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Abstract

In this thesis, we will investigate the collider phenomenology and cosmological con-
sequences of extensions of the Standard Model (SM) with hidden sectors coupled to
the SM via a Higgs portal coupling. We will explore how models with classical scale
invariance, where all mass scales are dynamically generated, can address the short-
comings of the SM without destabilising the Higgs mass. The matter-antimatter
asymmetry in the Universe and the tiny masses of active neutrinos are addressed
in a U(1)p_, extension of the SM with GeV scale right-handed neutrinos. We then
investigate a range of models with both Abelian and non-Abelian gauge groups in
the hidden sector to show how we can stabilise the Higgs potential and at the same
time provide phenomenologically viable dark matter candidates where all scales in
the theory have a common origin.

For non-Abelian gauge groups in the hidden sector, we also show that hidden
magnetic monopoles can make up a significant fraction of dark matter. The dark
matter in this model, which consists of both magnetic monopoles and gauge bosons,
has long-range self-interactions which could explain the too-big-to-fail-problem at
small scales in the standard cold dark matter scenario. We then study the collider
phenomenology of hidden sector models with dark matter candidates through a
simplified model framework both at the LHC and at a future 100 TeV collider.

Hidden sector extensions of the SM with a Higgs portal coupling give a rich and
predictive model building framework for BSM physics without introducing a large

hierarchy of scales.



Declaration

The work in this thesis is based on research carried out at the Institute for Particle
Physics Phenomenology, Department of Physics, Durham University, England. No
part of this thesis has been submitted elsewhere for any other degree or qualification
and it is all my own work unless referenced to the contrary in the text. Chapter 2
is based on work appearing in [1,2]. Chapter 3 is based on research reported in [1]
and Chapter 4 is based on [2]. The text of Chapter 5 is based on work appearing
in [3] and Chapter 6 is based on [4]. All these papers were published with Valentin
V Khoze, [2] was also written in collaboration with Christopher McCabe and [4]

with Michael Spannowsky.

Copyright (© 2015 by Gunnar Ro.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from

it should be acknowledged”.

11



Acknowledgements

I would like to thank my supervisor, Professor Valentin V Khoze, for all his support
and time, without which this thesis would not have be possible. His knowledge of
and passion for particle physics and his encouragement have given me a lot motiva-
tion and inspiration. It has also been a privilege to work with and learn from my

collaborators Christopher McCabe and Michael Spannowsky.

My fellow PhD students in the IPPP have been an important source of support
during my PhD. They have been good friends, and I have learned a lot from them.
Together with all my friends from St John’s College, they have made my PhD much

more enjoyable.

I would also like to thank my parents for their support not only during my PhD,
but through my entire life. They have always encouraged me to read, learn and
explore while letting me find my own way. Finally, I would especially like to thank
Siiri for her constant support and companionship. I am very grateful for everything

she has given me.

I gratefully acknowledge the financial support from Durham University through
the Durham Doctoral Studentship.

v



Contents

1

Abstract

Declaration

Acknowledgements

Introduction

1.1

1.2

1.3

The Standard Model . . . . . . .. ... ... L
1.1.1 Introduction to the Standard Model . . . . . . . . .. ... ..
1.1.2  Overview of Experimental Successes . . . . . . . ... ... ..
Beyond the Standard Model . . . . . . . ... ... ... ... .. ..
1.2.1 Dark Matter . . . . . . .. ...
1.2.2  Matter-Antimatter Asymmetry . . . . . ... ... ... ..
1.2.3 Stability of the Higgs Potential . . . . . ... ... ... ...
1.2.4 Hierarchy Problem . . . .. .. ... .. ... ... ......
Outline of the Thesis . . . . . . . . .. ... ... ... ... ...

Classical Scale Invariance

2.1
2.2

2.3

Classical Scale Invariance . . . . . . . . . .. ... ... ... .. ..
Coleman-Weinberg Mechanism . . . . . . .. ... ... ... .. ...
2.2.1 Effective Action and Potential . . . . . . ... ... ... ...
2.2.2  One Loop Effective Potential for Classically Massless U(1)
2.2.3 Coleman-Weinberg Mechanism and Renormalisation Group
Running . . . . . .. . oo

BSM Models with Classical Scale Invariance . . . . . . . . . .. ...

ii

iii

v

18
22
24
30



Contents vi

2.3.1 Hierarchy Problem in Classically

Scale-Invariant Models . . . . . . .. ... ... 41
2.3.2 U(1) CSI Extension of the SM . . . . .. ... ... ... .... 43
2.3.3 COSI Extensions of the SM . . . . . ... ... ... ... ... 47
2.3.4 Classically Scale-Invariant BSM Physics . . . . .. ... ... 50
2.3.5 Phenomenology of CSI Models . . . . . . ... ... ...... 52

3 Leptogenesis and Neutrino Oscillations in the Classically Scale-

Invariant Standard Model with the Higgs Portal 54
3.1 Brief Review of Thermal Field Theory . . . ... ... ... .. ... 5}

3.1.1 Phase Transitions . . . . . . . ... ... ... Y
3.2 The B — L Coleman-Weinberg Extension of the Standard Model . . . 58
3.3 Neutrino Oscillations and Leptogenesis . . . . . . . .. .. ... ... 60

3.3.1 Leptogenesis Triggered by Oscillations of Majorana Neutrinos 60

3.3.2 Leptogenesis in Classically Massless Models . . . . . ... .. 66

3.4 Baryon Asymmetry and Phenomenology . . . . . ... .. ... ... 70
3.5 Conclusions . . . . . . . . . 79
4 Higgs Vacuum Stability from the Dark Matter Portal 81
4.1 CSI ESM Building and Generation of the EW Scale . . . . . .. . .. 82
411 CSIUM)ew xSM . . oo oo 82
412 CSIU)p_p XxSM . . . . o 86
413 CSISU2)ew xSM . . o oo o o 87
414 CSIESM @ Singlet . . . . .. ... ... 88

4.2 RGEvolution . . . . ... ... 89
4.2.1 Standard Model X U(1)aw - - « « v v v v v v v v i oo 89
4.2.2 Standard Model x U(l)g_y, . . . . . . . o oo oo 90
4.2.3  Standard Model x U(1)p_p @ Singlet . . . . .. ... ... .. 91
4.2.4  Standard Modelx SU(2)ew « « « « v v v v v v 92
4.2.5 Standard Model x SU(2)qw @ singlet . . . . .. ... ... .. 93
4.2.6 Initial Conditions and Stability Bounds . . . . . . . . ... .. 94

4.3 Higgs Physics: Stability and Phenomenology . . . . . . ... ... .. 95



Contents vii

431 CSIUM)ew XSM . . o oo oo 98
432 CSIUM)gxSM .. .. 100
433 CSIU(1)ppXxSM @ singlet . . .. ... .. ... ....... 102
434 CSISU2)ew XSM . . o o oo oo 102
435 CSISU2)ew xSM @ singlet . . . . .. ... ... ... .. 102

4.4 Dark Matter Physics: Relic Abundance and Constraints . . . . . . . 104
4.4.1 Vector Dark Matter . . . . . . . ... .. ... ... ... 105
4.4.2 Singlet Scalar Dark Matter . . . . . . .. . ... ... .. 108
4.4.3 Scalar and Vector Dark Matter . . . . . . .. ... ... ... 111

4.5 Conclusions . . . . . . . .. 114
5 Dark Matter Monopoles, Vectors and Photons 116
5.1 The Model . . . . . . . . . 117
5.1.1 Monopoles . . . . . .. 118

5.1.2  Mass-Scale Generation . . . . . . ... ... ... 120
5.1.3 Coleman-Weinberg Mechanism with an Adjoint Scalar . . . . 121

5.2 Dark Radiation and Neg . . . . . . . . .. . . .. L 122
5.3 Dark Matter Relic Density . . . . . .. . .. ... ... ... ... .. 125

5.3.1 Dark Gauge Bosons: Sommerfeld Enhancement and Relic Den-

SIBY . . o 126

5.3.2 Dark Monopoles . . . . . . ... ... oo 128

5.4 Self-Interacting Dark Matter . . . . . . . .. ... ... .. ... ... 138
5.5 Conclusions . . . . . . . ... 142

6 Spectroscopy of Scalar Mediators to Dark Matter at the LHC and

at 100 TeV 144
6.1 Introduction . . . . . . . ... 144
6.2 Models . . . . . . 146
6.2.1 The Singlet Mixing Model . . . . ... ... .. .. ... ... 147
6.2.2 Generic Higgs-like Scalar Mediator Model . . . . . . . . . .. 150

6.3 Relic Density and Direct Detection Constraints . . . . . . . ... .. 150



Contents viii

6.4 Collider Limits on Scalar Mediators with two Jets and MET at the

LHC . . . . 152

6.4.1 Width Effect on Differential Distributions . . . . . . .. . .. 154

6.4.2 Exclusion Limit Reach at the LHC . . . . ... .. ... ... 154

6.4.3 Distinguishing Between Models with Different Mediator Masses158

6.5 Scalar Mediator Models at 100 TeV . . . . . ... ... .. ... ... 161
6.6 Summary and Conclusions . . . . . . .. ... ... .. ... ... .. 166

7 Conclusions 168

Bibliography 171



List of Figures

1.1

1.2

1.3

1.4

2.1

3.1

3.2

3.3

3.4

3.5
3.6

4.1

Production cross-section for different final states measured at the
CMS experiment at the LHC with SM predictions. . . . .. . .. ..

The observed and theoretical running of the strong coupling constant

Dark matter power spectrum for different classes of dark matter mod-
els from [5]. . . . ..

Current and future direct detection limits . . . . . . . . . . . . . ..

Feynman diagrams for the one-loop effective potential of scalar QED,

including scalar and gauge boson loops. . . . . . . . .. ...

Effective thermal mass squared difference for right-handed neutrinos
and oscillation temperature in the CSI U(1)g_r model . . . . . . ..
Maximal Majorana mass and baryon asymmetry produced with a
tree-level mass for the right-handed neutrinos. . . . . . . .. ... ..
Superposition of the Majorana mass contours with the baryon asym-
metry . .o
The wash-out rate and baryon asymmetry computed in the classically
scale-invariant B — L model. . . . . . . . .. ..o
Superposition of the wash-out rate and baryon asymmetry . . . . . .
Baryon asymmetry as a function of (|¢|) for masses between 0.7 GeV

and 4.7 GeV. . .,

RG evolution in the Standard Model. . . . . . . . . . . ... .. ...

X

71



List of Figures X

4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1

5.2
5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

6.1

RG evolution in CSI ESM theories with (a) E = U(1)g_, (b) E =

Ulg_r+s(x),and (¢) E=SU2)cw « « « v v v v v v v oo oo 97
Parameter space in the minimal U(1)y % SM classically scale-invariant

theory. . . . . . . 99
Parameter space of the U(1)g_px SM theory . . . . . ... ... ... 101
Parameter space of the SU(2)cw X SM theory . . . . . ... ... ... 103
Feynman diagrams for vector dark matter annihilation . . . . . . .. 106
Parameter space for vector dark matter . . . . . . . ... ... ... 109
Feynman diagrams for scalar dark matter annihilation. . . . . . . . . 110
Scalar dark matter parameter space . . . . . . . .. ... 110
Scalar and vector dark matter parameter space . . . . ... .. ... 112
Scalar and vector dark matter mass parameter space . . . . . . . .. 113

Diagrams giving the dominant contribution to the W1 annihilation
Cross-section. . . . . . . ... ... 126
Contours of the relic density of vector dark matter. . . . . . . .. .. 127
The relic density of monopoles produced cosmologically during a first
order phase transition . . . . . .. ... .o oL 135
The relic density of monopoles after a second order phase transition . 136
Combined relic density of vector and monopole components of dark
matter after a second order phase transition with the critical exponent
v=0.5. . . 137

Combined relic density for monopole and vector dark matter with

v=0.6. .. . 137
Vector dark matter transfer cross-section and relic density . . . . . . 140
Vector dark matter transfer cross-section and relic density . . . . . . 140

Monopole dark matter transfer cross-section and the relic density
contours for the critical exponent v =0.5. . . . . . .. .. ... ... 141
Monopole dark matter transfer cross-section and the relic density

contours for the critical exponent v =0.6. . . . .. .. ... .. ... 142

The decay width of hy into Yy with gp,y, =1. . . . . . . . . . . . .. 149



List of Figures Xi

6.2

6.3

6.4
6.5
6.6
6.7

6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18

Dark matter relic density and direct detection constraints for our
simplified model for dark matter for various values of gpy and k.
The lines give relic density contours and the grey region shows the
area excluded by direct detection constraints. . . . .. .. ... ... 153

Kinematic distributions for different values of the mediator width at

Vs =13 TeV when Mp.q =800 GeV. . . . .. .. ... ... ..., 155
Kinematic distributions for M;;, pT,An and ¢j; . ... 156
LHC reach for models with different values of M,.q with k =1 . . . . 157

LHC reach for models with different values of M,,.q with x = 0.15 . . 158

LHC reach for models with different values of Mg with fixed cross-

SeCtiON . . . . oL L 158
Differentiating the models at k =1 at the LHC. . . . . . . .. .. .. 159
Differentiating the models with the floating x parameter. . . . . . . . 159
Differentiating the x = 1 models at the LHC with 250 GeV and 500

GeV reference models. . . . . . .. ..o 160
Kinematic distributions at a 100 TeV collider. . . . . . . . .. .. .. 162
100 TeV reach for excluding invisible decays of the 125 GeV Higgs . . 162
100 TeV reach for different M,q models with x =1. . . . . . . . .. 163
100 TeV reach for different M,q models with x =0.15. . . . . . . .. 163
Differentiating the models at k =1 at 100 TeV. . . . . . . .. .. .. 164
Differentiating the models at x = 0.15 at 100 TeV. . . . . . .. . . .. 165
Differentiating the models at k = 1 at a future 100 TeV Collider with

500 GeV and 750 GeV referece models. . . . . . . ... ... 165
Differentiating the models at k = 1 at a future 100 TeV Collider with
1000 GeV and 1500 GeV referece models. . . . . . . . ... ... ... 166



List of Tables

1.1
1.2

3.1

3.2

3.3

4.1

6.1

6.2

Mass and electric charge, @), for the particles in the Standard Model 3
Quantum numbers for the fields of the SM . . . . . ... ... .. .. 4

Four benchmark points corresponding to different ranges of Majorana
MNASSES. « « « « o e e e e e e e e e e e e e 74
Three benchmark points in the classically scale-invariant B — L model
corresponding to Majorana masses in the GeV range . . . . . . . .. 78
The range of coupling constants corresponding to benchmark points

in Table 3.2. . . . . ., 79

Minimal values of Ay, needed to stabilise the Higgs potential in the

CSI ESM @ singlet models . . . . . . . ... ... ... ........ 103

Cross-sections (fb) at partonic level after VBF cuts in (6.4.14) at 13
TeV. 155
Cross-sections (fb) at partonic level after the cuts (6.5.15) at 100 TeV. 164

xii



Chapter 1

Introduction

The Standard Model (SM) of particle physics is currently our best description of the
fundamental constituents of matter and the forces between them. In this chapter
we will provide a short introduction to the theory of the Standard Model together
with some of its experimental success. Then we will present the main arguments
for why we need to go beyond the Standard Model to explain observed phenomena

such as dark matter and the matter-antimatter asymmetry in the Universe.

1.1 The Standard Model

1.1.1 Introduction to the Standard Model

The Standard Model of particle physics is a quantum field theory with a SU(3) xSU(2)
xU(1) gauge group and a particle content as seen in Table 1.1. The gauge group
and the quantum numbers of the particles together determine the forces between the
particles. The quantum numbers for the particles in the SM can be seen in Table
1.2. The particles consist of fermions and bosons with half integer and integer spin,
respectively. The fermions are divided into quarks, which are charged under the
SU(3) chromodynamic force, and leptons which are not. Both leptons and baryons
come in three families, which are successively heavier copies of particles with the
same gauge quantum numbers. Each gauge group has corresponding gauge bosons

that mediate the forces. In addition to all of the fermions and gauge bosons, there
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is one fundamental scalar field in the theory, the Higgs field. The SM Lagrangian,

which describes the interactions between all the particles, is schematically given by
1 — _
L= = P Eyy + 00+ gy H A | DU+ i, HTH = ) (HTH)* +h.c. (1.1.1)

F# is the field strength tensor for each of the three gauge groups. The first term
describes the kinetic term for the gauge fields and the self-interactions of the two
non-Abelian fields. The second term is the kinetic and gauge interaction term for
the fermions, . H is the Higgs scalar field, and the last three terms give the kinetic
term and potential for it. The remaining term, which is an interaction between the
scalar field and the fermions, is a Yukawa term.

The Lagrangian above is very simplified with all flavour and gauge indices sup-
pressed, and all the gauge interactions hidden in the covariant derivatives D,. The
covariant derivative is schematically given by

Db = (au - > igA;ti,> ¥, (1.1.2)
gauge groups
where AL is a gauge field and t* is the generator of the gauge group corresponding

to the representation of the matter field, which can be read of from Table 1.2.

The Strongly Coupled Sector

Quantum Chromodynamics (QCD) is the gauge theory based on the SU(3) gauge
group. Since there are eight generators of the gauge group, QCD has eight gauge
bosons called gluons. The gluons can interact with themselves and have both three
and four-point vertices since SU(3) is a non-Abelian gauge group. There are six
fermions charged under the strong force, the six quarks. They come in two differ-
ent types, the up-type and the down-type. These types have different electroweak
charges, but have the same SU(3) quantum numbers. The quarks are in the fun-
damental representation of SU(3), so they come in three different colours. At low
energy it is impossible to observe free quarks or gluons since QCD is confining: the
QCD force becomes so strong that it binds the quarks into composite colour-neutral
baryons and mesons. The proton and neutron are baryons made out of three quarks,

all of different colour, making the bound state colour neutral. Mesons are made out
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Quarks Leptons
Particle Mass Q Particle Mass Q
Up quark u 2.3 MeV | +2/3 Electron e 0.511 MeV | -1
Charm quark ¢ | 1.3 GeV | +2/3 Muon g 106 MeV | -1
Top quark ¢ 173 GeV | +2/3 Tau 7 1.7 GeV | -1
Down quark d | 4.8 MeV | -1/3 Electron neutrino v, | < 2.2 eV 0
Strange quark s | 95 MeV | -1/3 Muon neutrino v, | <0.17 MeV | 0
Bottom quark b | 4.2 GeV | -1/3 Tau neutrino v, <155 MeV | 0
Bosons

Particle Mass Q

Higgs boson h | 125 GeV | 0

Photon ~y 0 0

Gluons g 0 0

W bosons W+ | 80.4 GeV | %1

Z boson Z 912 GeV | 0

Table 1.1: Mass and electric charge, @, for the particles in the Standard Model

of a quark and an anti-quark of the same colour, making it colour neutral. There
is a whole variety of different mesons and baryons with the lightest being the pion.
Confinement is also the reason why QCD is not directly visible in the macroscopic
world as a long-distance force. QCD is responsible for holding the nuclei of atoms
together, but through the exchange of pions rather than gluons. Since pions have a
mass of around 100 MeV the range of the strong nuclear force is about 10 GeV~! ~ 1

fm.

We can explore quarks and gluons experimentally because of asymptotic freedom.
At high energy the strong force becomes weaker, and free coloured particles can exist.
The strength of a gauge force is determined by the gauge coupling constant, g, in
the covariant derivative 1.1.2. When g becomes large, we get confinement and non-
perturbative processes, while a small ¢ leads to perturbative behaviour. Due to the

particle content in QCD, the evolution of g with energy, as seen in Figure 1.2, is
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Field SU(3) | SU(2) | U(1)y | U(1)gm
v 0
L= " 1 2 1
lL _1
U 2/3
o= " 3 2 1/3 /
dp -1/3
lr 1 1 -2 1
Ug 3 1 4/3 2/3
dp 3 1 2/3 | —1/3
1
H = ¢ 1 2 1/2
h 0

Table 1.2: Quantum numbers for the fields of the SM. L and () are lepton and

quark doublets and [ = e, u, 7, u = u, ¢, t and d = d, s, b.

such that g is large at small energies and decreases at large energies.

The Electroweak Sector

In the electroweak sector we have a product of two gauge groups SU(2)xU(1). Only
the left-handed fields are charged under the SU(2) part of the gauge group, making
the theory chiral. Both the quarks and the leptons are charged under the elec-
troweak gauge groups as seen in Table 1.2. All the left-handed fields are organised
into SU(2) doublets; the quark doublets have one up-type and one down-type left-
handed field, while the lepton doublets include one electron-like particle and one
neutrino. The Higgs field is a complex scalar doublet charged under the electroweak
gauge groups. Since there is only one long range force in addition to gravity in the
macroscopic world, the electro-magnetic force, the gauge bosons of the SU(2) part
of the electroweak force either have to confine at low energies or be massive. As we
see from Table 1.1, the W= and Z bosons have masses in the 80 — 90 GeV range
which leads to a very short range force. An unbroken gauge theory requires massless
gauge bosons. Therefore, the electroweak symmetry has to be broken to account for

the massive W and Z bosons.
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The breaking of the electroweak symmetry is due to the Brout-Englert-Higgs-
mechanism [6-8]. Without it, we would not have any heavy gauge bosons or masses
for the fermions of the Standard Model. Due to the chiral nature of the SU(2)
gauge group, fermion mass terms that couple left and right-handed fields are not
gauge-invariant, and are therefore forbidden. The Higgs field is introduced to break

the electroweak symmetry and to give masses to fermions and gauge bosons.

As a simple example, we first consider a theory with a U(1) gauge symmetry and
a single complex scalar ® = \%(qbl + i¢o). The Lagrangian is given by

1
L= = F" o+ DO = V(@), V(@) =m0l + A (210)". (1.1.3)

The Lagrangian is fully gauge invariant with a covariant derivative D,, = 0,, +1igA,,.
We can see that the mass-term is negative which would indicate that the scalar field
is a Tachyon. To resolve this, we need to expand the Lagrangian around the true
vacuum state of the theory. First we find the vacuum

AV (®) , m?
—5 =0 (e == (1.1.4)

As @ is a complex scalar field and the vacuum condition only sets the length of ®, we
can choose (®) to be real with no imaginary part. We then expand the Lagrangian

around the true vacuum ¢ — ¢ + v,
1 59 1 9 1 2 g*v° " \/‘ M
LD §m qbl —+ 5(8ﬂ¢1) + 5(8@2) -+ TAHA -+ 2g<CI>)A,ﬁ (bQ. (1.1.5)

This leads to a massive ¢, a massless ¢, and a massive vector boson with mass
m~ = g(P). A massive vector boson has three degrees of freedom while a massless
one only has two. The third degree of freedom of the gauge boson is provided by
the massless Goldstone boson ¢,. The shifted Lagrangian has an interaction term
between the gauge field and the Goldstone boson. We can remove this term and
write the Lagrangian in a more canonical form by performing a gauge transformation
to the unitary gauge.

1 55 1 5 1 v 927}2 L
Here we clearly see that there is one massive scalar field, one massive gauge field

and no Tachyon.



1.1. The Standard Model 6

The Higgs mechanism for a general gauge group works as follows: in the theory
we have a scalar field, ¢, which acquires a vacuum expectation value (vev), (),
charged under a gauge group with generators ¢*. Depending on (¢), the gauge
group might be completely broken, as in the U(1) example above, or a sub-group

can remain unbroken. All the generators that leave the vacuum invariant
t*{p) =0 (1.1.7)

remain unbroken. After the symmetry breaking, the Lagrangian will develop a mass

term for the gauge bosons with a mass matrix given by

Ma, = 9 (ta(8)) - (t6(9)). (1.1.8)

We can see that the gauge bosons corresponding to the unbroken generators remain
massless, and we get one massive gauge boson and one Goldstone mode per broken
generator. As before, the third degree of freedom of each gauge bosons is given by
the corresponding Goldstone mode. The effect of spontaneous symmetry breaking
is therefore that it brakes the original group down to a potentially trivial subgroup
where we get as many massive gauge bosons as broken generators and one remaining
neutral massive scalar degree of freedom, which in the SM is the Higgs boson.
For a given theory, the scalar potential, V(¢), determines the vacuum state, (¢),
which then determines the pattern of the symmetry breaking. Therefore, different

potentials can break a gauge group in different ways.

In the Standard Model the SU(2)xU(1) gauge group is broken down to the
electro-magnetic (EM) U(1). SU(2)xU(1) has four generators, three from the SU(2)
part and one from the U(1) part. We choose the vacuum state to be electrically
neutral such that the generator for the EM U(1) is unbroken. Since we then have
three broken generators, we get three massive gauge bosons. The original Higgs
doublet was a complex SU(2) doublet which had four degrees of freedom: three of
these become Goldstone modes, while the last becomes the observable neutral Higgs
boson. It is slightly more complicated in the SM since the neutral SU(2) gauge
boson WS and the hyper-charge boson B, will mix and give rise to the Z boson and

the photon 7.
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The massless fermions in the SM also gain masses by the Higgs mechanism. The
Yukawa interactions in the SM Lagrangian provide a mass term for the fermions

when h — h + v, as follows

Eiyijij — Ei%¢jv + Ei%wjh. (1.1.9)

The fermion mass is then given by my = \y/—%v. The Higgs mechanism is the final

ingredient to make the SM a phenomenologically viable theory. We have a short-
range weak force due the spontaneous symmetry breaking of the electroweak sector,
a short-range strong force due to confinement, a long-range electro-magnetic force
due to the unbroken U(1) and massive fermions with masses given by their Yukawa
couplings to the Higgs field. We will now move on to look at some of the experimental

successes of the SM.

1.1.2 Overview of Experimental Successes

The Standard Model has been extensively tested experimentally over the last 40
years. It can successfully explain all the collider data we have observed so far. The
discoveries of the W+ [9] and Z bosons [10] at UA1 and UA2 at CERN in 1983 and
the gluon at DESY in 1979 [11-14] firmly established the Standard Model as a gauge
theory with non-Abelian gauge groups. With the discovery of the top quark in 1995
at Fermilab [15], the three-family fermion sector was completely discovered. The
one missing piece of the SM matter content, the Higgs Boson, was finally discovered
at the LHC in 2012 by the ATLAS and CMS experiments with a mass of about 125
GeV [16,17].

In addition to discovering the particle content of the Standard Model, we can test
the model by measuring and predicting the results of countless collider experiments.
Since the SM only has 19 free parameters which have now all been measured, we
can make predictions for all collider experiments. There have been no measurements
that deviate significantly (at more than 50 confidence) from the SM prediction. As
one can see from the latest measurements from CMS in Figure 1.1, the agreement be-
tween observation and prediction is remarkably good over many orders of magnitude

in production cross-section.
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Figure 1.1: Production cross-section for different final states measured at the CMS

experiment at the LHC with SM predictions.

This agreement between experiment and theory extends to all aspects of collider
physics. In many cases, calculations at multi-loop level are required to achieve a
good agreement, as, for example, in the magnetic dipole moment of the electron.
One of the most spectacular tests of loop-level calculations comes from the running
of the coupling constants with energy. At leading order the coupling constants would
not run with energy, but at higher orders they do. One example of the agreement
between the calculated and observed running [18] of the strong coupling constant

as can be seen in Figure 1.2.

1.2 Beyond the Standard Model

Even though the Standard Model is extremely successful and in agreement with all
collider experiments, there are many questions it cannot answer. These questions
include both observational phenomena that cannot be accommodated in the SM and
unanswered theoretical questions. In this section, we will investigate these short-
comings of the SM to see what they can tell us about physics Beyond the Standard

Model (BSM). First we will consider some of the main observational evidence for
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Figure 1.2: The observed and theoretical running of the strong coupling constant

Q.

BSM physics from dark matter, matter-antimatter asymmetry and the stability of
the Higgs potential. We will then focus on the hierarchy or naturalness problem.
There are many other open questions which we will not cover in any detail. These
include why there are three generation of fermions, why a large mass hierarchy of
fermions exists, the small neutrino masses, the strong CP-problem and, not least,

how to combine the SM with gravity.

1.2.1 Dark Matter

In 1933 Zwicky [19] used the the measured velocity of stars in the Coma galaxy
cluster to calculate the mass of the cluster. He discovered that the mass was around
400 times larger than the mass of the luminous stars. This was the first of many
observations that show that there is a form of matter in the Universe that we can
only detect due to its gravitational effects on visible matter. Zwicky named this
mysterious matter “dark matter”. We now have evidence for dark matter (DM)
from a wide range of length scales, from galaxies to the entire Universe.

At galactic scales, the most compelling evidence comes from rotation curves. The

rotation curve of a galaxy shows the circular velocity of stars and gas as a function
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of their radial distance. Outside the main concentration of mass, the rotation curve

should fall off as 1/4/r as the Newtonian circular velocity, v(r), is given by

() =1/ G]\im, (1.2.10)

where M (r) is the mass distribution and r the radial distance. If the mass distribu-

tion of the galaxy were to follow that of the visible stars and gas, we would expect
to see this decrease in circular velocity at the outskirts of a galaxy. Instead we see
flat rotation curves extending far outside the visible stars and gas. This leads to
the conclusion that there exists more matter than we can see with a density profile

p o< 1/r* at large radial distances.

In addition to the original evidence of dark matter discovered by Zwicky, there
is a lot of other evidence from galaxy cluster scales. This evidence comes from mea-
suring the mass of galaxy clusters and comparing that to the amount of visible light
from the galaxy. The evidence includes using X-rays to determine the temperature
profile of the gas in the cluster which, when combined with equations of hydrostatic
equilibrium, can provide estimates of the total mass. One can also use gravitational
lensing to determine the mass of a cluster by observing how much it bends light
originating from behind the cluster. All these measurements, including those on
galactic scales, consistently show that there is about five times more mass than can
be accounted for by stars and gas.

There have been suggestions that instead of explaining all of these measurements
by postulating dark matter, one should instead modify the laws of gravity [20]. This
proposal is strongly disfavoured by one of the most spectacular pieces of evidence in
favour for dark matter, the Bullet Cluster [21]. The Bullet Cluster is a system con-
sisting of two galaxy clusters that recently collided with each other. From observing
the system in visible light, one can see that all the stars just passed through each
other as they are too sparsely distributed to interact. X-ray observations show that
the gas, which interacts electromagnetically, is left between the two visible galaxies.
In addition to these observations, there are observations from gravitational lensing
that can tell us how the gravitational mass is distributed. If the only source of mass

were normal matter, we would expect most of the matter to be distributed in the
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same way as the hot gas since gas makes up the majority of the mass of a galaxy.
This would be true even if the laws of gravity were modified to account for the other
evidence for dark matter. The measurements show that the majority of the mass is
not centred around the gas, but around the stars. This shows that dark matter is a

separate form of matter that is, at least mostly, collisionless.

At the cosmological scale, we have evidence for dark matter from the cosmic mi-
crowave background (CMB) radiation. By studying the CMB angular power spec-
trum in combination with data from Big Bang Nucleosynthesis, one can determine
both the density of normal matter (baryons) and the density of dark matter. The
latest results from the Planck Satellite [22] give a dark matter density of Qpysh? =
0.118740.0017 while the density of baryons is given by Q,h% = 0.022£0.00028. We

define 2 by
) 3H?
Q= crit — S~
Perit Pt G

where p.it is the critical density which leads to a flat Universe, h = H/(100km/s/Mpc)

(1.2.11)

and H is the Hubble constant. We know that o, ~ 1 [22]; therefore dark matter
makes up about 26% of the energy density of the Universe, five times more than the

density of SM baryons.

Having established that dark matter exists, the next question is to determine
what it is. Historically, the two main proposed categories have been particulate
dark matter, often in the form of weakly interacting massive particles (WIMPS),
and massive astrophysical compact halo objects (MACHOS). MACHOS are objects
like brown dwarfs or black holes that are made out baryons, but would not be
visible like stars. They are now disfavoured as an explanation of dark matter both
because the inferred density of baryons is not large enough to support a sufficient
density of these objects, and from limits set by micro-lensing surveys which show
that MACHOS can not make up the majority of dark matter [23,24]. The most

likely scenario is then that dark matter is made up of weakly interacting particles.

For a particle to be a dark matter candidate, it has to be massive, stable on
cosmological time scales and not interact too strongly with baryons or photons. In

the Standard Model, the only possible dark matter candidate is the neutrino. As we
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will discuss in detail later, its low mass would lead to a very different distribution of
the size and mass of dark matter halos than the observed one. Therefore, there are
no viable DM candidates in the SM. This is one of the most compelling reasons to
investigate BSM physics. We will now investigate what cosmological observations
can tell us about the nature of dark matter, and how to incorporate this information

into particle physics models.

A viable particle physics model of DM needs to be able to reproduce the observed
DM relic density. Different production mechanisms have been discussed in the lit-
erature to achieve this (see for example [25]). Here we will focus on the standard
thermal freeze-out mechanism which is the most common production mechanism.
The discussion follows [26] and [5]. Consider a stable dark matter particle, y, with
mass, m, that in the early Universe is in thermal equilibrium with the SM. As y is
stable, the only way to change the number of x particles is through pair production
or annihilation. As long as the interaction rate of these processes is larger than the
expansion rate given by the Hubble parameter H, these interactions can keep the
particles in thermal equilibrium. As the Universe expands the Hubble parameter
and the interaction rate decreases. When the interaction rate becomes smaller than
the Hubble rate, we get chemical decoupling and freeze-out of dark matter. The
density becomes too small for the annihilations effectively to change the particle
number any more. After freeze-out, the number of dark matter particles will remain
constant and the number density will decrease with the normal expansion of the

Universe. To study this in detail, we consider the annihilation rate, given by
[y = (00)Neq, (1.2.12)

where (ov) is the thermally averaged annihilation cross-section and ne is the number
density of dark matter while in thermal equilibrium. The thermally averaged cross-
section can be calculated from the normal 2<+2 scattering cross-section by following
the procedure in [27]. This cross-section together with the mass of the DM particles,

are the only particle physics ingredients in the calculation of the relic density.

The mathematical framework to determine the number density of DM particles

during the evolution of the Universe, taking annihilations into account, is the Boltz-
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mann equation formalism. The Boltzmann equation for a simple DM with only pair

annihilation is given by
i+ 3Hn = —(ov) (n> —nl), (1.2.13)

where n is the number density of DM particles. The 3Hn term includes the effect of
the expanding Universe, and the term with the annihilation cross-section describes
the creation and annihilation of DM particles. The evolution with temperature, T,

of the Hubble constant is given by

H(T) = 1.6791/2%, (1.2.14)
where g, is the number of relativistic degrees of freedom and M, is the Planck mass.
The equilibrium number density can easily be determined from standard statistical
physics and it is neq o< 7% when the DM is relativistic and neq o< (Mp MT)%G*T/ Mp

when non-relativistic. If we rewrite the equation using y = n/s and « = m/T, where

s is the entropy density, we get

dy — —xz{ov)s

i~ Hm) (v* — y2,)- (1.2.15)

We can see that when (ov) > H, y and hence the number density are pushed to
their thermal equilibrium value, and that when (ov) < H, y remains constant with
time. A constant y gives a number density which decreases with 7% in the same way
as the density for normal matter does.

In general, the Boltzmann equation has to be solved numerically, but a good
approximation of the final density for the case of s-wave annihilation, when (ov) is
independent of v, can be found (see e.g. [5,28]),

z;GeV !
(Gus/\/Gx) Mp1 (ov)

xy corresponds to the freeze-out temperature and is given by

Qpa h? =1.07 x 10° (1.2.16)

9

Gx

9

Gx

1
xry = log (0.038 Mpim (01})) - gloglog <0.038 Mpim <0v>> . (1.2.17)

For masses around those of the SM an annihilation cross-section of order

(ov) = 2.3 x 10%%cm?®/s = 2 x 1077GeV 2 (1.2.18)
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will give the observed relic density. This is called the WIMP miracle as weak scale
masses and couplings give the correct relic density. In addition to the hierarchy
problem discussed below, this is one of the strongest hints of new physics at the
weak scale. It should be noted that completely different mass scales can give rise to
viable DM scenarios with the correct relic density. Both models with axions, with
masses as low as m, = 6 x 107%V (see e.g [29]), and models with WIMPZILLAS,

with masses as high as 106 GeV [26], can give the correct relic density.

We can learn more about the nature of dark matter if in addition to the density,
we consider the mass distribution of dark matter halos. The information about the
size and abundance of DM halos is contained in the dark matter halo mass function,

n(M), which determines the number of halos of a certain mass

dN = n(M)dM. (1.2.19)

To predict the present-day halo mass function we need an initial distribution at
early times and must follow the growth of DM halos over time due to gravitational
interactions. The initial distribution can be measured from the CMB! and is found
to have a power spectrum P(k) o< k™, where k is the wave-number and the spectral
index n = 0.9603 £ 0.0073 [22]. This power spectrum agrees very well with what is
predicted in many inflation models. We then need to determine how the halo mass
function has evolved until today. One can make some progress analytically, e.g. [30],

but the current best predictions come from N-body simulations [31].

The particle physics input into these simulations are the mass and the inter-
actions of DM with itself and with SM particles. Light DM particles have large
free-streaming lengths, which leads to a washing away of small scale structure. This
was one of the early success of the N-body simulation research programme: it al-
lowed the exclusion of neutrinos as DM due to their small mass [32]. Since light

particles will remain relativistic today, they are called hot dark matter (HDM). Most

'We do not measure the exact initial distribution of the Power Spectrum at the CMB, but at
the early time of the CMB we can safely use a linearised theory to calculate the changes from the

initial distribution. This gives us good control on the initial distribution from CMB data.
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models with HDM are excluded?. Particles with masses at the weak scale would be
very non-relativistic today and are called cold dark matter (CDM). Due to their
heavier mass and lower thermal velocities, these models have short free streaming
lengths, and are in agreement with observations of large-scale structure. Figure 1.3

shows the dark matter power spectrum for different dark matter models.
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Figure 1.3: Dark matter power spectrum for different classes of dark matter models
from [5]. The plot shows the power of fluctuations of a given size (A). We see that

hot dark matter has a strong cut-off for small wavelengths, A due to free streaming.

The WIMP miracle, together with the good experimental agreement with large
scale structure, has made CDM models the leading candidates for dark matter. In
addition to the number and mass of dark matter halos, we can also learn about dark
matter from the density profile and sub-structure of DM halos. We will explore
this in Chapter 5 where we will see that there are some observations that indicate
that either warm dark matter or dark matter with self-interactions fits the data on
dwarf galaxy scales better than standard cold dark matter. The main observational
problem with all of these considerations is of course that we cannot see the DM

halos directly. Most of the information we have comes from the visible baryons

2 Axions, even if they are very light, still behave as cold dark matter due their out-of-equilibrium

production [29].
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embedded in the DM halos. There has been a lot of progress in determining how
the visible galaxy relates to the dark halos, and how baryonic physics affects the

halo, see e.g. [33] and references therein.

In addition to cosmological experiments, there are three main experimental av-
enues open to explore dark matter: direct detection, indirect detection and collider
experiments. These processes all depend on the same pair annihilation of dark mat-
ter into SM fermions process. In direct detection, one looks for recoil energy from
collisions between dark matter particles and heavy nuclei, see e.g. [26,34]. There
has been tremendous progress in sensitivity over the last decade, but no convincing
signals have been found. The current and projected future limits can be seen in
Figure 1.4. For WIMP masses larger than 5-10 GeV, the limits are very strong
and future experiments will be able to cover the entire parameter space above the
neutrino coherent scattering limit. These DM limits are already very constraining

for many models.
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Figure 1.4: Current and future limits from direct detection experiments from [35]

adapted from [34]. The current best limits are from the LUX(2013) experiment.

In indirect detection, one looks for high energy photons produced by high energy
SM particles after the dark matter annihilates, see e.g. [26,36]. The annihilation
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signal is very sensitive to the density of dark matter, so the most promising place
to look would be towards the galactic centre where the DM density is larger. Using
gamma rays from the galactic centre, the Fermi-Lat satellite can set limits that
are getting close to the annihilation cross-sections needed to reproduce the relic
density [37]. In addition to setting limits, using the Fermi-Lat data one can see
an excess towards the galactic centre [38] at energies around 1-3 GeV. This excess
can be explained by dark matter between 10-100 GeV annihilating to various SM
particles with a cross-section around the cross-section that gives the correct relic
density, see e.g. [39].

To look for dark matter at colliders, one would search for signals with missing
energy recoiling against visible objects. Collider search for mono-jets plus missing
energy can give competitive constraints in the low dark matter mass region [40—
42]. In this region direct detection experiments lose sensitivity as the recoil energy
becomes too small. We will look more at collider searches for dark matter in Chapter

6.

In BSM particle physics, there is a zoo of proposed dark matter candidates. A
small selection includes sterile neutrinos, axions, various supersymmetric partners,
composite objects in composite Higgs theories and Kaluza-Klein excitations in extra
dimensional models. The main DM candidates we will investigate in this thesis come
from BSM extensions with hidden sectors that include either scalars, fermions or
vector bosons that couple to the SM via a Higgs portal coupling. Common to all of
these models is that they simultaneously try to address multiple problems with the
SM, not only provide a DM candidate. If one is mainly interested in dark matter,
there are many simple models which include a DM candidate. The simplest such
model comes from adding a real scalar singlet, s, with a Z; symmetry [43]. The
discrete Z5 symmetry prevents the decay of s. The dark part of the Lagrangian for
this model is

1

1
Loy = 5(8“5)2 B §m532 —Ap (HTH) s, (1.2.20)

where H is the SM Higgs doublet. This model is still experimentally viable [44]. One
can also have fairly simple dark matter models where the DM particle is coupled

to a mediator which is then coupled to the SM. One example of these models has
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fermionic dark matter, x, and a scalar mediator, ¢.

1 1 o _ _
ACDM = 5(8M¢)2 - §m¢¢2 + ZX@X — My XX — 9x XX¢ (1221)
The mediator could then in general couple to the SM with any or all of following

couplings
Linteraction = <m W W™ + 52, 2" = K f f) ¢+ No? (HUH), (1.2.22)
!

where the fs are the SM fermions and W+, Z the SM gauge bosons. These models
are phenomenologically viable, and in Chapter 6 we consider them as simplified

models for collider searches for DM.

1.2.2 Matter-Antimatter Asymmetry

When we look out into the the Universe, we see a lot of baryons, but no significant
amounts of antibaryons. The trace amounts of antimatter detected in satellite exper-
iments are consistent with all the antimatter in our neighbourhood being produced
by collisions of cosmic rays or in astrophysical sources. One possible explanation
of this asymmetry could be that baryons and antibaryons somehow separated in
the Universe, and large regions of antimatter exist. The problem with this scenario
is that the boundaries between matter and antimatter would be visible due to ra-
diation from annihilations. No such boundaries have been discovered [45], which
leads us to conclude that the entire observed density in baryons is due to a baryon

antibaryon asymmetry. Using data from CMB [46] we find an asymmetry of

ny — Ng

m = ~6x 10710, (1.2.23)

Ny
where ny, n and n, are the number densities of baryons, antibaryons and photons
respectively. In the thermal plasma of the very early Universe one would expect equal
amounts of matter and antimatter. To produce the observed baryon asymmetry we

need a process for baryogenesis that fulfils the Sakharov conditions [47]. They are:
1. Baryon number (B) violation

2. Charge conjugation (C) and charge conjugation and parity (CP) violation
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3. Out of thermal equilibrium processes

To produce a baryon asymmetry, a process that violates baryon number conservation
is clearly needed. Even if such a process exists, the charged conjugated process will
also exist and have the same rate unless C and CP are violated. These conditions
together are still not enough to generate an asymmetry in thermal equilibrium as

any asymmetry will just be washed away by the time-reversed process.

We will start by discussing why baryogenesis is not possible in the SM, before
discussing three possible mechanisms for generating an asymmetry in BSM models.
Perturbatively, baryon number is a symmetry of the SM, but it can be broken by
non-perturbative effects since it is anomalous. Transitions, called Sphalerons, in-
volving transitions between different SU(2) vacua with differing baryon and lepton
(L) numbers [48], exist in the SM, and violate B. The SM therefore fulfils the first
Sakharov condition. In addition, there is a C' and C'P violation in the quark sector?,
but it is many orders of magnitude too small to explain the observed baryon asym-
metry [49,50]. The electroweak phase transition could have provided the required
out-of-thermal-equilibrium processes if it was a first order phase transition. To get
a first order phase transition, the Higgs mass needs to be significantly smaller than
the measured 125 Gev [51]. The SM therefore falls short on two out of the three
Sakharov conditions, providing another very strong argument for the existence of

BSM physics.

There are three main strategies in BSM models to achieve successful baryogenesis:

e Electroweak Baryogenesis

In electroweak baryogenesis the baryon asymmetry is generated during the

electroweak phase transition [51,52]. If the phase transition is first-order it will
proceed via bubble nucleation. The bubbles spread out with out-of-equilibrium
CP-violating processes near the bubble walls with B violation provided by the
sphaleron processes. For the asymmetry not to be washed away behind the

bubble wall, the phase transition needs to be strongly first-order. To generate

3 And potentially in the lepton sector where the CP phase § is not constrained.
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the observed baryon asymmetry, the problems with SM electroweak baryoge-
nesis need to be addressed. A first-order phase transition requires changes
to the scalar potential of the Higgs, and new sources of CP violation require
new particles and interactions. Electroweak baryogenesis can be successfully

implemented for example in the two Higgs doublet model [53].

e Grand Unified Baryogenesis

Grand unified theories (GUT), based on unifying the SU(3)xSU(2)xU(1)
group structure to, for example, SU(5) or SO(10), include gauge bosons that

couple leptons to quarks and therefore violate baryon number. GUT models
also include many new sources of CP violation. The unification occurs at the
energy scale where, due to RG-running, the SM coupling constants become
equal. In most models this happens at scales of 10*® — 106 GeV. The decay
of the heavy, B-violating gauge bosons could happen out of thermal equilib-
rium, thereby fulfilling all of the Sakharov conditions [54]. One of the main
problems with GUT baryogenesis is that GUTs also predict a density of mag-
netic monopoles or gravitinos that would overclose the Universe. This can be
solved if inflation happens after GUT symmetry-breaking as inflation would
then dilute away all the monopoles. Unfortunately for GUT baryogenesis, this

would also dilute away the baryon asymmetry.

e Leptogenesis

Sphaleron processes break both B and L, but not B — L as it is not anomalous

in the SM. Therefore if an asymmetry in L existed before the time of the

electroweak phase transition, it would be transferred into a baryon asymmetry

B=-21L. (1.2.24)
25

Together with a processes to generate a lepton asymmetry this gives a viable
process for he generation of the baryon asymmetry, called leptogenesis [55].
A lepton asymmetry can be produced by the decay of heavy right-handed

neutrinos.

We will now consider leptogenesis in more detail. The standard leptogenesis sce-

nario is based on the Type 1 see-saw model for neutrino masses with the following
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Lagrangian:
— 1. — N
,C] = ,CSM + ZNRZaNRl - (51\41]\[1%11\73z + GQbYaiNRiégHb + hC) N (1225)

where NN; is a right-handed Majorana neutrino with mass M and Y is the Yukawa
coupling matrix for the neutrinos. In addition to successfully implement leptogen-
esis this model can provide an explanation for the small observed neutrino masses
without extremely small Yukawa couplings via the see-saw mechanism. If we only
consider one generation of neutrinos, we will, after electroweak symmetry breaking,

get a mass matrix for the active and sterile neutrino of the following form

M, = 0 yiH) , (1.2.26)
y(H) M
where y is the Yukawa coupling and (H) the vev of the Higgs field. The eigenvalues
of this matrix give a mass for the active neutrino of
2 [7)2
m, = —%. (1.2.27)
With Yukawa couplings of order one and M ~ 10, we can get sub-eV scale mass

for the neutrinos in agreement with experiment without small couplings.

In this model leptogenesis proceeds by producing a lepton asymmetry by the out-
of-equilibrium decays of the heavy right-handed neutrinos. The Yukawa coupling
matrix can have complex phases leading to CP-violation, which together with the
lepton number violating Majorana mass term and the electroweak sphalerons will
generate a baryon asymmetry. To calculate the resulting baryon asymmetry we, use
the Boltzmann formalism as we did for dark matter, see e.g. [56,57]. One needs the
cross-sections for the scattering, decay and back reaction of right-handed neutrinos.
In a simple version where we consider only one generation of right-handed neutrinos
giving rise to the lepton asymmetry, we can find a lower bound on the right-handed

neutrino mass to achieve the observed baryon asymmetry [58]
M > 10 GeV. (1.2.28)

One way to lower this bound significantly is to consider two right-handed neutrinos

with almost degenerate mass. Lowering the bound on the right-handed neutrinos
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to the TeV scales requires significant fine-tuning. Another suggestion to achieve
leptogenesis with GeV scale right-handed neutrinos will be explored in detail in

Chapter 3.

1.2.3 Stability of the Higgs Potential

One of the more striking features of quantum field theory (QFT) is the running of the
coupling constants of the theory with energy or distance. If we consider measuring
the electric coupling by measuring the strength of the electro-magnetic interaction
at two distance scales r; and o with 1 > 79, we will find a smaller value of the
coupling constant, e, at the larger distance. This is due to the electron-positron
pairs in the vacuum screening the charge. This change in coupling constants with

scale takes place in all QFTs.

The evolution of coupling constants with energy is related to renormalisation. To
compare QFT calculations with experiment, we need to renormalise the theory. We
fix the coupling constants at a chosen energy p to match the experimentally mea-
sured value. Physical results should be independent of our choice of scale. We can
therefore write down differential equations that capture the change of the coupling

constants with p called renormalisation group equations (RGEs).

Consider a theory with couplings g; for ¢ = 1,...,n. The RGE equation for g; is

given by
dg1
dlogu

= /Bgl(g17g27"'7gn)7 (1229)

where the S-function is a function of all the coupling constants of the theory. All the
other g;s have similar differential equations, and together they form a set of coupled
differential equations. The S-function appears at the one-loop order, so at tree-level
it vanishes. To calculate S-functions one can use the Callan-Symanzik equation. Let
G™(zy,...,2,) be a connected, renormalised n-point Green’s function in a theory

with fields ¢ and one coupling constant g. The Callan-Symanzik equation is then

0 0
(ua—M + B(g)a—g + m(g)) G (21, ... 2,) =0, (1.2.30)

where [ is the same function as above and 7(g) is the anomalous dimension of

the ¢ field. By choosing suitable Green’s functions calculated at one loop, one can
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calculate both # and v at one loop. Once  and v are known we can evolve the

couplings constants to any required energy scale.

As shown in Figure 1.2, the RG-running in the SM has been verified experimen-
tally. For the gauge couplings in the SM there are two different patterns of evo-
lution depending on the sign of the S-function. Quantum electrodynamics (QED)
has a positive S-function which leads to larger values of e as the energy increases,
while QCD has a negative S-function. This results in confinement at low energies
and asymptotic freedom at large energies. The coupling constant of the weak SU(2)
group also has a negative S-function, but does not confine due to spontaneous break-
ing of electroweak symmetry. With the measurement of the Higgs mass at the LHC,
we now know all the parameters of the SM and can therefore use the RG-equations
to evolve the SM up in energy to discover until what energy scale it is valid. At
energy scales of M, we know that quantum gravity effects become important, but

any problems with the SM before that would be evidence of new physics.

For the SM to be valid up to the Planck scale, it should not have Landau poles
and the scalar potential should be stable. A Landau pole occurs when a coupling
constant becomes infinite at a finite energy. This indicates that either new physics is
needed to tame the growth in the coupling constant, or that the theory completely
changes character in the same way as when QCD confines.

For the potential to be stable, the electroweak vacuum should be the minimum
of the potential. The scalar potential, V(H), determines the vacuum state of the

theory by its minimum. In the SM, the scalar potential in the unitary gauge is given

by

2 Ak
V(h) = —%hz + #h‘*, (1.2.31)

where we consider Ay (h) to be a function of the field value, in order to take into
account the running of the coupling when we go to large field values. The negative
mass squared gives a minimum away from the origin, and as long as Ay (h) is positive
the potential is stable for large values of h. Therefore, for the Higgs potential to

remain stable until the Planck scale we need Ay (h) > 0 for h < M,,. The one-loop
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RGE for Ay in the MS-bar renormalisation scheme is given by

d\y 9
47)? = —6yt+ 2402 + Ay [ 1202 — =% — 942
(4m) oz /1 v + 24N + A (1247 — 291 — 995
27 4 9 2 2 9 4
= — Z 1.2.32
+20091 + 209291 + 8927 ( 3 )

where 1, is the top Yukawa coupling, ¢, is the EM gauge coupling and g5 is the weak
SU(2) coupling. As the top Yukawa coupling is the largest of all the couplings, it
dominates the running. The negative sign of the top Yukawa term will drive the

Higgs coupling towards zero, potentially driving it negative.

The running of the coupling constants in the SM has now been calculated at
next-to-next-to-leading order (NNLO) in [59]. With the currently measured values
of the Higgs mass and the top mass, the scalar potential seems to be in the interest-
ing metastable regime, just in between stability and instability. In the metastable
regime, the electroweak vacuum is a local minimum of the theory, but there is a
lower minimum at large field values of order 10° GeV. Changing the top mass by

about 30 from its central value could make the potential stable.

A metastable vacuum could still be a problem for the theory. With the scale of
the instability found for the current best measured values of the Higgs and top mass,
the metastable vacuum would have a lifetime long enough not to be excluded [59].
For this to be a viable scenario, one still would need to explain why the Universe
ended up in the metastable vacuum in the first place. There is also a question
about how the the Higgs field behaved during inflation. Potentially, both quantum
and thermal fluctuations could make a Universe with a metastable Higgs non-viable
[60-62]. If the energy scale during inflation is too large, inflation would drive the
Universe into the non-electroweak vacuum and the SM would need an extension to
survive. We will present an extension to the SM that can help stabilise the Higgs

potential in Chapter 4.

1.2.4 Hierarchy Problem

For the last decades the main theoretical question in the SM has been the naturalness

or hierarchy problem. As discovered in 1978 [63], the mass of a scalar field is very
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sensitive to any higher energy scales in the theory due to large quantum corrections.
This sensitivity would tend to push the mass of the scalar fields up to the highest
energy scale in the theory. The Higgs field in the SM is a scalar field, and as such
its mass would also be sensitive to large quantum corrections due to new physics
at high scales. In this section, we will first discuss the hierarchy problem in more

detail and then consider some possible solutions to it.

We will start by considering the quantum corrections to the Higgs mass, m2,
from the one loop diagram with an internal top quark. We will start by using a
cut-off scale, A, to regularise the loop integral. In this regularisation scheme, the

corrections are given by

Am3 = _Ty? (A2 +m? log (:;—Z) - m?) , (1.2.33)
where 3, is the top-Yukawa coupling. The corrections are proportional to the
Yukawa-coupling, which is why the top quark gives the largest contribution of the
SM fermions, and thus we will only consider this contribution. We see that the
quantum corrections are quadratically divergent. The observable or renormalised

Higgs mass will then be given by a sum of the bare mass mg and the corrections

2
m; =mg + Am; =mj — %A? (1.2.34)

From LHC experiments, we know that the Higgs has a mass of m; = 125 GeV. If
we now interpret the cut-off A as a physical scale and take it to be the Planck scale
M, =~ 10" GeV, we would need an enormous amount of fine-tuning between mg, A
and y,; to achieve the observed Higgs mass. Interpreting the cut-off as physical could
mean interpreting it as a maximum momentum or equivalently an inverse lattice
spacing. The Planck scale is where quantum gravity effects become important. We
know that a theory of quantum gravity is needed at this scale, which is why it is
often used to estimate the fine-tuning in the SM, but as we will see below this is not

the most useful way of thinking about the hierarchy problem.

The first question to ask is why the Higgs field has this problem, but none of the
SM fermions do. If we calculate the one-loop correction to the fermion mass, my,

we find

dmg o< mylog (A) . (1.2.35)

mpy
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Even for a large A this does not introduce fine-tuning as the mass correction is
proportional to the mass. This is because fermion masses are technically natural
[64]. If a symmetry of the theory is enhanced when a parameter is set to zero, the
parameter is technically natural and can naturally be small without any fine-tuning.
Fermions have chiral symmetry when they are massless which is why fermion masses
are protected from large quantum corrections, and why dmy oc my. Scalars have no
such protection as the symmetries of the SM would not increase when we set the

scalar mass to zero.*

If, instead of using a cut-off regulator, we were to calculate the quantum correc-

tions to the Higgs mass using dimensional regularisation, we would find

2

02,02 2
Y (Z —vg + log(4m) — log%) . (1.2.36)

472

2 o
Ath

The corrections are still divergent, but the 1/¢ pole corresponds to a logarithmic
divergence and not to the quadratic divergence we saw in the cut-off regularisa-
tion scheme. Since physics should be independent of regularisation and subtraction
schemes, we will define the hierarchy problem in terms of real physical threshold ef-
fects, rather than in terms of quadratic divergences. In both regularisation schemes,
we find a contribution proportional to m?, which is the threshold contribution. The
standard quadratic divergences signal that these threshold corrections will occur,
but are not a problem by themselves. This shows that dimensional regularisation
does not solve the problem, even if there are no quadratic divergences. The thresh-
old contribution from the top quark is not large enough to require much fine tuning,
but new particles could give large contributions. Any new massive particle with
mass, M, coupling to the Higgs with coupling y will give a threshold contribution
of order y?M?. We therefore say that a theory has a hierarchy problem if it has an

elementary scalar with mass m coupled to a heavy particle with y?M? > m?.

Another way to understand the same phenomenon is to consider the RG equation

for a scalar mass parameter in a simple model with only one fermion with mass, M,

4In Chapter 2 we will discuss scale invariance, which could represent an increased symmetry

of the SM with mj; = 0.
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coupled to the scalar with a Yukawa coupling, y. The RG equation is given by

8 2
(4m)2 b = _16M%2 + 20m2, (1.2.37)

dlog i

where \;, is the scalar quartic coupling. We see that the change in Higgs mass

induced by the running from pg to py, when M > my, is of the order of

16 H1
Am? ~ —— > M?log . 1.2.38
h (47T)2y g Lo ( )

As long as the RG equations are evolved over a significant range of energies, this
will require a large fine-tuning to achieve m; < M, leading to the same conclusion

as above.?

An important way to think about the hierarchy problem is to consider the SM
as a low energy effective field theory (EFT) valid up to a cut-off scale A. We would
then expect contributions to the squared Higgs mass of order A? as the cut-off
corresponds to a heavy particle we have integrated out. Following [65], we will show
an example which illustrates both that thinking about thresholds is a more useful
way of conceptualising the hierarchy problem, and that some care is needed when
thinking about effective field theories and the cut-off contributions to the Higgs
mass. Let us consider a simple theory with a scalar field ¢ and two fermions xy and

1 with the following Lagrangian

L= L0468 — Smod? X~ m)X (D —ma ) — gy 06 — g0 P06 (1.2:39)
We will consider the situation where the mass of 1, m, is much larger than the
masses of ¢ and x, respectively m, and m,. Comparing this to the SM, we think of
¢ as the Higgs, x as the top quark and 1) as a new unobserved particle with a large
mass. At energy scales below m,, we can integrate 1 out and consider an effective
field theory for ¢ and x. We can estimate the contribution to the scalar mass in this

EFT by

2
A

m; =mg + Amj = mj — 49—;_(2 (A2 +m3 log (m—) - mi) (1.2.40)
X

SThere is a factor of two difference between Equation (1.2.38) and what one would expect from

(1.2.36) as in the SM the top Yukawa interaction is %hft.



1.2. Beyond the Standard Model 28

where we would now treat A = m, as a physical scale, the cut-off of the EFT.
Using this procedure, we would then consider the theory to be fine-tuned if mi <
gimi Since we know the UV-completion of this EFT, we can calculate the quantum

corrections in the full theory

9 ( 2 2 ( A? ) 2
5 (Al +mylog | — | —my |, (1.2.41)
272 m;,

where A; is a cut-off regulator that we will take to infinity as there are no other
physical scales in the theory. All the divergent pieces are absorbed into the bare
coupling as usual during renormalisation, and the logarithmically divergent terms
cause the running of the coupling constants. After renormalisation we are still left

with mass threshold effects

2

2
2 _ Iy 2 9y 9

As we can see from this example it is not the presence of the quadratic divergences
in the theory, but the mass thresholds that give a hierarchy problem. Another
important aspect is that the magnitude of the quantum corrections due to 1 are
not given by g, and my as estimated when considering the EFT, but by g, and
my. This means that the theory is unnatural or fine-tuned if gjm3, > m3. Coming
back to the SM, we can see that solutions of the hierarchy problem do not require
top partners [65]. The new threshold effects that would destabilise the Higgs do not

need to have anything to do with the top quark.

The hierarchy problem is therefore only a problem if there are any new large
scales. The Standard Model by itself is not unnatural since there are no large scales
that could destabilise the Higgs mass. If we wanted to extend the SM with, for
example, a grand unified theory without supersymmetry, we would get a hierar-
chy problem, because the large GUT scales couple directly to the Higgs with large
couplings. The hierarchy problem is therefore best thought of as a problem which
proposed BSM theories need to avoid. Any proposed theory that includes large

threshold corrections to the Higgs mass would be unnatural and require fine-tuning.
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We characterise the hierarchy problem as one of the main theoretical challenges in
particle physics since we know that BSM physics is needed and most of the proposed

theories include very large scales coupled to the Higgs with large couplings.

At the Planck scale quantum gravity effects have to become important. If quan-
tum gravity introduces particles with Planck scale masses, e.g micro black holes,
that couple strongly to the Higgs, it will lead to extreme amounts of fine tuning.
Since the theory of quantum gravity is unknown, it is impossible to predict how
gravitational effects would change the Higgs mass. If quantum gravity does not give
large contributions to the Higgs mass and there were no other new heavy thresholds
in the theory, we will not have a hierarchy problem. This could be characterised as a
UV solution to the naturalness problem [66]. We will discuss this possibility further
in Chapter 2 in the context of classical scale invariance. Most proposed solutions
to the hierarchy problem would instead be characterised as solving the problem in
the IR. These theories either do not have elementary scalar fields, or they impose
new symmetries that cancel all the quantum corrections to the Higgs mass above
the scale of the symmetry. The two main frameworks to address the naturalness
problem in the IR are supersymmetry and composite Higgs models. We will now

briefly describe both of these approaches.

Supersymmetry (SUSY) refers to models where Lorentz invariance is extended
to include a symmetry that transforms bosons to fermions and vice versa. This
is the only non-trivial way to extend the Lorentz symmetry of the SM. For an in-
troduction to supersymmetry see [67] and references therein. Supersymmetry gives
every particle of the SM a supersymmetric partner with opposite spin statistics,
identical masses and quantum numbers. The symmetry also makes the couplings of
these new particles match the observed couplings in the SM so that all quadratic
divergences to the Higgs mass would vanish. The top quark would have a scalar
partner, the stop, which would exactly cancel the top contribution. Since we have
not observed any stops or any other supersymmetric partners, supersymmetry would
have to be broken. It is possible to break supersymmetry softly not to reintroduce
the quadratic divergences. If we consider mass threshold effects instead of quadratic

divergences as the source of the hierarchy problem, softly broken SUSY is natu-
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ral since any new heavy particle would have a partner that would cancel out the
threshold effect. SUSY can only solve the naturalness problem if the scale of SUSY
breaking is close to the EW scale. This is often called the little hierarchy problem.
After not discovering any signs of SUSY at the first run of the LHC, many minimal
SUSY models are now under pressure [68,69].

The hierarchy problem arose because the SM Higgs boson is an elementary scalar
field. In composite Higgs models, the Higgs is instead a bound state of some new
fermions, ¥ and W, charged under a new confining gauge group. This solves the
hierarchy problem, since the integral used to calculate the Higgs mass quantum
corrections would be cut-off at the scale of confinement, A, for the new gauge group.
Above this scale there are no scalars and therefore no hierarchy problem. This
solution to the hierarchy problem, was first proposed in the Technicolor framework
in 1979 [63,70]. Many approaches have adopted this framework, including those
where the Higgs is a pseudo-Goldstone boson, see e.g [71]. As with supersymmetry,
we see that we have a little hierarchy problem, as the corrections to the squared
Higgs mass would be driven by A2. If the Higgs is indeed a composite particle, we
would expect to see a whole host of other composite particles as in QCD. None of
these particles have been discovered, driving the scale of confinement higher and

making the little hierarchy problem worse.

There have been other suggested solutions to the hierarchy problem, but an
almost universal feature of all these solutions is that they require new physics at the
TeV scale not to be very fine-tuned. Of course, as mentioned above, the hierarchy
problem itself does not need to be solved at the TeV scale, but if we want to answer
the questions of dark matter, baryogenesis etc. without extremely weakly coupled

physics, we need particles with masses of TeV or below.

1.3 Outline of the Thesis

The main goal of this thesis is to investigate BSM extensions to the SM that can
address the questions about the Standard Model discussed in this introduction. We

will study theoretical model-building aspects and both collider and cosmological
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phenomenology of hidden sector models. These models extend the SM with a new
gauge group which is mainly coupled to the SM via the Higgs portal coupling. In
Chapter 2 we will introduce classical scale invariance (CSI) as a model building
framework for BSM physics. We will see that all scales in such models will have to
be dynamically generated, and that minimal models with few new parameters are
viable and can provide solutions to the SM problems. Chapter 2 also includes an

overview of classically scale-invariant models studied in the literature.

In Chapter 3 we will study a U(1)g_, CSI extension of the SM in detail. The
results presented in this chapter are based on [1]. One appealing feature of this
model is that it includes right-handed neutrinos and can explain the active neu-
trino masses via the see-saw mechanism. The main focus of Chapter 3 will be to
implement leptogenesis via neutrino oscillations as suggested in [72] in a classically
scale-invariant framework. We will show that this model can successfully generate
enough matter-antimatter asymmetry and investigate the available parameter space

for the model.

We move on to discussing two of the other open questions in the SM in Chapter 4,
namely dark matter and the stability of the Higgs potential. In this chapter, based
on [2], we investigate U(1), U(1)p_, and SU(2) CSI extension to the SM. First
we determine the parameter space in which these models can stabilise the Higgs
potential. Without adding extra field content, it is only possible in the SU(2) model
to stabilise the Higgs potential and not to be excluded by LHC constraints. We
therefore also include models with an extra scalar singlet. This scalar singlet can
both stabilise the Higgs potential and be a good and viable dark matter candidate.
The gauge bosons of the SU(2) theory are also good dark matter candidates. We
investigate the available parameter space for all the models where the Higgs potential

is stabilised and we get the correct relic density for dark matter.

In Chapter 5 we consider an SU(2) extension of the SM which can support mag-
netic monopoles based on [3]. A CSI theory with monopoles is interesting as it
gives a parametrically larger scale for the mass of the monopoles than the vacuum
expectation value of the scalar field. We want to determine if magnetic monopoles

in a hidden sector can make up dark matter, and if such models are cosmologi-
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cally viable. Models with magnetic monopoles will also include other dark matter
candidates and dark radiation. We determine the viable parameter space for the
SU(2) SM extension. Due to an unbroken U(1) gauge group, the model has long
range dark matter self-interactions which can help to explain the too-big-too-fail and

core-vs-cusp problems with the standard cold collisionless dark matter paradigm.

Having studied the cosmological consequences of hidden sector models coupled to
the Standard Model via the Higgs portal, in Chapter 6, based on [4], we will consider
what we can learn about these models at the LHC and future colliders. Our main
goal will be to study a simplified dark matter model in the two jets plus missing
energy final state. This is the signature of the vector boson fusion production of
the Higgs or another scalar decaying invisibly. We want to determine the expected
reach of the LHC and a future 100 TeV collider, and see if it is possible to learn
about the parameters of the hidden sector. The mass of the mediator between the
dark sector and the SM is one of the most important parameters at colliders, and we
will investigate how well the kinematic information from the two visible jets allows

us to differentiate between models with different mediator masses.



Chapter 2

Classical Scale Invariance

Models with classical scale invariance (CSI) have been introduced to explain the
shortcomings of the SM in a minimal way, without introducing large scales that
would destabilise the Higgs mass. In this chapter, based partly on material from
[1,2], we will discuss how to construct classically scale-invariant BSM models. We
will start by discussing scale invariance and what classical scale invariance entails
in Section 2.1. Then we will discuss the Coleman-Weinberg (CW) mechanism used
to generate scales radiatively in these models in Section 2.2. This will show that
the classically scale-invariant SM needs to be extended with extra gauge groups or
field content to be phenomenologically viable. We will present a minimal extension

to the SM, before discussing a wide range of CSI models in Section 2.3.

2.1 Classical Scale Invariance

We will start by considering scale invariance in quantum field theory. Scale trans-

formations transform the coordinates, x, as
r— 2 =exp(e)r, (2.1.1)

where € is a scaling parameter. Scale transformations form an Abelian group with

elements U(€). They act on the fields, ®(x), of the theory as
/ 1 0
O — ' =U(e)®(x)U(e) = P(x) — ¢ (dq, + xua—) d(z), (2.1.2)
Ly

33
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where dg is the scaling dimension of the field and the last equality is for infinitesimal
€. In the free theory scalars have scaling dimension dy = 1, and fermions have
dy = 3/2. By considering these transformations, we can see that a free massless
theory has a scale-invariant Lagrangian. If we introduce interactions, we find that
the Lagrangian is invariant under scale transformations if the interaction terms are
dimension four. Any dimensionful parameter, as for example a mass term, m?¢?,

will break scale invariance.

A theory invariant under scale transformations will have a conserved Noether
current, D, corresponding to scale transformations. One can find an expression for

this current by using the fact that the symmetric energy momentum tensor can be

defined as

T =2 0 /d%ﬁ, (2.1.3)
0

where g, is the spacetime metric. Under scale transformations d¢,, o g,., this
gives

OyD" =68 o< 69, T" o g, T =T} (2.1.4)

We see that the conservation of the scaling (dilation) current is given by the trace of
the energy momentum tensor. Therefore, for a theory to be scale invariant T% = 0.
Until now, the analysis has been at tree level. One way of including quantum
corrections is to consider the running of the coupling constants, g, of the theory
with energy. A scale transformation would change g — g + €5(g), where 5(g) is the

normal S-function. Including one-loop effects, we find that

9,D" =TF = 5L = 5(9)(%5. (2.1.5)

For a quantum theory to be scale-invariant, the [-functions have to vanish. If the
Lagrangian is scale-invariant but 5(g) # 0, scale invariance is anomalously broken,

and the theory is classically scale-invariant.

It is possible to extend the group of scale transformations to the conformal group
by including special conformal transformations. The distinction between conformal
and scale invariance is not important for what follows, and in 4d scale invariance
most likely implies conformal invariance, see e.g. [73]. In the literature classical scale

invariance is sometimes referred to as classical conformal invariance.
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We now turn to classical scale invariance. A theory is classically scale-invariant
if there are no dimensionful parameters in the Lagrangian, but 5(g) # 0 [74]. This
means that even if scale invariance is not an exact symmetry, it is not broken by an
arbitrary amount. The breaking of scale invariance is only due to the logarithmic
running of coupling constants and the scales this might dynamically generate.! We
can therefore either view classical scale invariance as softly broken scale invariance
or as a classical symmetry which becomes exact in the classical limit of A — 0. When
doing calculations in CSI theories we should not use a cut-off regulator since that
would break scale invariance [75]. We should instead use a regularisation scheme that
does not introduce the UV scale explicitly, for example dimensional regularisation.
We will see that models with classical scale invariance can address the hierarchy

problem, and be interesting BSM theories.

A separate, but related model building approach is to consider theories with an
exact quantum scale invariance of the UV theory, as discussed in [76-78]. Classical
scale invariance of the effective theory below the Planck scale does not necessarily
assume nor is directly related to a hypothesised conformal invariance of the UV em-
bedding of the SM. UV quantum scale invariance is a more ambitious approach that
would make the Higgs mass technically natural and protect it from large quantum
corrections. As a solution of the hierarchy problem, this is similar to Supersymme-
try. Quantum scale invariance requires that all S-functions become zero in the UV,
which requires new physics at the TeV scale. This is because the scale where the
[-functions turn over will give corrections to the Higgs mass, even if there are no

new heavy particles at this scale [76].

2.2 Coleman-Weinberg Mechanism

We will now review the Coleman-Weinberg mechanism [79] for the generation of
scales in a classically massless theory. First, we review the effective action and

potential formalism in Section 2.2.1, and then we calculate the effective potential

1 We will see in detail how scales can be generated in classically scale-invariant theories when

we discuss the Coleman-Weinberg mechanism in Section 2.2.
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for a massless U(1) theory in Section 2.2.2. This will allow us to see how non-
zero vacuum expectation values and masses are generated dynamically by radiative

corrections.

2.2.1 Effective Action and Potential

By defining the effective action and potential, we will be able to study spontaneous
symmetry breaking in a systematic way including quantum corrections. We start
from the generating functional in the path integration formulation of quantum field

theory, which for a theory with a Lagrangian, £, and a source, J(z), is given by

ZlJ) = /Dqsexp [i/d‘*xﬁ[gzﬁ] + an} : (2.2.6)

One can interpret the generating functional as giving the vacuum-to-vacuum transi-
tion amplitude in the presence of a source. From the generating functional, we can

define the energy functional, W{[J],
e = Z1J] = (Q|Q),. (2.2.7)

W [J] corresponds to the vacuum energy in the presence of the source J, and it is
analogous to the Helmholtz free energy in a condensed matter system. We now
define the classical field, ¢, as

_ W] _ Qo))

¥ (S RO

(2.2.8)

The classical field is a weighted average over all field configurations and dependent
on the source J(z). The effective action, I'[¢] is now given by a Legendre transform

of the energy functional:
T = W1 - [ ded(@)ole). (229

We can expand the effective action in two very useful ways. The first is as a series

of 1PI connected Green’s functions?, I',

r-y %/dﬂt;ﬂl...d‘lmnf(")(aﬁl? o ) bet (1) o). (2.2.10)

21PI Green’s Functions are the sum of all Feynman diagrams which remain connected if one

internal line is cut.
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The second expansion is in powers of momentum

I = /d4x {—V(qﬁd) + %(8@61)22(%) + . (2.2.11)

V(¢a) is the effective potential, and at tree level it is equal to the normal scalar

potential. From Equation 2.2.9, we can see that

or [¢cl]
§¢cl

We now want to use this relation to study the symmetry breaking properties of our

= —J(x). (2.2.12)

theory. Symmetry breaking occurs if ¢, develops a non-zero vacuum expectation

value when the source J(x) = 0. Therefore, symmetry breaking would happen if

5P [gbcl}
5¢cl

From Equation (2.2.11), we can see that, if the theory is translationally invariant,

—0. (2.2.13)
¢cl7é0

this reduces to

dv(¢cl)
=0. 2.2.14
APt 4,20 ( )

This shows that the effective potential is very useful for studying the symmetry

breaking properties of a theory. First, the effective potential is calculated to the
desired order in perturbation theory. Then we determine that the symmetry is

broken if the minimum of the effective potential occurs for ¢ # 0.

2.2.2 One Loop Effective Potential for Classically Massless
U(1)

We will now use the technique in the previous chapter to study spontaneous sym-
metry breaking in a classically massless U(1) theory with a complex, charged scalar
field. At tree level, the potential only has one minimum at the origin of field space
which would leave the U(1) symmetry unbroken. We want to determine if radia-
tive corrections can spontaneously break the U(1) symmetry. This theory has the
Lagrangian

1 A
L= (D,®)"(D'®) + T — I\@\‘*, (2.2.15)

where the covariant derivative is given by D, = 0, — ecw A, and the complex scalar

by ® = 1/v/2(¢y + i¢y). F* is the normal field strength tensor, and eqy is the
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O A

Figure 2.1: Feynman diagrams for the one-loop effective potential of scalar QED,

including scalar and gauge boson loops.

gauge coupling. Due to gauge invariance, the effective potential only depends on
5= 91+ b3
In this section, we will calculate the effective potential following the original
calculation in [79] using a cut-off regularisation scheme with cut-off A. In Section
2.3.2 we will see that we get the same results if we use dimensional regularisation

and the MS subtraction scheme.

From Equations 2.2.10 and 2.2.11, we can see that we can calculate the effective
potential as the sum of all 1PI Feynman diagrams with vanishing momentum on the
external lines. We show these Feynman diagrams in Figure 2.1. Calculating and
summing up the infinite number of Feynman diagrams we get
V= %)\ ﬁl—%B(bZ—%C’qf)ﬁﬁ% / (;147];4111 (1 + %ﬁl)% / %m (1 + eg;{ff%’)

(2.2.16)

where B and C are the usual counter-terms needed for renormalisation. We evaluate

the UV divergent integral using a cut-off regularisation with cut-off, A, to get

2 12
cl

1 1 1 A
Vo= Ak 5B — 00+ o S (A6 (2.2.17)
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We then need to renormalise the theory to remove the divergences. To do this, we
impose the following renormalisation conditions

2V _ AV
dez, 7 doy

where the first condition is that of a classically massless theory, and the second

—\ (2.2.18)

M

defines the coupling constant at an arbitrary renormalisation scale, M. Combining
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these conditions with Equation 2.2.18, we get an expression for the one loop effective

potential

2 4 2

V= %A 4 (252#2 + er”;) : (lnﬁcl2 - %5> . (2.2.19)
We now want to investigate the minima of the effective potential to determine if we
get spontaneous symmetry breaking. We will start by considering the pure scalar
¢* theory by setting e, = 0. This gives an effective potential of

I N, 225
V=07t gppm®a\M e~ ) (2.220)

It looks as if this potential could develop a minimum away from the origin, but we

can only achieve this minimum for a non-zero ¢ if

2 32
cl 2
Aln w3 (2.2.21)

This is outside the validity of perturbation theory as each higher order is expected
to come with a factor of Aln¢?/M?, and we must therefore view this minimum
as spurious. It would have been possible to anticipate this conclusion as the only
way to get a minimum, at non-zero values of ¢, is to balance the A\-term with the

A2-term.

For scalar QED, we can get symmetry breaking at perturbative couplings as we

can now balance \ against e!,,. It is the interactions of the scalar field with the

4

ow 1s small, we

gauge bosons that will dynamically break the symmetry. As A ~ e
will for consistency drop the A\? term. Keeping the A and the el -terms gives the

following effective potential

1 4 22
1% A 4 SCew (ln—d - —5> : (2.2.22)

T Y e R S VERNNG
We choose M = (¢), and find that there is a minimum for a non-zero value of ¢ if

33
A= —¢t

87]— cw:

(2.2.23)

Given this relationship between the coupling constants, we get a final effective po-

tential of

3et 2 1
V="l [n L 2 ) 2.2.24
6471-2 Cl(n<¢>2 2) ( )
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This potential only depends on e and (@), not on A. We have traded a dimension-
less coupling constant, A, for a dimensionful parameter (¢). This phenomenon goes
under the name of dimensional transmutation. Using the Coleman-Weinberg mech-
anism, a scale, (¢), has been generated from a theory with no input mass scales. It
is now straightforward to calculate the masses of the particles in the theory. We get

one massive vector boson with mass
M3 = €2, (9)?, (2.2.25)

and one massive Higgs boson with mass

A’V 3e?
M}? = P 8;3 (p)>. (2.2.26)

We notice that the Higgs boson mass is parametrically smaller than the gauge boson

mass.

2.2.3 Coleman-Weinberg Mechanism and Renormalisation

Group Running

It can seem like a strange coincidence, or evidence of fine tuning, that we only
get a non-zero vev for ¢, when the coupling constants are carefully matched as in
Equation (2.2.23). In fact, there is no fine-tuning in this relationship at all [80]. This
can be understood by studying the renormalisation group running of the couplings

in the U(1) theory considered above. The relevant S-functions are given by [79]

Becw =

de €, d\ 1 (5
dt — 4n?

_ 2 2 4
PRI B = 6/\ — 3y A + 9ecw> , (2.2.27)

where ¢ = lnMLO. We will now consider a situation where at a large energy scale,
My, we set arbitrary values for the couplings e (My) = eg and A(My) = Ao, and
then evolve the couplings down to lower energies. We see that the [-function for
A is positive such that the value of A will decrease as energy decreases. When A
becomes small, the e*-term dominates, and the coupling will continue to decrease
until it eventually becomes negative. At some energy scale, M., the value of A\ will
be such that
33

AM,) = 8_7Tecw(Mc)4; (2.2.28)
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and this is the scale where symmetry breaking happens. It is the positive g-function
that drives A\ negative and induces spontaneous symmetry breaking. This gives
another argument for why we did not get symmetry breaking in the pure scalar field

theory. In this theory we have 3y o< A\? which gives a solution of
1
A(t) n (2.2.29)

We can see that this solution does not drive A negative, and would therefore not be
able to induce symmetry breaking as above.

To implement the CW mechanism successfully, we need a classically massless the-
ory where a coupling is driven negative by the RG running. This triggers symmetry

breaking which dynamically generates scales by dimensional transmutation.

2.3 BSM Models with Classical Scale Invariance

We will now consider how to construct classically scale-invariant models for BSM
physics. First, we will discuss classical scale invariance and the hierarchy problem.
And then we will show how the SM can be extended in a phenomenologically viable
way so that all scales are generated via the CW mechanism in a CSI U(1) extension
to the SM. We will then move on to describe different classes of CSI extensions to
the SM that have been proposed in the literature, before considering some of the

common phenomenological consequences of these models.

2.3.1 Hierarchy Problem in Classically

Scale-Invariant Models

Classically scale-invariant models were introduced to address the hierarchy problem
[75]. In Section 1.2.4, we explained how the hierarchy problem is best thought of
in terms of mass thresholds of massive particles. In CSI models all scales will be
radiatively generated, and in all proposed models there is only one scale. All masses
in the theory will be parametrically related to the generated scale. Therefore, a
classically scale-invariant theory does not have a hierarchy problem as long as this

radiatively generated scale is of the order of the weak scale. For the theory to be
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useful, it needs to address the observational problems in the SM with only this scale.
In CSI theories all scales are connected at tree level, and, as we will see in the next

section, the Higgs mass parameter in the Lagrangian, ugy, will be given by

1 o Ap(0)?, (2.3.30)

where ¢ is a field that develops a vacuum expectation value due to the CW mecha-
nism, and ), is its portal coupling to the Higgs. As long as \,(#)? ~ v?, the theory
will not destabilise the weak scale. This implies new physics around the weak scale
unless A, is extremely small. A very small )\, could be technically natural but un-
appealing unless there is a mechanism to explain such a small coupling constant, as

for example due to shift symmetry in [81].

CSI theories do not introduce a naturalness problem, but they do not protect the
Higgs mass from new large scales that can appear in for example quantum gravity.
This means that any new UV theory beyond the CSI extension needs to be such
that it does not reintroduce large corrections to the Higgs mass. Without such large
corrections, CSI theories will naturally generate scales that are much smaller than
the UV cut-off, Ayy, of the theory. In the previous section we saw that the scale,

(¢), was generated when

M) = Sean ()" (2331)

By solving the RG equations we find a relationship between (¢), which fulfils this
relation, and Ayy [82],

— 2472
(¢) = Ayv exp (m) : (2.3.32)

The exponential suppression is due to the logarithmic running of the coupling con-
stant. This is completely analogous to why Agcp, the QCD confinement scale, can
naturally be much smaller than the M. Dimensional transmutation occurs in QCD
and other gauge theories that become strongly coupled. In QCD we trade ay for
Aqep in the same way as we did when trading A for (¢) above. Again, the logarith-
mic running of the coupling g will lead Aqcp to be exponentially suppressed from

the AUV-

(Classical scale invariance does not solve the hierarchy problem in the same way

as, for example, Supersymmetry. It does require that quantum gravity and any
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other new UV physics do not destabilise the Higgs mass. If that is the case, the
scales of the theory will naturally be generated at scales exponentially smaller than

the UV cut-off, and there will be no fine-tuning.

2.3.2 U(1) CSI Extension of the SM

After the measurement of the mass of the weak vector bosons and the Higgs boson,
it is impossible to implement the CW mechanism in the Higgs sector of the SM.
As we see from Equations (2.2.25) and (2.2.26), the CW mechanism predicts vector
bosons that are significantly heavier than the Higgs bosons, in contradiction with
the experimentally observed values. In 1996, Hempfling [83] suggested a minimal,
phenomenologically viable extension to the SM where all fundamental mass scales
are given by dimensional transmutation. First the SM is made classically massless
by setting the Higgs mass to zero, and then it is extended with a U(1) hidden gauge
group. There is one new complex scalar field, ®, which is charged under the hidden
gauge group, but is a SM singlet. The hidden sector is coupled to the SM via a

Higgs portal coupling, and we have the following scalar potential
Va(H,®) = M\g(2T0)? + Ay (HTH)? — \p(H'H)(DT®). (2.3.33)

The & field, charged under the hidden U(1) gauge group, can now develop a vacuum
expectation value via the CW mechanism as described above. The condition relating
the mass of gauge bosons and Higgs bosons now occurs in the hidden sector and
therefore has no experimental constraints. The generated scale is then transmitted
to the SM due to the Higgs portal coupling and gives a negative mass squared to
the SM Higgs

Py = —Ap (@)% (2.3.34)

This allows electroweak symmetry breaking (EWSB) to happen as usual in the SM,
giving masses to the fermions and the weak vector bosons. All the masses will be
given in terms of the only mass scale in the theory, (®). We will now study this
example in more detail. We will show how the CW mechanism generates a vev in
the hidden sector, and how this vev gets transmitted to the SM. Since both the

scalars develop vevs, they will mix. We will calculate the mass eigenstates and the
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corresponding mass eigenvalues myp, and my,. In this section we will follow the
approach of Ref. [82] by first considering the one-loop contributions in the hidden
sector before adding the SM corrections at a later stage. We will also use the MS

renormalisation scheme instead of the cut-off scheme calculation presented above.

The complex scalar field, ®, is given by

1 .
® = E((b + i) (2.3.35)

We have the following tree-level scalar potential
Vo(h, @) = Mg (@DN2 + A\ (HHT)? — \p HHT OO . (2.3.36)

After symmetry breaking, we will be left with two real scalars in the unitary

gauge,
1 1

We start by analysing the scale generation in the hidden sector using the one-loop
effective potential which in the MS scheme reads, cf. [84],

(0)

A 3 2 2 5
Vi(éip) = =o' + o1 Cow(t) ¢ (logem(u—’é)q5 - 6) : (2.3.38)

The potential depends on the RG scale, u, that appears both in the logarithm and
also in the one-loop running CW gauge coupling constant eqyw (1). The superscripts
indicate a tree level coupling. The running (or renormalised) self-coupling, A,, at

the RG scale p is defined via

1 (34‘/1(¢;u)> 0 ¢ L0ecw(1)" + 3ecw (1) 1og (ecw(1)?)
P=p

Aoli) = 3! Lok 1672

(2.3.39)
We can now express the effective potential in terms of this renormalised coupling
constant by substituting )\((;50) = A — (10ed,, +3ely, log €2,)/(167%) into eq. (2.3.38),

obtaining

As(1)d* | Beow () i

This is the one-loop effective potential for the hidden sector. It makes the vacuum

occur at (¢) # 0. Minimising the potential (2.3.40) with respect to ¢ at u = (¢), gives
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the characteristic Coleman-Weinberg-type A4 ox ef, relation between the scalar and

the gauge couplings we saw in Section 2.2.2,

A = %eéw at p=(¢). (2.3.41)
The 3! mismatch between this result and the result in [79] and in Equation (2.2.23)
is due to the difference in definition of A4 in the scalar potential. Compare equations
(2.2.15) and (2.3.36).
Shifting the CW scalar by its vev ¢ — (¢) + ¢, and expanding the effective
potential in (2.3.40), we find the mass of ¢,

2 Beéw 2

and the mass of the Z’ U(1) vector boson,

4
3w
82

My =0 > md= g2 (2.3.43)

The MS expressions above are once again identical to those derived in the cut-off
scheme in [79,82].
We now turn to the SM part of the scalar potential (2.3.36), specifically

— )\_Hh4 . )\P<¢>2
4 4

Vo(h) h?. (2.3.44)

The SM scale p2,, is generated by the CW vev in the second term,

e = de(0)?, (2.3.45)

and this triggers electroweak symmetry breaking and the appearance of the Higgs
vev v. We also need to take the portal coupling into account. In the hidden sector
it provides a correction to the CW matching condition (2.3.41) and the CW mass
(2.3.42). By including the last term on the r.h.s of (2.3.36) to the effective potential
in (2.3.38) and (2.3.40), we find a Ap-induced correction to the equations (2.3.41)-
(2.3.42), which now read

11 v?

Ao = —— €2+ Ap—s t o= 2.3.46
¢ ].67T2 eCW + P2<¢>2 a /’1’ <¢> ( )
2 3€éw 2 2

my = —=-(¢)" + Apv (2.3.47)

872
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We will mainly consider small values of Ap, so that these corrections are negligible
as A\pv?/(2(9)?) ~ A& /(4)g) < 1.

Having calculated the masses in the hidden sector, we now move on to compute
the SM Higgs mass. We perform the usual shift, h(x) — v+ h(z), and represent the
SM scalar potential (2.3.44) as follows,

(0)

V(h) = )\TH(U +h)* — %(v +h)?. (2.3.48)

The vev, v, is determined by minimising (2.3.48), and the Higgs mass is given by
the second derivative of (2.3.48),

2 Ap

v? = W@b)?, m; =2y v, (2.3.49)
2\

The two scalars, h and ¢, both have vevs and therefore mix via the mass matrix,

g v —1/22pA 02
M? = : (2.3.50)
—1/ 2)\p>\§3)v2 my

where mj is given in (2.3.47) (and already includes the Ap correction). The mass

eigenstates are the two Higgs fields, h; and hy with mass eigenvalues,

1
My hy = 3 <2AHv2 +m £ \/ (2A g2 — mfb)2 - SAPAHU4) : (2.3.51)

It is easy to see that in the limit where the portal coupling, Ap, goes to zero, the
mixing between the two scalars h and ¢ disappears, and we get mi and mé as
mass eigenvalues, as one would expect. However, for non-vanishing Ap, the mass

eigenstates hy and hy are given by

h1 cos § —sin 6 h
= , (2.3.52)

ha sin @  cos 6 )

with a non-trivial mixing angle §. The SM Higgs with mass mj o, =~ (126 GeV)?
is the eigenstate hy which is ‘mostly’ the h scalar (i.e. cosf@x the scalar coupled to

the SM electroweak sector) for small values of the mixing angle,

hsy := h1 = hcos — ¢ sin 0, mp, = 125.66 GeV . (2.3.53)
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In the approximation where (8ApA'Y v4) /(2 v? — m7)? is small, we can expand the

square root in (4.1.16) to obtain analytical expressions for the scalar masses:

Ap (N ) v?
2Agv? — mé

Ap (A9 /ag) 02

m% — 2 \gv?

mi = m? = 20" \y (1 + ) , for 2Xgv? >mj,  (2.3.54)

mi = m? = 20"\ (1 — ) , for m3 > 2xg0”. (2.3.55)

We can see that a U(1) extension of the CSI SM is a phenomenologically viable
BSM model where all the scales are generated via dimensional transmutation. It
includes many of the main features of CSI models. The EW scale is transmitted
to the Higgs via an extended scalar sector coupled with portal couplings. We are
left with two massive neutral scalar fields that mix. It is straightforward to achieve
the correct value of the Higgs mass. With the Higgs mass fixed, this simple viable
model only has two free parameters which we can take to be the gauge coupling,
ecw, and the portal coupling, A,. The model is therefore predictive. In Chapter 4
we will investigate both the Higgs vacuum stability and the collider phenomenology

of this model.

2.3.3 CSI Extensions of the SM

In this section, we will discuss the different CSI models that have been proposed in
the literature. All CSI extensions of the SM start with the SM Lagrangian without
the Higgs mass term. Extra field content and potentially new gauge groups are then
added to generate scales dynamically. This scale can then be transmitted to the
Higgs to trigger electroweak symmetry breaking. There are two main categories of
CSI models divided by the strength of the couplings of the new field content. We have
already seen examples of weakly coupled models where scales are generated by the
CW mechanism, but there are also proposed models where the scale is generated,
as in QCD, by confinement when the coupling becomes large (see [85-90]). In
this thesis, we will focus on the weakly coupled theories. This class has two main
subclasses: one where the CW mechanism is achieved without any extra gauge
groups by extending the scalar sector [74,81,91-108], and another where we extend

the SM with a new gauge group as in the example in the previous section and
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in [1,2,82,83,109-123].

If we consider the theories without extra gauge sectors, there are two main ways
to trigger EWSB dynamically. We have already seen that if the SM SU(2) gauge
group were to provide the quantum corrections needed to make the CW mechanism
work, the Higgs boson mass would have to be much smaller than the mass of the W=
and Z bosons. Another problem with the CW mechanism in the SM is that the RG
equation for the Higgs self-coupling is dominated by the top Yukawa, making the
[B-function negative. This will ruin the CW symmetry breaking mechanism as the
self coupling will increase with decreasing energy scale and never become negative.
The first approach to CSI model building without extra gauge groups is to add
extra scalars to the Higgs sector, which can provide large positive contributions to
the S-function [74,91, 93,96, 98,102, 103,105, 124]. In these models, it is a portal
type coupling between the scalars that drives the CW mechanism, and therefore we
do not get the predicted hierarchy between the SU(2) gauge boson masses and the

Higgs mass seen above, making this a phenomenologically viable theory.

As an example, let us consider the approach in Hill [91]. They find that EWSB
can be dynamically achieved when the SM is extended with an extra inert® Higgs
doublet which is portally coupled to the Higgs. We then get an extra contribution
to the g-function for the Higgs quartic coupling, Ay, schematically given by

d\ g
dlogpu

X AY =y Ay A (2.3.56)
where )\, is the portal coupling and y; is the top Yukawa coupling. If A, is large
enough to overcome the negative contribution from the top Yukawa, the CW mech-
anism will generate a vev for the Higgs. This gives a prediction for the ratio between
the two Higgs masses in the same way as we got a prediction for the ratio of the
gauge boson and scalar masses in the U(1) example. The model predicts that the
mass of the second Higgs doublet is mp, ~ 376 GeV. This gives a phenomenolog-

ically viable and very predictive model, but due to the large portal coupling the

model will develop a Landau pole at the ~ 5 TeV scale.

3A SU(2) doublet that does not get a vev.
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In [81,92, 95,100, 101, 104, 107, 108] a viable CSI model is achieved by using
the CW mechanism to generate a vev for a new scalar field, not the Higgs boson,
dynamically. This scalar field is then portally coupled to the Higgs boson, and
therefore induces a EWSB by providing a negative mass squared term for the Higgs
similarly to the U(1) example above. For a successful CW mechanism, these models
will need additional field content in addition to the one new scalar field. For example

in [92], there are two new real scalar fields, ¢; and ¢,. This gives a scalar potential

of

1

1 1 1 1 1
4h4+)\11¢411+)\21¢3+)\1{1 Z¢%h2+/\H2z¢gh2+>\12z¢%¢g~ (2.3.57)

V(h,¢1,02) = Anr

We can now organise the coupling constants so that A\; will be driven negative at
low energy due to the contribution of a large A5 to its S-function. This will lead ¢,
to develop a vev which will be transmitted to the Higgs via the portal coupling \y.
The end result is two massive scalars that mix with each other, as in the previous
section, and one additional massive scalar that does not mix. Since the final scalar
does not mix with the Higgs, it does not decay and can therefore be a dark matter
candidate. This class of models is less minimal, but it can easily incorporate DM

and Higgs vacuum stability due to the extra field content.

CSI models with extended gauge sectors differ from each other both in field
content and in gauge structure. The simplest models have a new U(1) gauge group
as shown above. This model has been studied in [2,82,83,116,118,121-123|, and
we will study Higgs vacuum stability and dark matter in this model in Chapter 4.
A popular extension to this model is to consider the SM extended by a U(1)p_p,
gauge group [1,2,114,115,117-120]. All the SM fields are charged under this group
with their charge given by their baryon minus lepton number. To be anomaly free,
these models require three generations of right-handed neutrinos, and have therefore
been studied to explain neutrino mass and leptogenesis as we will see in detail in
Chapter 3. In addition to a U(1) gauge group, extensions with SU(2) groups have
been studied in [2,3,111,112]. As we will discuss in Chapter 4, these models are
very interesting because the SU(2) gauge bosons are good dark matter candidates.

In [113] they consider a hidden sector consisting of SU(2)xU(1). As long as the CW
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mechanism is employed in the hidden sector, these models are phenomenologically

viable and have many interesting applications to BSM physics.

2.3.4 Classically Scale-Invariant BSM Physics

As discussed above, for CSI models not to have a hierarchy problem they need to
solve the observational questions in the SM without introducing new large scales.
Dark matter has been studied in great detail in CSI models, both in the strongly
coupled models [85,87,90] and in the weakly coupled models [2,92,95,96, 98,102,
103,108,111-113,121,122]. In the weakly coupled models, one can implement many
different dark matter scenarios. We can have scalar, fermion or vector boson dark
matter candidates. In most models this dark matter is coupled to the Higgs via a
portal coupling, sometimes directly and sometimes via a scalar mediator. The dark
matter candidate is commonly a standard WIMP thermal relic, but also other pro-
duction mechanisms are possible( see e.g. [103]). If the DM is produced via thermal
freeze-out, this can give interesting constraints for these models. The observed relic
density can give a lower limit on the Higgs portal coupling so as to not overclose
the Universe. The annihilation cross-section, which in many models depends on the
portal coupling, can not be too small as then dark matter will freeze out too soon,
and be too abundant. This constrains the portal coupling from the opposite side to
collider experiments which tends to constrain it form above. In Chapter 4 and 5,
we will investigate CSI models with scalar and vector boson DM, and in Chapter 6
we will discuss LHC phenomenology for models with scalar mediators to fermionic

dark matter.

Generating a matter antimatter asymmetry has been much less studied in the
context of CSI models. Models with a U(1)g_r, gauge group and right-handed neu-
trinos would be a good starting point for standard leptogenesis, but as discussed
in Chapter 1 very heavy right-handed neutrinos are needed, which is incompatible
with classical scale invariance. It is possible to reduce the mass of the right-handed
neutrinos by fine-tuning their mass difference. This approach, called resonant lep-
togenesis, has been studied in a CSI framework in [119]. In Chapter 3, we present

a successful approach based on leptogenesis by the oscillation of GeV scale right-
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handed neutrinos.

In CSI models the vacuum should be stable* up to the Planck scale, without
requiring new field content at large energy scales. We will study this in detail
for U(1), U(1)p_r, and SU(2) models in Chapter 4. The Higgs vacuum instability
has also successfully been addressed in [92,95,111,112,116]. In all these models the
Higgs potential is stabilised by positive contributions to the S-functions of the Higgs

self-coupling from portal couplings in an extended Higgs sector.

Inflation has successfully been implemented in CSI models [99, 115, 121, 125].
One example of an inflationary model from [121] is a U(1) CSI extension of the SM
with an additional real scalar singlet. This singlet can then successfully play the
role of both inflaton and dark matter. The strong CP problem has been addressed
in [81,104]. Axions require a very large scale ~ 102 GeV to solve the strong CP
problem. Therefore, a hidden sector that includes an axion has to be extremely
weakly coupled. This can potentially be explained by an approximate shift symme-

try.

CSI models, unlike for example Supersymmetric models, do not protect the Higgs
mass from quantum gravity effects at the Planck scale. Since it is impossible with
today’s knowledge to determine if quantum gravity will give large corrections to the
Higgs mass, this might or might not be considered a problem. There have been some
attempts to consider gravity in a CSI framework [106,120,125,126]. The main idea is
to think of the Planck mass M, as the vev of a scalar field, s, that is non minimally
coupled to gravity. The Einstein-Hilbert term in the standard general relativity
(GR) Lagrangian (Mis where R is the Ricci scalar curvature) is removed, and we

get a scalar-tensor theory for gravity

L=13 (—%szR + cm) . (2.3.58)

L,, is the normal matter Lagrangian, including kinetic terms for s. If the theory
dynamically generates a vev for s, (s) = My /\/€, we recover the standard GR

Lagrangian. Since £,, will include a portal coupling, A,, between the new scalar s

4Tt is possible that meta-stability is sufficient as discussed in Chapter 1.
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and the Higgs boson, this will induce a Higgs mass of

M? = pMTé : (2.3.59)
Getting the observed value for the Higgs mass this requires an extremely small value
of \p. As ), is renormalised multiplicatively, this could be considered to be techni-
cally natural. One of the main questions regarding gravitational corrections to the
Higgs mass is if microscopic black holes with mass around My, will give large correc-
tions. In the model discussed in [126], the black holes do not give large contributions
to the Higgs mass, since the black holes have to be significantly heavier than M.
Only black holes with mass just around the Planck scale give a large contribution

as the contribution is exponentially suppressed by the black hole entropy.

Classically scale-invariant models come in many shapes and can successfully be
used to explain many BSM phenomena. Due to the classical scale invariance, these
models often have few new parameters and are predictive. The main consequence
of imposing classical scale invariance is that there can not be any large scales in the
theory. Therefore, grand unification is incompatible with this approach, and so is
standard leptogenesis with right-handed neutrinos with masses of 10'2 GeV. A very
compelling feature of CSI models is that all mass scales have to be dynamically gen-
erated. This means that the mass scales of fundamental particles have similar origin
as the mass scales of protons and neutrons. If the Planck scale is also dynamically

generated, all mass scales in the Universe will be due to dimensional transmutation.

2.3.5 Phenomenology of CSI Models

A common feature of all the weakly coupled CSI models is that they require extended
scalar sectors. Either a vacuum expectation value generated for another scalar has
to be communicated to the Higgs, or the Higgs needs large positive contributions to
the B-function from other scalars. This means that all these CSI models have portal
couplings to the Higgs. Higgs portal coupling models have been extensively studied
(see e.g. [127,128]). If the scalar field, s, coupled to the Higgs via the Higgs portal

coupling develops a vev, it will mix with the Higgs as described above. We get two
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mass eigenstates hy and ho,
hy =hcosf —ssin@ hy = scosf + hsind, (2.3.60)

where 6 is the mixing angle. This mixing modifies the normal Higgs production cross-
sections with a factor cos? @, and it means that hy can be produced from and decay to
SM fields. This modification of the Higgs coupling allows us to constrain the mixing
angle. The signal strengths for Higgs production gives a bound of sin § < 0.44 [129].
One can also get a mass dependent bound on 6 from the W boson mass, as shown
in Figure 3 in Ref. [129]. The constraint comes from the contributions of the heavy
second Higgs like scalar, ho, to the W-boson mass at loop level. In the mass range

mp, ~ 1 TeV, the limit becomes sin 6 < 0.3.

If hy is lighter than half the Higgs mass, my, < my/2 = 62.5 GeV, then h; can
very efficiently decay into two hsos, giving a large invisible branching ratio of the
Higgs. Current limits on the invisible branching ratio give a limit on the portal
coupling of A, < 107* [82] in this regime. If hy can decay into SM particles, we will
also get limits from the non-observation of a second SM-like Higgs. We will discuss

this further in Chapter 4.

If mp, > 2my,,, the hy — hqih; decay is kinematically allowed. This process could
then be visible at the 13 TeV LHC [129]. In addition to the extended Higgs sector,
most CSI models also have other phenomenological consequences. For models with
dark matter, one can look for signals of missing energy at colliders (see Chapter
6), and at direct and indirect detection. In models where the SM fermions are
charged under the hidden gauge group as in the U(1)p_; model, one can look for a
Z' boson peak, for example, in the dilepton final state. Other extensions of the basic
model will have additional signatures at colliders or at cosmological experiments.
Even if CSI models do not have a smoking gun signature, they are predictive and

discoverable.



Chapter 3

Leptogenesis and Neutrino
Oscillations in the Classically
Scale-Invariant Standard Model
with the Higgs Portal

In this chapter, based entirely on [1], we will show how to generate a matter anti-
matter asymmetry in a classically scale-invariant extension of the Standard Model.
This is an important step in establishing CSI extensions of the SM as viable BSM
theories. As no supersymmety has been discovered and there is no evidence of any
anomalies in the quark flavour sector, the most attractive scenario for generating
the baryon asymmetry of the Universe is arguably leptogenesis. Models of leptogen-
esis also explain neutrino masses elegantly via the see-saw mechanism. As discussed
in Section 1.2.2; in the standard scenario of thermal leptogenesis [55], a lepton
asymmetry is generated by decays of heavy right-handed Majorana neutrinos into
Standard Model leptons at temperatures much above the electroweak scale. The
lepton asymmetry is then reprocessed into the baryon asymmetry by electroweak

sphalerons [52,130] above the electroweak scale.

To generate the observed value of the matter-antimatter asymmetry in the vanilla

version of leptogenesis, it is necessary to have extremely heavy masses for sterile neu-

54
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trinos, M 2> 10° GeV [58,131]. If this was the full story, classical scale-invariance
would be ruled out by M >> v. Instead, we will adopt an alternative approach to
leptogenesis pioneered in [72], and further developed in [132,133]. In this approach,
the lepton flavour asymmetry is produced by oscillations of the right-handed Majo-
rana neutrinos with masses of the order of the electroweak scale or below. This low
scale is easily accommodated in a classically scale-invariant setup. We will consider
an extension of the SM with a hidden U(1)g_; gauge group which includes GeV
scale right-handed neutrinos. This gives a good CSI realisation of this alternative

approach to leptogenesis.

The chapter is organised as follows: we will start with a brief introduction of
thermal field theory in Section 3.1. Then, in Section 3.2, we set up the U(1)p_,
extension of the SM model which automatically includes sterile right-handed Majo-
rana neutrinos. The formalism of leptogenesis via Majorana neutrino oscillations is
presented in 3.3.1. Section 3.3.2 adapts and applies theses ideas to our classically
scale-invariant models. The matter-antimatter asymmetry is calculated and anal-
ysed in Section 3.4 which also contains multiple benchmark points. Conclusions are

outlined in Section 3.5.

3.1 Brief Review of Thermal Field Theory

To calculate expectation values of operators in a QFT at non-zero temperature, we
consider a system in a grand canonical ensemble where the system can exchange
both energy and particles with a heat reservoir with constant temperature 7. When
calculating traces by summing over all the states of such an ensemble, each state
has a weight of e ## where 3 = 1/T and H is the Hamiltonian of the system. An
operator A then has the following expectation value

_ TrlePHA]

(4) = Tole 7] (3.1.1)

We can calculate these expectation values using normal QFT techniques, but we

evolve the system in imaginary time with periodic or anti-periodic boundary condi-
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tions for bosons and fermions respectively. Implementing periodic boundary condi-
tions for time changes integrals over energy to sums over frequencies, [ d*kdw), —
Zwk [ d*k. Using these techniques, one can calculate the thermal one-loop potential

for a theory [84]

T=0 T

‘/(;I?é—loop = ‘/one—loop + V:)ne—loop’ (312)
where Vofle:_oloop is the standard one-loop potential at zero temperature discussed in
Chapter 2 and Vfoop is the thermal correction given by

Voﬁe_bofﬁ< > onidpmis+ Y anF[mg.ﬁ?]). (3.1.3)

i€bosons j€fermions
Jp and Jp are the bosonic and fermionic thermal functions, given by

Jp[m2B% = / dzz?log (1 —e VvV z2+'82m2> ,and (3.1.4)

0

Jp[m?p% = / dzz? log (1 +e Vv $2+B2m2) . (3.1.5)

0

At high temperature these function can be expanded as follows,

4 2, 2 2\ 3/2 4 2 6
1
Jp[m?/T? = rrmr <m > m log%%—@ <m ) ,and (3.1.6)
b

45 1272 6\T?) 3274 T6
4 2 2 1 m4 mQ m6
Je[m?/T =L T 2 o 3.1.7
Fm T =55~ sae s g O\ gw ) (3:-1.7)

where log a;, = 5.4076 and log ay = 2.6351. In the high temperature limit, the
scalar potential of theories with a scalar, ¢, becomes

MT)

V9, T) = D(T* = T5)¢" — ET¢’ + —;

Pt (3.1.8)

where D, Ty, E and \(T') are calculable constants for a given field content. Both
fermions and bosons will contribute to all of these constants, except for E which
only gets bosonic contributions due to the m?/T? term in (3.1.6). We see that finite
temperature effects induce a thermal correction to the mass squared, proportional

to T2.
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3.1.1 Phase Transitions

In the SM, we know that only if the mass-squared term of the Higgs, ¢, is negative
will we get electroweak symmetry breaking. In the previous section, we saw that
thermal corrections give a positive contribution to the mass. Therefore, at some
temperature in the early Universe, the symmetry is restored and (¢) = 0. At some
temperature Ty we get a transition between the broken and unbroken phase. Such
phase transitions can occur in two distinct ways called first-order and second-order
phase transitions. At high temperature the minimum of the potential is at ¢ = 0
and at zero temperature at H = v. The phase transition occurs when these two
local minima have equal energy. For the potential in (3.1.8), this is approximately
the temperature T. For a first order phase transition, the potential has a barrier
between the two vacua, while for a second order phase transition no such barrier
exists. From equation (3.1.8) we can see that the existence of the barrier depends

on the size of the ¢3 term.

Since there is no barrier in a second order phase transition, the minimum at
the origin becomes a maximum, and any displacement will cause the field to roll
down to its new minimum. For a first-order phase transition, the barrier prevents a
smooth and fast transition. The phase transition will instead occur when the field
can tunnel through the barrier at lower temperature, T;. This will lead to bubbles of
the new phase spreading through the Universe at the speed of light. Interactions in
the bubble walls are out of thermal equilibrium and can therefore be very important

for baryogenesis as explained in Section 1.2.2.

One can characterise the strength of the first.order phase transition by ¢./7.
For the phase transition to be strongly first-order, we require that ¢./7. 2 1. In
terms of the potential in equation (3.1.8), the strength of the phase transition is
given by

¢ 2E

— = —. 1.
T. N (3.1.9)
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3.2 The B — L Coleman-Weinberg Extension of
the Standard Model

We will now extend the minimal U(1) CSI extension in Section 2.3.2 by giving the
Standard Model fields a charge under the hidden gauge group. An appealing way to
accomplish this to make the hidden U(1) into a U(1)p_,, gauge group [109,110,134,
135]. All the fields in the theory will then have a charge, under this gauge group,

given by their baryon-minus-lepton number.

The Coleman-Weinberg mechanism will work exactly as in section 2.3.2 if we
replace eqw with Qp gp—r, where Q)4 is the B — L charge of the scalar field in the
hidden sector. The mass of the scalar is therefore given by

2 3

m = o (Qs gow )’ mz < my, . (3.2.10)

The massive (2 few TeV) Z’ vector boson now couples to quarks and leptons of
the Standard Model proportionally to their B — L charge. The SM Higgs carries no
baryon or lepton number, and therefore does not couple to the U(1)p_1, sector.

The appeal of this model with a local U(1)g_, group is that the cancellation
of gauge anomalies requires the inclusion of three generations of the right-handed
neutrinos, vp,. These neutrinos carry lepton number = 1, and transform under
U(1)p_r, but are sterile under the SM gauge groups. Finally, the Coleman-Weinberg
scalar field ¢ is assigned the B — L charge = 2. The interactions of the right-handed
neutrinos, vy, are given by

o~ L

it = 79 (%%m + Yo %V%j) — YPug(eH)ly, — YRUT, (eH) g,

(3.2.11)
where Y;}" and Y} are 3x 3 complex matrices of the Majorana and Dirac Yukawa cou-
plings respectively. The right-handed neutrinos vy, are SM singlets (often referred to
as sterile neutrinos). They carry lepton number L = +1 and their antiparticles, 7,
have L = —1. The charge-conjugate anti-particle, v/§,, has the same lepton number
+1 as the state vp,. In the unbroken phase, the lepton number is conserved by all

interactions in (3.2.11) when ¢ is assigned lepton number —2. The first two terms



3.2. The B — L Coleman-Weinberg Extension of the Standard Model 59

on the right-hand side of (3.2.11) give the only interactions of the CW scalar ¢ with
matter fields (apart from its small mixing with the Higgs). No other interactions
are possible due to the L = —2 charge for ¢.

Spontaneous breaking of the B — L symmetry by the vev (|¢|) # 0, generates
Majorana masses

M;; = Y (|9l) , (3.2.12)

which lead to interactions that do not conserve lepton number. Importantly, indi-
vidual lepton flavour is also not conserved: M;; is a complex matrix which induces
CP-violating transitions between lepton flavours ¢ and j of the right-handed neutri-

nos.!

The Majorana mass for the right-handed neutrinos gives the standard see-saw
mass to the left-handed, active neutrinos. Schematically, this gives the left-handed

neutrinos a mass of

Py
Y )

With GeV scale right-handed neutrinos we can achieve the correct, sub eV,

(YP)?

:)‘p<¢> yM -

(3.2.13)

masses for the active neutrinos with Dirac Yukawa couplings of the order 10~7 —
1078, cf. Table 3.3. This means that the neutrino Yukawa couplings are not much

smaller than the electron Yukawa coupling.

In summary, the single U(1)p_, hidden sector simultaneously incorporates the
Coleman-Weinberg scalar, which triggers EWSB, and includes Majorana sterile neu-
trinos which through the see-saw mechanism give rise to masses of active neutrinos
and neutrino oscillations [109,110]. Furthermore, as will be shown below, the gener-
ation of matter-antimatter asymmetry through leptogenesis now becomes possible

without any fine-tuning.

!This is most easily seen in the “Dirac-Yukawa basis” where the Dirac Yukawa matrices Y,

are diagonalised and real, but not the Majorana ones YZI]V[
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3.3 Neutrino Oscillations and Leptogenesis

Leptogenesis is the idea that the baryon asymmetry of the Universe has originated
in the lepton, rather than quark sector of the theory. In the standard scenario of
thermal leptogenesis [55], one starts with the see-saw Lagrangian involving right-
handed neutrinos with Majorana mass terms coupled to the Standard Model left-

handed lepton doublets (¢f. Eq. (3.2.11)),

L = —% <sz %Z'VR]‘ + MJ] %WJ%) - YZ']G?V_Ri(GH) lpa — Y(ETE(L@H)T VRi-
(3.3.14)
It is usually assumed that a lepton asymmetry was generated by decays of heavy
right-handed Majorana neutrinos at temperatures much above the electroweak scale.
These heavy sterile neutrinos were thermally produced during reheating in the early
Universe, and then fell out of thermal equilibrium due to the expansion of the
Universe. Their out-of-equilibrium decays into Standard Model leptons and Higgs
bosons violate lepton number and CP, thus producing lepton asymmetry, which
is then reprocessed into a baryon asymmetry by electroweak sphalerons above the
electroweak scale.
The defining phenomenological signature of these models is that the masses of the
sterile Majorana neutrinos should be M > 10° GeV [58,131]. Flavour effects [136]
and a resonant enhancement [137] are important and can somewhat lower this bound,

but not by many orders of magnitude?.

3.3.1 Leptogenesis Triggered by Oscillations of Majorana

Neutrinos

Akhmedov, Rubakov and Smirnov (ARS) in [72] proposed an alternative physical
realisation of the leptogenesis mechanism which allows one to circumvent the ~ 10°
GeV lower bound. In fact, the ARS leptogenesis is intended to work with sterile neu-

trinos of sub-electroweak Majorana mass-scale. In this section, we will describe how

2Unless one is willing to fine-tune sterile neutrino masses of different flavours to introduce mass

degeneracy M;M;/|M? — MJ2| >> 1. This is not the approach we will follow.
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leptogenesis in the ARS scenario works in the model defined by Equation (3.3.14),
then we extend this to the classically scale-invariant model in Section 3.3.2.

The generation of matter-antimatter asymmetry proceeds as follows. As in the
original mechanism, the right-handed neutrinos are produced thermally in the early
Universe through their Yukawa interactions with lepton and Higgs doublets. After
being produced, they begin to oscillate, vp;, <> vp;, between the three different
flavour states i,7 = 1,2,3 and interact with the left-handed leptons and Higgs
bosons via their Yukawa interactions.

Since the Majorana masses in the ARS scenario are roughly of the electroweak
scale or below, they are much smaller than the relevant temperature, 7., in the early
Universe. For this reason, the rate of the total lepton-number violation (i.e. singlet
fermions to singlet anti-fermions, vy, < Vgjs induced by their Majorana masses)
is negligible. However, the lepton number of individual flavours is not conserved;
complex non-diagonal Majorana matrices induce CP-violating flavour oscillations
decays,

Vpi <> Vpy = lp; H, (3.3.15)

which are out of equilibrium due to smallness of the Yukawa matrices at Tog.. Fol-
lowing [72], we now require that by the time the temperature cools down to Tgyw,
where electroweak sphaleron processes freeze out, two of the neutrino flavours, i.e.
Vpy and Vg, equilibrate with their Standard Model counterparts, Lo 1, while the
remaining flavour (call it the 1% or e-flavour) does not.? In terms of the decay rates

for the three sterile neutrino flavours this implies,

where H is the expansion rate of the Universe given by the Hubble ‘constant’

T2 Mp,
H(T) = , =~ 10®¥ GeV 3.3.17
O =3 M= T (3:3.17)

3The opposite case where only one flavour equilibrates before the sphaleron freeze-out can be
treated similarly. Essentially, both cases can be treated by not imposing any constraint on I's, i.e.

by simply dropping the first equation in (3.3.16).
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and Mp, is the reduced Planck mass. These conditions determine the relevant values

of the Yukawa couplings via,

wT 20 _
ZKSYQ?TZI(TEW) ~1 => ZYZEY;?T x 10716 ~ 4 x 1074
EW Yav

a

(3.3.18)

Yav 18 & dimensionless constant depending on the couplings of the theory, see Equa-
tion (3.3.23). As a result of this washout of the second and the third lepton flavours,
the corresponding lepton doublets are processed by electroweak sphalerons into
baryons, while the first flavour of right-handed neutrinos is not transferred to the
active leptons fast enough before the electroweak sphaleron shuts down. (If the
sphaleron had not frozen out below Tgy, all three flavours would have had enough
time to thermalise and the net lepton and baryon asymmetry would have been zero.)
In the ARS approach?, the interactions of sterile Majorana neutrinos vy, with
the thermal plasma are described by the 3 x 3 density matrix p;; with the evolution

equation [138]
9P
Yat

where H is the Hermitian effective Hamiltonian, and I' and I'P are the destruction

= [H,p] — —{F p}+ i, (3.3.19)

and production rates of vp,. In the Yukawa basis at temperatures much higher than
the Majorana mass, the effective Hamiltonian, in the ultra relativistic limit 7" > M,

is of the form )

2
2k(T)
U is the mixing matrix which relates the Yukawa basis with the mass eigenstate basis

where the Majorana masses are diagonal, M? = diag(]\Zl'l2 ) M% , M32), and k(T) ~T

H=KT)+U Ut + V(t). (3.3.20)

is the neutrino momentum.

The first term on the right-hand side of (3.3.20) is the kinetic energy, which in
the relativistic limit is equal for all the neutrinos, and therefore does not contribute
o (3.3.19). The second term is the free Hamiltonian describing sterile neutrino
oscillations. It originates from a tree-level diagram of vg, to v ; propagation with

two helicity flips oc (M/2)? connected by the propagator 2/k(T). We can also

1Reader primarily interested in the final expression for the lepton asymmetry can skip directly

to Egs. (3.3.28)-(3.3.31) which summarise the main result as derived in Ref. [133].
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view the first two terms as the ultra-relativistic expansion of £ = /p? +m? =~
P+ 7;—;. The third term in (3.3.20) is the potential due to coherent forward scattering
processes [72],

1

V = diag (Vi,13,V) , Vi = (V)T (3.3.21)

These processes arise from one-loop diagrams with an internal lepton and Higgs
doublet. Such diagrams, c.f Section 3.1, give a thermal correction to the mass
squared M2 o (YP)?T? which in the relativistic limit gives an effective potential

proportional to M2/T.

For the destruction rates of the sterile neutrinos in (3.3.19), ARS take the dom-
inant Higgs-mediated two-to-two processes involving a lepton and a top-anti-top

pair,
9y7
6473

I = diag(I'y,T5,T3), T, (YP)T (3.3.22)

where 1; is the top Yukawa. The two-to-two process is dominant as the one-to-two
process is suppressed by M/T. The dimensionful part of the two body decay of
the sterile neutrinos is given by its mass and not 7. Taking all the processes into
account, the destruction (or relaxation) rates of sterile neutrinos can be accounted
for as follows [133],

Dy =Y YV v, T (3.3.23)

wa *ai
a

Here 7,, is the dimensionless quantity inferred from the rates tabulated in Ref. [139],
it has a weak dependence on temperature, so that at T = 5x 10° GeV, 7,4, ~ 3x 1073
while at electroweak temperature, V,,(Tpw) =~ 5 x 1073, Following [133], we will
use (3.3.23) for the relaxation rate (we also note that this expression is written in
the basis-independent form).

The final ingredient appearing in the ARS kinetic equation (3.3.19) is the pro-
duction rate I'® which is determined in terms of the destruction rate I' above and
the equilibrium density matrix, iI'® = i['p*? = iexp(—k/T) T [72].

The production of the asymmetry starts at the time t,¢. which corresponds to the
temperature T,,. when the sterile neutrinos have performed at least one oscillation.

This happens when the difference of the eigenvalues of the free Hamiltonian in
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(3.3.20) becomes of the order of the Hubble constant [72],

|M? — M?| |M? — M?| M, 1/3
—— = o0 H(Thse) => Toge = 7 (3.3.24)
0sc T

Lepton flavour asymmetry is converted by electroweak sphalerons to baryon
asymmetry until the process ends at Tgry ~ 140 GeV, when the sphalerons freeze
out. By this time, two of the three flavours of right handed neutrinos are in equilib-
rium with their left-handed partners while the third flavour is still out of equilibrium,
as in Eq. (3.3.16).

Now, by integrating the kinetic equation for the sterile neutrino density matrix
(3.3.19) between tosc to tpw, the authors of [72] were able to derive an expression
for the number density n; := p;; of the first flavour right-handed neutrinos. The
asymmetry in this unequilibrated flavour, which will be reprocessed into a baryon
asymmetry, is given by ny = n; — ny. Up to an overall numerical factor and
combining the neutrino mixing matrix angles together with the CP phase 0 into a
Jarlskog invariant J = $15¢12513C13893¢23 sind, the functional form of the generated

lepton asymmetry over the entropy density of the Universe, s, reads schematically®

7 AYPPANYP)AY D) (M)
AR,S . ? ~ J |AM2’1/3‘AM2|1/3|AM2|1/3 ’Yav (3325)

Seven years after ARS, in Ref. [132], Asaka and Shaposhnikov (AS) extended this
approach by including the back-reaction of active neutrinos on the sterile neutrinos.
Specifically, the authors of [132] have solved the kinetic equation (3.3.19) for the
12 x 12 density matrix whose components describe the mixing of all active and

sterile neutrinos and anti-neutrinos,

Pij  Pij Pib  Pib pij 0 0 0
ij Pij Piv Pib 0 p3; 0 O
p = p—] P J Piv Pib ~ P J (3326)
Paj Paj Pab Pab 0 0 pap O
Paj Paj Pab Pab 0 0 0 pap

Here the elements of the density matrix which mix sterile with active (anti)-neutrinos

are neglected as they describe correlations between particles of very different masses.

"We will write down a precise and improved expression in Eq. (3.3.31) below.
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Also the elements mixing neutrinos with anti-neutrinos are dropped as they give
lepton number (or helicity) flips. The resulting p-matrix is an extension of the
simple 3 x 3 sterile-to-sterile density matrix p;; (and its CP-conjugate p;;) used by
ARS, as reviewed above.

The functional form of the generated lepton asymmetry computed by AS is given

by (c¢f. Eq. (3.3.25)),

m | YPYPANPR Ot
AS: ? ~ J |AM2]1/3]AM2|1/3 Yav » (3.3.27)

where J is a certain combination of mixing angles and CP phases.

Quite remarkably, the functional form of the Asaka-Shaposhnikov result in (3.3.27)
was fully reproduced by the recent, more technical derivation of the lepton asymme-
try by Drewes and Garbrecht (DG) in [133]. Their approach is based on a system-
atic application of non-equilibrium QFT methods (the Schwinger-Keldysh formal-
ism [140,141]) to the calculation of the lepton flavour asymmetry (see also [142,143]).
It is this result of [133] (which in the following section will be adapted to the case of
the Coleman-Weinberg B — L model with the (¢)-induced and thermally corrected
Majorana masses) which we will use for our calculation of the resulting matter-
antimatter asymmetry.

Having noted the fact that the non-equilibrium calculation of [133] reproduces
the parametric form (though with a different numerical factor) of the more intuitive
formalism of AS based on the density matrix, we can now proceed to simply state

the equation which determines the generation of lepton asymmetry in [133],

d Nea 2 Saa
_ = 3.3.28
dz s sTgw ( )

where n, is the produced charge density of active lepton number of flavour a (par-
. . . . o 272 3 - . .

ticles minus anti-particles), s = S=g.7" is the entropy density of the Universe and

the ‘time’ variable z is defined via z := Tgw /T. On the right-hand side we have the

source term given by the expression [133],

Diy Dy Dty D Dty Dy Dty Dx
2 Saa _ Z ZZ Y:m' }/;'c chj Y; - Yai tY;c Y;j tY;‘a MPITEW 72 %< 7.3 % 10_4
sTew Mizi _ Mj2j 2 av . )

c ij
(3.3.29)




3.3. Neutrino Oscillations and Leptogenesis 66

To determine the lepton asymmetry, we integrate f; 2544/ (sTew) dz using the
expression in (3.3.29). The lower limit, zu, corresponds to the early temperature
Tose in (3.3.24) where the oscillations of sterile neutrinos start competing with the

Hubble rate,

Tew \* 3 T3
3 EW Gx EW
= =8 . 3.3.30
ose ( Tose ) " 45 MPI|M¢21' - M]'2j| ( )

The upper integration limit z = 1 is the electroweak phase transition temperature,
Trw where the sphaleron freezes out. The integral gives the desired lepton asym-

metry, which is the main result of [133],

DivDvDi1v D D Dxy Dty D x
Yai }/;c Y::j Y;'a _Yai tY;c Y;j tY}a

Nra .
DG : - i _ (3.3.31)
S ; ; sign(M? — ij)
Mg, 2 —4
_— 1.2 x107°.
X(rMi%—M;ﬂ) T X

3.3.2 Leptogenesis in Classically Massless Models

The focus of this thesis is BSM models with classical scale invariance. In these
models no explicit mass scales are allowed in the Lagrangian as they would break
classical scale invariance, and hence all masses have to be generated dynamically,
e.g. by vacuum expectation values of scalars induced by the Coleman-Weinberg
field.

In the minimal B — L model, Majorana masses M;; for right-handed neutrinos
are generated by the vev (¢) of the Coleman-Weinberg field® in Eq. (3.2.12). There
are two effects which need to be taken into account. One is that at temperatures
above the critical temperature Ts_ ~ (|¢|), the spontaneously broken U(1)p_p,
gauge symmetry is restored, so that in the unbroken phase the Coleman-Weinberg
field vev vanishes, (|¢|) = 0. Secondly, due to interactions of right-handed neutrinos
with ¢ and with the B — L gauge bosons, Z’, there are also thermal corrections to

the mass which need to be taken into account, cf. Section 3.1.

6In more general settings, the sterile neutrinos could couple to a different scalar which would
get its vev through a portal coupling to the Coleman-Weinberg field. In this paper we concentrate
on the minimal case where the scalar responsible for the Majorana mass of sterile neutrinos is the

Coleman-Weinberg field itself. Extensions with more scalars are straightforward.
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To do this we write down the effective Hamiltonian (3.3.20) in the form
2

M M D
Ho= S+ VD) + VP(T), (3.3.32)

where the first term is the tree-level effect of Majorana mass insertions as before. It

is now given by

L b 1 ol YME O

2T o OTsp —T) =~ 0((¢)) ~T).  (33.33)

Here the theta-function accounts for the transition to the unbroken phase at tem-
peratures above Tg_1, ~ (|¢]).

The second term on the right-hand side of (3.3.32) takes into account the thermal
mass, My, from the new self-energy diagrams for the right-handed neutrino due to
interactions with the Coleman-Weinberg scalar ¢ and the Z’ bosons,

_ Mg _

yM = L =
2T

1 1
§|YM|?]'T + gg?gfL 0i; T (3.3.34)

The third term, VP, in (3.3.32) is the already accounted for effect of Dirac Yukawa
interactions in (3.3.21)-(3.3.23).
In summary, the new effects on Majorana masses are taken into account auto-

matically by making the substitution in the source term (3.3.29):

—om s (VM = YMEN ()P elel) = T) + 20(V = Vi)

2T 2T
(3.3.35)

which amounts to

AM? =AM —» AMT) = AV ([0 ©((ol - T) + 15T
(3.3.36)
where the zero-temperature contribution is AMgF, which can also be written as
AlYM2|{(#)]?. We further note that the Z’ contributions to VM are flavour-independent
and cancel out in AM?*(T).
In Fig. 3.1(a) we plot the effective AM?(T) given by the right-hand side of
(3.3.36) as a function of temperature. For future convenience we have smoothened
the step-function to account for a more physical behaviour near the phase transition.

Essentially, the non-vanishing mass in the broken phase on the left is connected at
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Figure 3.1: Left panel shows the effective thermal mass squared difference AM?(T)
given by (3.3.36) with smoothened theta-function (and the initial value taken to be
AM? = 3 GeV?) as the function of the temperature over {|¢|) . On the right panel,
the blue curve sketches the initial temperature T, as the function of (|¢|) showing
the transition between the unbroken (7o > (|¢|)) and the broken (Tis. < (|¢]))
phase. The horizontal green line gives the value of T,s. computed in the regime

of [133] via (3.3.24). On the right of the plot, the blue and green curves coincide.

T/{|¢|) ~ 1 by a finite-width bubble wall to the unbroken phase where the mass
receives only a thermal contribution.

In the original DG formulation (z = Trw /T) we integrate the source term

) Mp]TEW ! dz
DG: o (/ ;> . (3.3.37)

In our model, after the substitution (3.3.36), we have two separate regimes that we
need to deal with separately. The first is when T, > T_1 = (|¢]), and the second

is the opposite case when T,s. < Ts_. For the first case we get

Mo T, Tew /{|¢]) dz 1 dz
N / e +/ — 5 , (3.3.38)
A’Y | Zosc TEW/16 TEW/<|¢|> |<¢>| z + TEW/16
and for the second case
MPITEW /1 dz
AW ) 3.3.39
e (33.39)

8(|¢|) denotes the vev at zero temperature
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The oscillation temperature is determined in a similar manner to what was done

before in (3.3.24). For the T,s. > (|¢|) case, it is given by

AlYMPZ Mg AIMy]? M,
osc = = 5 3.3.40

while for the case with T < (|¢]), the oscillation temperature is approximately
the same as in (3.3.24) with the mass given by the vev, (|¢|). The thermal corrections
to the mass are small when 7" < (¢),

AV M2( )2 V1 1/3
Tosc = ( ‘ ’4<¢> Pl) . (3341)
T

To calculate the final lepton asymmetry, we integrate the source terms from z.. =

Tew /Tose. The final result for the lepton flavour asymmetry in both cases is

Mo = 2 x73x 1070 SRRy R lyR - vEw Py Ryl 7,
c i#j

(3.3.42)
where Z;; are the integrals of the source term for the two regimes. When Tys. > (|¢]),

this integral is given by

L 16 Mp <|¢|> 1 -1 (4<|¢|>) _1 -1 )
IU N Zk(yigwykl\i/[ MTYM) <|¢|> <1 Tosc " 4tan TEW 4tan <4) 7

(3.3.43)

The low-temperature case (3.3.38) is treated similarly. We note that in the
case where T approaches (|¢|) (or falls below it), the first integral in (3.3.38)
disappears, since Trw /(|¢|) — Zosc, i agreement with (3.3.39). This is manifested
by the cancellation between the first and the second term inside the brackets in

(3.3.43), so that for Tose < (|@|), we get

e =t (" () - (52)
(3.3.44)

with T in this case given by (3.3.24).
The dependence of Tys. on the value of (|¢|) is plotted on the right panel of
Fig. 3.1 in blue. The red diagonal line is the Tis. = (|¢|) boundary separating the

broken from the unbroken phase. The horizontal green line gives the value of T,
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in the regime of [133] given by (3.3.24). It is valid for low temperatures (high vevs)
Tose < (|¢]) i.e. to the right of the diagonal red line where the blue line coincides with
the horizontal green line. On the other hand, at high temperatures, Tose > (|¢|), the
blue line depicting Ty is determined by the right-hand side of Eq. (3.3.40). In the
transitional region where all three lines meet, the blue line of T, briefly drops below
the green line prediction of [133]. This dip is a consequence of the local minimum
on Fig. 3.1(a) which corresponds to the drop in the effective mass squared when one

passes from the broken to the unbroken phase.

3.4 Baryon Asymmetry and Phenomenology

Equations derived in the previous section, (3.3.42),(3.3.43), compute the lepton
flavour asymmetry generated in the classically scale-invariant Standard Model x
U(1)p_r. Electroweak sphalerons process this lepton flavour asymmetry into baryon
asymmetry of the Universe (BAU). As explained in Sec. 3.3.1, in order to achieve
a non-vanishing value of BAU it is required that at the time of electroweak phase
transition two of the flavours of sterile neutrinos are equilibrated with their SM decay
products, but it is essential that the remaining flavour is not. Thus if the inequalities
(3.3.16) are satisfied, a BAU is produced ~ —np.. The baryon asymmetry can be
estimated as [133]
np 3 NLe

The observed value of the asymmetry is ng™/s = (8.75 4 0.23) x 107

First we would like to determine the range of the parameters in our model for
which the required baryon asymmetry is generated. In the neutrino sector we use the

standard Casas-Ibarra parametrisation [144] of the see-saw Dirac Yukawa couplings,

2
YPT = U,-/m, - R-VM x i, (3.4.46)
v
where m, and M are diagonal masses of active and Majorana neutrinos respectively,
and v = 246 GeV. The active-neutrino-mixing matrix U, is the PMNS matrix which
contains six real parameters, including three measured mixing angles and three CP-

phases. The matrix R is parametrised by three complex angles w;;.
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Figure 3.2: Left panel shows maximal values of Majorana masses in GeV for which
the wash-out bound in Eq. (3.4.47) can be achieved. The panel on the right shows
contours for the baryon asymmetry produced, normalised to the observed value.
Majorana masses used in 3.2(b) are taken from 3.2(a) for each value of Re[wq3] and
I'mwsys]. In both plots we vary Re[wss] and I'mwss] keeping other parameters of the

model fixed at indicative values as in Ref. [133], detailed in the Tables 3.1 and 3.2.

In our analysis we will choose and fix the values of m,, consistent with the solar
and atmospheric neutrino mass differences. We also choose a generic value for the
three CP-phases. We then vary the unknown complex angles w;; over the parameter
space. To keep things as simple as possible, we will choose a 2-dimensional subspace
on which we vary the real and imaginary parts of the complex angle w3, while
keeping w1 and wq3 fixed. For easy comparison, our 2-d slice of the w-space is the
same as in [133] (it can be read off Scenarios 1-3 and 5-7 in Tables 3.1 and 3.2
below). For completeness, we will also comment on the results of varying the other
complex angles and CP phases of the parameter space.

Different choices of the three Majorana masses will characterise different bench-
mark points. Since in our case the Majorana particle mass (we drop the subscript 0
in what follows) is M = YM(¢), there is an additional scale (¢) which we will vary

and specify?.

9Phenomenologically, it makes sense to use (¢) and M as the two independent parameters,

rather than, say Y™ and (¢).
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Figure 3.3: Superposition of the Majorana mass contours in GeV satisfying the
wash-out bound with the baryon asymmetry produced with shaded regions denoting

the required baryon asymmetry from Fig. 3.2

First we would like to determine the range of allowed values of Majorana masses
for sterile neutrinos. We start by considering the models where Ty, < (¢) which
is equivalent to the model with a majorana mass term in the Lagrangian. The
wash-out rates for the lepton flavours a = e, u, 7 are given by I',, and we require
that

T
= ZYDTYD%U(;—EWW) < 1. (3.4.47)

Figure 3.2(a) shows mass contours in GeV of the lightest Majorana neutrino flavour,

TE W

such that the wash-out rate =1 is achieved. This can be interpreted as an upper
bound on Majorana masses for which (3.4.47) is satisfied. Quite clearly from this
perspective it is straightforward to realise M in the region from a few 100 MeV to
above 30 GeV, or even up to a TeV. BBN constrains the lower limit to M > 200
MeV, so we have

200MeV < M S few x 100 GeV . (3.4.48)

For the model to be viable, we also need to produce enough baryon asymmetry.
Figure 3.2(b) plots the ratio ny/ng®. The baryon asymmetry here is computed using
Eq. (3.3.31) derived for the simple Majorana mass model [133], where the values of
M at each point on the parameter space are taken from Fig. 3.2(b). Below we will

also compute the asymmetry in the classically scale-invariant Standard Model x
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Figure 3.4: The wash-out rate (left panel) and the normalised baryon asymme-
try computed in the classically scale-invariant B — L model. The values of model

parameters are defined in the text.

U(1)p_r. To generate the observed asymmetry we need to be inside the +1 or -1
contours in Fig. 3.2(b).

Figure 3.3 depicts the superposition of the two panels of Fig. 3.2. It can be seen
that the required baryon asymmetry (the area inside the two shaded contours in

Fig. 3.3) is indeed generated in the above mass range.

Figures 3.2 and 3.3 were obtained by varying the real and imaginary parts of wag
while keeping other parameters fixed. We have also checked that desired amounts
of the wash-out and the baryon asymmetry are produced in sizeable regions of the
parameter space when other complex angles and CP phases are varied. In our
benchmark points described in the tables below, the fixed parameters were chosen

inside these regions.

In Table 3.1 we present our first four benchmark scenarios. The lepton flavour
asymmetry nr,/s with a = e, u, 7 in all four cases in this table is calculated using
Eq. (3.3.31) in the simple Majorana mass model in the formalism of [133]. We also
show the wash-out rates for the three flavours, I'y/H (Tgw) and the value of the
oscillation temperature.

In Scenarios 1, 2 & 3 we vary Majorana masses M; of sterile neutrinos from ~ 500

MeV (Scenario 1) through ~ 4 GeV (Scenario 2) to ~ 200 — 300 GeV (Scenario 3).
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Scenario 1 Scenario 2 | Scenario 3 Scenario 4

My 0.5 GeV 3.6 GeV 200.0 GeV 1.0 GeV
M, 0.6 GeV 4.0 GeV 250.0 GeV 2.0 GeV
M; 0.7 GeV 4.4 GeV 300.0 GeV 3.0 GeV
my 0.0 meV 0.0 meV 0.0meV 2.5meV
Mo 8.7meV 8.7meV 8.7meV 9.1 meV
ms 49.0 meV 49.0 meV 49.0 meV 49.0 meV
512 0.55 0.55 0.55 0.55
593 0.63 0.63 0.63 0.63
513 0.16 0.16 0.16 0.16

4] —m/4 —m/4 —m/4 T

(o%1 0 0 0 —T

Qs —m/2 —m/2 —m/2 T

W12 1+2.61 1+2.61 1+2.61 -14-1.51
W13 0.9+2.7i 0.942.7i 0.942.71 0.5+2.61
Wo3 0.3-1.5i -1.2i -0.05-0.9751 m-2.4
nre/(s x 2.5 x 10719) -4.4 -6.7 -5 -8.3
nr/(s x 2.5 x 10719) 39 32 108 32
nr./(s x 2.5 x 10710) -34 -25 -103 -24
Le/H(Tpw) 0.68 0.64 0.84 0.59
I',/H(Tgw) 68 290 1 x 10% 410
I,/ H(Tew) 220 920 4 x 10* 150
Thse 2x10°GeV | 5 x10°GeV | 10"GeV || 5 x 10° GeV
Table 3.1: Four benchmark points corresponding to different ranges of Majorana

masses.

For convenience, the values of active neutrino masses in these three scenarios are
chosen to be the same as in Scenario I in [133]. The same applies to the choices of
mixing angles. The main lesson of these benchmark points is to demonstrate the
range of variation of Majorana masses in (3.4.48).

The fourth Scenario in Table 3.1 is included for completeness as it reproduces
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Figure 3.5: Superposition of the wash-out rate < 1(inside the shaded ellipse) with
the baryon asymmetry produced from Fig. 3.4

Scenario II of [133] and has a different selection of active neutrino mass values from

Scenarios 1-3.

Having established the likely range of Majorana masses, we now proceed to the
analysis of the the classically scale-invariant Standard Model x CWpg_; where the
matter-antimatter asymmetry is computed using the formalism of Section 3.3.2.

The right panel of Figure 3.4 shows the baryon asymmetry (normalised to its
observed value) computed using Eqgs. (3.3.42)-(3.3.43). The values of Majorana
masses are chosen in the GeV range: M; = 3.6 GeV, My, = 4.0 GeV and M3 = 4.4
GeV, precisely as in Scenario 2 in Table 3.1. The value of the Coleman-Weinberg
vev is chosen (|¢|) = 10° GeV, which corresponds to a Higgs portal coupling of
Ap = % (12<5|§|;3V>2 ~ (.78 x 107%. To achieve the required BAU we must be either

below the +1 contour or above the -1 curve. This amounts to almost the entire area

of Fig. 3.4(b) being available.

The left plane of Fig. 3.4(a) shows the wash-out rate contours for the same choice
of parameters. Here we have to be inside the +1 ellipse for baryogenesis to succeed.
The superposition of this wash-out < 1 contour with the baryon asymmetry, calcu-

lated and depicted in Fig. 3.4(b), is shown in Fig. 3.5.

In the above example, we chose a relatively large CW vev, (|¢|) = 10° GeV, not
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Figure 3.6: Baryon asymmetry (normalised by the observed value) as a function of
(|¢]) for masses between 0.7 GeV and 4.7 GeV. The wash-out rates for the electron

neutrino flavour (all less than 1 as required) are also shown in the legend.

much below the value of T, = 5 x 10°> GeV computed for these GeV-scale values
of M;’s. As a result, we ended up with a rather small value of the Higgs portal
coupling, A\p ~ 1076,

A natural and important question to ask is how much freedom we have to lower
(l¢|) (and thus raise Ap) while keeping other parameters, such as the Majorana
masses fixed. Figure 3.6 plots the baryon asymmetry (divided by the observed
value) as the function of (|¢|) for the range of masses between 0.7 GeV and 4.7
GeV (from bottom to top). The figure also indicates the values of wash-out rates
I'e/H(Tew) < 1. The flat distributions on the right of the plot correspond to
values of (|¢|) reaching and exceeding the relevant values of temperature T,s. where
leptogenesis begins. These constant values of the generated baryon asymmetry agree
with those computed using the non-dynamical Majorana masses in the formalism
of [133] reviewed above in Section 3.3.1. To the left of the plateau on Fig. 3.6
there is a small dip followed by a broad peak which emerges largely due to the
first integral in (3.3.38). This integral describes the situation before the symmetry

breaking where the only source of mass for the right-handed neutrinos is due to
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thermal corrections. The smaller mass means that a larger asymmetry is generated.
The small dip is the reflection of the dip in the oscillation temperature T, in the
middle of Fig. 3.1(b).

Finally, to the left of the plot on Fig. 3.6, at small values of (|¢|), all contours
converge and tend to zero uniformly and independently of the values of M’s. To

understand this point, note that according to (3.3.42),(3.3.43),

(P Mer(|gl) m? My s
m~ T T 0, as () = 0, (3.4.49)

independently of M.

As a result, Fig. 3.6 shows that independently of the values of the chosen Majo-
rana masses, the contours cross the observed value of baryon asymmetry (normalised
at 1) for values of (|¢|) ~ 1.2 x 10 GeV. This gives Ap =~ 0.5 x 10~*.

Tables 3.2 and 3.3 detail three new benchmark points (Scenarios 5, 6 & 7) where
lepton flavour asymmetry is generated in the classically scale-invariant B — L model
with the Majorana masses in the GeV range. In these scenarios we successively lower
the vev of the Coleman-Weinberg filed (|¢|) from 10° to 3.4 x 10*> GeV. The second
column, Scenario 6 gives the values of the portal coupling A\p ~ 10~°, which is in
agreement with the presently available Higgs data constraints and can be probed by
the future experiments [82].

The third column (Scenario 7) in the Tables 3.2 and 3.3 enters the regime where
Ap approaches 1073, (To achieve this we brought the three Majorana masses closer
together relative to Scenarios 5 and 6, thereby introducing some fine-tuning.) We
also show the values of the Majorana Y™ and the average value of the Dirac Yukawa
<YD> couplings'® along with the ranges for gg_r., or equivalently, the Z’ vector boson
mass, and the self-coupling of the CW scalar. The lower bound on the Z’ mass in
Table 3.3 is the experimental bound My > 3.5 TeV, which is then translated into

the lower bounds on gg_j, via

mz = Q¢ gp-r(¢]) = 295-1(|4]) . (3.4.50)

The upper bounds on My in Table 3.3 follow from the requirement of perturbativity

19The latter is computed as the average of v/2mM /v.
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Scenario 5 Scenario 6 Scenario 7
(¢) 10°GeV | 2.5 x 10*GeV | 3.4 x 10° GeV
M, 3.6 GeV 3.6 GeV 3.96 GeV
Mo 4.0 GeV 4.0 GeV 4.0 GeV
M; 4.4 GeV 4.4 GeV 4.04 GeV
my 0.0 meV 0.0 meV 0.0 meV
Mo 8.7meV 8.7meV 8.7meV
ms 49.0 meV 49.0 meV 49.0 meV
512 0.55 0.55 0.55
S93 0.63 0.63 0.63
513 0.16 0.16 0.16
J —m/4 —/4 —7/4
o 0 0 0
Qs —7/2 —7/2 —7/2
W12 1+2.61 1+2.61 1+2.6i
W13 0.942.7i 0.94+2.7i 0.9+2.71
Wa3 0.3-1.51 -1.2i -0.04-0.9761
nre/(s x 2.5 x 10710) -18 -5 -6.6
nr./(s x 2.5 x 10710) 99 27 41
nr./(s x 2.5 x 10710) -81 -22 -34
I./H(Tew) 0.64 0.64 0.67
I'./H(Tgw) 290 290 304
L. /H(Tew) 920 920 960
Tose 10GeV | 7.5 x 10" GeV | 9.8 x 107 GeV

Table 3.2: Three benchmark points in the classically scale-invariant B — L model
corresponding to Majorana masses in the GeV range, with the values of the Coleman-

Weinberg vev (|¢|) = 10°, 2.5 x 10* and 3.4 x 10° GeV.

in the coupling ap_y < 0.1, which gives gg_1, S 1.1. For the CW self-coupling A4

the lower bounds are determined by the smallest possible value of gg_;,

33 33

4
>‘¢ = (Q¢'QB—L) = @

= o (295-1)". (3.4.51)
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Scenario 5 Scenario 6 Scenario 7

(¢) 10° GeV 2.5 x 10* GeV 3.4 x 103 GeV
Ap 8 x 1077 105 0.7 x 1073
yM 3.6 x107° 1.4 x 107 1.2 x 1073
YM 4x107° 1.6 x 1074 1.2x 1073
yM 4 x107° 1.8 x 107 1.2 x 1073
(YP) 4% 1078 4 %1078 4x1078
My | 3.5TeV < My <220TeV | 3.5TeV < Mz < 56TeV | 3.5TeV < My < 7.4TeV
9B-L 0.0175 < g < 1.1 0.15< gp < 1.1 0.5 <gpr <11
Ao 5x 107 < Ay 0.04 < Ay 0.4 < X\

Table 3.3: The range of coupling constants corresponding to benchmark points in

Table 3.2.

3.5 Conclusions

In this chapter we have shown that in a U(1)p_; CSI extension of the SM, it is
possible to generate the observed value of the matter-antimatter asymmetry. This
model needs right-handed neutrinos to cancel the anomalies in the new gauge group.
The matter antimatter asymmetry is generated via oscillations of right-handed Ma-
jorana neutrinos with masses in the window roughly between 200 MeV and 500 GeV.
The model also includes a B — L Z’ boson which has a current exclusion limit of

Mz > 3.5 TeV, but with a large discovery potential at the LHC [135].

The presently available Higgs data provide valuable constraints on the parame-
ter space of the model, and future experimental data on Higgs decays will further
constrain model parameters in the Higgs sector [82]. Additional experimental con-
straints will come from searches for sub-TeV-scale sterile neutrinos via a combination
of neutrinoless double beta decay, electroweak precision data, LHC searches and high
intensity frontier experiments (see e.g. [145,146] for recent reviews). At the high
intensity frontier, one can look for missing energy in meson decay, or in the appear-
ance of leptons at detectors along the beam-line if the right-handed neutrinos are

heavier than a few GeV. At the LHC, one can discover right-handed Majorana neu-
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trinos by looking for same sign dileptons as the Majorana mass term breaks lepton
number. All these experimental signatures and the relatively few new parameters

in the model make this a predictive BSM model.

These results support the BSM model-building strategy which is based on clas-
sically scale-invariant extensions of the SM with portal-type interactions involving
the Higgs field as well as other microscopic scalars. These theories can successfully

address the matter-antimatter asymmetry of the Universe.



Chapter 4

Higgs Vacuum Stability from the
Dark Matter Portal

The main motivation of this chapter, based exclusively on [2], is to study the link
between the stability of the electroweak vacuum and the properties of dark matter
in classically scale-invariant extensions of the Standard Model (CSI ESM). As for
all CSI ESM models, we expect expect a common origin of all mass scales, i.e. the
EW scale relevant to the SM and the scales of new physics. In this chapter we will
investigate extending the SM with a U(1), U(1)g_, or SU(2) gauge group with or

without adding an extra scalar singlet.

On a model by model basis, we will first determine the regions of parameter
space where the SM Higgs vacuum is stabilised and the extended Higgs sector phe-
nomenology is consistent with the LHC exclusion limits. Then we investigate dark
matter phenomenology, compute the relic abundance and impose direct-detection
constraints for vector and scalar components of dark matter from current and future
experiments.

Our discussion and computations in Sections 4.3 and 4.4 are based on the CSI
ESM model-building features and results derived in Section 4.1, and on solving the

renormalisation group equations in Section 4.2.

81
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4.1 CSI ESM Building and Generation of the EW

Scale

In this section we will describe all the CSI ESM models we are considering in this
chapter. We will start with a brief recap of the U(1) model from Section 2.3.2, and
then move on to the U(1)p_z, also considered in Chapter 3. Then we extend the
hidden gauge group to a non-Abelian SU(2) gauge group, before adding a singlet
scalar to the theory. For all these theories we will use the following for the SM scalar

potential

1
V(H)SM = _EﬂgMHTH + )\SM(HTH)z- (4.1.1)

4.1.1 CSI U(1)ey x SM

As we discussed in Section 2.3.2, in the minimal U(1) CSI extension to the SM the
Coleman-Weinberg mechanism dynamically creates a vev for @, a complex scalar
field charged under the hidden U(1). This vev is then transmitted to the SM via
the Higgs portal coupling, generating a negative mass-squared term for the Higgs
which will trigger EWSB. This theory is specified by the following tree-level scalar

potential

Va(H, ®) = \g(®T0)2 + Ny (HTH)? — A\p(HTH)(®T®). (4.1.2)
In the unitary gauge we are left with two real singlet scalars

1

V2

and a tree-level scalar potential of

H (Ov h) , P=—0, (413)

/\(0) /\(0) )\(0)

Vo(h, ¢) = Z ot + ff#— 41’ h2¢? (4.1.4)

where the superscripts indicate that the corresponding coupling constants are the

tree-level quantities.

The Effective potentials and running couplings in this chapter will always be

computed in the MS scheme. Following Section 2.3.2, we find the one-loop potential



4.1. CSI ESM Building and Generation of the EW Scale 83

in the hidden sector

4 4 2
Vi) = 2 Sl 1 (£) - 2) g

This dynamically generates a vev for ¢, and we get the characteristic relation be-

tween the scalar and the gauge couplings,

Mo = b At m=(9), (4.1.6)

and the mass of ¢ and Z’, the U(1) vector boson

M =2 (@) > mi= S (g) (4.1.7)

The SM scale p2,, is generated by the CW vev in the second term of equation
(4.1.2)

MgM = >‘P<¢>2 ) (4.1.8)
and this triggers in turn the appearance of the Higgs vev v.

The presence of the portal coupling in the potential (4.1.4) provides a correction

to the CW matching condition and masses

mn o, v?
_ _ 4.1.
>\¢ 16772 6CW _I_ /\P 2<¢>2 at /’l’ <¢> ( 9)
2 _ 3€w 2 2

in full agreement with the results of [82]. In this chapter, we consider small values
of Ap so that these corrections are negligible, since Apv?/(2(¢)?) ~ N3 /(4\g) < 1.

Our next task is to compute the Higgs mass including the SM radiative correc-
tions. To proceed, we perform the usual shift, h(z) — v + h(z), and represent the
SM scalar potential as follows,

A(O) MZ 1
V(h) = TH(U + h)* — ZM (v+h)*+ iAmi’SM h?, (4.1.11)

where for overall consistency we have also included one-loop corrections to the Higgs

mass arising in the Standard Model,

1

622 (6my + 3my +my — 24m}) ~ —2200 GeV?. (4.1.12)

2 _
Amh,SM =
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These corrections are dominated by the top-quark loop and are therefore negative.
The appearance of v? in the denominator of Am%?SM is slightly misleading, and it is

better to recast it as
Amj gy = 2AMgv?,  where Ay ~ —0.018. (4.1.13)

The vev v is determined from (4.1.11) by minimisation and setting h(x) = 0, and
thus the last term in (4.1.11) does not affect the value of v. However, it does
contribute to the one-loop corrected value of the Higgs mass. We have
A
v? = ﬁ 3?2, mi=22gv",  Ag =20+ Ar\; ~ 20 —0.018, (4.1.14)
2y
where Ay is the one-loop corrected value of the self-coupling.

As we saw in Section 2.3.2, h and ¢ both have vevs and hence mix via the mass

Dgv?  —y/2apAP?
M? = , (4.1.15)
—1/ 2)\13)\573)1)2 my

where m7 is given in (4.1.10) (and already includes the Ap correction)." The mass

matrix,

eigenstates are the two Higgs fields, h; and ho, with the mass eigenvalues,

1
Wi = (2AHv2 +m? £ \/ (2Am0? —m2)” + 8/\p)\(HO)U4) . (4.1.16)
The mass eigenstates h; and hy are given by

hq cos 8 —sin 6 h
= (4.1.17)

hs sin #  cos 6 )

with a non-trivial mixing angle #. The SM Higgs is the scalar that is ‘mostly’ the h

scalar (i.e. cos@xthe scalar coupled to the SM electroweak sector)

hsy == hy = hcos 8 — ¢ sin 0, mp, = 125.66 GeV . (4.1.18)

!The mass mixing matrix (4.1.15) is equivalent to the mass matrix derived in [82] which

2 2 2
mj, o + Amj, g —KMj, ¢

was of the form: M? = ) in terms of mio = 2)\53) v? and

2 2 2,2
—KMy, o my + K LU

m2,, = ek, (¢)2/(87%), with & = \/Ap/(2AD).
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The SM Higgs self-coupling constant, \gy, appearing in the SM Higgs potential
(4.1.1) can be inferred from mj = 2Xqv?, but it is not the relevant or primary
parameter in our model, A\ is.

In our computations for the RG evolution of couplings and the analysis of Higgs
potential stabilisation carried out in this chapter, we solve the initial condition
(4.1.18) for the eigenvalue problem of (4.1.15) numerically without making analytical
approximations. However, we show some simple analytic expressions to illuminate
our approach.

In the approximation where (8ApAYv1)/(2Agv? — m7)? is small we can expand

the square root in (4.1.16) and obtain:

Ap (A /Am) 02

mil = mi = 20°\y (1 + 2)\;22 — mé . for 2xp0? > mi, (4.1.19)
Ap (A [Air) v

mil = m? =208 \y (1 — :n(ilié)\iz];} > , for mi > 2\pv?. (4.1.20)

Note that our requirement of assigning the SM Higgs mass value of 126 GeV to
the ‘mostly h state’ selects two different roots of (4.1.16) in the equations above,
depending on whether the h state or the ¢ state is lighter. As a result, there is a
‘discontinuity of the SM Higgs identification’ with mj > 2v*\p in the first equation,
while m,%l < 2v%\y in the second equation. Similarly, the value of Ay is smaller or

greater than the perceived value of \gy, in the SM, in particular,

Ap (AR /An) v? ) )
s = A\g (1 - mi Y ,  for mg > 2Agv°. (4.1.21)

One concludes that in the case of the CW scalar being heavier than the SM Higgs,
it should be easier to stabilise the SM Higgs potential, since the initial value of Ay
here is larger than the initial value of the Ag, coupling and as such, it should be

useful in preventing Ay from going negative at high values of the RG scale.?

2This point has been noted earlier in the literature in [147,148], [111] in the context of assisting
the stabilisation of the SM Higgs by integrating out a heavy scalar. In our case the second scalar
does not have to be integrated out. In fact, the required stabilising effect arises when the second
scalar is not much heavier than the SM Higgs, which manifests itself in keeping the denominator

in (4.1.21) not much greater than the square of the EW scale.
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On a more technical note, in our computations we also take into account the fact
that the requirement of stability of the Higgs potential at high scales goes beyond
the simple condition Ay (x) > 0 at all values of i, but should be supplemented by the
slightly stronger requirement emerging from the tree-level stability of the potential
(4.1.4), which requires that Ay > A2 /(4\,).

In the following Sections 4.1.2-4.1.4, we extend the construction above to mod-
els with more general hidden sectors. First of all, the Gy Coleman-Weinberg sector
can be extended so that SM fermions are charged under Gy, and secondly Geyw
can also be non-Abelian. In addition, these CSI ESM models can include a gauge
singlet with portal couplings to the Higgs and the CW scalar field. In Sections 4.3
and 4.4 we will investigate the combination of constraints arising from the Higgs

vacuum stability, collider exclusions, and dark matter searches and phenomenology.

4.1.2 CSIU(1)p_, x SM

As in Chapter 3, we will extend the simple U(1) hidden sector to the B — L theory
originally introduced in [134]. The U(1)_r. X SM theory is a particularly appealing
CSI ESM realisation, since the gauge anomaly of U(1)g_;, cancellation requires that
the matter content of the model automatically includes three generations of right-
handed Majorana neutrinos. All SM matter fields are charged under the U(1)g_y,
gauge group with charges equal to their baryon minus lepton number. In addi-
tion, the CW field ¢ carries a B — Lh charge of 2 and its vev generates the Majorana
neutrino masses and the mass of the U(1)g_p, Z’ boson. The standard see-saw mech-
anism generates masses of visible neutrinos and also leads to neutrino oscillations.
The scalar field content of the model is the same as before, with H being a
complex doublet and & = \%(qﬁ + i¢9), a complex singlet under the SM. The tree-
level scalar potential is given by (4.1.2) which in the unitary gauge takes the form
(4.1.4). Our earlier discussion of the mass gap generation in the CW sector, EWSB
and the mass spectrum structure, proceeds precisely as in the previous sections, with
the substitution ecy — 2eg_p. The one-loop corrected potential (4.1.5) becomes:

12,6 5\ e
? 6 4

A 3
Vi(¢) = f& + o (2ep1)*0" (log

h*¢* . (4.1.22)
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Minimising it at u = (¢) gives the matching condition for the couplings, and the
expansion around the vacuum at (¢) determines the mass of the CW scalar field

(cf. (4.1.9)-(4.1.10)),

11, v?
)\¢ = F €e_1, + )\PW at o= <¢> (4123)
2 6ep_y, 2 2
my = 7<¢> + Apv (4.1.24)

in agreement with [1]. The expressions for the Higgs field vev, v, and the Higgs
mass, my, are unchanged and given by (4.1.14). The mass mixing matrix is the

same as in (4.1.15) with m? given by (4.1.24).

4.1.3 CSI SU(2)y X SM

One can also use a non-Abelian extension of the SM in the CSI ESM general frame-
work. In this section we concentrate on the simple case where the CW group is
SU(2), and for simplicity we assume that there are no additional matter fields (apart
from the CW scalar ®) charged under this hidden sector gauge group. This model
was previously considered in [111] and subsequently in [112]. The novel feature of
this model is the presence of a vector dark matter candidate, the SU(2) Coleman-
Weinberg gauge fields [111].

The classical scalar potential is the same as before,
Va(H, ®) = \g(®T0)2 + Ny (HTH)? — A\p(HTH)(DT®), (4.1.25)

where ® as well as the Higgs field H are complex doublets of the SU(2)qw and the
SU(2),, respectively. In the unitary gauge for both of the SU(2) factors we have,

1 1
H=—(0h), =
750h)

The one-loop corrected scalar potential (4.1.5) now becomes

0,). (4.1.26)

Vi(¢) = %aﬁ“ + Jow®' (bg gew?d” §) _ khnga (4.1.27)

1024 72 42 6 4

where gow is the coupling of the SU(2) CW gauge sector. Minimising at p = (¢)



4.1. CSI ESM Building and Generation of the EW Scale 88

gives:
A\ B e ¢ () (4.1.28)
= — _— a = 1.
? = 95612 Jow T PG5 a
9
ms = T gho (0)2 + Apv?. (4.1.29)

The Higgs mass is then again given by Equation (4.1.14).

4.1.4 CSI ESM & Singlet

All Abelian and non-Abelian CSI extensions of the SM introduced above can be
easily extended further by adding a singlet degree of freedom, a one-component real
scalar field s(x). Such extensions by a real scalar were recently shown in [121] to
be instrumental in generating the slow-roll potential for cosmological inflation when
the scalar s(x) is non-minimally coupled to gravity. The two additional features of
models with the singlet, which are particularly important for the purposes of this
chapter, are that the singlet portal coupling to the Higgs will provide an additional
(and powerful) mechanism for the Higgs stabilisation, and that the singlet s(x) is
also a natural candidate for scalar dark matter.

The gauge singlet s-field is coupled to the ESM models of Sections 4.1.1-4.1.3

via scalar portal interactions with the Higgs and the CW field @,
o )\Hs + 2 )\¢>s 1 2 )\s 4
‘/CI(Ha ¢,S> = TH Hs + T(I) ds + ZS + ‘/Z:I(Ha (D) . (4130)

Equations (4.1.2) and (4.1.30) describe the general, renormalisable and gauge-invariant
scalar potential for the three classically massless scalars as required by classical scale
invariance. The coupling constants in the potential (4.1.30) are all taken to be pos-
itive. Thus the potential is stable and the positivity of Ay, and A\ys ensures that
no vev is generated for the singlet s(x). Instead, the CW vev (¢) generates a mass

term for the singlet,

A Ags
m? = THUQ + % ()2 (4.1.31)

In the vacuum state we get the following values for the scalar fields: s =0, ¢ = (¢)

and H = 25 = /32 [(9)]-
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4.2 RG Evolution

To determine the regions of parameter space where the CSI ESM models have a
stable Higgs vacuum, we need to evolve the couplings in energy using the RG equa-
tions. In this section, we first specify the RG equations for all CSI ESM theories of
interest, with and without the additional singlet, and then fix the initial conditions
for the RG evolution.

Following this more technical build up in the present section, the Higgs vacuum
stability and collider constraints on the Higgs-sector phenomenology will be analysed

in Section 4.3.

4.2.1 Standard Model x U(1)cw

This is the simplest scale-invariant extension of the SM. The hidden sector is an
Abelian U(1) which couples only to the CW scalar (of charge 1) and no other matter
fields. We now proceed to write down the renormalisation group equations for this
model.

The scalar couplings Ag, Ay and A\p are governed by:

(47)? dcllngM —6y; + 2405 + Ap + A (12%2 - %gf — 995 — 393111)()
+%gi‘ + %gigf + 293 + zgigﬁnx
+%9f912nix + ggfnix (4.2.32)
(47)° dﬁ;ﬂ 2002 + 203 — 12)4 €2, + Geby, (4.2.33)
MW)QdﬁgPu = Ap (6y2 + 1205 + 8)y — 4Mp — 6e2, (4.2.34)
—%9% - gg% - ggrznix) - 3gr2nixe(23W .

(4.2.35)

The RG equation for the top Yukawa coupling, v, is

17

dy, 9, 17, 9
47)? =y | 2y — —=gF — Sg2 — 8¢5 — —g>.. | - 4.2.36
(47) Tlogn (Qyt 5091 ~ 792 ~ 895 — 15Ymix ( )




4.2. RG Evolution 90

Finally, ecw, gmix and g; denote the gauge couplings of the U(1)cw x SM, which obey
5 decw 1, 41

(4m) Jlog i~ 350w | Eecwggﬁx (4.2.37)
AP S (G + 200) + et (1239)
(4ﬂ)2d;lé;§# = —7g3 , (4.2.39)
(4W)2dffg2ﬂ = —%gé”, (4.2.40)

dgl 41
47)? = —q. 4.2.41

A characteristic feature of the Abelian ESM theory is gmi, the kinetic mixing of
the two Abelian factors, U(1)ow % U(1),,. For a generic matter field ¢ transforming
under both U(1)’s with the charges QY and QY, the kinetic mixing is defined as

the coupling constant g,,;c appearing in the the covariant derivative,

/3 .
Do = Oup + Z\/gngYAL/ + i(gmix @ + eew@) ALY (4.2.42)

Kinetic mixing is induced radiatively in so far as there are matter fields transforming
under both Abelian factors. In what follows, we will for simplicity choose guix(pt =

M,;) = 0 at the top mass.

4.2.2 Standard Model x U(1)g .

The RG equations in the B — L theory are the appropriate generalisation of the
equations above. These equations were first derived in [149], and they were also
discussed recently in [109]. In our conventions the RG evolution in the CSI U(1)g_y, X
SM theory with the classical scalar potential (4.1.2) is determined by the set of RG
equations below:

, d\y

(4) dosp — r.h.s. (4.2.32) (4.2.43)
(4#)2% 20\] + 2\ — 48X ep_p + 96ep_ — Tr((y™)"]

+8ATr[(y™)?] (4.2.44)
(A gt = v (0 + 120+ 83— dhe — 24, — 198~ 508 - Sa

+4Tr[<yM>21> 1o e (42.45)
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The Yukawas for the top quark and for the three Majorana neutrinos are evolved

via
dy; 9 17 2
4 2 — e 2 8 2 il 2_ _ = 2
5
3gm1x€B L) (4246)
2 dl/zM M M2 2
(47) dlogn Y (4(y")* + Tr((y™)?) — bes ) (4.2.47)

and the gauge couplings are evolved by Equations (4.2.41) together with
32 41

2 deg_y,

(47) dogr = 12¢2 |, + EeB L uix T € [ (4.2.48)
A i 41 6 16 3
4 2 mix - 2~ 2' <2
( ﬂ-) dlog,u 6 g (gmlx + 591) + 3 -L (gmlx + 591>
+12€5 1 Gumix - (4.2.49)

4.2.3 Standard Model x U(1)5_, @ Singlet

When discussing the Higgs vacuum stability, we will soon find out that the size of
the available region on the CSI ESM parameter space will depend significantly on
whether or not the theory includes an additional singlet field. We are thus led to
extend the RG equations above with an extra singlet.

The scalar self-couplings and portal couplings in this model are governed by the

following equations,

d\ 1
(47T)2d10§,u = r.h.s.(4.243) + 5)\?13 (4.2.50)
d\ 1
AT)2—L0 = phes. (424 ~\2 4.2.
(4m) oz 1 r.h.s. (4.2 4)—1—2)\5 (4.2.51)
d\
(47r)2dlogu = r.h.s. (4.2.45) — Agshes (4.2.52)
dg
(4ﬂ)2@ = 18\2 + A2, +2)\%,, (4.2.53)
d\ 9 2 9 2
2 M _ 2 _ 291 2%
—2ApAgs (4.2.54)
A
(4@2@ = s (120 + 60, + 40y — 18e2 ) — ddpAp,.  (4.2.55)

The rest of the RG equations are the same as before. The equations for the

Yukawa couplings are given in (4.2.46)-(4.2.47), and the equations for the gauge
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couplings are given by Equations (4.2.41) together with (4.2.48)-(4.2.49). As always,
we set gmix (= M) = 0.

Note that it is easy to derive a simple formula (Equation (4.2.58) below) which
computes the coefficients in front of scalar couplings on the right-hand sides of the

RG equations. First, let us write the classical scalar potential in the form

H=30 2@+ 3 e e, (4.2.56)

@ p<y’
where in our case ¢ = {h, ¢, s}, and the second sum is understood as a sum over
the three pairs of indices, (h, ), (h,s) and (¢,s). The notation ¢ denotes the
canonically normalised real components of the Higgs, h = (hi,...,hy), the complex
doublet ¢ = (¢1,...,¢4) and the real singlet § = s. In general we denote the
number of real components of each of the species of ¢ and N,. It is then easy to
derive an expressions for the scalar-coupling contributions to all the self-interactions
by counting the contributing four-point 1PI diagrams involving 2 scalar vertices. For

the beta functions of the self-couplings we get

d\ N -
MW)Q@ > 2(N, +8) A2 + ) 7“0 A (4.2.57)
B

and the portal couplings are governed by

2 d>‘w’

4
(4) dlog

5 Y 2ANGA2) A + > 2(NpH2) Mg A + Y N Apphprs 402,
¥ @’ @

(4.2.58)
This formula is valid for all of the CSI ESM examples considered in this chapter.

4.2.4 Standard Modelx SU(2).y

We can also write down the relevant renormalisation group equations for the classi-
cally scale-invariant Standard Model x SU(2)¢ theory with a scalar potential given

by Equation (4.1.25). These RG equations were first derived in [111,112]. For scalar
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self-couplings Ay and A4, and the portal coupling Ap we have:
d\y 9 27
4r)? —6y, + 2405 + 203 + Mg | 1207 — =97 — 995 | + =g
(4m) 1oz 6y; + 2477 + 220 + A (1247 — 297 =993 | + 5559
9 9
+og a9t + 503 (4.2.59)
4T o2 on2 Zga, g2+ Ogt 4.2.60
(W)m = o T 2Ap = IA9 Jow T gow (4.2.60)
d\ 9
(47)? dlogpu = Jdp (6y§ + 12Xy + 12X, — 4)\p — §ggw
9 9
50t - 593) , (4.2.61)
where the top Yukawa coupling obeys
dy 9 17 9
(47T)2d10gtu =y (gy? — 509~ 1% — 8g§) : (4.2.62)
and gew, 9321 are the gauge couplings of the SU(2)cwx SU(3) x SU(2) x U(1),
dgow 43 1 259
4r)P—" = ——gl — ——g 4.2.63
dg
(47r)2® = —74 (4.2.64)
dgg 19
dg1 41

where for the U(1) coupling we use the normalisation g7 = 2g3.

All running couplings are computed in the MS scheme, and furthermore we use

the physical freeze-out condition for the SU(2).y degrees of freedom at the RG scales
below their mass shell. In other words, the SU(2)¢y contributions to the S-functions

for gew, Ay and Ap will be set to zero when p < My = gcw ().

4.2.5 Standard Model x SU(2)., @ singlet

RG-equations for the three scalar self-couplings now take the form:

d\g 1 9
(4W)2dlogu = 6yl +24)0% +2)E + 5)\%18 + i (123/3 — ggf — 9g§>
27 , 9 5,5 9,
il = z 4.2.67
+20091 + 509291 + 392 ( )
(47r)2ﬂ VP NI COES U I Go + gg4 (4.2.68)
dlog,u o) P 97 s (e)%Y% ] cw
d)s
(4)? = 18A2 + 202, +2)\%,,, (4.2.69)

dlog
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and for the three portal couplings we have

d\p 9 9
47)? = A 24 12\ 120\, — 4\p — —g%.. — —q?  (4.2.
U Tog ’ (6‘% 1A+ 122 = AAp = g — g0 (4270)
9
_§9§> - )‘Hs/\d)s
d\ g 9 9
4r)? =25 = 2112 s — —g2 — =g2 4.2.71
W) og = A (6% A OA A A = 500 292) (42.71)
—4\p A ps
(47T>2 d)\¢8 >\d>s 12)\(;5 + 6)\5 + 4/\¢>s - 992 — 4)\P/\Hs . (4272)
dlog p 97w

4.2.6 Initial Conditions and Stability Bounds

To solve the RG equations and determine the RG evolution of the couplings of our

models, we first need to specify the initial conditions for all the couplings.

First, we specify the initial conditions for the SM coupling constants at M;: The

initial values for the top Yukawa coupling y; and the SM gauge couplings are taken

from [59],
ye(p = My)
gs(n = My)
g2 = My)
g1(p = My)

M, as(M,) —0.1184
0.93558 4 0.00550 —173.1 —0.00042
- (Ge\/ ) * 0.0007
My, — 80.384 GeV
—0.00042 =+ 0.00050 4.2.73
GeV o ( )
1.1666 (4.2.74)
as(M.,) — 0.1184 M,

0.00314 — 0.00046 —173.1
* 0.0007 GeV
0.64822 (4.2.75)

M, My, — 80.384 GeV
. 4 —173.1 .00011

+0.0000 (Ge\/ 73 ) +0.000 GV

5 M,

- (0.35761 + 0.00011 —173.1) — 4.2.76
\/; ( i (GeV ) ( )

My, — 80.384 GeV
0.00021 .
GeV )

In our numerical analysis we will always assume the central values for M; and My, .
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The CW portal coupling, A\p and the CW gauge coupling are taken as the two
free input parameters specifying the two-dimensional BSM parameter space of our
U(1) or SU(2) x SM theories. When an additional singlet field s(x) is present, the
input parameters also include Agg, Ag and Ags.

The input values of the two remaining couplings, the Higgs self-coupling Ay, and
the self-coupling of the CW scalar, Ay, are then determined from the value of the
SM Higgs mass and from the CW matching condition, (4.1.9), respectively. To find
Ay, we numerically compute the eigenvalues of the mass matrix (4.1.15), and set
my, = 125.66 GeV, as was outlined in Equation (4.1.18). We then iteratively solve
for Ag(n = M) by running it from the top mass scale to p = (¢), and checking that
we fulfil the CW matching relation (4.1.9) at the latter scale.

Having thus specified the initial conditions for all couplings at the low scale,
= M,;, we run them up to the high scale, u = Mp;, by numerically solving the RG
equations. To determine the region of parameter space where the Higgs potential is

stable, we check that the conditions
() Ap(p) > Xo(p),  Au(p) > 0, forall u < Mpy, (4.2.77)

arising from the positive definiteness of Equation (4.1.2), are fulfilled. We also
check that the model remains perturbative, requiring that all the scalar and gauge

couplings are bounded by an order-one constant all the way to the Planck scale,
Ai(p) < constO(1) =3, (4.2.78)

where for concreteness we chose a conservative numerical value of the upper bound

= 3; in practice our results do not depend significantly on this choice.

4.3 Higgs Physics: Stability and Phenomenology

It is well known that in the Standard Model, the Higgs self-coupling becomes neg-
ative at p ~ 10° GeV, making the SM Higgs potential unstable below the Planck
scale [59,150] (see also [151,152] for a review of earlier work). This effect can be
seen in Figure 4.1 which shows the solution of RG equations in the limit where all

Higgs portal interactions are switched off.
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Figure 4.1: RG evolution in the Standard Model. The Higgs self-coupling turns neg-
ative at p > 10° GeV, thus signalling that the SM Higgs potential becomes unstable
below the Planck scale. In this and all other Figures we use M; = 173.1 GeV.

For our classically scale-invariant extensions of the SM to be meaningful and
practical natural theories valid all the way up to the Planck scale, the Higgs potential
has to be stabilised.> There are two mechanisms, both relying on the Higgs portal

interactions, to achieve this:

1. The SM Higgs is the mixed mass eigenstate h; between H and the CW scalar
as dictated by Equation (4.1.18). As we explained at the end of Section 4.1.1,
in the case where the second scalar is heavier than the Higgs, my, > my,, the
initial value of the Higgs self-coupling Ay is larger than in the SM, cf. Equa-
tion (4.1.21), and this helps with the Higgs stabilisation [111,147,148].

2. The portal couplings of other scalars to the Higgs, such as Ap and Ay con-

tribute positively to the beta function of Ay as can be seen e.g. from the RG

3In this chapter we will concentrate on the more conservative case of absolute stability. An-
other phenomenologically acceptable possibility analysed recently in [59] is that the SM vacuum
is metastable, with a lifetime much greater than the age of the Universe. In that case one would
also have to argue why after reheating the Universe ended up in the metastable vacuum near the

origin, for example following the approach of [153].
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Figure 4.2: RG evolution in CSI ESM theories with (a) E = U(1)g_p, (b) E =
U(1l)g_r + s(x), and (¢) E = SU(2)cw. With these initial conditions the Higgs

coupling Ay stays positive and satisfies the tree-level stability bound (4.2.77).
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equation (4.2.67) in the SU(2)qy + scalar case, where 8, 3 203 + 3A%,,. This
effect (due in particular to the otherwise unconstrained but still perturbative
Ags coupling) will be instrumental in achieving the Higgs stability in models

with an extra scalar [154,155].

Examples of RG running for some specific input values of parameters for three
different classes of models which result in stable Higgs potential are shown in Fig-
ure 4.2. Cases (a) and (c) give an example of mechanism (1), and the model with
an additional scalar in case (b) is a representative of mechanism (2) at work.

In the rest of this section, we will quantify the regions of the parameter spaces
for individual models where the scalar potential is stabilised. We will also combine
these considerations with the current LHC limits applied to the extended Higgs

sectors of our Higgs portal theories in a model-by-model basis.

4.3.1 CSI U(1)ew X SM

In this theory mechanism (1) is operational for stabilising the Higgs potential in a
region of the two-dimensional parameter space of the model described by Ap and the
CW gauge coupling. As shown in Figure 4.3, we get a wedge shaped region inside
the black contour, inside which the Higgs potential is stable.

Higgs stabilisation in this region can be traced to the initial value of Ay being
enhanced compared to the SM due to mixing between h and the CW scalar field.
The wedge shape can be understood as follows. The upper edge of the wedge follows
the mass contour where my, > my, since the enhancement of the initial value of A,
only happens when my, > my, (see (4.1.21)). The mechanism is only effective when
the two masses are not too far from each other (cf. the denominator of the second
term in Equation (4.1.21)). The lower contour of the wedge signifies when the mass
difference becomes too large. The effect is enhanced when the off-diagonal element
is larger as we get more mixing. This explains why the stability wedge in Figure 4.3
is wider for larger values of Ap. We get an upper limit on esy & 0.9 since for larger
values we find a Landau pole before the Planck scale.

Higgs sector phenomenology of this model in the context of LHC, LEP, future

colliders and low energy measurements was analysed recently in [82]. In particular,
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Figure 4.3: Parameter space in the minimal U(1)cy x SM classically scale-invariant
theory. The black wedge-shaped contour shows the region of the (Ap, ecw) parameter
space of the model where the Higgs potential is stabilised. The dotted lines represent
contours of fixed values sin? § = 0.05, 0.1 and 0.2 of the Higgs mixing angle. Finally,

the colour-coding indicates the mass of the second scalar hy in GeV.

it was shown there that in the part of the parameter space where the second scalar
is light, 107* GeV < my, < my, /2, the presently available Higgs data (and specif-
ically the limits on the invisible Higgs decays) constrain the model quite tightly by
placing an upper limit on the portal coupling at A\p < 1075,

However, from Figure 4.3 we see that the Higgs stability in the minimal model
(and more generally in all portal models without additional scalar s(z), i.e. relying
on the stabilisation mechanism (1)) requires the second scalar to be heavier than the
SM Higgs, mp, > my, (see also Figures 4.4, 4.5). Thus Higgs stability pushes these
models into the region of the parameter space with a heavier second scalar, precisely
where the collider limits on invisible Higgs decays and on the non-observation of
other Higgs-like states are much less stringent.

Collider limits which do constrain the stability region in Figure 4.3 are exclusion
limits on the heavier Higgs production normalised to the expected SM cross-section

at this Higgs mass. In all Higgs portal models we consider in this chapter, the
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expected cross-section for the hy scalar is given by the SM cross-section multiplied
sin® # of the mixing angle. With the currently available ATLAS and CMS data, for
the search of the heavier Higgs boson at integrated luminosity of up to 5.1 fb=! at
Vs =T TeV and up to 5.3 fb~! at /s = 8 TeV, the observed signal strength in the
units of the SM cross-section for the heavier Higgs is roughly at the level of 107!,
or slightly above, as can be seen from plots in [156-158]. This gives an upper limit
on the mixing angle sin®6 < 0.1.

The contours of constant values of sin?6 = 0.05, 0.1 and 0.2 are shown on Fig-
ure 4.3 as dotted lines. As we can see for sin? @ < 0.1, there is no overlap left between
what is allowed by the collider limits and what is consistent with the Higgs stability
in this model. We thus conclude that the combination of the Higgs potential sta-
bilisation and the LHC limits on the heavier Higgs essentially rule out the minimal
U(1)cwx SM theory. This conclusion is based on a one-loop RG analysis with the
methodology we adopted for the initial values, and on the use of the central value
for the top mass. As such there is an intrinsic theoretical uncertainty in the exact
position and size of the wedge. By lowering the top mass from its central value by
1 GeV, the wedge in Figure 4.3 would touch the sin? = 0.1 contour, making the
model viable in a limited corner of parameter space.

Instead, to get a stable viable model with the current central value of the top
mass and without relying upon the sub-leading RG effects, we will simply extend

the theory by adding a singlet s(x) in Sections 4.3.3 and 4.3.5.

4.3.2 CSIU(1)y ., xSM

One way to extend the minimal model is to allow for interactions of the hidden
sector with the SM fermions. As we have seen already, a simple implementation
of this idea is described by the U(1)g_y, x SM classically scale-invariant theory. We
proceed to solve the RG equations in this model and search for a region of parameter
space where the scalar potential is stable, with the results shown in Figure 4.4.
The stability region in Figure 4.4 is shorter along the horizontal eg_p—direction
than in the minimal CW model of Figure 4.3 above. This is caused by the slope of the
B — L gauge coupling being steeper than for the minimal U(1)cw x SM theory, due to
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Figure 4.4: Parameter space of the U(1)g_yx SM theory showing the region where
the Higgs potential is stabilised and the sin? @ contours. The legend is the same as

in Figure 4.3.

the SM quarks and leptons which are now charged under the U(1)g_, gauge group.
We therefore get a Landau pole before the Planck scale if eg_y (1 = m;) 2 0.35, and
this shortens the allowed region.

The width of the stability wedge reflects the fact that in the B — L. model the
CW scalar ¢ has a B — L charge of two. Therefore, one would expect that the width
of the stability region for the B — L. model at a fixed value of the gauge coupling,
say at eg_y, = 0.3, should be of similar size to the stability region of the pure U(1)
CW sector at twice the value of the coupling, i.e. at ecyw = 0.6, which is indeed the
case.

Collider exclusion limits of sin? @ < 0.1 are indicated in Figure 4.4 as before by
the dotted lines showing contours of constant sin?# = 0.05, 0.1 and 0.2. We see
that the combination of the Higgs potential stabilisation and the LHC limits on the
heavier Higgs rules out also the U(1)g_r,x SM theory without an additional singlet.

In the U(1)g_r, model we also have a Z’ boson which couples to the Standard

Model fermions. The ATLAS and CMS experiments give lower limits for My of
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about 3 TeV [159,160]. This implies

2y

My =2eg_ (¢) = 2ep_1, S (4.3.79)
P
and therefore
21)\/ 2/\H
AV Ap < meB,L — )‘p 5 (01 eB—L)2 . (4380)

For eg_y, = 0.35 we find that A\p < 1073, which is clearly outside the stability wedge
of the B — L model. Therefore Higgs stabilisation in the minimal U(1)g_,, x SM

theory is also not compatible with the collider limits on Z’.

4.3.3 CSI U(1)p_ . x SM @ singlet

When we add a real scalar s(z) to the U(1)cw or U(1)g_x SM theory, the scalar
potential is stabilised by mechanism (2) which relies on a positive shift in the (-

function for Apy,

AHs
Bay 3 + g . (4.3.81)

We have checked that the stabilisation occurs on the entire (Ap,e) 2d parameter
space for values of Ay ~ 0.34 or above, as can be seen from the left table in Table

4.1.

4.3.4 CSI SU(2)y X SM

Solving RG equations in the non-Abelian CW theory coupled to the SM gives the
Higgs stability region shown in Figure 4.5 together with the sin? 6 exclusion contours.
The stability wedge is now shifted to larger values of gcw, as ¢ has an equivalent
charge of 1/2. From Figure 4.5, we conclude that the combination of the Higgs
potential stabilisation and the LHC limits on the heavier Higgs leaves a small corner

of the parameter space available in the minimal SU(2)cwx SM theory.

4.3.5 CSI SU(2)cw x SM & singlet

The Higgs potential in the SU(2)cwx SM model can be stabilised on the entire

2d plane (Ap, gew) by extending the model with a vev-less singlet s(x) portally
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AP €B_L  AHs AP Jow  AHs
107 0.1 034 107° 0.8 0.35
107 0.2 0.34 107 1.4 0.35
10— 03 0.33 10 2.0 0.35

0.0001 0.1 0.35 0.0001 0.8 0.35
0.0001 0.2 0.34 0.0001 1.4 0.35
0.0001 0.3 0.33 0.0001 2.0 0.35
0.001 0.1 0.35 0.001 0.8 0.34
0.001 0.2 0.29 0.001 1.4 0.35
0.001 0.3 0.33 0.001 2.0 0.35

Table 4.1: Minimal values of Ay, needed to stabilise the Higgs potential in the CSI
ESM @ singlet models with A, = 0.1 and Ay = 0.01. Left Table: U(1)g .. Right
Table: SU(2)cw.
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Figure 4.5: Parameter space of the SU(2)cw X SM theory showing the region where

the Higgs potential is stabilised and the sin? @ contours. The legend is the same as

in Figure 4.3.

coupled to the Higgs, as in Equation (4.3.81). The table on the right in Table 4.1
shows the critical value of Ay, for this stabilisation mechanism to work in the CSI

SU(2)cw X SM @ singlet model.
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Before we conclude this section, we would like to make one further comment. We
have shown that the minimal Higgs portal models without an additional scalar are
largely ruled out by the combination of Higgs (in)stability and the LHC constraints
(except for a small region of the parameter space still available in the non-Abelian
model). At the same time we showed that if these models include an additional
scalar field with a portal coupling A\gs ~ 0.35, the Higgs stability restrictions are
completely lifted and the models are completely viable.

The question arises if this conclusion would also apply to models without an
additional scalar, but instead with a relatively large Higgs-CW portal coupling,
Ap ~ 0.3, so that Sy, would instead receive a positive contribution from 2)3. This
approach would not work for the following reason: In order not to get a large mixing
angle sin®# > 0.1 in this case, we require that the second scalar is quite heavy,
mp, > 300 GeV. This in turn requires a large CW gauge coupling of gcw ~ 3.5. Such
a large gauge coupling leads to a large value for Ay at the scale of (¢). A4 therefore

develops a Landau pole already at low scales making the theory non-viable.

4.4 Dark Matter Physics: Relic Abundance and
Constraints

Having demonstrated that the Higgs sector can be stabilised and that it is in agree-
ment with all current observations, we now show that this framework can accom-
modate the observed dark matter density of the Universe. In the scenarios that we
have studied, there are two potential dark matter candidates. The first candidate
is a vector dark matter candidate [161-163] given by the triplet of gauge bosons,
Z!, of the SU(2)cw sector, considered recently in [111,112]. These particles have
the same mass, Mz, and are stable because of an unbroken global SO(3) ‘custodial
symmetry’ which also ensures that each component has the same relic abundance.

The second candidate is the singlet scalar particle, s, coupled to the Higgs through
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the Higgs portal.* This is a much studied dark matter candidate [43,44,165-170]
that is stable because of an automatic Z; symmetry of the classically scale-invariant
SM X Gey theory with the real singlet [121].°

Having argued that the vector triplet and scalar particles are stable and there-
fore potential dark matter candidates, we must calculate the relic abundance in
order to show that they can saturate, or form a component of the observed dark
matter abundance. We take Qpyh? = 0.1187 4 0.0017, the value inferred from
Planck+ WP+HighL+BAO data [22]. Owing to reasonable couplings to the Stan-
dard Model particles, the scalar and vector dark matter components are in thermal
equilibrium with the Standard Model degrees of freedom in the early Universe.
Their abundance is therefore determined by the thermal freeze-out mechanism. To
calculate it, we must solve the Boltzmann equation, which is [171,172],

dni
dt

eq?2 Nk eq e
+3Hn; = —(ouv) (n] —ny??) — Z(Uijkv> (ninj — Wniqnjq) , (4.4.82)

gk k
where n; is the number density of one component y; of the dark matter abundance,
(0;;v) is the usual annihilation cross-section term for reactions of the form x;x; —
XX, where X is a particle in equilibrium with the thermal bath, and (o;;,v) is the

cross-section for the semi-annihilation reaction x;x; — xxX.

4.4.1 Vector Dark Matter

We first consider the case of vector dark matter only, which is similar to Ham-
bye’s model [161], except that here there are no explicit p terms. This model is
interesting as it was the first example of a model containing both annihilation and
semi-annihilation processes, as shown in Figure 4.6.

The annihilation cross-section is dominated by the lower four diagrams of Fig-

ure 4.6, which contribute to the process Z;Z, — hyhy. The leading order terms

4Magnetic monopoles are also a possible third dark matter candidate [164]; we will come back

to this possibility in a SU(2) model with an adjoint scalar in Chapter 5.
°The s — —s symmetry of the potential Equation (4.1.30) is an automatic consequence of

scale-invariance and gauge invariance, which does not allow odd powers of H and ®.
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Figure 4.6:  The upper three diagrams show the process Z]Z: — Z; h,, which
is the dominant contribution to the semi-annihilation cross-section. The process
ZiZ} — Zyhy also occurs but is suppressed by tan? 0. The lower four diagrams show
the processes that dominate the annihilation of Z/Z!. Other diagrams are suppressed

by at least one power of sinf or Ap.

contributing to the non-relativistic (s-wave) cross-section from these diagrams are

11ggw — 60ggw)\¢ + 108)\3) cos* @ m}zl
HWU) = (@) 2 sinf, A
(is0) 23047 az, Y\ a0

(4.4.83)

In our numerical work, we include all sub-leading terms in this cross-section as
well as the contributions from Z!Z! — hihy, Z/Z! — ff, Z!Z! — WTW~ and
Z!Z! — 7970 all of which are suppressed by at least one power of sinf or \p.

The diagrams that contribute to the semi-annihilation process are shown by
the upper three diagrams in Figure 4.6. In the non-relativistic limit, the (s-wave)
cross-section for Z{Z} — Zhy is

392 cos? 0 m3, \ om;,  mh\°
(7iik0) = Togx 213, (1 B Yo Tomy) - (4SY

There is also a subdominant process Z;Z; — Z;hy whose cross-section is obtained
from Equation (4.4.84) by substituting my, — my,, and cosf — sinf. For com-
pleteness, we include this in our numerical work. Comparing Equations (4.4.83)
and (4.4.84), we observe that (o;;,v) ~ 5(c;;v) and therefore the semi-annihilation
processes dominate.

The global custodial symmetry ensures that the vector triplet is degenerate in
mass and each Z! contributes one-third to the relic abundance. That is the total

abundance n is related to the individual components by nz = 3n 71 = 3nz, = 3nz,.
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It should also be clear that (o11v) = (0220) = (0330) := (OV)ann and (o193v) =
(01320) = (09130) = (09310) = (03120) = (03210) := (0V)semi—ann- Lherefore, the

Boltzmann equation for the total abundance is

dn {(0V) ann

e 2(ov semi—ann e
—p T3y = —— (n% —n3?) — %nz, (ng —n%t) . (4.4.85)

We solve this equation numerically by the method outlined in [173].

The coloured regions in the upper and lower panels of Figure 4.7 show the total
relic abundance of the vector triplet as a fraction of the observed abundance. For
instance, in the lower left (blue) part of the upper panel, the abundance exceeds the
observed value and is therefore excluded. The thick black wedge indicates the region
where the Higgs potential is stabilised up to the Planck scale (as in Figure 4.5). We
see that for most of the wedge, the vector triplet contributes between 1% and 100%
of the total dark matter abundance. However, when we combine this with the LHC
constraint on sin? @, we see from Figure 4.7 that the vector dark matter component
contributes less than 10% to the total relic abundance, and we need to add another
dark matter component. The lower panel in Figure 4.7 shows the dark matter
fraction as a function of My and my,. We see that the My have to lie between
500 GeV and 1000 GeV for the model to have a stable Higgs vacuum.

Also shown in the upper panel are the direct detection current constraints from
LUX [174] and the projected limits from LZ [34]. At a direct detection experiment,
a vector Z! can elastically scatter with a nucleon N via exchange of hy or hy. The
resulting spin-independent scattering cross-section for this to occur is

. 2
Gow SI0” 20 JRmiyfigeq e (4.4.86)
167T ,02 mhg mhl

SI __
OoN =

where fi 1= (N > myqq)N/my ~ 0.295 is the Higgs-nucleon coupling [175], my is
the nucleon mass and feq is the vector-nucleon reduced mass. When setting a limit
from the experimental data, we account for the fact that the the vector triplet forms
a subcomponent of the total dark matter density over much of the parameter space
of interest. We make a scaling ansatz that the fraction of the local dark matter
density pz//ppm is the same as the fraction of the dark matter relic abundance

Qz /Qpy. After taking into account this scaling, the limits from LUX and LZ are
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shown in Figure 4.7 by the lines with the appropriate label. In the upper panel, the
regions above and to the left of the lines are excluded.

We have also checked that the when applied to the lower panel, the LUX exclu-
sion limit excludes the entire lower island. Therefore, while the current LUX limits
do not constrain the region where the Higgs potential is stabilised, the projected LZ

limit excludes all of this region.

4.4.2 Singlet Scalar Dark Matter

We have previously motivated the introduction of a real singlet scalar field to allow
the Higgs potential to be stabilised over a much larger range of the parameter space.
Providing a candidate to saturate the observed dark matter abundance provides a
second motivation. The two examples of CSI ESM with a U(1) Coleman-Weinberg
sector, which we have considered in Sections 4.3.1 and 4.3.2, do not have a dark
matter candidate. This is because the U(1)qw gauge boson is unstable, owing to
its kinetic mixing with hypercharge, and the only scalar field present, ¢cw, mixes
with the SM Higgs. The SU(2)cw sector does have a stable component in the form
of the Z] triplet, but we have seen (cf. left panel in Figure 4.7) that after LHC
constraints have been taken into account, the vector triplet can only account for
sub-component of the total dark matter abundance in the region where the Higgs
potential is stabilised. Therefore, in the case of an SU(2) extended Standard Model,
an additional dark matter component is also required.

We first study the case where the singlet forms all of the dark matter (as required
in the U(1) case) before turning to the case where it forms a sub-component (as
required in the SU(2) case).

In the CSI U(1)g_, x SM & singlet model, the ATLAS and CMS limit Mz 2 3 TeV
implies that \p, and therefore sinf, is small. As a result, the diagrams that dom-
inantly contribute to the total annihilation cross-section (ov)sann are those shown
in Figure 4.8. The Z, symmetry of this theory ensures that all semi-annihilation

processes vanish, so that the Boltzmann equation describing the evolution of the
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Figure 4.7: The coloured contours and the wedge-shaped regions in black in both
panels indicate when the vector triplet forms more or less than 100%, 10% and 1%
of the observed dark matter abundance, and the parameter values where the Higgs
potential is stabilised respectively. Also shown in the upper panel are the LUX and
projected LZ limits (the region above these lines is excluded), which account for the
fact that the dark matter is a subcomponent of the total density in much of the
parameter space, and the limit sin? = 0.1. The lower panel shows that the vector

mass should lie between 500 GeV and 1 TeV to improve Higgs stability.



4.4. Dark Matter Physics: Relic Abundance and Constraints 110

EIEN s hihe s W2 s — = = = = = h,hy s — — — ; Tashy
N 7/ N\ \ /
N N ha ! ! N/
X - - s !
/\
7/ AN 7/ | | y N
e N e
s 7 N hyhe s 7 Fwsz00s ——— L phy s — — =V N By hy
Figure 4.8:  The leading contributions to the scalar annihilation cross-section

(0V)s.ann- Other diagrams are suppressed by at least one power of sin 6.
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Figure 4.9: Scalar dark matter (ms, Ags) plane in the CSI U(1)g_p, x SM @ singlet
model. The solid lines show the fraction of the total DM density the scalar singlet
makes up. The dotted lines show the direct detection constraints from LUX and the
project limits from LZ. In the shaded region the extra singlet does not stabilise the

Higgs potential.

scalar number density n, is the usual one:

dng
dt

+ 3Hng = —(00)s ann (n2 — n4?) . (4.4.87)

S

The main parameters of our singlet dark matter models are the scalar dark matter
mass, ms, and its coupling, Ay, to the Higgs field. We solve the Boltzmann equation
numerically, and the results are displayed in Figure 4.9 on the (ms, Ags) plane. In
this figure, we have initially fixed ez = 0.3 and A\p = 5 x 107* resulting in a
mixing angle # ~ 5 x 1073 and mass Mz = 3.6 TeV. When e5_,, and \p are chosen

so that My lies above the bounds from direct searches by ATLAS and CMS, we



4.4. Dark Matter Physics: Relic Abundance and Constraints 111

find that the positions of the lines are not sensitive to the values of eg_; and Ap.
The coupling constant A\gs can be traded in for m? (cf. Equation (4.1.31)) so that
the only remaining free parameters are mg and A\y; (the quadratic coupling A plays
no role in the Born-level freeze-out calculation). For each value of myg, the value of
A that gives 100%, 10% or 1% of the observed dark matter density Qpy is shown
in Figure 4.9. The region below Ay ~ 0.34 is excluded because for these values of
Ags, the real scalar does not help to stabilise the Higgs potential (cf. Table 4.1). We
also impose that Ags < 1 in order that Ay, does not develop a Landau pole before
the Planck scale. For the singlet scalar to saturate the observed dark matter density,
we find that its mass should lie in the range between 1 TeV and 3.2 TeV. In this
range, the annihilation channel ss — Z’'Z’ is not allowed kinematically, justifying
its exclusion from the diagrams in Figure 4.8.

Finally, we also show the current direct detection constraints from LUX and the
projected limits from LZ. The scalar can scatter at a direct detection experiment
through a t-channel exchange of h; and hy, and the resulting spin-independent
scattering cross-section to scatter off a nucleon N is

22 40 f2m2 2 Abs 2 Aps i
oS = s CO8™ 0 MY e [1—tan9( ¢ _m’”( ¢ +tan6>)] . (4.4.88)

2,4 2
4 mzmy,, AHs my, Ais

As in the case of the vector triplet, we account for the fact that the scalar makes
up a sub-component of the dark matter in much of the parameter space. While the
current LUX limit constrains low values of m, where the scalar density {2, is very

low, the projected LZ limits should constrain the full parameter space of interest.

4.4.3 Scalar and Vector Dark Matter

Finally, we consider the CSI SU(2)cwx SM @ singlet model in which the dark
matter is comprised of both the singlet scalar and vector triplet. In this case we
solve the Boltzmann equations (4.4.85) and (4.4.87) as before, but we now include
the annihilation process ss — Z!Z! or the reverse process, depending on which is
kinematically allowed.

Figure 4.10 shows the results on the (gew, Ap) plane for Ay, = 0.36 and Ay, = 1.0

in the upper and lower panels respectively. The coloured contours indicate the values
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Figure 4.10: The plots show the available parameter space where the scalar and
vector dark matter together make up the total dark matter density in the CSI
SU(2)ew x SM @ singlet model. The colour-coded regions show the scalar dark
matter mass in GeV. In the white regions the combined density is either larger or
smaller than the observed dark matter density. In the upper plot we fixed Ay, =
0.36, and in the lower plot Ay, = 1.

of m that is chosen to give a total density of vector and scalar dark matter saturating
the observed value, i.e. Q7 + €, = Qpum. There is a limited portion of the parameter
space in which the vector and scalar make up all of the dark matter, and this region

is smaller in the case where Ay, is bigger. These results can be understood with
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reference to Figures 4.7 and 4.9. From Figure 4.7, we observe that in the upper
right corner of the upper panel, the vector density is very small, so that the scalar
should make up most of the density. From the lower panel, we also see that in
this region, Mz < 1 TeV, which because g ~ 2, implies that (¢) < 1 TeV. Now,
from Figure 4.9, we see that for Ays = 0.36, we require mg =~ 1 TeV in order that
Qs ~ Qpy. However, given that m? =~ \g|(#)|?/v2 (cf. Equation (4.1.31)), we

2 1, in which case it develops

~Y

see that we cannot achieve m, ~ 1 TeV unless Ay,
a Landau Pole before the Planck scale. Figure 4.9 also allows us to see why the
parameter space is smaller for a larger \g,. This is because the value of mg that is
required to obtain €5 & Qpy is larger for a larger Ay, and this is more difficult to

do, again because of the perturbativity restriction on Ag.

2000:

Ape =0.36

1500F o i

1000p

mhz [GeV]

500r o my <250 GeV
. 250 <m, <500
500 <m, <750
750 <m, <1000

1000 <m, <1250

0 1000 2000 3000 4000 5000

M, [GeV]

Figure 4.11: The region on the mass plane (M, my,) where the combined density
of the scalar and vector dark matter equals the observed dark matter density. The
colours show the scalar dark matter mass in GeV and in the white regions the
combined density is either larger or smaller than the observed dark matter density.

Here, we have fixed Ay, = 0.36.

Figure 4.11 shows the vector and Coleman-Weinberg scalar mass, and contours
of the scalar mass in which the total density is saturated. This plot has Ay, = 0.36.

We see that both the vector and the scalar are required to be around the TeV scale.
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4.5 Conclusions

Classically scale-invariant extensions of the Standard Model constitute a highly pre-
dictive and minimal model building framework. In this CSI ESM set-up, all mass
scales have to be generated dynamically and should therefore have a common origin.
These models have to address all the sub-Planckian shortcomings of the Standard
Model. In this chapter, we have analysed the CSI ESM theories from the perspective
of solving the instability problem of the SM Higgs potential and at the same time
providing viable dark matter candidates.

In simple CSI models with Abelian hidden sectors, we identified regions of pa-
rameter space where the SM Higgs potential is stabilised all the way up to the Planck
scale. These are the wedge-shaped regions in Figures 4.3 and 4.4. When combined
with LHC constraints on heavier Higgs bosons, we found that these regions did not
survive (see dotted lines in Figures 4.3 and 4.4).

In the case of a non-Abelian SU(2) hidden sector in Figure 4.5, a small part of
the parameter space with the stable Higgs potential is compatible with the LHC
constraints.

We then argued that by adding a real scalar singlet with a portal coupling to
the Higgs Ay, = 0.35, all of our CSI ESM models have a stable Higgs potential and
are consistent with the LHC exclusion limits on extended Higgs sectors.

For Abelian models the singlet, of mass my, is the only dark matter candidate,
and Figure 4.9 shows the available parameter space on the (mg, Agys) plane. If this
singlet contributes 100% of the total observed dark matter density, its mass lies
between 1 TeV and 3 TeV. The LUX direct detection limits do not yet constrain the
model, however the projected reach of LLZ would cover all of the viable parameter
space.

In non-Abelian models we have two possible components of dark matter: the
singlet and the hidden sector SU(2) gauge bosons, Z!. Without the singlet, the
combination of Higgs stability and LHC constraints implies that vector dark matter
contributes less than 10% of the observed relic density, as can be seen in Figure 4.7.
Thus, to saturate the dark matter density and stabilise the Higgs potential, we are

required to have a singlet dark matter component. Finally, we have investigated the
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phenomenology of two-component dark matter. The viable regions of parameter
space are shown in Figures 4.10 and 4.11. Typically, both components have a mass
close to 1 TeV.

We see that CSI ESM models are viable and predictive. They provide a non-
trivial link between the electroweak scale, including the Higgs vacuum stability,
and the nature and origin of dark matter. Furthermore, future dark matter direct
detection and collider experiments will be able to explore a significant fraction of

their parameter space.



Chapter 5

Dark Matter Monopoles, Vectors
and Photons

In this chapter, based on [3], we will continue to investigate models where the SM
is extended with a hidden or dark sector. This sector only couples to the SM via a
Higgs portal, and we are interested in dark sectors that include dark matter particles.
In Chapter 4, we saw examples of scalar and vector boson dark matter candidates.
If the dark sector is of the Georgi-Glashow type, with non-Abelian gauge groups and
adjoint scalars, 't Hooft-Polyakov monopoles [176,177] will be part of the particle
spectrum of the theory.

The motivation of this chapter is to investigate the cosmological consequences
of magnetic monopoles in the dark sector. We will determine if monopoles can
contribute to the observed dark matter relic density, and how large their contribution
could be. It will also be very important to discuss which additional features emerge
from a dark sector for it to be able to support monopoles. Therefore, we will consider
the cosmological and phenomenological properties of a minimal and complete model

based on a SU(2) dark sector with an adjoint scalar.

The cosmological production rate of magnetic monopoles and their contributions
to dark matter were discussed previously [178]. We will incorporate these results in
our analysis. More recently, dark sector monopoles and vector bosons were consid-

ered in [179], with the authors of [179] concluding that the monopole contribution to
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the dark matter density should be negligible. This does not agree with our findings

in Section 5.2.

The chapter will be organised as follows: in Section 5.1 we introduce the model
with monopoles, and discuss issues regarding dynamic mass generation. The model
will necessarily include massless hidden sector photons. In Section 5.2 we will discuss
cosmological constraints on this dark radiation. We then move on to calculate the
dark matter relic density of both monopole and vector boson dark matter in Section
5.3. Due to the unbroken U(1) remaining in the dark sector, the dark matter will
have long range self interactions. We discuss the inconsistencies at small scales in
the cold collisionless dark matter (CCDM) framework, and how the self-interacting

dark matter in our model could help explain these problems in Section 5.4.

5.1 The Model

Consider the Standard Model extended by a hidden (a.k.a. dark) sector which
contains an SU(2), gauge group and a scalar field ® in the adjoint representation

of SU(2)p. ' The Lagrangian for the dark sector is:

1 . T

L, = _éTrF;wF W4 Te(D,®(D*®)) — A\ Tr(®dN)2 + m? Tr(0d'), & = buy-
(5.1.1)

F,, is the field strength of the SU(2), gauge field Aj, = A;f%, the covariant deriva-

tive is D, ® = 0,® +igp[A),, ], where g,, is the gauge coupling, and 0,1 23 are the
Pauli matrices.

The ®-field also couples to the SM via the Higgs portal interaction,
Lyp = A\p(HH)Tr (7). (5.1.2)

In the absence of other matter fields in the dark sector, this is the only interaction
between the SM and the dark sector. In particular, there is no kinetic mixing

between the non-Abelian dark sector SU(2), and the SM gauge groups.

IThis is the simplest model containing topologically stable monopoles. More complicated
models with gauge groups of larger rank would be possible, but this simple model captures all the

main features of models with dark matter monopoles
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The scalar potential in our dark-sector Lagrangian (5.1.1) contains a negative
mass-squared term, —m? Tr(®®T), for the adjoint scalar. This will lead to a a non-
trivial vacuum (®) # 0 which breaks the SU(2), gauge symmetry to U(1),. Using

gauge freedom, we can set

(@) = (¢3) % . where  {(¢3) = w =m/\/ Ay (5.1.3)

After symmetry breaking in the dark sector, we get two massive gauge bosons W
with mass My~ = gpw, one massive scalar my = v2m and one massless gauge

boson +'. SU(2), has been broken, but an unbroken U(1), gauge group remains.

The effect of symmetry breaking is communicated from the dark sector to the
SM via the Higgs portal interaction (5.1.2), which can generate the p?,, term in the
SM effective potential,

1
V(H)sas = =550 HH + Ao (HHT)?. (5.1.4)

If p2,, was absent at tree level, the dark sector will generate a contribution p?,, =

Ap{(|®])?, and triggers electroweak symmetry breaking with the Higgs vev and mass,

]

In the next section, we will see that the dark sector will include magnetic monopoles.
In addition there are two other components of cosmological significance; dark pho-
tons +' and dark massive vector bosons W.. Massless 7' photons will contribute
to the density of radiation in the Universe, and the massive W/ together with the

magnetic monopoles will be the dark matter candidates in our model.

5.1.1 Monopoles

Magnetic monopoles are objects with a net magnetic charge. One can easily extend

Maxwell’s equations to include magnetic charge

V-E = drp, (5.1.6)

V-B = Amp,

VxE = ——ur——J,
c Ot c
10F Anx
VxB = —+—1/J,,
x c Ot + c
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where £ and B are the electric and magnetic field, p. and p,, the electric and mag-
netic charge density, and J, and .J,, the electric and magnetic current. No magnetic
monopoles corresponding to the SM U(1) gauge group have ever been discovered.
In 1931, Dirac [180] introduced the first magnetic monopoles in a quantum theory.
He studied magnetic monopoles in a U(1) gauge theory, and discovered the famous

result that product of magnetic charge, g,,, and electric charge, g., is quantised
ImGe = 27N . (5.1.7)

Dirac’s monopoles are divergent towards the centre of the monopole and there-
fore not well behaved states in QFT. In 1974, Polyakov and ’t Hooft independently
discovered how to get viable magnetic monopoles in quantum field theory by consid-
ering a SU(2) theory with an adjoint scalar [176,177]. At long distances these SU(2)
monopoles behave exactly like the Dirac monopoles, but they have a complicated

SU(2) structure at the centre which smooths out the divergences.

For the potential to be bounded, we need |®|> = m?/,/\s at the two-sphere at
infinity. This makes the Higgs field a map from S? — 52, so it has a conserved
topological charge, N. This topological charge makes the monopoles stable and it

also gives the magnetic charge of the monopoles

4
gm = —N. (5.1.8)
(&

Monopoles are stable, extended particle like field configurations. Their mass is

bounded from below by the Bogomolny bound [181],

, (5.1.9)

When Ay — 0, we get BPS monopoles, which saturates the Bogomolny bound for

the mass. More generally, away from the BPS limit, the monopole mass is given by
M, = Ai‘”z‘)” f(Ms/g?) where f is a smooth monotonically increasing function from

f(0) =1 to f(oo) =~ 1.787, see e.g. [182]. We will therefore use the Bogomolny

bound as a reasonable approximation for the monopole mass for all values of 4.
We will be interested in the possibility that monopoles can make up dark matter.

Some additional applications of monopoles to dark matter physics were discussed
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in [183] where TeV-scale monopoles in a hidden sector gave a decaying dark matter
candidate due to a small kinetic mixing and a hidden photon mass. In our settings
there are no heavy messenger fields between the two sectors to induce the kinetic
mixing and the monopoles are stable. In [184] it was pointed out that there is
a region of parameter space in supersymmetric models where invisible monopoles
can be the dark matter. On the opposite side of the spectrum, [164] considered

galaxy-sized 't Hooft-Polyakov magnetic monopoles.

5.1.2 Mass-Scale Generation

What is the origin of the m? term in (5.1.1)?

(1.) We can choose to make the full theory classically scale-invariant (CSI). In
this case all input mass scales of the classical Lagrangian are set to zero, and thus
m? = 0. The vacuum expectation value (®) = w # 0 is then generated radiatively
via the Coleman-Weinberg (CW) mechanism [79]. In Section 5.1.3 we outline how
this works in massless Georgi-Glashow theory. The dark gauge symmetry is broken
by (®) and this can be recast as generating an effective m? term in (5.1.1) in the
CSI Standard Model x SU(2), theory. This is a minimal scenario where dynamical
mass generation occurs directly in the dark sector, i.e. we have identified the mass-

scale-generating sector with the dark sector, SU(2)cw = SU(2)p.

(2.) A complementary approach is to keep the mass-scale-generating sector
and the dark sector distinct. Then interactions between the two sectors would
transmit the mass scale from the mass-scale-generating sector to the dark sec-
tor. For example, in CSI settings we can think of a SM x SU(2), X Gy model,
where Gy is the Coleman-Weinberg gauge sector which generates the vev (o)
for the CW scalar field. This radiatively generated scale is then transmitted to
the dark sector scalar and to the SM Higgs field via scalar portal interactions,
Lportal D Aewn |Pow|? Tr(POT) + Xows |@ow|? (HTH) such that Aewp [(@ow)|? = m?

in (5.1.1).2 In the above, Gy is an example of the mass-generating sector. In

2In this scenario the induced SM Higgs mass parameter in (5.1.4) is p2,, = Aows (|pew|)? +

Ap(|®])?.
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general, it does not have to be reliant on the CW mechanism, as the mass scale
can arise from any dimensional transmutation-type dynamical argument, including

a strongly coupled sector.

(3.) It is equally possible to treat m? as an input parameter and not consider

CSI at all, without invalidating any of the cosmological arguments that will follow.

Our reason for distinguishing between the first two classes of models is the effect
on the cosmological production of magnetic monopoles. The monopole production
rate [185,186] will depend on the nature of the phase transition in the dark sector
when the temperature in the early Universe falls below the critical temperature of
SU(2)p. In the Coleman-Weinberg sector the phase transition is first order, while
in the Standard Model sector the electroweak phase transition is very weakly first
order or second order [84,187,188]. The distinction can be traced to the value of
the scalar self-coupling constant: in CW models A is small relative to the gauge
coupling (resulting in CW scalar masses being one-loop suppressed relative to W’
masses); in the SM this is not the case, with the Higgs being heavier than W and
Z.

5.1.3 Coleman-Weinberg Mechanism with an Adjoint Scalar

In this section we will show how an adjoint scalar in a SU(2) CSI extension of the
SM will dynamically acquire a vev via the Coleman-Weinberg mechanism [79]. The
classically massless SU(2) theory with an adjoint scalar (5.1.1) was in fact one of
the examples considered in the original paper of Coleman and Weinberg [79]. In a
gauge where ¢1 9 = 0, ¢35 = ¢, they find a contribution from the gauge bosons to the
effective potential of the form

Vi = 33;%2 & (log % - %) . (5.1.10)

This is twice the result of the Abelian U(1) case as there now two massive vector

bosons, W.. This is also to be compared with the case of SU(2), with a funda-

mental scalar, considered in Section 4.1.3, where all three gauge bosons got a mass.
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Combining the one-loop expression (5.1.10) with tree level potential we get

_ Ao 395 . ¢’ 25

which has a non-trivial minimum with a vev for ¢ when

11
Mo((8)) = 55 95((0)- (5.1.12)
With the adjoint scalar acquiring a vev, the SU(2),, gauge group is broken to U(1)),,
and we end up with two massive gauge bosons W1, a massless gauge boson 7/, and
one massive scalar field ¢ = ¢3, neutral under U(1), . The masses are given by

395(0)*

472

My = gp(9), mj = (5.1.13)

As for all the other CSI extensions of the SM considered in Chapter 4, the vev of ¢
is transmitted via the Higgs portal coupling to the SM, triggering EWSB. The two

neutral scalars will again mix with each other.

5.2 Dark Radiation and N.g

The massless dark photon, 7/, that remains after the breaking of SU(2), to U(1),
is a new relativistic particle. In this section we will determine the contribution of
~" to the effective number of relativistic degrees of freedom and apply experimental

constraints.
During both Big Bang Nucleosynthesis (BBN) and recombination the evolution
of the Universe depends on the density of relativistic particles,

2
s
pra = gx(T) X %T‘*, (5.2.14)

where g, counts the number of all relativistic degrees of freedom. Following standard
notation (see e.g. [189] for more detail) g, is given by
TN 4
(1) = Y Cig x (7> | (5.2.15)
mi<T
where the sum is over all degrees of freedom, T; and m; are the temperature and the

mass of particle 7, the coefficients are C; = 1 for bosons and C; = 7/8 for fermions,
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and g; denotes internal degrees of freedom (e.g. for SM photons g, = 2, counting
two transverse polarisations, and for each flavour of SM neutrino g, = 2). This

expression is conventionally rewritten in terms of the effective number of neutrinos,

Neﬁ‘:
7 T,\* 7 4\3
. = ~ g, N, V) —924 SoNg (— 2.1
g 97+89 HX(T) +8 H(ll) (5.2.16)
AN ~ 2.2 Ag,. (5.2.17)

In the Standard Model, N.g = 3.046 and not N, = 3, due to non instantaneous
annihilation of electrons and positrons. Any new relativistic particles from BSM
theories would increase Ngg, making it a useful probe of new physics. Recently the
Planck Collaboration found Ne.g = 3.30 & 0.27 at the time of recombination from
a combination of CMB and Baryon Acoustic Oscillation data [22]. There is also a

limit on Neg from Helium abundance at BBN (T=1MeV), Neg = 3.24 + 1.2(95%).

~" is a relativistic particle and contributes to Neg. If the dark photon was in

thermal equilibrium with the SM photon, 7., = T, then Equation (5.2.15) would
give Ag, = 2, leading to AN.g ~ 4.4, which is ruled out by the Planck data.

However, this is not what happens in our case where the SM and the hidden
sector have no direct mediators and interact only via the Higgs portal. The two
sectors will lose thermal contact after the SU(2), phase transition to the broken
phase and before BBN. The interactions between dark photons and the SM will have
to proceed through +' coupled to virtual W’ bosons, which in turn are coupled to
virtual scalars ¢ which have a small mixing with the SM Higgs through the Higgs
portal coupling. This interaction rate will be negligible with respect to the Hubble
constant, I' < H = T?/Mp},, and the hidden sector will be colder than the SM.

Following [189], we will model this situation in terms of two sectors that had
the same temperature when all the degrees of freedom were relativistic, and then
decoupled at temperature Tp. The temperature, Ty, is the temperature at either
recombination or BBN. Assuming that entropy is conserved within each sector we

have,
ST T g (D) TS,
g (Tp) T} 9 (Tp) T}’

(5.2.18)
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where the superscript h refers to the hidden sector and sm to the Standard Model.
The number of relativistic degrees of freedom, g¢,s, making up the entropy in the

Universe is given by the expression (cf. Equation (5.2.15)),

gs(T) = Y Cigi <§>3 . (5.2.19)

m;<T
In the hidden sector g%, counts only +' plus relativistic particles that will decay into

~'. Hence,
ng(TD) =2 +n and gﬁs<T§BN) = gils(TgMB) = 2’ (5220)

where n denotes the number of relativistic particles in the hidden sector, in addition
to the two polarisations of 7/, at the time when the two sectors decouple (i.e. before
the phase transition to the broken phase). The number of SM degrees of freedom

at the decoupling temperature is
g (Tp) = 106.75, (5.2.21)
and at the time of measurements,

7
G (Tpon) = 2, + gl + (3% 2),) = 10.75, (5.2.22)

7 4
g (Tears) = 2, + (3.046 X 2), x 7 = 3.94. (5.2.23)

From Equations (5.2.17), (5.2.15), (5.2.18) we deduce ANyg at the time of mea-
surement (BBN or CMB),

Th\*
ANg(Ty) = 22A00.(Ty) = 22x gy x | 2L ) = 44 x
iy h

(5.2.24)

so that
ANeg(Topp) = 0.022 x (2 +n)*/3 (5.2.25)
AN (Tppy) = 0.08 x (2 +n)*2, (5.2.26)

In a model with only a dark photon in the hidden sector, we would have n = 0,
leading to ANeg(Tonp) = 0.05 and ANeg(Tpn) = 0.2, which is very similar to the
result in [190].
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We can now get a limit on the number of degrees of freedom, n, in the dark
sector which annihilate into 7/.3 Since the neutral scalar, ¢, does not couple to the
dark photon, the lowest value of n we can have in the Georgi-Glashow dark sector
is n = 6, given by the three polarisations of W'*. Additional matter fields or higher
rank gauge groups would increase n appropriately.

From the Planck limit AN < 0.8(20) at Teap, we get an upper limit n <
14(20). A stronger limit n < 7 follows from the data on Helium abundance at BBN.
We conclude that our SU(2),, gauge theory with an adjoint scalar is consistent with
the current available constraints on N.g. At the same time additional degrees of

freedom in the dark sector are disfavoured.

For the minimal case, n = 6, arising from W, contributions (and assuming that

their entropy does not leak to the SM particles?) our model predicts
ANei(Tens) = 0.022 x (24 6)Y3 =0.35, (5.2.27)

which could be ruled out by Planck measurements as the projected sensitivity in

ANg is 0.044.

5.3 Dark Matter Relic Density

In our model there are two dark matter candidates. The massive gauge bosons
WL are carriers of (dark) electric charge of the unbroken U(1),, and as such they
are stable. They provide a vector dark matter (VDM) candidate. The dark mag-
netic (anti)-monopoles M., carry topological magnetic charge of U(1), and serve

as a candidate for monopole dark matter (MDM). The combined contribution of

3Even if some of these particles have a relic density of the right order of magnitude to give
the correct dark matter density, almost all of the entropy in the species will have been transferred,
since freeze-out normally happens at T = M/20. The vector bosons W/ can annihilate to both ~/
and ¢. Since ¢ mixes with the SM Higgs, this entropy will leak to the Standard Model particles,

sm

which could effectively increase g7 (Tp). The fraction of the entropy transferred to ' is given by

the branching ratio Py which is assumed to dominate over the entropy transfer to the SM.
1Since ¢ mixes with the SM Higgs, there is some entropy exchange between the two sectors,

which can increase ¢S (TomB).
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Figure 5.1: Diagrams giving the dominant contribution to the W annihilation

cross-section.

VDM and MDM should amount to (or not exceed) the observed total dark matter
abundance Qpyh? = 0.1187 £ 0.0017 measured by the Planck Satellite 22].

5.3.1 Dark Gauge Bosons: Sommerfeld Enhancement and

Relic Density

Models of dark matter with non-Abelian dark sectors interacting with the visible
SM sector only weakly, for example via portal interactions, are popular approaches
to dark matter (see e.g. [191-193]). In Chapter 4 and in [111,112], dark matter from
a completely broken dark SU(2) sector was discussed. As the SU(2) group in our
model is broken down to a U(1), we have two vector boson DM candidates, W.. W
and W' can annihilate into two dark photons 4’ or into two ¢ scalars. The dominant
contribution to their annihilation is given by the Feynman diagrams in Figure 5.1.
Using these diagrams, we have computed the leading-order non-relativistic s-wave

annihilation cross-section,’

- 1579 g1 592 Mo 3A%
o = - .
pert 23047 M2, 192rMZ,  647M2,

(5.3.28)

This leading order perturbative cross-section is further enhanced at low velocities by

the Sommerfeld effect [194-198], which arises from multiple dark photon exchanges

For simplicity, in the analytic expression on the r.h.s. of (5.3.28) we have assumed that
mg << Mw+. We have checked that the inclusion of effects due to scalar masses does not make a

noticeable change in our numerical results.
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Figure 5.2: Contours of the relic density of vector dark matter.

in the ¢-channel between the incoming W} and W’. As a result we have

(ov) = S (0V) ot » (5.3.29)
where the multiplicative Sommerfeld factor [194,198] is
QapT 1
S = (5.3.30)

v 1—exp [—%} ’

and becomes relevant in the non-relativistic regime where the ‘perturbative’ factor

“L% is no longer small.
The relic density of vector dark matter is found by solving the Boltzmann equa-

tions,
dni
dt

where n; for i = 1,2 is the density of W} and W’ with n; = ny. Then the combined

+3Hn; = — (o) (n? — n*?), (5.3.31)

Wi density, n, is twice that, n = 2n; = 2ny. It satisfies the equation

dd_:: + 3HTL _ <0"U>eff (77/2 . neq2) , Where <O-U>eﬁ = <O——2U> . (5332)

Using this Boltzmann equation we can now write down the standard s-wave solution
for the dark matter abundance (see e.g. [5,28]),

z;GeV!

§) h* =1.07 x 10° ,
e (gxs/\/G%) Mp1 (V)

(5.3.33)
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where z; := My~ /Ty and T} is the freeze-out temperature. The expression for zy is

9

Jx

9

Jx

xy = log <0.038 Mp) My <O’U>eﬂ> - %loglog <0.038 Mp\ My <O’U>eﬂ> ,
(5.3.34)
where g = 6 is the number of W1 degrees of freedom.

The relic density of W4, given by Equations (5.3.33)-(5.3.34), is shown in Fig-
ure 5.2 on the two-dimensional plane (ap,w) of the dark sector parameter space.
In the CW case \y < ap, and the scalar self-coupling A\, plays no role. We have
also considered a more general case with \,/a, =fixed, for example = 4 similarly to
the SM value, and continued to scan over a;, and (¢). We have found no noticeable
difference in the relic density behaviour in Figure 5.2.

The relic density curves in Figure 5.2 are seen to be bending at higher values of
ap. This is the consequence of the Sommerfeld enhancement factor in (5.3.30). In
the perturbative regime 2% < 1, § = 1, but changes to S = “2% in the regime
of larger gauge coupling or equivalently lower velocities. This gives the bending
of the contours seen in the figure. We estimate the velocity in (5.3.30) by v =
\/W = 1/,/Ty. In scanning over the parameter space in Figure 5.2, we found
xy changing between 15 and 25, which gave the range of velocities 0.2 S v < 0.25

in the Sommerfeld S factor.

5.3.2 Dark Monopoles
Production of Monopoles

Monopoles are topological defects which are produced during a phase transition in
the early Universe. First we need to determine the order of the phase transition of
the SU(2), dark sector relevant for the monopole production. At sufficiently high
temperature, the only minimum of the effective potential of the dark sector V,(¢,T)
is at the origin ¢ = 0 (here ¢ is the dark sector scalar in the unitary gauge) and the
SU(2)p, symmetry is restored. As the Universe expands, a second minimum appears,
and at the critical temperature, T' = T, the values of V}, in the two minima become
equal. The phase transition is of the first order if there is a barrier separating the

two minima at critical temperature. If on the other hand there is no potential barrier
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between the minima, the phase transition is of the second order.
As already noted in section 5.1.2, the character of the phase transition depends
on whether the dark sector is of the CW-type or not. We illustrate this point by

writing the one-loop thermal potential from Section 3.1

Vp(¢,T) = D(T? —T3)¢* — ET¢* + %Tgb‘*, (5.3.35)

with the parameters in our case (i.e. the model of (5.1.1)) given by

2 3 4 4 2.,,.2
a5 9p 1 2 Y9p 2 395 grw
p=9 p_9 5__-(/om2_9 Ap = A, — 290
1 or O 4D(\/_m ox W) A= — g5 log apT?
(5.3.36)

3.91

and ag ~ e>”'. We reach the critical temperature, T,., when the values of V}, in the

two minima become equal,

T2 2FT,
0 e = =5, (5.3.37)
Ar,

c

T? =
¢ 1-E?/(\D)’

with ¢. being the value of the field in the second minimum at this instance. The
strength of the first order phase transition is conventionally characterised by the
dimensionless order parameter ¢./T., which can be thought of as the separation
between the two vacua in units of temperature. We have
3
% - % - 93’;4DX3_91 . (5.3.38)
e m(Ap + )

8m?

~Y

Strongly first order phase transitions have ¢./T. 2 1. The phase transition is weakly
first order if the vacua at 0 and ¢, are near each other, and changes to a second
order phase transition for ¢./T, < 1.

To have a second order phase transition we need:

3 4

o) 39, % 3.91
== A - 5.3.39
— <Mt ( )

In the Coleman-Weinberg settings Ay = —181 ﬁ;’, which implies
cw. L _ 1. 87 L 51 foray <01 (5.3.40)
: — = — = or « . cJ.
T. g, 2273 32/, v ’

which gives a strongly first order phase transition for a weakly coupled CW sector,

as expected.
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The production of magnetic monopoles in the early Universe can be estimated
using the Kibble limit [185]. It is a lower limit on the density of magnetic monopoles
created cosmologically, and it is expressed in terms of the horizon volume. As we

will show the limit applies to both a first and second-order phase transition,
3

m Tc
% > [ —— (5.3.41)
47?35_17* MP]

First we justify this bound for phase transitions of the second order [182,185].
During the phase transition, the ¢, field changes from 0 to |¢|* = w? The di-
rection of ¢, is the same inside a volume (* where ( is the correlation length. At
the critical temperature ( diverges, but, due to causality, information can only be
exchanged inside the horizon. The correlation length will therefore be frozen in at
the horizon scale dj, ~ H~!, and we will get a domain structure with ¢, in different
domains pointing in different directions. At domain intersection points, the random
orientation of the scalar field, given a non-trivial topology, can give rise to magnetic

monopoles with a probability p close to 1. We can estimate the density of monopoles

created [182]:
Nm X pC_3 ~ C_3 , where ( < d, = H‘l, (5.3.42)

and equation (5.3.41) follows.

If the phase transition in the dark sector is first-order, a potential barrier is
formed between the symmetric and the symmetry-breaking vacua. Below the crit-
ical temperature the symmetric vacuum is meta-stable. Bubbles of the symmetry
breaking vacuum will nucleate and expand. Inside each bubble the scalar field will
have a random orientation. When the bubbles collide they can create magnetic
monopoles. The density of magnetic monopoles will therefore be proportional to
the density of bubbles. Since the bubbles cannot propagate faster than the speed
of light, the size of a bubble is limited by the horizon size. We therefore get a very
similar bound [5] on the density of magnetic monopoles as from the Kibble argument
in Equation (5.3.41), enhanced by a logarithmic factor [199]:

45
nm TC 471'39* MPI

log | -—2 . (5.3.43)

T 2 - -
T \/ 473359* MPI Tc

first — order ph. tr. :
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For a second order phase transition, the Kibble bound was refined by Zurek [186]
with an argument relying on a careful analysis of the timescales involved in the phase
transition. A system undergoing a phase transition is characterised by a relaxation
time 7, and a correlation length (,

To

=y = Gl (5.3.44)

where

e(T) := : (5.3.45)
and 1/2 and v are the critical exponents describing the degree of divergence of 7 and
¢ in the proximity of the critical temperature T,. At a time t close to the critical
point, t., one has t — t. o« €(T) — 0 where the proportionality constant is the

quenching time-scale,
t—t,
TO = .
©T D)

At the time t, when the time interval to the critical point becomes equal to the

(5.3.46)

relaxation time 7, the system is no longer able to re-adjust to changes in the tem-
perature quickly enough. This leads to the correlation length freezing out at this
time. We have

t, —t.| = 7(t) = 70 le(t,)| Y2, (5.3.47)

with the [.h.s. being via (5.3.46) also = 7 |e(t,)|, which implies that

le(t)*? = 1o/70, and ((t.) = Golet)]™ = Colmo/mal**. (5.3.48)

In our case 7o = H(T.)™' and for the remaining constants, from the Landau-
Ginzburg theory one estimates [178] that (o ~ 79 ~ 1/(y/AsT%). The classical value
for the critical exponent v is 1/2, but quantum corrections can modify this value.

The second equation in (5.3.48) is the correlation length at the freeze-out tem-
perature t,. It is a more accurate replacement of the Kibble-limit estimate { <
d, = H(T,)™ "

The monopole relic density from the Zurek mechanism today is then given by
the following expression [178,186] (for conversion factors see Equations (5.3.69)-

(5.3.70)),

3v
m _ My, 307¢\ *~
second — order ph. tr. : N ( > < ) : (5.3.49)
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or (using numerical conversion Equations (5.3.69)-(5.3.70)),

3v
M, 30T\ '+~
second — order ph.tr.: Q,h* = 1.5 x 10° <1 Te\/) ( Vo ) (5.3.50)

Zurek’s argument above is also valid for various condensed matter systems where
the effect has been experimentally confirmed [200,201].

The main difference between Zurek’s result (5.3.49)-(5.3.50) and the Kibble lower
limit (5.3.41) or (5.3.43), is the power p of the (7./Mp;)? suppression factor. It
reduces from p = 3 in the Kibble bound to the p = 3v/(1 +v) ~ pq = 1 for
Vg = 1/2 in the Zurek bound. This makes it possible for relatively light monopoles
with masses starting in the few hundred TeV range, to contribute significantly to
dark matter, as can be inferred from Figure 5.4 in section 5.3.2. The Kibble bound
would require monopoles to be at least in the 10! GeV range or above to play a

non-negligible role in the dark matter relic abundance (c¢f. Figure 5.3).

Evolution of Monopoles

Magnetic monopoles are stable and cannot decay due to conservation of their dark
magnetic charge. Once created, the density of magnetic monopoles can therefore
only be changed by monopole-anti-monopole annihilation.

We will now estimate the density of monopoles taking these annihilations into
account. In the diffusion approach [202-204], the motion of monopoles in a plasma
of electrically charged particles, in our case WY, is described by a Brownian walk

with thermal velocities vy = /T /My, and a mean free path lgee,

[T M,
ltree = VT tiree = M. TZ o’ (5351)

where o; is the classical cross-section for large-angle scattering of a light particle

with a monopole,
Joun @
(47)272 "

n; is the number density and the sum is over all spin states. The number density

(5.3.52)

g; =

for relativistic particles is [5]

ny = 22 s (5.3.53)
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and for non relativistic particles of mass M; the number density is

3
M;T\? M;

It is convenient to define the dimensionless quantity B,

1 T My
B = Tlgniai s so that : lfree = E M_m W (5355)

The attractive Coulomb force between the monopoles and antimonopoles makes
them drift towards each other during their random walk in the electric plasma. Their
drift velocity is determined from the balance between the monopole-antimonopole
attraction and the drag force of the plasma. It is given by [204],

2

1
vann(r) = 5 7?;“7?2. (5.3.56)

Monopoles drift toward antimonopoles through the plasma. The drag force dissi-

pates monopole energy, and if the mean free path is less than the capture radius,
liree < leapt = gop/(47T) (5.3.57)

a monopole-antimonopole bound state is formed which ultimately annihilates to or-
dinary elementary states. The relevant time scale for the formation of the bound
state is taury = 7/Varits = 1/Tarie- Therefore, the monopole-antimonopole annihila-
tion cross-section is given by,

I arif Varift (1) 1 g2
o= nt: -~ = 37 (5.3.58)

The resulting density of monopoles after annihilation is determined by a Boltz-

mann equation [203],

d Ny, o (nm
dr s  H(z)x

2 M
—) ,  where x::Tm (5.3.59)

S

with o on the right hand side given by (5.3.58). The solution is known analytically

[203]. Tt quickly becomes independent of the initial conditions at g, resulting in,

45
Nn 2rB Am3g, M

1
~ — 5.3.60
S g72nD Mp x ( )
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If following [203], we assume that the the plasma consists of particles that are
relativistic from z to 2y where z; corresponds to the temperature where /g and

lcapt become equal,
(41

the result for the final number density of monopoles is in agreement with [203],

P ) o 20 (‘” )2 \/%Mm. (5.3.62)
s B2 p \Gmo Mp

This diffusive capture process is effective only as long as the mean free path is smaller

than the capture radius. At lower temperatures, where lge exceeds lcapt, the rate

of monopoles-antimonopole annihilation cannot compete with the expansion of the

Universe and the monopole density freezes out at the value at ;.

There is an important difference between the more standard application of the
diffusion method described above, where GUT monopoles were propagating in the
plasma of very light relativistic electrons and positrons, and our model. In our
case the plasma is made up of W/ with masses My = g, (¢) much closer to the
monopoles of the same dark sector. Thus, the particles in the plasma will become

non-relativistic fairly soon after the phase transition, when

My M, 1 4
e R (5.3.63)
an MW’ Qp g?nD

Tnr =

After x,, the density of the plasma will decrease exponentially, as per (5.3.54), and
the mean free path will therefore exponentially increase. The final monopole density

in our model will thus be cut off at z,,

(5.3.64)

Current Density of Monopoles

To determine the current density in monopoles we first have to determine the type of
the dark sector phase transition, and then compute the initial monopole production
density accordingly. If the initially produced density is lower than the estimated

density after monopole-antimonopole annihilation (5.3.64), the effect of annihilations
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Figure 5.3: The relic density of monopoles produced cosmologically during a first
order phase transition as a function of the dark scalar vev w = (¢) and for different

values of the dark gauge coupling g,.

is unimportant and the initial monopole density survives. If, on the other hand, the
initial density is higher than the annihilation density, the final monopole density is
set by the monopole-antimonopole annihilations expression.

The conversion from monopole density, ny,/s or ny,/T, to Quh? is as normal

given by
Quh? = o (5.3.65)
m T -
pmh = %“‘Mmso - %Mng’, (5.3.66)

where subscript 0 refers to the current time or temperature and the normalisation

factors are given by

paith™ = 1.9 x 107%gem™ = 7.53 x 107" GeV*, (5.3.67)
2 2
so = 4—7T5g*(t = 1) T2, (5.3.68)

with Ty = Teyp = 2.73K = 2.35 x 10713 GeV and g,(t = ty) = 2 in the dark sector
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Figure 5.4: The relic density of monopoles after a second order phase transition.
Results are shown on the dark sector gauge-coupling—vev plane for two different

values for the critical exponent, v = 0.5 (in black) and v = 0.7 (in blue).

and 3.94 in the SM. Thus

m My,

Oh? = ”? X e X L5 x 10" (5.3.69)
m My,

- % X T X LTx 10 (5.3.70)
€

The current relic density of monopoles for a first-order phase transition, com-
puted using (5.3.43), is shown in Fig 5.3. We see that relic density depends strongly
on the dark scalar field vev w = (¢) as this sets both the mass of the monopoles and
the critical temperature of the phase transition. The density increases with lower

coupling ¢, as the mass of the monopoles increase.

The current relic density for a second-order phase transition, based on (5.3.49)-
(5.3.50) combined with (5.3.64), is plotted in Figure 5.4 for two values of the critical
exponent, v = 0.5 and v = 0.7.

For a second order phase transition we can see that we have two components
of dark matter both with a significant fraction of the observed relic density. The
combined relic density can be seen in Figure 5.5 for v = 0.5 and in Figure 5.6 for

v = 0.6.
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Figure 5.5: Combined relic density of vector and monopole components of dark
matter after a second order phase transition with the critical exponent v = 0.5. The

blue lines show the relative fraction of monopoles.
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Figure 5.6: Combined relic density for monopole and vector dark matter with v =

0.6. Blue contours show the fraction of monopoles alone.

Dark sector monopoles and vector bosons were also considered recently in [179].

The authors of [179] have concluded based on their Figure 8 that achieving a
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monopole abundance of 10% of the observed dark matter relic density would re-
quire what they describe as a 1072 % fine-tuning. Our results in Figures 5.5-5.6 do
not support such a conclusion. It follows from our Figure 5.5 that the contour of the
observed relic density value Qpyh? = 0.119 can readily intersect the 10% monopole

abundance contour, and even the 35% monopole abundance contour, and so on.

5.4 Self-Interacting Dark Matter

Due to the unbroken U(1), symmetry, we will have long-rage forces acting between
the dark matter particles. Vector dark matter is electrically charged under the
U(1)p, while the magnetic monopoles have magnetic charges. This self-interacting
dark matter provides a framework which can solve the cosmological problems of colli-
sionless cold dark matter (CCDM) at small scales [205]. Numerical simulations [206]
based on CCDM are very successful in describing the large scale structure of the Uni-
verse at scales > 1 Mpc. However, observations on galactic and subgalactic scales
< 1 Mpc are in conflict with the structure formation predicted by such simulations.

Collisionless dark matter predicts that density distributions of dwarf galaxy halos
should have a cusp in the centre while observationally flat cores have been found [207,
208]; this is the core-vs-cusp problem. Cold dark matter simulations also predict too
many too large subhalos in the Milky Way halo [209,210]. In particular, simulations
which use collisionless dark matter predict O(10) subhalos with velocities v > 30
km/s, but no halos have been observed with v > 25 km/s. This is known as the
‘too-big-to-fail” problem, as these large subhalos are too big not to develop visible
galaxies. These discrepancies might still be explained by baryonic effects.

In order to address these problems with small-scale structure, models of self-
interacting dark matter have been proposed and studied in recent literature. Refer-
ences [211-216] considered long-range Yukawa interactions between cold dark matter
mediated by a light vector or scalar bosons. The effects of an unbroken U(1) sym-
metry with a massless force carrier were considered in [28,217,218].

The result of self-interactions is a transfer of energy between dark matter parti-
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cles. This effect is captured by the transfer cross-section defined by,

or = /dQ (1 —cosf) Z—g , (5.4.71)
where do /dS) is the usual differential cross-section. The (1 — cos ) factor takes into
account the energy transferred in the collision. Even though our model contains a
microscopically massless force carrier ' in a plasma it is described by a Yukawa
potential

Vir) = %e—mw, (5.4.72)

where the effective mass of 4/ is due to its interactions with the plasma and given

by the inverse of the Debye length [p,

1 (4mapp)
= — = — 5.4.73
m’Y lD MDMU ( )

Here p is the dark matter density in a galaxy and v is its velocity. Since the
density p is small, the effective mass m., will be small, and we can use the classical
Coulomb limit Mpyv/m., > 1 for both the attractive and repulsive potential with
the result [215,219,220],

16ma? M3, v?
= log |1+ 28| . 5.4.74
7T M3, v* o8 ( i 20pm2, ( )

If the energy transfer is large enough, self interacting dark matter could flatten
out the cores of dwarf galaxies and decrease the number of large subhalos by colli-
sional stripping, solving the core-vs-cusp and the too-big-too-fail problems. On the
other hand, if the cross-section is too large, the effects could be seen on larger scales
and would be ruled out.

The limits on this cross-section come from comparing observations to simulations.
One obvious constraint is from the Bullet cluster which gives an upper limit on
the cross-section, op/Mpy < 1.25 cm?/g [221]. Since the transfer cross-section is
very strongly velocity-dependent, it is important that this bound is imposed in the
relevant velocity range v ~ 1000 km/s. There are also constraints of op/Mpy <
0.1 to 1 ecm?/g from Milky Way scales in the velocity range of 200 km/s [215].

These limits come from considering the shape of galaxies. Self-interactions tend to
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Figure 5.7: Vector dark matter transfer cross-section and relic density. The green
region shows the region in parameter space where o7 /mpy; is in the interval between
0.1 and 10 cm?/g at velocity v = 30 km/s, relevant for solving the core-cusp problem

and the too-big-too-fail problem.
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Figure 5.8: Same as in Figure 5.7 but with additional contours (in red) showing

or/mpy = 1 at higher velocities: v = 100km/s, v = 500km/s and v = 1000km/s.
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Figure 5.9: Monopole dark matter transfer cross-section and the relic density con-
tours for the critical exponent v = 0.5. The region in green shows the region in
parameter space where op/mpys is in the interval between 0.1 and 10 cm?/g at
velocity v = 30 km/s relevant for solving the core-vs-cusp problem and the too-big-

too-fail problem.

make galaxies more spherical, so the observation of elliptical galaxies together with

N-body simulations can give limits on the energy transfer.

To solve the too-big-to-fail problem one needs a cross-section of the order of
or/Mpum ~ 0.1 — 10 cm?/g [214-216] at the velocity scale of dwarf galaxies (v ~
10—30 km/s). By comparing this to the limits from larger scale structures one finds
that there might be a small region of parameter space left for a theory with velocity
independent cross-section of around op/Mpy ~ 0.6 cm? /g [214,215].

In this chapter we consider a velocity-dependent cross-section which, if the cross-
section is around 1 cm?/g at velocities of v ~ 10 — 30 km/s, it will be much smaller
at the velocities relevant for the shapes of galaxies or the bullet cluster. Therefore,
there is no contradiction between the cross-sections needed to solve the too-big-too-
fail problem and the constraints from the ellipticity of galaxies.

In Figure 5.7, we show the region of parameter space of our model where the
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Figure 5.10: Monopole dark matter as in Figure 5.9 with the critical exponent value

v = 0.6.

transfer cross-section for vector dark matter is in the desired region or/Mpy =
0.1—10 cm?/g at v—30 km /s, which can help solving these problems at dwarf galaxy
scales. This is superimposed with the contours of the relic density for vector dark
matter in our model. In Figure 5.8 we overlay this with the contours of or/mpy = 1
at other velocities. It readily follows from these considerations that the upper bound
constraint from the Milky Way and from Bullet cluster at v ~ 200 to km/s are
satisfied by the self-interacting VDM in the regime where the relic density is in
agreement with observations and the dwarf-galaxy-scale problems are addressed.
Monopole self-interactions are obtained by replacing the electric with the mag-
netic Coulomb law, o, — a,,p, = 1/ap, which gives the limits seen in Figures 5.9
and 5.10 for monopole dark matter produced in a model with a second order phase

transition.

5.5 Conclusions

In this chapter we have investigated a SU(2) dark extension to the SM with an

adjoint scalar. This model includes two dark matter candidates and a new relativistic
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degree of freedom contributing to dark radiation. The dark matter candidates are
heavy vector bosons and magnetic monopoles. Magnetic monopoles are produced
during phase transitions in the early Universe, and we find that they can make up
a significant fraction of dark matter in our model.

The unbroken U(1) subgroup that remains after symmetry breaking in the hid-
den sector contributes to dark radiation and provides long range self-interactions
between the dark matter particles. We found that the minimal model we considered
satisfies the observational constraints on Ngg and on the transfer cross-section at
large velocities. At the same time, the self-interacting vector and monopole DM
intrinsic to our model can produce the right size of transfer cross-sections relevant
for addressing problems with CCDM at dwarf galaxy scales. The dark matter in our
model has two components with different self-interactions, and there are interactions
between the two components. To study the cosmological consequences of this in any

more detail would require the use of N-body simulations.



Chapter 6

Spectroscopy of Scalar Mediators
to Dark Matter at the LHC and at

100 TeV

The existence of dark matter is one of the most compelling arguments for BSM
physics. DM candidates have been proposed in many different BSM models and
can have a rich and varying phenomenology. However, assuming dark matter can
be produced at colliders a generic feature is the existence of collider signatures with
missing energy, as stable dark matter particles leave the detector unobserved. In this
chapter, based entirely on [4], we will investigate the two-jets-plus-missing-energy

final state at the LHC and a future 100 TeV collider.

6.1 Introduction

To discover missing energy signals at colliders, the invisibly decaying particle needs
to recoil against reconstructable objects. Searches for mono-jets and mono-photons,
where the dark matter recoils against a visible jet or photon, have been carried out at
Run 1 of the LHC [222-224]. These studies have so far not discovered any evidence
for an excess of missing energy events, but can in parts of the parameter space be
as or more constraining than limits from direct and indirect detection [225-230]. It

is thus important to formulate and extend the searches for dark matter at the LHC

144
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for Run 2 and beyond.

Dark matter can be produced at colliders via an exchange of a mediator particle
which connects the colliding SM partons to the dark sector. A viable and simple
approach to characterise and interpret dark matter searches at colliders relies on
using simplified models with four basic types of mediators: vectors, axial-vectors,
scalars and pseudo-scalars (see white papers [229-231] for early reviews and refer-
ences). The mediator is a dynamical degree of freedom in this approach which is the
correct description for dark matter searches at the LHC as the energy transfer in the
collision can typically exceed the mediator masses. Following the Higgs discovery,
there is a renewed interest in the role of scalar degrees of freedom and the possibil-
ities provided by extended Higgs sectors in searches for new physics. Of particular
interest to dark matter searches are models with scalar and pseudo-scalar mediators
whose reach at the LHC was studied recently in [40-42]. It was found that the LHC
at 14 TeV will provide a complementary coverage to the low-energy experiments
in dark matter searches, and it is the only experiment to probe dark sectors if the
invisible particles produced are not stable at cosmological scales. These studies have

been performed using the mono-jet-plus-missing-energy topology [222-224].

In this chapter, we will study simplified models with scalar mediators in the two-
jets-plus-missing-energy topology to determine their collider limits and discovery
potential by analysing their kinematics of the final state jets. For scalar mediators,
mono-jet searches predominantly rely on the gluon fusion production channel [40,
41]. The presence of a second jet allows for more non-trivial kinematics in the
final state. Using VBF type cuts, one can suppress more of the background and
the contribution from the gluon fusion production channel. This makes the weak
boson fusion processes dominant instead, and allows us to capture mediators with
suppressed couplings to fermions. The kinematic information in the two jets+MET
final state should also allow us to study the mediator mass which will be the main
focus of this chapter. In a slightly different context, the idea of exploring two-jet
kinematics to learn more about the SM—DM interactions has also been implemented
in [232].

We consider a simplified model with a scalar mediator whose SM couplings are
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proportional to the SM Higgs. We start by defining the models in Section 6.2
before briefly considering the DM phenomenology in Section 6.3. We then move on
to consider the phenomenology at the LHC in Section 6.4 and at a future 100 TeV

collider in Section 6.5.

6.2 Models

In the unitary gauge, the Standard Model (SM) contains just a single scalar-field
degree of freedom, the neutral scalar Higgs h. At tree level, h interacts with the mas-
sive vector bosons, W* and Z° and all the SM fermions, f. The linear interactions

of h with the other SM particles can be written in the form,

2M?2 M?2 mys -
SM W i+ 117— z Z /
‘Ch D) (T ”H W—H + T ZMZM — g T ff) h. (6.2.1)
We want to extend the SM by introducing a scalar mediator particle ¢ which couples

to the SM degrees of freedom as well as to fermionic dark matter particles x via

LoD =gy Xx0- (6.2.2)

For the purpose of this chapter, the spin of the dark matter particle is not relevant,
i.e. the dark matter particle could instead be a vector or a scalar particle. There are
two types of settings where the additional scalar ¢ can appear in interactions with
the Standard Model. First, it can be an additional Higgs doublet for example coming
from a two-Higgs doublet model or more generally any scalar field transforming non-
trivially under the SU(2) of the SM. Alternatively, the ¢ scalar mediator can be a
singlet under the Standard Model. In the latter case it interacts with the SM degrees
of freedom only via the mixing with the SM Higgs, h. The interactions of ¢ with
the SM are subject to experimental constraints on the mixing angle sin?# < 0.15
(see [129,233]) arising from experimental bounds on the SM Higgs to invisible decays
and other Higgs data.

First in section 6.2.1 we consider the more constrained singlet-mixing case, and
then in section 6.2.2 we define the less constrained generic Higgs-like scenario. The

upshot is that both of these cases will be described by the same simplified model of
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Equation (6.2.13) with the scaling parameter x being either unconstrained x ~ 1 or

small k < 0.15.

6.2.1 The Singlet Mixing Model

In the implementation of the model ¢ is a Standard-Model singlet neutral scalar,
and the visible SM sector and the ‘invisible’ x sector are coupled to each other only
via the mixing between the two neutral scalars ¢ and h, as in the Higgs portal model.

The states of definite masses, h; and ho, are
h = hycosf + hysinf, ¢ = —hysinf + hocosf, (6.2.3)

where 6 is the mixing angle. Combining Equations (6.2.1)-(6.2.3) we obtain a sim-
plified model for invisible Higgs decays involving two Higgs-like neutral scalars h,

and ho:

Loy = ( 2l W 4 ZZZ#—Zf"szf) <h10050—|—h281n9>

—0y Xx<h2 cosf — hy sinQ) — —mhlh2 — —mh2h2 — myxx . (6.2.4)

The first scalar mass eigenstate, hi, plays the role of the observed SM Higgs boson,

and we also assume that the mediator hy is always heavier than the SM Higgs,
Mpy, > Mpy, = 125 GeV . (625)

If hy is lighter than hy, hy will not contribute to the final state with two jets and
missing energy as we discuss below. A light second scalar can be very interesting for
other final states. With this Lagrangian we can produce hy as in the SM via both
the gluon-fusion and the vector-boson-fusion mechanisms, with the corresponding
SM cross-sections rescaled by sin?f. Similarly the h; production rates are rescaled
relative to the SM by a factor of cos?§ which is ~ 1 for sufficiently small values of
the mixing angle.

If both mediators can be produced on-shell in either channel, the cross-section

for xx+ two-jet production in the narrow width approximation can be written as,

0'](3?\/[ = oy, Bra, Sy, (6.2.6)
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where oy, is the production cross-section for h; + two jets and Bry, .4, are the

branching ratios,

On, = oy costl,  op, = ogy sin?f, (6.2.7)
L2
sin“ 0@, .5 . Lpgx (Mmay)
Bry, vy = XX = gin? ) XX 6.2.8
P sin? 0L 45y +cos?2 0T, sm o e ( )
cos? 0Ty 5 Ly vy (mp,)
B, ey = X = cos? TR (6.2.9
Thy—xx cos2 6 Fqﬁ—))@( + Sin2 9 Fh—>SM COs F}ZO; ) ( )
where ,
2 2 2
gy Mg 4my
Doy = 2 (1 - — ) . (6.2.10)
8m mg

For dark matter masses below the kinematic threshold of both mediators, 2m, <
mp, < mp,, both mediators can be on-shell, and in principle both channels for the
dark matter production are open. Due to the different size of the decay widths, the
lighter Higgs will dominate, as can be seen from (6.2.6)-(6.2.9),

tot

r

1 2 h
O'D( P)I/UD( 1)1 X
Iy

The SM Higgs has a very narrow width of 0.0068 GeV, and due to the limits on

> 1. (6.2.11)

the Higgs to invisible branching ratio we know that this width, I'}°*, cannot increase
by more than 35% [234]. The reason the Higgs width is so small is that all the
fermions are coupled to the Higgs via Yukawa couplings, so that we cannot have
light fermions with large couplings coupled to the Higgs. The total decay width of
the second scalar, F}l‘;t, on the other hand, can easily be large as can be inferred from
Figure 6.1. Even for g, = 0.1 the total width of hy will be an order of magnitude
larger than the h; Higgs width. Hence, for light dark matter only the h; Higgs

mediator is relevant when both channels are open.
For heavier dark matter, my, < 2m, < my,, only the hy channel is open and it

is efficiently described by the simplified model
L = sinf <% WHW—r %%ZMZ“ - Z@ff) hy  (6.2.12)
v v v

— gy Xxhe — %mihi — MyXX -

Finally, if dark matter masses are higher than mj, it cannot be produced via an

on-shell mediator exchange, and the resulting rate of its production is too small to

be observed.
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Figure 6.1: The decay width of hs into yx with gpy = 1.

Current limits on sin? # mainly come from two sources, the Higgs signal strengths
and the electroweak precision tests, for recent papers see [82,128, 129, 233, 235].
Limits from Higgs signal strength measurements constrain cos? § directly [129]. This
leads to a bound sinf < 0.44, independent of the mass of hy. The electroweak
precision tests, mainly the W boson mass, give a mass-dependent constraint on
sin @ shown in Figure 3 in [129]. In the mass range around 1 TeV, the limit becomes
sinf < 0.3. We also note that the limits coming from a non-observation of the
second SM-Higgs-like state are not directly applicable for hy in our case, due to its

large branching ratio to invisibles.

We will only consider these limits in the context of the singlet-mixing simplified
model with the x-parameter £ = sin?#. In the simplified model framework we do
not know what other particle content there is, and additional degrees of freedom
could modify both the SM Higgs signal and the loop corrections to the W-mass.

Recent discussion of theory models for dark matter based on mass mixing be-
tween the scalar singlet mediator and the SM Higgs can be found in [2,3,88,111-113]
and Chapters 4 and 5.
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6.2.2 Generic Higgs-like Scalar Mediator Model

More generally, scalar mediators to dark sector can also arise from an independent
additional Higgs doublet or Higgs multiplet for example in the two-Higgs-doublet
models. We choose a simplified model for a generic scalar mediator by assuming
that it has the same interactions with the SM vector bosons and fermions as the
SM Higgs, but scaled by an overall scaling factor x which is a free parameter of the
simplified model,

L = Vk (% WEW—r MT%ZMZ“ - ;%ff> 6 (6.2.13)

_ 1 _
— Gy XXO — §mfn¢>2 — My XX -

In general, the scalar mediator can couple with a different strength to the SM
vector bosons and to SM fermions, thus introducing additional parameters into the
simplified model (6.2.13). For clarity and simplicity, we will use the minimal model
(6.2.13) with a single scaling factor. Here, k = 1 corresponds to the normal SM
Higgs couplings. In general we consider values of x < 1 since it is difficult from a
model-building perspective to increase the coupling to gauge bosons with additional
Higgs singlets or doublets. The simplified model for the more constrained singlet
mixing case is described by the same Lagrangian with x = sin®# < 0.15. In this
simplified model framework, we do not introduce a direct coupling between the SM
Higgs and xy, as this interaction can be easily captured with giving ¢ the same

mass as the Higgs.

6.3 Comments on the Relic Density and Direct
Detection Constraints

Simplified models for dark matter are introduced to capture the main aspects of
dark matter collider phenomenology without being complete models. It is therefore
customary not to impose constraints from relic density or direct detection strin-
gently. Still, the model introduced above in Equation (6.2.13) is a valid model that

could have cosmologically viable dark matter. Therefore, to give an indication of
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constraints for models of this type, we calculate the relic density and direct detection

constraints assuming that

e (i) the dark sector fermions y x which enter the simplified model definition
(6.2.13) is cosmologically stable dark matter and not merely one of the dark

sector degrees of freedom which are long-lived on a collider scale;

e (ii) the dark matter particles annihilate predominantly via the mediator inter-
action specified in (6.2.13), and there are no other DM annihilation channels

beyond the simplified model (6.2.13) or that they are highly suppressed.

We stress that if either of these additional assumptions is not satisfied, the relic den-
sity and direct detection-related constraints discussed in this section will not apply.
These are strong assumptions that can easily be evaded in many well motivated DM
models.

We will now require that the dark matter does not overclose the Universe, and
that the direct detection cross-section is sufficiently small not to have been ob-
served so far. We calculate the relic density and direct detection limits using
the MadDM [236, 237] with the simplified model (6.2.13). The computed relic
density is compared to the observed relic density from the Plank Satellite [22] of
Qh% = 0.1199 £ 0.0027, and the direct detection cross-sections are compared to the
limits from the LUX experiment [174].

Figure 6.2 shows the contours of the computed relic density and the direct de-
tection exclusions on the mediator mass — dark matter mass plane and for various
values of gpy and k. For the direct detection constraint we have assumed that
the DM density interacting with the detector is given by the canonical value, even
if the DM in our model is only a sub-component of the total DM density in this
region of parameter space. Therefore, the direct detection limits on our model are
weaker than what is shown in the figure in the region of parameter space where the
calculated DM density is smaller than the observed value.

As for the collider phenomenology at the LHC and at future colliders, we will be
interested in heavy mediators with the dark matter mass and the dark matter cou-

pling largely unconstrained, as long as the scalar mediators have a large branching
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ratio to dark matter. From Figure 6.2 we can see that all these models easily avoid
direct detection constraints, and as long as the dark matter mass is quite heavy we
can have mediator masses up to 2500 GeV without over-closing the Universe. For
gom = 4 and a heavy mediator Mpeq ~ 2.5 TeV, we need m, 2 400 GeV to have
viable dark matter (another way to put it is that only the DM which is more than
6 times lighter than the mediator is constrained here). For smaller couplings the
minimal DM mass increases accordingly (as can be seen from the second and third
plots in Fig. 6.2) not to overclose the Universe for the heaviest mediators, but this
is not a problem for the models we will consider in the rest of the chapter. We will
therefore now turn to collider phenomenology where we will study models which, if
we interpreted as complete models, can provide a viable dark matter candidate.
We conclude that the relic density and direct detection considerations can provide
useful constraints on our simplified model under certain assumptions. This provides
an important complementarity to the collider phenomenology we will now study.
If the LHC or future colliders can resolve and probe the mediator mass-scale and
a signal with missing energy is discovered, one of the main open questions will be
if the signal results in the production of cosmological dark matter and what is its

particle identity.

6.4 Collider Limits on Scalar Mediators with two
Jets and MET at the LHC

To derive collider limits on models with scalar mediators to dark matter sectors,
and to distinguish between models with different mass scales, we will use a search
strategy based on final states with missing transverse energy plus two jets. There are
four main kinematic quantities associated with the Fp-plus-two-jets signatures: the
missing transverse momentum p_, the jets’” invariant mass Mj;, the azimuthal angle

between the tagging jets A¢;; and the jets’ pseudo-rapidity difference An = 17;1 —n;2.
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Figure 6.2:  Dark matter relic density and direct detection constraints for our
simplified model for dark matter for various values of gpy and . The lines give
relic density contours and the grey region shows the area excluded by direct detection

constraints.
In terms of these we impose the VBF cuts [238,239],

Pp>100Gev, M;; >1200GeV, Ag;; <1, Anp>45, pr;>40GeV,

(6.4.14)
to separate the signal and background. Here pr ; is the transverse momentum of each
jet defined by using the anti-kt jet algorithm with R = 0.4. We reconstruct jets using
Fastjet [240,241]. After imposing these cuts, the main production channel of the
scalar mediator is largely reduced to weak vector boson fusion (WBF), leaving only
a small contribution from the gluon fusion (GGF) channel (¢f. Table 6.1). Despite
of the relative smallness of the GGF process after cuts (6.4.14), one should not be
tempted to approximate them by the Higgs-gluon effective vertex. The inclusion of

finite top-quark mass effects in the top-loop in the GGF production is known to be
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important (in the context of DM searches at the LHC this was emphasised in [242]),
especially for heavier scalar mediators where the heavy top mass approximation
breaks down. We therefore simulate both the WBF and GGF contributions to the
signal with VBFNLO [243-245], which includes the full top-loop dependence to
GGF.

The background is simulated at leading order using MadGraph [246]. Both signal
and background are then showered with Herwig++ [247]. The main backgrounds
are Z + two jets with the Z decaying to neutrinos and W* 4+ two jets where the W
decays to a neutrino and a missing lepton. We count the lepton as missed if it has
|| > 2.5 or pr < 10 GeV. We have also checked that the ¢t background is negligible
after the cuts. The projected LHC exclusion limits for these final states have been
studied previously in [238,239,248,249] in the context of an invisible branching ratio
for the SM Higgs.

6.4.1 Width Effect on Differential Distributions

In Figure 6.3 we can see the effect of varying the width of the mediator on the
differential distributions of M;; and A¢;;, for a mediator with Myeq = 800 GeV.
A smaller width leads to a slightly broader M;; tail and flatter Ag;; distribution.
For reasonably small total widths this effect is not very large. We will therefore
use the narrow width approximation where we produce the mediator on-shell with
subsequent decay to Yy, with a branching ratio determined by the coupling constants

and dark matter mass when we simulate the signal.

6.4.2 Exclusion Limit Reach at the LHC

Our first goal is to establish the projected LHC exclusions for models with scalar
mediators based on the two jets and [ final states. We aim to evaluate the upper
limit on the mediator mass for the model to be within the LHC reach.

The left panel in Table 6.1 shows the cross-sections for the signal at the LHC
at the 13 TeV centre-of-mass energy, assuming a 100% branching ratio of the scalar

mediators to dark matter and kK = 1. The cross-sections for SM backgrounds are



6.4. Collider Limits on Scalar Mediators with two Jets and MET at the
LHC 155

0.0010 0.40
1 T/M=0.001

: ) I/M=0.05 035
0.0008 [ 1 I'/M=0.10 ’
] T/M=05
030

0.0006

S 515 025
—lo —ﬂ?
0.0004
0.20
] T'/M=0.001
0.0002 : 0.15 1 T/M=0.05
"SI T/M=0.10
1 I/M=05
OO 52000 2500 3000 3300 4000 4300 5000 0195 0.5 1.0 1.5 2.0 2.5 3.0
M;;[GeV] Adj;

Figure 6.3: Kinematic distributions for different values of the mediator width at

Vs = 13 TeV when My,eq = 800 GeV.

Minea VBF | GGF | Total
125 GeV 89 17 107
Background | Cross-section(fb)
250 GeV 61 13 74
7ii 128
500 GeV 26 10 36
WHij 116
750 GeV 12 3 15
Wi 40

1000 GeV | 6.0 0.7 6.7
1500 GeV | 2.0 0.1 2.1

Table 6.1: Cross-sections (fb) at partonic level after VBF cuts in (6.4.14) at 13 TeV.

shown in the table on the right. Using these one can calculate the simple projected

exclusion limits for these models from a standard cut-and-count procedure.

For our analysis, we will use the differential cross-sections to perform a binned
log-likelihood analysis [250] to compute confidence levels (CLs) for experimental
exclusions [251]. In the four plots of Figure 6.4, we show the normalised differential
distributions for signal and background as functions of the four kinematic variables
Mjj, s An, Ady;. These kinematic distributions are plotted for different values of
the mediator mass ranging from My,eq = 125 GeV to 1500 GeV*.

LCompared to differential distributions at eTe™ colliders [252,253], at the LHC differences

between the models are less pronounced and more difficult to exploit.
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Figure 6.4: Kinematic distributions for different values of the mediator mass for
the signal, and for the background at the LHC. M;; distributions are shown on the
top left panel, p_, is on top right right, An and ¢;; distributions are on the bottom
left and right panels respectively.

The differences in the shapes of the kinematic distributions for models with
different values of M,.q can be used to differentiate between them. The binned
log-likelihood technique for computing confidence levels is based on regarding each
bin in a histogram for the measured variable as an independent search channel to be
combined with all others. Systematic uncertainty is taken into account by running
many pseudo Monte Carlo experiments where the normalisation of the background
histogram is varied randomly. The significance is then given by the fraction of
these experiments that has a smaller likelihood ratio than that for the expected
background distribution. We use the M;; distribution (the An distribution gives
similar results) with ten bins both to determine the signal exclusion limits, and

later to distinguish between different signal models.
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Figure 6.5: We characterise the LHC reach for models with different values of M,eq
by computing confidence levels for excluding signals from the SM backgrounds. We
consider models with k = 1, and on the left panel use a systematic uncertainty of

5%. The panel on the right corresponds to a 10% systematic uncertainty.

In Figures 6.5-6.7, we show the LHC reach for excluding scalar mediator models
for different values of mediator masses. The plots in Figure 6.5 apply to generic
models with kK = 1 and assume a 5% and a 10% level of systematic uncertainty.
Figure 6.6 shows the LHC exclusion contours in the context of the mediator-Higgs
mixing models. We set x = 0.15 and assume a 1% and a 5% systematic uncertainty.
Plots in Figure 6.7 show the LHC exclusion limits without fixing the x parameter to
a specific value. Here we allow x to float so that for each model the computed cross-
section is set equal to a cross-section that corresponds to a 30% invisible branching
ratio for the 125 GeV Higgs.

The conclusions we draw is that, for generic scalar mediator models with x ~ 1,
with the 13 TeV LHC, we can probe models with mediator masses up to M ,cq &~ 750
GeV (assuming a 5% level of systematic uncertainty). For the models with a small
k, in particular the models associated with the Higgs—singlet-mediator mixing where
k = sin’f# < 0.15, we can probe up to Myeq ~ 500 GeV (with an optimistic 1%
systematic uncertainty). Not surprisingly, the decrease in cross-section at small
values of k makes it very hard to reach to the higher mediator masses in the Higgs

portal-type mixing model realisations at the LHC.
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Figure 6.6: The LHC reach for different M,,.q models with x = 0.15 in terms of
confidence levels to exclude signal from SM background. On the left panel we use
a systematic uncertainty of 1%, and the panel on the right corresponds to a 5%

systematic uncertainty.
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Figure 6.7: The LHC reach for different M,.q models. We normalise the cross-
sections for all models to the SM Higgs cross-section with Bri,, = 30% and a sys-

tematic uncertainty of 5% (left panel) and 10% (right panel).

6.4.3 Distinguishing Between Models with Different Medi-

ator Masses

For the models which are within the LHC reach, i.e. with M,,.q below the upper
bounds set to be the exclusion contours in Figures 6.5-6.7, the next step is to be
able to distinguish between different models.

This is achieved by comparing the shapes of the kinematic distributions plotted

in Figure 6.4 for different mediator masses. As we increase M,qq, the visible jets will
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Figure 6.8: Differentiating the models at k = 1 at the LHC. For each value of M,,eq
between 250 and 1500 GeV, the models are compared to the reference model with

a 125 GeV mediator. We assume a systematic uncertainty of 5% (left panel) and

10% (right panel).
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Figure 6.9: Differentiating the models with the floating x parameter defined as in
the caption of Figure 6.7. Models are compared pairwise to the 125 GeV reference

model.

recoil against a heavier object which will change the distribution of the kinematic
variables. We will use this change to distinguish the models with different mediator
masses by the following procedure. Before we even start comparing different models,
we will need an excess of signal events over the SM background in the data after
the VBF cuts. The cross-section of this signal can be used to infer an upper limit
for the mass of the mediator as a function of k. The question then becomes if we

can distinguish between the different models that can achieve the measured cross-
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Figure 6.10: Differentiating the x = 1 models at the LHC. In the left panel we
compare to the reference model with M,.q = 250 GeV, and on the right the reference

model is 500 GeV. We assume a systematic uncertainty of 5% .

section. We will again use a binned log-likelihood method and will be comparing
models pairwise. For each cross-section we select the two extreme models: the first
one with the maximal mass, and the second (reference model) with a 125 GeV
mediator.

In Figure 6.8, we can see how well one can differentiate the models at the LHC
with k = 1. Specifically, all the models with M,.q = 250, 500 and 750 GeV can
be distinguished from the 125 GeV mediator. Within our approach, this conclusion
is valid even with a relatively high systematic error of 10%. We also note that
for k = 0.15 it is no longer possible to differentiate any of the models since the
cross-section becomes too small.

So far in Figure 6.8, we have characterised the simplified model signals by fixing
the scaling parameter k to either 1 or 0.15. Alternatively, we can set the signal
cross-section to a fixed value corresponding to a 30% invisible branching ratio of
the SM Higgs. This is shown in Figure 6.9, which leads one to conclude that the
models with heavier and heavier mediator masses are easier and easier to distinguish
from the reference model. When comparing models with different mediator masses,
there are in general two competing effects: the increased difference in the shape
of differential distributions and the decrease in the cross-section with the increase
of the mediator mass. By fixing the cross-sections in Figure 6.9, the differences

between the models are only due to the shapes of differential distributions, while in
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Figure 6.8 both effects are important. This explains why, for example, the model
with Mye.q = 500 GeV is easier to distinguish than the 250 and 750 GeV models in
Figure 6.8.

We also compare models where the reference model is not the 125 GeV Higgs.
The results for using 250 GeV and 500 GeV as reference models are shown in Fig-
ure 6.10. In the same way as for the 125 GeV Higgs, the cross-section for the
reference model is set equal to that of the model we compare it with. We see that
the 500 and 750 GeV models can be distinguished from the 250 GeV model at the
LHC. At the same time, the 750 GeV model (and above) cannot be distinguished

from the 500 GeV reference point.

6.5 Scalar Mediator Models at 100 TeV

We use a similar approach to investigate the model’s reach and the ability to distin-
guish between different models at a future 100 TeV circular proton-proton collider.
The signal and background are simulated in the same way as for the LHC analysis,
and we use the same binned-log likelihood analysis for exclusion and differentiation

of the various models. The main difference is that we use the cuts

Pp > 100Gev,  M;; >1200GeV, Agj; <05, Anp>55, pr;>110GeV,
(6.5.15)
instead of the normal VBF cuts in (6.4.14), as we need to reduce the background
more. We also allow for larger jets by using the anti-kt jet algorithm with R = 0.8.
The left panel in Table 6.2 shows the cross-sections for the signal at a future
100 TeV collider, assuming a 100% branching ratio of the scalar mediators to dark

matter.

We have set £ = 1 and assumed a 100% branching ratio of the mediator to xx

DM. The cross-sections for SM backgrounds are shown in the table on the right.

Figure 6.11 plots the kinematic distributions for Mj;, p_., An, A¢;; for models
with different values of M,.q and the SM background. We first investigate the
exclusion limits at 100 TeV for invisible decays of the 125 GeV Higgs. In Figure 6.12,
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Figure 6.11: Kinematic distributions for different values of the mediator mass for
the signal and for the background at a 100 TeV collider. M;; distributions are shown
on the top left panel, p_, is on top right right, An and ¢;; distributions are on the
bottom left and right panels, respectively.
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Figure 6.12: 100 TeV reach for excluding invisible decays of the 125 GeV Higgs
boson. On the left panel we use a systematic uncertainty of 1%, and the panel on

the right corresponds to a 5% systematic uncertainty
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Figure 6.13: 100 TeV reach for different M,,.q models with k = 1. On the left panel

we use a systematic uncertainty of 1%, and the panel on the right corresponds to a

5% systematic uncertainty.
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Figure 6.14: 100 TeV reach for different M,,.q models with x = 0.15. On the left

panel we use a systematic uncertainty of 1%, and the panel on the right corresponds

to 5% systematic uncertainty.

we plot exclusion limits on the branching rations to invisibles and conclude that for
small systematic errors one can exclude Bry,, = 10%.

We can now consider simplified models with different values of the mediator
mass. In Figure 6.13 we show the expected reach for a 100 TeV collider for these
models with x = 1 for a 1% and 5% level of systematic uncertainty. Figure 6.14
gives the expected exclusion limits for models with x = 0.15. From these figures
we conclude that in the case of small systematic uncertainties, the 100 TeV collider

would provide a very significant increase in the exclusion reach for new physics
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Mied VBF | GGF | Total

125 GeV 120 | 100 220

500 GeV 76 110 | 185 Background | Cross-section(fb)
750 GeV 53 46 99 Zjj 239

1000 GeV | 40 20 60 WHjj 298

1500 GeV | 22 | 5 | 27 Wi 157

2000 GeV | 14 2 16

2500 GeV | 8.7 0.6 9.4

Table 6.2: Cross-sections (fb) at partonic level after the cuts (6.5.15) at 100 TeV.

models with mediator masses up to 2.5 TeV. For a larger systematic uncertainty at
the level of 5%, the reach in M,,q is 1 TeV. For the more restricted case of kK = 0.15

Higgs-mixing models, a 100 TeV collider could exclude models with up to 750 GeV.
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Figure 6.15: Differentiating the models at x = 1 at 100 TeV. For each value of
M eq between 500 and 2500 GeV, the models are compared to the reference model
with the 125 GeV mediator. We assume a systematic uncertainty of 1% (left panel)
and 5% (right panel).

Finally, as we have done at the LHC energies before, we can use the kinematic
distributions at 100 TeV to differentiate pairwise between models with different
mediator masses. We first compare each model with a reference model with a 125
GeV mediator. The results for this analysis are presented in Figure 6.15 for k = 1

and Figure 6.16 for the models with kK = 0.15. At kK = 1, we can distinguish all the
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reachable models with mediators up to 2.5 TeV from the 125 GeV reference model.
For the small-x models in Figure 6.16, we can distinguish between the models up to

1 TeV (this requires higher luminosities up to 600 fb™).
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Figure 6.16: Differentiating the models at kK = 0.15 at 100 TeV. For each value of
M 1eq between 500 and 2500 GeV, the models are compared to the reference model
with the 125 GeV mediator. We assume a systematic uncertainty of 1% (left panel)
and 5% (right panel).
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Figure 6.17: Differentiating the models at k = 1 at a future 100 TeV Collider. For
each value of M,.q between the reference model mass and 2500 GeV, the models
are compared to the reference model with the 500 GeV mediator in the left panel

and 750 GeV in the right panel. We assume a systematic uncertainty of 5% .

As before, we can also compare to different choices of reference model. In Fig-

ures 6.17-6.18, we plot the results with reference models corresponding to mediator
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masses of 500, 750, 1000 and 1500 GeV. We conclude that for all the reference mod-
els with up to 1 TeV mediator masses we can successfully distinguish all reachable

models with higher mass.
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Figure 6.18: Differentiating the models at k = 1 at a future 100 TeV Collider. For
each value of M,.q between the reference model mass and 2500 GeV, the models
are compared to the reference model with the 1000 GeV mediator in the left panel

and 1500 GeV in the right panel. We assume a systematic uncertainty of 5% .

6.6 Summary and Conclusions

We have studied collider limits for simplified models of dark matter where the dark
matter is coupled to the Standard Model by a scalar field mediator which interacts
with both the SM fermions and the vector bosons. Our main goal was two-fold: First
to determine the projected reach of the Run 2 LHC and a future circular hadron
collider for excluding such models. Second, to use the kinematic distributions to be
able to extract information on the values of the mediator masses. To achieve this we
focused on the two-jets-plus-missing-transverse-energy final states. In our case both
production mechanisms are important: the gluon fusion process which effectively
probes the coupling of mediators to quarks, and the weak vector boson fusion which

is due to the interactions with vector bosons.

We found that at the 13 TeV LHC, one can probe simplified models of dark
matter with mediator masses up to 750 GeV. At a 100 TeV collider the reach is
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increased to 2.5 TeV mediators. These measurements are dominated by systematic
uncertainties which we have kept relatively small and have varied between the 1%

and 10% level.

In order to ‘measure’ the mediator mass, which is the most relevant new physics
scale of these models at colliders, we have compared the models with different values
of Meq pairwise. In both cases at 13 and at 100 TeV, we found that we can
differentiate between essentially all the discoverable benchmark models we have
considered. In particular, we can distinguish a 125 GeV reference model from models
with mediator masses of 250, 500 and 750 GeV at the LHC. For the 100 TeV case,
the list of distinguishable models extends to 2.5 TeV.

For the more constrained case of the Higgs portal models where scalar mediators
mix with the SM Higgs and the mixing angle is small, sin?# = 0.15, the collider
reach is reduced due to the overall decrease in the signal cross-section. We found
that the LHC reach is 500 GeV for an optimistic 1% systematic uncertainty, and
this is increased to 750 GeV at a 100 TeV collider.



Chapter 7

Conclusions

In this thesis we have investigated the collider and the cosmological phenomenology
of hidden sector extensions to the SM with a Higgs portal coupling. These models
extend the SM by adding a new hidden or dark gauge group with a new scalar degree
of freedom that is coupled to the Higgs. We have mainly been interested in mod-
els with classical scale invariance where all mass scales are generated dynamically
through dimensional transmutation. In Chapter 2, we showed how to construct SM
extensions with CSI. These models come in many shapes: some achieve dimensional
transmutation through confinement as in QCD, while most examples in the litera-
ture generate mass scales at weak coupling via the Coleman-Weinberg mechanism.
In both of these approaches the generated scale is transmitted to the SM via the
Higgs portal coupling. For models with CSI to be interesting and viable extensions
of the SM, they need to solve the observational problems in the SM which include
dark matter, matter-antimatter asymmetry, Higgs stability and neutrino masses,
without introducing any new large scales. Constructing and exploring the physics
of CSI models that could address these problems was the main motivation of this

thesis.

To generate the observed matter-antimatter asymmetry in the Universe we im-
plemented leptogenesis in a CSI model where the SM is extended by a U(1)p_p
gauge group in Chapter 3. Leptogenesis based on right-handed neutrino oscillations
avoids the requirements of very heavy right-handed neutrinos in normal leptogenesis

scenarios. The SMx U(1)p_, model explains the small active neutrino mass via a

168
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type 1 see-saw mechanism, and in sizeable parts of the parameter space, with right-
handed neutrinos at the GeV scale, we achieved the observed matter asymmetry of

the Universe.

We have shown in Chapters 4 and 5 that many different viable dark matter
candidates are possible in these hidden sector extensions to the SM. In this thesis,
we have investigated scalar dark matter, vector boson dark matter and the possibility
to have monopoles of the hidden sector as dark matter. In addition to providing
good dark matter candidates, we find that the models with scalar dark matter can
successfully stabilise the Higgs potential. If the hidden sector is a non-Abelian SU(2)
group, the gauge bosons are stable as there is no kinetic mixing with the SM U(1).
This makes the gauge bosons good dark matter candidates. For all of these dark
matter models, the next generation of direct detection experiments could discover
them or exclude large parts of the parameter space. When the hidden sector gauge
group is SU(2) and we have an adjoint scalar, the gauge group is broken to a U(1)
and Polyakov ’t Hooft monopoles will exist. We have showed that monopoles, which
are produced in phase transitions in the early Universe, can make up a significant
fraction of dark matter in this model. Both the monopoles and the gauge boson dark
matter will have long-range self-interactions which can help to solve the too-big-too-

fail and the core-vs-cusp problems with the standard cold dark matter paradigm.

The collider phenomenology of many of the models with dark matter in the
hidden sector can be characterised by simplified models where the dark matter is
coupled to a mediator that is coupled to the SM quarks and leptons. In Chapter 6,
we showed how it is possible to learn about the mass of a scalar mediator to dark
matter at the LHC and a future 100 TeV collider by using the kinematic distributions
in the two-jets-plus-missing-energy final state. At the LHC one can probe models
with mediator masses of 750 GeV, and at a future 100 TeV collider masses up to 2.5
TeV. With small systematic errors, it would also be possible to distinguish most of

the benchmark models where the difference in mediator mass is of the order of 250

GeV.

The results presented in this thesis show that CSI models, and hidden sector

models more generally, are interesting and viable BSM models. It is possible to
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address the main observational problems of the SM in a minimal way without in-
troducing any new large scales that would destabilise the Higgs mass. Even if the
models do not have any smoking-gun signatures they provide a rich phenomenology
at colliders, direct and indirect detection experiments and for cosmological observ-
ables. With new data from the next run of the LHC and the next generation of DM
and cosmological experiments, there are good possibilities to either discover such

SM extensions, or to exclude large parts of their parameter space.
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