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Abstract. We review dilaton chiral perturbation theory (dChPT), the e↵ective
low-energy theory for the light sector of near-conformal, confining theories.
dChPT provides a systematic expansion in both the fermion mass and the dis-
tance to the conformal window. It accounts for the pions and the light scalar, the
approximate Nambu–Goldstone bosons for chiral and scale symmetry, respec-
tively. A unique feature of dChPT is the existence of a large-mass regime in
which the theory exhibits approximate hyperscaling, while the expansion nev-
ertheless remains systematic. We discuss applications to lattice data, presenting
successes as well as directions for future work.

1 Introduction

Figure 1. Hadron masses as a function of fermion mass, all in units of F⇡, in the SU(3) gauge theory
with 8 fundamental flavors, from Ref. [2].

Let us start with a look at spectral data for the SU(3) gauge theory with Nf = 8 funda-
mental fermions obtained by the LSD collaboration [1, 2], shown in Fig. 1. In comparison
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with QCD, several salient di↵erences stand out: First, we note the presence of a stable 0++

state, denoted by the points labeled σ, with a mass virtually degenerate with the pions, over
this mass range. Second, within errors, the spectrum shows hyperscaling: hadronic mass
ratios are essentially independent of the fermion mass. In addition, pion “taste splittings”
associated with the use of staggered fermions in all these simulations, i.e., non-degeneracies
in the pion spectrum due to scaling violations, behave very di↵erently as a function of the
fermion mass in comparison with QCD (not shown in the figure). Similar results have been
found in Ref. [3] by the LatKMI collaboration for the same theory, and in the SU(3) theory
with two sextet fermions by the LatHC collaboration [4, 5], or with four light and six [6] or
eight [7] heavy fundamental fermions. In this talk, we will discuss to what extent these data
are decribed by tree-level dilaton Chiral Perturbation Theory (dChPT).

After a brief review of dChPT and its lowest-order lagrangian, we will explain the exis-
tence of a “large-mass” regime in which dChPT predicts approximate hyperscaling, as seen
in Fig. 1. Going beyond hyperscaling, we will then apply dChPT to fit the LSD and LatKMI
data, including the measured staggered taste splittings. We conclude with a brief discussion
of what might be next.

2 Lowest-order dChPT

Dilaton ChPT is based on the following set of assumptions [8, 9]:

• Every gauge theory below the conformal sill contains Nambu–Goldstone bosons, or “pi-
ons,” associated with the spontaneous breaking of chiral symmetry. The pions become
massless in the limit m! 0, where m is the (degenerate) fermion mass.

• Scale invariance gets restored in the infrared as we approach the conformal window, with
the trace anomaly being proportional to the distance to the conformal window. In the
Veneziano limit Nf ! 1, Nc ! 1, with n f = Nf /Nc fixed, this happens when n f ap-
proaches a critical value n⇤f from below. The di↵erence n f − n⇤f is a new small parameter.

• The theory contains a dilaton, i.e., a Nambu–Goldstone boson associated with scale sym-
metry breaking, which becomes massless in the double limit n f − n⇤f ! 0 and m! 0.

• In addition, some technical assumptions on the dilaton potential are needed, see Ref. [10].

With these assumptions, one can prove that a systematic power counting in the small param-
eters

p2 ⇠ m ⇠ n f − n⇤f ⇠ 1/Nc (1)

exists, and construct the lowest-order (O(p2)) lagrangian,

L =
1
4

f 2
⇡ e2⌧ tr(@µ⌃†@µ⌃) +

1
2

f 2
⌧ e2⌧@µ⌧@µ⌧ (2)

−1
2

f 2
⇡ B⇡me(3−γ⇤)⌧tr(⌃ + ⌃†) + f 2

⌧ B⌧e4⌧c1

 
⌧ − 1

4

!
.

Here ⌃ = exp(2i⇡/ f⇡) is the non-linear pion field and ⌧ is the dilaton field. c1 is a parameter
proportional to n f − n⇤f , of order p2 in our power counting. At leading order, five low-energy
constants (LECs) appear: f⇡,⌧, B⇡,⌧, and γ⇤, the mass anomalous dimension at the infra-red
fixed point at the conformal sill. For a detailed discussion of the lagrangian and the power
counting, see Ref. [8]. We have used the freedom to shift the field ⌧ such that v(m) = h⌧i
vanishes for m = 0, at this order.

The saddle point equation for the classical solution v(m) is

m
c1M = v(m)e(1+γ⇤)v(m) , M ⌘ 4 f 2

⌧ B⌧
f 2
⇡ B⇡Nf (3 − γ⇤) . (3)
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The saddle point equation for the classical solution v(m) is

m
c1M = v(m)e(1+γ⇤)v(m) , M ⌘ 4 f 2

⌧ B⌧
f 2
⇡ B⇡Nf (3 − γ⇤) . (3)

The tree-level pion and dilaton masses, and their decay constants, are, using Eq. (3),

M2
⇡ = 2B⇡me(1−γ⇤)v(m) = 2B⇡c1Mv(m)e2v(m) , (4)

M2
⌧ = 4B⌧c1e2v(m) (1 + (1 + γ⇤)v(m)) ,

F⇡,⌧ = f⇡,⌧ev(m) .

Unlike in ordinary ChPT, here the tree-level decay constant(s) depend on the fermion mass
via the factor ev(m).

3 The small- and large-mass regimes

An important observation is that in our power counting the ratio m
c1M is parametrically O(1).

But this ratio can still be small, corresponding to the small-mass regime, or large, correspond-
ing to the large-mass regime.

In the small-mass regime, m
c1M ⌧ 1, and v / m while ev = 1 + O(m). One has M2

⇡ =

2B⇡m ⌧ M2
⌧ = 4B⌧c1 / |n f − n⇤f |. Even though, relative to the pions, the dilaton decouples,

its mass still remains parameterically smaller than that of all other hadrons. For energies
below the scale set by the dilaton mass the physics of pions only is described by standard
ChPT.

The large-mass regime, m
c1M � 1, is more interesting [10]. In Eq. (3) the exponential

dominates, and this equation has the approximate solution

ev(m) ⇠
 

m
c1M

!1/1+γ⇤
. (5)

In turn, this implies that Eq. (4) predicts approximate hyperscaling:

M⇡ ⇠ M⌧ ⇠ F⇡ ⇠ F⌧ ⇠ Mh ⇠ m1/1+γ⇤ , (6)

which can also be shown to apply to other hadron masses generically denoted as Mh. dChPT
thus predicts that, in the large-mass regime, the theory behaves approximately as a mass-
deformed conformal theory. Given the spectral results shown in Fig. 1, this is the first success
of dChPT. The intuitive reason for hyperscaling is that, with m � c1M, the fermion mass is
the dominant source of the breaking of scale invariance.

While all particle masses exhibit hyperscaling, the pion and the dilaton are still paramet-
rically the lightest particles in the theory: M⇡ ⇠ M⌧ ⇠ c1, which, by assumption, is a small
parameter. In fact,

M2
⇡

(4⇡F⇡)2 ⇠ c1v(m) ⇠ c1 log
m

c1M , (7)

which implies that the expansion underlying dChPT is systematic as long as c1 log m
c1M ⌧ 1,

even though m/M may be large. By contrast, ordinary ChPT for QCD is only valid when m
is small relative to the infrared scale of the (massless) theory.

4 Fits to LSD data [1, 2]

One would like to test dChPT beyond the semi-quantitative observation of hyperscaling. Here
we review some of the fits performed in Ref. [11] of the tree-level predictions to data for the
pion mass and decay constant, as well as the dilaton mass, as a function of the fermion
mass.1 The ensembles of Ref. [2] all have the same bare coupling, and fermion masses

1The dilaton decay constant was not measured in Refs. [1–3].
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Figure 2. M2
⇡/F

2
⇡, aF⇡ and M2

⌧/F
2
⇡ as a function of the bare fermion mass in lattice units, am. Taken

from Ref. [11].

103am = (1.25, 2.22, 5.00, 7.50, 8.89). In Fig. 2 we show results of one of the fits of
Ref. [11], using data for M2

⇡/F
2
⇡, aF⇡ and M2

⌧/F
2
⇡ at the lowest four am values. The fit has a

p-value of 0.89. Including also the largest mass leads to a less good fit, but the p-value is still
0.29. We conclude that tree-level dChPT provides an excellent description of the LSD data.2

The parameters controlling the mass dependence are well determined by these fits: we
find γ⇤ = 0.94(2) and aB⇡ = 2.1(1). In contrast, finding a f⇡ requires a long extrapolation to
the chiral limit, and the result of the fits is a f⇡ = 0.0006(3).

We emphasize that the data all have 0.02 . aF⇡(m) . 0.06, with F⇡L & 1 and certainly
M⇡L � 1, so that the data are all in the p-regime. However, as already follows from the
approximate hyperscaling, the LSD fermion masses are solidly in the large-mass regime,
hence the long extrapolation needed to reach the chiral limit. This long extrapolation may
make the value of a f⇡ very sensitive to higher orders in dChPT, even if next-to-leading order
(NLO) corrections at the LSD masses are relatively small. The (tentative) conclusion is that
reaching the chiral limit while keeping f⇡L & 1 would require unrealistically large volumes,
if the same bare coupling is kept.

The LSD collaboration also measured two of the staggered pion taste splittings (specifi-
cally, the “axial” and “tensor” ones). The taste splittings look very di↵erent from those found
in QCD, which are explained well by the staggered extension of ordinary ChPT. Once we
extend dChPT to include the discretization e↵ects of staggered fermions (SdChPT for short),
we find that these taste splittings can be quantitatively understood using SdChPT. For details,
see Ref. [11]; we will show an example of taste splittings in the next section.

5 Fits to LatKMI data [3]

Next, we consider fitting dChPT to the data of Ref. [3]. The LatKMI
collaboration considered the same theory, with fermion masses 102am =

(1.2, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0), significantly larger than those of

2For other applications of tree-level dChPT, see Refs. [5, 6].
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Figure 3. The running mass anomalous dimension γ(m), obtained from various fits of the LatKMI data,
as a function of aF⇡(m), see text. Taken from Ref. [12].

the LSD collaboration. Since the LatKMI and LSD collaborations used di↵erent lattice
actions, and both collaborations did simulations at a single value of the bare coupling, we
cannot compare the two data sets in physical units. In other words, we do not know the
relative size of the LatKMI and LSD lattice spacings.

In Ref. [12] we found that we cannot fit the LatKMI data over their full mass range with
tree-level dChPT. Fits of subsets suggest that NLO corrections will have to be taken into
account. However, at NLO the e↵ective theory has a large number of new LECs [8], and
there are insufficient data to resolve these, even if the actual fits contain a smaller number of
linear combinations of the new LECs.

Instead, we found that the data are well described with an m-dependent mass anomalous
dimension3

γ(m) = γ0 − bv(m) + cv2(m) . (8)

For a detailed description of the fits we refer to Ref. [12]. Here we just show the results we
obtain for γ(m) of Eq. (8), in Fig. 3. The blue band shows a fit (p-value = 0.48) to data at
all but the largest mass of the LatKMI range, with all three parameters, γ0, b and c. The
magenta band shows a fit (p-value = 0.19) with the two largest masses omitted, and c = 0.
For comparison, the gray band represents γ⇤ = 0.94(2) obtained from the LSD data. The
actual data all lie in the range 0.045 . aF⇡ . 0.12, where the two bands overlap, as expected.
Again, the LatKMI masses are in the large-mass regime, requiring a long extrapolation to
the chiral limit. These results corroborate the sensitivity of the chiral limit to higher orders,
even if those higher orders can be small in the range of the data. Indeed, small corrections
to v(m) over a limited m-interval make a larger e↵ect on the “hyperscaling factor” ev(m) in the
tree-level expressions (4), which magnifies if m is taken outside the range of the actual data.

To conclude this section, we show in Fig. 4 a fit of the taste splittings to tree-level SdChPT
augmented by the varying γ(m) of Eq. (8).4 These taste splittings behave very di↵erent from

3In Ref. [12] we proved that this choice is still consistent with the Ward–Takahashi identities for scale invariance.
One can think of Eq. (8) as arising from a partial resummation of higher orders.

4Ref. [3] measured taste splittings only for a subset of seven fermion masses with a maximum value 0.08. Setting
c = 0 yields a good fit (p-value = 0.44) to tree-level SdChPT with γ(m) of Eq. (8).
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Figure 4. Fit of tree-level SdChPT to the taste splittings of Ref. [3]. Taken from Ref. [12].

those in QCD with staggered fermions, where the taste splittings are essentially independent
of am. The goodness of the fit is a successful test of the dChPT framework.

6 Conclusion

We identified a “large-mass regime” in dChPT that has no equivalent in ordinary ChPT. This
is the regime with c1M ⌧ m ⌧ c1Me1/c1 . Much like a mass-deformed infrared-conformal
theory, the large-mass regime of a “walking” theory exhibits approximate hyperscaling, while
the expansion underlying dChPT remains systematic, thanks to the smallness of c1 / |n f −n⇤f |,
the distance to the conformal sill. We found that current simulations of the Nf = 8, SU(3)
theory are deep in the large-mass regime.

Consequently, reaching the chiral limit from the data of Refs. [2, 3] requires a very long
extrapolation. This extrapolation appears to be very sensitive to the mass range used in the
fits, as well as to higher orders in dChPT. For example, because of this sensitivity, the chiral-
limit value a f⇡ = 0.0006(3) found from the LSD data may be a✏icted with a larger systematic
error than reflected by the statistical fit error qouted above. It is thus very difficult to determine
whether a f⇡ is actually di↵erent from zero! Likewise, it is difficult to obtain a precise value
for c1M. The difficulty of controlling the long extrapolation raises the intriguing question
whether, e↵ectively, dChPT may also apply inside the conformal window, as long as the
theory is mass-deformed.

Both Refs. [2] and [3] measured the dilaton mass, finding it to be nearly degenerate with
the pions. But the errors are so large that the dilaton mass has little influence on the fit, as can
be seen in Fig 2. Given the questions raised above it would be helpful if more precise data
become available, especially at the lower fermion-mass range. In particular, this might allow
for the probing of NLO corrections. Also, the size of the taste splittings indicates that scaling
violations are large, and it would be nice to add another lattice spacing to study the approach
to the continuum limit, about which no information is available at present.

We end with a separate comment. In Refs. [13, 14], a more general class of dilaton
potentials

V∆(⌧) / e4⌧

4 − ∆
 
1 − 4
∆

e(∆−4)⌧
!

(9)
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limit value a f⇡ = 0.0006(3) found from the LSD data may be a✏icted with a larger systematic
error than reflected by the statistical fit error qouted above. It is thus very difficult to determine
whether a f⇡ is actually di↵erent from zero! Likewise, it is difficult to obtain a precise value
for c1M. The difficulty of controlling the long extrapolation raises the intriguing question
whether, e↵ectively, dChPT may also apply inside the conformal window, as long as the
theory is mass-deformed.

Both Refs. [2] and [3] measured the dilaton mass, finding it to be nearly degenerate with
the pions. But the errors are so large that the dilaton mass has little influence on the fit, as can
be seen in Fig 2. Given the questions raised above it would be helpful if more precise data
become available, especially at the lower fermion-mass range. In particular, this might allow
for the probing of NLO corrections. Also, the size of the taste splittings indicates that scaling
violations are large, and it would be nice to add another lattice spacing to study the approach
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We end with a separate comment. In Refs. [13, 14], a more general class of dilaton
potentials

V∆(⌧) / e4⌧

4 − ∆
 
1 − 4
∆

e(∆−4)⌧
!

(9)

was considered. For ∆! 4, one recovers the dilaton potential in Eq. (2), while for ∆ = 2 one
obtains the potential for the σ-model. However, as we pointed out in Ref. [12], for values
of ∆ not close to 4, there is no consistent power counting, and thus the lagrangian with this
generalized potential does not constitute an e↵ective field theory, contrary to what is claimed
in Ref. [14].
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