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We describe a quantum chemistry simulation software program BQ-Chem, which can calculate the low-energy spectrum and
potential energy surface of molecules on a quantum computer. BQ-Chem is based on the full quantum eigensolver (FQE), which is
implemented with a quantum gradient descent algorithm. Benefting from FQE, BQ-Chem can perform all the calculations on a
quantum computer. Compared with the classical optimization methods which encounter the optimization difculty of high-
dimensional and multivariable functions in dealing with multielectron orbitals of macromolecules, FQE provides an exponential
speedup. FQE works fully on a quantum computer; thus, BQ-Chem can be smoothly transited to future large-scale
quantum computers.

1. Introduction

Quantum chemistry is also called molecular quantum me-
chanics, where quantum mechanics is applied to the feld of
chemistry to obtain the chemical properties of molecules at
the atomic level. A central challenge in the feld of quantum
chemistry is to determine the low-lying molecular energies
and electronic structures of a chemical system with high
precision, and its electronic Hamiltonian usually can be
obtained with a set of nuclear geometries under the
Born–Oppenheimer approximation. Moreover, by varying
nuclear positions of a chemical system, a potential energy
surface (e.g., ground-state energy) can be determined as a
function of the bond length or bond angle of interest, which
is key to understanding chemical reactivity, product dis-
tributions, and reaction rates.

Conventionally, the number of classical bits needed to
simulate a multiatom molecule increases exponentially as
the number of atoms. And in the worst case, quantum
simulation of a chemical system is exponentially hard on
classical computers. Despite the great success of approxi-
mation methods, tackling the problem accurately with
conventional computers is still a difcult task. On the other
hand, the chemistry of molecules is accurately described
with quantummechanics; thus, the quantum simulation of a
chemical system with a quantum simulator or quantum
computer has natural advantages in the sense of compu-
tational resources needed [1, 2].

However, the problem of estimating the ground state
and its energy of Hamiltonian is in general QMA-hard [3]
and even quantum computers are not expected to efciently
solve it. In the past few decades, various quantum algorithms
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are harnessed to address this issue. Te main idea of these
methods is to prepare a state which extremely approximates
to the desired ground state instead of preparing the exact
ground state which is computationally expensive. Based on
the well-known adiabatic theorem [4, 5] and quantum phase
estimation algorithm [6], Aspuru-Guzik et al. [7, 8] con-
structed an adequate quantum circuit to evolve the system
adiabatically in the ground state, i.e., adiabatic state prep-
aration. Te quantum imaginary time evolution algorithm
[9, 10], which uses the linear combination of unitaries (LCU)
[11] formalism, is another approach as a heuristic method to
approximate the ground state.

Despite developments in quantum algorithms and op-
timization of resource requirements, many of the algorithms
have hardware requirements far beyond the capability of
near-term quantum computers. In 2014, a quantum-classical
hybrid algorithm called variational quantum eigensolver
(VQE) [12, 13] was proposed by Peruzzo et al. VQE can
prepare a class of ansatz states with a variational quantum
circuit and optimize its parameters, leading the state ap-
proximating to the ground state step by step. VQE requires
fewer quantum gates and a shallower circuit, making it more
feasible on noisy intermediate-scale quantum (NISQ) [14]
devices. In 2020, Wei et al. developed a full quantum
eigensolver (FQE) [15] scheme which attracted much at-
tention in recent years [16–21]. Compared with VQE where
its optimization step is completed on a classical computer,
FQE, using the quantum gradient descent algorithm in the
LCU paradigm, is a fully quantum algorithm where the
calculation of the expectation value of Hamiltonian and the
optimization process is fully conducted on quantum com-
puters, enabling it an advantage of providing a smooth
transition to future large-scale quantum computers.

2. BQ-Chem

Here, we give an introduction to a newly designed quantum
chemistry simulation software program BQ-Chem (https://
biwonq.baqis.ac.cn/#/pages/chemistry), which is based on
FQE. Tis quantum chemistry simulation module supports
multitask parallel computing, and users can edit their
specifc contents after adding projects on the main page.

2.1. Specifying a Molecule and Its Parameters. In order to
simplify the process and improve the user’s experience of the
program, we preinstalled the specifc molecular confgures of
about 50 common molecules for users as default in BQ-Chem,
including the atomic type, the x, y, and z coordinate of each
atomic nucleus, and the bonding properties between them.Te
default data of chemical compositions and their parameters
about our preinstalled molecules are extracted from the Na-
tional Institute of Standards and Technology (NIST) Chemistry
WebBook (https://webbook.nist.gov/chemistry/) of the United
States. In addition, users are also allowed to build their own
molecular models fexibly by adding more atoms and changing
atomic coordinates and corresponding bonding properties, as
shown in Figure 1, where we take NH3 molecule as an example
of specifying a molecule and its parameters in BQ-Chem.

2.2. TwoCalculationModes. After specifying a molecule and
its parameters from the last step, users can calculate the
chemical properties of the molecule of their interest. Te
BQ-Chem simulation module supports two calculation
modes for users to choose from: the static single-point
energy spectrum (SES) calculation mode where all molecular
geometry parameters given are fxed and the dynamic po-
tential energy surface (PES) calculation mode where some
molecular parameters of the user’s interest range around the
given geometry. As the following shows, the SES mode
supports calculating the ground and excited energies se-
quentially, while the PES mode supports calculating the
ground energy around the given geometry by varying the
bond length or bond angle of a molecule. In both modes, one
should frst set the preprocessing information, including
basis set choice, fermion-spin transformation model choice,
and the initial state choice.

2.2.1. Single-Point Energy Spectrum (SES) Mode. In the
mode of SES, one can choose to calculate the ground-state
energy with FQE and up to 15 excited-level energies one by
one by subtracting the ground-state energy part from the
system Hamiltonian and calculating the new ground-state
energy of the subtracted Hamiltonian.

BQ-Chem provides several classical methods for pre-
processing molecular electronic structures for users. As
depicted in Figure 2, the following steps are taken:

(1) Choosing the single-electron atomic orbital basis set
from the option of “sto-3g” and “sto-6g.” Here, we
take “sto-ng” atomic orbitals instead of the original
“sto” or “gto” basis, which means the basis functions
are expressed as sums of Gaussian functions rather
than the original Slater-type orbitals to enhance the
efciency of integral evaluation. More details are
described in Appendix A.

(2) Choosing the Fermi-spin transformation method
from Jordan–Wigner or Bravyi–Kitaev transforma-
tion. Te Jordan–Wigner transformation directly
maps the fermionic occupation state of a particular
atomic orbital to a state of qubits, while the Brav-
yi–Kitaev transformation is a compromise between
the Jordan–Wigner transformation and the parity
encoding transformation, which is more efcient in
operational complexity. More details are described in
Appendix C.

(3) Choosing the initial state of the full quantum
eigensolver solution process from the option of the
Hartree–Fock approximation state or the uniform
superposition state. Te Hartree–Fock approxima-
tion state usually is a better choice for faster con-
vergence. More details are described in Appendix B.

We take NH3 molecule as an example; its confguration
and setting of the SES mode are shown in Figure 2, i.e.,
Hartree–Fock state as the initial state, “sto-6g” as the basis,
Jordan–Wigner transformation method as the chosen
Fermi-spin transformation, and the goal is to obtain the
ground energy and up to three excitation energies.
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After executing the process, a resultant spectrum of 4
energy levels is presented in Figure 3, where we can see as
the iteration of the quantum gradient descent algorithm
increases, the simulated ground-state and up to three
excitation energies have a convergence to the theoretical
energies of the interested Hamiltonian, respectively. To be
noted, the ground-state energy can be obtained directly
from the original Hamiltonian with FQE, while the 1st
excitation energy is acquired from a new Hamiltonian by
reducing the ground-state energy part of the original
Hamiltonian with the same FQE process. By repeating the
above process, one can reach any excited-level energy one
after the other.

2.2.2. Potential Energy Surface (PES) Mode. In the mode of
PES, one can choose the scanning mode from “bond length”
and “bond angle”; moreover, one can set the scanning
number and scanning feld, as depicted in Figure 4. If the
“bond length” option is selected, one is further required to
provide which set of chemical bonds is going to be modifed.
Otherwise, if the “bond angle” option is selected, one is
further required to specify two chemical bonds which share a
common atom (as the vertex of two connected edges).

We take NH3 molecule as an example again. Its con-
fguration and setting of the PES mode are shown in Fig-
ure 4, i.e., “bond length” as the scanning option, all chemical

bonds of NH3 are specifed, and 11 scanning points of
chemical bond length set ranging from 50% to 150% of the
original chemical bond length and its setting are maintained
the same with the SES mode.

PES can help search for the most stable structure of the
interested molecule by ranging the length and angles of the
chemical bonds, which is very useful in the feld of bio-
medicine, materials, and chemical industry. In the example
of calculating PES of the NH3 molecule, the resultant PES as
presented in Figure 5 shows that the molecule with the
original set of chemical bond lengths has the lowest energy
which is the most stable structure of NH3 molecule under
the fxed chemical bond angles.

3. Full Quantum Eigensolver

In this section, we will give a detailed description of the
underlying algorithm in the BQ-Chem module, FQE. A
diagram of FQE for solving the ground-state energy of a
molecule is depicted in Figure 6. As discussed above, the
word “full” for FQE [15] means that all computations of FQE
are realized on quantum computers, while other eigensolvers
require a sequence of data transformation between quantum
computers and classical computers.Te reason why FQE can
be fully completed on a quantum computer is that it takes
advantage of the technology of linear combination of unitary
operators (LCU) which is proposed by Long in 2002 [11].

Figure 1: Input interface of the NH3 molecular data as an example in the BQ-Chem simulation module. One can select a molecule structure
from a preset database and modify the structure by changing the coordinates of its element. One can also construct another molecule
structure by adding or deleting an atom from the selected molecular structure.

Quantum Engineering 3



LCU can realize the four arithmetic operations, addition,
subtraction, multiplication, and division of unitary
operators.

After the secondary quantization, the fermion Hamilto-
nian of the molecule is transformed into the qubit Hamil-
tonian in the Hilbert space through mathematical mapping.
Te ground state of the Hamiltonian can be obtained by
applying the FQE. In a specifc quantum computing system,
we shall choose a suitable initial quantum state, then construct
a quantum circuit realizing the quantum gradient descent
process, and measure the fnal quantum state to obtain the
information that the next loop is required. In the process of
continuous iteration of the quantum circuit, the fnal state
converges to the ground state of our interested Hamiltonian.
On the other hand, searching for the most stable structure of a
molecule is very difcult in quantum chemistry and requires
massive classical computation. Similar to solving the ground
state energy problem, FQE can also be used to fnd the state
with the lowest energy by changing the distance between
atoms or angles between chemical bonds in a molecule and
obtain the most stable structure of the molecule.

A molecular system containing nuclei and electrons can
be described by its molecular Hamiltonian. Trough Jor-
dan–Wigner (JW) or Bravyi–Kitaev (BK) transformation,
the molecular Hamiltonian can be mapped to the Hamil-
tonian in a qubit form.

H � 􏽘
i,α

ωi
ασ

i
α + 􏽘

i,j,α,β
ωij

αβσ
i
ασ

j

β + . . . , (1)

where the Roman indices i, j denote the qubit on which the
operators act and Greek indices α, β refer to the type of Pauli
operators; for example, σi

x means Pauli matrix σx acting on the i

-th qubit. Apparently, H in equation (1) is a linear combination
of unitary Pauli matrices. We can calculate the ground-state
energy by minimizing the expected value of the Hamiltonian.

f(X
→

) � X
→T

HX
→

. (2)

Te following methods for fnding the molecular ground
state and its energy are all based on it.

In classical computing, we usually use the gradient de-
scent algorithm to obtain the minimum value of the ob-
jective function f(X

→
). We start from the initial state

X
→(0)

∈ RN and evolve along the object function’s gradient
direction to the next state:

X
→(t+1)

� X
→(t)

− c0∇f X
→(t)

􏼒 􏼓. (3)

In the case of solving the ground-state energy of the
Hamiltonian problem with FQE, the gradient of f(X

→
) can

be expressed as follows:

∇f(X
→

) � 2HX
→

. (4)

And, the iterative process of classical gradient descent
can be mapped into a quantum version, which can be
considered as the evolution of the quantum state X

→
under

the operator H.

X
→(t+1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � X

→(t)
􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 − cH X

→(t)
􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉􏼒 􏼓, (5)

where c � 2c0.
We defne a new Hamiltonian as follows:

H
g

� I − cH � 􏽘
M

i�1
βiH

g

i , (6)

where M is the number of Pauli terms of operator Hg. Te
process of the quantum gradient descent algorithm can be
expressed as follows:

X
→(t+1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � H

g
X
→(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉 � 􏽘

M

i�1
βiH

g
i X

→(t)
􏼌􏼌􏼌􏼌􏼌􏼌􏼌
〉. (7)

s Hg is an LCU operator, which is a nonunitary
evolution and can be realized on a quantum computer by
adding auxiliary qubits to convert it into a unitary evo-
lution in a larger Hilbert space. Te entire quantum circuit
diagram described by equation (7) is divided into four
parts as shown in Figure 7:

Figure 2: Input interface of the SES mode in the BQ-Chem simulation module. One can modify the confguration and setting to specify the
spectrum calculation mode.
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Wave division:Te entire quantum system is composed
of a work system and an ancillary system. Firstly, we
encode the initial vector X � (x1, . . . , xN)T into the
initial state | x(t)〉 of the work system. In the feld of

quantum chemistry, the Hartree–Fock (HF) state is
often adopted as an initial state. Te ancillary system is
initialized from |0m, where m � log2 M, to a specifc
superposition as follows:

Figure 3: Te resulting energy spectrum of the ground state (blue dotted line) and up to the 3rd excitation state (green, yellow, and red
dotted line) of NH3 in BQ-Chem. Each dotted line converges monotonically to the theoretical value of the exact Hamiltonian diagonalization
energy (red-solid line), respectively. To be noted, the 1st excitation energy curve (green) is covered by the 2nd excitation energy curve
(yellow) of molecule NH3 due to their degeneracy; thus, the green line cannot be seen directly.

Figure 4: Input interface of potential energy surface calculation in the BQ-Chem simulation module. One can modify the confguration and
setting to specify the potential energy surface calculation mode.
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􏼌􏼌􏼌􏼌ψs〉 �
1
C

􏽘

M− 1

i�0
βi|i〉. (8)

Here, C �

�������

􏽐
M− 1
i�0 β2i

􏽱

is a normalization constant and
| i〉 is the computational basis. We denote the com-
posite state of the whole system as |Φ � |ψs〉| x

→(t)
〉.

Entanglement: A series of ancilla-controlled operations
􏽐

M− 1
i�0 | i〉〈i | ⊗H

g
i on the work qubits are imple-

mented, the work qubits and the ancillary qubits are
now entangled, and the state is transformed into

􏼌􏼌􏼌􏼌Φ〉⟶
1
C

􏽘

M− 1

i�0
βi i〉Hg

i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 x
→(t)〉⎛⎝ ⎞⎠. (9)

Wave combination: After performing m Hadamard
gates on the ancillary register, the state of the whole
system in the subspace where the ancillary system in
state | 0〉 is

􏼌􏼌􏼌􏼌Φ0〉 �
1

C
���
2m

√ 0 􏽘
M− 1

i�0
βiH

g

i | x
→(t)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠. (10)

Measurement: Here, we make measurements on the
ancillary register. If | 0〉 is detected, our algorithm

succeeds and we obtain the state
(1/(C

���
2m

√
))( | 0􏽐

M− 1
i�0 βiH

g
i | x

→(t)
〉)∝ | x

→(t+1)
〉, which

is proportional to the next iterative state. Te proba-
bility of success in detecting the ancillary state in | 0〉 is

Ps �
H

g
| x
→(t)〉

�����

�����
2

C
2
M

. (11)

After successfully obtaining | 0〉 in the ancillary system,
we can continue the gradient descent process by repeating
the above four steps. We can preset a threshold of
ε � |〈 x

→
t|H| x

→
t〉 − 〈 x

→
t+1|H| x

→
t+1〉|/〈 x

→
t|H| x

→
t〉 as the cri-

terion for stopping the iteration. After enough iterations, the
fnal state of work system | X〉 will converge to our inter-
ested Hamiltonian H’s ground state and 〈X|H|X〉 is the
corresponding ground state energy.

Te successful probability after n-time measurements is
1 − ((C2M − ‖Hg| x

→(t)
〉‖2)/C2M)n, which is an exponential

function of n. Te number of measurements is
C2M/‖Hg| x

→(t)
〉‖2, which shows its complexity will grow

exponentially with respect to the number of iteration steps
[22], which is a relatively large limitation and should be
solved in future work.

Figure 5: Te resultant potential energy surface of NH3 based on FQE corresponding to diferent chemical bond length sets ranging from
50% to 150% of the original chemical bond length. Te energy corresponding to the 5-th scanning point (the exact original chemical bond
length set) has the lowest value, suggesting the most stable structure of NH3 molecule.
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4. Summary

In this paper, we present a quantum chemical simulation
software program based on FQE and BQ-Chem. With BQ-
Chem, we can calculate the single-point energy spectrum

(SES) and potential energy surface (PES) after specifying the
confguration and setting of a molecule. In the SES mode, we
can obtain the ground-state energy directly with FQE. In
addition, we can calculate the excited states and energies by
replacing the interested Hamiltonian with the original
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Hamiltonian after reducing the part corresponding to its
ground state following the same procedure. In PES mode, by
varying the distances between atoms or angles between the
chemical bonds in a molecule, we can search for the lowest
energy and the corresponding most stable structure of a
molecule with a set of distances or angles, from its potential
energy surface corresponding to diferent distances or
angles.

Appendix

A. Basis Set

In quantum chemical calculations based on the self-con-
sistent feld method (SCF), the single-electron orbital basis
vectors of molecules are generally approximated by the
linear combination of the single-electron orbital basis vec-
tors (basis set) of each constituent atom. We know that for a
hydrogen-like atom with nuclear electron number Z, its
single-electron wave function takes the form

ψnlm � Rnl(r)Ylm(θ,φ), (A.1)

where the radial function

Rnl(r) �

����������������

2Z

naμ
􏼠 􏼡

3
(n − l − 1)!

2n((n + l)!
3

􏽶
􏽴

e
− Zr/naμ

2Z

naμ
􏼠 􏼡

l

L
2l+1
n− l− 1

2Zr

naμ
􏼠 􏼡,

(A.2)

and aμ � 4πε0ℏ
2/μe2 [23]. Since the mass of the nucleus can

be regarded as infnite relative to themass of the electron, the
reduced mass can be approximately taken as the mass of the
electron, i.e., μ � mnme/(mn + me) ≈ me; then, aμ is the
corresponding Bohr radius. A generalized Laguerre function
can be expressed as follows:

L
2l+1
n− l− 1(x) � (− 1)

2l+1 d
2l+1

dx
2l+1

e
x

(n + l)!

d
n+l

dx
n+l

x
n+l

e
− x

􏼐 􏼑. (A.3)

Besides, the angular function in equation (A.1) is

Ylm(θ,φ) � (i)
m+|m|

�������������
2l + 1
4π

(l − |m|)!

(l +|m|)!

􏽳

Plm(cos θ)e
imϕ

, (A.4)

where i �
���
− 1

√
is the imaginary symbol, and the adjoint

Legendre polynomial has the form

Plm(x) � 1 − x
2

􏼐 􏼑
|m|/2 d

|m|

dx
|m|

1
2l

l!

d
l

dx
l

x
2

− 1􏼐 􏼑
l
. (A.5)

A.1. Slater-Type Orbitals (sto). Generally speaking, the sin-
gle-electron radial wave function of a hydrogen-like atom of
equation (A.2) is extremely complex and difcult to handle
in numerical calculations. For this reason, John C. Slater
simplifed the radial function part of equation (A.1) ap-
proximately [24, 25] as follows:

Rn(r, ζ) � Nr
n− 1

e
− ζr

, (A.6)

which becomes the basis set of Slater-type orbitals function
(sto). We have the following:

(i) N � (2ζ)n
�������
2ζ/(2n)!

􏽰
is the normalization coefcient

(ii) n is the principal quantum number
(iii) r is the radial distance between the electron and the

atomic kernel
(iv) ζ is a constant related to the efective nuclear charge

determined by Slater’s rule

After substituting equations (A.4) and (A.6) into
equation (A.1), the “sto” basis set is obtained. As we can see,
“sto” has a natural physical meaning; thus, the approxi-
mation is better.

A.2. Gaussian-Type Orbitals (gto). Te Gaussian-type or-
bitals (gto) set is another typical atomic electron orbital basis
set. Boys [26, 27] frst reduced the radial wave function in
(A.2) to

Rn(r, α) � Nr
n− 1

e
− αr2

, (A.7)

where N, n, and r take the same defnition as equation (A.6)
and α is a constant number related to the efective nuclear
charge.

According to the Gaussian Product Teorem, the
product of any two Gaussian functions (gtos) centered at
two diferent positions can be replaced by a fnite sum of
gtos centered on a point along the axis connecting them.
When we select the “gto” basis set, the molecular elec-
tronic state of the n-atommolecule can be expressed as the
product of n “gto” atomic electronic states at n nuclei
centers, respectively. According to the Gaussian Repro-
duction Lemma, the product can be further expressed as
the linear superposition of Gaussian integral function
production with n/2 centers and again further expressed as
the linear superposition of multiple Gaussian integral
function productions with the same center. In other
words, the computational efciency of the “gto” basis set is
much higher than that of the sto basis set, and this ad-
vantage can sometimes reach 4–5 orders of magnitude.
However, by comparing equation (A.6) with (A.7), as
shown in Figure 8, it can be found that the two function
properties near r � 0 are quite diferent, which means that
although the computational efciency of “gto” is higher
than that of “sto,” its computational accuracy is lower than
that of “sto.”

A.3. “sto-ng” Atomic Orbitals. In order to solve the problem
that the Gaussian function does not match the linearity of
real atomic orbitals, a “gto” orbit can be approximated by the
linear superposition of multiple Gaussian orbits with dif-
ferent parameters α [28, 29]. Tese “sto” orbitals partici-
pating in the superposition are called the primitive Gaussian
basis set, and their linear superposition is called the con-
tracted Gaussian basis set, where the superposition coef-
cients are obtained and fxed by prior optimization. It
remains unchanged in the subsequent variational
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optimization process for fnding the ground state of the
molecule; i.e., the superposition coefcient is not used as an
optimization parameter.

Generally, the approximate “sto” atomic orbital basis set
obtained by the linear superposition of n Gaussian basis
vectors is denoted by “sto-ng.” For example, as depicted in
Figure 9, “sto-3g” is a linear superposition of three Gaussian-
type atomic orbitals to approximate a Slater-type atomic
orbital.

ψsto− 3g � c1e
− α1r2

+ c2e
− α2r2

+ c3e
− α3r2

􏼒 􏼓r
n− 1

Yl,m. (A.8)

B. Hartree–Fock Self-Consistent Field Method

In Appendix A, we get the basis set ϕi
k(r)􏼈 􏼉, where ϕi

k(r)

represents the i-th single-electron atomic orbital of the k-th
atom. A single-electron molecular orbital
ϕj(r) � 􏽐kc

j

k,iφ
i
k(r) can be obtained by linearly superposing

diferent one-electron atomic orbitals. After the direct
product of diferent single-electron molecular orbitals and
the commutative antisymmetry operation, a multielectron
molecular orbital that satisfes fermion statistics can be
obtained.

Ψ r1, r2, . . . , rn( 􏼁 �
1
��
n!

√ 􏽘

n!

σ�1
(− 1)

σ
Pσ ϕj1 r1( 􏼁ϕj2 r2( 􏼁 · · · ϕjn rn( 􏼁􏽨 􏽩,

(B.1)

where Pσ is the commutation operation, and equation (B.1)
is the Slater determinant.

Under the Born–Oppenheimer approximation, we
regard the nucleus as stationary and only provide a back-
ground electrostatic feld for the electrons; then, the mul-
tielectron Hamiltonian of the molecule can be expressed as
follows:

H � H0 + HI � 􏽘
i

−
1
2
∇2i − 􏽘

a

Za

ri,a

⎛⎝ ⎞⎠ + 􏽘
i<j

1
ri,j

. (B.2)

H0 is the potential energy of the kinetic energy of the
electron under the background electric feld, that is, the single
energy, and HI describes the Coulomb potential energy be-
tween the electrons. Te energy of the corresponding many-
body quantum state Ψ is expressed as follows:

EΨ �〈Ψ H0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Ψ〉 +〈Ψ HI

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Ψ〉 � E0 + EI. (B.3)

For the zero-order approximation E0, since the direct
product state |φ1|φ2 · · · |φn〉 is an eigenstate of H0, E0 can be
directly described as the summation of single-particle
energies.

E0 � 􏽘

n

i�1
〈ϕi

􏼌􏼌􏼌􏼌􏼌 −
1
2
∇2i − 􏽘

a

Za

ri,a

|ϕi
. (B.4)

HI is the interaction Hamiltonian, expressed as

EI �
1

2 · N!
􏽘

n

i≠ j

􏽘
σ,ω

(− 1)
σ+ω〈ϕPσ(i) 〈ϕPσ(j) 1

ri,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕPω(i)〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕPω(j)〉,

�
1
2

􏽘

n

i≠ j

〈ϕi 〈ϕj 1
ri,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕi〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉 −

1
2

􏽘

n

i≠ j

〈ϕi 〈ϕj 1
ri,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕi〉.

(B.5)

In principle, the corresponding many-body ground state
and ground state energy can be obtained by calculating the
minimum of equation (B.3) with calculus of variations. We
know that the many-body state |Ψ〉 is obtained by the Slater
symmetrization of the single-electron molecular state |φi〉,
and then, the variation of equation (B.3) is actually the
variation of |φi〉. Considering the normalization condition
of the one-electron molecular state, equations (B.5) and
(B.5) can be substituted into equation (B.3), and the La-
grangian multiplier term can be matched at the same time:

− 􏽘
n

i,j�1
εi,j 〈ϕi

|ϕj〉 − δi,j􏼐 􏼑. (B.6)

After a variation of the whole system on a certain
state 〈φi | and taking the extreme δE/δ〈φi| � 0, there
should be

−
1
2
∇2t − 􏽘

a

Za

rt,a

⎡⎣ ⎤⎦ + 􏽘
n

j≠ i

I⊗ 〈ϕj 1
ri,j

I⊗
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎪⎨

⎪⎩
,

− 􏽘
n

j≠ i

I⊗ 〈ϕj 1
ri,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉 ⊗ I⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎪⎬

⎪⎭
|ϕi

� 􏽘
n

j�1
εi,j

|ϕj〉,

(B.7)

which is the Hartree–Fock self-consistent feld equation
[30, 31]. For the Hermitian matrix ϵi,j, there always exists a
unitary transformation U that can diagonalize it, and then, if
we take 􏽐

n
j�1 Ui,j|ϕ

j〉 as the new φi, a regular form Har-
tree–Fock equation can be expressed as

ϕ (r) =e-a|r| ϕ (r) =e-ar2

Slater-type 1s orbital Gaussian-type 1s orbital

Figure 8: Linear comparison of radial functions of “sto” and “gto.”

+ + =

STO-3G 1s Basic function

Figure 9: An example radial function diagram of sto-3g, which is
composed of 3 superimposed original Gaussian functions.

Quantum Engineering 9



Fi|φ
i

� hi + Ji − Ki( 􏼁 φi
� εi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌φ
i
, (B.8)

where Fi is the i-th row of the Fock operator F that has a
dependency on the single-electron state |φi〉􏼈 􏼉, εi is the i-th
eigenvalue of F, and

hi � −
1
2
∇2i − 􏽘

a

Za

ri,a

, (B.9)

is the monomer energy of the i-th single-electron state,

Ji � 􏽘
n

j≠ i

I⊗ 〈ϕj 1
ri,j

I⊗
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉, (B.10)

is the Coulomb repulsion energy of the i-th single-electron
state corresponding to other electrons, and

Ki � 􏽘
n

j≠ i

I⊗ 〈ϕj 1
ri,j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ϕj〉⊗ I, (B.11)

is the Fermi exchange energy between the i-th single-elec-
tron state and other electronic states.

Te variational optimization process of the Har-
tree–Fock method can be depicted as the fowchart in
Figure 10:

(1) Start from the preset single-electron molecular state
φi􏼈 􏼉

(2) Calculate the corresponding Fock operator F( φi􏼈 􏼉)

according to equations (B.9)–(B.11)
(3) Diagonalize the Fock operator F to get the corre-

sponding eigenvectors φi′􏽮 􏽯 and eigenvalues
(4) Continue to substitute the new single-electron

molecular state as in (2) to obtain a new F′ until
convergence

C. Fermi-Spin Transformation Method

Quantum simulation of chemistry is always dealing with
fermions that satisfy the Pauli exclusion principle (i.e.,
electrons) [32, 33]. We can simply handle the electrons of
spin ↑↓ as handling two diferent kinds of spin-free fermions
without spin-orbit coupling. In this section, spin-free fer-
mions are used as an example to introduce related calcu-
lation methods. Since fermions satisfy commutative
antisymmetry,

f
†
i , fj􏽮 􏽯

fi, fj􏽮 􏽯 � f
†
i , f

†
j􏽮 􏽯 � 0.

(C.1)

However, as the basic storage unit of a quantum com-
puter, the qubit is a boson that satisfes commutative
symmetry, i.e., SU (2) spin, which satisfes

σ+
i , σ −

j􏽨 􏽩

σ+
i , σ+

j􏽨 􏽩 � σ −
i , σ −

j􏽨 􏽩 � 0.
(C.2)

By comparing equation (C.1) with equation (C.2) and
combining the occupation properties of the fermion state

and the state directivity of the 1/2 spin, we can form an
equation between the single-fermion operators fi and f†

i

and the 1/2 − SU (2) spin operators σ+
i , σ−

i , an d σz
i as

follows:

f
†
i ⟶ σ+

i ,

fi⟶ σ−
i ,

f
†
i fi⟶

1
2

1 + σz
i( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.3)

Tis shows that if only the particles on the same lattice
are considered, the Fock state basis vector |0, |1〉 of the Fermi
system and the spin basis vector |↓, |↑〉 can be one-to-one
correspondence, and furthermore, its Hamiltonian can be
related to each other with the same transformation.

However, the situation could be quite diferent when
dealing with multiple-lattice Fermi systems, the structure
obtained from equation (C.3) loses the commutative anti-
symmetry property of fermions, which will cause confusion
of sign in the calculation, leading to completely wrong re-
sults. In that sense, a unitary operation that faithfully
connects the fermionic Fock space with the spin space is
required. Obviously, such a unitary transformation cannot
be local.

C.1. Jordan–Wigner Transformation. Considering the fer-
mions as a one-dimensional chain, we can denote the fer-
mion lattice as i � 0, 1, . . . , n − 1 based on the algebras of
fermion particles. In order to unify the sign of Fermi-spin

Input 3D
coordinates

of atoms

Specify Fock
matrix

Initialize single
electron state

Diagonalize
Fock matrix

self-
consistent?

Yes No
Output eigenstates

and eigenvalues

Figure 10: Schematic diagram of the process of Hartree–Fock self-
consistent solution.
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operators on the j-th lattice, we can just calculate the parity
of all fermions occupied before the j-th lattice and then
assign it to the local operators of the j-th lattice, which is
exactly the Jordan–Wigner transformation and its inverse is
shown in equation (C.4). We can simply verify that the
Jordan–Wigner transformation [34–36] is a global unitary
transformation.

􏽙
i< j

σz
j

⎛⎝ ⎞⎠σ+
j⟶ f

†
j ,

􏽙
i< j

σz
j

⎛⎝ ⎞⎠σ −
j⟶ fj,

1 + σz
j

2
⟶ f

†
jfj.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.4)

Because of the existence of string operators (􏽑i<j(1 −

2f†
i fi)) and (􏽑i<jσz

j) in equation (C.4), the averaged
number of spin operators required to encode a fermion
operator is linear to the system size under the Jor-
dan–Wigner transformation; i.e., the Jordan–Wigner
transformation has an encoding complexity of O(n).

C.2. Bravyi–Kitaev Transformation. When encoding the
fermionic operators with spin operators, two pieces of in-
formation should be included, the fermionic occupation on i

-th lattice and the fermionic parity of i-th lattice (i.e., the
parity of the fermionic occupation numbers of all lattices
preceding i-th lattice). Te Jordan–Wigner transformation
encodes the fermionic occupation information with the local
spin operator σz

j and encodes the fermionic occupation
number parity information with the nonlocal string operator
􏽑i<jσz

j . Another protocol called “Parity encoding” is in the
opposite encoding way, where the local spin operator at j-th
lattice encodes into the parity of the fermionic occupation
numbers at all lattices up to and including lattice number j

and encodes the spin string operator into the occupation
state at the j-th fermionic lattice. Similar to the Jor-
dan–Wigner transformation, the parity encoding of the
Bravyi–Kitaev transformation [37–39] also has a linear
averaged complexity of O(n).

In order to reduce the encoding complexity of fermion
operators in the spin formula, Bravyi and Kitaev [40]
proposed another Fermi-spin transformation method in
2002, namely, the Bravyi–Kitaev transformation, which is
a compromise between the Jordan–Wigner transforma-
tion and the parity encoding transformation. Te Brav-
yi–Kitaev method draws on the binary tree structure to
encode the information of the Fermi subsystem on the
spin system, as shown in Figure 11, where the solid gray
lines represent the left branches, the dashed black lines
represent the right branches, and the solid red circles are

the roots. At the bottom layer of Figure 11, the spin state at
the j-th (i.e., even j) lattice on the left branch stores the
local occupation information of the fermion chain at the
same j-th lattice and the right branch at the j-th (i.e., odd
j) lattice stores the fermion occupation number parity
information for some fnite sets of the lattices, which
conclude all lattices under the root of the highest level that
can be reached along the right branch route starting from
the j-th lattice.

Under the Bravyi–Kitaev transformation, the Fock state
basis vector |f0, f1, . . . , f2n− 1(fi � 0, 1) can be connected
with the spin state |s0, s1, . . . , s2n− 1(si � ↑, ↓) by a transfor-
mation matrix β2n .

β2x �
β2x− 1 0

K β2x− 1

􏼠 􏼡, K �
0

1, 1, . . . , 1
􏼠 􏼡, β1 � (1). (C.5)

We take 8 lattices as an example in Figure 11; the
Bravyi–Kitaev transformation can be expressed as
follows:
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s5

s6

s7
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,

(C.6)

where ⊕ is a symbol of modulo-2 binary addition. Obviously,
β2nβ†2n ≠ I means that β2n is not a unitary transformation;
nevertheless, it is always linearly invertible.

By applying the conjugate of the transformation
matrix β to the fermionic Hamiltonian, the spin Hamil-
tonian with the same energy spectrum can be obtained
and thus solved on a quantum computer. Under the
Bravyi–Kitaev transformation, the fermionic single lattice
occupation number information and the parity infor-
mation are stored neither locally in the single lattice of
spins nor in the string operator with linear complexity,
but in the string operator with logarithmic length. Tis
means the averaged encoding complexity of the fermionic
creation and annihilation operators under the Brav-
yi–Kitaev transformation is O(log n).

0 1 2 3 4 5 6 7

Figure 11: Diagram of encoding rules for the Bravyi–Kitaev
transformation.
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