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Abstract

Here we give a short survey on the theory of pseudo-Riemannian Osserman man-
ifolds, which arises from Osserman conjecture.

1. Introduction

Let (M,g) be a m−dimensional pseudo-Riemannian manifold of signature
(p, q). By εX = g(X,X) we will denote the norm of the vector X ∈ TpM ,
and depending on their norm we distinguish the following types of tangent
vectors: spacelike (εX > 0), timelike (εX < 0), null (εX = 0 ,X �= 0),
definite (εX �= 0) and unit (|εX | = 1). By SpM,S+

p M, and S−
p M we will

denote all unit nonnull, spacelike and timelike vectors in TpM , respectively.
Let ∇ be the Levi-Civita connection and let R be the associated Rieman-
nian curvature tensor, R(X,Y ) := [∇X ,∇Y ]−∇[X,Y ]. The Jacobi operator
RX : Y −→ R(Y,X)X is a symmetric endomorphism of the tangent bundle
TM . For nonnull X, RX preserves the orthogonal space {X}⊥, and we will
use the notation R̄X for the restriction of RX to this space.
If M is a Riemannian manifold which is locally a rank-one symmetric space
or if M is flat, then the local isometry group acts transitively on the unit
sphere bundle SM1, and hence the eigenvalues of RX are constant on SM .
Based on the paper [34], Osserman in [33] wondered if the converse held,
this question is usually known as Osserman conjecture.

If the eigenvalues of the Jacobi operator RX are constant on SM ,
then M is locally a rank-one symmetric space or a flat space ?

This question was starting point of the field. In the years which has followed
many authors have worked in this and related fields. For more details about
this topic one can find in monographs [27], [23].
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1 Spaces which satisfy this condition are called two-point homogenous spaces. Two-

point homogeneous spaces are R
n, RPn, Sn, Hn, CPn, CHn, HPn, HHn, Cay P2, and

CayH2.
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Our paper is organized as follows. Section 1 is devoted to the introduction
in this topic and motivation. In Section 2 we give some basic notations and
notions which we will use in the rest of the paper. Section 3 is devoted
to the Riemannian case which is almost closed after papers of Chi and
Nikolayevsky. The last Section 4 is devoted to the Osserman manifolds in
pseudo-Riemannian settings. Except the Lorentzian case, which is solved
by Blažić, Bokan and Gilkey (see [6]), there are a lot of open problems. Here
we are discussing some aspects of these problems, giving known and new
results and some new ideas and tools for further treatment of Osserman
type problems.

2. Preliminaries

2.1. Notions and notations.
For natural generalizations of Osserman conjecture to the pseudo-Rieman-
nian manifolds the following notions were defined. One says that (M,g)
is spacelike (resp. timelike) pointwise Osserman if the characteristic poly-
nomial of RX is independent on X ∈ S+

p M (resp. S−
p M). Manifolds

such that the characteristic polynomial of RX is constant on the bundle
S+M(resp. S−M) of unit spacelike (resp. timelike) vectors are called glob-
ally spacelike (resp. timelike) Osserman. Also, the notions of pointwise
(global) null Osserman condition are well-defined. But, in this article we
will not consider such manifolds. In the higher signature setting, unlike
in the Riemannian setting, the eigenvalue structure of a symmetric endo-
morphism does not determine the conjugacy class, but its Jordan normal
form. We say that (M,g) is spacelike pointwise Jordan-Osserman (resp.
timelike pointwise Jordan-Osserman) if the Jordan normal form of RX is
independent on X ∈ S+

p M (resp. on S−
p M). Similarly, we define globally

spacelike (timelike) Jordan-Osserman manifolds.

2.2. Algebraic curvature tensor
An algebraic curvature tensor R in a pseudo-Euclidean space V ∼= R

m

of signature (p, q) is a (3, 1) tensor having the same symmetries as the
curvature tensor of a Riemannian manifold,

R(X,Y ) + R(Y,X) = 0,
R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 0, (1)
g(R(X,Y )Z,W ) = g(R(Z,W )X,Y ).

One says R is an Osserman algebraic curvature tensor if the associated
Jacobi operator has characteristic polynomial constant on the unit pseu-
dospheres S+

p M and S−
p M . Similarly, R is a spacelike (timelike) Jordan-

Osserman algebraic curvature tensor if the associated Jacobi operator has
Jordan normal form constant on the unit pseudosphere S+

p M (S−
p M).

Remark 1. Using the theory of normal coordinates Gilkey (see [25]) showed
that any algebraic curvature tensor is geometrically realizable. More pre-
cisely, he showed that for any algebraic curvature tensor R on V , there
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exists a pseudo-Riemannian manifold (M,g), a point P ∈ M , an isometry
Ψ : TP M −→ V such that for all tangent vector fields X,Y,Z,W ∈ TP M
holds R(ΨX,ΨY,ΨZ,ΨW ) = gR(X,Y,Z,W ), where gR is the curvature
tensor of (M,g).
Example 1. The simplest examples of Osserman algebraic curvature ten-
sors are:
(i1) The curvature tensor Rc of a metric of constant sectional curvature is
given up to scale by

Rc(X,Y )Z = Rc(X,Y,Z) = g(X,Z)Y − g(Y,Z)X . (2)

(i2) The curvature tensor of the Fubini-Study metrics on CP(m/2) is given
(up to scale) by R = Rc + RI where

RI(X,Y,Z) = g(Y, IZ)IX − g(X, IZ)Y − 2 g(X, IY )Z , (3)

and where I is an almost complex structure making g Hermitian.

Example 2. An algebraic curvature tensor R in R
m has a Cliff(ν)-struc-

ture (ν ≥ 0), if there exist anticommuting skew-symmetric orthogonal op-
erators I1, . . . , Iν , and the numbers λ0, λ1, . . . λν , with λi �= λj (i �= j), such
that

R = λ0 +
1
3

ν∑
i=1

(λi − λ0)RIi (4)

The fact that skew-symmetric operators Ii are orthogonal and anticommute
is equivalent to each of the following sets of equations:

g(IiX, IjX) = δijg(X,X) and IiIj + IjIi = −2δij Id

for all i, j = 1, . . . , ν and all X ∈ R
m. For any unit vector X, the Jacobi

operator RX has constant eigenvalues λ0, λ1, . . . , λν . The eigenspace corre-
sponding to the eigenvalue λi, i �= 0, is Eλi

(X) = spanj:λj=λi
(IiX), and the

λ0-eigenspace is Eλ0(X) = (span(X, I1X, . . . , IνX))⊥, provided ν < m− 1.
A Riemannian manifold M has a Cliff(ν)-structure if its curvature tensor
at every point does.
Osserman algebraic curvature tensors with Clifford structure were intro-
duced by Gilkey [25], and Gilkey, Swann and Vanhecke [26]. They showed
that a Cliff (ν) algebraic curvature tensor (manifold) is Osserman (point-
wise Osserman, respectively). Since the curvature tensor of the Cayley
projective plane (or its hyperbolic dual) doesn’t allow any Clifford struc-
ture, there exists at least one Osserman algebraic curvature tensor having
no Clifford structure, [30].

One of the most natural approaches to the study of Osserman type problems
was suggested in [26]. It has two steps:
(1) classifying the Osserman (Jordan-Osserman) algebraic curvature ten-

sors,
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(2) finding those Osserman (Jordan-Osserman) algebraic curvature ten-
sors which can be realized as the curvature tensors of a pseudo-Rie-
mannian manifold.

The standard tool for (2) is the second Bianchi identity. The difficult part
is (1), but thanks to the remarkable construction of [25, 26], the right
candidate for (1) is given in Example 2.
Let Φ be a linear map of a pseudo-Euclidean vector space V of signature
(p, q) and dimension m = p + q. If Φ∗ = ±Φ we define

RΦ(X,Y )Z =

{
g(ΨY,Z)ΦX−g(ΨZ,Z)ΦY if Ψ = Ψ∗,

g(ΨY,Z)ΦX−g(ΨZ,Z)ΦY −2g(ΨX,Y )ΦZ if Ψ = −Ψ∗.

Let C(V ) the space of algebraic curvature tensors on V and let

S(V ) = span{RΦ | Φ∗ = Φ} ⊆ C(V ),

A(V ) = span{RΦ | Φ∗ = −Φ} ⊆ C(V ).

Using representation theory Fiedler in [18] proved

C(V ) = S(V ) + A(V ).

Set of algebraic curvature tensors on V is completely described in

Theorem 2.1 ([27]) C(V ) = S(V ) = A(V ).

2.3. k-stein manifolds
Following Carpenter, Gray and Wilmore [15], a pseudo-Riemannian mani-
fold (M,g) is called k-stein at a point p ∈ M if there exist constants Ct for
every 1 ≤ t ≤ k such that

Tr(Kt
X) = (εX )tCt (5)

holds for each X ∈ SpM . Pseudo-Riemannian manifold (M,g) is k-stein if
it is k-stein in each point p ∈ M .

Now, we give some basic results on k-stein manifolds, for details see [27].

Theorem 2.2 (a) Let (M,g) be a pseudo-Riemannian manifold of signature
(p, q). Then the following statements are equivalent.

(i1) If p ≥ 1 then M is timelike Osserman at p ∈ M.

(i2) If p ≤ dim M − 1 then M is spacelike Osserman at p ∈ M .

(i3) M is k-tein at p ∈ M for every k.

(b) Pseudo-Riemannian manifold (M,g) of dimension m ≥ 3 is k-stein at
a point p ∈ M if relation (5) holds for every X ∈ TpM .

(c) Pseudo-Riemannian manifold (M,g) of signature (p, q) is Einstein man-
ifold iff it is 1−stein.
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3. Riemannian case

Since the eigenspaces of Jacobi operators on Osserman manifolds form a
distributions on unit sphere bundle SM , the following theorem become
essential tool in Riemannian settings.

Theorem 3.1 (see [1, 4]) For a integer m = 2rm0 with m0 odd number,
we define the Adams number ν(r) by ν(i) = 2i − 1, for i = 0, 1, 2, 3, and
ν(i + 4) = ν(i) + 8.

(a) SM admits a q−dimensional distribution for 2q ≤ m − 1 iff q ≤ ν(r).

(b) R
m admits a Cliff(ν)-module structure iff ν ≤ ν(r).

Let us remark that above theorem gives topological restrictions on the
number of distributions of small dimension on SM . Using this theorem,
Chi at the end of eighties showed the following theorem.

Theorem 3.2 ([12, 13, 14]) Let M be a m-dimensional Riemannian mani-
fold. Osserman conjecture holds in the following cases

(a) m ≡ 1 mod 2, (b) m ≡ 2 mod 4, (c) m = 4,

(d) m = 4n, n = 2, 3, . . . and M is simple connected compact quaternionic
Kähler manifold with vanishing second Betti number,

(e) M is Kähler manifold of negative or positive sectional curvature.

The proofs of (a), (b) are direct consequences of Theorem 3.1 (a). In the
case (a) such manifolds allow only trivial distributions on SM , and the
Jacobi operator RX has at most two eigenvalues: 0 of multiplicity 1 and
λ0 of multiplicity m − 1 (for the eigenvalue structure of RX we will use
the following notations [(0, 1), (λ0,m − 1)]). This eigenvalue structure im-
plies that curvature tensor of M is given up to scale by (2), i.e. M has
constant sectional curvature. In the case (b) the eigenvalue structure of
RX is [(0, 1), (λ1 , 1), (λ0,m− 2)] and this eigenvalue structure implies that
curvature of M is given up to scale by (3), i.e. the curvature tensor of M is
curvature tensor of the Fubini-Study metrics on CP(m/2) and consequently
M has either constant sectional curvature or is covered by a standard pro-
jective space or its noncompact dual. In the proof of (b) and (c) Chi showed
the following property for extremal eigenvalues of Jacobi operator: if X and
Y are unit vectors then

RXY = λY if and only if RY X = λX. (6)

This property of algebraic curvature tensors is known as Rakić duality, and
it is proved in [36] for any eigenvalue of pointwise Riemannian manifold.
In 1999, Dotti and Druetta [16] showed that Osserman conjecture holds for
non flat homogeneous manifold of nonpositive curvature.
Using the remarkable construction given in [25, 26], duality principle and
some other results, Nikolayevsky proved in almost all cases that Osserman
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condition implies existence of Clifford structure on M , i.e., he proved Osser-
man conjecture in almost all cases (2003 – 2007). More precisely, he proved
the following theorem.

Theorem 3.3 ([30, 31, 32]) Let Mm be a Riemannian globally Osserman
manifold of dimension m ≥ 2, or a pointwise Osserman manifold of di-
mension m �= 2, 4. Then Mm is flat or locally rank-one symmetric except,
possibly, in the following case: m = 16 and the Jacobi operator has an
eigenvalue of multiplicity 7 or 8.

Remark 2. Previous theorem shows that there is no too big difference be-
tween globally and pointwise Osserman conditions, except in dimension
2, where any Riemannian manifold is pointwise Osserman, and in dimen-
sion 4, where exist pointwise Osserman manifolds that are not symmetric
(generalized complex space forms, see [26, Corollary 2.7]).

Nikolayevsky in [32] announce the following theorem.

Theorem 3.4A pointwise Osserman manifold of dimension 16 whose Ja-
cobi operator has two eigenvalues, of multiplicity 7 and 8, respectively, is
locally isometric to the Cayley projective plane or to its hyperbolic dual.

4. Non-Riemannian case

4.1. Algebraic curvature tensors

Here we will start with well-known facts about relation between the intro-
duced notions in the Section 2.

Theorem 4.1 (a) [22] Let (M,g) be a pseudo-Riemannian manifold and
p ∈ M. Then (M,g) is timelike Osserman at p iff (M,g) is spacelike Osser-
man at p.

(b) [28, 27] Let R be a spacelike Jordan-Osserman algebraic curvature
tensor on the vector space TpM of signature (p, q), where p < q. Then RX

is diagonalizable for any X ∈ S+
p M .

(c) [27] Let J be an arbitrary linear map of a vector space V of dimension

m. There exists l = l(m) and an algebraic curvature tensor R on R
(2l,2l) so

that RX is conjugate to ± J⊕ if X ∈ S±V .

Remark 3. It is clear from Theorem 4.1 (a) that the notions pointwise space-
like Osserman and pointwise timelike Osserman are equivalent, and if (M,g)
is either of them, then (M,g) is said to be Osserman. The same is true
for globally spacelike and timelike Osserman manifolds. Since Jordan nor-
mal form of a linear map determines its eigenvalue structure, the pointwise
spacelike or timelike Jordan-Osserman manifolds are Osserman manifolds,
too. The converse is not true, in [27] one can find examples of spacelike (or
timelike) Osserman algebraic curvature tensors which are not timelike (or
spacelike) Jordan-Osserman algebraic curvature tensor. Moreover, there
exist examples of spacelike Jordan-Osserman algebraic curvature tensors
which are not timelike Jordan-Osserman algebraic curvature tensors and
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vice versa. It means that notions of timelike and spacelike pointwise (and
consequently globally) Jordan-Osserman manifolds aren’t equivalent.
Remark 4. The (b) statement of the previous theorem shows that Jacobi op-
erator RX (X ∈ S±M) of a spacelike (timelike) Jordan-Osserman manifold
of signature (p, q), p < q (p > q) must be diagonalizable, i.e. in the case
of non-neutral metrics notions of pointwise spacelike or timelike Jordan-
Osserman manifolds coincide with the notion of Osserman manifold (see
Remark 3.). In the case of Osserman manifolds in neutral signature (p, p)
those notions are not the same and the Jordan normal form of correspond-
ing Jacobi operator should be arbitrarily complicated as Theorem 4.1 (c)
shows.

Motivated by the results of previous theorem as well as the usefulness of
the duality principle in the Riemannian settings, recently in [2] the notion
of duality principle is extended to the pseudo-Riemannian manifolds. More
precisely, we introduce the following definition:
Let R be an Osserman algebraic curvature tensor. For λ ∈ R we say that
it satisfies the duality principle if for all mutually orthogonal unit vectors
X ,Y holds

RX(Y ) = εX λY =⇒ RY (X) = εY λX . (7)

If the duality principle holds for all λ ∈ R then we say that duality principle
holds for the algebraic curvature tensor R (or for the pseudo-Riemannian
Osserman manifold (M,g) whose curvature tensor is R).

For pointwise spacelike (or timelike) Jordan-Osserman manifold with diag-
onalizable Jacobi operator (so called diagonalizable Osserman manifolds),
in [2] the following theorem was proved

Theorem 4.2. Let (M,g) be a diagonalizable Osserman manifold.

(a) If the duality principle holds for λ ∈ R then implication (7) holds for
all X,Y ∈ TpM with εX �= 0.

(b) If all eigenvalues of RX (X ∈ S±M) are different then the duality
principle holds in M .

(c) If for every X ∈ SpM doesn’t exist null eigenvector of RX , then the
duality principle holds in M . Specially, if M is Riemannian manifold
the duality principle holds.

4.2. Lorentzian case
Let M be a Lorentzian manifold (of signature (1,m−1)) the answer to the
Osserman conjecture is the most simple by some miracle on the pointwise
level. The first results on timelike (spacelike) Osserman manifolds were ob-
tained by Garcia-Rio, Kupeli and Vazquez-Abal. They showed that Osser-
man conjecture holds for timelike Osserman manifolds and if dimM = 3, 4,
[20, 21, 23]. Let us mention here that equivalence of spacelike and timelike
pointwise Osserman condition was established later in [22]. The complete
positive answer is given by N. Blažić, N. Bokan and P. B. Gilkey in [6].
More precisely, they proved the following theorem.
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Theorem 4.3 ([6]) Let M be a spacelike or timelike pointwise Osserman
manifold then M is flat or locally rank-one space.

The proof follows from the fact that spacelike (or timelike) pointwise Osser-
man condition implies that curvature tensor of M is given by (2). It means
that sectional curvature K(σ) of an arbitrary 2-plane σ ⊂ TpM depends of
p ∈ M , and then by Schur type theorem (which holds in Lorentzian setting)
implies that M is the space of constant sectional curvature.

4.3. 4-dimensional neutral Jordan-Osserman manifolds
Let M be a pointwise Jordan-Osserman manifold of signature (p, q) where
r = min{p, q} ≥ 2. In this settings the most followed approach is that one
proposed in [26]. The problem with this approach lies in the fact that the
space of symmetric operators in pseudo-Euclidean space of signature (p, q)
is very complicated if r > 2. In the case of non-neutral pointwise spacelike
(timelike) Osserman manifolds, Theorem 4.1 (b) reduces problem to the
diagonalizable case. But in the case of neutral signature (p, p) the situation
is very complicated at the algebraic level, as a consequence of Theorem 4.1
(c). The only case which is considered in details is the case of 4-dimensional
neutral spacelike (timelike) Osserman manifold. It turns out that geometry
of such manifolds is very rich (more then in other non-neutral cases) and
it is studied by many authors, see [23], [27], [7], [3], [10], [17], etc.
So, in this subsection we deal with 4−dimensional neutral Jordan-Osserman
manifolds (M,g). In TpM there exists an orthonormal basis (E1, E2, E3, E4)
of TpM where E1, and E2 are timelike and E3, and E4 are spacelike vectors,
such that all non-vanishing components of its algebraic curvature tensor
with respect to this basis are (see [3], [9], [7]):

(Ia) R′
X is diagonalizable,

R1221 = R3443 = α , R1331 = R2442 = −β , R1441 = R3223 = −γ ,

R1234 =
−2α + β + γ

3
, R1423 =

α + β − 2 γ

3
, R1342 =

α − 2β + γ

3
.

(Ib) R′
X has a complex root,

R1221 = R3443 = α , R1331 = R2442 = −α , R1441 = R3223 = −γ ,

R2113 = R2443 = −β , R1224 = R1334 = β ,

R1234 =
−α + γ

3
, R1423 =

2α − 2 γ

3
, R1342 =

−α + γ

3
.

(II) the characteristic polynomial of R′
X has a double root α,

R1221 = R3443 = −α +
1
2

, R1331 = R2442 = α +
1
2

,

R1441 = R3223 = −β, −R2113 = −R2443 = R1224 = R1334 =
1
2

,

R1234 =
α − 3

2 + β

3
, R1423 =

−2α − 2β

3
, R1342 =

α + 3
2 + β

3
.
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(III) the characteristic polynomial of R′
X has a triple root α,

−R2112 = R1331 = R1441 = R2332 = R2442 = −R3443 = −α

R2114 = R2334 = R3224 = R1442 = −
√

2
2

,

R3114 = R1223 = R1443 = R1332 =
√

2
2

.

Theorem 4.4 ([7]) Let M be a 4-dimensional pseudo-Riemannian Osser-
man manifold of signature (2, 2).
(a) If M is of type (Ia) then universal covering space M̃ of M is one of

the following manifolds

(i1) M̃ is a manifold of constant sectional curvature.

(i2) M̃ is a Kähler manifold of constant holomorphic sectional curva-
ture.

(i3) M̃ is a para-Kähler manifold of constant para-holomorphic sec-
tional curvature.

(b) M cannot be of type (Ib).

(c) if M is of types (II) (with β = 4α ) and (III) its curvature is locally
given by above formulas.

In this signature (in [7]), using Wu’s construction (see [39]), it was proved
the existence of globally Osserman manifolds which are locally symmetric
spaces of rank two, and consequently Osserman conjecture doesn’t hold (see
Example 3. below). Later it was shown (see[23]) that the Jacobi operators
of a locally symmetric four-dimensional Osserman metric are either diago-
nalizable or two-step nilpotent. Manifolds with non-diagonalizable Jacobi
operator have very rich geometry, for example in this class one can find
also some recurrent space, harmonic space and etc.

Example 3. Let M = R
4, (u1, u2, u3, u4) be the Descartes coordinates.

(i1) ([35])

g =
1
6

(u2
2du1 ⊗ du1 + u2

1du2 ⊗ du2 − u1u2[du1 ⊗ du2 + du2 ⊗ du1])

− 1
2

([du1 ⊗ du4 + du4 ⊗ du1 + du2 ⊗ du3 + du3 ⊗ du2]).

Then (R4, g) is the timelike Osserman rank two symmetric space of type
(II), the characteristic polynomial of RX for unit timelike X is λ4 and its
characteristic polynomial is λ2.
(i2) ([23])

g(f1,f2) = u3f(u1, u2)du1 ⊗ du1 + u4f2(u1, u2)du2 ⊗ du2 + a[du1 ⊗ du2

+ du2 ⊗ du1] + b[du1 ⊗ du3 + du3 ⊗ du1 + du2 ⊗ du4 + du4 ⊗ du2],
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where ∂f1/∂u2+∂f2/∂/∂u1 = 0. Then, the characteristic polynomial of the
Jacobi operator of (M,g(f1 ,f2)) is pλ(RX) = λ4, i.e., it is independent of the
nonnull vector X, but with different minimal polynomials mλ(RX) = λ2

or mλ(RX) = λ3. Also, there are examples when the minimal polynomials
change degree from point to point. Functions f1 and f2 can be additionally
chosen so that (M,g(f1,f2)) is not locally symmetric.

Let us note that all previous examples are examples of Ricci flat manifolds.
Recently in [17], it was find examples of Jordan-Osserman (2, 2) manifolds
which are not Ricci-flat.

Example 4. Let M = R
4 with usual coordinates (u1, u2, u3, u4). For any

arbitrary real valued function f(u4), define a metric by

g = du1 ⊗ du3 + du3 ⊗ du1 + du2 ⊗ du4 + du4 ⊗ du2

+
(

4 k u2
1 −

1
4k

f(u4)2
)

du3 ⊗ du3 + 4 k u2
2 du4 ⊗ du4

+
(

4 k u1u2 + u2f(x4) − 1
4k

f ′(u4)
)

(du3 ⊗ du4 + du4 ⊗ du3),

where k is a nonzero constant. In [17] was shown that (M,g) is Osserman
of type (II) with α = k and β = 4 k, on the open set where

24 k f(u4)f ′(u4)u2 − 12 k f ′′(u4)u1 + 3 f(u4)f ′′(u4) + 4 f ′(u4)2 �= 0, (8)

and it is diagonalizable Osserman (type (Ia)) with eigenvalue structure
[(0, 1), (k, 2), (4k, 1)] if equality in (8) holds. This means that in the case
of manifold (R4, g) its Jacobi operator changes its Jordan normal form and
thus it is Osserman but not Jordan-Osserman.

As we mention before, geometry of (2, 2) Osserman manifold is very rich
and here we will emphasize a few interesting characterizations. We start
with a characterization of pointwise (2, 2) Osserman manifolds which is
generalization of the same fact in Riemannian case.

Theorem 4.4 ([26, 3]) Let M be a four dimensional Riemannian or neutral
manifold then the following statements are equivalent:

(a) M is pointwise Osserman manifold.

(b) There is a choice of orientation such that M is Einstein and self-dual
or anti-self dual.

In the next theorem we give a characterization of four dimensional Kähler
(2, 2) neutral Osserman manifolds.

Theorem 4.5 ([24]) A four-dimensional Kähler metric of signature (2, 2)
is pointwise Osserman if and only if it is an indefinite complex space form
or a Ricci flat Kähler surface. Moreover, the Jacobi operators of a Jordan-
Osserman four-dimensional Kähler metric which is not of constant holo-
morphic sectional curvature are nilpotent of degree two or three.
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We will finish this overview of (2, 2) Osserman manifolds with new very
interesting fact.

Theorem 4.6 ([2]) The duality principle holds for every 4-dimensional Os-
serman manifold.
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[6] N. Blažić, N. Bokan and P. Gilkey, A Note on Osserman Lorentzian manifolds,
Bull. London Math Soc.29, (1997), 227 – 230.
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