential, the Lagrangian for which is:

L:(%ﬁz—V@y (3.19)

Wick rotation yields the Euclidean Lagrangian:

L:—(%Y—V@

- [(g_ij@

= — Ly

(3.20)

Since 7 is like a space dimension, the Fuclidean Lagrangian is like the Hamiltonian
density of a field in one space dimension and the Euclidean action (3.18) is like a
Hamiltonian. Therefore upon Wick rotation the action resembles a Hamiltonian for

a system in one extra space dimension.

3.3 Euclidean black holes

As a prelude to defining spins models on Euclidean black hole backgrounds, in this

section we summarize the main aspects of the metrics we will be using.
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The Schwarzschild black hole metric in its original form is
2M oM\
ds® = — (1 — —) dt* + (1 — —) dr?® + r?d?, (3.21)
r r

in the coordinates (¢,r,0, ¢); it has a coordinate singularity at the horizon r = 2M
and a curvature singularity at » = 0. In the Kruskal-Szekeres (KS) coordinates

(T, X,0,¢) defined as

T = (- en()
T+ X (2M e (—57 (3.22)
T+ X t
the geometry is
32M3 r
2 _ _ 2 2 2 1092
ds? = " exp (=577 ) (—dT? +dX?) + 7202 (3.24)

In these coordinates the event horizon r = 2M is given by T' = +£X, and the
singularity at r = 0 is 7?2 — X2 = 1. The KS coordinates provide a global extension of
the original Schwarzschild metric, and are best suited to understanding its Euclidean

version.

The Euclidean KS metric is defined by the Wick rotation Y = T

IVE
ds? = 22M o (—ﬁ) (dY? + dX?) + r2dQ?, (3.25)
where now
Y24 X2 = (ﬁ - 1) exp (-ﬁ) (3.26)
LY 4 X ¢
e (i) (327
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This rotated metric is singularity free since r = 0 now corresponds to Y24 X% = —1
which has no solution; the horizon r = 2M corresponds to Y? + X? = 0, which is the
origin of (Y, X)) plane. Thus, the Euclidean Schwarzschild geometry is singularity
free and the interior of the Lorentzian Schwarzschild metric (r < 2M) is absent. The
coordinates (Y, X') cover the entire manifold of a Euclidean Schwarzschild geometry.
Finally to derive the temperature of Euclidean Schwarzschild we Wick-rotate the

original time coordinate 7 = it under which (3.27) becomes

. V4 X
exp< ZT): Ll Usez = X + 1Y,

2M —iY — X’
= i*, Substitute z = re® where § = [0, 27), (3.28)
—z

= exp (—2i0) = 7= 4M§.

Therefore Euclidean time 7 has periodicity 87 M and Euclidean Schwarzschild has a
global temperature (87M)™!.

Before proceeding we will note that for Euclidean backgrounds, such as Euclidean
Schwarzschild, there is an additional notion of local temperature. For this discussion

consider a Fuclidean background defined by the metric
ds® = u(r)?dr* + v(r)*dr? + w(r)*dQ? (3.29)

and for this space to have a global temperature T. Local temperature is defined as

1
T,=\/—T

Joo (3.30)
(0

We do not consider local temperature in our work. This is because the standard
Ising and Blume-Capel models are defined in terms of global temperatures and our

goal is to generalize these models to Schwarzschild and AdS black hole backgrounds.
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Hence using global temperature is a natural choice.

Having obtained the Euclidean Schwarzschild geometry in the KS coordinates,
we now see that the same result is obtained in the original coordinates by simply
restricting the radial coordinate to r € [2M, 00), with 7 = it.

The near-horizon metric is obtained by setting r = 2M + v; then for v < 1 the

T — v part of the metric is

2M v

dS2 = TdVQ + WdTZ; (331)
defining dp? = (2M /v)dv? gives
2 2 P\ o
ds® = dp* + <W) dr. (3.32)

The final observation is that absence of a conical singularity at p = 0 requires
T/4M € [0,2m).
This procedure is readily generalized [2] for obtaining a regular Euclidean black

hole geometry starting from the d—dimensional metric

ds® = —F(r)dt* + F(r) “'dr?* + r*dQq 52, (3.33)

where F(r) is a one to one function such that there is an ry € [0, c0) such that F'(rq) =
0 (the horizon), F'(rg) > 0 and lim, o F'(r) = oo (the singularity). Then, the Wick

rotation 7 = it, the restriction r € [rg, 00) and the coordinate transformation

(3.34)

gives the metric

2 2
it =(4) (g o+ 70 w0t (33



where 7 € (—00,00) and p € [0,lim,_,o, p(r)]. The near-horizon r ~ ry metric is

2
ds* = dp* + (ﬁﬁ> dr? +1r%(p)dQy_s 2. (3.36)
0

Thus the 7 — p part of the metric is flat space with no conical singularity provided

78, ~! is an angular coordinate with period 27; this corresponds to 7 having period-

icity
T€10,8), B =2mp. (3.37)

The inverse of the Euclidean time periodicity is the natural temperature of the

spacetime
T = (2mfB) " (3.38)

In summary, we will use the metric (3.35) with the periodically identified 7 as the
background for defining spin models, with the function

F(r)=1- fd—]\i + (%)2 : (3.39)

this is the AdS black hole in d spacetime dimensions where the scale L is related to d
and the cosmological constant by A = —(d —1)(d —2)/(2L?). The cases we consider
are 4d Schwarzschild (L — oo) and Schwarzschild AdS in 4d and 5d.

The temperature-mass relation for the 4d Schwarzschild case is T = (47rg) ™! =

(87 M)~t. However for the 4d AdS case it is

37”0 2 + L2 To To 2
rT=20 T2 =" (-) . 3.40
47roL? 2 + L ( )

T(M) has a minimum at T, = V3/(2rL) at mass M, = 2L/(3v/3) (Figure 3.1)

26



and horizon radius ro, = L/ \/5; T > Thin corresponds to either a small or a large
mass black hole. A similar treatment applies to 5d Schwarzschild AdS also: here
27“02 + L2 To 2 Ty 2
T=—; M=—]|1 (—) , 3.41
2mroL? 2 + L ( )
T(M) has a minimum at 7T},;, = v2/(7L) at mass M, = 3L?/8. This discussion

will be relevant below where we discuss phase transitions in spin models as functions

of T and M.

3.4 Spin models on black holes

Spin models on Euclidean black hole backgrounds may be defined by starting with
the Euclidean action of a scalar field on the metrics reviewed in the last section,
discretizing the action, and then restricting the scalar field variable to take discrete
values, +1 for Ising, and 0, +1 for Blume-Capel models. The d-dimensional Euclidean

action for a massive scalar field on a background metric g, is

1

Ip [®] = 3 / d'z /g (90, 0D + 1> ®°) . (3.42)

T

3 %
0 0.5 1 15
M

[

Figure 3.1: Temperature-Mass relation for 4d Euclidean AdS-Schwarzschild for
L =0.3,0.4,0.5,0.6 (top to bottom).



The Euclidean black hole metrics (3.35) have the form

ds® = u(p)dr® +v(p)dp® + w(p)dQy_s 2. (3.43)

We consider only the 7 — p plane since the sphere is not relevant for the black hole
properties of interest. Therefore the scalar field we consider is ® = ®(7, p) with the
Euclidean time periodicity ®(0, p) = ®(3, p). With these assumptions the Euclidean

action reduces to

A B rro
Ig[®] = ;2/0/0 drdpVwi—2

: (\/gq)? + \/gqﬂ + u2\/ﬁ<1>2> (3.44)

where A,_, is the area of S?~2? and dots and primes denote partial derivatives with
respect to 7 and p; the p integration is restricted to a finite value py to define a

discrete model on a finite lattice. The object of interest is the partition function

Z = /D(I)exp(—]E [D]) (3.45)

where D® integrates over all possible field configurations that have periodicity ( in

imaginary time.

3.4.1 Discretization

Consider the 7 — p plane as an Ng x N, lattice with spacing

Through [ the lattice spacing depends on the metric parameters M and A, and a
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simple discretization is given by

T — Ty = ME, p — Pn = NE;

f(Ta P) - fm,na
fZ N fm+1,n - fm,n’
€

fr= mee_fm” (3.47)

Lastly, the scalar field values are restricted to the set
d={-s5 —s+1,...581,5}xs" (3.48)

where s is a half integer, so that the values of ® are rational numbers in the interval

[—1,1]. With this discretization the Euclidean action becomes the sum

Ng,No 0., A—2 T
nWn nWn
[E [CI)] :Ad72 - (I)m,n (I)erl,n + CI)m,nJrl
Zl Un Un
m,n=

)

d—2 1 d—2 d—2
+ (I)m,n 2 [ Up Wy, 4= \/unwn + \/unlwnl (349)
2.2
+ —M; V Up VW, 472 ]

This is the desired “spin” model. It is apparent that the coupling “constants” vary
across the lattice and depend on the metric functions from point to point; the first
line contains metric function-weighted nearest neighbour interactions in the 7 and
p directions, the second line represents spin self-interactions which are weighted by
the metric functions, and the third line contains self-interactions that are weighted
by the determinant of the metric, scalar field mass and €? (this factor cancels out for

the remaining terms); the choice s = 1/2 or s = 1 gives an Ising or Blume Capel like
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model on a Euclidean black hole background respectively; the self interaction terms
only affect statistical averages in the latter case.

For the 4d Euclidean AdS-Schwarzschild geometry the metric functions are

3ror +2L2 2 (3.50)
2roL? r3(p) + M L2 '

w(p) = ), (3.52)

where 7(p) is given by (3.34) with F(r) = (1 — 2M/r + r?/L?). Tt is readily verified
that for this F' there is a single real root for r(p), a fact that leads to unambiguous
values of w(p). The details of this verification are presented in Appendix B.1. On
the lattice these functions are discretized with the replacements p — p, = ne and

Tn(pn). This results in the specific spin model

Ng:No 4 12
[CI)] = 4m Z { —Ppn [ (p—n) <—ML2 I T‘n3> D1

m,n=1

ML? + 7,3
+ (pn) (T) Dy ni1

ryt L2 MIL2 47,3 )
+ o )\ s T\ e (P + Pr—1) | Pin

+ pnrn4L2 3"ﬂ02 + L2 ? 62 :u_2 d 2
ML? +r)3 2roL? 2 e

(3.53)
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The limit L — oo gives the model on 4d Euclidean Schwarzschild background:

pag 1603
IE‘ [(I)] =4 Z - (I)m,n N q)erl,n + (pnM> (I)m,nJrl
mn=1 oo (1= (£1)°)
1603 M
+ T (Pn + pu1) | Pann” (3.54)
o (1= (")
Mpn 2 :u2 2
o] € 7)) B
(- (5)°)

A similar procedure gives the model on the 5d AdS-Schwarzschild metric, and indeed
any metric of the form (3.43).

This completes the prescription for defining spin models on Euclidean black holes.
The process we have followed is similar to discretizing any continuum theory on a
lattice where certain discretization choices are made; in our case this is the represen-
tation for time and space derivatives. The procedure we have followed is analagous
to discretized thermal quantum field theory (TQFT) on Euclideanized Minkowski
spacetime with periodic identification of Wick rotated time. But there are important
differences: in the black hole case the metric comes with the mass and cosmological
constant parameters, and the periodicity of Euclidean time (which is guided by the

requirement to remove the conical singularity) depends on these parameters.

3.5 Simulation details and results

As we have noted, in accordance with the relation (3.37) between the 7 dimension
size and black hole mass, the lattice size in the 7 direction varies with M. Thus the
thermodynamics properties of spins are best studied as a function of M with fixed

lattice spacing € but varying 7-dimension lattice size. We perform MC simulations
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with € = 0.01, take

Nj = FJ N, = |2 (3.55)

where (3 is given by (3.37) and we choose py = p(5rg) as the radial extent of the
lattice. For convenience we use periodic boundary conditions in the p direction.
This choice does identify radial infinity with the horizon. However the effect of this
on the global thermodynamic properties of interest is negligible if the lattices are
large, which is what we ensure. Additionally we consider p = 0 for all simulations

and choose A = —4 for the AdS simulations. Note that this choice corresponds to

an AdS scale of

L~09 (3.56)
in 4d and

L~12 (3.57)

in 5d. Since this work uses natural units, the AdS scales are close to the Planck
length. It is also worth noting that the amplitude for A we choose is much larger
than that of the observed cosmological constant ~ 107120,

After choosing a Euclidean black hole metric (Schwarzschild, 4d Schwarzschild-
AdS or 5d Schwarzschild-AdS), we select a set of M values; each value of M fixes
the lattice size. We use an aligned lattice (a cold start) once an M value is selected.
Subsequent configurations are generated according to the probability distribution
P(z) = exp|—Ig(x)] using a MC Markov Chain. We use the standard procedure
where a single MC step entails flipping a randomly selected spin, computing the

resulting change in the action Alg, and keeping the new configuration provided
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exp (—Alg) > rand[0, 1]; a sweep is defined as Ng x N, MC steps.

Thermalization requires a number of sweeps from the starting cold configurations.
This is determined by computing [r as a function of the number of sweeps until
a steady state is reached. Figure 3.2 shows that the required number of sweeps to

thermalization is about 50 for the Euclidean Schwarzschild case with M = 0.025 .

L°
-
100+ i
o % g b
n°°° o \”" % 8
% e * - e
N
I
£
50
i}
0 50 100
MC sweeps

Figure 3.2: Spins on Euclidean Schwarzschild background with M = 0.025 are ther-
malized at around the 50" MC sweep.

After thermalization we compute the average values of several thermodynamic
quantities O with an additional Ny; = 2000 sweeps for each value of mass M on its

corresponding lattice using the formula

(0) = NLM > o (3.58)
k=1

Here ¢ is the number of the sweep and O; is the corresponding measurement of

the thermodynamic quantity. The specific quantities O we calculate include the
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alignment A, energy F, susceptibility y and specific heat C"

A = (N;Np) m;:l@m,n, (3.59)
1
E = (NﬁNp) In, (3.60)
1 2 2
= ((4%) — (4)), (3.61)
¢ = & (B - (B)). (3.62)

Another observable we calculate is entropy S(7'). A computation of S(7") without
using the partition function Z (which is not available) is to utilize a discrete version

of the formula

- [ror
S(T) = /D ar (3.63)

A discrete estimate is

s~ || @ - 1), (3.61)

where N7 is the total number of temperatures simulated till 7" in MC runs, 7T} repre-
sents the i'" temperature in that list (where T} is the minimum temperature possible
due to computational or theoretical constraints) and C(7;) is the heat capacity nu-
merically evaluated at T;.

We will now illustrate how this formula is used. Consider a spin model on a
Euclidean Schwarzschild background where Tj is the minimum temperature used
due to computational constraints. To calculate S(77) where T} is the next largest
temperature to Ty the formula (3.63) is used; in this case there is only one relevant

C(1h)

term: [T} (Ty — Tp). The entropy at all other temperatures is calculated similarly.

For the AdS black hole background Tj is the minimum temperature theoretically
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possible and a T' > Tj corresponds to a small and a large black hole. In this case S(7})
for a spin model on a small/large AdS black hole background is [%jﬂ)] (T, — Tp)
where C¥/L(T}) is the heat capacity for the spin model on the small/large AdS black
hole background.

Since for the AdS cases a value of M uniquely determines 7', but not vice versa
(Figure 3.1), the thermodynamic observables are best visualized as functions of M.
However it is also useful to see these quantities as functions of 7T'; for a given T
there are two values of M, the small and large black holes; these correspond to two
different lattices, one for each mass. Therefore we expect two sets of results for each
thermodynamic observable as functions of 7', one for the small black hole and the

other for the large black hole.

3.5.1 Numerical results

We computed the alignment, susceptibility, specific heat, and entropy for spin-1/2
and spin-1 models for Schwarzschild, and 4d and 5d Schwarzschild AdS. In each case
we find evidence of a phase transition at a critical value of mass M,; in each case it
turns out that M, is sub-Planckian with value indicated in the figures. We first plot
these quantities as functions of M /M., and again as functions of T'/T,, where T, for
the AdS cases is uniquely determined (as for A = 0) by M..

Figures 3.3 and 3.4 exhibit thermodynamic quantities for the spin-1/2 case for the
three Euclidean black hole backgrounds, as functions of M /M, and T /T, respectively;
Figures 3.5 and 3.6 show the same for spin-1.

Evidence of a second order phase transition is apparent in the figures; specifically
the specific heat and susceptibility exhibit an approximate divergence at the respec-
tive critical values of the masses, whereas the alignment indicates a transition from
disorder to order as the mass increases. A curious feature is that the value of the

critical masses is sub-Planckian (in the geometrized units & =c¢ =G = 1).
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Figure 3.3: Plots of thermodynamic quantities for spin 1/2 models on Euclidean
black holes with respect to % The critical masses for Schwarzschild, and 4d and
5d Schwarzschild AdS (A = —4) are 0.070, 0.072 and 0.023 respectively in Planck

units.
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Figure 3.4: Plots of thermodynamic quantities for spin 1/2 models on Euclidean
The critical temperatures for Schwarzschild, 4d
Schwarzschild AdS and 5d Schwarzschild AdS are 0.57, 0.61 and 0.80 respectively.
For the AdS cases the point circled blue represents the black hole that corresponds
to Tyun, the black diamonds correspond to the large black holes, and the red dots
correspond to the small black holes.
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Figure 3.5: Plots of thermodynamic quantities for spin 1 models on Euclidean black
holes with respect to % The critical masses for Schwarzschild, 4d Schwarzschild

AdS and 5d Schwarzschild AdS are 0.14, 0.17 and 0.065 respectively.
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models on Euclidean
The critical temperatures for Schwarzschild, 4d
Schwarzschild AdS and 5d Schwarzschild AdS are 0.28, 0.36 and 0.53 respectively.
For the AdS cases the point circled blue represents the black hole that corresponds
to Thin, the black diamonds correspond to the large black holes, and the red dots




Euclidean background Spin 1/2 Spin 1
M. T. M. T,

4d Schwarzschild 0.070 0.57 0.14 0.28
4d Schwarzschild AdS 0.072 0.61 0.17 0.36
5d Schwarzschild AdS 0.023 080 0.065 0.53

Table 3.1: Table of critical masses and critical temperatures for spin 1/2 and spin 1
models on the Euclidean black hole backgrounds considered.

The graphs of the thermodynamic variables as a function of 7/T, contain two
curves for the AdS cases; these are constructed by identifying the two possible black
hole masses corresponding to a fixed T value as in Figure 3.1. To illustrate the
procedure, consider for example the alignment graph as a function of 7'/T, for 4d
Schwarzschild-AdS: a fixed T identifies a large and a small black hole mass above the
minimum value Ty,;,; we take the two alignment values for these two masses from
the alignment vs. mass graph and plot these values at the fixed T'; this process is
repeated for all data. The critical temperature is obtained uniquely from the critical
mass value. Thus for example, in the alignment vs. T'/T, graphs in Figure 3.4, the
circled point corresponds to the minimum (7},;,) of the T' vs. M curve in Figure 3.1;
the black diamonds correspond to the large black holes, and the red dots correspond
to the small black holes; in the range of T' shown, the spins are ordered (as functions
of T') for the large black hole, but exhibit a transition to disorder for the small black
hole. Similar results hold for all the other thermodynamic quantities: spins on the
background of the small black hole exhibit a phase transition as functions of T', but
spins on the background of the large black hole do not, at least for the range of T’
values we were able to efficiently compute. Table 3.1 lists the critical masses and
corresponding temperatures for all the cases studied.

Lastly Figures 3.7 and 3.8 are log-log graphs of the thermodynamics quantities for
the spin-half and spin-one models as functions of the reduced temperature ¢, where

t=1-— %, these figures exhibit linear behaviour and therefore power laws of the
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form

A~ t
X =t

C o~ t (3.65)

together with least square fit estimates for the critical exponents b, ¢ and a. It is
worth mentioning that for the Ising or Blume-Capel models, x and C' from equation
(3.65) depend on |t| and conventionally the critical exponents are calculated sepa-
rately for ¢ > 0 and ¢ < 0 following which they are averaged; we use t > 0 only since

it corresponds to larger lattices and therefore more accurate results.
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Figure 3.7: Estimating critical exponents of thermodynamic quantities for spin 1/2
models on Euclidean black holes. The horizontal axis is In(¢) and the vertical axis is
the In of the thermodynamic variable in the corresponding row.
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Figure 3.8: Estimating critical exponents of thermodynamic quantities for spin 1
models on Euclidean black holes. The horizontal axis is In(t) and the vertical axis is
the In of the thermodynamic variable in the corresponding row.

This completes the description of the results: our main observation is that spins
on Euclidean black hole geometries in four and five dimensions undergo phase tran-
sitions as a function of the mass parameter associated to the geometries. Perhaps
surprisingly, the phase transitions to order occur at approximately a tenth of Planck
mass in 4d (Table 3.1), whereas an intuitive expectation might be a few Planck

masses. Nevertheless a transition in this range is not surprising considering the
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Planck mass is the only natural scale in the spin model.

3.5.2 Correlation lengths at criticality

For the Ising model the interaction strength is homogeneous; there is a second
order phase transition at the critical temperature 7. and the phase transition is
indicative of diverging correlation length if the lattice is infinite (for a finite NxNV
lattice at T the correlation length equals N). Let’s ascertain if this relationship holds
when the spin model is inhomogeneous as is the case with the Ising-like models on
Euclidean black holes.

Figure 3.9 presents thermalized Ising-like models on Euclidean Schwarzschild back-

ground for black hole masses at and close to the critical mass M. = 0.07.

M=0.06 M=M.=0.07 M=0.08

|\B- ]

!

Figure 3.9: Thermalized Ising-like models on Euclidean Schwarzschild background
at and close to criticality.

Note that the lattice corresponding to M, is disordered on its left side and or-
dered on the right side. This is indicative of small correlation length. Therefore for
the inhomogeneous Ising-like model on Fuclidean Schwarzschild background a phase

transition does not correspond to maximal correlations.
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This indicates that the relationship between second order phase transition and

maximal correlations holds if the couplings are homogeneous.

3.6 Discussion

The model and results we have described may be viewed as falling in the broad
area of quantum fields on curved spacetime [33, 34]. Most work in this area is
concerned mainly with quantum fields on Lorentzian rather than Fuclidean curved
geometries; the exception is thermal QFT which is quantum fields on Wick rotated
Minkowski space [25, 26, 27, 28]. The model and the calculations we have performed
are new in that (to our knowledge) there are no prior studies of inhomogeneous spin
models on Euclidean black holes. Our work may be viewed as exploring the extent
to which a Euclidean black hole is equivalent to a thermal heat bath for matter
degrees of freedom propagating on such a geometry; our work does not concern or
provide comment on the use of such solutions as contributions to the path integral of
Euclidean quantum gravity without matter, which is the arena for the Hawking-Page
transition [36].

The inhomogeneity of the spin models comes from the radial dependence of the
coupling strength evident in the actions (3.53) and (3.54). This variation of coupling
strength across the lattice means that the probability of a spin flip is dependent on
radial position in the lattice; e.g. for Euclidean Schwarzschild the nearest-neighbour
coupling in the 7-direction varies as M?/[p, (1 — (p,/4M)?)]*, whereas the coupling
in the p-direction varies as p, M. This not only makes apparent the inhomogeneous
nature of the model but it also confirms that for small/large M the couplings are
weak /strong which accounts for the observed disorder/order. The radial dependence
of couplings also means that the transition point from order to disorder does not

correspond to diverging correlations as is the case for homogeneous models. This in
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turn indicates that the assignment of the term “second-order transition” comes with
qualifications despite the linearity observed in the log-log graphs in Figures 3.7 and
3.8.

Due to the inhomogeneity it is also appropriate to study the spin behaviour as a
function of column number n. Consider Figure 3.9; here for a fixed M it is possi-
ble to plot average alignment of each column vs. the column number. Physically
this would amount to exploring the average spin behaviour for all allowed values of
Euclidean time as a function of distance from the horizon. The horizontal axis of
the resultant graph can be recast in terms of local temperature (3.30). Consider
Euclidean Schwarzschild in 7 — p coordinates (3.32); the local temperature for the
discretized background is

1
T, = ,
2T pn

= ne. 3.66
p (

We can use Figure 3.9 to speculate that for some fixed masses (such as M = 0.06)
we can expect a phase transition from order to disorder as the local temperature is
increased.

The numerical accuracy of our results can be improved. This may be accomplished
by an MC algorithm that is more efficient than the single spin flip one used in
this work. However it is worth noting that most MC algorithms - such as Wolff’s
algorithm [75, 76] and that proposed in [77] - are designed to study spins on a
flat Euclidean background for which temperature is an external parameter and is
not related to lattice size. Therefore the MC algorithm being used must first be
redesigned to apply to the type of inhomogeneous models that arise on black hole
backgrounds. Another way to improve accuracy is via the finite size scaling technique
[75, 78, 72|, where successively finer lattices are used to approach the continuum limit.

Beyond improving MC methods, there are several directions for extending this

work on spin models on Euclidean black hole backgrounds: exploring thermodynamic
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properties while varying both mass and cosmological constant; Reissner-Nordstrom
black holes and other black holes, including extremal cases; higher spin; a continuum
of scalar field values within a given range rather than discrete values; and adding

mass and other self-interaction terms.
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Chapter 4

Reflections

This thesis investigated gravity-matter systems within the context of cosmology
and black holes. In this chapter the important results are summarized and possible
extensions are discussed.

Chapter 2 is a study of perturbations in cosmology with a dust clock [79]. The
physical system used includes gravity, a scalar field and pressureless dust [13]. After
expressing the system in the canonical framework, the Dirac procedure [9] is used to
fix the dust-time gauge [13]. This yields a physical Hamiltonian and leaves untouched
the diffeomorphism constraint. The perturbed phase space variables for cosmology
are substituted in the canonical action, following which it is expanded to second
order in the perturbations. Next the perturbations are expressed in terms of spatial
Fourier modes and decomposed in scalar, vector and tensor modes. The tensor modes
lead to the graviton equation, the vector modes are gauge-fixed away and the scalar
modes lead to the equation of motion for an ultralocal degree of freedom and the
Mukhanov-Sasaki equation with a source term. Following this a system of gravity
and scalar field is considered and the same steps are used to derive the standard

results for this model in a detailed and transparent fashion.
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Since the method presented here is different in several respects to other methods,
let’s reflect on the differences.

Firstly the physical system used in this work involves gravity and two matter
fields. In general CPT can contain any number of matter fields [80, 81, 82, 83].
Secondly the dust is fixed as a clock at the outset by fixing a gauge and solving
the Hamiltonian constraint strongly. This is unlike the relational approach to CPT
where the evolution of one variable is analyzed relative to the chosen clock variable
[20, 84]. Thirdly the algebraic form of the physical Hamiltonian in the dust-time
gauge is identical to that of the Hamiltonian constraint. It is worth reiterating that
this desirable feature is unique to the model considered and is absent from other
models that use geometric variables (such as volume or extrinsic curvature) [46] or
other matter fields (such as a scalar field and Brown-Kuchar dust) [12, 47, 20] as
clocks. Fourthly the spatial Fourier transforms of the perturbations are decomposed
into scalar, vector and tensor modes using a time-independent basis unlike [14] which
uses a time-dependent basis. Lastly gauge invariant scalar modes are constructed and
the physical phase space is arrived at using a transparent and detailed application
of the Dirac procedure. This is different from [14] which uses Hamilton-Jacobi like
equations instead.

There are several applications and extensions of this work. Recall that in the
dust-time gauge the physical background Hamiltonian is a constant of motion due
to which its solutions are of the type H = u where p is a constant (refer to (2.24) for
details). While this work considers p = 0, whereby one has the standard Friedmann
equation (2.26), one can choose pu # 0 and work with (2.27) instead. This will
generalize the equations of motion of the background and the linear perturbations to
include the background energy density p and it will be enlightening to check how this
changes the current results. One can also generalize the current work by considering

a system of gravity, dust and two matter fields, fixing the dust-time gauge and using

79



the partially gauge-fixed system to study CPT. Here one can compare the results
with CPT which uses and perturbs two matter fields and check how the standard
result regarding entropy perturbation is modified [81, 82, 83]. It is unreasonable
to expect no modification since the dust field is time and will contribute an energy
density. Of particular interest to the author is the quantization of the system arrived
at in this research and the calculation of the power spectra for the gauge invariant
degrees of freedom. It will be interesting to explore how the contributions due to
dust relate to the observed CMB data. Lastly the method presented here and in the
earlier paper [40] can be used to study perturbation theory on different solutions of
Einstein’s equations such as AdS spacetime.

In chapter 3 spin models are constructed on Euclidean black holes after which the
thermodynamic properties of the spins are studied as a function of black hole mass
M using Monte-Carlo simulations. The starting point is the Euclidean action of a
scalar field on a black hole space; Euclidean Schwarzschild in four dimensions and
Euclidean Schwarzschild AdS in four and five dimensions are the backgrounds used
1. The selected background is discretized and the scalar field values are restricted
to £1 or to 0 and £1 to yield an Ising-like or Blume-Capel-like model respectively
on the chosen Euclidean black hole background. Thermodynamic properties of spins
(namely alignment, alignment susceptibility, heat capacity and entropy) are numer-
ically investigated for different M using Monte-Carlo simulations and the resultant
plots indicate a second order phase transition at sub-Planckian M. This result en-
riches the pre-existing knowledge regarding the thermal properties of black holes
(that black holes have characteristic temperatures, entropies, etc. [4] and these have
a statistical mechanics explanation [35]).

One may also view temperature 7' as the fundamental parameter that needs to

be varied as opposed to M. The author believes that this view has two drawbacks.

"Where applicable the cosmological constant A is held fixed.
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Firstly, while 7" is indeed an attractive choice for a Euclidean Schwarzschild back-
ground where the relationship between T" and M is one to one, this is not the case
for backgrounds that are asymptotically AdS where a T' > T,,;, corresponds to two
data points. Due to this one has to revert back to M which is a metric parameter.
Secondly, recall that the T" associated with a Euclidean background is the result of
three steps: Euclideanization of time; compactification; ensuring that the compact-
ification circumference removes the conical singularity. The third step depends on
M and therefore M is more fundamental.

Despite being a study of spins on Euclidean black holes, this work offers a com-
prehensive proof of concept for studying more general matter on these Euclidean
geometries using Monte-Carlo simulations. Therefore the framework developed here
can be extended to study not only higher spin models (3/2,2,5/2, etc.) but also a
scalar field that can take any value in a specified interval. The latter - which is an
example of lattice field theory - describes the behaviour of matter on a background
of interest. The existence of phase transitions for the spin 1/2 and the more general
spin 1 model can be used to infer the existence of phase transitions for not only a
higher spin model but also a scalar field on Euclidean black hole geometry.

The aforementioned study - and even the spirit of the current one - is different from
thermal field theory (TFT) in three ways. Firstly, in TFT the background chosen
is flat Euclidean space which has no metric parameters. Here one has Euclidean
black hole backgrounds, the metrics for which have M 2. Secondly, in TFT the com-
pactification of FKuclidean time stems from a choice to establish a correspondence
with statistical mechanics. In this work the compactification of Euclidean time is
additionally guided by the requirement to remove the conical singularity. Thirdly,
here the compactification circumference depends on M. Hence the parameter in the

metric is related to the compactification circumference and therefore to the tem-

2Since A is held fixed one need only consider M for this discussion.
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perature of the background. This is not the case in TFT since the metric has no
parameters and there exists no conical singularity, due to which one can choose the
compactification circumference arbitrarily.

Lastly, one may view this work as a generalization of spin models on Euclidean
background. This is because here the coupling between spins is position dependent
and the black hole mass M affects vertical interactions differently from the horizontal
ones. Already the results of this work provide commentary on the known relationship
between second order phase transitions and diverging correlation lengths. Consider
the homogeneous Ising model for which it is known that these occur at the critical
temperature. This work demonstrates that criticality does not coincide with diverg-

ing correlations for the Ising-like model on a Fuclidean Schwarzschild background.
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Appendix A

Cosmological perturbation theory

with matter-time

A.1 Derivation of second order Hamiltonian

Recall that the physical Hamiltonian density for general relativity consists of a

curvature and kinetic part:

7rab7Tab 71'2

HOR = — /qR® + - (A1)
VIR T
We list the expansions of the different pieces. The metric and its inverse are:
Gab = a26ab + Ehab (AQ&)
ab ab
aw € h

where € tracks the order in perturbation. We will first compute the determinant

using the usual definition:
6abcgdef

a1 Yaddbeqef (A.3)

q= 3
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where £%¢ is the Levi-Civita symbol. We expand the metric as defined in equation

(A.2a) and follow the steps detailed below to obtain the metric determinant.

Z_:abcé_:def

3!

(a%ad + ehad) (ZLzebe + ehbe) ((_lzecf + ehcf)

aﬁ abc _def €a abe _def 62&2 abc _def
= yéf € 7 €adCheCef + 78 £ eadebehcf + Té? £ eadhbehcf

def ea’ c_def ea’ be_def A4
= 57Edef€ + 786[6 e hcf + 786! £ hbehcf ( . )

e2a?
2

6 4 e*a’ 2 b
=a’+ea'ht —— (° = h®ha) .

=a® + ed4ecfhcf + (ebeecf — ebceef) hiehes

We can calculate qi% using a Taylor expansion to second order in perturbations. We

list the results below:

Vi =@+ =+ o= (B2 = 20 ha) (A.5a)
1 1 eh €

h% + 2h*h,,) . A.5b
Vi @ 2ab 8&7( + ) (A.5b)

We will now calculate the curvature terms. It is natural to start with the Christoffel

symbols
ad
Iy = 6% (hod,c + heap — Poc,a)
Gad 5 had (AG)
= € 2@2 (hbd,c + hcd,b - hbc,d):| — € {2&4 (hbd,c + hcd,b — hbc,d)

where every partial derivative is spatial. The three Ricci scalar is:

2
R == (9,01 — 9°h) + =5 [0 0,06 + W0 hay — 20" 0,0, he" — (9h™) (0.hs")]

€2

+ — | (8.h™) (3yh)

ab

- i (0uh) (°R) + z (0h™) (0has) — % (01 0u?) |

(A7)
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Now we will calculate the momentum terms. We start with the specification for
b

ab_£

= 6ae“b + ep®. (A.8)

S

We will calculate 7 in detail; we start with the definition:

ab
T = (qapT

= (@®eq + €hap) (%e“b - Ep“b> (A.9)

= 3a? (é%) + € [de + (é%) h} + ezhabp“b.

A similar calculation for m,;, reveals:

7w = (@) (é%) Cap + € [2&2 (é%) hay + (a2)" pabi| + ¢ [2a2pd(ahb)d + (6%> hadhbd} :

(A.10)
We substitute these results in the expression for the Hamiltonian density, expand

to second order in perturbations and simplify where possible using integration by

parts. The curvature and kinetic terms from (A.1) are respectively:

ab

2 2
—/qR® :;L_g (aba%ac — %) — 2—h3 (aaabhab — g) (A.11a)
a a

ab 2 — 2
TabT T p) ab hp | w j%
R hop — — b — —
Va 2\/q &(6@ (p ’ 2)+a(ppb 2)

1 /P2 , 3h?
— (= haph®™ — = .
3@ <6a> (5 ab 2

A.2 Derivation of graviton equation

(A.11b)

The graviton equations are those for the phase space variables h;(k,t) and p;(k, t)
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for I = 3,4 derived from the Hamiltonian (2.68):

hi = 3 [(6%) hr + %] , 2 (A.12a)
3 2 _ _ _
b 2 v Bt (B am

_ 28, (P
pr=a [th <6&> h[] ; (A.13)
and
. 1 . p\. G6H 2 .
hr = 32 (p - 2PH) hr + (ﬁ) hr — gpz + ﬁpb (A.14)

where H = a/a = —p/12a® from the equations for the background. Substituting for

pr and p; into the last equation gives

. 1 ,. K2 3 /P2 D _ .
hr = ﬁ(p-l—pH)—gﬂLﬁ(G—d) +V(¢)—ﬁ hr — 3Hhy. (A.15)

Finally using the background equation (2.23) for p gives

h; +3Hh; + (g) h; = 0. (A.16)
A.3 Diffeomorphism constraint is first class

To show that the diffeomorphism constraint C~’|| (2.64) is first class we must show

that

dCj S aC)
= )2 A it Y Al
o {C, H>*} + 5 U (A.17)
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The first term is

{C B}y = =28 (jy + Vo) + (%) (i = 2v2hz) + V30
= 5l - [ (@) 2 () - (n—ovan)
+V3aV' (), (A.18)

and the second term is

oC . pap . 7
a—t” = —daa (pl + \/§p2> + (6% — %) (hl — 2\/§h2> +V3ps0.  (A19)

Substituting into this the equations for the background (2.23) and collecting terms

gives
dcy

0. A.20
o (A.20)

Similar steps show that the same results holds for the transverse components of the

linearized diffeomorphism constraint.
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Appendix B

Ising-like models on Euclidean

black holes

B.1 Unique, positive solution for r(p) for the AdS

black holes

Calculating r(p) requires inverting

p(r) = Bov/ F(r) (B.1)

which after discretization is equivalent to

ne = Lo/ F(ry). (B.2)

Hereafter use r instead of 7, for neatness. For 4d Euclidean Schwarzschild AdS

rearranging the equation above gives

ar®4+br+c=0, (B.3)
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where

o= L bzl—(E)Q and ¢ = —2M. (B.4)
Bo

Hereafter use f(r) = ar® + br + ¢ for simplicity whereby equation (B.3) becomes
f(r) = 0. To ensure that for a given n there is an single, positive value for r it must
be checked if f(r) has a unique, positive root. This is indeed the case as it will be
now be demonstrated.

It can be readily verified that f(0) < 0 and

af .
i 3ar® +b. (B.5)

Note that for b > 0, %Hgo > 0 which indicates that the function increases for
positive values of r and becomes zero for one such value; therefore a single, positive

root is guaranteed. Conversely for b < 0:

df df df _ [ b
— <0, — =0, — >0 =\/—=. B.6
drlr<r "o drle=r Todrlesr T 3a (B.6)
Therefore the function decreases till » = 7 after which it always increases. This also
ensures a single, positive root.

This analysis applied to 5d Euclidean Schwarzschild AdS leads to a similar con-

clusion.

B.2 Spins on Euclidean Rindler background

Given that spins on a Euclidean black hole background undergo a second order
phase transition as the metric parameter M is varied, it is natural to ask if this
result is unique to Euclidean black hole backgrounds or if spins on any Euclidean

background undergo a phase transition. For example if we use Minkowski spacetime,
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derive its Euclidean version, consider a scalar field on this background and follow
the steps presented in Section 3.4.1 to arrive at a spin model on this background,
are we going to get a phase transition? The following heuristic argument supports

an answer in the negative: consider the flat Euclidean background in d dimensions:

ds® = dr? +da? +dxs + ... +dx?_; (B.7)

this metric is homogeneous and parameter and singularity-free; due to the latter
feature time compactification may be chosen arbitrarily; consequently varying the
temperature will only change the upper limit of the Euclidean time coordinate. Con-
sider now the action of a scalar field ®(7, z1) on this background and follow the steps
from Section 3.4.1 to arrive at a 2d spin model on this background. Clearly changing
the temperature only changes the number of rows in the model; since varying the
temperature does not affect the couplings, a spin model on flat Euclidean background
does not undergo a phase transition. This indicates that the existence of a phase
transition depends on the type of background used.

Rindler spacetime describes how an observer with uniform acceleration a perceives
Minkowski spacetime. For generality we will consider d spacetime dimensions and for
simplicity we will assume that the observer is accelerating along one space direction
which we will call x; the remaining d — 2 space coordinates are named 1, ¥, ... Yq_2-

The Rindler metric we consider is

ds® = — (ax)2 dt* + da? +dy? + ... + dyﬁ—% (B.8)

where a is a constant, t,y;, ...,ys—2 € R and x € R*. Rindler spacetime is flat and
inhomogeneous; it also has a coordinate singularity at x = 0. Therefore there are

some similarities between Rindler and Schwarzschild spacetimes; indeed under the
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coordinate transformation R = ax?/2 the t — R part of Rindler spacetime is:

ds® = —Fdt* + F'dR?, F =2aR. (B.9)

In imaginary time 7 = it the 7 — x part of the metric (B.8)

ds? = (az)® dr? + da? (B.10)

represents flat space in polar coordinates where a7 is the angular coordinate. Pe-
riodically identifying a7 - whereby Euclidean time has periodicity 2ra~! - removes
the conical singularity at x = 0. Consequently the singularity-free Euclidean Rindler
background is described by the metric (B.10) with coordinate ranges 7 = [0, 2ra™!]
and z € R* and it has a natural temperature 7" = 3-. Note that the natural temper-
ature of this space is proportional to the metric parameter, unlike that of Euclidean
Schwarzschild background which is inversely proportional to the black hole mass.

In this section spin models are constructed on a Euclidean Rindler background. It
will be checked using Monte-Carlo simulations if spins on this background undergo
a phase transition as the metric parameter is varied. The result, in addition to
the findings for spin models on Euclidean black holes, may provide insight into the
inquiry: what feature of the spin model makes a phase transition likely? For what
follows, we choose x € [0, X] and y1, ..., 542 € [0,Y] to ensure that the lattice and
action are finite, as will be demonstrated shortly.

Consider a scalar field ® = ®(7, z); we choose this specification since the y coordi-

nates do not contain background properties of interest. The Euclidean action of the
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scalar field on Rindler background is

19 = Yd_z{% / / drdx [(aaj)fl 2 + (ax) D + (ax) [L2(I>2:| } (B.11)

=y27®, (B.12)

In the equations above 1@ is the action in d space dimensions, Y is the upper limit of
the y1, ¥2 ... Y40 integrals, and overdots and primes indicate partial derivatives with
respect to 7 and x respectively. In the case that the upper limit of the y integrals
is set to 1, the d dimensional action is identical to the 2 dimensional action. Since
physical properties of interest are in the 7 — x plane we will set Y = 1.

The steps from section 3.4.1 are followed to arrive at the Euclidean action of spins

on Rindler space:

Ng,Nx ]
]E = Zl { - <I>m,n {(E) (I)m—i-l,n + (&l’n) (I)m,n+1:|
= (B.13)
2 e
+ (I)m’n |:a—mn + 5 (Qin + Jin,1) + T (amn)} }
where
2 X
Ng = —W, Nx =— and =z, =ne. (B.14)
ae €

Notice that a appears differently in the Euclidean action from how the black hole
mass appears in - for instance - the spin models on Euclidean Schwarzschild back-
ground (3.54).

For the simulations X = 1, ¢ = 1072, ¢ = 0 and periodic boundary conditions
were used. Graphs of alignment vs. a are presented in Figure B.1 for the spin 1/2
and spin 1 models Euclidean Rindler backgrounds. These results are valid for d > 2

dimensions.
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Figure B.1: Alignment as a function of metric parameter a for spin 1/2 and spin 1
models on a Euclidean Rindler background.

Two trends are obvious from Figure B.1. Firstly, changing the allowed excitations
of the spins markedly influences their alignment as a is varied. The second trend is
the transition from order to disorder to partial order as a is increased in the spin 1
model.

Both trends can be understood via a heuristic argument. To ensure applicability
of this argument to both cases under consideration the allowed spin excitations (spin
1/2 or spin 1) will be not be committed to initially. Consider a starting lattice of

aligned spins from which the group depicted in figure B.2 is selected.
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Figure B.2: A group of aligned spins.

It is reasonable to use the probability of changing the value of the central spin as
a qualitative indicator of where one can expect order/disorder in the lattice. This
probability requires the change in Euclidean action upon changing the value of the

central spin; one can verify that

1 a
Allﬁ—l =4 |:a_gjn -+ 5 (ilfn + fﬂn,l) (B15)
1
AIl—)O = (Z) AIlg),l (B16)
= D150 > P1->-1- (B.17)

Here the notation b — ¢ indicates changing the value of the central spin from b to c.
It is important to note that the self interactions cancel out in Al;_, _; only.

In spin 1/2 models the central spin can only change value to -1 while in spin 1
models the central spin can also change its value to 0. This explains the the first
feature. The second trend is due to how the metric parameter appears in (B.13):
note that the vertical interactions are mediated by 1/a, the horizontal ones by a
and the point ones by a combination of a and 1/a. This results in equally strong
interactions in the extreme cases a — 0 and a — oo and weaker interactions in an

intermediate region. Presented in figure B.3 is a graph of p;_,o for the spin 1 model
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for different a values.

1
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Figure B.3: For a spin 1 model on a Euclidean background, this graph shows p;_,o
as a function of column number n for different a values.

For a = 1/10, p10 =~ 0 which corresponds to order; at a = 3, p;_o ~ 0.1 for a
majority of the lattice which indicates disorder; for a = 10, p;_o = 0.1 for a smaller
portion of the lattice which results in lesser disorder than the a = 3 case. This
confirms the observed trend in the alignment graph for the spin 1 model in figure
B.1.

Studying spins on Euclidean Rindler backgrounds shows that phase transitions
depend on the allowed excitations of spins and the background (specifically how the

metric parameter appears in the Euclidean action of spins).
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