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ABSTRACT

We construct an analytic solutiom to the spinless S-wave Salpeter equation

for two quarks interacting via a Coulomb potential,
a
[2/-v2+m2-nf-;]Mr)=0 :

by transforming the momentum space form of the eguation inte a mapping or
boundary value problem for analytic functions. The principle part of the three
dimensiona! weve function is ldentical to the sclution of a one-dimensional
Salpeter equatien fouad by cone of us ard discussed here. The remainder

of the wave functicn can be constructed by the iterative soclution of an in-
homogerecus singular integral equation. We show that the exact bound state

eipenvalues for the Coulombh problem are

and that the wave function for the statie interaction diverges for r + 0 as

cloe) Y where v = %[1 + % + ...) is known exactly.

I. INTRODUCTIOH

In this paper, we present an analytic solution for the 5-state wave
functions of the spinless Salpeter-type equation for a static Coulemd

potential,

[%J —V2 + m2 - M- % y(r) = 0. (1)

This aquation appears as a natwral approximation to the relativistic Bethe-
Salpeter-Schuinger equationl for two fermions of mass m and total energy M
when the interaction kernel is approximated by the instantanecus Coulomb in-
teraction, and spin-dependent effects and the coupling of the "large-large"
and "small-small" components of the wave function are neglected. The solu-
tion--and the method used to construct it--should therefore be of fairly
general intercst. We find, for example, that we can determine the exact
bound state eigenvalues of Eq. (1) without actually selving the equation.
The result,

M = —=——= , n=1,2,..., {2)

can probably be generalized to orbital angular momenta © > 0, and the
corresponding result may alse be accessible in the spin-dependent problem.
We originally encountered Eq. (1) (with a = % us) in our study of
short-range effects in bound quark-auntiquark systems.2 In that work {and
later extensionss), it was important to know how Y{r) behaves for mr 1.
By wmatching this {free) relativistic Coulomb functlon to the solutlon

of Eq. (1) with an extra long range confining interaction and using the

known short range gluonic radiative corrections to P(r), we could estimate



%%(p) + iB(p) X(p) = ¢ (7)

where

B{p) = Q/[2|fp2im? - K. (8}

The solution of Eq. (7) is straightforward,

by
p) = A exp[—i If B(p')dp'] . (9)
and
Wp) = -iBlpIN(p) = %(p) ) (10)

Explicit evaluation of the integral in Eq. (39) gives the rather complicated

expression

= -in in
x(p)ﬂ._L__/ﬁ__._ﬁ*g P JHIm
/p smem Jpzﬂn2+ m Hr 2m
72 ia/2 (1)
v pta +wm-p
[4 p2+m2 +m+p

where 1 = a/2v and v Is the velocity of a free quark with total energy M/2

ard momentun Pyr

v /l-=5-, P = Mv/2 . (12)

_We can obtain equivalent results using the customary momentum-space

form of the relativistic wave squation,

12/ p2em? - M1 P -2 [ oax el = ol (13)
2 -

If we replace w by dx/dp as in Eq. (10), a partial integration reduces this
integral equation to the differential equation for ¥ given in Eq. (7). This
approach will be useful in the three-dimensional problem.

It is easily shown that the function ¥{p) has branch peints at p = & p
and at tim Lut no other singularities in the (finite) p plane. We choose the
branch cuts as shown in Fig. 1. To obtain a space wave function Y(x) which
vanishes for x = 0, we choose the integraticn eentour in Eq. (4) as the differ-
ence between contours which run from -= to ® just above and below the real

axis, that is, use the contour C, in Fig. 1. Aftera partial integration, we

1

can collapse the contour and express {i{x} as a simple Fourier transform of
x(pl.
Fo ipx M-2m -in
qa(x)’:xﬁj dp P B

M+2m
Py /peals m

{1u)

; ia/2
fim | [fes
Jp2+m2+ m Jp2+m2tm+p

where we have absorbed various constants into the overall normalization
constant A. This expression reduces in the nonrelativistic limit (m + =,
P, fixed)} to a standard representation of the S-state Coulomb wave function,

1
Pix) = P x A I dt e
-1

ip _xt .
° -0 Mt v = plp, - (15)



C. Evaluation of $'{0)

1 ¥ y _ oxtyrl Tx+1)I0(v+l)
J_l dr(l+t) (-1 = 2 Toayezr {23)
ke we will show in Sec. III, the magnitude of the S-state Coulomb wave
f.rzvi-z near the origin in three dimensions Is determined by the valne of and we find that
Lo s, h PP .
$*(5), »r equivalently, by the limiting value of Y{x)/x for x + 0. (If we p'(0) = P, eﬂnlzlr(l-in)l n:;m [1 + 20ma + 232(1-2ﬂ2) +
wera d:zzllrz with an ordinary nonrelativistic Schrédinger equationm, ¥i(x) (283
coulsd te Idenzified with ul(r)} = rR(r), and ¥'(0)} = R{0).) The value of ¥'(0) =P, "2 [r(1-im)| 1+ % of + 741* v? ¢ ota 0V,

ie ZetermiIn=d by Eq. (20). After dividing by x, we can set % equal to zero

. . . . i t is j t : i : i
on “he right hand side of this equation. A change of the variable of inte- The leading factor is just the usuval Coulomb factor with n calculated using

. c the relativistic velocity of the quark,s
grazicn from p to

t = ——P {21y

1/2
. 2
p2+m2 tm P, e“nl? [raa-imy| = P, — s N o= a/2v,
l-exp(-2mn)
then gives the expression (27)
m/2 1 Lot n [1_ t ia/2 1+ 2.2 We have not found a simple expression for ¥'(0) in the extreme rela-
yrio) = m—ﬂ[ dt 5% Tt 553 e (22)
Ir(1-im |4 -1 l (1-a"t"} tivistic case.
where

2p
- -2m _ ]
&=/ Wezm T Mem C (23)

. . PO . D. Comments on the one-dimensional and three-dimensicral problems
For particles which are not too relativistic, the parameter a is small,

a " p /2m v u/2, and We can evaluate the integral in Eq. (22) approximately The expression in Eg. (20) gives the exact solution ta the cne-dimensional

by expanding the last two factors In a power series in at,

equation
ia/2 2 ]
2.2 d 2 a ~
1-at ra’t” .1 jat + 3act? v ... < () : 2 /- emt - vk =0 (28)
+at 2 9.0 . - dx
(1-a“t™)

which vanishes at x = 0. This solution reduces in the nonrelativistic limit

21 - % iaal1e)-0-07 + 3 a°T(sn)? 1-)2-23r... .

2 to the 2:=0 sclution of the radial Schrédinger egquaticn for an attractive

Coulomb potential ) =x>0, E=H¥-2m
The integrals which appear can then be reduced to beta functions, omb potential, y(x) sul(r), r = x *
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differ slightly for o & m‘:L even though the solutions have the same non-

1

rele-ivistic limits and are essentially identical for p >> m

IIXI. THE THREE-DIMENSIONAL COULCME PROBLE!
A. The boundary value form of the problem

The three-dimensional Coulomb problem js defined by the integral

equatiun given above,

2V pea’ - uls(p) + o J i tnl(p-k}2 + €2 ¢(k) = 0 ,

-~
(38}
#lp) = -4(-p), £+ 0+ .

To trassform this eguation into a more useful form, we make a redefinition

stg.e:ted by our results in ore dimension,

#p) = gg ),  x(-p) = x(p} , (29)

and integrate once by parts. The result is the singular integral equatione
™
£z v p2ﬂn2 - M1 %ﬁ + % P I dk ﬁ%%l =0 (u0)
s
where P designates the principal value integral.
This integral equation can be transformed into a boundary value problem
as follows. We represent ¥{p), p real, as the difference of the boundary
values of two functions Qifpi and ¢ (p) which are analytic rvespectively

in the upper and lower halves of the ccmplex p-plane and vanish at infinity,T

wWp) = 8’ (pric) - ¢ (p-ic) . (1)

i

2 * - - » 8 v
Use of the Pleneli relations for the principle value integral {or di:ect

calculation) then shows that

r f dk k—f; (8t (keic)~0 (k-ig)] = i[@"(pfis)w'(p-ia)]. (42)

—

and we can rewrite Ig. (40) as

d . - .
(G * 1 B2 (p-ic) = [%—p- - iB(p)1et(p+ic) . (82)

Here B{p} is the function defined in Eq. (8),
Blp) = asf2v p2+m2 - M1 . (uu)

This function is symmetric in p, B(-p) = B(p), and has poles at p = ¢ P
{Eq. (12)) and branch peints at * im. We will assume initially that
M > 2m so that o is real.

The radial wave function u{(r) can be expressed in terms of the 2's
using Eqs. (3u), (39), and (ul). We first use the antisyrmetpy of &(p) =
dy/dp and Eq. (41) to rewrite Eq. {34} (with the factor (212 abscrbed in

x) as s
uf{r) = J dp sin pr gg {p}
i (us)

=
= - %r I dp Le'PT ¢ e PP (pric) - $7(p-ied] .

-t
We then observe that the integrals which involve e'PT 4% ang o 1PY &7
vanish for r > 0 (the functions are analytic in the upper and lower half

planes respectively, and the integration contours can be pushed to % i=

where the integrands vanish exponentially). Thus
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We therc’zre cooclule that

o F
yHin

() = (po TP *in

, e'tp = (po; p) s, P*¥ P, {52)

hence that the functlons $7(¢*) have the same branch peints at tpo as the
function x{p) encouniered In the one-dimensianal problem for an attractive
(repulsive) Coulerl interaction. We will choose the cut in 8 (o%) to

connect the branch points as shown in Fig. 3.  We can then continue

¢ (2") around the cut into the upper {lower) half plane. We remark also that
the exgressicas in Eq. (52) have the symmetry ¢+(-p) = ¢ {p), Eq. (u9),
for complex p if the constants of proportionality are chosen to be equal in
magnitude and opposite in sign.

We mext consider the continuation of Eg. (43) into the wpper half
plane starting »r the real axis with p > P, that is, to the right of the
cuts in 0ﬁ(p). The two sides of the equation are independently analytic
near the real axis for p > po, so are equal as analytic functions and may
be continued together. Since o' is analytic in the upper half plane by
construction, the only singularity of the right hand side of Eq. (u3) for
Im p> 0 i5 the branch point of B{p} at p = im. The left hand side there-
fore has enly this singularity, and we conclude that the coly singularity
of ¢ in the upper half plane is a branch point at p = im. (4 must have
this branch point for a nontrivial solution to exist since 2 (p) £ ¢+(p).
see, e.g., £Eq. (52}.) We choose the branch cut in ¢ to run from iﬁ to i=
" as shown in Fig. 3. The symmetry relation in Eq. (49) then ‘implies that
&' has a branch point at p =-Im with a cut which runs from -im to ~-i= .

It will be convenient at this point to write ¢ as a sum of tweo

Functiens,

18

27 ¢p) = o, (p) + &,(p) (53)

where Ql(p) has only the "short" cut on the real axis from P, tO P, and
o

Qz(p) has cnly the "long" cut from im to iw. Since ¢ (p) vanishes at in-

finity, we can express the separate functions in terms of their discontin-

uities across the cuts using the Cauchy integral formula,

1 dp' .
2 () = 5 fc ¢ (p")

P'-P

! (58)
S [Po @t e on
T oani pi-p ¢ RP :

—-po
S dp'

,(p) = 5% Ic T 0y(p")

5 P'P

i (55)
=1 -
= i [ 5'-p disc ¢,(p") .

im

In these expressions the peint p lies outside the integration contours C

and C, shown in Fig. 3

2 , and the discontinuities are defined by

L

disc ¢1(p) @l(ptie) - @l(p—iﬂ), PP <P, E o+ ,

(56}

H

disc @2(p) @z(p-e) - ¢2(pfc), m<-ip < ®, E =+ 0+ .

The Function disc Ql(p) is determined as follows. We note that the
result obtained by continuing Eq. (#3) from the region p > Py {where both
sides are analytic) to the upper edge of the short cut must be consistent

with the original equation for P, <P < Pg- Since ¢ is given on the
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. : 2 2
P, " llpol =i/~ M (65}

and Ire <oLrtour Cl in =q. (61) surrounds the segmnent (-i1p°!, iipol) of the

imaginery axis. The upper part of the contour gives an exponentially decreas-
ing zznzrikution to ul(r); the lower part of the contour gives an exponenti-

ally increasing contribution, To obtain ap acceptable {pormalizable} bound

s7azs wizve function, we must be able to eliminate the lower part of the con-

tour. This rejuires that there be no branch point or pole at p = ‘i[pol,
herce Sro= Ig. (6M), that in be a positive integer, in = 1,2,... (the wave
fum:zzizn vanishes for in = 0). Using the relation in = ﬂM/k]pol.we find

thit T e exact bound state energies for £ = 0 (S-states) are

a2
M = 2m 1+ —
n 4n
(€6)
2 L
n I o
=2m-"‘—2 -s—u—a‘-'n..., n=1,2,... .
un

te 3 term agrees with the correcticn to the Schrodinger energy En = M _-2m
R o, 3
otzzirel by expanding the square root in Eq. (30) to order ¥ /m”, and treat-

irz *%=zt term as a perturbation.

P, Integral equation for disc 02

.
We showed in Secs. IITA and IIEB that the solution of the three-
dirersional relativistic Coulomb problem can be expressed in terms of a

furcrion % (p) = ¢1(p) + Oz(p} which is analytic in the entire complex p

22

plane except for cuts from -P, to +po (¢l) and from im 1o ie= (@2). e
feund, furthermore, that disc @l {the discontinuity of ¢ or @1 across the
“short" cut) satisfied the same differential equation as was enceuntered in
the one-dimensional problem, and was given explicitly by disc ¢l(p) = -x{p)
where y{p} is defined in Egs. (11} and (19). 1In the present section, we
will derive an integral equation for disc @2(p). This equation relates
disc @2 to the kpnown function disc ¢l, and can be solved by iteration. The
solution will be discussed in the following sections.

We begin by deriving an equation for ¢ (p) which displays the analytic
strycture of that function. To do this, we note that the condition on disc @1
in Eq. (58) allows us to write the boundary value equation, Eq. (43), as an

analytic expression in the cut p plane,

. - 4 .
%E + iB(p)| ¢7(p) = [ - iBCR) 8 () . (67)

We multiply this equatrion by the Cauchy denominator and integrate on the

contour C2 shown In Fig., 1 to obtain a identity walid for general complex p,

[ - t
51'—1[ S sy iRt @(p')=2—:;—-1"[ S g - men] oten
C C2

(681
The integral of the right hand side is simple to evalvate: ¢t is analytic in
the upper half plane, while B{p) has a cut from im to i=. Thus
2 - iBpn] T ")
2ni p'-p dp* - iB{p ¢ (p

2 {= .,
= - %; j %?:5 0+(p') disc B(p*')

_LIJ_L d
e (s9)
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terw!” which involves the known function @l. In the next section we will

sTudy the iterative solution of this equation.

E. Tterative solution for disc °2

It will be convenient to make the change of variables Ip| = mx,

1< x <=, in Eq. (76); and to write disc02 as

gise o(ilply = &) w0, (717

x
=8 -l o =
L(x) = v tan et X = po/m . (78)

<

This substitution eliminates the second term in Egq. (76), and leaves us with

the equaticn

=
a¥ oy .8 w1 Rty p I dx' - Bx') yeoay
dx n x2+x2 x'2~x2
° o (79)
b O () - 6 (1m0
= iV e QLimx) ~ & (-imx)] .
KX
o
This equation can be solved by iteration. We let
ae'® AR r .
—— = ia e e [& Cime) - & (-imx)], {80)
dax 2.2 1 1
X X .
©
and define functions W;n) recursively by
(n) [z 3 :
ay'? .8 xx’-l -Lx) P I dx'_  &(x*) T(n_l)(x') , (e1)
dx " xz*x2 x'"~ 2
< 1
-
(n)
d
vg")( ) = I S el EU (82)
x

Then -

wx) = I ¥ oo .

n=0

We note that each successive term in
factor of afw. However, Eq. {83) is not a
the a-dependence introduced by the factors
vant parameter in Eq. (79) is xi/xz. This
quarks.

The function [&,(imx) - @l(-imx)] is

26

(83}

Eg. {83) involves an extra overall
simple power series in o because of
: 4

e L and by tl' The second rele-

. 2 ..
is of order v° for nomrelativistic

given from Eq. (s4) by

x
Q
dx'
$ (imx) - & (-imx) = x [ —=— disc P, {mx') . (8u)
1 1 = 2,2 1
-%
We will be primarily interested in the behavior of ¥(x) for x +® , 1In this
limit,
x
o
& (imx) - & (-imx) — 3= |  dx' aisc & (mx') , (85)
1 1 ™ 1
x>>1 Zxg

where the corrections are of relative order x:/xz. The integral in Eq. (85}

can be identified through Eqs. (61) and (64) with -uj(0¥/m = - by t0)/m,

where

¥(r) = [u,(r) + u,(r)] Yam ¢ . (86)

The same Integral was encountered in Sec. IIIC in the evaluaticn of P'(0),

the derjvative of the one-dimensional Coulomb wave Functicn at the origin.

To avoid confusion, we define ¢ = /O7 ¥,(0).  Then

¢, {imx) - o]_(-mx) —— - Cfftmx (87)

x>>1
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. result. The function disc , is ther given by Eq. {77),
vEvy +%\Jc0t"'— . (961

Expanding the cotanzent for mv/2 small, we find that
F, BRehavior of ¢§(r) for r ~ 0, =.

a 2 o tzvz a wuu“
v ==+ -; 12 —-’;7201-... 3 3
x We consider finally the behavior of the space wave function
(g7)
o i 2 a3 o pir) = [ul(r) + uz(r)]/r’ﬁ r for r - 0. The behavior of ul{r)j'z- is
== 4z (2 - 2) = +0(—) .
" 1l2 127 3 ™ easily determined from Eq. (64),
We find similarly that 1
ul(r)lr = c[1 - Famr t+ ...] (1o02)
: A=%;i-g—[1+0(u)] . (s8)
where C is given in Eq, (88), and we have omitted corrections of orders
and in a separate calculation in which we return higher order terms in x-l. 02' v2  in the second term.
that the coefficient °y in Eq. (93) is To determine the behavior of uz(r)/r for r + 0, we use Eq. (62) and
the results just obtained for disc €, for + a
e, =-2n olal} . {93) ] 2 Izl '
1 Bm o=
uz(r)/r s -iI alpl| e_lph‘ disc ¢2(ilp|)
These results agree to the relevant order with the iterative results given =
-
in Eqs. (30) and (21), = -j.mf dx e P00 gy
l = {
103)
a —mrx _v-1 2
ad = C d + O C
¥ o~ 1€ E+%(l+!.n2—£-)+% tnx-%ﬁx*...] . (100) w { e (e
x>>1 mx pra<l
We see, in fact, that = 2crwten™ - & ¢+ ofanr, a?y ¢
= =v_
A =% E. 1-% (I + in2 - %) + 0((12. vzﬂ . (101) Cl{mr) 11+ obmr, a/m e

. ’ In the last ctep, Wwe have used the relation v I a/n. Combining Egs. (102)
We conclude that the behavior of W{x) for x + @ is given by the
i and (102), we find that

asymptotic expansion In Eq. (93} with v, ¢., and A given by tqs. (37},

1

{99), and [101). The behavior of ¥(x) for x ©+ 1 is given by the iterative ey v cler) Vs olme,a/mic, aou)
mr<<l
serie: in Eq. {83). For u.:. vl o« 1, the first two terms In the serles,

Eqs. {90) and (91}, should give a satlsfactory approximation to the exact
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