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Abstract We revisit the neutral (uncharged) solutions that
describe Einstein’s clusters with matters in the frame of
Weitzenböck geometry. To this end, we use a tetrad field
with non-diagonal spherical symmetry which gives vanish-
ing of the off-diagonal components of the gravitational field
equations. The cluster solutions are calculated by using an
anisotropic energy–momentum tensor. We solve the field
equations using two novel assumptions. First, we use an equa-
tion of state that relates density with tangential pressure, and
then we assume a specific form of one of the metric poten-
tials in addition to the assumption of the vanishing of radial
pressure to make the system of differential equations in a
closed-form. The resulting solutions are coincide with the
literature however in this study we constrain the constants
of integration from the matching of boundary condition in
a way different from that presented in the literature.Among
many things presented in this study, we investigate the static
stability specification and show that our model is consistent
with a real compact start except that the tangential pressure
has a vanishing value at the center of the star which is not
accepted from the physical viewpoint of a real compact star.
We conclude that the model that has vanishing radial pres-
sure in the frame of Einstein’s theory is not a physical model.
Therefore, we extend this study and derive a new compact
star without assuming the vanishing of the redial pressure
but instead we assume new form of the metric potentials.
We repeat our procedure done in the case of vanishing radial
pressure and show in details that the new compact star is more
realistic from different physical viewpoints of real compact
stellar.
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1 Introduction

To investigate the importance of astrophysics or astronomy
with gravitational waves, the theory of general relativity (GR)
plays an essential role in astrophysical systems like compact
objects and radiation with high energy usually from strong
gravity field around neutron stars and black holes [1].

Recently, observations show that our universe is expe-
riencing cosmic acceleration. The existence of a peculiar
energy component called dark energy (DE) controlling the
universe is validated by many observations including type Ia
supernovae (SNeIa), the Wilkinson Microwave Anisotropy
Probe (WMAP) and the Planck in terms of the cosmic
microwave background (CMB) radiation, the surveys of the
large-scale structure (LSS) [2–6]. In terms of an equation of
state for dark energy, p = ωρ, when ω < −1/3 the accel-
erated expansion is realized, when −1/3 < ω < −1 we
have quintessence regime, when ω < −1 we have a phantom
regime, and when p = −ρ we have a gravastar (gravitational
vacuum condensate star) [7–13]. Explanations for the proper-
ties of DE have proposed among those are: 1) Modifications
of the cosmic energy by involving novel components of DE
like a scalar field including quintessence [14,15]. 2) Modifi-
cations of GR action to derive different kinds of amendment
theories of gravity like f (T ) gravity [16–23], where T is the
torsion scalar in teleparallelism; f (R)gravity [24–30] with R
the scalar curvature; f (G) gravity with G the Gauss-Bonnet
invariant [31]; f (R, T ) gravity, where T the trace of the
energy–momentum tensor of matter [32,33]; f (T, T ) grav-
ity, where T is the torsion scalar in teleparallelism and T the
trace of the energy–momentum tensor of matter [34] etc. The
Weitzenböck geometry is another formulation of GR whose
dynamical variables are the tetrad fields defined as liμ. Here,
at each point xμ on a manifold, i is the orthonormal basis of
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the tangent space, andμdenotes the coordinate basis and both
of the indices run from 0 · · · 3. In Einstein’s GR the torsion
is absent, and the gravitational field is described by curva-
ture while in Weitzenböck geometry theory, the curvature is
vanishing identically, and the gravitational field is described
by torsion [35–41]. Fortunately, the two theories describe
the gravitational field equivalently on the background of the
Lagrangian up to a total divergence term [42–45].

Einstein’s cluster [46] is a spherically symmetric astro-
physical solution discovered by Einstein to discuss station-
ary gravitating particles, each of which moves in a circular
track around a common center under the effect of the grav-
itational field. When such particles rotate on the common
track and have the same phases, they constitute a shell that
is named “Einstein’s shell”. The construction layers of Ein-
stein’s shell form Einstein’s cluster. The distribution of such
a particle has spherical symmetry and it is continuous and
random. These particles have collisionless geodesics. When
the gravitational field is balanced by the centrifugal force,
i.e., the radial pressure has a vanishing value, the above sys-
tems are said to be static and are in equilibrium form. A
thick matter shell with spherical symmetry is constituted by
the procedure described above. The resultant configuration
has no radial pressure and there exists only its stress in the
tangential direction. There are many studies of Einstein’s
clusters in the literature [47–50]. For the spherically symmet-
ric case the energy–momentum tensor has anisotropic form,
i.e. T 0

0 = −ρ, T r
r = pr , and T θ

θ = T φ
φ = pt , where

Tμ
ν is the matter energy–momentum tensor, ρ is the energy

density, pr and pt are the radial and tangential pressures,
respectively. By using the junction condition it can be found
that the pressure in the radial direction vanishes for Einstein’s
clusters. Recently, the compact objects filled with fluids with
their anisotropy have been attracted many researchers and
their structure and evolutional processes have been studied
[51–64]. It is the aim of this study to apply a non-diagonal
tetrad field that possesses spherical symmetry to the non-
vacuum equation of motions of Weitzenböck geometry the-
ory using some physically-motivated assumptions and try to
derive novel models in this theory that are different from the
unphysical models presented in the literature. We discuss the
physical contents of our models and compare the results to
the true stellar models.

The arrangement of this paper is as follows. In Sect. 2 we
explain the basic formulae in terms of Weitzenböck geome-
try. In Sect. 3 the gravitational field equations for the Weitzen-
böck geometry theory in the non-vacuum background are
applied to a non-diagonal tetrad and the non-zero compo-
nents in terms of these differential equations are derived. The
number of the differential equations with their non-linearity
is found to be less than the number of unknowns. Therefore,
we postulate two different assumptions and derive two novel
solutions in this section. In Sect. 4 we discuss the physi-

cal contents of these two solutions and show that the sec-
ond solution possesses many merits that make it physically
acceptable. Among these things that make the second solu-
tion physically acceptable is that it satisfies the energy con-
ditions, the TOV equation is satisfied, it has static stability
and its adiabatic index is satisfied. However, this model has
a vanishing value of the tangential pressure at the center of
the star which makes it inconsistent with a real compact star.
Therefore, in Sect. 5 we construct a new compact star aban-
doning the constrain of vanishing radial pressure and instead
assume a new form of the metric potentials. We follow the
same procedure done in the previous sections we derive a
new model that is consistent with a real compact star in Sect.
5.

2 Basic formulae of Weitzenböck geometry

In this section, we describe the basic formulae of Weitzen-
böck geometry. The tetrad field liμ, covariant, and its inverse
one liμ, contravariant, play a role of the fundamental vari-
ables for Weitzenböck geometry. These quantities satisfy the
following relation In Sect. 6 discussions and conclusions of
the present considerations are given.

lν = li ν li , li = li
ν lν . (1)

Based on the tetrads the metric tensor is defined by

g
μν

= ηi j l
i
μl

j
ν = �lμ · �lν . (2)

Here ηab denotes the Minkowski spacetime and it is given by
ηab = diag(−1,+1,+1,+1). Moreover, �lμ is the co-frame.

Using the above equations, one can easily prove the fol-
lowing identities:

ηi j = gμνli
μl j

ν = �li · �l j , ηi j = gμνliμl
j
ν, (3a)

gμν = ηi j li
μlνj , l = √|g|, (3b)

liμli
ν = δν

μ, liμl j
μ = δij . (3c)

With the spin connection the curvature quantity and the
torsion one can be written as

Ri j
μν := ∂μωi j

ν − ∂νω
i j

μ + ωi
sμωs j

ν − ωi
sνω

s j
μ, (4)

T i
μν := ∂μl

i
ν − ∂νb

i
μ + ωi

kμl
k
ν − ωi

kνl
k
μ, (5)

where ωi j
ν is the spin connection. The matrices with the local

Lorentz symmetry, 
a
b, generates the spin connection as

ωa
bμ = ωa

bμ(
) = 
a
c∂μ(
−1)cb, ηab


a
c


b
d = ηcd .

(6)

The tensors Rμ
νρσ and T i

μν are defined as follows:
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(i) Rμ
νρσ = liμl jνRi j

ρσ ,

(ii) li σ T σ
μν = T i

μν.

Using the above data one can define the torsion in terms of
the derivative of tetrad and spin connection as

T a
μν = 2(∂[μlaν] + ωa

b[μlbν]), (7)

where square brackets denote that the pair of indices are
skew-symmetric and ∂μ = ∂

∂xμ . In the Weitzenböck geome-
try theory, the spin connection is set to be zero (ωa

bμ = 0).
Therefore, the torsion tensor takes the form

T a
μν = ∂[μlaν].

The Weitzenböck geometry theory is constructed by using
the Lagrangian

LWeitzenböckgeometry =
∫

d4x |l|
(

1

2κ2 T + Lm(g, 
)

)
,

(8)

with κ2 = 8π . Here Lm(g, 
) is the Lagrangian of matter
with minimal coupling to gravitation through the metric ten-
sor written with the tetrad fields. In addition, T is the torsion
scalar and it is defined as

T = T a
μνSa

μνn

= 1

2

(
la

σ gρμlb
ν + 2lb

ρgσμla
ν

+ 1

2
ηabg

μρgνσ

)
T a

μνT
b
ρσ . (9)

The superpotential Saμν is defined as

Sa
μν = 1

2
(Kμν

a − ha
μTλ

λν + ha
νTλ

λμ),

with Kμν
a the contortion tensor, expressed by

Kμν
a = 1

2
(T νμ

a + Ta
μν − Tμν

a).

Variation of the Lagrangian (8) with respect to a tetrad laμ

yields [65,66]

1

4
T la

μ + T b
νa Sb

μν + 1

l
∂ν(l Sa

μν) = 1

2
κ2�a

μ. (10)

The stress-energy tensor, �a
μ, is the energy–momentum ten-

sor for fluids whose configuration has anisotropy and it is
represented by

�a
μ = (pt + ρ)uμua + ptδa

μ + (pr − pt )ξaξ
μ, (11)

with uμ the time-like vector defined as uμ = [1, 0, 0, 0] and
ξμ the unit radial vector with its space-like property, defined
by ξμ = [0, 1, 0, 0] such that uμuμ = − 1 and ξμξμ = 1.

Here ρ means the energy density, pr and pt are the radial
and tangential pressures, respectively.

3 Neutral compact stars

In this section, we adopt the gravitational field equation (10)
to the tetrad with its spherical symmetry, which represents a
dense compact relativistic star.

Based on the spherical coordinates (t, r, θ, φ), the metric
with its spherical symmetry is given by

ds2 = −eμ(r) dt2 + eν(r)dr2 + r2d�2,

d�2 = (dθ2 + sin2 θdφ2), (12)

where μ(r) and ν(r) are the functions of r in the radial direc-
tion. This line element in Eq. (12) can be reproduced from
the following tetrad field [67]:

laμ

=

⎛

⎜⎜
⎝

eμ(r)/2 0 0 0
0 eν(r)/2 cos(φ) sin(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

0 eν(r)/2 sin(φ) sin(θ) r sin(φ) cos(θ) r cos(φ) sin(θ)

0 eν(r)/2 cos(θ) −r sin(θ) 0

⎞

⎟⎟
⎠ .

(13)

We mention that the tetrad (13) is an output product of a
diagonal tetrad and local Lorentz transformation, i.e., one
can write it as

laμ = 
a
bl

b
μdiag

⇒

⎛

⎜⎜
⎝

eμ(r)/2 0 0 0
0 eν(r)/2 cos(φ) sin(θ) r cos(φ) cos(θ) −r sin(φ) sin(θ)

0 eν(r)/2 sin(φ) sin(θ) r sin(φ) cos(θ) r cos(φ) sin(θ)

0 eν(r)/2 cos(θ) −r sin(θ) 0

⎞

⎟⎟
⎠

≡

⎛

⎜⎜
⎝

1 0 0 0
0 cos(φ) sin(θ) cos(φ) cos(θ) − sin(φ)

0 sin(φ) sin(θ) sin(φ) cos(θ) cos(φ)

0 cos(θ) − sin(θ) 0

⎞

⎟⎟
⎠

×

⎛

⎜⎜
⎝

eμ(r)/2 0 0 0
0 eν(r)/2 0 0
0 0 r 0
0 0 0 r sin(θ)

⎞

⎟⎟
⎠ . (14)

Using Eq. (13) in Eq. (9) the torsion scalar takes the form

T = 2e−ν[eν − eν/2(2 + rμ′) + 1 + rμ′]
r2 . (15)

It follows from Eq. (15) that T vanishes in the limit μ =
ν → 0 unlike what has been studied before in the literature
[67].1 Using Eq. (15) in the field equations (10) we get

1 This condition is important since when μ = ν → 0 the line element
(12) gives the Minkowski spacetime whose torsion has a vanishing
value.
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8πρ = 1 − e−ν(1 − rν′)
r2 ,

8πpr = e−ν(1 + rμ′) − 1

r2 ,

8πpt = e−ν[2rμ′′ + (rμ′ + 2)(μ′ − ν′)]
4r

, (16)

where ′ denotes derivatives w.r.t. r . These differential equa-
tions are three independent equations in five unknowns: μ, ν
and ρ, pr and pt . Therefore, we need extra conditions to be
able to solve the above system. The extra conditions are the
zero radial pressure, namely, pr = 0 [68,69], and assuming
the equation of state (EoS) in terms of the energy density and
the tangential pressure. We can represent these conditions as

pr = 0, pt = ωtρ, (17)

where ωt is the EoS parameter for anisotropic fluids.
Substituting Eq. (17) into (16) we obtain

ρ = ωt

2πr2(1 + 4ωt )
, μ = 4ωt ln(r) + c1,

ν = ln(4ωt + 1), pt = ωtρ,

ρ = 0, μ = ln

(
c3r − c2

r

)
,

ν = ln

(
rc3

c3r − c2

)
, pt = 0. (18)

The main reason why the tangential pressure, as well as the
energy density, vanish as in the second set of Eq. (18) is due
to the composition of the two unknown functions μ and ν

that give the Schwarzschild solution.
Another solution that can be derived from Eq. (16) is

through the assumption on the unknown function μ to have
the form [69]

μ(r) = ln(b0 + b1r
2 + b2r

4). (19)

This assumption together with the vanishing of the radial
pressure give new solution in the framework of Weitzenböck
geometry theory. Using Eq. (19) in (16) we get the remaining
unknown functions in the form

ρ = (3b1 + 10b2r2)(b0 + b1r2 + b2r4)

4π(b0 + 3b1r2 + 5b2r4)2 ,

ν = ln

(
b0 + 3b1r2 + 5b2r4

b0 + b1r2 + b2r4

)
,

pt = r2(b1[3b1 + 16b2r2] + 20b2
2r4)

8π(b0 + 3b1r2 + 5b2r4)2 . (20)

The authors of Ref. [69] applied tetrad (13) to the field equa-
tions of pure GR. Our results are coincide with their results
but when they interpretable the physics of tangential pressure
they find that it increase forever however, in this study and
according to the suitable choice of the constants b0, b1 and
b2 we show that the tangential pressure is increase in a short
distance and then turn to decrease.

The EoS of the first and second solutions given by Eqs.
(18) and (20) takes the form

ωt1 = 1, ωt2 = r2(b1 + 2b2r2)

2(b0 + b1r2 + b2r4)
. (21)

The first EoS shows that we have a stiff matter while the
behavior of the second EoS is shown in Fig. 2c below which
shows behavior less than a unit which describes a physical
matter.

The behavior of the density and tangential pressure of the
first and second solutions are drawn in Fig. 1. Figure 1a, b
which show that energy and pressure decrease as the radial
coordinate r increases. For the second solution, Fig. 2a–c
show that the energy density and pressure decrease as the
radial coordinate r increases.2 The dominator of Eq. (21)
has only two real solutions that have the form

±
√√

b1
2 − 4b0b2 − b1√

2b2
, b2 > 0. (22)

Equation (22) ensures that the parameter b2 �= 0, must be
positive and b1 > ±2

√
b0b2 which are consistent with the

values given in Fig. 2c and through the whole of the present
study.

We consider the physical contents for the first and second
solutions. To this end, we are going to calculate the follow-
ing quantities. The surface red-shift of the first and second
solutions takes the form:

zs1 = eνs − 1 = 4ωt1 , zs2 = 2r2(b1 + 2b2r2)

b0 + b1r2 + b2r4 . (23)

The behavior of the surface red-shift of the second solution
is identical with the behavior of the EoS, as shown in Fig.
2c, because the two forms are identical up to some constant.

The gravitational mass of a spherically symmetric source
with the radial dependence r is expressed by [69]

m(r) = 4π

∫

0

r

ρ(ξ)ξ2dξ, (24)

2 We vary the value of b2 and leave b0 and b1 fixed because we relate
them to mass and radius of the Schwarzschild exterior solution as we
will discuss below in the subsection of Matching boundary.

123



Eur. Phys. J. C          (2020) 80:1109 Page 5 of 17  1109 

Density of the first solution Pressure of  the first solution(a) (b)

Fig. 1 Schematic plot of the radial coordinate r in the unit of km versus the energy density and pressure of the solution (18)

(a) Density of the second solution (b) Pressure of the second solution (c) EoS of the second solution

Fig. 2 Schematic plot of the radial coordinate r in the unit of km versus the energy density, pressure and the EoS of the solution (20) when
b0 = 0.0001 and b1 = 0.01

which gives for solutions (18) and (20) the form

m1(r) = 2ωt1r

4ωt1 + 1
,

m2(r) = 20b2r3(b1 + 2b2r2)

(3b1 + 10b2r2)2 − 9b1
2 + 20b0b2

. (25)

The behavior of the gravitational mass of solutions (18) and
(20) are drawn in Fig. 3a, b. These figures show the gravi-
tational mass increases with the radial coordinate. The com-
pactness parameter of a source with its spherical symmetry
in terms of the radius, r takes the form [69]

u(r) = 2m(r)

r
,

that gives for solutions (18) and (20) the form

u1(r) = 4ωt1

4ωt1 + 1
,

u2(r) = 20r2(b1 + 2b2r2)

(3b0 + 10b2r2)2 − 9b12 + 20b0b2
. (26)

We show the behavior of compactness parameter of solu-
tion (20), we did not draw solution (18) because it gives a
constant value, in Fig. 3c. As Fig. 3b, c show that solution
(20) is a regular well-behaved because both mass function
and compactness vanishes at r = 0.

The gradient of density and pressure of (18) and (20) take
the form [69]

123
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(a) Mass of solution (18) against radial
coordinate

(b) Mass of solution (20) against radial
coordinate

(c)Compactness parameter of solution (20)
against radial coordinate

Fig. 3 Schematic plot of the gravitational mass of solutions (18) and (20) and compactness parameter versus the radial coordinate r in km when
b0 = 0.0001 and b1 = 0.01

dρ1 = − ωt

2πr3(1 + 4ωt )
, dpt1 = − ω2

t

2πr3(1 + 4ωt )
,

dρ2 = −r(8b0b2r2[8b1 + 15b2r2] − 10b2
0b2 + 5b1b2r4[9b1 + 20b2r2] + 15b0b2

2 + r2[9b3
1 + 50b3

2r
6])

2π(b0 + 3b1r2 + 5b2r4)3 ,

dpt2 = r(3b0[b2
1 + 20b2

2r
4] − 9b2

1r
2[b1 + 5b2r2] − 100b2

2r6[b1 + b2r2] + 32b0b1b2r2)

4π(b0 + 3b1r2 + 5b2r4)3 . (27)

The derivative of the tangential pressure of Eq. (27), dpt2 ,
is different from the one given in [69] because the tangential
pressures themselves are different.

Figure 4, shows that for solutions (18) and (20) we have
always negative gradient for density and pressure.

Finally, the speed of sound of (18) and (20) take the form
[69]

v2
t = dpt

dρ
, that gives for solutions (18) and (20) the form

v2
t1 = ωt , v2

t2 = 3b0[b2
1 + 20b2

2r
4] − 9b2

1r
2[b1 + 5b2r2] − 100b2

2r6[b1 + b2r2] + 32b0b1b2r2

10b2
0b2 − 8b0b2r2[8b1 + 15b2r2] − 5b1b2r4[9b1 + 20b2r2] − 15b0b2

2 − r2[9b3
1 + 50b3

2r
6] .

(28)

We discuss the property of the speed of the sound of the
second solution because the first one gives a constant, which
depends on the EoS parameter. Usually, the sound velocity
must be less than the light speed [69]. Hence, in relativistic
units, the sound speed must be less than or equal to unity.
Thus, for the first solution, to give the sound speed less than
or equal to unity, we must have ωt ≤ 1. As Fig. 5 shows for
solution (20), we have speed of sound less than 1 when the
parameters b1 = 10−4 and b1 = 10−2.

4 Physics of the compact stars (18) and (20)

In this section, we explore the physical consequences for the
first and second solutions given by Eqs. (18) and (20). To
this end, first, we are going to determine the values of the
constants appearing in these solutions.

4.1 Matching of boundary

We compare the solution within the compact objects with the
Schwarzschild vacuum solution outside it. We use the first
solution in Eq. (18) with the Schwarzschild one, i.e.,

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2d�2.

(29)
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(a) (b) (c)

(d)

Fig. 4 Variation of the gradient of density and pressure of (18) and (20) against r in km when b0 = 0.0001 and b1 = 0.01

This yields the following matching conditions:

1 − 2M

R = 4ωt ln(R) + c1,

1

1 − 2M
R

= ln(4ωt + 1), (30)

where R is the radius at the boundary, i.e., at the boundary
r = R. Solving for ωt and c1 from Eq. (30), we obtain

ωt = e
1

1− 2M
R − 1

4
, and

c1 = R − 2M + R ln R − R ln Re
1

(1− 2M
R )

R . (31)

Here M and R are determined by the observations of the
compact objects. Applying the same procedure to the second
solution (20) we get

b0 = R(1 + b2R4) − 3M

R , b1 = M − 2b2R5

R3 , (32)

where b2 is tackled by the data fitting and the values of M and
R are selected from the observations of the compact objects.
The matching condition given by Eq. (32) is different from
the one presented in [69] because in this study the constant
b2 is left arbitrary while in [69] they leave b1 as an arbitrary.

4.2 Energy conditions for compact stars

In general, for perfect fluid models, the energy conditions
described by the relation between the energy density and
pressure can be satisfied. We check strong (SEC), weak
(WEC), dominant (DEC), and finally null (NEC) energy con-
ditions, given by

SEC:ρ + 2pt ≥ 0, NEC:ρ + pt ≥ 0,

WEC:ρ ≥ 0, ρ + pt ≥ 0, DEC:ρ ≥| pt | . (33)

By using Eqs. (18) and (20), one can easily show that the
above conditions are satisfied as indicated in Fig. 6a, b.

123
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Fig. 5 Speed of sound of (20) against r in km when b0 = 0.0001 and
b1 = 0.01

4.3 Tolman–Oppenheimer–Volkoff equation and the
analyses of the equilibrium

In this subsection, we investigate how stable the models of
Einstein’s clusters are. We assume the equilibrium of the
hydrostatic state. Through the TOV equation [70,71] as that
presented in [72], we acquire the equation

2pt (r)

r
− Mg(r)ρ(r)e(μ−ν)/2

r
= 0, (34)

where Mg(r) is the gravitational mass as a function of r ,
which is defined by the Tolman-Whittaker mass formula as

Mg(r) = 4π

∫

0

r

(Tt
t − Tr

r − Tθ
θ − Tφ

φ)r2e(μ+ν)/2dr

= re(ν−μ)/2μ′

2
. (35)

Using Eq. (35) in (34) we get

2pt (r)

r
− μ′ρ(r)

2
= Fg + Fa = 0, (36)

with Fg = −μ′ρ(r)
2 being the gravitational force and Fa =

2pt (r)
r is the anisotropic force. The behaviors of the TOV

equations of solutions (18) and (20) are shown in Fig. 7a, b,
respectively.

4.4 Relativistic adiabatic index and stability analysis

Our particular interest is to study the stable equilibrium con-
figuration of a spherically symmetric cluster and the adia-
batic index which is a basic ingredient of the stable/unstable
criterion. Now considering an adiabatic perturbation, the adi-
abatic index � is defined as [73–75]

� = ρ + pt
pt

dpt
dρ

, (37)

with dpt
dρ being the speed of sound. Using Eq. (37) we get

the adiabatic index of the two solutions (18) and (20) in the
form:

(a) (b)

Fig. 6 The energy conditions of solutions (18) and (20) against r in km when b0 = 0.0001 and b1 = 0.01
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(a) (b)

Fig. 7 TOV solutions (18) and (20) against r in km when b0 = 0.0001 and b1 = 0.01

�1 = 1 + ωt1,

�2 = (2b0 + 3b1r2 + 4b2r4)(3b0b1
2 − 45b1

2b2r4 − 100b1b2
2r6 + 32b0b1b2r2 − 100b2

3r8 + 60b0b2
2r4 − 9b1

3r2)

2r2(b1 + 2b2r2)(10b0
2b2 − 64b0b1b2r2 − 120b0b2

2r4 − 45b1
2b2r4 − 100b1b2

2r6 − 50b2
3r8 − 15b0b1

2 − 9b1
3r2)

.

(38)

The first set of Eq. (38) is always larger than or equal to
unity, depending on the value of EoS of ωt1. The behavior
of the second set of Eq. (38) is shown in Fig. 8. From this
figure, we can see that the adiabatic index is always larger
than unity and its value depends on the parameters b0, b1 and
b2.

It has been found by Bondi [76] that in the case of non-
charged equilibrium, � = 4/3 for the stable Newtonian
sphere which is satisfied for the second solution given by
Eq. (20).

4.5 Stability in the static state

For stable compact stars, in terms of the mass-central as well
as mass-radius relations for the energy density, Harrison, Zel-
dovich and Novikov [77–79] claimed that the gradient of the
central density with respect to mass must be positive, i.e.,
∂M
∂ρr0

> 0. If this condition is satisfied then we have sta-

ble configurations. To be more specific, stable or unstable
region is satisfied for constant mass i.e. ∂M

∂ρr0
= 0 [69]. Let

Fig. 8 Adiabatic index of (20) against r in km when b0 = 0.0001,
b1 = 0.01 for different values of the b2 parameter. Note that the larger
the value of b0, the bigger the amplitude of adiabatic index

123



 1109 Page 10 of 17 Eur. Phys. J. C          (2020) 80:1109 

Fig. 9 Static stability of (20) against ρr0 in km−3 when b0 = b2 =
0.0001, R = 0.1

us apply this procedure to our solutions (18) and (20). To
this end, we calculate the central density for both solutions.
For solution (18) the central density is undefined so we will
exclude this case from our consideration because it may rep-
resent an unstable configuration. As for the second solution,
the central density has the form

ρr0 = 3b1

4πb0
⇒ b1 = 4πb0ρr0

3
,

M(ρr0) = 2R3(3b2R2 + 2b0πρr0)

3(b0 + 4πb0R2ρr0 + 5b2R4)
. (39)

With Eq. (39) we have

∂M

∂ρr0

= 4πb0R3(b0 − b2R4)

3(b0 + 4πb0R2ρr0 + 5b2R4)2 . (40)

From Eq. (40), it is seen that the solution (20) has a stable
configuration since ∂M

∂ρr0
> 0 [69]. The behavior of (39) and

(40) are shown in Fig. 9. It follows from this figure that the
mass increases as the energy density become larger and the
gradient of mass decreases as energy density becomes larger.
All the above discussion of solution (20) shows that we have a
good model except the defect of vanishing tangential pressure
at the center of the star. Therefore, we can say that in the
frame of Einstein’s theory we can not get a real compact star
when we assume the vanishing of the radial pressure. In the
next section, we will leave the condition of vanishing radial
coordinate and try to assume another physical constrain and
study if the born model is physically acceptable or it has some
defects.

5 Real compact star

In Sect. (3) we solved the differential equations (16) by
assuming the vanishing of the radial pressure and got a model
that is not consistent with a real compact star because the
tangential pressure has a vanishing value at the center. In
this section, we are going to solve the system of differential
equations (16) abandoning the vanishing of radial pressure
and assume instead the metric potentials to have the form

μ = −2 ln(a1 − r2a0), ν = −2 ln(1 + a0r
2), (41)

with a0 and a1 are constants that will determined from the
matching condition. Using Eq. (41) in (16) we get

ρ = −a0(6 + 5a1r2)

8π
,

pr = a0(4 + 6a0r2 + 3a0
2r4 + 2a1 + a0a1r2)

8π(a1 − a0r2)
,

pt = a0(2a0r2 + a0
2r4 + 2a1 + 2a0a1r2 + a1

2)

8π(a1 − a0r2)2 . (42)

The behavior of density, radial and tangential pressures of
Eq. (42) is draw in Fig. 10a which shows a physical content
of compact star. The EoS of solution (42) takes the form

ωr = 4 + 6a0r2 + 3a0
2r4 + 2a1 + a0a1r2

(a0r2 − a1)(6 + 5a0r2)
,

ωt = 2(1 + a0r2)(a1
2 + 2a0a1r2 + 2a1 + a0

2r4 + 2a0r2)

(a1 − a0r2)2(6 + 5a0r2)
.

(43)

The behavior of the EoS (42) is shown in Fig. 10b which
shows a positive EoS within a range of 1 which describes a
physical well-known matter.

Using Eq. (23) we calculate the surface red-shift of solu-
tion (42) and get:

Zs = −a0r2(2 + a0r2)

(1 + a0r2)2 . (44)

The behavior of the surface red-shift of Eq. (44) is draw in
Fig. 11a which indicates that it is consistent with the constrain
of Böhmer and Harko that Zs < 5 [80]. The surface red-shift
of this model is calculated according to the stellar 4U1608–
52 and found to have 0.6362098138. Using Eq. (26) we get
the gravitational mass as

m(r) = −a0r3(2 + a0r2)

2
. (45)

The behavior of the gravitational mass of Eq. (45) and the
compactness u(r) = 2m(r)/r are draw in Fig. 11b which
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(a) Density of the first solution (b) Pressure of the first solution

Fig. 10 Schematic plot of the radial coordinate r in the unit of km versus: a the energy density, (a)of solution (42), b the EoS (43) which shows a
physical content of matter for the stellar 4U1608–52 whose mass 1.74 ± 0.14 and its radius 9.52 ± 0.15

Surface red-shift of Eq. (44) against
radial coordinate

Mass and compactness of solution (20)
against radial coordinate

(a) (b)

Fig. 11 Schematic plot of the radial coordinate r in the unit of km versus: a surface red-shift of Eq. (44), b mass and compactness using the stellar
4U1608–52

shows that solution (42) is a regular well-behaved because
both mass function and compactness vanishes at r = 0 [69].

The gradient of density and pressure of (42) take the form
[69]

dρ2 = −5a0
2r

4π
, dpr = −a0

2r(3a0
2r4 − a1

2 − 4 − 8a1 − 6a0a1r2)

4π(a1 − a0
2r2)2 ,

dpt = −a0
2r(6a1 + 2a0r2 + 10a0a1r2 + 6a1

2 + 5a0a1
2r2 + 3a1a0

2r4 + a1
3 − a0

3r6)

2π(a0
2r2 − a1)3 . (46)
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(a) (b)Variation of density, radial and
tangential pressures of Eq. (42) against

radial coordinate

Variation of sound speed of solution Eq.
(42) against radial coordinate

Variation of SEC, WEC, DEC and NEC
of Eq. ( 42) against radial coordinate

Variation of gravitational forces of Eq.
(42) against radial coordinate

(c)

(d)

Fig. 12 Schematic plot of the radial coordinate r in the unit of km
versus: a the gradient of density, radial and tangential pressures of (42)
which ensure that all of them have negative values, b the radial and

tangential sound speed which have values less than one in the rela-
tivistic unit, c the SEC, WEC, NEC and DEC, d the gravitational, the
anisotropic and the hydrostatic forces

Figure 12a shows that for solutions (42) we have always
negative gradient for density, radial and tangential pressures
as is required for any real stellar.

The speed of sound of solution (42) takes the form [69]

v2
r = dpr

dρ
= 3a0

2r4 − 4 − a1
2 − 8a1 − 6a0a1r2

5(a1 − a0
2r2)2 ,

v2
t = dpt

dρ
= 2(a0

3r6 − 6a1
2 − 5a0a1

2r2 − 3a0
2a1r4 − a1

3 − 6a1 − 2a0r2 − 10a0a1r2)

5(a1 − a0
2r2)3 . (47)

It is well known that the sound velocity must be less than
the light speed [69]. Hence, in relativistic units, the sound
speed must be less than or equal to unity which is satisfied
for solution (42) as Fig. 12b shows.

5.1 Matching of boundary of solution (42)

Comparing solution (42) with the Schwarzschild vacuum
solution outside which yields the following matching con-
ditions:

1 − 2M

R = 1

(a1 − a0r2)2 ,

1

1 − 2M
R

= 1

(1 + a0r2)2 , (48)
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whereR is the radius at the boundary, i.e., at the boundary.
Solving Eq. (48) for a0 and a1 we obtain

a0 =
√
R2 − 2MR − R

R3 , and

a1 = [R − R2 − 2M] − √
R2 − 2MR√

R2 − 2MR
. (49)

Here M and R are determined by the observations of the
compact objects. Now we are going to test if solution (42)
satisfies the energy conditions list in Eq. (33). For this aim we
use Eq. (42) in Eq. (33) and draw the behavior of these con-
ditions in 12c which ensures that it satisfied these conditions
for the stellar 4U1608–52.

Using the TOV equation [70,71] as that presented in [72],
we get the following form

2[pt − pr ]
r

− Mg(r)[ρ(r) + pr ]e(μ−ν)/2

r
− dpr

r
= 0, (50)

with Mg(r) being the gravitational mass at radius r , as
defined by the Tolman-Whittaker mass formula which gives

Mg(r) = 4π

∫

0

r

(Tt
t − Tr

r − Tθ
θ − Tφ

φ)r2e(μ+ν)/2dr

= rμ′eν/2−μ

2
, (51)

Inserting Eq. (51) into (50), we get

2(pt − pr )

r
− dpr

dr
− μ′eμ/2[ρ(r) + pr ]

2
√
G

= Fg + Fa + Fh

= 0, (52)

where Fg = −μ′eμ/2[ρ(r)+pr ]
2 , Fa = 2(pt−pr )

r and Fh =
− dpr

dr are the gravitational, the anisotropic and the hydrostatic
forces respectively. The behavior of the TOV equation for the
model (42) is shown in Fig. 12d for the stellar 4U1608–52.

Now considering an adiabatic perturbation, the adiabatic
index � is defined by Eq. (37) which gives the adiabatic index
of solution (42) in the form:

� = 1

5
{(6a1 + 2a0r

2 + 10a0a1r
2 − a0

3r6

+6a1
2 + 5a0a1

2r2 + 3a1a0
2r4 + a1

3)

(4a1
2 + 3a0a1

2r2 − 20a0a1r
2 − 14a1a0

2r4

+3a0
3r6 − 4a0r

2 − 4a1)[(1 + a0r
2)(a1 − a0r

2)3

(2a0r
2 + a0

2r4 + 2a1 + 2a0a1r
2 + a1

2)]−1}. (53)

The behavior of Eq. (53) is shown in Fig. 13a. From this
figure, we can see that the adiabatic index is always larger
than 4/3 as required by by Bondi [76].

Finally, we are going to check if the gradient of the central
density concerning mass is positive or not, i.e., ∂M

∂ρr0
> 0 [69].

For this aim, we calculate the central density of solution (42)

and get

ρr0 = −3a0

4π
⇒ a0 = −4πρr0

3
,

M(ρr0) = 4πρr0 R
3(3 − 2πR2ρr0)

9
. (54)

With Eq. (54) we get

∂M

∂ρr0

= 4πR3(3 − 4πρr0 R
2)

9
. (55)

From Eq. (55), it is seen that the solution (42) has a stable
configuration since ∂M

∂ρr0
> 0 [69]. The behavior of Eqs. (54)

and (55) are shown in Fig. 13b. It follows from this figure
that the mass increases as the energy density becomes larger
and the gradient of mass is always positive.

6 Discussions and conclusions

In this study, we have explored and discussed the model of
compact stars which mimic clusters of Weitzenböck geome-
try. The non-vacuum gravitational field equations have been
applied to a tetrad field having non-diagonal components and
has two unknown functions, μ and ν. We have derived a set
of three differential equations having five unknown quanti-
ties: μ, ν, ρ, pr , and pt . To be able to solve this system, we
have put the radial pressure equal to zero [68,69] in addition
to two different assumptions:

• In our first assumption we have taken an EoS between the
density and the tangential pressure in the form pt = ωt1ρ.
By using the vanishing of the pressure in the radial direc-
tion and the EoS parameter, we have solved the set of dif-
ferential equations and obtained two different solutions.
One of these solutions is just the Schwarzschild exterior
solution and we excluded it and the other one gave the
unknown functions μ, ν, ρ depending on the radial coor-
dinate r , the parameter of EoS ωt1 and on a constant of
integration. We have studied the physics of this solution
and shown that it has a positive density and pressure and
a positive gravitational mass as shown in Figs. 1a, b and
3a. We have found that the speed of sound depends on the
parameter of EoS, ωt which should be less than one, i.e.,
ωt ≤ 1 [69]. We have also studied the boundary condi-
tion, i.e., matching our solution on the boundary with the
exterior Schwarzschild solution, we derived the relations
between the EoS parameter, the constant of integration,
and the gravitational mass of Schwarzschild and its radius
at the boundary. Moreover, we showed that this solution
satisfies all the energy conditions, i.e., SEC, WEC, DEC,
and NEC. As shown in Fig. 7a, this solution satisfies the
TOV equation. Finally, we have demonstrated that the
adiabatic index of this solution is satisfied provided that
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(a) (b)

Fig. 13 Schematic plot of the radial coordinate r in the unit of km versus: a the adiabatic index of Eq. (42) which ensure that � > 3/4, b the mass
as a function of central density and its gradient w.r.t. central density for stellar 4U1608–52

ωt ≥ 1/3 has � ≥ 4/3 [69]. The problem of this model
is that it depends on the tangential EoS ωt and this is not
familiar in the literature.

• In the second assumption, we have used a specific form
of the metric potential, μ, that has three constants and
derived the other unknown functions ν, ρ ad pt . our
results for the functions ν, ∂t and ρ are coincide with the
results given in the literature. As a result, many aspects
like the derivative of the tangential pressure, the match-
ing conditions, the energy conditions, TOV equation and
the adiabatic index, are novel results of our model due to
the constraints of the constants from the matching bound-
ary condition. We have repeated the above procedure and
shown that this solution has a positive density, a positive
tangential pressure and a positive gravitational mass as
shown in Figs. 2a, b and 3b. Also we have found that
the sound speed depends on the radial coordinate and is
always less than 1 as indicated in Fig. 5. The energy con-
ditions of this solution are satisfied as shown in Fig. 6b.
We have matched our solution with the Schwarzschild
exterior and derived a relation between two constants
that characterize the unknown function μ with the gravi-
tational mass and boundary radius of Schwarzschild and
dealt with the third constant as a fitting parameter. More-
over, we showed that this solution satisfies the TOV equa-
tion as shown in Fig. 7d. We have illustrated that the adi-
abatic index of this solution is satisfied and always has
� ≥ 4/3 as drawn in Fig. 8. Finally, we have demon-
strated that the static stability is always satisfied because

the derivative of the gravitational mass w.r.t. central den-
sity is always positive, indicating the gravitational mass
increases with the central density as shown in Fig. 9. From
the above discussion we see that our model is satisfactory
with the results of realistic stellar models except that the
tangential pressure has a vanishing value at the center of
the star as shown in Fig. 2b. Therefore, this study and
the study done in [69] ensure that the assumption of van-
ishing radial pressure in the frame of Einstein theory is
not a physical assumption. Therefore, we abandon this
assumption.

Finally, we construct a compact star model assuming a
new form of the metric potentials and derive the form of
the density, radial, and tangential pressures. We repeat the
same procedure done for the solution (20) and show in detail
that this model is a physical model because it has positive
density, radial and tangential pressures positive gravitational
mass, and compactness as shown in Figs. 10 and 11. Also,
this model has no vanishing value of density, radial, and tan-
gential pressures at the center of the star in contrast to the
model (20). Also, we show that the tangential pressure is
greater from the radial pressure, pt > pr as shown in Figs.
10a which means that we have a repulsive force [81]. More-
over, we study the issue of stability and show in detail that
our model is stable against the gravitational, hydrostatic, and
anisotropic forces as Fig. 12d shows. We calculate the sound
speed and show that it is consistent with a real compact star
in contrast to the Einstein study done in [69] which gave
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imaginary value. Also, we calculate the adiabatic index and
show that it satisfies the condition given by Bondi [76].

To summarize, in the present paper we have used a non-
diagonal form of tetrad field that gives null values of the
off-diagonal components of the field equations unlike what
has been studied in the literature [82–88]. We show that solu-
tion (18) depends on the tangential EoS which is not familiar
for compact star and solution (20) has infinite central pres-
sure as shown in Fig. 2b, which is not the case in compact
stars which means that the system has central singularity and
therefore unstable. However the results of solution (42) give
physically-motivated compact star solution as shown in Figs.
10, 11, 12 and 13.
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