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AEtBSrnCT 

we co”strucf d” analyfic solution to the spinless s-vave Salpeter equation 

for f”U quaAs i”fer~Acti”g via a co”lonk potential, 

and that the wdYe f:incrio” far the static ioteraction diuerges for r * 0 a* 

c(mr)-” *t,e,c Y I ;n + ; + . . . . is hIown exactly. 

2 

I. 111TROD”CTIOIi 

I” cili; p”p’?F, we present an all,llyfic solufian fur the s-state VlYe 

functions “f tie spinless Salpeter-type equarim for a st*tic Coulomb 

porentia1. 

[*/-XT - n - 3 V(r) = 0. (1) 

This. .qvatior, a&bears a5 a natural appraximariorl to the relativistic Bethe- 

salpefer-Schuic~er eq”atio”l for two felmions Of mass m and foral energy H 
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*t,ere 

gw + mp, Y(p) = 0 (7) 

B(p) i a,[? m - n I. (81 

The SOl”ficm of Eq. (7, is Efraightiorual‘d, 

X(p) = A .+ Ip eww] , (9) 
ard 

kp) = -iB(pN(p) = $(;(,I (10) 

c-licit evaluation of the integral in Eq. (9) gives the rattler cotnplicated 

ex2res5ion 

x(p) = A [& $qin [k +yq” 

(11) 

where n i a/2v and v is the velocity of a free quark with total energy H/2 

ar.d mumentur p,, 

“= 1-d 
f- I(2 * 

p, = H”,? . (121 

6 

[2&z? - n, $(p, $ [ dk .(p-!&kl = 0. (131 

If ye replace 3 by dX,Q as in EQ. (10). a parria, integration reduces this 

integral equation to the differential equition for x given in Eq. (7). This 

approach Will be useful in the three-dimensional problen. 

If is ea:;ily *how” that the funcrioil x(p) has branch points at ,I = - PO 

and at fin Lilt “U other Singularities in The (ri”itel p plane. we choose the 

branch C”f5 a* Sbwn in Fig. 1. TO Obtain a space wave function *<x1 which 

vanishes far x i 0, we chwse the integration Confour in Eq. (41 as the differ- 

ence befwerii co”to”115 which r-u” from - to - jut above and below the real 

axis, that is. use the contour Cl in Fig. 1. After a partial integration. we 

can collaps+ the co”To”r and express *(xl as a *hIPie Fourier tra,“sforn of 

X(P). 

I(i(x) = x* /y;o dp eipx [e e]-l” 

a [.m *=jin [g55]in’2 ’ 
where we ha,.? absorbe3 various CO”EfantS into the overall noma1izarion 

Constdnf *. This expression reduces in fhe nonrelativistic limit Cm * -* 

c the s-state Coulomb wave function, p, fixed,, to a standard representation 0. 

t’(x) = POX A j df ~P~xr(l~tl-i~(l+r~i~ , t = pfpQ . 051 

-1 
.we Cd” obtain eq”i”ale”t results using the custo’mary nomenfum-space 

fom of The relari”istIc rave *quation. 
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c. Evaluation of @‘(Ol 

M Ye Will ShOY in sec. III, the magnitude of fk s-state Co"lon5 WaYe 

f.:~::;::, ierr the origin in three dimension* is determined by fhe value of 

*s(c), 3r equivnlenfly, by the limiting value of ly(xl/x for x * 0. (If we 

ler+ c5il:;g ritil an or3inary nonrelativisric SchAinger equation, *(xl 

coi?< se ;ienri:iec3 Wifh u(r) i rR(rl, and *'co, : icta,., The value OF e-to, 

is <CTIr71rmi, ,'3 Eq. (20). Afrer di"idine by X, Ye can set x eqllal to zem 

On :k -i;:,r k.and side of this equation. A &mnge "F the variable of inte- 

grdr:c iron y to 

r.------E (211 
7 pm tm 

tbrn gives rhe expression 

v’(o) = ma ,,;;;I,,J’, dt [++in [$f”’ ;+$:,,z 3 (22) 

(231 

I I 

ia/* 
I-df l+a*t* i 1 - iaaf + 3a2f2 + . . I (2111 1+at 

U-‘?*t*l* 

= 1 - f iaa[(l+t)-(l-t,, + 5 a*[(l+t)* + (l~t)2-21+... . 

me integrals uhich ap;iear cd” then be reduced to beta functians. 
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Jf, 
dt(l+t)x(I-tl~ = 2 xtyt1 r(xtllr(“tl~ , 

r(x+y+*l (251 

and Me find that 

*‘co, ~= p, em/* Ir(l-i”)l & [1 + *ma + 2a*(1-21121 + . ..I 
(261 

= p, enq/* Ir(l-i”)l (1 + ; 02 + + “2 + a(o~.ov.“‘)l. 

The leading facfo~ ia jut the usual coulonb factor with n calct~lafed using 

the relativistic velocity of the q”“Tk, 5 

l/2 
p en”‘2 IUI-allI = P, 

C 
,eex;;“,“;] , n = a,?“. 0 

(271 

we have “Of faund a Simple expression for r”‘(O) in the extreme rela- 

tivistic case. 

D. cements on the one-dinensional and three-dimensional pPoble”s 

*he expression in tq. (*Cl) gives the exact solution to the one-diincnsiondl 

eqvation 

~&Z.~.+~xl =o (281 

which vanishes at x i 0. This *dution reduces in the nonrelativistic limit 

to the L=O solution of the radial SEhrZddinger eq*Jation for an attractive 

caulo* potential. *<x1 +u(Pl> II = x ) 0, E = H-h. 



Cifier slig!itiy far P : m -1 eYen thaugh the Solutions have the 5a”r non- 

I-els:i;isric limits and dPle essenria11v identical for P )) m-1. 

III. THE THREE-DINENSIOIIRL COUKW PROaLE:, 

A. The boundary valve form Of the problem 

The mi-er-dimensional Coulomb problem is defined by rile intepa1 
equari;n give” abbave, 

r2&%7 - n,mcp, + J& [ dk PnC(p-d t A .+Ck) i 0 , 

dKLg+q P r&g = 0 (UO) 

.A,::-c p drxienafes the principal value integral. 

This inregrd equation can be transformed into a baundarg value pmblen 

dS follows. Ye represent X(P), P real. $6 the difference of the bd”“dary 

“aloe; of t-0 funcfions e+(p) and @‘(P) which are analytic Fespertively 

in the upper and lower halves of the canplex p-plane and vanirh at infinity.7 

x(p) = (*(p*ic) - 6w(p-icl (111) 

Use of the Plmclj relation5 for the principle value intezrai’(or dizeci 

calculation, the” shows aat 

; $ a& Cb+(k+icl-Oe(k-i~ll = i[m+(ptiE)+P-(p-icll, (42) 

and ue can rewrite zr(. (110) as 

[$ + i rJ(p)ld(p-iC) = [$ iB(p)lQ+(p+ic) (43, 



Ye ti-crci:re :r:.clLlie ttat 

Q-(i) = (p, ; *)iin , C*(p) = (PO; PI ‘ill , P*tP* (52) 0 

Irn p> 0 is ti,e 5:ir.r; poinr of Et(p) at p i im. me left hand side there- 

fore ha; m1y fhiI Sin~“lariry. and we conclude that the only singularity 

of *- in fhe u>pr half plane is a blLa”Ch point at p = iln. (i s have 

this branch point for a nontrivial solution to exist since Q-(p) # O+(p), 

*ee. e.g., cq. (W,., we choose the branch C”Ci” Q- to r”” from im to i- 

as do- in ail. 3. The symefry relation in Eq. (li9) then ‘implies fhaf 

p+ has a branch point af p =-im with d cut which mn5 fran -im to -im . 

If Will be convenient at ai* point to write P‘ as a sum of t-o 

1 =zc I 
PO d+ disc *,(p’) , +,, p -p 

Q+?l = & I,? E Q2(P’) 

i- 
= & Iti $$ disc Qp) 

(55) 

I” these expressions the poinf p lies outside the infegration CO”tO”r5 Cl 

and C2 shown in Fig. 3, and the discanrinuiries are defined by 

disc Ql<p, = Qlfp+ic, - Q1(P.iC), -PO’ P ( p,, E + rJ+ * 

(56) 
disc qp, i P2(p-E) - Q*(p+E). q c -ip c -, E * ot 

The funrfion disc pi(p) is determined a5 follows. We note that the 

result obtained by Continuing Eq. (93, from the region p ) p, (where bOfh 

rides are analytic) to the upper edge of the short Cut must be collsistrnt 

with the original equation for -p, C p < p,. Since Q- ia given on the 
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* 4 
=2m.‘Dtgy-+ . . . * 

sn2 n 
“=I,* ,__. . 

-i- >* tern aarees Wifh the COPPeCtio” to the SchrMinger energy E” i *n-iT 

-,;r;ir;: iy erpon$17,g the rqvare Poet in cq. (30, to order vq/m3. and treat- 

ir; :L;I ten as a perturbation. 

plane except for C”f5 from -p, to tp, tm,, and fmr. im TO i- cm,,. we 

found. fwthermore, that disc .eL (the discontinuity of m- OP m, acFoss the 

“sho~r” cut) satisfied the same differential equarion a.5 was enco”“tei-ed in 

*he one-dimensional problem, and was given explicitly by djsc *l(p) = -x(p) 

where X(P) is defined in Eqs. (11, and (19). I” the present section, we 

will derive an integral eguarion for disc *z(p). This eguafion relates 

disc ez to the known function disc ml, and can be salurd by iteration. The 

solution will be discussed in the following sections. 

We begin by deriving an equation far e-(p) which displays the analytic 

SfP”CfYre of fhaf function. TO do fhk, we note that the condition on disc e1 

in Eq. (58, allows “S fO write the bo”“dary value equation, Eq. (“31. ar an 

analytic expression in the cut p plane, 

k t iBCp;1 6-(p) = b iB<piJ O+(p) - (67) 

Ye multiply this equarlon by the Cauchy denominator and integrate on the 

contour C2 shorn in Fig. 1 fo obtain a identity valid for general canplex p, 

& [, $f+ b + i.Wj $‘(p') = & [, $$ k+ - iB(pj P+(p') 

The integral of tha Fight hand side is simple ro evaluate: @+ is analytic in 

the upper half plane, while B(p) has a cut from im to i-. Thus 

$7 / fi p - w;] ,+w, 
5 (69) 

= - & r $$ *+w, disc Bb’, 



rer.*j which involves the known function bl. I” the next section we Will 
sr.4c; rhe iterative sdufion of this eqcation. 

E. Iterative solution for disc P* 

It Will be convenient to make the change Of variables IpI = lnx, 

12 x c -, in EQ. (161. and to write did* as 

disc G2(ilpl) = eccx) Wxl , (771 

C(X) = & tan -1 X0 ;* x0 = p,/m . (781 

This substitution eliminates the second term in Eq. (161. and leaves us with 

the equation 

g (x) _ +i e-c(x) p (-& .C(x’) Yh’l 

= +& .-C(x) wl~oox, - Pl(-imxN . 
0 

Tnis equation can be solved by iteration. Ye let 

dP’ &I e-c(xl -ti- = ia x?+x2 [+l(imxl Oll-iax)l, 
0 

and define Punctions YF) recwrively by 

(“I d+ a .dz e-L(d p ; * ew) ““-“‘“‘~ , 
1 X2+X2 0 

m 
,yx, i - j g dx’ . 

II 

(791 

(001 

cell 

(821 

Then 
‘y(x) i ; 4”) (xl . (83) 

n=o 

we note that each svccensive term in Eq. (831 involves an exttm overall 

faCtoP Of o/n. HoYeveP, Eg. (831 is not a simple power series in 11 because of 

the a-dependence introduced by the factors e*c and by PI. The second rele- 

vanf parameter in Eq. (79) is x:/x’. This is Of order “2 for “onrelativistic 

quarks. 

The function L@l(imxl ~l(-imxl] ir given from Eq. (54) by 

X.2 
O1(imxl - O1(-imx) = f pc- 

XI 2+x2 
disc i)lhu’l . (841 

-x 0 

Ue will be primarily interested in the behavior of %x1 for x * - . In this 

limit, 

*1(imx, - ~l(-i.xl + kl dX’ disc @lhxo . (851 
xx-1 

where the corrections are of relative order xi/x’. The integcml in Eq. (851 

can be identified through Eqs. (511 and (6Ul with -u;(o)/m i -hit $~tol/m. 

“here 

*cl-> = CU1(‘l + qr11 G r . 
/ 

(861 

The same infegxml was encountered in Sec. IIlC in the evaluation of *‘CO). 

the derivative of the one-dimensional Coulomb wave function at the origin. 

To avoid confusion, we define C = fG *,(Ol. Then 

elumx) - P1(-lmxl - - ClnmX (87 I 
xm1 
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Expanding the cofanjentfor nu/Z small. we find that 

” = P + yz _ D 2Y2 I4 ‘( 
m 12 -f% + . . . 

29 

(961 

(97) 2 *aJ v =~+~+((2-~,-+0~~, . 
” “3 m* 

b!e find similarly that 

* = g E 11 + O(rrl, * I= (981 
-1 and in a separate calculation in which we retuzm higher order terms in x , 

that fhe coefficient cl in Eq. (93) is 

4 = - c-r1 + 0(0,] * (991 

These res,~lts agree to the rdevanf order with the iterative results given 

in Eqs. (301 and (?11. 

Y(X) .,;$S L+ l in?-fl +f k”x -Et . ..I . (1001 

we see, in fact. fhaf 

A=; qj++ (1 + I”? - f, + d. q (1011 

Me conclude that the behavior of Y(x) for x * - is given by the 

asymptotic expanoion in Cq. (931 with Y, cl, and * given by Eqs. (97). 

(99). an, (1011. Th* behavbr of Y(X) for x 1.1 i, g1ren by the iterative 

series in bq. (83,. ror d , Yz (< 1. the first two terms in the series, 

Eqs. (90) and (911. should give a satisfactory approxlmatlon to the exact 

result. The function disc $?is the-c given by Eq. (77) 

F. Behavior of $(x-l for P * 0, -, 

Ye consider finally the behavim of the space wave function 

‘#IPI = Cul(rl + U2(P)I/AiF P *or I. * 0. The behavior of u~(P)/P is 

easily determined From Eq. (6Ql. 

ulh,/r = cc1 - +mr + . . . . (1021 

*here c is given in Eq. (WI. and we have omitted corrections cd ovjers 

2. ” 2 in the second term. 

TO determine fh* behavior Of “p/r for P * 0. Ye “se Eq. (62) and 

rbe xxS”lfS just obtained FOP disc e2FFor IpI + -. 

u~(F)/~ = -ii dIpI eT1’lr disc Q?(ilpl) 

-i. i -h dx e-rnx eC(x) ‘y(x) 

% 4c i dX e-= x-1 + O&) 
rnrx<l 1 

(1031 

= f c r(ul(rr)‘” k c + Occur”-, 21 c 

= c[(mrl-*- 1, + ok?mr. a,” IC 

In the la*f erep, we have used the relation u I a/n. Combining Eqs. (1021 

and (1031. we find that 

U(F) - chrl-v* o(w,a/“lc. (104 I 
IF<<l 
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