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ABSTRACT Support Vector Machine (SVM) is a widely used algorithm for classification, valued for its
flexibility with kernels that effectively handle non-linear problems and high-dimensional data. Businesses
across industries face challenges in improving customer retention and reducing churn, making predictive
models essential for identifying at-risk customers and enhancing revenue. This paper investigates an
optimized quantum embedding kernel for SVM (Quantum SVM - QSVM) applied to a public bank customer
dataset, featuring variables on customer relationships and churn indicators. While focused on the financial
sector, the methodology is broadly applicable for reducing churn and boosting revenue across industries.
QSVM performance is compared to SVMs with established kernels, including Radial Basis Function
(RBF), linear, polynomial, and sigmoid. Experiments varied the number of variables from two to seven
to evaluate their impact on model performance and kernel behavior. The experiments were conducted on
quantum simulators, which faced scalability challenges addressed using reduced datasets. Even so, this study
sheds light on the potential of QSVMs to effectively manage increasing numbers of variables in predictive
models, offering valuable insights into their capability to handle complex, high-dimensional data and their
applicability in real-world scenarios.

INDEX TERMS Churn prevention, quantum machine learning, quantum support vector machines.

I. INTRODUCTION

Quantum computing is an emerging field that leverages the
principles of quantum mechanics to process information in
fundamentally new ways. Unlike classical computers, which
use bits as the smallest unit of information (represented as 0 or
1), quantum computers use quantum bits, or qubits, which can
exist in a superposition of states, enabling them to perform
multiple calculations simultaneously [1]. This unique capa-
bility allows quantum computers to tackle problems that are
infeasible for classical systems, such as optimizing complex
systems, simulating molecular interactions, and enhancing
machine learning algorithms. By harnessing phenomena like
entanglement and interference, quantum computing promises
to revolutionize industries ranging from cryptography to
pharmaceuticals, although it remains in its nascent stages [2],
with challenges like error correction and scalability still to be
addressed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muammar Muhammad Kabir

A prominent area of study in quantum computing is
quantum speedup [3], where researchers investigate types
of algorithms in which quantum computers perform faster
than their classical counterparts. The most notable example
of quantum speedup is Shor’s algorithm [4], which is
exponentially faster than any classical algorithm for finding
the prime factors of an integer [5]. Another example is
Simon’s algorithm [6], which also achieves exponential
speedup compared to any classical implementation.

Besides, Quantum Machine Learning (QML) involves
applying the principles of quantum computing to machine
learning problems. This application is promising, as machine
learning models are inherently probabilistic, a charac-
teristic shared by quantum mechanics. Therefore, it is
reasonable to hypothesize that quantum computers could
outperform classical computers in certain machine learning
tasks [7].

Thus, the inherent probabilistic nature of quantum comput-
ing, combined with potential speedups, provides compelling
reasons to research QML. One important area within QML
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is Variational Quantum Algorithms (VQA), which involves
leveraging both classical and quantum computers to develop
machine learning models [8]. In this approach, a parameter-
ized model is executed on a quantum computer, while its
parameters are optimized on a classical computer. Several
methods exist for applying VQAs to QML problems [9], one
of which is designing an optimized quantum kernel through
a VQA for an SVM [10].

This approach is particularly interesting because SVM is
one of the classical machine learning techniques that can inte-
grate quantum computing concepts directly through the use of
quantum kernels. This is promising, as quantum vector spaces
are inherently high-dimensional: for example, a system with
n qubits can represent 2" states. This enables the creation
of highly complex decision boundaries, potentially making
SVMs more powerful. Such a configuration is known as a
Quantum Support Vector Machine (QSVM) [10].

A significant number of works are approaching this
method, such as [11], [12], [13], [14], [15] and many others.

In [16], a quantum kernel optimized through a VQA is
proposed for classification problems, specifically in the form
of a Variational Quantum Classifier (VQC) [17]. In this
approach, the kernel is parameterized to reduce the distance
between data points within the same class while increasing
the separation between samples of different classes, thereby
simplifying the decision boundary design. This kernel is
applied to an SVM with promising results.

This work builds on a similar concept for constructing
a quantum kernel as proposed in [16], but with a different
number of parameters for kernel optimization.

The QSVM is compared with SVMs that utilize widely
used kernels such as Radial Basis Function (RBF), linear,
polynomial, and sigmoid, in a bank customer churn pre-
diction problem. The algorithms are trained across various
scenarios, starting with two variables from the dataset and
progressively increasing to seven. The objective of this
analysis is to evaluate how the performance of the QSVM
compares to that of classical SVMs as the number of variables
increases. This case study is relevant not only to the financial
sector but also to businesses across various industries,
as shown in [18], [19], and [20]. Furthermore, churn
prediction is widely used to identify customers at high risk of
leaving, enabling companies to implement retention actions,
such as reduced fees, Customer Relationship Management
(CRM) campaigns, and other strategies that can increase
revenue and enhance customer lifetime value.

The experiments were conducted on quantum simulators
using the Pennylane library in Python. Since the current
era of quantum computing is classified as the Noisy
Intermediate-Scale Quantum (NISQ) era, simulations with
noise were intended. However, preliminary tests indicated
that conducting such simulations was unfeasible due to
computational limitations. Nevertheless, this paper addresses
certain scenarios involving error probabilities for the pro-
posed quantum circuit to evaluate the susceptibility of this
approach to noise.
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Therefore, this work focuses on noise-free simulations as
a first step of the research. However, future studies should
include experiments on real quantum computers to assess the
impact of noise on the results.

This paper has the following structure: Section II presents
the concepts used in this work, Section III describes the
quantum kernel design, Section IV presents data and the
experiments methodology, Section V shows the results and
in Conclusion the main findings are summarized.

Il. CONCEPTS

This section introduces the key concepts used in this paper,
beginning with a brief overview of kernels, followed by an
explanation of quantum embedding kernels, and concluding
with an introduction to VQA.

A. KERNEL METHOD

In SVMs, specifically for classification problems, the objec-
tive is to find the optimal separator between classes by
maximizing the margin. This separator is defined by a vector
v, which is orthogonal to the separating hyperplane. For the
linear case, the decision function is given by (1).

D(x) = sgn({v, x) + a)) ey

where x is a data point, a is the intercept of the decision
boundary. Thus, points where (v, x) + a > 0 belong to one
class, otherwise they belong to the other class.

Equation (1) is a good decision boundary for linear
problems, where a line or a plane serves as the optimal
separator. However, for nonlinear cases, this solution might
not provide good results. To address this, the concept of
kernels is introduced, which is a mathematical abstraction and
a generalization of (1). Kernels enable the proper separation
of data in more complex cases, allowing SVMs to handle
nonlinear decision boundaries effectively.

D(x) = sgn((v/, ®(x)) + a) @

where, in (2), ® is a feature map that maps x into a high
dimensional vector space, resulting in ®(x). Furthermore,
V' is the orthogonal vector in the high dimensional space.
Additionally, v’ can be expressed as follows, according to the
representer theorem [21].

V= i) 3)

i
The main point of (3) is that the orthogonal vector to the
separator can be represented as a linear combination of the

data points in the feature map. This simplifies (2), resulting
in the form given by (4).

D(x) = sgn (Z ai(D(x;), D(x)) + a) )

The kernel function is given by (5).

k(xi, x7) = (D(x7), D(x)))? ®)
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where x; and x; are two data points. It is also possible to
infer that (5) represents a similarity function between two
points. This concept can be extended to a kernel matrix, which
defines the relationships between each pair of data points.

k(xt,x1) ... k(x1,xn)
K@) = : : (6)
ko, x1) <. k(x, x,)

The key advantage of using a kernel is that, despite working
in a high-dimensional vector space, the use of inner products
allows the calculations to be performed in the original, lower-
dimensional vector space. A good mapping ® enables better
separation between classes through the kernel.

Some examples of common kernels, which are also used
in this work as benchmarks for comparison with the quantum
kernel are given in (7) [22], [23].

(xi, xj), linear

((xi %) + 1)7, polynomial

k(xi, X)) = exp(_(”xi—XjHZ)) -
202 ’

tanh(y (x;, x;) + a), sigmoid
@)

B. QUANTUM EMBEDDING KERNEL

The quantum embedding kernel is a special case of what was
presented in the previous subsection, where the feature map
is represented as a quantum state.

|®(x)) = Ux)|0) ®)

where, in (8), U(x) represents a unitary operator, which is
a sequence of quantum components that transform the data
point x into quantum data through use of quantum gates, |0)
is one of the base states in quantum computing and |®(x)) is
the resulting quantum state of the feature map. An interesting
aspect here is that the data point x is not being converted into
an input quantum state |x), as typically done in VQCs [24].
Instead, x is used as a parameter of the unitary.

In this work, the number of qubits used in the quantum
circuit is equal to the number of features in the model.
Thus, the quantum kernel has from two to seven qubits
depending on the number of used variables in the experiment.
Consequently, the original vector space has n dimensions, and
the feature map transforms the data into a 2"-dimensional
Hilbert vector space that varies from 4 to 128 states.
Therefore, the quantum feature map naturally resides in a
high-dimensional vector space as much as the number of
variables, therefore qubits, increase.

Next, it is necessary to combine the kernel function in (5)
with the quantum feature map in (8) to generate a quantum
kernel function.

‘2

k(xi, ) = [(D0x) | D(x) ©))

Note that (9) is analogous to (5), but there is an important
detail in (9) that is intrinsic to quantum systems: ®(x;) is
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represented as a column vector (ket) and ®(x;) is represented
as a row vector (bra). The inner product between two
quantum states is a bra-ket, as shown in (9). However, this
expression must be written in a form that allows for the
calculation of the resulting kernel value, which is given
by (10).

2
| (10)

ki) = | 0| U v )
where U is the adjoint of the unitary U.
The representation of (10) in the form of a quantum
circuit is shown in Fig. 1, which illustrates a four-qubit
configuration. In this work, configurations ranging from
two to seven qubits are utilized. For cases involving more
or less qubits, the circuit in Fig. 1 can be adjusted by
increasing or decreasing the number of qubits in the
diagram.

A —

qo © — —

q o — =]
. U(x4j) , U'(x4)
= =

q3 : — —

Cc:

1 o

FIGURE 1. Quantum circuit representation of the kernel function,
adapted from [16].

In Fig.1, the result of kernel function is obtained by
measuring the output of the first qubit in the circuit.
The quantum kernel matrix is a particular case of (6),
which is obtained by applying (10) to the kernel matrix
in (6).

C. VARIATIONAL QUANTUM ALGORITHMS

The current stage of quantum computing presents a number
of challenges to developers and scientists, as the number of
available qubits is limited and the devices are relatively noisy
(Noisy Intermediate-Scale Quantum era - NISQ).

VQAs are a successful use case in Quantum Machine
Learning during the NISQ era. They involve using a classical
computer to train a parameterized quantum circuit [8].

The two key components of the VQA are the ansatz,
which is created on the quantum computer, with parameters
w that are adjusted through an optimization process on the
classical computer, based on a cost function C(w). The
algorithm proceeds by defining an initial set of parameters
wo, running the ansatz multiple times on a quantum computer
(to properly calculate the output probabilities), calculating
C(wo) and find a new set of parameters according to the
optimization algorithm. This process is repeated iteratively
until a minimum is reached or until the algorithm completes
its iterations in a hybrid computing scheme, as can be seen
in Fig. 2 [25]. In Fig. 2, f (x, w) is the measured output of the
ansatz.
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FIGURE 2. Schematic diagram of a Variational Quantum Algorithm (VQA),
adapted from [8].

IIl. QUANTUM KERNEL DESIGN

In this section, the design of the kernel is detailed. First, the
quantum circuit is proposed as basis for the kernel, with the
optimization process outlined in Subsection III-B.

A. UNITARY CIRCUIT DESIGN

In Subsection II-B, the quantum kernel formulation is
defined. The subsequent step involves designing the unitary
circuit, a key component that depends on the input variables
x and a vector of adjustable parameters w. This unitary
is implemented as a two-layered circuit, represented by
U(x,w).

As depicted in Fig. 3, the ansatz for a single circuit layer is
shown for a four-qubit configuration. For the QSVM with five
variables, the ansatz expands to five qubits while preserving
the same gate structure. This pattern holds consistently across
other configurations.

The first operation in Fig. 3 applies a Hadamard gate
to each qubit, placing them into an equal superposition
state. Subsequently, a rotation gate (RZ) is applied to each
qubit, where the rotation angle varies according to the
corresponding feature value. In this study, the circuit utilizes
between two and seven qubits, corresponding to the number
of selected features in the dataset, with x;; representing the
value of the j-th feature of the i-th data point. Following this,
RY gates are applied to each qubit, with the rotation angles
determined by adjustable parameters.

The final set of operations consists of controlled-RZ (CRZ)
gates, which introduce adjustable levels of entanglement
between pairs of qubits. These gates are arranged in a ring
configuration. The complete unitary, U(x, w), comprises a
second layer identical to the first, but with a different set
of parameters for the vector w. Consequently, this quantum
circuit exhibits a high degree of both superposition and
entanglement.

According to [26], this quantum circuit architecture has
demonstrated competitive or superior performance compared
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to well-established classical classification techniques, such
as shallow neural networks and Support Vector Machines
(SVMs), across a variety of benchmark problems. Conse-
quently, this approach was selected based on its success in
previous studies; however, exploring alternative ansatzes in
future work is encouraged.

B. OPTIMIZATION PROBLEM

The choice of a parameterizable unitary is aimed at designing
an optimized kernel, where the vector w can be adjusted
according to a specific objective. In this work, the objective is
to achieve a particular kernel function value, as given by (11).

L, ifyi=yj
0, otherwise

kopj(xi, Xj) = ’ (11)
where y; and y; are the target values for x; and x;, representing
whether the person has churned or not.

This objective function aims to drive the kernel value
between data points that belong to the same class toward 1,
while driving the kernel value between points in different
classes to approach zero. The optimization task is to find
the vector w that minimizes the quadratic error between the
elements of the objective kernel matrix and the current kernel
matrix.

Comy =D > (kxi, x7. w) — kopyr ) (12)
i

where, in (12) C(w) is the proposed cost function that needs
to be minimized as shown in (13).

w= argmv&n Cw) (13)

This problem can be solved by a VQA and, in each
iteration, a batch of data points is used to refine the cost
function and, consequently, the quantum kernel.

In comparison to Fig. 2, f (x, w) is equivalent to k(x;, xj, w),
which represents the output of the kernel function. This
output is then evaluated by the cost function in (12).

The chosen optimization method is the Adaptive Gradient
Algorithm (AdaGrad) Optimizer, which is a gradient-based
optimization algorithm designed to adapt the learning rate
for each parameter based on historical gradients, effectively
providing a higher learning rate for infrequent features
and a lower learning rate for frequent ones. This adaptive
property makes Adagrad particularly useful when dealing
with sparse data [27]. The algorithm updates parameters
according to (14):

S

Giite

B

Witli = Wri — VoL(wy) (14)
where 7 is the initial learning rate, G;; is the sum of the
squares of the gradients of the loss function with respect to
6; up to time step ¢, and € is a small constant for numerical
stability. The learning rate in step ¢ is given by (15) [27].

n
= 15
Nt+1,i Gt,i Te (15)
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FIGURE 3. Ansatz layer for unitary U(x) used in this work — illustrated for a four-qubit case.

where the sum of squares of the gradients is given by (16).

t
Gri= Y (VwL(w:))* (16)

=1

The initial learning rate in this work is 0.10 for all
VQAs with 110 iterations, each one with a different batch
of 31 samples of data. This setup presented goods results
in terms of convergence, since the cost function converged
smoothly, as can be seen in Figure 4.

4300
4100
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3500
3300

3100

Loss function - C(w)

2900
2700

2500

- © o v © o Vo o
=1

o O o O o O 4 VW oYW H WV W
NN ®m®m T T mm oo~ 000 g9

Iteration

FIGURE 4. Cost function curve during VQA optimization — five-variable
model configuration.

IV. DATA AND EXPERIMENTS

Subsection I'V-A presents the dataset and its variables and the
feature selection procedure and Subsection IV-B depicts the
experiments to be held in this work.

A. DATASET AND MODEL FEATURES

The problem at hand is to develop a predictive model capable

of identifying potential bank customers likely to churn. The

dataset utilized in this work is public and can be accessed

in [28]. It consists of 10000 records, with 10 features and an

additional column indicating whether each customer churned.
The possible variables in the dataset are [28]:

o CreditScore: The credit score of the customer.

o Geography: The geographical location of the customer
(e.g., country or region).

o Gender: The gender of the customer.

o Age: The age of the customer.

o Tenure: The number of years the customer has been with
the bank.

« Balance: The account balance of the customer.

82382

o NumOfProducts: The number of bank products the
customer has.

o HasCrCard: Indicates whether the customer has a credit
card (binary: yes/no).

o IsActiveMember: Indicates whether the customer is an
active member (binary: yes/no).

« EstimatedSalary: The estimated salary of the customer.

The dataset includes 10 variables that can potentially
predict churn propensity. However, due to the computational
limitations of this study, it is not feasible to utilize all of
them. The design of the ansatz maps each variable onto a
qubit, meaning that a model with 10 variables would require
10 qubits, resulting in 2'0 quantum states. This level of
complexity is prohibitive for quantum simulators with the
available computing capacity.

Thereby, feature selection is necessary to build a model
compatible with the existing computing restrictions. Firstly,
Pearson correlation was calculated to verify possible multi-
colinearities between continuous variables through (17) [29].

E(ab)
040p

pla, b) =

a7)

where p is the correlation between variables a and b, E(ab)
is the expected value of ab and o, and o}, are the standard
deviations of a and b, respectively. The Pearson correlation
provides how linearly strong is the relation between two
variables. If its value is close to 1, a and b have positive linear
correlation, if its value is close to —1, the variables have a
negative linear correlation and if the output is 0, then a and b
have no correlation.

In this dataset, there is no significant correlation between
the continuous variables, suggesting that each variable may
provide distinct information for predicting churn.

Mutual Information (MI) is used to select the variables,
which is a key concept in information theory that quantifies
the shared information between two random variables X
and Y. Mathematically, MI is defined by (18) [30].

px,y)
IX:Y 1
( ) = //p(xy)ng()()

where p(x, y) is the joint probability density function of X
and Y, and p(x) and p(y) are their marginal probability density
functions.

Equation (18) can be interpreted as follows: if X and Y
are independent, then p(x,y) = p(x)p(y). In this case, the
logarithm becomes zero, resulting in zero mutual information
between X and Y. Conversely, if there is some degree of

x dy  (18)
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dependency between them, MI will have a non-zero value.
This measure quantifies how much knowing one variable
reduces uncertainty about the other, capturing both linear and
non-linear dependencies.

Thus, the MI is calculated between each variable in the
dataset (X) and the Exited variable (Y), which is the model
target.

TABLE 1. Mutual information scores of the dataset variables and the
resulting feature selection decision.

Variable MI Models
Age 0.07660 | All
NumOfProducts 0.06720 | All
GeographyGermany | 0.01400 | 3 to 7 vars.
IsActiveMember 0.01230 | 4 to 7 vars.
Balance 0.00736 | 5to7 vars.
GenderFemale 0.00565 | 6to 7 vars.
GeographyFrance 0.00554 | 7 vars.
CreditScore 0.00372 | No
EstimatedSalary 0.00271 | No
HasCrCard 0.00003 | No

Tenure 0.00001 | No

Age exhibits the highest Mutual Information (MI) in
Table 1, followed by NumOfProducts and GeographyGer-
many, which has the third-highest MI. In contrast, Tenure,
HasCrCard, and EstimatedSalary have very low MI values.
The last column of Table 1 indicates which models include
each variable: Age and NumOfProducts are present in all
models, while GeographyGermany appears in models with
three to seven variables. EstimatedSalary, HasCrCard, and
Tenure are excluded from all models due to their low MI
values.

B. EXPERIMENTS

With the kernel design defined and the model variables
selected, the next step involves configuring the experi-
ments. This stage presents notable challenges due to the
unavailability of quantum hardware, requiring the use of
quantum simulators. However, simulators introduce relevant
scalability limitations. All experiments were conducted on a
machine with 16 GB of RAM and a 4-core processor without
GPU. Additionally, memory consumption for SVM training
grows quadratically with the number of training samples, i.e.,
O(n?), where n is the number of samples. These constraints
led to the following experimental limitations:

o The dataset size was limited to 10000 samples to ensure
simulations were feasible. Larger datasets resulted in
excessive memory usage, making multiple experimental
scenarios impractical.

o Simulation time increased with the number of qubits.
To maintain reasonable computational times, the number
of qubits was restricted to a maximum of 7.

The experiments were conducted using the Pennylane

library (version 0.36.0) with Python 3.10, employing the
“default.qubit” device, which does not support noise
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modeling. Preliminary tests with noise were performed
using the “default.mixed” device; however, its memory con-
sumption proved excessively high, rendering comprehensive
simulations with noise infeasible. Nevertheless, Section V
provides an analysis of the probability of encountering at
least one error during the execution of the quantum circuit,
considering configurations ranging from two to ten qubits.
Additional Python libraries used in this work include
Pandas (2.2.3), NumPy (1.26.4), and Scikit-learn (1.6.1). The
experimental procedure is divided into two main phases.
In the first phase, the dataset is partitioned into subsets
for kernel optimization, SVM training, and testing. Optimal
parameters for the quantum kernel are obtained using the
AdaGrad optimizer. In the second phase, the QSVM is trained
using the optimized kernel via the SupportVectorClassifier
object from Scikit-learn. Once trained, the model is evaluated
on the test set using standard metrics available in the
Scikit-learn library. Since Scikit-learn and the SupportVector-
Classifier are used, the dataset is formatted as a table, where
the selected variables for each model serve as features, and an
additional column indicates whether the customer has exited.

3500 rows

—

1500 rows

—

VQA

Kernel
optimization

Optimized kernel
k(.,w")

Trained model

5000 rows

I:> SVM prediction

FIGURE 5. Pipeline for training and prediction in quantum support vector
machine (QSVM).

The QSVM training and prediction pipeline is shown in
Fig. 5. In the first step, the quantum kernel is optimized
using the VQA depicted in Subsection III-B. This step
uses a 3500 rows sample as input and whose output is the
quantum embedding kernel with optimized parameters w*.
The optimized kernel serves as an input for SVM training,
which is performed using a 1500 samples data. There is no
overlap between the data used for kernel optimization and
SVM training, in order to avoid possible data leakage and
overfitting in the QSVM.
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Furthermore, cross-validation could not be performed in
this work, as methods such as K-fold cross-validation and
grid search require training multiple models, which is not
feasible due to the extensive time required to train the QSVM
(ranging from three to nine days, depending on the number of
qubits involved). Therefore, all experiments were conducted
with a regularization parameter of C = 1.0.

Once the model is trained, predictions are held on a
5000 row sample, using the entire dataset to train and
evaluate. There is no intersection between train and test data.
The decision to use only half of the dataset for training is
driven by computational limitations. A larger training sample
would require significantly more computational power and
result in much longer processing times, which was not
feasible for this work.

The decision to allocate more data to kernel optimization
than to SVM training is rooted in computational efficiency.
SVM training typically has a memory complexity of O(n?),
where n is the number of training samples [31]. This arises
because the SVM requires the construction of an n x n
kernel matrix. While kernel optimization also has a memory
complexity of O(n?), it is performed in batches of size n =
31, which is significantly smaller than the 1500 samples
used for SVM training. Furthermore, since this work uses
quantum simulators the relation between training data and
use of memory is even worse. Thus, to optimize the use of
available resources, a larger portion of the data was allocated
to kernel optimization, as it is less memory-intensive than the
SVM training process.

5000 rows
R

training
@ Trained model

5000 rows

—

FIGURE 6. Training and prediction pipeline for classical SVMs with
standard kernels.

SVM prediction

Fig. 6 presents the training and predict pipeline for the
SVM with linear, RBF, polynomial and sigmoid kernels.
In this case, there is no need to train these kernels separately,
as they are already built into scikit-learn, the Python package
used for all SVM implementations in this study. The training
set consists of 5000 data points, the same data used for
kernel optimization and QSVM training. The prediction data
remains consistent across all experiments.
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The evaluation metrics in this work include accuracy,
precision, recall, F1, and the Area under the Receiver
Operating Characteristic (AUC).

C. ANALYSIS OF NOISE-INDUCED ERRORS

Before inferring the potential effects of noise on the quantum
circuit, certain assumptions must be made to facilitate the
estimation process. According to [32], one-qubit quantum
gates can be considered ideal, whereas two-qubit quantum
gates must be treated as non-ideal. The ansatz used in
this work includes Hadamard, RY, and RZ gates as one-
qubit operations, and CRZ as a two-qubit operation. In a
single layer of an n-qubit arrangement, there are n CRZ
gates. Moreover, the ansatz comprises two layers, and
constructing the kernel matrix requires building the adjoint
ansatz, resulting in a total of 4n CRZ gates.

Additionally, errors induced by noise can be modeled using
Kraus operators. Common error types include depolarizing
channels, amplitude damping, and phase damping [32]. It is
assumed that the overall error rate in each quantum gate
follows a binomial distribution X; ~ B(1,p) [33], and
that these errors are independent for each gate [34]. For
simplicity, it is also assumed that the probability of error in a
quantum gate is given by p and is the same for every CRZ
gate. Therefore, the total probability of an error occurring
in the quantum circuit can be described by the sum of these
distributions [35]. Consequently, the overall error probability
follows a binomial distribution, given by (19).

X ~ B(4n, p) (19)

Furthermore, current quantum computing technologies
generally exhibit error rates ranging from 0,1% to 1% per
quantum gate [36]. Therefore, the probability of having at
least one error in the quantum circuit is given by (20).

4n

4n\ . .
PN=1= ( ,-n)P’“ —py (20)

i=1

V. RESULTS

The test dataset consists of 79.64% of customers who did not
churn, making it an unbalanced sample. Analyzing accuracy
in Fig. 7, the QSVM achieved the best results for models
with three or more variables, performing slightly better than
the SVM with RBF and polynomial kernels. The linear SVM
showed an accuracy of 79.64%, which is misleadingly high
since it predicted only non-churn cases. This is evident in the
0% precision and recall observed in Figs. 8 and 9. Moreover,
the 50% AUC score in Fig. 11 highlights that the linear SVM
lacks any predictive power, a consequence of its inability to
effectively separate the two classes due to the limitations of
the linear kernel.

The SVM with a polynomial kernel had slightly lower
accuracy than the RBF kernel for models with three to four
variables but performed similarly to the RBF kernel for five to
seven variables. The SVM with a sigmoid kernel consistently
exhibited the lowest accuracy for all variable configurations,
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FIGURE 7. Accuracy scores for QSVM and classical SVMs across different
experiments.
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FIGURE 8. Precision scores for QSVM and classical SVMs across different
experiments.
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FIGURE 9. Recall scores for QSVM and classical SVMs across different
experiments.

but it outperformed the linear SVM as it predicted some churn
cases, as shown in Figs. 8 and 9.

In Fig. 8, the RBF and polynomial SVMs achieved the
highest precision for models with four to seven variables,
with similar performance between the two. The QSVM
showed slightly lower precision in this range but performed
comparably for models with three variables. The sigmoid
kernel SVM exhibited a decline in precision as the number of
variables increased, except between six and seven variables,
where the performance slightly increased.
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FIGURE 10. F1-scores for QSVM and classical SVMs across different
experiments.
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FIGURE 11. AUC-scores for QSVM and classical SVMs across different
experiments.

Fig. 9 highlights that the QSVM demonstrated the highest
recall for models with four to seven variables, consistently
outperforming the RBF and polynomial SVMs in these
scenarios. The sigmoid kernel SVM showed the best recall
for two and three variables, while the RBF kernel SVM
outperformed the polynomial kernel SVM for models with
three or more variables. The performance gap between the
RBF and polynomial SVMs narrowed as the number of
variables increased.

The F1-score, depicted in Fig. 10, balances precision and
recall. The QSVM achieved the best Fl-scores for models
with three or more variables. The sigmoid kernel SVM
performed well for models with two and three variables,
but its performance declined for models with four or more
variables. In contrast, the RBF kernel SVM had the second-
best Fl-scores, followed closely by the polynomial kernel
SVM. Notably, the QSVM, RBF, and polynomial SVMs
exhibited a performance peak with four variables, a slight
decline with five variables, and an increasing performance
gap favoring the QSVM for six and seven variables.
Increasing the number of variables beyond this range is
not feasible due to prohibitive computational demands and
diminishing returns from variables with low IVs and MIs.

Finally, the AUC values in Fig. 11 reveal that the SVM
with polynomial kernel has a relatively flat performance for
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three or more variables, achieving the best AUC score for
three variables and the third-best for configurations with four
variables or more. For models with seven variables, it showed
a small increase in performance, having very close results to
the RBF kernel SVM. The QSVM delivered the best results
for models with four or more variables and. Besides, similarly
to Fig. 10, the QSVM has a better performance improvement
from five to seven variables, indicating effective utilization
of the high-dimensional quantum kernel. The sigmoid kernel
SVM was the only model capable of predicting churn cases
with two variables, achieving the best F1 and AUC scores
in this scenario. However, for models with more than two
variables, it ranked second-worst in terms of AUC scores,
demonstrating limited discrimination capability.

Based on the analysis presented in Subsection IV-C, the
probabilities of noise-induced errors in the quantum circuit as
a function of the number of qubits are illustrated in Fig. 12.
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20,0%

Error probability
.
G
=)

=
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[
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FIGURE 12. Estimated probability of at least one error occurring in the
quantum circuit as a function of the number of qubits.

As discussed in Subsection IV-C, the probability of
noise-induced errors per gate ranges from 0.1% to 1%.
Accordingly, Fig. 12 presents two curves: one representing
the probability of at least one error occurring in the circuit
during simulation with a 0.1% error probability per quantum
gate, and the other with a 1% error probability. Therefore, the
probability of encountering any type of error for the 2-qubit
arrangement presented in this work lies between 0.8% and
7.5%, while for the 7-qubit arrangement, it ranges from 2.7%
t0 21.3%.

These results have several implications: Firstly, when
applying this approach to real quantum computers with noise,
the results will be increasingly compromised as the number
of variables (and thus, qubits) increases. Additionally,
this indicates that the proposed approach faces scalability
challenges when applied to NISQ-era quantum computers.

Given this scenario, a variation of the proposed kernel was
developed with a single layer. The results for the five-qubit
QSVM, using the same input variables as in the two-layer
configuration, are presented in Table 2.

The one-layer QSVM yielded overall good results, per-
forming slightly below the two-layer QSVM and the SVM
with RBF kernel. Nevertheless, it outperformed the SVM
models with linear, polynomial, and sigmoid kernels when
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TABLE 2. Classification performance of the one-layer QSVM compared to
other cases with five input variables.

Model Accuracy | Precision | Recall | F1 AUC

QSVM 1 layer 85.02% | 85.87% |31.63% | 46.23% | 65.15%
QSVM 2 layers | 84.66% | 75.77% | 36.25% | 49.04% | 66.64%
SVM RBF 84.88% | 83.25% |32.22% | 46.46% | 65.28%
SVM linear 79.64% 0.00% | 0.00% | Div. 0 |50.00%
SVM poly 84.64% | 83.78% | 30.45% | 44.67% | 64.47%
SVM sigmoid 72.00% | 29.46% | 26.92% | 28.13% | 55.22%

using five variables. In this configuration, the estimated
noise-induced error probability ranges from 1.0% to 9.1%,
which is lower than in the two-layer scenario but still
significant enough to potentially affect outcomes in real
quantum hardware.

Therefore, quantum error detection (QED) and quantum
error correction (QEC) are essential to achieve reliable
results when employing this type of quantum kernel. Notable
applications of QED are presented in [37], while QEC
strategies incorporating quantum machine learning can be
found in various works, such as [38] and [39].

VI. CONCLUSION

Overall, the QSVM demonstrated the most well-balanced
results across all experiments. The observed increase
in performance as the number of variables grew was
expected, given that the use of an optimized kernel in a
high-dimensional space should provide an expected per-
formance improvement, even considering the optimization
challenges in this scenario. This behavior is particularly
promising for complex problems with a large number of
available variables, where the QSVM could potentially out-
perform its classical counterparts. Additionally, the QSVM
performed well even with fewer variables (with the exception
of the extreme case involving only two variables), where
the quantum advantage diminishes. As anticipated, in these
cases, its performance became comparable to, and in some
instances slightly worse than, the classical SVM models.

However, even not being able to perform simulations with
noise, it was possible to infer that noise interference is costly
in terms of results for this case, even with a one layer quantum
circuit.

For future research, it would be valuable to investigate
alternative, simpler quantum circuits to evaluate whether
comparable results can be achieved with reduced suscepti-
bility to noise. Another promising direction is to test the
approach proposed in this work in conjunction with QEC
algorithms.
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